(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.1' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 2781255, 82995] NotebookOptionsPosition[ 2695576, 82004] NotebookOutlinePosition[ 2696458, 82034] CellTagsIndexPosition[ 2696369, 82029] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Johnson Solid", "Title",ExpressionUUID->"7d1a6d34-801b-4334-8ff8-9a684f8143f2"], Cell[CellGroupData[{ Cell["Author", "Subsection",ExpressionUUID->"14df2b78-d68f-485d-ac03-0fe209d53981"], Cell["\<\ Eric W. Weisstein December 13, 2018\ \>", "Text",ExpressionUUID->"fcbc418f-6015-4f8b-9706-944750ae44ff"], Cell[TextData[{ "This notebook downloaded from ", ButtonBox["http://mathworld.wolfram.com/notebooks/Polyhedra/JohnsonSolid.nb", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/notebooks/Polyhedra/JohnsonSolid.nb"], None}], "." }], "Text",ExpressionUUID->"5f2cb9b5-b88a-45d3-80ad-86c4261cbc3a"], Cell[TextData[{ "For more information, see Eric's ", StyleBox["MathWorld", FontSlant->"Italic"], " entry ", ButtonBox["http://mathworld.wolfram.com/JohnsonSolid.html", BaseStyle->"Hyperlink", ButtonData:>{ URL["http://mathworld.wolfram.com/JohnsonSolid.html"], None}], "." }], "Text",ExpressionUUID->"4d1a6d00-b0aa-40cd-9204-d49db16ad20e"], Cell["\<\ \[Copyright]2018 Wolfram Research, Inc. except for portions noted otherwise\ \>", "Text",ExpressionUUID->"30f99eb5-9a4c-4372-beea-1004a303f3f3"] }, Open ]], Cell[CellGroupData[{ Cell["All", "Section",ExpressionUUID->"cd86cf82-0c13-4cba-becd-45d7c4fffddc"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"GraphicsGrid", "[", RowBox[{ RowBox[{"Partition", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"Tooltip", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "n"}], "}"}], ",", "\"\\""}], "]"}], ",", RowBox[{"Column", "[", RowBox[{"{", RowBox[{"n", ",", RowBox[{"PolyhedronData", "[", RowBox[{ RowBox[{"{", RowBox[{"\"\\"", ",", "n"}], "}"}], ",", "\"\<#\>\""}], "]"}]}], "}"}], "]"}]}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"Method", "\[Rule]", RowBox[{"{", RowBox[{"\"\\"", "\[Rule]", "True"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "92"}], "}"}]}], "]"}], ",", RowBox[{"UpTo", "[", "10", "]"}]}], "]"}], ",", RowBox[{"ImageSize", "\[Rule]", "500"}]}], "]"}]], "Input", CellLabel-> "In[237]:=",ExpressionUUID->"29cb2cf1-a28a-4e51-8693-528cc8f06877"], Cell[BoxData[ GraphicsBox[{{}, {{InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, 0, 2^Rational[-1, 2]}, {0, -2^Rational[-1, 2], 0}, { 0, 2^Rational[-1, 2], 0}, {-2^Rational[-1, 2], 0, 0}, { 2^Rational[-1, 2], 0, 0}}, {{0, 0, 0.7071067811865475}, { 0, -0.7071067811865475, 0}, { 0, 0.7071067811865475, 0}, {-0.7071067811865475, 0, 0}, { 0.7071067811865475, 0, 0}}], Polygon3DBox[{{3, 4, 1}, {4, 2, 1}, {2, 5, 1}, {5, 3, 1}, {5, 2, 4, 3}}]], TagBox[ GridBox[{{"1"}, { RowBox[{"{", RowBox[{"\"Pyramid\"", ",", "4"}], "}"}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{1, {"Pyramid", 4}}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {196.36363636363637, -279.27272727272725}, ImageScaled[{0.5, 0.5}], {360, 299}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, 0, (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, 0}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], 0}}, {{ 0, 0, 0.5257311121191336}, {0.8506508083520399, 0, 0}, { 0.2628655560595668, -0.8090169943749475, 0}, { 0.2628655560595668, 0.8090169943749475, 0}, {-0.6881909602355868, -0.5, 0}, {-0.6881909602355868, 0.5, 0}}], Polygon3DBox[{{4, 6, 1}, {6, 5, 1}, {5, 3, 1}, {3, 2, 1}, { 2, 4, 1}, {2, 3, 5, 6, 4}}]], TagBox[ GridBox[{{"2"}, { RowBox[{"{", RowBox[{"\"Pyramid\"", ",", "5"}], "}"}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{2, {"Pyramid", 5}}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {589.0909090909091, -279.27272727272725}, ImageScaled[{0.5, 0.5}], {360, 223}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, -1, 0}, {0, 1, 0}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[2, 3]^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[2, 3]^ Rational[1, 2]}, { 3^Rational[-1, 2], 0, Rational[2, 3]^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], 0}}, {{0, -1, 0}, {0, 1, 0}, {-0.2886751345948129, -0.5, 0.816496580927726}, {-0.2886751345948129, 0.5, 0.816496580927726}, { 0.5773502691896258, 0, 0.816496580927726}, {-0.8660254037844386, -0.5, 0}, {-0.8660254037844386, 0.5, 0}, { 0.8660254037844386, -0.5, 0}, {0.8660254037844386, 0.5, 0}}], Polygon3DBox[{{4, 3, 5}, {9, 8, 1, 6, 7, 2}, {3, 4, 7, 6}, {5, 3, 1, 8}, {4, 5, 9, 2}, {2, 7, 4}, {6, 1, 3}, {8, 9, 5}}]], TagBox[ GridBox[{{"3"}, {"\"TriangularCupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{3, "TriangularCupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {981.818181818182, -279.27272727272725}, ImageScaled[{0.5, 0.5}], {360, 290}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, -2^Rational[-1, 2], 2^Rational[-1, 2]}, { 0, 2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 0, 2^Rational[-1, 2]}, {2^Rational[-1, 2], 0, 2^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, { Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, { Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], 0}}, {{ 0, -0.7071067811865475, 0.7071067811865475}, { 0, 0.7071067811865475, 0.7071067811865475}, {-0.7071067811865475, 0, 0.7071067811865475}, { 0.7071067811865475, 0, 0.7071067811865475}, { 0.5, 1.2071067811865475`, 0}, {-0.5, 1.2071067811865475`, 0}, {-1.2071067811865475`, 0.5, 0}, {-1.2071067811865475`, -0.5, 0}, {-0.5, -1.2071067811865475`, 0}, { 0.5, -1.2071067811865475`, 0}, {1.2071067811865475`, -0.5, 0}, { 1.2071067811865475`, 0.5, 0}}], Polygon3DBox[{{2, 3, 1, 4}, {12, 11, 10, 9, 8, 7, 6, 5}, {3, 2, 6, 7}, {1, 3, 8, 9}, {4, 1, 10, 11}, {2, 4, 12, 5}, {5, 6, 2}, {7, 8, 3}, {9, 10, 1}, {11, 12, 4}}]], TagBox[ GridBox[{{"4"}, {"\"SquareCupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{4, "SquareCupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -279.27272727272725}, ImageScaled[{0.5, 0.5}], {360, 257}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.8506508083520399, 0, 0.5257311121191336}, { 0.2628655560595668, -0.8090169943749475, 0.5257311121191336}, { 0.2628655560595668, 0.8090169943749475, 0.5257311121191336}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-0.6881909602355868, -0.5, 0.5257311121191336}, {-0.6881909602355868, 0.5, 0.5257311121191336}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}}], Polygon3DBox[{{5, 11, 10, 4, 3}, {15, 14, 8, 1, 6, 12, 13, 7, 2, 9}, {11, 5, 2, 7}, {10, 11, 13, 12}, {4, 10, 6, 1}, {3, 4, 8, 14}, {5, 3, 15, 9}, {9, 2, 5}, {7, 13, 11}, {12, 6, 10}, {1, 8, 4}, {14, 15, 3}}]], TagBox[ GridBox[{{"5"}, {"\"PentagonalCupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{5, "PentagonalCupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -279.27272727272725}, ImageScaled[{0.5, 0.5}], {360, 223}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{18, 16, 17, 19, 20}, {15, 16, 18}, {14, 17, 16}, {12, 19, 17}, {11, 20, 19}, {13, 18, 20}, {6, 2, 13}, {4, 8, 15}, {7, 3, 14}, {1, 5, 12}, {9, 10, 11}, {2, 4, 15, 18, 13}, {8, 7, 14, 16, 15}, {3, 1, 12, 17, 14}, {5, 9, 11, 19, 12}, {10, 6, 13, 20, 11}, {10, 9, 5, 1, 3, 7, 8, 4, 2, 6}}]], TagBox[ GridBox[{{"6"}, {"\"PentagonalRotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{6, "PentagonalRotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2160., -279.27272727272725}, ImageScaled[{0.5, 0.5}], {360, 311}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, { 3^Rational[-1, 2], 0, 0}, {3^Rational[-1, 2], 0, 1}}, {{ 0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5, 0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129, 0.5, 0}, {-0.2886751345948129, 0.5, 1}, {0.5773502691896258, 0, 0}, { 0.5773502691896258, 0, 1}}], Polygon3DBox[{{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6, 7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]], TagBox[ GridBox[{{"7"}, {"\"ElongatedTriangularPyramid\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{7, "ElongatedTriangularPyramid"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2552.727272727273, -279.27272727272725}, ImageScaled[{0.5, 0.5}], {320, 512}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Rational[1, 2] (2 + 2^Rational[1, 2])}, { 0, -2^Rational[-1, 2], 0}, {0, -2^Rational[-1, 2], 1}, { 0, 2^Rational[-1, 2], 0}, { 0, 2^Rational[-1, 2], 1}, {-2^Rational[-1, 2], 0, 0}, {-2^Rational[-1, 2], 0, 1}, {2^Rational[-1, 2], 0, 0}, { 2^Rational[-1, 2], 0, 1}}, {{0, 0, 1.7071067811865475`}, { 0, -0.7071067811865475, 0}, {0, -0.7071067811865475, 1}, { 0, 0.7071067811865475, 0}, { 0, 0.7071067811865475, 1}, {-0.7071067811865475, 0, 0}, {-0.7071067811865475, 0, 1}, {0.7071067811865475, 0, 0}, { 0.7071067811865475, 0, 1}}], Polygon3DBox[{{5, 7, 1}, {7, 3, 1}, {3, 9, 1}, {9, 5, 1}, {4, 6, 7, 5}, {6, 2, 3, 7}, {2, 8, 9, 3}, {8, 4, 5, 9}, {8, 2, 6, 4}}]], TagBox[ GridBox[{{"8"}, {"\"ElongatedSquarePyramid\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{8, "ElongatedSquarePyramid"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -279.27272727272725}, ImageScaled[{0.5, 0.5}], {359, 512}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, 0, Rational[1, 10] ( 10 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, 0}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, 1}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 1}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 1}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], 1}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], 1}}, {{ 0, 0, 1.5257311121191337`}, {0.8506508083520399, 0, 0}, { 0.8506508083520399, 0, 1}, { 0.2628655560595668, -0.8090169943749475, 0}, { 0.2628655560595668, -0.8090169943749475, 1}, { 0.2628655560595668, 0.8090169943749475, 0}, { 0.2628655560595668, 0.8090169943749475, 1}, {-0.6881909602355868, -0.5, 0}, {-0.6881909602355868, -0.5, 1}, {-0.6881909602355868, 0.5, 0}, {-0.6881909602355868, 0.5, 1}}], Polygon3DBox[{{7, 11, 1}, {11, 9, 1}, {9, 5, 1}, {5, 3, 1}, {3, 7, 1}, {6, 10, 11, 7}, {10, 8, 9, 11}, {8, 4, 5, 9}, {4, 2, 3, 5}, {2, 6, 7, 3}, {2, 4, 8, 10, 6}}]], TagBox[ GridBox[{{"9"}, {"\"ElongatedPentagonalPyramid\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{9, "ElongatedPentagonalPyramid"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -279.27272727272725}, ImageScaled[{0.5, 0.5}], {360, 389}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], Rational[-1, 2], Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2], Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { 0, 0, 2^Rational[-1, 2] + Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { 0, -2^Rational[-1, 2], Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { 0, 2^Rational[-1, 2], Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2], Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2], Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^ Rational[1, 2]}, {-2^Rational[-1, 2], 0, Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { 2^Rational[-1, 2], 0, Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^ Rational[1, 2]}}, {{-0.5, -0.5, -0.42044820762685725`}, {-0.5, 0.5, -0.42044820762685725`}, {0, 0, 1.1275549888134047`}, { 0, -0.7071067811865475, 0.42044820762685725`}, { 0, 0.7071067811865475, 0.42044820762685725`}, { 0.5, -0.5, -0.42044820762685725`}, {0.5, 0.5, -0.42044820762685725`}, {-0.7071067811865475, 0, 0.42044820762685725`}, { 0.7071067811865475, 0, 0.42044820762685725`}}], Polygon3DBox[{{6, 1, 2, 7}, {7, 5, 9}, {2, 8, 5}, {1, 4, 8}, {6, 9, 4}, {7, 2, 5}, {2, 1, 8}, {1, 6, 4}, {6, 7, 9}, {5, 8, 3}, {8, 4, 3}, {4, 9, 3}, {9, 5, 3}}]], TagBox[ GridBox[{{"10"}, {"\"GyroelongatedSquarePyramid\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{10, "GyroelongatedSquarePyramid"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -279.27272727272725}, ImageScaled[{0.5, 0.5}], {360, 476}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, 0, (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2]}}, {{ 0, 0, 0.9510565162951535}, {-0.8506508083520399, 0, -0.42532540417601994`}, { 0.8506508083520399, 0, 0.42532540417601994`}, {-0.2628655560595668, \ -0.8090169943749475, -0.42532540417601994`}, {-0.2628655560595668, 0.8090169943749475, -0.42532540417601994`}, { 0.2628655560595668, -0.8090169943749475, 0.42532540417601994`}, { 0.2628655560595668, 0.8090169943749475, 0.42532540417601994`}, {-0.6881909602355868, -0.5, 0.42532540417601994`}, {-0.6881909602355868, 0.5, 0.42532540417601994`}, { 0.6881909602355868, -0.5, -0.42532540417601994`}, { 0.6881909602355868, 0.5, -0.42532540417601994`}}], Polygon3DBox[{{10, 4, 2, 5, 11}, {11, 7, 3}, {5, 9, 7}, {2, 8, 9}, { 4, 6, 8}, {10, 3, 6}, {11, 5, 7}, {5, 2, 9}, {2, 4, 8}, {4, 10, 6}, {10, 11, 3}, {7, 9, 1}, {9, 8, 1}, {8, 6, 1}, {6, 3, 1}, {3, 7, 1}}]], TagBox[ GridBox[{{"11"}, {"\"GyroelongatedPentagonalPyramid\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{11, "GyroelongatedPentagonalPyramid"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {196.36363636363637, -837.8181818181818}, ImageScaled[{0.5, 0.5}], {360, 352}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, 0, -Rational[2, 3]^Rational[1, 2]}, { 0, 0, Rational[2, 3]^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, { 3^Rational[-1, 2], 0, 0}}, {{0, 0, -0.816496580927726}, { 0, 0, 0.816496580927726}, {-0.2886751345948129, -0.5, 0}, {-0.2886751345948129, 0.5, 0}, {0.5773502691896258, 0, 0}}], Polygon3DBox[{{4, 3, 2}, {3, 5, 2}, {5, 4, 2}, {1, 3, 4}, {1, 5, 3}, {1, 4, 5}}]], TagBox[ GridBox[{{"12"}, { RowBox[{"{", RowBox[{"\"Dipyramid\"", ",", "3"}], "}"}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{12, {"Dipyramid", 3}}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {589.0909090909091, -837.8181818181818}, ImageScaled[{0.5, 0.5}], {360, 461}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, 0, -(Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { 0, 0, (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, 0}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], 0}}, {{ 0, 0, -0.5257311121191336}, {0, 0, 0.5257311121191336}, { 0.8506508083520399, 0, 0}, { 0.2628655560595668, -0.8090169943749475, 0}, { 0.2628655560595668, 0.8090169943749475, 0}, {-0.6881909602355868, -0.5, 0}, {-0.6881909602355868, 0.5, 0}}], Polygon3DBox[{{5, 7, 2}, {7, 6, 2}, {6, 4, 2}, {4, 3, 2}, { 3, 5, 2}, {1, 7, 5}, {1, 6, 7}, {1, 4, 6}, {1, 3, 4}, {1, 5, 3}}]], TagBox[ GridBox[{{"13"}, { RowBox[{"{", RowBox[{"\"Dipyramid\"", ",", "5"}], "}"}]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{13, {"Dipyramid", 5}}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {981.818181818182, -837.8181818181818}, ImageScaled[{0.5, 0.5}], {360, 220}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Rational[1, 6] (-3 - 2 6^Rational[1, 2])}, { 0, 0, Rational[1, 6] (3 + 2 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[ 1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[ 1, 2]}, {3^Rational[-1, 2], 0, Rational[-1, 2]}, { 3^Rational[-1, 2], 0, Rational[1, 2]}}, {{ 0, 0, -1.3164965809277258`}, { 0, 0, 1.3164965809277258`}, {-0.2886751345948129, -0.5, -0.5}, \ {-0.2886751345948129, -0.5, 0.5}, {-0.2886751345948129, 0.5, -0.5}, {-0.2886751345948129, 0.5, 0.5}, { 0.5773502691896258, 0, -0.5}, {0.5773502691896258, 0, 0.5}}], Polygon3DBox[{{6, 4, 2}, {4, 8, 2}, {8, 6, 2}, {1, 3, 5}, {1, 7, 3}, {1, 5, 7}, {5, 3, 4, 6}, {3, 7, 8, 4}, {7, 5, 6, 8}}]], TagBox[ GridBox[{{"14"}, {"\"ElongatedTriangularDipyramid\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{14, "ElongatedTriangularDipyramid"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -837.8181818181818}, ImageScaled[{0.5, 0.5}], {255, 512}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Rational[1, 2] (-1 - 2^Rational[1, 2])}, { 0, 0, Rational[1, 2] (1 + 2^Rational[1, 2])}, { 0, -2^Rational[-1, 2], Rational[-1, 2]}, { 0, -2^Rational[-1, 2], Rational[1, 2]}, { 0, 2^Rational[-1, 2], Rational[-1, 2]}, { 0, 2^Rational[-1, 2], Rational[1, 2]}, {-2^Rational[-1, 2], 0, Rational[-1, 2]}, {-2^Rational[-1, 2], 0, Rational[1, 2]}, { 2^Rational[-1, 2], 0, Rational[-1, 2]}, { 2^Rational[-1, 2], 0, Rational[1, 2]}}, {{ 0, 0, -1.2071067811865475`}, {0, 0, 1.2071067811865475`}, { 0, -0.7071067811865475, -0.5}, {0, -0.7071067811865475, 0.5}, { 0, 0.7071067811865475, -0.5}, { 0, 0.7071067811865475, 0.5}, {-0.7071067811865475, 0, -0.5}, {-0.7071067811865475, 0, 0.5}, { 0.7071067811865475, 0, -0.5}, {0.7071067811865475, 0, 0.5}}], Polygon3DBox[{{6, 8, 2}, {8, 4, 2}, {4, 10, 2}, {10, 6, 2}, {1, 7, 5}, {1, 3, 7}, {1, 9, 3}, {1, 5, 9}, {5, 7, 8, 6}, {7, 3, 4, 8}, { 3, 9, 10, 4}, {9, 5, 6, 10}}]], TagBox[ GridBox[{{"15"}, {"\"ElongatedSquareDipyramid\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{15, "ElongatedSquareDipyramid"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -837.8181818181818}, ImageScaled[{0.5, 0.5}], {337, 512}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, 0, Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { 0, 0, Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, Rational[-1, 2]}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[1, 2]}}, {{ 0, 0, -1.0257311121191337`}, {0, 0, 1.0257311121191337`}, { 0.8506508083520399, 0, -0.5}, {0.8506508083520399, 0, 0.5}, { 0.2628655560595668, -0.8090169943749475, -0.5}, { 0.2628655560595668, -0.8090169943749475, 0.5}, { 0.2628655560595668, 0.8090169943749475, -0.5}, { 0.2628655560595668, 0.8090169943749475, 0.5}, {-0.6881909602355868, -0.5, -0.5}, {-0.6881909602355868, \ -0.5, 0.5}, {-0.6881909602355868, 0.5, -0.5}, {-0.6881909602355868, 0.5, 0.5}}], Polygon3DBox[{{8, 12, 2}, {12, 10, 2}, {10, 6, 2}, {6, 4, 2}, {4, 8, 2}, {1, 11, 7}, {1, 9, 11}, {1, 5, 9}, {1, 3, 5}, {1, 7, 3}, {7, 11, 12, 8}, {11, 9, 10, 12}, {9, 5, 6, 10}, {5, 3, 4, 6}, {3, 7, 8, 4}}]], TagBox[ GridBox[{{"16"}, {"\"ElongatedPentagonalDipyramid\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{16, "ElongatedPentagonalDipyramid"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2160., -837.8181818181818}, ImageScaled[{0.5, 0.5}], {360, 391}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], Rational[-1, 2], Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2], Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { 0, 0, -2^Rational[-1, 2] + Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { 0, 0, 2^Rational[-1, 2] + Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { 0, -2^Rational[-1, 2], Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { 0, 2^Rational[-1, 2], Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2], Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2], Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^ Rational[1, 2]}, {-2^Rational[-1, 2], 0, Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, { 2^Rational[-1, 2], 0, Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^ Rational[1, 2]}}, {{-0.5, -0.5, -0.42044820762685725`}, {-0.5, 0.5, -0.42044820762685725`}, {0, 0, -1.1275549888134047`}, { 0, 0, 1.1275549888134047`}, { 0, -0.7071067811865475, 0.42044820762685725`}, { 0, 0.7071067811865475, 0.42044820762685725`}, { 0.5, -0.5, -0.42044820762685725`}, {0.5, 0.5, -0.42044820762685725`}, {-0.7071067811865475, 0, 0.42044820762685725`}, { 0.7071067811865475, 0, 0.42044820762685725`}}], Polygon3DBox[{{8, 6, 10}, {2, 9, 6}, {1, 5, 9}, {7, 10, 5}, {8, 2, 6}, {2, 1, 9}, {1, 7, 5}, {7, 8, 10}, {6, 9, 4}, {9, 5, 4}, {5, 10, 4}, {10, 6, 4}, {3, 2, 8}, {3, 1, 2}, {3, 7, 1}, {3, 8, 7}}]], TagBox[ GridBox[{{"17"}, {"\"GyroelongatedSquareDipyramid\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{17, "GyroelongatedSquareDipyramid"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2552.727272727273, -837.8181818181818}, ImageScaled[{0.5, 0.5}], {360, 494}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, -1, -1}, {0, -1, 0}, {0, 1, -1}, {0, 1, 0}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[2, 3]^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[2, 3]^ Rational[1, 2]}, { 3^Rational[-1, 2], 0, Rational[2, 3]^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], -1}, { Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], -1}, { Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], -1}, { Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], -1}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], 0}}, {{ 0, -1, -1}, {0, -1, 0}, {0, 1, -1}, {0, 1, 0}, {-0.2886751345948129, -0.5, 0.816496580927726}, {-0.2886751345948129, 0.5, 0.816496580927726}, { 0.5773502691896258, 0, 0.816496580927726}, {-0.8660254037844386, -0.5, -1}, \ {-0.8660254037844386, -0.5, 0}, {-0.8660254037844386, 0.5, -1}, {-0.8660254037844386, 0.5, 0}, { 0.8660254037844386, -0.5, -1}, {0.8660254037844386, -0.5, 0}, { 0.8660254037844386, 0.5, -1}, {0.8660254037844386, 0.5, 0}}], Polygon3DBox[{{5, 6, 11, 9}, {7, 5, 2, 13}, {6, 7, 15, 4}, {4, 11, 6}, {9, 2, 5}, {13, 15, 7}, {6, 5, 7}, {14, 12, 1, 8, 10, 3}, {3, 10, 11, 4}, {10, 8, 9, 11}, {8, 1, 2, 9}, {1, 12, 13, 2}, {12, 14, 15, 13}, {14, 3, 4, 15}}]], TagBox[ GridBox[{{"18"}, {"\"ElongatedTriangularCupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{18, "ElongatedTriangularCupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -837.8181818181818}, ImageScaled[{0.5, 0.5}], {360, 422}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, -2^Rational[-1, 2], 2^Rational[-1, 2]}, { 0, 2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 0, 2^Rational[-1, 2]}, {2^Rational[-1, 2], 0, 2^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), -1}, { Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, { Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), -1}, { Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], -1}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], -1}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), -1}, { Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, { Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), -1}, { Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], -1}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], -1}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], 0}}, {{ 0, -0.7071067811865475, 0.7071067811865475}, { 0, 0.7071067811865475, 0.7071067811865475}, {-0.7071067811865475, 0, 0.7071067811865475}, { 0.7071067811865475, 0, 0.7071067811865475}, { 0.5, 1.2071067811865475`, -1}, { 0.5, 1.2071067811865475`, 0}, {-0.5, 1.2071067811865475`, -1}, {-0.5, 1.2071067811865475`, 0}, {-1.2071067811865475`, 0.5, -1}, {-1.2071067811865475`, 0.5, 0}, {-1.2071067811865475`, -0.5, -1}, {-1.2071067811865475`, \ -0.5, 0}, {-0.5, -1.2071067811865475`, -1}, {-0.5, -1.2071067811865475`, 0}, { 0.5, -1.2071067811865475`, -1}, {0.5, -1.2071067811865475`, 0}, { 1.2071067811865475`, -0.5, -1}, {1.2071067811865475`, -0.5, 0}, { 1.2071067811865475`, 0.5, -1}, {1.2071067811865475`, 0.5, 0}}], Polygon3DBox[{{3, 2, 8, 10}, {1, 3, 12, 14}, {4, 1, 16, 18}, {2, 4, 20, 6}, {6, 8, 2}, {10, 12, 3}, {14, 16, 1}, {18, 20, 4}, {2, 3, 1, 4}, {19, 17, 15, 13, 11, 9, 7, 5}, {5, 7, 8, 6}, {7, 9, 10, 8}, {9, 11, 12, 10}, {11, 13, 14, 12}, {13, 15, 16, 14}, {15, 17, 18, 16}, {17, 19, 20, 18}, {19, 5, 6, 20}}]], TagBox[ GridBox[{{"19"}, {"\"ElongatedSquareCupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{19, "ElongatedSquareCupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -837.8181818181818}, ImageScaled[{0.5, 0.5}], {360, 358}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), -1}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), -1}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -1}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -1}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -1}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -1}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -1}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -1}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -1}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -1}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}}, {{ 0, -1.618033988749895, -1}, {0, -1.618033988749895, 0}, { 0, 1.618033988749895, -1}, {0, 1.618033988749895, 0}, { 0.8506508083520399, 0, 0.5257311121191336}, { 0.2628655560595668, -0.8090169943749475, 0.5257311121191336}, { 0.2628655560595668, 0.8090169943749475, 0.5257311121191336}, {-0.9510565162951535, -1.3090169943749475`, \ -1}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, -1}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, -1}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, -1}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-0.6881909602355868, -0.5, 0.5257311121191336}, {-0.6881909602355868, 0.5, 0.5257311121191336}, {-1.5388417685876268`, -0.5, -1}, \ {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, -1}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, -1}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, -1}, {1.5388417685876268`, 0.5, 0}}], Polygon3DBox[{{17, 7, 4, 11}, {16, 17, 21, 19}, {6, 16, 9, 2}, {5, 6, 13, 23}, {7, 5, 25, 15}, {15, 4, 7}, {11, 21, 17}, {19, 9, 16}, {2, 13, 6}, {23, 25, 5}, {7, 17, 16, 6, 5}, {24, 22, 12, 1, 8, 18, 20, 10, 3, 14}, {14, 3, 4, 15}, {3, 10, 11, 4}, {10, 20, 21, 11}, {20, 18, 19, 21}, {18, 8, 9, 19}, {8, 1, 2, 9}, {1, 12, 13, 2}, {12, 22, 23, 13}, {22, 24, 25, 23}, {24, 14, 15, 25}}]], TagBox[ GridBox[{{"20"}, {"\"ElongatedPentagonalCupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{20, "ElongatedPentagonalCupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -837.8181818181818}, ImageScaled[{0.5, 0.5}], {360, 306}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), -1}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), -1}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -1}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -1}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), -1}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -1}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -1}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -1}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], -1}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], -1}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, -1}, { 0, -1.618033988749895, 0}, {0, 1.618033988749895, -1}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, -1}, \ {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, -1}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, -1}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, -1}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, -1}, {-1.5388417685876268`, \ -0.5, 0}, {-1.5388417685876268`, 0.5, -1}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, -1}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, -1}, {1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{28, 26, 27, 29, 30}, {25, 26, 28}, {24, 27, 26}, {22, 29, 27}, {21, 30, 29}, {23, 28, 30}, {12, 4, 23}, {8, 16, 25}, { 14, 6, 24}, {2, 10, 22}, {18, 20, 21}, {4, 8, 25, 28, 23}, {16, 14, 24, 26, 25}, {6, 2, 22, 27, 24}, {10, 18, 21, 29, 22}, {20, 12, 23, 30, 21}, {19, 17, 9, 1, 5, 13, 15, 7, 3, 11}, {11, 3, 4, 12}, {3, 7, 8, 4}, {7, 15, 16, 8}, {15, 13, 14, 16}, {13, 5, 6, 14}, {5, 1, 2, 6}, {1, 9, 10, 2}, {9, 17, 18, 10}, {17, 19, 20, 18}, {19, 11, 12, 20}}]], TagBox[ GridBox[{{"21"}, {"\"ElongatedPentagonalRotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{21, "ElongatedPentagonalRotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {196.36363636363637, -1396.3636363636363}, ImageScaled[{0.5, 0.5}], {360, 396}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{-1, 0, -(-1 + 3^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], -(-1 + 3^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], -(-1 + 3^Rational[1, 2])^Rational[1, 2]}, { 0, -1, 0}, {0, 1, 0}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], -(-1 + 3^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], -(-1 + 3^Rational[1, 2])^Rational[1, 2]}, { 1, 0, -(-1 + 3^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[2, 3]^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[2, 3]^ Rational[1, 2]}, { 3^Rational[-1, 2], 0, Rational[2, 3]^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], 0}}, {{-1, 0, -0.8555996771673521}, {-0.5, -0.8660254037844386, \ -0.8555996771673521}, {-0.5, 0.8660254037844386, -0.8555996771673521}, {0, -1, 0}, {0, 1, 0}, {0.5, -0.8660254037844386, -0.8555996771673521}, { 0.5, 0.8660254037844386, -0.8555996771673521}, { 1, 0, -0.8555996771673521}, {-0.2886751345948129, -0.5, 0.816496580927726}, {-0.2886751345948129, 0.5, 0.816496580927726}, { 0.5773502691896258, 0, 0.816496580927726}, {-0.8660254037844386, -0.5, 0}, {-0.8660254037844386, 0.5, 0}, { 0.8660254037844386, -0.5, 0}, {0.8660254037844386, 0.5, 0}}], Polygon3DBox[{{3, 7, 8, 6, 2, 1}, {1, 2, 12}, {2, 6, 4}, {6, 8, 14}, {8, 7, 15}, {7, 3, 5}, {3, 1, 13}, {2, 4, 12}, {6, 14, 4}, { 8, 15, 14}, {7, 5, 15}, {3, 13, 5}, {1, 12, 13}, {10, 9, 11}, {9, 10, 13, 12}, {11, 9, 4, 14}, {10, 11, 15, 5}, {5, 13, 10}, {12, 4, 9}, {14, 15, 11}}]], TagBox[ GridBox[{{"22"}, {"\"GyroelongatedTriangularCupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{22, "GyroelongatedTriangularCupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {589.0909090909091, -1396.3636363636363}, ImageScaled[{0.5, 0.5}], {360, 421}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, -2^Rational[-1, 2], 2^Rational[-1, 2]}, { 0, 2^Rational[-1, 2], 2^Rational[-1, 2]}, { 0, Root[1 - 4 #^2 + 2 #^4& , 1, 0], Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, { 0, Root[1 - 4 #^2 + 2 #^4& , 4, 0], Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, {-2^ Rational[-1, 2], 0, 2^Rational[-1, 2]}, { 2^Rational[-1, 2], 0, 2^Rational[-1, 2]}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], 0}, { Root[1 - 4 #^2 + 2 #^4& , 1, 0], 0, Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, { Root[1 - 4 #^2 + 2 #^4& , 4, 0], 0, Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, { Root[1 - 8 #^2 + 8 #^4& , 1, 0], Root[1 - 8 #^2 + 8 #^4& , 1, 0], Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, { Root[1 - 8 #^2 + 8 #^4& , 1, 0], Root[1 - 8 #^2 + 8 #^4& , 4, 0], Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, { Root[1 - 8 #^2 + 8 #^4& , 4, 0], Root[1 - 8 #^2 + 8 #^4& , 1, 0], Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, { Root[1 - 8 #^2 + 8 #^4& , 4, 0], Root[1 - 8 #^2 + 8 #^4& , 4, 0], Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, { Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, { Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, { Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, { Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], 0}}, {{ 0, -0.7071067811865475, 0.7071067811865475}, { 0, 0.7071067811865475, 0.7071067811865475}, { 0, -1.3065629648763766`, -0.8602955698629716}, { 0, 1.3065629648763766`, -0.8602955698629716}, \ {-0.7071067811865475, 0, 0.7071067811865475}, { 0.7071067811865475, 0, 0.7071067811865475}, {-1.2071067811865475`, -0.5, 0}, {-1.3065629648763766`, 0, -0.8602955698629716}, { 1.3065629648763766`, 0, -0.8602955698629716}, {-0.9238795325112867, \ -0.9238795325112867, -0.8602955698629716}, {-0.9238795325112867, 0.9238795325112867, -0.8602955698629716}, { 0.9238795325112867, -0.9238795325112867, -0.8602955698629716}, { 0.9238795325112867, 0.9238795325112867, -0.8602955698629716}, {-0.5, \ -1.2071067811865475`, 0}, {0.5, 1.2071067811865475`, 0}, { 0.5, -1.2071067811865475`, 0}, {-0.5, 1.2071067811865475`, 0}, { 1.2071067811865475`, -0.5, 0}, {-1.2071067811865475`, 0.5, 0}, { 1.2071067811865475`, 0.5, 0}}], Polygon3DBox[{{11, 4, 13, 9, 12, 3, 10, 8}, {8, 10, 7}, {10, 3, 14}, {3, 12, 16}, {12, 9, 18}, {9, 13, 20}, {13, 4, 15}, {4, 11, 17}, {11, 8, 19}, {10, 14, 7}, {3, 16, 14}, {12, 18, 16}, {9, 20, 18}, {13, 15, 20}, {4, 17, 15}, {11, 19, 17}, {8, 7, 19}, {2, 5, 1, 6}, {5, 2, 17, 19}, {1, 5, 7, 14}, {6, 1, 16, 18}, {2, 6, 20, 15}, {15, 17, 2}, {19, 7, 5}, {14, 16, 1}, {18, 20, 6}}]], TagBox[ GridBox[{{"23"}, {"\"GyroelongatedSquareCupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{23, "GyroelongatedSquareCupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {981.818181818182, -1396.3636363636363}, ImageScaled[{0.5, 0.5}], {360, 338}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0, Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Root[5 - 20 #^2 + 16 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, { Root[5 - 20 #^2 + 16 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[5 - 20 #^2 + 16 #^4& , 4, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, { Root[5 - 20 #^2 + 16 #^4& , 4, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[-1, 2], Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[1, 2], Root[ 1 - 5 #^2 + 5 #^4& , 3, 0]}, { Rational[-1, 2], Root[5 - 40 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[-1, 2], Root[5 - 40 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 2], Root[5 - 40 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 2], Root[5 - 40 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Root[5 - 40 #^2 + 16 #^4& , 1, 0], Rational[-1, 2], 0}, { Root[5 - 40 #^2 + 16 #^4& , 1, 0], Rational[1, 2], 0}, { Root[5 - 40 #^2 + 16 #^4& , 4, 0], Rational[-1, 2], 0}, { Root[5 - 40 #^2 + 16 #^4& , 4, 0], Rational[1, 2], 0}}, {{ 0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-1.618033988749895, 0, -0.8623970038594585}, { 0.8506508083520399, 0, 0.5257311121191336}, { 0.2628655560595668, -0.8090169943749475, 0.5257311121191336}, { 0.2628655560595668, 0.8090169943749475, 0.5257311121191336}, { 1.618033988749895, 0, -0.8623970038594585}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-0.6881909602355868, -0.5, 0.5257311121191336}, {-0.6881909602355868, 0.5, 0.5257311121191336}, {-0.5, -1.5388417685876266`, \ -0.8623970038594585}, {-0.5, 1.5388417685876268`, -0.8623970038594585}, { 0.5, -1.5388417685876266`, -0.8623970038594585}, {0.5, 1.5388417685876268`, -0.8623970038594585}, {-1.3090169943749475`, \ -0.9510565162951535, -0.8623970038594585}, {-1.3090169943749475`, 0.9510565162951535, -0.8623970038594585}, { 1.3090169943749475`, -0.9510565162951535, -0.8623970038594585}, { 1.3090169943749475`, 0.9510565162951535, -0.8623970038594585}, {-1.5388417685876266`, \ -0.5, 0}, {-1.5388417685876266`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}}], Polygon3DBox[{{19, 15, 17, 21, 7, 20, 16, 14, 18, 3}, {3, 18, 22}, { 18, 14, 8}, {14, 16, 1}, {16, 20, 10}, {20, 7, 24}, {7, 21, 25}, { 21, 17, 11}, {17, 15, 2}, {15, 19, 9}, {19, 3, 23}, {18, 8, 22}, { 14, 1, 8}, {16, 10, 1}, {20, 24, 10}, {7, 25, 24}, {21, 11, 25}, { 17, 2, 11}, {15, 9, 2}, {19, 23, 9}, {3, 22, 23}, {6, 13, 12, 5, 4}, {13, 6, 2, 9}, {12, 13, 23, 22}, {5, 12, 8, 1}, {4, 5, 10, 24}, {6, 4, 25, 11}, {11, 2, 6}, {9, 23, 13}, {22, 8, 12}, {1, 10, 5}, {24, 25, 4}}]], TagBox[ GridBox[{{"24"}, {"\"GyroelongatedPentagonalCupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{24, "GyroelongatedPentagonalCupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -1396.3636363636363}, ImageScaled[{0.5, 0.5}], {360, 293}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Root[5 - 20 #^2 + 16 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, { Root[5 - 20 #^2 + 16 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Root[5 - 20 #^2 + 16 #^4& , 4, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, { Root[5 - 20 #^2 + 16 #^4& , 4, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, { Rational[-1, 2], Root[5 - 40 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[-1, 2], Root[5 - 40 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 2], Root[5 - 40 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 2], Root[5 - 40 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 1, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 20 #^2 + 16 #^4& , 4, 0], Root[ 1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Root[5 - 40 #^2 + 16 #^4& , 1, 0], Rational[-1, 2], 0}, { Root[5 - 40 #^2 + 16 #^4& , 1, 0], Rational[1, 2], 0}, { Root[5 - 40 #^2 + 16 #^4& , 4, 0], Rational[-1, 2], 0}, { Root[5 - 40 #^2 + 16 #^4& , 4, 0], Rational[1, 2], 0}, { Root[1 - 10 #^2 + 5 #^4& , 4, 0], 0, Root[ 1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 4, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 4, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 5 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, Root[ 1 - 10 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 10 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 10 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 4, 0], Rational[-1, 2], Root[ 1 - 10 #^2 + 5 #^4& , 4, 0]}, { Root[1 - 40 #^2 + 80 #^4& , 4, 0], Rational[1, 2], Root[ 1 - 10 #^2 + 5 #^4& , 4, 0]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-1.618033988749895, 0, -0.8623970038594585}, { 1.618033988749895, 0, -0.8623970038594585}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-0.5, -1.5388417685876266`, -0.8623970038594585}, {-0.5, 1.5388417685876268`, -0.8623970038594585}, { 0.5, -1.5388417685876266`, -0.8623970038594585}, {0.5, 1.5388417685876268`, -0.8623970038594585}, {-1.3090169943749475`, \ -0.9510565162951535, -0.8623970038594585}, {-1.3090169943749475`, 0.9510565162951535, -0.8623970038594585}, { 1.3090169943749475`, -0.9510565162951535, -0.8623970038594585}, { 1.3090169943749475`, 0.9510565162951535, -0.8623970038594585}, {-1.5388417685876266`, \ -0.5, 0}, {-1.5388417685876266`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{14, 10, 12, 16, 4, 15, 11, 9, 13, 3}, {3, 13, 17}, { 13, 9, 5}, {9, 11, 1}, {11, 15, 7}, {15, 4, 19}, {4, 16, 20}, {16, 12, 8}, {12, 10, 2}, {10, 14, 6}, {14, 3, 18}, {13, 5, 17}, {9, 1, 5}, {11, 7, 1}, {15, 19, 7}, {4, 20, 19}, {16, 8, 20}, {12, 2, 8}, {10, 6, 2}, {14, 18, 6}, {3, 17, 18}, {28, 26, 27, 29, 30}, { 25, 26, 28}, {24, 27, 26}, {22, 29, 27}, {21, 30, 29}, {23, 28, 30}, {8, 2, 23}, {6, 18, 25}, {17, 5, 24}, {1, 7, 22}, {19, 20, 21}, {2, 6, 25, 28, 23}, {18, 17, 24, 26, 25}, {5, 1, 22, 27, 24}, {7, 19, 21, 29, 22}, {20, 8, 23, 30, 21}}]], TagBox[ GridBox[{{"25"}, {"\"GyroelongatedPentagonalRotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{25, "GyroelongatedPentagonalRotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -1396.3636363636363}, ImageScaled[{0.5, 0.5}], {360, 384}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{Rational[-1, 2], Rational[-1, 2], 0}, { Rational[-1, 2], 0, Rational[1, 2] 3^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2], 0}, { 0, Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { 0, Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2], 0, Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2], 0}}, {{-0.5, -0.5, 0}, {-0.5, 0, 0.8660254037844386}, {-0.5, 0.5, 0}, { 0, -0.5, -0.8660254037844386}, {0, 0.5, -0.8660254037844386}, { 0.5, -0.5, 0}, {0.5, 0, 0.8660254037844386}, {0.5, 0.5, 0}}], Polygon3DBox[{{6, 8, 7}, {2, 3, 1}, {7, 2, 1, 6}, {2, 7, 8, 3}, {4, 6, 1}, {3, 8, 5}, {1, 3, 5, 4}, {8, 6, 4, 5}}]], TagBox[ GridBox[{{"26"}, {"\"Gyrobifastigium\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{26, "Gyrobifastigium"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2160., -1396.3636363636363}, ImageScaled[{0.5, 0.5}], {360, 482}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, -1, 0}, {0, 1, 0}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], - Rational[2, 3]^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[2, 3]^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], - Rational[2, 3]^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[2, 3]^ Rational[1, 2]}, { 3^Rational[-1, 2], 0, -Rational[2, 3]^Rational[1, 2]}, { 3^Rational[-1, 2], 0, Rational[2, 3]^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, { Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], 0}, { Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], 0}}, {{0, -1, 0}, {0, 1, 0}, {-0.2886751345948129, -0.5, -0.816496580927726}, \ {-0.2886751345948129, -0.5, 0.816496580927726}, {-0.2886751345948129, 0.5, -0.816496580927726}, {-0.2886751345948129, 0.5, 0.816496580927726}, {0.5773502691896258, 0, -0.816496580927726}, { 0.5773502691896258, 0, 0.816496580927726}, {-0.8660254037844386, -0.5, 0}, {-0.8660254037844386, 0.5, 0}, { 0.8660254037844386, -0.5, 0}, {0.8660254037844386, 0.5, 0}}], Polygon3DBox[{{6, 4, 8}, {4, 6, 10, 9}, {8, 4, 1, 11}, {6, 8, 12, 2}, {2, 10, 6}, {9, 1, 4}, {11, 12, 8}, {7, 3, 5}, {9, 10, 5, 3}, {11, 1, 3, 7}, {2, 12, 7, 5}, {5, 10, 2}, {3, 1, 9}, {7, 12, 11}}]], TagBox[ GridBox[{{"27"}, {"\"TriangularOrthobicupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{27, "TriangularOrthobicupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2552.727272727273, -1396.3636363636363}, ImageScaled[{0.5, 0.5}], {360, 326}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, -2^Rational[-1, 2], -2^Rational[-1, 2]}, { 0, -2^Rational[-1, 2], 2^Rational[-1, 2]}, { 0, 2^Rational[-1, 2], -2^Rational[-1, 2]}, { 0, 2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 0, -2^Rational[-1, 2]}, {-2^Rational[-1, 2], 0, 2^ Rational[-1, 2]}, {2^Rational[-1, 2], 0, -2^Rational[-1, 2]}, { 2^Rational[-1, 2], 0, 2^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, { Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, { Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], 0}}, {{ 0, -0.7071067811865475, -0.7071067811865475}, { 0, -0.7071067811865475, 0.7071067811865475}, { 0, 0.7071067811865475, -0.7071067811865475}, { 0, 0.7071067811865475, 0.7071067811865475}, {-0.7071067811865475, 0, -0.7071067811865475}, {-0.7071067811865475, 0, 0.7071067811865475}, { 0.7071067811865475, 0, -0.7071067811865475}, { 0.7071067811865475, 0, 0.7071067811865475}, { 0.5, 1.2071067811865475`, 0}, {-0.5, 1.2071067811865475`, 0}, {-1.2071067811865475`, 0.5, 0}, {-1.2071067811865475`, -0.5, 0}, {-0.5, -1.2071067811865475`, 0}, { 0.5, -1.2071067811865475`, 0}, {1.2071067811865475`, -0.5, 0}, { 1.2071067811865475`, 0.5, 0}}], Polygon3DBox[{{4, 6, 2, 8}, {6, 4, 10, 11}, {2, 6, 12, 13}, {8, 2, 14, 15}, {4, 8, 16, 9}, {9, 10, 4}, {11, 12, 6}, {13, 14, 2}, {15, 16, 8}, {7, 1, 5, 3}, {11, 10, 3, 5}, {13, 12, 5, 1}, {15, 14, 1, 7}, {9, 16, 7, 3}, {3, 10, 9}, {5, 12, 11}, {1, 14, 13}, {7, 16, 15}}]], TagBox[ GridBox[{{"28"}, {"\"SquareOrthobicupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{28, "SquareOrthobicupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -1396.3636363636363}, ImageScaled[{0.5, 0.5}], {360, 260}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{Rational[-1, 2], Rational[-1, 2], -2^Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2], -2^Rational[-1, 2]}, { 0, -2^Rational[-1, 2], 2^Rational[-1, 2]}, { 0, 2^Rational[-1, 2], 2^Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2], -2^Rational[-1, 2]}, { Rational[1, 2], Rational[ 1, 2], -2^Rational[-1, 2]}, {-2^Rational[-1, 2], 0, 2^ Rational[-1, 2]}, {2^Rational[-1, 2], 0, 2^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, { Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, { Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], 0}}, {{-0.5, -0.5, -0.7071067811865475}, {-0.5, 0.5, -0.7071067811865475}, { 0, -0.7071067811865475, 0.7071067811865475}, { 0, 0.7071067811865475, 0.7071067811865475}, { 0.5, -0.5, -0.7071067811865475}, {0.5, 0.5, -0.7071067811865475}, {-0.7071067811865475, 0, 0.7071067811865475}, { 0.7071067811865475, 0, 0.7071067811865475}, { 0.5, 1.2071067811865475`, 0}, {-0.5, 1.2071067811865475`, 0}, {-1.2071067811865475`, 0.5, 0}, {-1.2071067811865475`, -0.5, 0}, {-0.5, -1.2071067811865475`, 0}, { 0.5, -1.2071067811865475`, 0}, {1.2071067811865475`, -0.5, 0}, { 1.2071067811865475`, 0.5, 0}}], Polygon3DBox[{{4, 7, 3, 8}, {7, 4, 10, 11}, {3, 7, 12, 13}, {8, 3, 14, 15}, {4, 8, 16, 9}, {9, 10, 4}, {11, 12, 7}, {13, 14, 3}, {15, 16, 8}, {5, 1, 2, 6}, {10, 9, 6, 2}, {12, 11, 2, 1}, {14, 13, 1, 5}, {16, 15, 5, 6}, {6, 9, 16}, {2, 11, 10}, {1, 13, 12}, {5, 15, 14}}]], TagBox[ GridBox[{{"29"}, {"\"SquareGyrobicupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{29, "SquareGyrobicupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -1396.3636363636363}, ImageScaled[{0.5, 0.5}], {360, 265}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}}, {{ 0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, { 0.8506508083520399, 0, -0.5257311121191336}, { 0.8506508083520399, 0, 0.5257311121191336}, { 0.2628655560595668, -0.8090169943749475, -0.5257311121191336}, { 0.2628655560595668, -0.8090169943749475, 0.5257311121191336}, { 0.2628655560595668, 0.8090169943749475, -0.5257311121191336}, { 0.2628655560595668, 0.8090169943749475, 0.5257311121191336}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-0.6881909602355868, -0.5, -0.5257311121191336}, \ {-0.6881909602355868, -0.5, 0.5257311121191336}, {-0.6881909602355868, 0.5, -0.5257311121191336}, {-0.6881909602355868, 0.5, 0.5257311121191336}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}}], Polygon3DBox[{{8, 16, 14, 6, 4}, {16, 8, 2, 10}, {14, 16, 18, 17}, { 6, 14, 9, 1}, {4, 6, 11, 19}, {8, 4, 20, 12}, {12, 2, 8}, {10, 18, 16}, {17, 9, 14}, {1, 11, 6}, {19, 20, 4}, {3, 5, 13, 15, 7}, { 10, 2, 7, 15}, {17, 18, 15, 13}, {1, 9, 13, 5}, {19, 11, 5, 3}, { 12, 20, 3, 7}, {7, 2, 12}, {15, 18, 10}, {13, 9, 17}, {5, 11, 1}, {3, 20, 19}}]], TagBox[ GridBox[{{"30"}, {"\"PentagonalOrthobicupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{30, "PentagonalOrthobicupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -1396.3636363636363}, ImageScaled[{0.5, 0.5}], {360, 218}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, -(Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {( Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}}, {{ 0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-0.6881909602355868, -0.5, 0.5257311121191336}, {-0.6881909602355868, 0.5, 0.5257311121191336}, { 0.6881909602355868, -0.5, -0.5257311121191336}, { 0.6881909602355868, 0.5, -0.5257311121191336}, {-0.8506508083520399, 0, -0.5257311121191336}, { 0.8506508083520399, 0, 0.5257311121191336}, {-0.2628655560595668, -0.8090169943749475, \ -0.5257311121191336}, {-0.2628655560595668, 0.8090169943749475, -0.5257311121191336}, { 0.2628655560595668, -0.8090169943749475, 0.5257311121191336}, { 0.2628655560595668, 0.8090169943749475, 0.5257311121191336}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}}], Polygon3DBox[{{12, 4, 3, 11, 8}, {4, 12, 2, 14}, {3, 4, 18, 17}, { 11, 3, 13, 1}, {8, 11, 15, 19}, {12, 8, 20, 16}, {16, 2, 12}, {14, 18, 4}, {17, 13, 3}, {1, 15, 11}, {19, 20, 8}, {5, 9, 7, 10, 6}, {2, 16, 6, 10}, {18, 14, 10, 7}, {13, 17, 7, 9}, {15, 1, 9, 5}, {20, 19, 5, 6}, {6, 16, 20}, {10, 14, 2}, {7, 17, 18}, {9, 1, 13}, {5, 19, 15}}]], TagBox[ GridBox[{{"31"}, {"\"PentagonalGyrobicupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{31, "PentagonalGyrobicupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {196.36363636363637, -1954.9090909090905}, ImageScaled[{0.5, 0.5}], {360, 218}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, { 0.6881909602355868, -0.5, -0.5257311121191336}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, -0.5257311121191336}, { 0.6881909602355868, 0.5, 1.3763819204711736`}, {-0.8506508083520399, 0, -0.5257311121191336}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.2628655560595668, -0.8090169943749475, \ -0.5257311121191336}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, -0.5257311121191336}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, 0.8506508083520399}}], Polygon3DBox[{{16, 10, 14, 6, 8}, {12, 10, 16}, {11, 14, 10}, {3, 6, 14}, {25, 8, 6}, {4, 16, 8}, {20, 2, 4}, {18, 22, 12}, {21, 17, 11}, {1, 19, 3}, {23, 24, 25}, {2, 18, 12, 16, 4}, {22, 21, 11, 10, 12}, {17, 1, 3, 14, 11}, {19, 23, 25, 6, 3}, {24, 20, 4, 8, 25}, {5, 13, 9, 15, 7}, {2, 20, 7, 15}, {22, 18, 15, 9}, {17, 21, 9, 13}, {19, 1, 13, 5}, {24, 23, 5, 7}, {7, 20, 24}, {15, 18, 2}, {9, 21, 22}, {13, 1, 17}, {5, 23, 19}}]], TagBox[ GridBox[{{"32"}, {"\"PentagonalOrthocupolarotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{32, "PentagonalOrthocupolarotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {589.0909090909091, -1954.9090909090905}, ImageScaled[{0.5, 0.5}], {360, 308}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, { 0.8506508083520399, 0, -0.5257311121191336}, { 0.2628655560595668, -0.8090169943749475, -0.5257311121191336}, { 0.2628655560595668, 0.8090169943749475, -0.5257311121191336}, {-0.9510565162951535, \ -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-0.6881909602355868, -0.5, -0.5257311121191336}, \ {-0.6881909602355868, 0.5, -0.5257311121191336}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, { 1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, {0.6881909602355868, -0.5, 1.3763819204711736`}, {0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{23, 21, 22, 24, 25}, {20, 21, 23}, {19, 22, 21}, {17, 24, 22}, {16, 25, 24}, {18, 23, 25}, {9, 2, 18}, {7, 13, 20}, { 12, 6, 19}, {1, 8, 17}, {14, 15, 16}, {2, 7, 20, 23, 18}, {13, 12, 19, 21, 20}, {6, 1, 17, 22, 19}, {8, 14, 16, 24, 17}, {15, 9, 18, 25, 16}, {3, 4, 10, 11, 5}, {7, 2, 5, 11}, {12, 13, 11, 10}, {1, 6, 10, 4}, {14, 8, 4, 3}, {9, 15, 3, 5}, {5, 2, 9}, {11, 13, 7}, { 10, 6, 12}, {4, 8, 1}, {3, 15, 14}}]], TagBox[ GridBox[{{"33"}, {"\"PentagonalGyrocupolarotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{33, "PentagonalGyrocupolarotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {981.818181818182, -1954.9090909090905}, ImageScaled[{0.5, 0.5}], {360, 308}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], 0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], 0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2], 0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[ 1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), ( Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2]}}, {{0, -1.618033988749895, 0}, { 0, 1.618033988749895, 0}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, { 0.9510565162951535, -1.3090169943749475`, 0}, { 0.9510565162951535, 1.3090169943749475`, 0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, { 1.5388417685876268`, 0.5, 0}, { 1.3763819204711736`, 0, -0.8506508083520399}, { 1.3763819204711736`, 0, 0.8506508083520399}, { 0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, \ {0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, { 0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, \ -0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, 0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475, 0.8506508083520399}, {-0.8506508083520399, 0, -1.3763819204711736`}, {-0.8506508083520399, 0, 1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, \ -1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, 1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475, 1.3763819204711736`}, { 0.6881909602355868, -0.5, -1.3763819204711736`}, { 0.6881909602355868, -0.5, 1.3763819204711736`}, { 0.6881909602355868, 0.5, -1.3763819204711736`}, { 0.6881909602355868, 0.5, 1.3763819204711736`}}], Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14, 28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7, 3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18, 22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30, 12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27, 13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3, 7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7, 8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]], TagBox[ GridBox[{{"34"}, {"\"PentagonalOrthobirotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{34, "PentagonalOrthobirotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -1954.9090909090905}, ImageScaled[{0.5, 0.5}], {360, 360}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, -1, Rational[-1, 2]}, {0, -1, Rational[1, 2]}, { 0, 1, Rational[-1, 2]}, {0, 1, Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[1, 6] (-3 - 2 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[1, 6] (3 + 2 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[1, 6] (-3 - 2 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[1, 6] (3 + 2 6^Rational[1, 2])}, { 3^Rational[-1, 2], 0, Rational[1, 6] (-3 - 2 6^Rational[1, 2])}, { 3^Rational[-1, 2], 0, Rational[1, 6] (3 + 2 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, { Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}}, {{0, -1, -0.5}, {0, -1, 0.5}, {0, 1, -0.5}, { 0, 1, 0.5}, {-0.2886751345948129, -0.5, -1.3164965809277258`}, \ {-0.2886751345948129, -0.5, 1.3164965809277258`}, {-0.2886751345948129, 0.5, -1.3164965809277258`}, {-0.2886751345948129, 0.5, 1.3164965809277258`}, { 0.5773502691896258, 0, -1.3164965809277258`}, { 0.5773502691896258, 0, 1.3164965809277258`}, {-0.8660254037844386, -0.5, -0.5}, \ {-0.8660254037844386, -0.5, 0.5}, {-0.8660254037844386, 0.5, -0.5}, {-0.8660254037844386, 0.5, 0.5}, { 0.8660254037844386, -0.5, -0.5}, {0.8660254037844386, -0.5, 0.5}, {0.8660254037844386, 0.5, -0.5}, {0.8660254037844386, 0.5, 0.5}}], Polygon3DBox[{{6, 8, 14, 12}, {10, 6, 2, 16}, {8, 10, 18, 4}, {4, 14, 8}, {12, 2, 6}, {16, 18, 10}, {8, 6, 10}, {11, 13, 7, 5}, {15, 1, 5, 9}, {3, 17, 9, 7}, {7, 13, 3}, {5, 1, 11}, {9, 17, 15}, {9, 5, 7}, {3, 13, 14, 4}, {13, 11, 12, 14}, {11, 1, 2, 12}, {1, 15, 16, 2}, {15, 17, 18, 16}, {17, 3, 4, 18}}]], TagBox[ GridBox[{{"35"}, {"\"ElongatedTriangularOrthobicupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{35, "ElongatedTriangularOrthobicupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -1954.9090909090905}, ImageScaled[{0.5, 0.5}], {360, 457}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, -1, Rational[-1, 2]}, {0, -1, Rational[1, 2]}, { 0, 1, Rational[-1, 2]}, {0, 1, Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[1, 6] (3 + 2 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[1, 6] (3 + 2 6^Rational[1, 2])}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[1, 6] (-3 - 2 6^Rational[1, 2])}, { 3^Rational[-1, 2], 0, Rational[1, 6] (3 + 2 6^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, { Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, {-3^Rational[-1, 2], 0, Rational[1, 6] (-3 - 2 6^Rational[1, 2])}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[1, 6] (-3 - 2 6^Rational[1, 2])}}, {{0, -1, -0.5}, { 0, -1, 0.5}, {0, 1, -0.5}, { 0, 1, 0.5}, {-0.2886751345948129, -0.5, 1.3164965809277258`}, {-0.2886751345948129, 0.5, 1.3164965809277258`}, { 0.2886751345948129, -0.5, -1.3164965809277258`}, { 0.5773502691896258, 0, 1.3164965809277258`}, {-0.8660254037844386, -0.5, -0.5}, \ {-0.8660254037844386, -0.5, 0.5}, {-0.8660254037844386, 0.5, -0.5}, {-0.8660254037844386, 0.5, 0.5}, { 0.8660254037844386, -0.5, -0.5}, {0.8660254037844386, -0.5, 0.5}, {0.8660254037844386, 0.5, -0.5}, {0.8660254037844386, 0.5, 0.5}, {-0.5773502691896258, 0, -1.3164965809277258`}, { 0.2886751345948129, 0.5, -1.3164965809277258`}}], Polygon3DBox[{{6, 5, 8}, {5, 6, 12, 10}, {8, 5, 2, 14}, {6, 8, 16, 4}, {4, 12, 6}, {10, 2, 5}, {14, 16, 8}, {7, 17, 18}, {11, 3, 18, 17}, {1, 9, 17, 7}, {15, 13, 7, 18}, {18, 3, 15}, {17, 9, 11}, {7, 13, 1}, {3, 11, 12, 4}, {11, 9, 10, 12}, {9, 1, 2, 10}, {1, 13, 14, 2}, {13, 15, 16, 14}, {15, 3, 4, 16}}]], TagBox[ GridBox[{{"36"}, {"\"ElongatedTriangularGyrobicupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{36, "ElongatedTriangularGyrobicupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2160., -1954.9090909090905}, ImageScaled[{0.5, 0.5}], {360, 489}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2])}, { 0, -2^Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2])}, { 0, 2^Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2])}, {-2^Rational[-1, 2], 0, Rational[1, 2] (1 + 2^Rational[1, 2])}, { 2^Rational[-1, 2], 0, Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[ 1, 2]}, { Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[ 1, 2]}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], Rational[ 1, 2]}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], Rational[ 1, 2]}, { Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[ 1, 2]}, { Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[ 1, 2]}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], Rational[ 1, 2]}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], Rational[ 1, 2]}}, {{-0.5, -0.5, -1.2071067811865475`}, {-0.5, 0.5, -1.2071067811865475`}, { 0, -0.7071067811865475, 1.2071067811865475`}, { 0, 0.7071067811865475, 1.2071067811865475`}, { 0.5, -0.5, -1.2071067811865475`}, {0.5, 0.5, -1.2071067811865475`}, {-0.7071067811865475, 0, 1.2071067811865475`}, { 0.7071067811865475, 0, 1.2071067811865475`}, {0.5, 1.2071067811865475`, -0.5}, {0.5, 1.2071067811865475`, 0.5}, {-0.5, 1.2071067811865475`, -0.5}, {-0.5, 1.2071067811865475`, 0.5}, {-1.2071067811865475`, 0.5, -0.5}, {-1.2071067811865475`, 0.5, 0.5}, {-1.2071067811865475`, -0.5, -0.5}, {-1.2071067811865475`, \ -0.5, 0.5}, {-0.5, -1.2071067811865475`, -0.5}, {-0.5, -1.2071067811865475`, 0.5}, {0.5, -1.2071067811865475`, -0.5}, { 0.5, -1.2071067811865475`, 0.5}, { 1.2071067811865475`, -0.5, -0.5}, {1.2071067811865475`, -0.5, 0.5}, {1.2071067811865475`, 0.5, -0.5}, {1.2071067811865475`, 0.5, 0.5}}], Polygon3DBox[{{4, 7, 3, 8}, {7, 4, 12, 14}, {3, 7, 16, 18}, {8, 3, 20, 22}, {4, 8, 24, 10}, {10, 12, 4}, {14, 16, 7}, {18, 20, 3}, { 22, 24, 8}, {5, 1, 2, 6}, {11, 9, 6, 2}, {15, 13, 2, 1}, {19, 17, 1, 5}, {23, 21, 5, 6}, {6, 9, 23}, {2, 13, 11}, {1, 17, 15}, {5, 21, 19}, {9, 11, 12, 10}, {11, 13, 14, 12}, {13, 15, 16, 14}, {15, 17, 18, 16}, {17, 19, 20, 18}, {19, 21, 22, 20}, {21, 23, 24, 22}, {23, 9, 10, 24}}]], TagBox[ GridBox[{{"37"}, {"\"ElongatedSquareGyrobicupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{37, "ElongatedSquareGyrobicupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2552.727272727273, -1954.9090909090905}, ImageScaled[{0.5, 0.5}], {360, 364}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], Rational[1, 2]}}, {{0, -1.618033988749895, -0.5}, { 0, -1.618033988749895, 0.5}, {0, 1.618033988749895, -0.5}, { 0, 1.618033988749895, 0.5}, { 0.8506508083520399, 0, -1.0257311121191337`}, { 0.8506508083520399, 0, 1.0257311121191337`}, { 0.2628655560595668, -0.8090169943749475, -1.0257311121191337`}, { 0.2628655560595668, -0.8090169943749475, 1.0257311121191337`}, { 0.2628655560595668, 0.8090169943749475, -1.0257311121191337`}, { 0.2628655560595668, 0.8090169943749475, 1.0257311121191337`}, {-0.9510565162951535, -1.3090169943749475`, \ -0.5}, {-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535, 1.3090169943749475`, -0.5}, {-0.9510565162951535, 1.3090169943749475`, 0.5}, { 0.9510565162951535, -1.3090169943749475`, -0.5}, { 0.9510565162951535, -1.3090169943749475`, 0.5}, { 0.9510565162951535, 1.3090169943749475`, -0.5}, { 0.9510565162951535, 1.3090169943749475`, 0.5}, {-0.6881909602355868, -0.5, -1.0257311121191337`}, \ {-0.6881909602355868, -0.5, 1.0257311121191337`}, {-0.6881909602355868, 0.5, -1.0257311121191337`}, {-0.6881909602355868, 0.5, 1.0257311121191337`}, {-1.5388417685876268`, -0.5, -0.5}, \ {-1.5388417685876268`, -0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5, 0.5}, { 1.5388417685876268`, -0.5, -0.5}, {1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`, 0.5, -0.5}, {1.5388417685876268`, 0.5, 0.5}}], Polygon3DBox[{{22, 10, 4, 14}, {20, 22, 26, 24}, {8, 20, 12, 2}, {6, 8, 16, 28}, {10, 6, 30, 18}, {18, 4, 10}, {14, 26, 22}, {24, 12, 20}, {2, 16, 8}, {28, 30, 6}, {10, 22, 20, 8, 6}, {13, 3, 9, 21}, {23, 25, 21, 19}, {1, 11, 19, 7}, {27, 15, 7, 5}, {17, 29, 5, 9}, {9, 3, 17}, {21, 25, 13}, {19, 11, 23}, {7, 15, 1}, {5, 29, 27}, {5, 7, 19, 21, 9}, {17, 3, 4, 18}, {3, 13, 14, 4}, {13, 25, 26, 14}, {25, 23, 24, 26}, {23, 11, 12, 24}, {11, 1, 2, 12}, {1, 15, 16, 2}, {15, 27, 28, 16}, {27, 29, 30, 28}, {29, 17, 18, 30}}]], TagBox[ GridBox[{{"38"}, {"\"ElongatedPentagonalOrthobicupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{38, "ElongatedPentagonalOrthobicupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -1954.9090909090905}, ImageScaled[{0.5, 0.5}], {360, 304}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], Rational[1, 2]}}, {{0, -1.618033988749895, -0.5}, { 0, -1.618033988749895, 0.5}, {0, 1.618033988749895, -0.5}, { 0, 1.618033988749895, 0.5}, {-0.6881909602355868, -0.5, 1.0257311121191337`}, {-0.6881909602355868, 0.5, 1.0257311121191337`}, { 0.6881909602355868, -0.5, -1.0257311121191337`}, { 0.6881909602355868, 0.5, -1.0257311121191337`}, {-0.8506508083520399, 0, -1.0257311121191337`}, { 0.8506508083520399, 0, 1.0257311121191337`}, {-0.2628655560595668, -0.8090169943749475, \ -1.0257311121191337`}, {-0.2628655560595668, 0.8090169943749475, -1.0257311121191337`}, { 0.2628655560595668, -0.8090169943749475, 1.0257311121191337`}, { 0.2628655560595668, 0.8090169943749475, 1.0257311121191337`}, {-0.9510565162951535, -1.3090169943749475`, \ -0.5}, {-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535, 1.3090169943749475`, -0.5}, {-0.9510565162951535, 1.3090169943749475`, 0.5}, { 0.9510565162951535, -1.3090169943749475`, -0.5}, { 0.9510565162951535, -1.3090169943749475`, 0.5}, { 0.9510565162951535, 1.3090169943749475`, -0.5}, { 0.9510565162951535, 1.3090169943749475`, 0.5}, {-1.5388417685876268`, -0.5, -0.5}, {-1.5388417685876268`, \ -0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5, 0.5}, {1.5388417685876268`, -0.5, -0.5}, { 1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`, 0.5, -0.5}, {1.5388417685876268`, 0.5, 0.5}}], Polygon3DBox[{{14, 6, 5, 13, 10}, {6, 14, 4, 18}, {5, 6, 26, 24}, { 13, 5, 16, 2}, {10, 13, 20, 28}, {14, 10, 30, 22}, {22, 4, 14}, { 18, 26, 6}, {24, 16, 5}, {2, 20, 13}, {28, 30, 10}, {7, 11, 9, 12, 8}, {3, 21, 8, 12}, {25, 17, 12, 9}, {15, 23, 9, 11}, {19, 1, 11, 7}, {29, 27, 7, 8}, {8, 21, 29}, {12, 17, 3}, {9, 23, 25}, {11, 1, 15}, {7, 27, 19}, {21, 3, 4, 22}, {3, 17, 18, 4}, {17, 25, 26, 18}, {25, 23, 24, 26}, {23, 15, 16, 24}, {15, 1, 2, 16}, {1, 19, 20, 2}, {19, 27, 28, 20}, {27, 29, 30, 28}, {29, 21, 22, 30}}]], TagBox[ GridBox[{{"39"}, {"\"ElongatedPentagonalGyrobicupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{39, "ElongatedPentagonalGyrobicupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -1954.9090909090905}, ImageScaled[{0.5, 0.5}], {360, 304}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -1.618033988749895, -0.5}, {0, -1.618033988749895, 0.5}, { 0, 1.618033988749895, -0.5}, {0, 1.618033988749895, 0.5}, { 0.42532540417601994`, -1.3090169943749475`, 1.35065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 1.35065080835204}, { 0.6881909602355868, -0.5, -1.0257311121191337`}, { 0.6881909602355868, -0.5, 1.8763819204711738`}, { 0.6881909602355868, 0.5, -1.0257311121191337`}, { 0.6881909602355868, 0.5, 1.8763819204711738`}, {-0.8506508083520399, 0, -1.0257311121191337`}, {-0.8506508083520399, 0, 1.8763819204711738`}, {-1.1135163644116066`, -0.8090169943749475, 1.35065080835204}, {-1.1135163644116066`, 0.8090169943749475, 1.35065080835204}, {-0.2628655560595668, -0.8090169943749475, \ -1.0257311121191337`}, {-0.2628655560595668, -0.8090169943749475, 1.8763819204711738`}, {-0.2628655560595668, 0.8090169943749475, -1.0257311121191337`}, {-0.2628655560595668, 0.8090169943749475, 1.8763819204711738`}, {-0.9510565162951535, -1.3090169943749475`, \ -0.5}, {-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535, 1.3090169943749475`, -0.5}, {-0.9510565162951535, 1.3090169943749475`, 0.5}, { 0.9510565162951535, -1.3090169943749475`, -0.5}, { 0.9510565162951535, -1.3090169943749475`, 0.5}, { 0.9510565162951535, 1.3090169943749475`, -0.5}, { 0.9510565162951535, 1.3090169943749475`, 0.5}, {-1.5388417685876268`, -0.5, -0.5}, {-1.5388417685876268`, \ -0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5, 0.5}, {1.5388417685876268`, -0.5, -0.5}, { 1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`, 0.5, -0.5}, {1.5388417685876268`, 0.5, 0.5}, { 1.3763819204711736`, 0, 1.35065080835204}}], Polygon3DBox[{{18, 12, 16, 8, 10}, {14, 12, 18}, {13, 16, 12}, {5, 8, 16}, {35, 10, 8}, {6, 18, 10}, {26, 4, 6}, {22, 30, 14}, {28, 20, 13}, {2, 24, 5}, {32, 34, 35}, {4, 22, 14, 18, 6}, {30, 28, 13, 12, 14}, {20, 2, 5, 16, 13}, {24, 32, 35, 8, 5}, {34, 26, 6, 10, 35}, {7, 15, 11, 17, 9}, {3, 25, 9, 17}, {29, 21, 17, 11}, { 19, 27, 11, 15}, {23, 1, 15, 7}, {33, 31, 7, 9}, {9, 25, 33}, {17, 21, 3}, {11, 27, 29}, {15, 1, 19}, {7, 31, 23}, {25, 3, 4, 26}, { 3, 21, 22, 4}, {21, 29, 30, 22}, {29, 27, 28, 30}, {27, 19, 20, 28}, {19, 1, 2, 20}, {1, 23, 24, 2}, {23, 31, 32, 24}, {31, 33, 34, 32}, {33, 25, 26, 34}}]], TagBox[ GridBox[{{"40"}, {"\"ElongatedPentagonalOrthocupolarotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{40, "ElongatedPentagonalOrthocupolarotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -1954.9090909090905}, ImageScaled[{0.5, 0.5}], {360, 395}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -1.618033988749895, -0.5}, {0, -1.618033988749895, 0.5}, { 0, 1.618033988749895, -0.5}, {0, 1.618033988749895, 0.5}, { 0.8506508083520399, 0, -1.0257311121191337`}, { 0.2628655560595668, -0.8090169943749475, -1.0257311121191337`}, { 0.2628655560595668, 0.8090169943749475, -1.0257311121191337`}, {-0.9510565162951535, \ -1.3090169943749475`, -0.5}, {-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535, 1.3090169943749475`, -0.5}, {-0.9510565162951535, 1.3090169943749475`, 0.5}, { 0.9510565162951535, -1.3090169943749475`, -0.5}, { 0.9510565162951535, -1.3090169943749475`, 0.5}, { 0.9510565162951535, 1.3090169943749475`, -0.5}, { 0.9510565162951535, 1.3090169943749475`, 0.5}, {-0.6881909602355868, -0.5, -1.0257311121191337`}, \ {-0.6881909602355868, 0.5, -1.0257311121191337`}, {-1.5388417685876268`, -0.5, -0.5}, \ {-1.5388417685876268`, -0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5, 0.5}, { 1.5388417685876268`, -0.5, -0.5}, {1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`, 0.5, -0.5}, {1.5388417685876268`, 0.5, 0.5}, {1.3763819204711736`, 0, 1.35065080835204}, { 0.42532540417601994`, -1.3090169943749475`, 1.35065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 1.35065080835204}, {-1.1135163644116066`, -0.8090169943749475, 1.35065080835204}, {-1.1135163644116066`, 0.8090169943749475, 1.35065080835204}, {-0.8506508083520399, 0, 1.8763819204711738`}, {-0.2628655560595668, -0.8090169943749475, 1.8763819204711738`}, {-0.2628655560595668, 0.8090169943749475, 1.8763819204711738`}, {0.6881909602355868, -0.5, 1.8763819204711738`}, {0.6881909602355868, 0.5, 1.8763819204711738`}}], Polygon3DBox[{{33, 31, 32, 34, 35}, {30, 31, 33}, {29, 32, 31}, {27, 34, 32}, {26, 35, 34}, {28, 33, 35}, {15, 4, 28}, {11, 21, 30}, { 19, 9, 29}, {2, 13, 27}, {23, 25, 26}, {4, 11, 30, 33, 28}, {21, 19, 29, 31, 30}, {9, 2, 27, 32, 29}, {13, 23, 26, 34, 27}, {25, 15, 28, 35, 26}, {5, 6, 16, 17, 7}, {10, 3, 7, 17}, {18, 20, 17, 16}, {1, 8, 16, 6}, {22, 12, 6, 5}, {14, 24, 5, 7}, {7, 3, 14}, { 17, 20, 10}, {16, 8, 18}, {6, 12, 1}, {5, 24, 22}, {14, 3, 4, 15}, {3, 10, 11, 4}, {10, 20, 21, 11}, {20, 18, 19, 21}, {18, 8, 9, 19}, {8, 1, 2, 9}, {1, 12, 13, 2}, {12, 22, 23, 13}, {22, 24, 25, 23}, {24, 14, 15, 25}}]], TagBox[ GridBox[{{"41"}, {"\"ElongatedPentagonalGyrocupolarotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{41, "ElongatedPentagonalGyrocupolarotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {196.36363636363637, -2513.454545454545}, ImageScaled[{0.5, 0.5}], {360, 395}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, Rational[1, 10] (-5 - 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (-5 - 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (-5 - 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] (-5 - 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[1, 10] (-5 - 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -1.618033988749895, -0.5}, {0, -1.618033988749895, 0.5}, { 0, 1.618033988749895, -0.5}, { 0, 1.618033988749895, 0.5}, {-0.9510565162951535, -1.3090169943749475`, -0.5}, \ {-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535, 1.3090169943749475`, -0.5}, {-0.9510565162951535, 1.3090169943749475`, 0.5}, { 0.9510565162951535, -1.3090169943749475`, -0.5}, { 0.9510565162951535, -1.3090169943749475`, 0.5}, { 0.9510565162951535, 1.3090169943749475`, -0.5}, { 0.9510565162951535, 1.3090169943749475`, 0.5}, {-1.5388417685876268`, -0.5, -0.5}, {-1.5388417685876268`, \ -0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5, 0.5}, {1.5388417685876268`, -0.5, -0.5}, { 1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`, 0.5, -0.5}, {1.5388417685876268`, 0.5, 0.5}, { 1.3763819204711736`, 0, -1.35065080835204}, { 1.3763819204711736`, 0, 1.35065080835204}, { 0.42532540417601994`, -1.3090169943749475`, -1.35065080835204}, { 0.42532540417601994`, -1.3090169943749475`, 1.35065080835204}, { 0.42532540417601994`, 1.3090169943749475`, -1.35065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 1.35065080835204}, {-1.1135163644116066`, -0.8090169943749475, \ -1.35065080835204}, {-1.1135163644116066`, -0.8090169943749475, 1.35065080835204}, {-1.1135163644116066`, 0.8090169943749475, -1.35065080835204}, {-1.1135163644116066`, 0.8090169943749475, 1.35065080835204}, {-0.8506508083520399, 0, -1.8763819204711738`}, {-0.8506508083520399, 0, 1.8763819204711738`}, {-0.2628655560595668, -0.8090169943749475, \ -1.8763819204711738`}, {-0.2628655560595668, -0.8090169943749475, 1.8763819204711738`}, {-0.2628655560595668, 0.8090169943749475, -1.8763819204711738`}, {-0.2628655560595668, 0.8090169943749475, 1.8763819204711738`}, { 0.6881909602355868, -0.5, -1.8763819204711738`}, { 0.6881909602355868, -0.5, 1.8763819204711738`}, { 0.6881909602355868, 0.5, -1.8763819204711738`}, { 0.6881909602355868, 0.5, 1.8763819204711738`}}], Polygon3DBox[{{36, 32, 34, 38, 40}, {30, 32, 36}, {28, 34, 32}, {24, 38, 34}, {22, 40, 38}, {26, 36, 40}, {12, 4, 26}, {8, 16, 30}, { 14, 6, 28}, {2, 10, 24}, {18, 20, 22}, {4, 8, 30, 36, 26}, {16, 14, 28, 32, 30}, {6, 2, 24, 34, 28}, {10, 18, 22, 38, 24}, {20, 12, 26, 40, 22}, {39, 37, 33, 31, 35}, {35, 31, 29}, {31, 33, 27}, {33, 37, 23}, {37, 39, 21}, {39, 35, 25}, {25, 3, 11}, {29, 15, 7}, {27, 5, 13}, {23, 9, 1}, {21, 19, 17}, {25, 35, 29, 7, 3}, {29, 31, 27, 13, 15}, {27, 33, 23, 1, 5}, {23, 37, 21, 17, 9}, {21, 39, 25, 11, 19}, {11, 3, 4, 12}, {3, 7, 8, 4}, {7, 15, 16, 8}, {15, 13, 14, 16}, {13, 5, 6, 14}, {5, 1, 2, 6}, {1, 9, 10, 2}, {9, 17, 18, 10}, {17, 19, 20, 18}, {19, 11, 12, 20}}]], TagBox[ GridBox[{{"42"}, {"\"ElongatedPentagonalOrthobirotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{42, "ElongatedPentagonalOrthobirotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {589.0909090909091, -2513.454545454545}, ImageScaled[{0.5, 0.5}], {360, 442}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {-(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] (-5 - 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[1, 10] (-5 - 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2], Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], 0, Rational[1, 10] (-5 - 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (5 + 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (-5 - 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, { Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (-5 - 2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[ 1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[ 1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], Rational[ 1, 2]}, {-(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^ Rational[1, 2])}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^ Rational[1, 2], 0, Rational[1, 10] ( 5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{ 0, -1.618033988749895, -0.5}, {0, -1.618033988749895, 0.5}, { 0, 1.618033988749895, -0.5}, { 0, 1.618033988749895, 0.5}, {-0.42532540417601994`, -1.3090169943749475`, \ -1.35065080835204}, {-0.42532540417601994`, 1.3090169943749475`, -1.35065080835204}, { 0.42532540417601994`, -1.3090169943749475`, 1.35065080835204}, { 0.42532540417601994`, 1.3090169943749475`, 1.35065080835204}, {-0.6881909602355868, -0.5, \ -1.8763819204711738`}, {-0.6881909602355868, 0.5, -1.8763819204711738`}, { 0.6881909602355868, -0.5, 1.8763819204711738`}, { 0.6881909602355868, 0.5, 1.8763819204711738`}, {-0.8506508083520399, 0, 1.8763819204711738`}, { 0.8506508083520399, 0, -1.8763819204711738`}, {-1.1135163644116066`, \ -0.8090169943749475, 1.35065080835204}, {-1.1135163644116066`, 0.8090169943749475, 1.35065080835204}, { 1.1135163644116066`, -0.8090169943749475, -1.35065080835204}, { 1.1135163644116066`, 0.8090169943749475, -1.35065080835204}, {-0.2628655560595668, \ -0.8090169943749475, 1.8763819204711738`}, {-0.2628655560595668, 0.8090169943749475, 1.8763819204711738`}, { 0.2628655560595668, -0.8090169943749475, -1.8763819204711738`}, { 0.2628655560595668, 0.8090169943749475, -1.8763819204711738`}, {-0.9510565162951535, \ -1.3090169943749475`, -0.5}, {-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535, 1.3090169943749475`, -0.5}, {-0.9510565162951535, 1.3090169943749475`, 0.5}, { 0.9510565162951535, -1.3090169943749475`, -0.5}, { 0.9510565162951535, -1.3090169943749475`, 0.5}, { 0.9510565162951535, 1.3090169943749475`, -0.5}, { 0.9510565162951535, 1.3090169943749475`, 0.5}, {-1.5388417685876268`, -0.5, -0.5}, {-1.5388417685876268`, \ -0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5, 0.5}, {1.5388417685876268`, -0.5, -0.5}, { 1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`, 0.5, -0.5}, {1.5388417685876268`, 0.5, 0.5}, {-1.3763819204711736`, 0, -1.35065080835204}, { 1.3763819204711736`, 0, 1.35065080835204}}], Polygon3DBox[{{20, 13, 19, 11, 12}, {16, 13, 20}, {15, 19, 13}, {7, 11, 19}, {40, 12, 11}, {8, 20, 12}, {30, 4, 8}, {26, 34, 16}, {32, 24, 15}, {2, 28, 7}, {36, 38, 40}, {4, 26, 16, 20, 8}, {34, 32, 15, 13, 16}, {24, 2, 7, 19, 15}, {28, 36, 40, 11, 7}, {38, 30, 8, 12, 40}, {14, 21, 9, 10, 22}, {22, 10, 6}, {10, 9, 39}, {9, 21, 5}, {21, 14, 17}, {14, 22, 18}, {18, 29, 37}, {6, 25, 3}, {39, 31, 33}, {5, 1, 23}, {17, 35, 27}, {18, 22, 6, 3, 29}, {6, 10, 39, 33, 25}, {39, 9, 5, 23, 31}, {5, 21, 17, 27, 1}, {17, 14, 18, 37, 35}, {29, 3, 4, 30}, {3, 25, 26, 4}, {25, 33, 34, 26}, {33, 31, 32, 34}, {31, 23, 24, 32}, {23, 1, 2, 24}, {1, 27, 28, 2}, {27, 35, 36, 28}, {35, 37, 38, 36}, {37, 29, 30, 38}}]], TagBox[ GridBox[{{"43"}, {"\"ElongatedPentagonalGyrobirotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{43, "ElongatedPentagonalGyrobirotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {981.818181818182, -2513.454545454545}, ImageScaled[{0.5, 0.5}], {360, 444}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{-1, 0, Rational[1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2] (Rational[5, 3] + 3^Rational[1, 2] + 4 (Rational[2, 3] (-1 + 3^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { 0, -1, Rational[-1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, { 0, 1, Rational[-1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, { 0, 3^Rational[-1, 2], Rational[ 1, 2] (Rational[5, 3] + 3^Rational[1, 2] + 4 (Rational[2, 3] (-1 + 3^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[ 1, 2] (Rational[5, 3] + 3^Rational[1, 2] + 4 (Rational[2, 3] (-1 + 3^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, { 1, 0, Rational[1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, {-3^ Rational[-1, 2], 0, Rational[-1, 2] (Rational[5, 3] + 3^Rational[1, 2] + 4 (Rational[2, 3] (-1 + 3^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (Rational[5, 3] + 3^Rational[1, 2] + 4 (Rational[2, 3] (-1 + 3^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (Rational[5, 3] + 3^Rational[1, 2] + 4 (Rational[2, 3] (-1 + 3^Rational[1, 2]))^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[-1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[-1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[-1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[-1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}}, {{-1, 0, 0.42779983858367604`}, {-0.5, -0.8660254037844386, 0.42779983858367604`}, {-0.5, 0.8660254037844386, 0.42779983858367604`}, {-0.5, -0.2886751345948129, 1.2442964195114021`}, {0, -1, -0.42779983858367604`}, { 0, 1, -0.42779983858367604`}, { 0, 0.5773502691896258, 1.2442964195114021`}, { 0.5, -0.2886751345948129, 1.2442964195114021`}, { 0.5, -0.8660254037844386, 0.42779983858367604`}, {0.5, 0.8660254037844386, 0.42779983858367604`}, { 1, 0, 0.42779983858367604`}, {-0.5773502691896258, 0, -1.2442964195114021`}, { 0.2886751345948129, -0.5, -1.2442964195114021`}, { 0.2886751345948129, 0.5, -1.2442964195114021`}, {-0.8660254037844386, -0.5, \ -0.42779983858367604`}, {-0.8660254037844386, 0.5, -0.42779983858367604`}, { 0.8660254037844386, -0.5, -0.42779983858367604`}, { 0.8660254037844386, 0.5, -0.42779983858367604`}}], Polygon3DBox[{{18, 10, 11}, {6, 3, 10}, {16, 1, 3}, {15, 2, 1}, {5, 9, 2}, {17, 11, 9}, {18, 6, 10}, {6, 16, 3}, {16, 15, 1}, {15, 5, 2}, {5, 17, 9}, {17, 18, 11}, {7, 4, 8}, {4, 7, 3, 1}, {8, 4, 2, 9}, {7, 8, 11, 10}, {10, 3, 7}, {1, 2, 4}, {9, 11, 8}, {12, 14, 13}, {18, 17, 13, 14}, {16, 6, 14, 12}, {5, 15, 12, 13}, {13, 17, 5}, {14, 6, 18}, {12, 15, 16}}]], TagBox[ GridBox[{{"44"}, {"\"GyroelongatedTriangularBicupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{44, "GyroelongatedTriangularBicupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -2513.454545454545}, ImageScaled[{0.5, 0.5}], {360, 493}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, -2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, 2^Rational[-1, 2], Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 0, -(1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { 2^Rational[-1, 2], 0, Root[ 47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 + 512 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] (-1 - 2^ Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}, { Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[ 47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 + 512 #^8& , 6, 0]}}, {{ 0, -0.7071067811865475, -1.1372545661180333`}, { 0, 0.7071067811865475, -1.1372545661180333`}, { 0, -1.3065629648763766`, 0.4301477849314858}, { 0, 1.3065629648763766`, 0.4301477849314858}, {-0.7071067811865475, 0, -1.1372545661180333`}, { 0.7071067811865475, 0, -1.1372545661180333`}, {-0.6532814824381883, 0.2705980500730985, 1.1372545661180333`}, { 0.6532814824381883, -0.2705980500730985, 1.1372545661180333`}, { 1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.3065629648763766`, 0, 0.4301477849314858}, { 1.3065629648763766`, 0, 0.4301477849314858}, {-0.9238795325112867, -0.9238795325112867, 0.4301477849314858}, {-0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, {0.9238795325112867, -0.9238795325112867, 0.4301477849314858}, {0.9238795325112867, 0.9238795325112867, 0.4301477849314858}, {-0.5, -1.2071067811865475`, \ -0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, { 0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5, 1.2071067811865475`, -0.4301477849314858}, { 1.2071067811865475`, -0.5, -0.4301477849314858}, \ {-1.2071067811865475`, 0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \ -0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883, 1.1372545661180333`}, {0.2705980500730985, 0.6532814824381883, 1.1372545661180333`}}], Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, { 22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17, 15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16, 18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4, 13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4, 24}, {13, 10, 7}, {12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18, 1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18, 16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}]], TagBox[ GridBox[{{"45"}, {"\"GyroelongatedSquareBicupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{45, "GyroelongatedSquareBicupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -2513.454545454545}, ImageScaled[{0.5, 0.5}], {360, 349}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[-1, 8] (1 + 5^Rational[1, 2])^2, Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, { Rational[-1, 8] (1 + 5^Rational[1, 2])^2, (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0], Root[1 - 5 #^2 + 5 #^4& , 3, 0] + Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[1 - 5 #^2 + 5 #^4& , 2, 0] + Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Root[1 - 5 #^2 + 5 #^4& , 2, 0] + Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, { Rational[-1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Root[1 - 5 #^2 + 5 #^4& , 3, 0] + Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Root[1 - 5 #^2 + 5 #^4& , 3, 0] + Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 2, 0] + Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[1 - 5 #^2 + 5 #^4& , 2, 0] + Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, { Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Root[1 - 5 #^2 + 5 #^4& , 3, 0] + Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0], Root[1 - 5 #^2 + 5 #^4& , 3, 0] + Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, Root[1 - 5 #^2 + 5 #^4& , 2, 0] + Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}}, {{-1.618033988749895, 0, 0.43119850192972925`}, {-1.5388417685876268`, -0.5, \ -0.43119850192972925`}, {-1.5388417685876268`, 0.5, -0.43119850192972925`}, {-1.3090169943749475`, \ -0.9510565162951535, 0.43119850192972925`}, {-1.3090169943749475`, 0.9510565162951535, 0.43119850192972925`}, {-0.9510565162951535, \ -1.3090169943749475`, -0.43119850192972925`}, {-0.9510565162951535, 1.3090169943749475`, -0.43119850192972925`}, {-0.8090169943749475, 0.2628655560595668, 0.9569296140488628}, {-0.6881909602355868, -0.5, \ -0.9569296140488628}, {-0.6881909602355868, 0.5, -0.9569296140488628}, {-0.5, -1.5388417685876268`, 0.43119850192972925`}, {-0.5, -0.6881909602355868, 0.9569296140488628}, {-0.5, 1.5388417685876268`, 0.43119850192972925`}, { 0, -1.618033988749895, -0.43119850192972925`}, { 0, 0.85065080835204, 0.9569296140488628}, { 0, 1.618033988749895, -0.43119850192972925`}, { 0.2628655560595668, -0.8090169943749475, -0.9569296140488628}, { 0.2628655560595668, 0.8090169943749475, -0.9569296140488628}, { 0.5, -1.5388417685876268`, 0.43119850192972925`}, { 0.5, -0.6881909602355868, 0.9569296140488628}, {0.5, 1.5388417685876268`, 0.43119850192972925`}, {0.8090169943749475, 0.2628655560595668, 0.9569296140488628}, { 0.85065080835204, 0, -0.9569296140488628}, { 0.9510565162951535, -1.3090169943749475`, -0.43119850192972925`}, \ {0.9510565162951535, 1.3090169943749475`, -0.43119850192972925`}, { 1.3090169943749475`, -0.9510565162951535, 0.43119850192972925`}, { 1.3090169943749475`, 0.9510565162951535, 0.43119850192972925`}, { 1.5388417685876268`, -0.5, -0.43119850192972925`}, { 1.5388417685876268`, 0.5, -0.43119850192972925`}, { 1.618033988749895, 0, 0.43119850192972925`}}], Polygon3DBox[{{1, 2, 4}, {1, 3, 2}, {1, 5, 3}, {1, 8, 5}, {2, 6, 4}, {2, 9, 6}, {3, 5, 7}, {3, 7, 10}, {4, 6, 11}, {4, 11, 12}, {5, 13, 7}, {6, 14, 11}, {7, 13, 16}, {11, 14, 19}, {13, 15, 21}, { 13, 21, 16}, {14, 17, 24}, {14, 24, 19}, {16, 21, 25}, {16, 25, 18}, {19, 24, 26}, {19, 26, 20}, {21, 27, 25}, {22, 30, 27}, {23, 29, 28}, {24, 28, 26}, {25, 27, 29}, {26, 28, 30}, {27, 30, 29}, { 28, 29, 30}, {12, 8, 1, 4}, {9, 2, 3, 10}, {15, 13, 5, 8}, {14, 6, 9, 17}, {10, 7, 16, 18}, {19, 20, 12, 11}, {27, 21, 15, 22}, {24, 17, 23, 28}, {23, 18, 25, 29}, {30, 22, 20, 26}, {22, 15, 8, 12, 20}, {17, 9, 10, 18, 23}}]], TagBox[ GridBox[{{"46"}, {"\"GyroelongatedPentagonalBicupola\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{46, "GyroelongatedPentagonalBicupola"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2160., -2513.454545454545}, ImageScaled[{0.5, 0.5}], {360, 289}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { 0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Root[ 361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 + 6400 #^8& , 4, 0]}, { 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 - 44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, Root[ 641 + 7760 # + 8360 #^2 - 22400 #^3 - 11440 #^4 + 19200 #^5 + 6400 #^8& , 2, 0]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 641 + 7760 # + 8360 #^2 - 22400 #^3 - 11440 #^4 + 19200 #^5 + 6400 #^8& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 641 + 7760 # + 8360 #^2 - 22400 #^3 - 11440 #^4 + 19200 #^5 + 6400 #^8& , 2, 0]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {( Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[ 641 + 7760 # + 8360 #^2 - 22400 #^3 - 11440 #^4 + 19200 #^5 + 6400 #^8& , 2, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Root[ 641 + 7760 # + 8360 #^2 - 22400 #^3 - 11440 #^4 + 19200 #^5 + 6400 #^8& , 2, 0]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Root[1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Root[1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 1, 0], Root[ 361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 + 6400 #^8& , 4, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Root[ 361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 + 6400 #^8& , 4, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0], Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 - 44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, { Rational[-1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 - 44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 1, 0], Root[ 361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 + 6400 #^8& , 4, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Root[ 361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 + 6400 #^8& , 4, 0]}, { Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 - 44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0], Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 - 44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}}, {{ 0, -1.618033988749895, -0.4311985019297291}, { 0, 1.618033988749895, -0.4311985019297291}, { 0, -1.3763819204711736`, 1.2818493102817692`}, { 0, 0.85065080835204, 1.8075804224009027`}, {-1.618033988749895, 0, 0.4311985019297292}, { 0.85065080835204, 0, -0.9569296140488629}, {-0.5, -1.5388417685876268`, 0.4311985019297292}, { 0.2628655560595668, -0.8090169943749475, -0.9569296140488629}, { 0.2628655560595668, 0.8090169943749475, -0.9569296140488629}, { 1.618033988749895, 0, 0.4311985019297292}, {-0.9510565162951535, -1.3090169943749475`, \ -0.4311985019297291}, {-0.9510565162951535, 1.3090169943749475`, -0.4311985019297291}, { 0.9510565162951535, -1.3090169943749475`, -0.4311985019297291}, { 0.9510565162951535, 1.3090169943749475`, -0.4311985019297291}, {-0.6881909602355868, \ -0.5, -0.9569296140488629}, {-0.6881909602355868, 0.5, -0.9569296140488629}, {-0.5, 1.5388417685876268`, 0.4311985019297292}, {0.5, -1.5388417685876268`, 0.4311985019297292}, {0.5, 1.5388417685876268`, 0.4311985019297292}, {-1.3090169943749475`, -0.9510565162951535, 0.4311985019297292}, {-1.3090169943749475`, 0.9510565162951535, 0.4311985019297292}, {1.3090169943749475`, -0.9510565162951535, 0.4311985019297292}, {1.3090169943749475`, 0.9510565162951535, 0.4311985019297292}, {-1.5388417685876268`, -0.5, \ -0.4311985019297291}, {-1.5388417685876268`, 0.5, -0.4311985019297291}, { 1.5388417685876268`, -0.5, -0.4311985019297291}, { 1.5388417685876268`, 0.5, -0.4311985019297291}, { 1.3090169943749475`, -0.42532540417602, 1.2818493102817692`}, { 0.8090169943749475, 1.1135163644116066`, 1.2818493102817692`}, {-0.8090169943749475, 0.2628655560595668, 1.8075804224009027`}, {-0.5, -0.6881909602355868, 1.8075804224009027`}, {-1.3090169943749475`, -0.42532540417602, 1.2818493102817692`}, {-0.8090169943749475, 1.1135163644116066`, 1.2818493102817692`}, {0.5, -0.6881909602355868, 1.8075804224009027`}, {0.8090169943749475, 0.2628655560595668, 1.8075804224009027`}}], Polygon3DBox[{{27, 23, 10}, {14, 19, 23}, {2, 17, 19}, {12, 21, 17}, {25, 5, 21}, {24, 20, 5}, {11, 7, 20}, {1, 18, 7}, {13, 22, 18}, {26, 10, 22}, {27, 14, 23}, {14, 2, 19}, {2, 12, 17}, {12, 25, 21}, {25, 24, 5}, {24, 11, 20}, {11, 1, 7}, {1, 13, 18}, {13, 26, 22}, {26, 27, 10}, {6, 8, 15, 16, 9}, {12, 2, 9, 16}, {24, 25, 16, 15}, {1, 11, 15, 8}, {26, 13, 8, 6}, {14, 27, 6, 9}, {9, 2, 14}, {16, 25, 12}, {15, 11, 24}, {8, 13, 1}, {6, 27, 26}, {4, 30, 31, 34, 35}, {33, 30, 4}, {32, 31, 30}, {3, 34, 31}, {28, 35, 34}, {29, 4, 35}, {23, 19, 29}, {17, 21, 33}, {5, 20, 32}, {7, 18, 3}, {22, 10, 28}, {19, 17, 33, 4, 29}, {21, 5, 32, 30, 33}, {20, 7, 3, 31, 32}, {18, 22, 28, 34, 3}, {10, 23, 29, 35, 28}}]], TagBox[ GridBox[{{"47"}, {"\"GyroelongatedPentagonalCupolarotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{47, "GyroelongatedPentagonalCupolarotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2552.727272727273, -2513.454545454545}, ImageScaled[{0.5, 0.5}], {360, 375}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Root[1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Root[ 361 - 1520 # - 13240 #^2 - 19200 #^3 + 7760 #^4 + 25600 #^5 + 6400 #^8& , 1, 0]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 + 6400 #^8& , 4, 0]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 + 6400 #^8& , 4, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 - 44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0], Root[ 361 - 1520 # - 13240 #^2 - 19200 #^3 + 7760 #^4 + 25600 #^5 + 6400 #^8& , 1, 0]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0], Root[-479 + 6240 # - 8600 #^2 - 16000 #^3 + 49360 #^4 + 44800 #^5 - 12800 #^6 + 6400 #^8& , 1, 0]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Root[-479 + 6240 # - 8600 #^2 - 16000 #^3 + 49360 #^4 + 44800 #^5 - 12800 #^6 + 6400 #^8& , 1, 0]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 - 44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 - 44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0], Root[-479 + 6240 # - 8600 #^2 - 16000 #^3 + 49360 #^4 + 44800 #^5 - 12800 #^6 + 6400 #^8& , 1, 0]}, { 0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Root[ 361 - 1520 # - 13240 #^2 - 19200 #^3 + 7760 #^4 + 25600 #^5 + 6400 #^8& , 1, 0]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 + 6400 #^8& , 4, 0]}, { Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 + 6400 #^8& , 4, 0]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { Rational[ 1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Root[-479 + 6240 # - 8600 #^2 - 16000 #^3 + 49360 #^4 + 44800 #^5 - 12800 #^6 + 6400 #^8& , 1, 0]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 - 44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 - 44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0], Root[ 361 - 1520 # - 13240 #^2 - 19200 #^3 + 7760 #^4 + 25600 #^5 + 6400 #^8& , 1, 0]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0], Root[-479 + 6240 # - 8600 #^2 - 16000 #^3 + 49360 #^4 + 44800 #^5 - 12800 #^6 + 6400 #^8& , 1, 0]}, { Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Root[ 361 - 1520 # - 13240 #^2 - 19200 #^3 + 7760 #^4 + 25600 #^5 + 6400 #^8& , 1, 0]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[ 361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 + 6400 #^8& , 4, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Root[1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Root[ 1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}}, {{-1.618033988749895, 0, -0.4311985019297291}, {-1.5388417685876268`, -0.5, 0.4311985019297292}, {-1.5388417685876268`, 0.5, 0.4311985019297292}, {-1.3090169943749475`, -0.9510565162951535, \ -0.4311985019297291}, {-1.3090169943749475`, 0.42532540417602, -1.2818493102817692`}, {-1.3090169943749475`, 0.9510565162951535, -0.4311985019297291}, {-1.1135163644116066`, \ -0.8090169943749475, 1.2818493102817692`}, {-1.1135163644116066`, 0.8090169943749475, 1.2818493102817692`}, {-0.9510565162951535, -1.3090169943749475`, 0.4311985019297292}, {-0.9510565162951535, 1.3090169943749475`, 0.4311985019297292}, {-0.8506508083520399, 0, 1.8075804224009027`}, {-0.8090169943749475, \ -1.1135163644116066`, -1.2818493102817692`}, {-0.8090169943749475, \ -0.2628655560595668, -1.8075804224009027`}, {-0.5, -1.5388417685876268`, \ -0.4311985019297291}, {-0.5, 0.6881909602355868, -1.8075804224009027`}, {-0.5, 1.5388417685876268`, -0.4311985019297291}, {-0.2628655560595668, \ -0.8090169943749475, 1.8075804224009027`}, {-0.2628655560595668, 0.8090169943749475, 1.8075804224009027`}, { 0, -1.618033988749895, 0.4311985019297292}, { 0, -0.8506508083520399, -1.8075804224009027`}, { 0, 1.3763819204711736`, -1.2818493102817692`}, { 0, 1.618033988749895, 0.4311985019297292}, { 0.42532540417602, -1.3090169943749475`, 1.2818493102817692`}, { 0.42532540417602, 1.3090169943749475`, 1.2818493102817692`}, { 0.5, -1.5388417685876268`, -0.4311985019297291}, {0.5, 0.6881909602355868, -1.8075804224009027`}, {0.5, 1.5388417685876268`, -0.4311985019297291}, { 0.6881909602355868, -0.5, 1.8075804224009027`}, { 0.6881909602355868, 0.5, 1.8075804224009027`}, { 0.8090169943749475, -1.1135163644116066`, -1.2818493102817692`}, { 0.8090169943749475, -0.2628655560595668, -1.8075804224009027`}, { 0.9510565162951535, -1.3090169943749475`, 0.4311985019297292}, { 0.9510565162951535, 1.3090169943749475`, 0.4311985019297292}, { 1.3090169943749475`, -0.9510565162951535, -0.4311985019297291}, { 1.3090169943749475`, 0.42532540417602, -1.2818493102817692`}, { 1.3090169943749475`, 0.9510565162951535, -0.4311985019297291}, { 1.3763819204711736`, 0, 1.2818493102817692`}, { 1.5388417685876268`, -0.5, 0.4311985019297292}, { 1.5388417685876268`, 0.5, 0.4311985019297292}, { 1.618033988749895, 0, -0.4311985019297291}}], Polygon3DBox[{{18, 11, 17, 28, 29}, {8, 11, 18}, {7, 17, 11}, {23, 28, 17}, {37, 29, 28}, {24, 18, 29}, {33, 22, 24}, {10, 3, 8}, {2, 9, 7}, {19, 32, 23}, {38, 39, 37}, {22, 10, 8, 18, 24}, {3, 2, 7, 11, 8}, {9, 19, 23, 17, 7}, {32, 38, 37, 28, 23}, {39, 33, 24, 29, 37}, {26, 31, 20, 13, 15}, {15, 13, 5}, {13, 20, 12}, {20, 31, 30}, {31, 26, 35}, {26, 15, 21}, {21, 16, 27}, {5, 1, 6}, {12, 14, 4}, {30, 34, 25}, {35, 36, 40}, {21, 15, 5, 6, 16}, {5, 13, 12, 4, 1}, {12, 20, 30, 25, 14}, {30, 31, 35, 40, 34}, {35, 26, 21, 27, 36}, {38, 40, 39}, {32, 34, 38}, {19, 25, 32}, {9, 14, 19}, {2, 4, 9}, {3, 1, 2}, {10, 6, 3}, {22, 16, 10}, {33, 27, 22}, {39, 36, 33}, {39, 40, 36}, {38, 34, 40}, {32, 25, 34}, {19, 14, 25}, {9, 4, 14}, {2, 1, 4}, {3, 6, 1}, {10, 16, 6}, {22, 27, 16}, {33, 36, 27}}]], TagBox[ GridBox[{{"48"}, {"\"GyroelongatedPentagonalBirotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{48, "GyroelongatedPentagonalBirotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -2513.454545454545}, ImageScaled[{0.5, 0.5}], {360, 432}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[ 1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[ 1, 2]}, {3^Rational[-1, 2], 0, Rational[-1, 2]}, { 3^Rational[-1, 2], 0, Rational[1, 2]}, { Root[25 - 672 #^2 + 2304 #^4& , 4, 0], Rational[1, 4] (1 + 6^Rational[1, 2]), 0}}, {{-0.2886751345948129, -0.5, -0.5}, {-0.2886751345948129, \ -0.5, 0.5}, {-0.2886751345948129, 0.5, -0.5}, {-0.2886751345948129, 0.5, 0.5}, {0.5773502691896258, 0, -0.5}, { 0.5773502691896258, 0, 0.5}, { 0.4978909578906802, 0.8623724356957945, 0}}], Polygon3DBox[{{1, 3, 5}, {6, 4, 2}, {3, 1, 2, 4}, {1, 5, 6, 2}, {7, 5, 3}, {7, 3, 4}, {7, 4, 6}, {7, 6, 5}}]], TagBox[ GridBox[{{"49"}, {"\"AugmentedTriangularPrism\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{49, "AugmentedTriangularPrism"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -2513.454545454545}, ImageScaled[{0.5, 0.5}], {360, 338}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[ 1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[ 1, 2]}, {3^Rational[-1, 2], 0, Rational[-1, 2]}, { 3^Rational[-1, 2], 0, Rational[1, 2]}, { Root[25 - 168 #^2 + 144 #^4& , 1, 0], 0, 0}, { Root[25 - 672 #^2 + 2304 #^4& , 4, 0], Rational[1, 4] (1 + 6^Rational[1, 2]), 0}}, {{-0.2886751345948129, -0.5, -0.5}, {-0.2886751345948129, \ -0.5, 0.5}, {-0.2886751345948129, 0.5, -0.5}, {-0.2886751345948129, 0.5, 0.5}, {0.5773502691896258, 0, -0.5}, { 0.5773502691896258, 0, 0.5}, {-0.9957819157813604, 0, 0}, { 0.4978909578906802, 0.8623724356957945, 0}}], Polygon3DBox[{{1, 3, 5}, {6, 4, 2}, {1, 5, 6, 2}, {8, 5, 3}, {8, 3, 4}, {8, 4, 6}, {8, 6, 5}, {7, 3, 1}, {7, 1, 2}, {7, 2, 4}, {7, 4, 3}}]], TagBox[ GridBox[{{"50"}, {"\"BiaugmentedTriangularPrism\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{50, "BiaugmentedTriangularPrism"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -2513.454545454545}, ImageScaled[{0.5, 0.5}], {360, 292}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[ 1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[ 1, 2]}, {3^Rational[-1, 2], 0, Rational[-1, 2]}, { 3^Rational[-1, 2], 0, Rational[1, 2]}, { Root[25 - 168 #^2 + 144 #^4& , 1, 0], 0, 0}, { Root[25 - 672 #^2 + 2304 #^4& , 4, 0], Rational[1, 4] (-1 - 6^Rational[1, 2]), 0}, { Root[25 - 672 #^2 + 2304 #^4& , 4, 0], Rational[1, 4] (1 + 6^Rational[1, 2]), 0}}, {{-0.2886751345948129, -0.5, -0.5}, {-0.2886751345948129, \ -0.5, 0.5}, {-0.2886751345948129, 0.5, -0.5}, {-0.2886751345948129, 0.5, 0.5}, {0.5773502691896258, 0, -0.5}, { 0.5773502691896258, 0, 0.5}, {-0.9957819157813604, 0, 0}, { 0.4978909578906802, -0.8623724356957945, 0}, { 0.4978909578906802, 0.8623724356957945, 0}}], Polygon3DBox[{{1, 3, 5}, {6, 4, 2}, {9, 5, 3}, {9, 3, 4}, {9, 4, 6}, {9, 6, 5}, {7, 3, 1}, {7, 1, 2}, {7, 2, 4}, {7, 4, 3}, {8, 1, 5}, {8, 5, 6}, {8, 6, 2}, {8, 2, 1}}]], TagBox[ GridBox[{{"51"}, {"\"TriaugmentedTriangularPrism\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{51, "TriaugmentedTriangularPrism"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {196.36363636363637, -3072.}, ImageScaled[{0.5, 0.5}], {360, 315}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0, Rational[-1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0, Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2]}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[-1, 2], Rational[-1, 2]}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[-1, 2], Rational[ 1, 2]}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[1, 2], Rational[-1, 2]}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[1, 2], Rational[ 1, 2]}, { Root[1 - 4320 #^2 + 213760 #^4 - 2252800 #^6 + 1638400 #^8& , 8, 0], Root[1 + 88 # - 176 #^2 - 128 #^3 + 256 #^4& , 4, 0], 0}}, {{0.8506508083520399, 0, -0.5}, { 0.8506508083520399, 0, 0.5}, { 0.2628655560595668, -0.8090169943749475, -0.5}, { 0.2628655560595668, -0.8090169943749475, 0.5}, { 0.2628655560595668, 0.8090169943749475, -0.5}, { 0.2628655560595668, 0.8090169943749475, 0.5}, {-0.6881909602355868, -0.5, -0.5}, {-0.6881909602355868, \ -0.5, 0.5}, {-0.6881909602355868, 0.5, -0.5}, {-0.6881909602355868, 0.5, 0.5}, {1.1288195850234877`, 0.8201354349649271, 0}}], Polygon3DBox[{{3, 7, 9, 5, 1}, {2, 6, 10, 8, 4}, {5, 9, 10, 6}, {9, 7, 8, 10}, {7, 3, 4, 8}, {3, 1, 2, 4}, {11, 1, 5}, {11, 5, 6}, { 11, 6, 2}, {11, 2, 1}}]], TagBox[ GridBox[{{"52"}, {"\"AugmentedPentagonalPrism\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{52, "AugmentedPentagonalPrism"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {589.0909090909091, -3072.}, ImageScaled[{0.5, 0.5}], {360, 280}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0, Rational[-1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0, Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2]}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[-1, 2], Rational[-1, 2]}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[-1, 2], Rational[ 1, 2]}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[1, 2], Rational[-1, 2]}, { Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[1, 2], Rational[ 1, 2]}, { Root[1 - 2800 #^2 + 14560 #^4 - 19200 #^6 + 6400 #^8& , 1, 0], 0, 0}, {Root[ 1 - 4320 #^2 + 213760 #^4 - 2252800 #^6 + 1638400 #^8& , 8, 0], Root[1 + 88 # - 176 #^2 - 128 #^3 + 256 #^4& , 4, 0], 0}}, {{ 0.8506508083520399, 0, -0.5}, {0.8506508083520399, 0, 0.5}, { 0.2628655560595668, -0.8090169943749475, -0.5}, { 0.2628655560595668, -0.8090169943749475, 0.5}, { 0.2628655560595668, 0.8090169943749475, -0.5}, { 0.2628655560595668, 0.8090169943749475, 0.5}, {-0.6881909602355868, -0.5, -0.5}, {-0.6881909602355868, \ -0.5, 0.5}, {-0.6881909602355868, 0.5, -0.5}, {-0.6881909602355868, 0.5, 0.5}, {-1.3952977414221344`, 0, 0}, { 1.1288195850234877`, 0.8201354349649271, 0}}], Polygon3DBox[{{3, 7, 9, 5, 1}, {2, 6, 10, 8, 4}, {5, 9, 10, 6}, {7, 3, 4, 8}, {3, 1, 2, 4}, {12, 1, 5}, {12, 5, 6}, {12, 6, 2}, {12, 2, 1}, {11, 9, 7}, {11, 7, 8}, {11, 8, 10}, {11, 10, 9}}]], TagBox[ GridBox[{{"53"}, {"\"BiaugmentedPentagonalPrism\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{53, "BiaugmentedPentagonalPrism"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {981.818181818182, -3072.}, ImageScaled[{0.5, 0.5}], {360, 254}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{-1, 0, Rational[-1, 2]}, {-1, 0, Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, {1, 0, Rational[-1, 2]}, {1, 0, Rational[1, 2]}, { Rational[1, 4] (3 + 6^Rational[1, 2]), Root[ 1 - 160 #^2 + 256 #^4& , 4, 0], 0}}, {{-1, 0, -0.5}, {-1, 0, 0.5}, {-0.5, -0.8660254037844386, -0.5}, {-0.5, \ -0.8660254037844386, 0.5}, {-0.5, 0.8660254037844386, -0.5}, {-0.5, 0.8660254037844386, 0.5}, {0.5, -0.8660254037844386, -0.5}, { 0.5, -0.8660254037844386, 0.5}, {0.5, 0.8660254037844386, -0.5}, { 0.5, 0.8660254037844386, 0.5}, {1, 0, -0.5}, {1, 0, 0.5}, { 1.3623724356957945`, 0.786566092485493, 0}}], Polygon3DBox[{{7, 3, 1, 5, 9, 11}, {12, 10, 6, 2, 4, 8}, {9, 5, 6, 10}, {5, 1, 2, 6}, {1, 3, 4, 2}, {3, 7, 8, 4}, {7, 11, 12, 8}, { 13, 11, 9}, {13, 9, 10}, {13, 10, 12}, {13, 12, 11}}]], TagBox[ GridBox[{{"54"}, {"\"AugmentedHexagonalPrism\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{54, "AugmentedHexagonalPrism"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -3072.}, ImageScaled[{0.5, 0.5}], {360, 285}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{-1, 0, Rational[-1, 2]}, {-1, 0, Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, {1, 0, Rational[-1, 2]}, {1, 0, Rational[1, 2]}, { Rational[1, 4] (-3 - 6^Rational[1, 2]), Root[ 1 - 160 #^2 + 256 #^4& , 1, 0], 0}, { Rational[1, 4] (3 + 6^Rational[1, 2]), Root[ 1 - 160 #^2 + 256 #^4& , 4, 0], 0}}, {{-1, 0, -0.5}, {-1, 0, 0.5}, {-0.5, -0.8660254037844386, -0.5}, {-0.5, \ -0.8660254037844386, 0.5}, {-0.5, 0.8660254037844386, -0.5}, {-0.5, 0.8660254037844386, 0.5}, {0.5, -0.8660254037844386, -0.5}, { 0.5, -0.8660254037844386, 0.5}, {0.5, 0.8660254037844386, -0.5}, { 0.5, 0.8660254037844386, 0.5}, {1, 0, -0.5}, { 1, 0, 0.5}, {-1.3623724356957945`, -0.7865660924854931, 0}, { 1.3623724356957945`, 0.786566092485493, 0}}], Polygon3DBox[{{7, 3, 1, 5, 9, 11}, {12, 10, 6, 2, 4, 8}, {9, 5, 6, 10}, {5, 1, 2, 6}, {3, 7, 8, 4}, {7, 11, 12, 8}, {14, 11, 9}, {14, 9, 10}, {14, 10, 12}, {14, 12, 11}, {13, 1, 3}, {13, 3, 4}, {13, 4, 2}, {13, 2, 1}}]], TagBox[ GridBox[{{"55"}, {"\"ParabiaugmentedHexagonalPrism\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{55, "ParabiaugmentedHexagonalPrism"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -3072.}, ImageScaled[{0.5, 0.5}], {360, 228}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{-1, 0, Rational[-1, 2]}, {-1, 0, Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, {1, 0, Rational[-1, 2]}, {1, 0, Rational[1, 2]}, { Rational[1, 4] (-3 - 6^Rational[1, 2]), Root[ 1 - 160 #^2 + 256 #^4& , 4, 0], 0}, { Rational[1, 4] (3 + 6^Rational[1, 2]), Root[ 1 - 160 #^2 + 256 #^4& , 4, 0], 0}}, {{-1, 0, -0.5}, {-1, 0, 0.5}, {-0.5, -0.8660254037844386, -0.5}, {-0.5, \ -0.8660254037844386, 0.5}, {-0.5, 0.8660254037844386, -0.5}, {-0.5, 0.8660254037844386, 0.5}, {0.5, -0.8660254037844386, -0.5}, { 0.5, -0.8660254037844386, 0.5}, {0.5, 0.8660254037844386, -0.5}, { 0.5, 0.8660254037844386, 0.5}, {1, 0, -0.5}, { 1, 0, 0.5}, {-1.3623724356957945`, 0.786566092485493, 0}, { 1.3623724356957945`, 0.786566092485493, 0}}], Polygon3DBox[{{7, 3, 1, 5, 9, 11}, {12, 10, 6, 2, 4, 8}, {9, 5, 6, 10}, {1, 3, 4, 2}, {3, 7, 8, 4}, {7, 11, 12, 8}, {14, 11, 9}, {14, 9, 10}, {14, 10, 12}, {14, 12, 11}, {13, 5, 1}, {13, 1, 2}, {13, 2, 6}, {13, 6, 5}}]], TagBox[ GridBox[{{"56"}, {"\"MetabiaugmentedHexagonalPrism\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{56, "MetabiaugmentedHexagonalPrism"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2160., -3072.}, ImageScaled[{0.5, 0.5}], {360, 288}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{-1, 0, Rational[-1, 2]}, {-1, 0, Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, {0, Root[1 - 40 #^2 + 16 #^4& , 1, 0], 0}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[ 1, 2]}, {1, 0, Rational[-1, 2]}, {1, 0, Rational[1, 2]}, { Rational[1, 4] (-3 - 6^Rational[1, 2]), Root[ 1 - 160 #^2 + 256 #^4& , 4, 0], 0}, { Rational[1, 4] (3 + 6^Rational[1, 2]), Root[ 1 - 160 #^2 + 256 #^4& , 4, 0], 0}}, {{-1, 0, -0.5}, {-1, 0, 0.5}, {-0.5, -0.8660254037844386, -0.5}, {-0.5, \ -0.8660254037844386, 0.5}, {-0.5, 0.8660254037844386, -0.5}, {-0.5, 0.8660254037844386, 0.5}, {0, -1.5731321849709863`, 0}, { 0.5, -0.8660254037844386, -0.5}, {0.5, -0.8660254037844386, 0.5}, {0.5, 0.8660254037844386, -0.5}, {0.5, 0.8660254037844386, 0.5}, {1, 0, -0.5}, { 1, 0, 0.5}, {-1.3623724356957945`, 0.786566092485493, 0}, { 1.3623724356957945`, 0.786566092485493, 0}}], Polygon3DBox[{{8, 3, 1, 5, 10, 12}, {13, 11, 6, 2, 4, 9}, {10, 5, 6, 11}, {1, 3, 4, 2}, {8, 12, 13, 9}, {15, 12, 10}, {15, 10, 11}, { 15, 11, 13}, {15, 13, 12}, {14, 5, 1}, {14, 1, 2}, {14, 2, 6}, { 14, 6, 5}, {7, 3, 8}, {7, 8, 9}, {7, 9, 4}, {7, 4, 3}}]], TagBox[ GridBox[{{"57"}, {"\"TriaugmentedHexagonalPrism\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{57, "TriaugmentedHexagonalPrism"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2552.727272727273, -3072.}, ImageScaled[{0.5, 0.5}], {360, 288}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Root[9 - 36 #^2 + 16 #^4& , 4, 0]}, { 0, 0, Root[9 - 36 #^2 + 16 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 1, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[-1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[-1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 9 #^2 + 9 #^4& , 1, 0], 0, Root[ 25 - 180 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 9 #^2 + 9 #^4& , 4, 0], 0, Root[ 25 - 180 #^2 + 144 #^4& , 4, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[121 - 345 #^2 + 225 #^4& , 1, 0], 0, Root[ 121 - 6180 #^2 + 3600 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}}, {{0, 0, 1.4012585384440734`}, { 0, 0, -1.4012585384440737`}, { 0.17841104488654497`, -1.3090169943749475`, 0.4670861794813579}, { 0.17841104488654497`, 1.3090169943749475`, 0.4670861794813579}, { 0.4670861794813579, -0.8090169943749475, -1.0444364486709836`}, { 0.4670861794813579, 0.8090169943749475, -1.0444364486709836`}, { 1.0444364486709836`, -0.8090169943749475, 0.4670861794813579}, { 1.0444364486709836`, 0.8090169943749475, 0.4670861794813579}, {-1.2228474935575286`, -0.5, 0.4670861794813579}, {-1.2228474935575286`, 0.5, 0.4670861794813579}, { 1.2228474935575286`, -0.5, -0.46708617948135783`}, { 1.2228474935575286`, 0.5, -0.46708617948135783`}, {-0.9341723589627157, 0, -1.0444364486709836`}, {-0.46708617948135783`, \ -0.8090169943749475, 1.0444364486709836`}, {-0.46708617948135783`, 0.8090169943749475, 1.0444364486709836`}, { 0.9341723589627158, 0, 1.0444364486709836`}, {-1.0444364486709836`, \ -0.8090169943749475, -0.46708617948135783`}, {-1.0444364486709836`, 0.8090169943749475, -0.46708617948135783`}, {-0.9951248486580192, 0, 1.3026353384181448`}, {-0.17841104488654497`, \ -1.3090169943749475`, -0.46708617948135783`}, {-0.17841104488654497`, 1.3090169943749475`, -0.46708617948135783`}}], Polygon3DBox[{{2, 6, 12, 11, 5}, {5, 11, 7, 3, 20}, {11, 12, 8, 16, 7}, {12, 6, 21, 4, 8}, {6, 2, 13, 18, 21}, {2, 5, 20, 17, 13}, {4, 21, 18, 10, 15}, {18, 13, 17, 9, 10}, {17, 20, 3, 14, 9}, {3, 7, 16, 1, 14}, {16, 8, 4, 15, 1}, {19, 15, 10}, {19, 10, 9}, {19, 9, 14}, {19, 14, 1}, {19, 1, 15}}]], TagBox[ GridBox[{{"58"}, {"\"AugmentedDodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{58, "AugmentedDodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -3072.}, ImageScaled[{0.5, 0.5}], {360, 380}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Root[9 - 36 #^2 + 16 #^4& , 4, 0]}, { 0, 0, Root[9 - 36 #^2 + 16 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 1, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[-1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[-1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 9 #^2 + 9 #^4& , 1, 0], 0, Root[ 25 - 180 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 9 #^2 + 9 #^4& , 4, 0], 0, Root[ 25 - 180 #^2 + 144 #^4& , 4, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[121 - 345 #^2 + 225 #^4& , 4, 0], 0, Root[ 121 - 6180 #^2 + 3600 #^4& , 1, 0]}, { Root[121 - 345 #^2 + 225 #^4& , 1, 0], 0, Root[ 121 - 6180 #^2 + 3600 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}}, {{0, 0, 1.4012585384440734`}, { 0, 0, -1.4012585384440737`}, { 0.17841104488654497`, -1.3090169943749475`, 0.4670861794813579}, { 0.17841104488654497`, 1.3090169943749475`, 0.4670861794813579}, { 0.4670861794813579, -0.8090169943749475, -1.0444364486709836`}, { 0.4670861794813579, 0.8090169943749475, -1.0444364486709836`}, { 1.0444364486709836`, -0.8090169943749475, 0.4670861794813579}, { 1.0444364486709836`, 0.8090169943749475, 0.4670861794813579}, {-1.2228474935575286`, -0.5, 0.4670861794813579}, {-1.2228474935575286`, 0.5, 0.4670861794813579}, { 1.2228474935575286`, -0.5, -0.46708617948135783`}, { 1.2228474935575286`, 0.5, -0.46708617948135783`}, {-0.9341723589627157, 0, -1.0444364486709836`}, {-0.46708617948135783`, \ -0.8090169943749475, 1.0444364486709836`}, {-0.46708617948135783`, 0.8090169943749475, 1.0444364486709836`}, { 0.9341723589627158, 0, 1.0444364486709836`}, {-1.0444364486709836`, \ -0.8090169943749475, -0.46708617948135783`}, {-1.0444364486709836`, 0.8090169943749475, -0.46708617948135783`}, { 0.9951248486580193, 0, -1.3026353384181446`}, {-0.9951248486580192, 0, 1.3026353384181448`}, {-0.17841104488654497`, \ -1.3090169943749475`, -0.46708617948135783`}, {-0.17841104488654497`, 1.3090169943749475`, -0.46708617948135783`}}], Polygon3DBox[{{5, 11, 7, 3, 21}, {11, 12, 8, 16, 7}, {12, 6, 22, 4, 8}, {6, 2, 13, 18, 22}, {2, 5, 21, 17, 13}, {4, 22, 18, 10, 15}, { 18, 13, 17, 9, 10}, {17, 21, 3, 14, 9}, {3, 7, 16, 1, 14}, {16, 8, 4, 15, 1}, {20, 15, 10}, {20, 10, 9}, {20, 9, 14}, {20, 14, 1}, { 20, 1, 15}, {19, 2, 6}, {19, 6, 12}, {19, 12, 11}, {19, 11, 5}, { 19, 5, 2}}]], TagBox[ GridBox[{{"59"}, {"\"ParabiaugmentedDodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{59, "ParabiaugmentedDodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -3072.}, ImageScaled[{0.5, 0.5}], {360, 380}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Root[9 - 36 #^2 + 16 #^4& , 4, 0]}, { 0, 0, Root[9 - 36 #^2 + 16 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 1, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[-1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[-1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 9 #^2 + 9 #^4& , 1, 0], 0, Root[ 25 - 180 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 9 #^2 + 9 #^4& , 4, 0], 0, Root[ 25 - 180 #^2 + 144 #^4& , 4, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[121 - 345 #^2 + 225 #^4& , 1, 0], 0, Root[ 121 - 6180 #^2 + 3600 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[121 - 2520 #^2 + 3600 #^4& , 4, 0], Rational[1, 10] (-5 - 4 5^Rational[1, 2]), Root[ 121 - 1620 #^2 + 3600 #^4& , 2, 0]}}, {{ 0, 0, 1.4012585384440734`}, {0, 0, -1.4012585384440737`}, { 0.17841104488654497`, -1.3090169943749475`, 0.4670861794813579}, { 0.17841104488654497`, 1.3090169943749475`, 0.4670861794813579}, { 0.4670861794813579, -0.8090169943749475, -1.0444364486709836`}, { 0.4670861794813579, 0.8090169943749475, -1.0444364486709836`}, { 1.0444364486709836`, -0.8090169943749475, 0.4670861794813579}, { 1.0444364486709836`, 0.8090169943749475, 0.4670861794813579}, {-1.2228474935575286`, -0.5, 0.4670861794813579}, {-1.2228474935575286`, 0.5, 0.4670861794813579}, { 1.2228474935575286`, -0.5, -0.46708617948135783`}, { 1.2228474935575286`, 0.5, -0.46708617948135783`}, {-0.9341723589627157, 0, -1.0444364486709836`}, {-0.46708617948135783`, \ -0.8090169943749475, 1.0444364486709836`}, {-0.46708617948135783`, 0.8090169943749475, 1.0444364486709836`}, { 0.9341723589627158, 0, 1.0444364486709836`}, {-1.0444364486709836`, \ -0.8090169943749475, -0.46708617948135783`}, {-1.0444364486709836`, 0.8090169943749475, -0.46708617948135783`}, {-0.9951248486580192, 0, 1.3026353384181448`}, {-0.17841104488654497`, \ -1.3090169943749475`, -0.46708617948135783`}, {-0.17841104488654497`, 1.3090169943749475`, -0.46708617948135783`}, { 0.8050729140891351, -1.394427190999916, -0.3075104897601255}}], Polygon3DBox[{{2, 6, 12, 11, 5}, {11, 12, 8, 16, 7}, {12, 6, 21, 4, 8}, {6, 2, 13, 18, 21}, {2, 5, 20, 17, 13}, {4, 21, 18, 10, 15}, { 18, 13, 17, 9, 10}, {17, 20, 3, 14, 9}, {3, 7, 16, 1, 14}, {16, 8, 4, 15, 1}, {19, 15, 10}, {19, 10, 9}, {19, 9, 14}, {19, 14, 1}, { 19, 1, 15}, {22, 5, 11}, {22, 11, 7}, {22, 7, 3}, {22, 3, 20}, { 22, 20, 5}}]], TagBox[ GridBox[{{"60"}, {"\"MetabiaugmentedDodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{60, "MetabiaugmentedDodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -3072.}, ImageScaled[{0.5, 0.5}], {360, 380}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, 0, Root[9 - 36 #^2 + 16 #^4& , 4, 0]}, { 0, 0, Root[9 - 36 #^2 + 16 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 1, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[-1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[-1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[1, 2], Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 9 #^2 + 9 #^4& , 1, 0], 0, Root[ 25 - 180 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 25 - 180 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 9 #^2 + 9 #^4& , 4, 0], 0, Root[ 25 - 180 #^2 + 144 #^4& , 4, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[25 - 180 #^2 + 144 #^4& , 1, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[121 - 345 #^2 + 225 #^4& , 1, 0], 0, Root[ 121 - 6180 #^2 + 3600 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 1, 0]}, { Root[121 - 2520 #^2 + 3600 #^4& , 4, 0], Rational[1, 10] (5 + 4 5^Rational[1, 2]), Root[ 121 - 1620 #^2 + 3600 #^4& , 2, 0]}, { Root[121 - 2520 #^2 + 3600 #^4& , 4, 0], Rational[1, 10] (-5 - 4 5^Rational[1, 2]), Root[ 121 - 1620 #^2 + 3600 #^4& , 2, 0]}}, {{ 0, 0, 1.4012585384440734`}, {0, 0, -1.4012585384440737`}, { 0.17841104488654497`, -1.3090169943749475`, 0.4670861794813579}, { 0.17841104488654497`, 1.3090169943749475`, 0.4670861794813579}, { 0.4670861794813579, -0.8090169943749475, -1.0444364486709836`}, { 0.4670861794813579, 0.8090169943749475, -1.0444364486709836`}, { 1.0444364486709836`, -0.8090169943749475, 0.4670861794813579}, { 1.0444364486709836`, 0.8090169943749475, 0.4670861794813579}, {-1.2228474935575286`, -0.5, 0.4670861794813579}, {-1.2228474935575286`, 0.5, 0.4670861794813579}, { 1.2228474935575286`, -0.5, -0.46708617948135783`}, { 1.2228474935575286`, 0.5, -0.46708617948135783`}, {-0.9341723589627157, 0, -1.0444364486709836`}, {-0.46708617948135783`, \ -0.8090169943749475, 1.0444364486709836`}, {-0.46708617948135783`, 0.8090169943749475, 1.0444364486709836`}, { 0.9341723589627158, 0, 1.0444364486709836`}, {-1.0444364486709836`, \ -0.8090169943749475, -0.46708617948135783`}, {-1.0444364486709836`, 0.8090169943749475, -0.46708617948135783`}, {-0.9951248486580192, 0, 1.3026353384181448`}, {-0.17841104488654497`, \ -1.3090169943749475`, -0.46708617948135783`}, {-0.17841104488654497`, 1.3090169943749475`, -0.46708617948135783`}, {0.8050729140891351, 1.394427190999916, -0.3075104897601255}, { 0.8050729140891351, -1.394427190999916, -0.3075104897601255}}], Polygon3DBox[{{2, 6, 12, 11, 5}, {11, 12, 8, 16, 7}, {6, 2, 13, 18, 21}, {2, 5, 20, 17, 13}, {4, 21, 18, 10, 15}, {18, 13, 17, 9, 10}, {17, 20, 3, 14, 9}, {3, 7, 16, 1, 14}, {16, 8, 4, 15, 1}, { 19, 15, 10}, {19, 10, 9}, {19, 9, 14}, {19, 14, 1}, {19, 1, 15}, { 23, 5, 11}, {23, 11, 7}, {23, 7, 3}, {23, 3, 20}, {23, 20, 5}, { 22, 12, 6}, {22, 6, 21}, {22, 21, 4}, {22, 4, 8}, {22, 8, 12}}]], TagBox[ GridBox[{{"61"}, {"\"TriaugmentedDodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{61, "TriaugmentedDodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {196.36363636363637, -3630.545454545454}, ImageScaled[{0.5, 0.5}], {360, 380}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], 0, Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[-1, 2], 0, Rational[1, 4] (1 + 5^Rational[1, 2])}, { 0, Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2], 0, Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2], 0, Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2], 0}}, {{-0.5, 0, -0.8090169943749475}, {-0.5, 0, 0.8090169943749475}, {0, -0.8090169943749475, -0.5}, { 0, 0.8090169943749475, -0.5}, {0.5, 0, -0.8090169943749475}, { 0.5, 0, 0.8090169943749475}, {-0.8090169943749475, -0.5, 0}, {-0.8090169943749475, 0.5, 0}, { 0.8090169943749475, -0.5, 0}, {0.8090169943749475, 0.5, 0}}], Polygon3DBox[{{7, 8, 1}, {7, 1, 3}, {7, 2, 8}, {8, 4, 1}, {1, 4, 5}, {1, 5, 3}, {3, 5, 9}, {4, 10, 5}, {5, 10, 9}, {6, 9, 10}, {9, 6, 2, 7, 3}, {4, 8, 2, 6, 10}}]], TagBox[ GridBox[{{"62"}, {"\"MetabidiminishedIcosahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{62, "MetabidiminishedIcosahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {589.0909090909091, -3630.545454545454}, ImageScaled[{0.5, 0.5}], {360, 323}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{-3^Rational[-1, 2], 0, Root[ 1 - 84 #^2 + 144 #^4& , 1, 0]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 84 #^2 + 144 #^4& , 4, 0]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 84 #^2 + 144 #^4& , 4, 0]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 84 #^2 + 144 #^4& , 1, 0]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 84 #^2 + 144 #^4& , 1, 0]}, { 3^Rational[-1, 2], 0, Root[1 - 84 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 3, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 3, 0]}, { Root[1 - 9 #^2 + 9 #^4& , 1, 0], 0, Root[ 1 - 36 #^2 + 144 #^4& , 3, 0]}}, {{-0.5773502691896258, 0, -0.7557613140761708}, {-0.2886751345948129, -0.5, 0.7557613140761708}, {-0.2886751345948129, 0.5, 0.7557613140761708}, { 0.2886751345948129, -0.5, -0.7557613140761708}, { 0.2886751345948129, 0.5, -0.7557613140761708}, { 0.5773502691896258, 0, 0.7557613140761708}, { 0.4670861794813579, -0.8090169943749475, 0.17841104488654497`}, { 0.4670861794813579, 0.8090169943749475, 0.17841104488654497`}, {-0.9341723589627157, 0, 0.17841104488654497`}}], Polygon3DBox[{{9, 2, 3}, {1, 5, 4}, {3, 2, 6}, {3, 6, 8}, {2, 7, 6}, {2, 9, 1, 4, 7}, {5, 1, 9, 3, 8}, {8, 6, 7, 4, 5}}]], TagBox[ GridBox[{{"63"}, {"\"TridiminishedIcosahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{63, "TridiminishedIcosahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {981.818181818182, -3630.545454545454}, ImageScaled[{0.5, 0.5}], {360, 443}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, 0, Root[ 9 - 2472 #^2 + 8752 #^4 - 8832 #^6 + 2304 #^8& , 1, 0]}, {-3^ Rational[-1, 2], 0, Root[1 - 84 #^2 + 144 #^4& , 1, 0]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 84 #^2 + 144 #^4& , 4, 0]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 84 #^2 + 144 #^4& , 4, 0]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[ 1 - 84 #^2 + 144 #^4& , 1, 0]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[ 1 - 84 #^2 + 144 #^4& , 1, 0]}, { 3^Rational[-1, 2], 0, Root[1 - 84 #^2 + 144 #^4& , 4, 0]}, { Root[1 - 9 #^2 + 9 #^4& , 1, 0], 0, Root[ 1 - 36 #^2 + 144 #^4& , 3, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 3, 0]}, { Root[1 - 36 #^2 + 144 #^4& , 4, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 3, 0]}}, {{ 0, 0, -1.5722578950038968`}, {-0.5773502691896258, 0, -0.7557613140761708}, {-0.2886751345948129, -0.5, 0.7557613140761708}, {-0.2886751345948129, 0.5, 0.7557613140761708}, { 0.2886751345948129, -0.5, -0.7557613140761708}, { 0.2886751345948129, 0.5, -0.7557613140761708}, { 0.5773502691896258, 0, 0.7557613140761708}, {-0.9341723589627157, 0, 0.17841104488654497`}, { 0.4670861794813579, -0.8090169943749475, 0.17841104488654497`}, { 0.4670861794813579, 0.8090169943749475, 0.17841104488654497`}}], Polygon3DBox[{{8, 3, 4}, {4, 3, 7}, {4, 7, 10}, {3, 9, 7}, {3, 8, 2, 5, 9}, {6, 2, 8, 4, 10}, {10, 7, 9, 5, 6}, {1, 2, 6}, {1, 6, 5}, {1, 5, 2}}]], TagBox[ GridBox[{{"64"}, {"\"AugmentedTridiminishedIcosahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{64, "AugmentedTridiminishedIcosahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -3630.545454545454}, ImageScaled[{0.5, 0.5}], {360, 485}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, -1, Rational[-1, 2] Rational[3, 2]^Rational[1, 2]}, { 0, 1, Rational[-1, 2] Rational[3, 2]^Rational[1, 2]}, {-3^Rational[-1, 2], -1, Rational[1, 2] 6^Rational[-1, 2]}, {-3^Rational[-1, 2], 1, Rational[1, 2] 6^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[5, 2] 6^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[5, 2] 6^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[-7, 2] 6^Rational[-1, 2]}, { 3^Rational[-1, 2], 0, Rational[5, 2] 6^Rational[-1, 2]}, { 2 3^Rational[-1, 2], 0, Rational[1, 2] 6^Rational[-1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[-1, 2] Rational[3, 2]^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[-1, 2] Rational[3, 2]^Rational[1, 2]}, { Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[-1, 2] Rational[3, 2]^Rational[1, 2]}, { Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[-1, 2] Rational[3, 2]^Rational[1, 2]}, {-3^Rational[-1, 2], 0, Rational[-7, 2] 6^Rational[-1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[-7, 2] 6^Rational[-1, 2]}}, {{0, -1, -0.6123724356957945}, { 0, 1, -0.6123724356957945}, {-0.5773502691896258, -1, 0.20412414523193154`}, {-0.5773502691896258, 1, 0.20412414523193154`}, {-0.2886751345948129, -0.5, 1.0206207261596576`}, {-0.2886751345948129, 0.5, 1.0206207261596576`}, { 0.2886751345948129, -0.5, -1.4288690166235207`}, { 0.5773502691896258, 0, 1.0206207261596576`}, { 1.1547005383792517`, 0, 0.20412414523193154`}, {-0.8660254037844386, -0.5, \ -0.6123724356957945}, {-0.8660254037844386, 0.5, -0.6123724356957945}, { 0.8660254037844386, -0.5, -0.6123724356957945}, { 0.8660254037844386, 0.5, -0.6123724356957945}, {-0.5773502691896258, 0, -1.4288690166235207`}, {0.2886751345948129, 0.5, -1.4288690166235207`}}], Polygon3DBox[{{12, 13, 9}, {3, 10, 1}, {2, 11, 4}, {6, 5, 8}, {12, 9, 8, 5, 3, 1}, {2, 4, 6, 8, 9, 13}, {10, 3, 5, 6, 4, 11}, {7, 14, 15}, {11, 2, 15, 14}, {1, 10, 14, 7}, {13, 12, 7, 15}, {15, 2, 13}, {14, 10, 11}, {7, 12, 1}}]], TagBox[ GridBox[{{"65"}, {"\"AugmentedTruncatedTetrahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{65, "AugmentedTruncatedTetrahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -3630.545454545454}, ImageScaled[{0.5, 0.5}], {360, 440}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2])}, { 0, -2^Rational[-1, 2], Rational[1, 2] (1 + 2 2^Rational[1, 2])}, { 0, 2^Rational[-1, 2], Rational[1, 2] (1 + 2 2^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2])}, {-2^Rational[-1, 2], 0, Rational[1, 2] (1 + 2 2^Rational[1, 2])}, { 2^Rational[-1, 2], 0, Rational[1, 2] (1 + 2 2^Rational[1, 2])}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2]}}, {{-0.5, 1.2071067811865475`, -1.2071067811865475`}, {-0.5, 1.2071067811865475`, 1.2071067811865475`}, {-0.5, -1.2071067811865475`, \ -1.2071067811865475`}, {-0.5, -1.2071067811865475`, 1.2071067811865475`}, { 0, -0.7071067811865475, 1.9142135623730951`}, { 0, 0.7071067811865475, 1.9142135623730951`}, {0.5, 1.2071067811865475`, -1.2071067811865475`}, {0.5, 1.2071067811865475`, 1.2071067811865475`}, { 0.5, -1.2071067811865475`, -1.2071067811865475`}, { 0.5, -1.2071067811865475`, 1.2071067811865475`}, {-0.7071067811865475, 0, 1.9142135623730951`}, { 0.7071067811865475, 0, 1.9142135623730951`}, { 1.2071067811865475`, -0.5, -1.2071067811865475`}, { 1.2071067811865475`, -0.5, 1.2071067811865475`}, { 1.2071067811865475`, 0.5, -1.2071067811865475`}, { 1.2071067811865475`, 0.5, 1.2071067811865475`}, { 1.2071067811865475`, 1.2071067811865475`, -0.5}, { 1.2071067811865475`, 1.2071067811865475`, 0.5}, { 1.2071067811865475`, -1.2071067811865475`, -0.5}, { 1.2071067811865475`, -1.2071067811865475`, 0.5}, {-1.2071067811865475`, -0.5, -1.2071067811865475`}, \ {-1.2071067811865475`, -0.5, 1.2071067811865475`}, {-1.2071067811865475`, 0.5, -1.2071067811865475`}, {-1.2071067811865475`, 0.5, 1.2071067811865475`}, {-1.2071067811865475`, 1.2071067811865475`, -0.5}, {-1.2071067811865475`, 1.2071067811865475`, 0.5}, {-1.2071067811865475`, -1.2071067811865475`, -0.5}, \ {-1.2071067811865475`, -1.2071067811865475`, 0.5}}], Polygon3DBox[{{7, 15, 13, 9, 3, 21, 23, 1}, {9, 19, 20, 10, 4, 28, 27, 3}, {1, 25, 26, 2, 8, 18, 17, 7}, {15, 17, 18, 16, 14, 20, 19, 13}, {21, 27, 28, 22, 24, 26, 25, 23}, {9, 13, 19}, {17, 15, 7}, {27, 21, 3}, {1, 23, 25}, {20, 14, 10}, {8, 16, 18}, {4, 22, 28}, {26, 24, 2}, {6, 11, 5, 12}, {11, 6, 2, 24}, {5, 11, 22, 4}, {12, 5, 10, 14}, {6, 12, 16, 8}, {8, 2, 6}, {24, 22, 11}, {4, 10, 5}, {14, 16, 12}}]], TagBox[ GridBox[{{"66"}, {"\"AugmentedTruncatedCube\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{66, "AugmentedTruncatedCube"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2160., -3630.545454545454}, ImageScaled[{0.5, 0.5}], {360, 407}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2])}, { 0, -2^Rational[-1, 2], Rational[1, 2] (1 + 2 2^Rational[1, 2])}, { 0, -2^Rational[-1, 2], Rational[1, 2] (-1 - 2 2^Rational[1, 2])}, { 0, 2^Rational[-1, 2], Rational[1, 2] (1 + 2 2^Rational[1, 2])}, { 0, 2^Rational[-1, 2], Rational[1, 2] (-1 - 2 2^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2])}, {-2^Rational[-1, 2], 0, Rational[1, 2] (1 + 2 2^Rational[1, 2])}, {-2^Rational[-1, 2], 0, Rational[1, 2] (-1 - 2 2^Rational[1, 2])}, { 2^Rational[-1, 2], 0, Rational[1, 2] (1 + 2 2^Rational[1, 2])}, { 2^Rational[-1, 2], 0, Rational[1, 2] (-1 - 2 2^Rational[1, 2])}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2])}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2])}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2]}}, {{-0.5, 1.2071067811865475`, 1.2071067811865475`}, {-0.5, 1.2071067811865475`, -1.2071067811865475`}, {-0.5, \ -1.2071067811865475`, 1.2071067811865475`}, {-0.5, -1.2071067811865475`, \ -1.2071067811865475`}, {0, -0.7071067811865475, 1.9142135623730951`}, { 0, -0.7071067811865475, -1.9142135623730951`}, { 0, 0.7071067811865475, 1.9142135623730951`}, { 0, 0.7071067811865475, -1.9142135623730951`}, {0.5, 1.2071067811865475`, 1.2071067811865475`}, {0.5, 1.2071067811865475`, -1.2071067811865475`}, { 0.5, -1.2071067811865475`, 1.2071067811865475`}, { 0.5, -1.2071067811865475`, -1.2071067811865475`}, \ {-0.7071067811865475, 0, 1.9142135623730951`}, {-0.7071067811865475, 0, -1.9142135623730951`}, { 0.7071067811865475, 0, 1.9142135623730951`}, { 0.7071067811865475, 0, -1.9142135623730951`}, { 1.2071067811865475`, -0.5, 1.2071067811865475`}, { 1.2071067811865475`, -0.5, -1.2071067811865475`}, { 1.2071067811865475`, 0.5, 1.2071067811865475`}, { 1.2071067811865475`, 0.5, -1.2071067811865475`}, { 1.2071067811865475`, 1.2071067811865475`, -0.5}, { 1.2071067811865475`, 1.2071067811865475`, 0.5}, { 1.2071067811865475`, -1.2071067811865475`, -0.5}, { 1.2071067811865475`, -1.2071067811865475`, 0.5}, {-1.2071067811865475`, -0.5, 1.2071067811865475`}, {-1.2071067811865475`, -0.5, \ -1.2071067811865475`}, {-1.2071067811865475`, 0.5, 1.2071067811865475`}, {-1.2071067811865475`, 0.5, -1.2071067811865475`}, {-1.2071067811865475`, 1.2071067811865475`, -0.5}, {-1.2071067811865475`, 1.2071067811865475`, 0.5}, {-1.2071067811865475`, -1.2071067811865475`, -0.5}, \ {-1.2071067811865475`, -1.2071067811865475`, 0.5}}], Polygon3DBox[{{3, 32, 31, 4, 12, 23, 24, 11}, {9, 22, 21, 10, 2, 29, 30, 1}, {17, 24, 23, 18, 20, 21, 22, 19}, {27, 30, 29, 28, 26, 31, 32, 25}, {24, 17, 11}, {9, 19, 22}, {3, 25, 32}, {30, 27, 1}, {12, 18, 23}, {21, 20, 10}, {31, 26, 4}, {2, 28, 29}, {16, 6, 14, 8}, {28, 2, 8, 14}, {4, 26, 14, 6}, {18, 12, 6, 16}, {10, 20, 16, 8}, {8, 2, 10}, {14, 26, 28}, {6, 12, 4}, {16, 20, 18}, {7, 13, 5, 15}, {13, 7, 1, 27}, {5, 13, 25, 3}, {15, 5, 11, 17}, {7, 15, 19, 9}, {9, 1, 7}, {27, 25, 13}, {3, 11, 5}, {17, 19, 15}}]], TagBox[ GridBox[{{"67"}, {"\"BiaugmentedTruncatedCube\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{67, "BiaugmentedTruncatedCube"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2552.727272727273, -3630.545454545454}, ImageScaled[{0.5, 0.5}], {360, 412}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (5 + 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, { 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {-(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {-(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[17, 4] + Rational[19, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[17, 4] + Rational[19, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-1, 2] (17 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[-1, 2] (17 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], 0, -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (5 + 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 2.48989828488278}, { 0, -1.618033988749895, -2.48989828488278}, { 0, 1.618033988749895, 2.48989828488278}, { 0, 1.618033988749895, -2.48989828488278}, { 0.42532540417601994`, -2.9270509831248424`, 0.2628655560595668}, { 0.42532540417601994`, 2.9270509831248424`, 0.2628655560595668}, { 0.6881909602355868, -2.118033988749895, 1.9641671727636467`}, { 0.6881909602355868, 2.118033988749895, 1.9641671727636467`}, {-2.752763840942347, 0, -1.1135163644116066`}, {-2.0645728807067605`, \ -2.118033988749895, 0.2628655560595668}, {-2.0645728807067605`, 2.118033988749895, 0.2628655560595668}, {-1.3763819204711736`, -2.618033988749895, \ -0.2628655560595668}, {-1.3763819204711736`, 2.618033988749895, -0.2628655560595668}, {-0.6881909602355868, \ -2.118033988749895, -1.9641671727636467`}, {-0.6881909602355868, 2.118033988749895, -1.9641671727636467`}, { 1.3763819204711736`, -2.618033988749895, 0.2628655560595668}, { 1.3763819204711736`, 2.618033988749895, 0.2628655560595668}, { 2.752763840942347, 0, 1.1135163644116066`}, { 1.8017073246471935`, -1.3090169943749475`, -1.9641671727636467`}, \ {1.8017073246471935`, 1.3090169943749475`, -1.9641671727636467`}, { 2.0645728807067605`, -2.118033988749895, -0.2628655560595668}, { 2.0645728807067605`, 2.118033988749895, -0.2628655560595668}, { 2.2270327288232132`, 0, 1.9641671727636467`}, { 2.2270327288232132`, -1.618033988749895, -1.1135163644116066`}, { 2.2270327288232132`, 1.618033988749895, -1.1135163644116066`}, {-2.6523581329992334`, \ -1.3090169943749475`, 0.2628655560595668}, {-2.6523581329992334`, 1.3090169943749475`, 0.2628655560595668}, { 2.6523581329992334`, -1.3090169943749475`, -0.2628655560595668}, { 2.6523581329992334`, 1.3090169943749475`, -0.2628655560595668}, { 2.9152236890588, -0.5, 0.2628655560595668}, {2.9152236890588, 0.5, 0.2628655560595668}, {-2.9152236890588, -0.5, \ -0.2628655560595668}, {-2.9152236890588, 0.5, -0.2628655560595668}, { 0.9510565162951535, -1.3090169943749475`, 2.48989828488278}, { 0.9510565162951535, -1.3090169943749475`, -2.48989828488278}, { 0.9510565162951535, 1.3090169943749475`, 2.48989828488278}, { 0.9510565162951535, 1.3090169943749475`, -2.48989828488278}, { 0.85065080835204, -2.618033988749895, 1.1135163644116066`}, { 0.85065080835204, 2.618033988749895, 1.1135163644116066`}, {-0.9510565162951535, -1.3090169943749475`, 2.48989828488278}, {-0.9510565162951535, -1.3090169943749475`, \ -2.48989828488278}, {-0.9510565162951535, 1.3090169943749475`, 2.48989828488278}, {-0.9510565162951535, 1.3090169943749475`, -2.48989828488278}, {-1.5388417685876268`, \ -0.5, 2.48989828488278}, {-1.5388417685876268`, -0.5, -2.48989828488278}, \ {-1.5388417685876268`, 0.5, 2.48989828488278}, {-1.5388417685876268`, 0.5, -2.48989828488278}, {1.5388417685876268`, -0.5, 2.48989828488278}, { 1.5388417685876268`, -0.5, -2.48989828488278}, { 1.5388417685876268`, 0.5, 2.48989828488278}, {1.5388417685876268`, 0.5, -2.48989828488278}, {-2.2270327288232132`, 0, -1.9641671727636467`}, {-2.2270327288232132`, \ -1.618033988749895, 1.1135163644116066`}, {-2.2270327288232132`, 1.618033988749895, 1.1135163644116066`}, {-0.8506508083520399, -2.618033988749895, \ -1.1135163644116066`}, {-0.8506508083520399, 2.618033988749895, -1.1135163644116066`}, {-1.8017073246471935`, \ -1.3090169943749475`, 1.9641671727636467`}, {-1.8017073246471935`, 1.3090169943749475`, 1.9641671727636467`}, {-0.42532540417602, -2.9270509831248424`, \ -0.2628655560595668}, {-0.42532540417602, 2.9270509831248424`, -0.2628655560595668}, {-0.2628655560595668, 0.8090169943749475, 3.0156293970019137`}, {-0.8506508083520399, 0, 3.0156293970019137`}, {-0.2628655560595668, -0.8090169943749475, 3.0156293970019137`}, {0.6881909602355868, -0.5, 3.0156293970019137`}, {0.6881909602355868, 0.5, 3.0156293970019137`}}], Polygon3DBox[{{1, 7, 34}, {1, 63, 40}, {2, 14, 41}, {3, 36, 8}, {3, 42, 61}, {4, 43, 15}, {5, 16, 38}, {6, 39, 17}, {9, 32, 33}, {10, 53, 26}, {11, 27, 54}, {12, 55, 59}, {13, 60, 56}, {18, 30, 31}, { 19, 35, 49}, {20, 51, 37}, {21, 24, 28}, {22, 29, 25}, {23, 50, 48}, {34, 48, 64}, {36, 65, 50}, {40, 44, 57}, {42, 58, 46}, {44, 62, 46}, {45, 52, 47}, {1, 34, 64, 63}, {3, 61, 65, 36}, {40, 63, 62, 44}, {42, 46, 62, 61}, {48, 50, 65, 64}, {61, 62, 63, 64, 65}, {1, 40, 57, 53, 10, 12, 59, 5, 38, 7}, {2, 35, 19, 24, 21, 16, 5, 59, 55, 14}, {2, 41, 45, 47, 43, 4, 37, 51, 49, 35}, {3, 8, 39, 6, 60, 13, 11, 54, 58, 42}, {4, 15, 56, 60, 6, 17, 22, 25, 20, 37}, {7, 38, 16, 21, 28, 30, 18, 23, 48, 34}, {8, 36, 50, 23, 18, 31, 29, 22, 17, 39}, {9, 33, 27, 11, 13, 56, 15, 43, 47, 52}, {9, 52, 45, 41, 14, 55, 12, 10, 26, 32}, {19, 49, 51, 20, 25, 29, 31, 30, 28, 24}, {26, 53, 57, 44, 46, 58, 54, 27, 33, 32}}]], TagBox[ GridBox[{{"68"}, {"\"AugmentedTruncatedDodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{68, "AugmentedTruncatedDodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -3630.545454545454}, ImageScaled[{0.5, 0.5}], {360, 366}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (5 + 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {-(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, { 2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, {-(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {-(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[17, 4] + Rational[19, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[17, 4] + Rational[19, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, { Rational[-1, 2] (17 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, { Rational[-1, 2] (17 + 38 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2], Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], 0, -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0]}, { Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (5 + 3 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), -(Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], -(Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], -(Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^ Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 3, 0], Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, -(Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^ Rational[1, 2]}}, {{0, -1.618033988749895, 2.48989828488278}, { 0, -1.618033988749895, -2.48989828488278}, { 0, 1.618033988749895, 2.48989828488278}, { 0, 1.618033988749895, -2.48989828488278}, { 0.42532540417601994`, -2.9270509831248424`, 0.2628655560595668}, { 0.42532540417601994`, 2.9270509831248424`, 0.2628655560595668}, { 0.6881909602355868, -2.118033988749895, 1.9641671727636467`}, { 0.6881909602355868, 2.118033988749895, 1.9641671727636467`}, {-2.752763840942347, 0, -1.1135163644116066`}, {-2.0645728807067605`, \ -2.118033988749895, 0.2628655560595668}, {-2.0645728807067605`, 2.118033988749895, 0.2628655560595668}, {-1.3763819204711736`, -2.618033988749895, \ -0.2628655560595668}, {-1.3763819204711736`, 2.618033988749895, -0.2628655560595668}, {-0.6881909602355868, \ -2.118033988749895, -1.9641671727636467`}, {-0.6881909602355868, 2.118033988749895, -1.9641671727636467`}, { 1.3763819204711736`, -2.618033988749895, 0.2628655560595668}, { 1.3763819204711736`, 2.618033988749895, 0.2628655560595668}, { 2.752763840942347, 0, 1.1135163644116066`}, { 1.8017073246471935`, -1.3090169943749475`, -1.9641671727636467`}, \ {1.8017073246471935`, 1.3090169943749475`, -1.9641671727636467`}, { 2.0645728807067605`, -2.118033988749895, -0.2628655560595668}, { 2.0645728807067605`, 2.118033988749895, -0.2628655560595668}, { 2.2270327288232132`, 0, 1.9641671727636467`}, { 2.2270327288232132`, -1.618033988749895, -1.1135163644116066`}, { 2.2270327288232132`, 1.618033988749895, -1.1135163644116066`}, {-2.6523581329992334`, \ -1.3090169943749475`, 0.2628655560595668}, {-2.6523581329992334`, 1.3090169943749475`, 0.2628655560595668}, { 2.6523581329992334`, -1.3090169943749475`, -0.2628655560595668}, { 2.6523581329992334`, 1.3090169943749475`, -0.2628655560595668}, { 2.9152236890588, -0.5, 0.2628655560595668}, {2.9152236890588, 0.5, 0.2628655560595668}, {-2.9152236890588, -0.5, \ -0.2628655560595668}, {-2.9152236890588, 0.5, -0.2628655560595668}, { 0.9510565162951535, -1.3090169943749475`, 2.48989828488278}, { 0.9510565162951535, -1.3090169943749475`, -2.48989828488278}, { 0.9510565162951535, 1.3090169943749475`, 2.48989828488278}, { 0.9510565162951535, 1.3090169943749475`, -2.48989828488278}, { 0.85065080835204, -2.618033988749895, 1.1135163644116066`}, { 0.85065080835204, 2.618033988749895, 1.1135163644116066`}, {-0.9510565162951535, -1.3090169943749475`, 2.48989828488278}, {-0.9510565162951535, -1.3090169943749475`, \ -2.48989828488278}, {-0.9510565162951535, 1.3090169943749475`, 2.48989828488278}, {-0.9510565162951535, 1.3090169943749475`, -2.48989828488278}, {-1.5388417685876268`, \ -0.5, 2.48989828488278}, {-1.5388417685876268`, -0.5, -2.48989828488278}, \ {-1.5388417685876268`, 0.5, 2.48989828488278}, {-1.5388417685876268`, 0.5, -2.48989828488278}, {1.5388417685876268`, -0.5, 2.48989828488278}, { 1.5388417685876268`, -0.5, -2.48989828488278}, { 1.5388417685876268`, 0.5, 2.48989828488278}, {1.5388417685876268`, 0.5, -2.48989828488278}, {-2.2270327288232132`, 0, -1.9641671727636467`}, {-2.2270327288232132`, \ -1.618033988749895, 1.1135163644116066`}, {-2.2270327288232132`, 1.618033988749895, 1.1135163644116066`}, {-0.8506508083520399, -2.618033988749895, \ -1.1135163644116066`}, {-0.8506508083520399, 2.618033988749895, -1.1135163644116066`}, {-1.8017073246471935`, \ -1.3090169943749475`, 1.9641671727636467`}, {-1.8017073246471935`, 1.3090169943749475`, 1.9641671727636467`}, {-0.42532540417602, -2.9270509831248424`, \ -0.2628655560595668}, {-0.42532540417602, 2.9270509831248424`, -0.2628655560595668}, {-0.2628655560595668, 0.8090169943749475, 3.0156293970019137`}, {-0.8506508083520399, 0, 3.0156293970019137`}, {-0.2628655560595668, -0.8090169943749475, 3.0156293970019137`}, {0.6881909602355868, -0.5, 3.0156293970019137`}, {0.6881909602355868, 0.5, 3.0156293970019137`}, {0.2628655560595668, 0.8090169943749475, -3.0156293970019137`}, {-0.6881909602355868, 0.5, -3.0156293970019137`}, {-0.6881909602355868, -0.5, \ -3.0156293970019137`}, { 0.2628655560595668, -0.8090169943749475, -3.0156293970019137`}, { 0.85065080835204, 0, -3.0156293970019137`}}], Polygon3DBox[{{1, 7, 34}, {1, 63, 40}, {2, 14, 41}, {2, 69, 35}, {3, 36, 8}, {3, 42, 61}, {4, 37, 66}, {4, 43, 15}, {5, 16, 38}, {6, 39, 17}, {9, 32, 33}, {10, 53, 26}, {11, 27, 54}, {12, 55, 59}, { 13, 60, 56}, {18, 30, 31}, {19, 35, 49}, {20, 51, 37}, {21, 24, 28}, {22, 29, 25}, {23, 50, 48}, {34, 48, 64}, {36, 65, 50}, {40, 44, 57}, {41, 45, 68}, {42, 58, 46}, {43, 67, 47}, {44, 62, 46}, { 45, 52, 47}, {49, 70, 51}, {1, 34, 64, 63}, {2, 41, 68, 69}, {3, 61, 65, 36}, {4, 66, 67, 43}, {35, 69, 70, 49}, {37, 51, 70, 66}, {40, 63, 62, 44}, {42, 46, 62, 61}, {45, 47, 67, 68}, {48, 50, 65, 64}, {61, 62, 63, 64, 65}, {66, 70, 69, 68, 67}, {1, 40, 57, 53, 10, 12, 59, 5, 38, 7}, {2, 35, 19, 24, 21, 16, 5, 59, 55, 14}, {3, 8, 39, 6, 60, 13, 11, 54, 58, 42}, {4, 15, 56, 60, 6, 17, 22, 25, 20, 37}, {7, 38, 16, 21, 28, 30, 18, 23, 48, 34}, {8, 36, 50, 23, 18, 31, 29, 22, 17, 39}, {9, 33, 27, 11, 13, 56, 15, 43, 47, 52}, {9, 52, 45, 41, 14, 55, 12, 10, 26, 32}, {19, 49, 51, 20, 25, 29, 31, 30, 28, 24}, {26, 53, 57, 44, 46, 58, 54, 27, 33, 32}}]], TagBox[ GridBox[{{"69"}, {"\"ParabiaugmentedTruncatedDodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{69, "ParabiaugmentedTruncatedDodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -3630.545454545454}, ImageScaled[{0.5, 0.5}], {360, 366}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 2] (-3 - 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2], Rational[1, 2] (3 + 5^Rational[1, 2])}, { 0, Rational[1, 4] (5 + 3 5^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])}, { 0, Rational[1, 4] (5 + 3 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (-3 - 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2])}, { 0, Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (-1 - 5^Rational[1, 2])}, { Rational[-1, 2], 0, Rational[1, 4] (-5 - 3 5^Rational[1, 2])}, { 0, Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2])}, { Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 2], 0, Rational[1, 4] (-5 - 3 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2]), -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2])}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 4] (5 + 3 5^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2], Rational[1, 2] (3 + 5^Rational[1, 2])}, { Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2])}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2])}, { Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Rational[1, 2], 0}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 2] (-3 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2]), -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[1, 4] (5 + 3 5^Rational[1, 2]), Rational[-1, 2], 0}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2])}, { Rational[1, 2] (-3 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2]}, { Rational[-1, 2], 0, Rational[1, 4] (5 + 3 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2])}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[1, 2], 0, Rational[1, 4] (5 + 3 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2])}, { Rational[3, 4] + Rational[13, 4] 5^Rational[-1, 2], Rational[ 1, 2], Rational[3, 10] (5 + 5^Rational[1, 2])}, { Rational[3, 4] + Rational[13, 4] 5^Rational[-1, 2], Rational[-1, 2], Rational[3, 10] (5 + 5^Rational[1, 2])}, { Rational[5, 4] + Rational[13, 4] 5^Rational[-1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 20] (25 + 5^Rational[1, 2])}, { 1 + Rational[9, 2] 5^Rational[-1, 2], 0, Rational[1, 20] (15 + 5^Rational[1, 2])}, { Rational[5, 4] + Rational[13, 4] 5^Rational[-1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 20] (25 + 5^Rational[1, 2])}, { Rational[-3, 4] + Rational[-13, 4] 5^Rational[-1, 2], Rational[ 1, 2], Rational[3, 10] (5 + 5^Rational[1, 2])}, { Rational[-3, 4] + Rational[-13, 4] 5^Rational[-1, 2], Rational[-1, 2], Rational[3, 10] (5 + 5^Rational[1, 2])}, { Rational[-5, 4] + Rational[-13, 4] 5^Rational[-1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 20] (25 + 5^Rational[1, 2])}, {-1 + Rational[-9, 2] 5^Rational[-1, 2], 0, Rational[1, 20] (15 + 5^Rational[1, 2])}, { Rational[-5, 4] + Rational[-13, 4] 5^Rational[-1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 20] (25 + 5^Rational[1, 2])}}, {{ 1.618033988749895, -1.3090169943749475`, 2.118033988749895}, {-2.618033988749895, -1.3090169943749475`, \ -0.5}, {2.618033988749895, 1.3090169943749475`, 0.5}, {-1.618033988749895, 1.3090169943749475`, -2.118033988749895}, {-0.5, \ -2.618033988749895, 1.3090169943749475`}, {1.3090169943749475`, 2.118033988749895, -1.618033988749895}, { 1.3090169943749475`, -2.118033988749895, 1.618033988749895}, { 2.618033988749895, 1.3090169943749475`, -0.5}, {-2.118033988749895, 1.618033988749895, 1.3090169943749475`}, {-1.3090169943749475`, -0.5, 2.618033988749895}, { 0, 2.9270509831248424`, 0.5}, {-1.618033988749895, -1.3090169943749475`, 2.118033988749895}, { 0, 2.9270509831248424`, -0.5}, {-2.618033988749895, \ -1.3090169943749475`, 0.5}, {-1.3090169943749475`, 2.118033988749895, -1.618033988749895}, { 0, -2.9270509831248424`, 0.5}, {1.618033988749895, 1.3090169943749475`, -2.118033988749895}, { 2.118033988749895, -1.618033988749895, -1.3090169943749475`}, \ {-1.3090169943749475`, -2.118033988749895, -1.618033988749895}, {-0.5, 0, -2.9270509831248424`}, {0, -2.9270509831248424`, -0.5}, { 1.3090169943749475`, 0.5, -2.618033988749895}, { 2.618033988749895, -1.3090169943749475`, -0.5}, {-0.5, \ -2.618033988749895, -1.3090169943749475`}, { 0.5, 0, -2.9270509831248424`}, {-1.3090169943749475`, 0.5, 2.618033988749895}, {-0.5, 2.618033988749895, 1.3090169943749475`}, { 0.5, -2.618033988749895, -1.3090169943749475`}, { 1.3090169943749475`, -0.5, -2.618033988749895}, { 1.3090169943749475`, -2.118033988749895, -1.618033988749895}, { 1.618033988749895, -1.3090169943749475`, -2.118033988749895}, \ {-1.618033988749895, 1.3090169943749475`, 2.118033988749895}, {-1.3090169943749475`, 2.118033988749895, 1.618033988749895}, {2.118033988749895, -1.618033988749895, 1.3090169943749475`}, {-2.118033988749895, -1.618033988749895, \ -1.3090169943749475`}, {2.9270509831248424`, 0.5, 0}, {-1.3090169943749475`, 0.5, -2.618033988749895}, {0.5, -2.618033988749895, 1.3090169943749475`}, {2.118033988749895, 1.618033988749895, -1.3090169943749475`}, { 1.3090169943749475`, -0.5, 2.618033988749895}, {-2.9270509831248424`, -0.5, 0}, { 2.118033988749895, 1.618033988749895, 1.3090169943749475`}, {-2.118033988749895, 1.618033988749895, -1.3090169943749475`}, {1.3090169943749475`, 0.5, 2.618033988749895}, {-2.9270509831248424`, 0.5, 0}, { 1.618033988749895, 1.3090169943749475`, 2.118033988749895}, {-2.618033988749895, 1.3090169943749475`, -0.5}, { 2.618033988749895, -1.3090169943749475`, 0.5}, {-1.618033988749895, -1.3090169943749475`, \ -2.118033988749895}, { 2.9270509831248424`, -0.5, 0}, {-1.3090169943749475`, -0.5, -2.618033988749895}, \ {-2.618033988749895, 1.3090169943749475`, 0.5}, {-0.5, 0, 2.9270509831248424`}, {0.5, 2.618033988749895, 1.3090169943749475`}, {-2.118033988749895, -1.618033988749895, 1.3090169943749475`}, {-0.5, 2.618033988749895, -1.3090169943749475`}, { 0.5, 0, 2.9270509831248424`}, {1.3090169943749475`, 2.118033988749895, 1.618033988749895}, {-1.3090169943749475`, -2.118033988749895, 1.618033988749895}, {0.5, 2.618033988749895, -1.3090169943749475`}, {2.203444185374863, 0.5, 2.170820393249937}, {2.203444185374863, -0.5, 2.170820393249937}, {2.703444185374863, -0.8090169943749475, 1.3618033988749896`}, { 3.0124611797498106`, 0, 0.8618033988749896}, {2.703444185374863, 0.8090169943749475, 1.3618033988749896`}, {-2.203444185374863, 0.5, 2.170820393249937}, {-2.203444185374863, -0.5, 2.170820393249937}, {-2.703444185374863, -0.8090169943749475, 1.3618033988749896`}, {-3.0124611797498106`, 0, 0.8618033988749896}, {-2.703444185374863, 0.8090169943749475, 1.3618033988749896`}}], Polygon3DBox[{{1, 7, 34}, {1, 62, 40}, {2, 14, 41}, {3, 36, 8}, {3, 42, 65}, {4, 43, 15}, {5, 16, 38}, {6, 39, 17}, {9, 32, 33}, {9, 52, 70}, {10, 53, 26}, {10, 67, 12}, {11, 27, 54}, {12, 55, 59}, { 13, 60, 56}, {14, 55, 68}, {18, 30, 31}, {19, 35, 49}, {20, 51, 37}, {21, 24, 28}, {22, 29, 25}, {23, 50, 48}, {26, 32, 66}, {34, 48, 63}, {36, 64, 50}, {40, 44, 57}, {41, 69, 45}, {42, 58, 46}, { 44, 61, 46}, {45, 52, 47}, {1, 34, 63, 62}, {3, 65, 64, 36}, {9, 70, 66, 32}, {10, 26, 66, 67}, {12, 67, 68, 55}, {14, 68, 69, 41}, {40, 62, 61, 44}, {42, 46, 61, 65}, {45, 69, 70, 52}, {48, 50, 64, 63}, {61, 62, 63, 64, 65}, {66, 70, 69, 68, 67}, {1, 40, 57, 53, 10, 12, 59, 5, 38, 7}, {2, 35, 19, 24, 21, 16, 5, 59, 55, 14}, {2, 41, 45, 47, 43, 4, 37, 51, 49, 35}, {3, 8, 39, 6, 60, 13, 11, 54, 58, 42}, {4, 15, 56, 60, 6, 17, 22, 25, 20, 37}, {7, 38, 16, 21, 28, 30, 18, 23, 48, 34}, {8, 36, 50, 23, 18, 31, 29, 22, 17, 39}, {9, 33, 27, 11, 13, 56, 15, 43, 47, 52}, {19, 49, 51, 20, 25, 29, 31, 30, 28, 24}, {26, 53, 57, 44, 46, 58, 54, 27, 33, 32}}]], TagBox[ GridBox[{{"70"}, {"\"MetabiaugmentedTruncatedDodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{70, "MetabiaugmentedTruncatedDodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -3630.545454545454}, ImageScaled[{0.5, 0.5}], {360, 348}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{(3 + Rational[4, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(3 + Rational[4, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(3 + Rational[4, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(3 + Rational[4, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Root[1 - 36 #^2 + 144 #^4& , 3, 0], Rational[1, 4] (5 + 3 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 4] 3^Rational[-1, 2] (5 + 5^Rational[1, 2])}, {(Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (5 + 5^Rational[1, 2])}, {-3^Rational[-1, 2], 0, Rational[-1, 4] 3^Rational[-1, 2] (9 + 5 5^Rational[1, 2])}, { Rational[1, 2] Rational[5, 3]^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], -(Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] Rational[5, 3]^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), -(Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2]), -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 4] 3^Rational[-1, 2] (5 + 5^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2]), Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 4] 3^Rational[-1, 2] (5 + 5^Rational[1, 2])}, { 0, Rational[1, 2] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 0, Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { 3^Rational[-1, 2], 0, Rational[1, 4] 3^Rational[-1, 2] (9 + 5 5^Rational[1, 2])}, { Rational[-1, 4] 3^Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] (3^Rational[1, 2] + 15^Rational[1, 2])}, { Rational[-1, 4] 3^Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (3^Rational[1, 2] + 15^Rational[1, 2])}, { Rational[-1, 2] Rational[5, 3]^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] Rational[5, 3]^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], 0, (Rational[83, 24] + Rational[11, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^ Rational[1, 2]), -(Rational[83, 24] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), -(Rational[83, 24] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[83, 24] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[83, 24] + Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[1, 4] 3^Rational[-1, 2] (9 + 5 5^Rational[1, 2])}, { Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[1, 4] 3^Rational[-1, 2] (9 + 5 5^Rational[1, 2])}, { Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], -(Rational[103, 24] + Rational[15, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] 3^Rational[-1, 2], Rational[ 1, 2], -(Rational[103, 24] + Rational[15, 8] 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[21, 8] + Rational[9, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[29, 8] + Rational[35, 24] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[21, 8] + Rational[9, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[29, 8] + Rational[35, 24] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[29, 8] + Rational[35, 24] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Root[9 - 84 #^2 + 16 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[29, 8] + Rational[35, 24] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Root[9 - 84 #^2 + 16 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[15, 4] + Rational[5, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2] (3 + 2 5^Rational[1, 2]), Rational[-1, 2], -(Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[15, 4] + Rational[5, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2], Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2] (3 + 2 5^Rational[1, 2]), Rational[ 1, 2], -(Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2] (5 + 2 5^Rational[1, 2]), Rational[-1, 2], Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2], Rational[ 1, 2], (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] 3^Rational[-1, 2] (5 + 2 5^Rational[1, 2]), Rational[1, 2], Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, Rational[-1, 4] 3^Rational[-1, 2] (11 + 3 5^Rational[1, 2])}, {( Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^ Rational[1, 2]}, {-(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[21, 8] + Rational[9, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {(Rational[21, 8] + Rational[9, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] 15^Rational[-1, 2] (-5 + 5^Rational[1, 2]), Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 4] 15^Rational[-1, 2] (-5 + 5^Rational[1, 2]), Rational[1, 4] (5 + 3 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2]}, {-(Rational[49, 10] + Rational[13, 6] 5^Rational[1, 2])^Rational[1, 2], 0, Rational[ 1, 2] (Rational[29, 10] + Rational[-7, 6] 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 30] (603 + 217 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] 15^Rational[-1, 2] (-7 + 5^Rational[1, 2])}, { Rational[-1, 2] 15^Rational[-1, 2] (13 + 4 5^Rational[1, 2]), Rational[1, 2], Rational[-1, 20] 3^Rational[-1, 2] (5 + 17 5^Rational[1, 2])}, { Rational[-1, 2] 15^Rational[-1, 2] (13 + 4 5^Rational[1, 2]), Rational[-1, 2], Rational[-1, 20] 3^Rational[-1, 2] (5 + 17 5^Rational[1, 2])}, { Rational[-1, 2] (Rational[1, 30] (603 + 217 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] 15^Rational[-1, 2] (-7 + 5^Rational[1, 2])}, {(Rational[49, 40] + Rational[13, 24] 5^Rational[1, 2])^Rational[1, 2], Rational[-5, 4] + Rational[-13, 4] 5^Rational[-1, 2], Rational[ 1, 2] (Rational[29, 10] + Rational[-7, 6] 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[7, 20] + Rational[2, 3] 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-9, 2] 5^Rational[-1, 2], Rational[1, 4] 15^Rational[-1, 2] (-7 + 5^Rational[1, 2])}, { Rational[1, 20] 3^Rational[-1, 2] (5 + 13 5^Rational[1, 2]), Rational[-5, 4] + Rational[-13, 4] 5^Rational[-1, 2], Rational[-1, 20] 3^Rational[-1, 2] (5 + 17 5^Rational[1, 2])}, {(Rational[69, 40] + Rational[91, 24] 5^Rational[-1, 2])^Rational[1, 2], Rational[-3, 4] + Rational[-13, 4] 5^Rational[-1, 2], Rational[-1, 20] 3^Rational[-1, 2] (5 + 17 5^Rational[1, 2])}, {( Rational[109, 40] + Rational[23, 24] 5^Rational[1, 2])^ Rational[1, 2], Rational[-3, 4] + Rational[-13, 4] 5^Rational[-1, 2], Rational[1, 4] 15^Rational[-1, 2] (-7 + 5^Rational[1, 2])}, {(Rational[49, 40] + Rational[13, 24] 5^Rational[1, 2])^Rational[1, 2], Rational[5, 4] + Rational[13, 4] 5^Rational[-1, 2], Rational[ 1, 2] (Rational[29, 10] + Rational[-7, 6] 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[109, 40] + Rational[23, 24] 5^Rational[1, 2])^Rational[1, 2], Rational[3, 4] + Rational[13, 4] 5^Rational[-1, 2], Rational[1, 4] 15^Rational[-1, 2] (-7 + 5^Rational[1, 2])}, {(Rational[69, 40] + Rational[91, 24] 5^Rational[-1, 2])^Rational[1, 2], Rational[3, 4] + Rational[13, 4] 5^Rational[-1, 2], Rational[-1, 20] 3^Rational[-1, 2] (5 + 17 5^Rational[1, 2])}, { Rational[1, 20] 3^Rational[-1, 2] (5 + 13 5^Rational[1, 2]), Rational[5, 4] + Rational[13, 4] 5^Rational[-1, 2], Rational[-1, 20] 3^Rational[-1, 2] (5 + 17 5^Rational[1, 2])}, {(Rational[7, 20] + Rational[2, 3] 5^Rational[-1, 2])^Rational[1, 2], 1 + Rational[9, 2] 5^Rational[-1, 2], Rational[1, 4] 15^Rational[-1, 2] (-7 + 5^Rational[1, 2])}}, {{ 2.4456949871150573`, -1.618033988749895, 0.46708617948135783`}, {-2.4456949871150573`, -1.618033988749895, \ -0.46708617948135783`}, {2.4456949871150573`, 1.618033988749895, 0.46708617948135783`}, {-2.4456949871150573`, 1.618033988749895, -0.46708617948135783`}, { 0.17841104488654497`, -2.9270509831248424`, 0.46708617948135783`}, {0.17841104488654497`, 2.9270509831248424`, 0.46708617948135783`}, {1.8001977627471544`, -2.118033988749895, 1.0444364486709838`}, {1.8001977627471544`, 2.118033988749895, 1.0444364486709838`}, {-0.5773502691896258, 0, -2.9127811665964156`}, { 0.6454972243679028, -2.118033988749895, -1.9786088076336994`}, { 0.6454972243679028, 2.118033988749895, -1.9786088076336994`}, { 0, -2.618033988749895, -1.4012585384440737`}, { 0, 2.618033988749895, -1.4012585384440737`}, \ {-1.8001977627471546`, -2.118033988749895, -1.0444364486709838`}, \ {-1.8001977627471546`, 2.118033988749895, -1.0444364486709838`}, { 0, -2.618033988749895, 1.4012585384440737`}, { 0, 2.618033988749895, 1.4012585384440737`}, { 0.5773502691896258, 0, 2.9127811665964156`}, {-2.267283942228512, -1.3090169943749475`, 1.4012585384440737`}, {-2.267283942228512, 1.3090169943749475`, 1.4012585384440737`}, {-0.6454972243679028, -2.118033988749895, 1.9786088076336994`}, {-0.6454972243679028, 2.118033988749895, 1.9786088076336994`}, { 1.5115226281523415`, 0, 2.555959076823325}, {-1.5115226281523417`, -1.618033988749895, 1.9786088076336994`}, {-1.5115226281523417`, 1.618033988749895, 1.9786088076336994`}, { 0.7557613140761709, -1.3090169943749475`, -2.555959076823325}, { 0.7557613140761709, 1.3090169943749475`, -2.555959076823325}, {-0.7557613140761709, \ -1.3090169943749475`, 2.555959076823325}, {-0.7557613140761709, 1.3090169943749475`, 2.555959076823325}, {-0.2886751345948129, -0.5, 2.9127811665964156`}, {-0.2886751345948129, 0.5, 2.9127811665964156`}, { 0.2886751345948129, -0.5, -2.912781166596415}, { 0.2886751345948129, 0.5, -2.912781166596415}, { 2.267283942228512, -1.3090169943749475`, 1.4012585384440737`}, {-2.624106032001602, -1.3090169943749475`, 0.46708617948135783`}, {2.267283942228512, 1.3090169943749475`, 1.4012585384440737`}, {-2.624106032001602, 1.3090169943749475`, 0.46708617948135783`}, {0.9341723589627157, -2.618033988749895, 1.0444364486709836`}, {0.9341723589627157, 2.618033988749895, 1.0444364486709836`}, { 2.624106032001602, -1.3090169943749475`, -0.46708617948135783`}, \ {-2.267283942228512, -1.3090169943749475`, -1.4012585384440737`}, { 2.624106032001602, 1.3090169943749475`, -0.46708617948135783`}, {-2.267283942228512, 1.3090169943749475`, -1.4012585384440737`}, { 2.7343701217098704`, -0.5, -1.0444364486709836`}, \ {-2.1570198525202446`, -0.5, -1.9786088076336994`}, {2.7343701217098704`, 0.5, -1.0444364486709836`}, {-2.1570198525202446`, 0.5, -1.9786088076336994`}, {2.157019852520244, -0.5, 1.9786088076336994`}, {-2.7343701217098704`, -0.5, 1.0444364486709836`}, {2.157019852520244, 0.5, 1.9786088076336994`}, {-2.7343701217098704`, 0.5, 1.0444364486709836`}, {-1.5115226281523415`, 0, -2.5559590768233256`}, { 1.5115226281523415`, -1.618033988749895, -1.9786088076336994`}, { 1.5115226281523415`, 1.618033988749895, -1.9786088076336994`}, {-0.9341723589627157, \ -2.618033988749895, -1.0444364486709836`}, {-0.9341723589627157, 2.618033988749895, -1.0444364486709836`}, { 2.267283942228512, -1.3090169943749475`, -1.4012585384440737`}, { 2.267283942228512, 1.3090169943749475`, -1.4012585384440737`}, \ {-0.17841104488654494`, -2.9270509831248424`, -0.46708617948135783`}, \ {-0.17841104488654494`, 2.9270509831248424`, -0.46708617948135783`}, \ {-3.1216684563306116`, 0, 0.26983977942950005`}, {-3.011404366622344, 0.8090169943749475, -0.3075104897601255}, {-2.8329933217357985`, 0.5, -1.2416828487228415`}, {-2.8329933217357985`, -0.5, \ -1.2416828487228415`}, {-3.011404366622344, -0.8090169943749475, \ -0.3075104897601255}, {1.5608342281653058`, -2.703444185374863, 0.26983977942950005`}, { 0.8050729140891351, -3.0124611797498106`, -0.3075104897601255}, { 0.9834839589756802, -2.703444185374863, -1.2416828487228415`}, { 1.8495093627601187`, -2.203444185374863, -1.2416828487228415`}, { 2.2063314525332087`, -2.203444185374863, -0.3075104897601255}, { 1.5608342281653058`, 2.703444185374863, 0.26983977942950005`}, { 2.2063314525332087`, 2.203444185374863, -0.3075104897601255}, { 1.8495093627601187`, 2.203444185374863, -1.2416828487228415`}, { 0.9834839589756802, 2.703444185374863, -1.2416828487228415`}, { 0.8050729140891351, 3.0124611797498106`, -0.3075104897601255}}], Polygon3DBox[{{1, 34, 7}, {1, 70, 40}, {2, 35, 65}, {2, 41, 14}, {3, 8, 36}, {3, 42, 72}, {4, 15, 43}, {4, 62, 37}, {5, 38, 16}, {5, 59, 67}, {6, 17, 39}, {6, 75, 60}, {7, 38, 66}, {8, 71, 39}, {9, 33, 32}, {10, 26, 53}, {10, 68, 12}, {11, 13, 74}, {11, 54, 27}, { 12, 59, 55}, {13, 56, 60}, {18, 31, 30}, {19, 49, 35}, {20, 37, 51}, {21, 28, 24}, {22, 25, 29}, {23, 48, 50}, {40, 57, 44}, {41, 64, 45}, {42, 46, 58}, {43, 47, 63}, {45, 47, 52}, {49, 51, 61}, { 53, 57, 69}, {54, 73, 58}, {1, 7, 66, 70}, {2, 65, 64, 41}, {3, 72, 71, 8}, {4, 43, 63, 62}, {5, 67, 66, 38}, {6, 39, 71, 75}, { 10, 53, 69, 68}, {11, 74, 73, 54}, {12, 68, 67, 59}, {13, 60, 75, 74}, {35, 49, 61, 65}, {37, 62, 61, 51}, {40, 70, 69, 57}, {42, 58, 73, 72}, {45, 64, 63, 47}, {61, 62, 63, 64, 65}, {66, 67, 68, 69, 70}, {71, 72, 73, 74, 75}, {1, 40, 44, 46, 42, 3, 36, 50, 48, 34}, {2, 14, 55, 59, 5, 16, 21, 24, 19, 35}, {4, 37, 20, 25, 22, 17, 6, 60, 56, 15}, {7, 34, 48, 23, 18, 30, 28, 21, 16, 38}, {8, 39, 17, 22, 29, 31, 18, 23, 50, 36}, {9, 32, 26, 10, 12, 55, 14, 41, 45, 52}, {9, 52, 47, 43, 15, 56, 13, 11, 27, 33}, {19, 24, 28, 30, 31, 29, 25, 20, 51, 49}, {26, 32, 33, 27, 54, 58, 46, 44, 57, 53}}]], TagBox[ GridBox[{{"71"}, {"\"TriaugmentedTruncatedDodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{71, "TriaugmentedTruncatedDodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {196.36363636363637, -4189.090909090909}, ImageScaled[{0.5, 0.5}], {360, 364}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { 0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { 0, Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -0.8506508083520399, 2.0645728807067605`}, { 1.618033988749895, 0, -1.5388417685876268`}, {-0.8090169943749475, \ -0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}, { 0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, { 1.3090169943749475`, -1.8017073246471935`, \ -0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, { 0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \ -1.5388417685876268`, 1.5388417685876268`}, { 1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \ {-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5, 1.5388417685876268`, -1.5388417685876268`}, \ {-1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, { 0.8090169943749475, -0.2628655560595668, -2.0645728807067605`}, \ {-1.618033988749895, 0, 1.5388417685876268`}, {0.5, 0.6881909602355868, -2.0645728807067605`}, { 0, -2.2270327288232132`, 0.16245984811645317`}, { 0.5, -2.0645728807067605`, -0.6881909602355868}, \ {-1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}, {0.5, 0.6881909602355868, 2.0645728807067605`}, {2.118033988749895, 0.6881909602355868, -0.16245984811645317`}, { 0.5, -1.5388417685876268`, 1.5388417685876268`}, { 1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \ {-0.5, 1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}, { 1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, { 2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, { 0.5, 1.5388417685876268`, 1.5388417685876268`}, { 1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, { 1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, { 1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, { 0.8090169943749475, -0.2628655560595668, 2.0645728807067605`}, { 2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \ {-0.5, 0.6881909602355868, 2.0645728807067605`}, {1.618033988749895, 1.3763819204711736`, -0.6881909602355868}, {0.5, 2.0645728807067605`, 0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, { 0.5, -1.5388417685876268`, -1.5388417685876268`}, \ {-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5, 1.5388417685876268`, -1.5388417685876268`}, \ {-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \ -1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895, 0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}, \ {-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \ {-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \ {-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \ {-1.618033988749895, 0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \ -0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, { 0, -0.8506508083520399, -2.0645728807067605`}, \ {-2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {-0.5, 0.6881909602355868, -2.0645728807067605`}, {-1.618033988749895, 1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \ -0.6881909602355868, 0.16245984811645317`}, {-0.8090169943749475, -0.2628655560595668, \ -2.0645728807067605`}}], Polygon3DBox[{{37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {39, 26, 30}, { 10, 14, 2}, {12, 4, 16}, {54, 45, 41}, {55, 42, 46}, {58, 19, 20}, {53, 18, 17}, {56, 43, 47}, {57, 48, 44}, {34, 32, 22}, {59, 51, 49}, {60, 50, 52}, {10, 2, 37, 24}, {37, 22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40, 7}, {35, 27, 23, 5}, {6, 24, 28, 35}, {39, 30, 34, 22}, {12, 26, 39, 4}, {55, 14, 10, 42}, {41, 9, 13, 54}, { 57, 44, 12, 16}, {15, 11, 43, 56}, {45, 54, 59, 49}, {50, 60, 55, 46}, {48, 58, 20, 44}, {43, 19, 58, 47}, {53, 17, 41, 45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {52, 48, 57, 60}, {31, 32, 34, 33}, {17, 18, 6, 5}, {14, 16, 4, 2}, {7, 8, 20, 19}, {51, 52, 50, 49}, {3, 1, 36, 21, 38}, {22, 37, 2, 4, 39}, {29, 33, 34, 30, 40}, {27, 35, 28, 32, 31}, {42, 10, 24, 6, 18}, {41, 17, 5, 23, 9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56, 59, 54, 13, 15}, {57, 16, 14, 55, 60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53, 45}, {36, 27, 31}, {38, 25, 11}, {23, 1, 9}, {15, 13, 3}, {29, 21, 33}, {31, 33, 21, 36}, {27, 36, 1, 23}, {3, 38, 11, 15}, {21, 29, 25, 38}, {1, 3, 13, 9}}]], TagBox[ GridBox[{{"72"}, {"\"GyrateRhombicosidodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{72, "GyrateRhombicosidodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {589.0909090909091, -4189.090909090909}, ImageScaled[{0.5, 0.5}], {360, 365}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { 0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { 0, Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -0.8506508083520399, 2.0645728807067605`}, { 1.618033988749895, 0, -1.5388417685876268`}, {-0.8090169943749475, \ -0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}, { 0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, { 1.3090169943749475`, -1.8017073246471935`, \ -0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, { 0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \ -1.5388417685876268`, 1.5388417685876268`}, { 1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \ {-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5, 1.5388417685876268`, -1.5388417685876268`}, \ {-1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, { 0.5, -0.6881909602355868, -2.0645728807067605`}, \ {-1.618033988749895, 0, 1.5388417685876268`}, {0.8090169943749475, 0.2628655560595668, -2.0645728807067605`}, { 0, -2.2270327288232132`, 0.16245984811645317`}, { 0.5, -2.0645728807067605`, -0.6881909602355868}, \ {-1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}, {0.5, 0.6881909602355868, 2.0645728807067605`}, {2.118033988749895, 0.6881909602355868, -0.16245984811645317`}, { 0.5, -1.5388417685876268`, 1.5388417685876268`}, { 1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \ {-0.5, 1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}, { 1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, { 2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, { 0.5, 1.5388417685876268`, 1.5388417685876268`}, { 1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, { 1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, { 1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, { 0.8090169943749475, -0.2628655560595668, 2.0645728807067605`}, { 2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \ {-0.5, 0.6881909602355868, 2.0645728807067605`}, {1.618033988749895, 1.3763819204711736`, -0.6881909602355868}, {0.5, 2.0645728807067605`, 0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, { 0.5, -1.5388417685876268`, -1.5388417685876268`}, \ {-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5, 1.5388417685876268`, -1.5388417685876268`}, \ {-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \ -1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895, 0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}, \ {-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \ {-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \ {-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \ {-1.618033988749895, 0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \ -0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {-0.5, -0.6881909602355868, \ -2.0645728807067605`}, {-2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, { 0, 0.85065080835204, -2.0645728807067605`}, {-1.618033988749895, 1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \ -0.6881909602355868, 0.16245984811645317`}, {-0.8090169943749475, 0.2628655560595668, -2.0645728807067605`}}], Polygon3DBox[{{37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {39, 26, 30}, { 54, 45, 41}, {58, 19, 20}, {53, 18, 17}, {56, 43, 47}, {34, 32, 22}, {59, 51, 49}, {10, 2, 37, 24}, {37, 22, 32, 28}, {8, 40, 30, 26}, {25, 29, 40, 7}, {35, 27, 23, 5}, {6, 24, 28, 35}, {39, 30, 34, 22}, {12, 26, 39, 4}, {41, 9, 13, 54}, {15, 11, 43, 56}, {45, 54, 59, 49}, {48, 58, 20, 44}, {43, 19, 58, 47}, {53, 17, 41, 45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {31, 32, 34, 33}, {17, 18, 6, 5}, {7, 8, 20, 19}, {51, 52, 50, 49}, {3, 1, 36, 21, 38}, { 22, 37, 2, 4, 39}, {29, 33, 34, 30, 40}, {27, 35, 28, 32, 31}, { 42, 10, 24, 6, 18}, {41, 17, 5, 23, 9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56, 59, 54, 13, 15}, {57, 16, 14, 55, 60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53, 45}, {36, 27, 31}, {38, 25, 11}, {23, 1, 9}, {15, 13, 3}, {29, 21, 33}, {31, 33, 21, 36}, {27, 36, 1, 23}, {3, 38, 11, 15}, {21, 29, 25, 38}, {1, 3, 13, 9}, { 42, 14, 10}, {4, 2, 16}, {55, 46, 50}, {57, 44, 12}, {60, 52, 48}, {55, 14, 42, 46}, {57, 12, 4, 16}, {52, 60, 55, 50}, {48, 44, 57, 60}, {14, 16, 2, 10}}]], TagBox[ GridBox[{{"73"}, {"\"ParabigyrateRhombicosidodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{73, "ParabigyrateRhombicosidodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {981.818181818182, -4189.090909090909}, ImageScaled[{0.5, 0.5}], {360, 365}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], Rational[-1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[-1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2]}, { 0, Rational[-3, 4] + Rational[-13, 4] 5^Rational[-1, 2], Rational[1, 20] (5 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), 1 + 2 5^Rational[-1, 2], Rational[1, 20] (15 + 5^Rational[1, 2])}, { 0, (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-5 - 5^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] - 2 5^Rational[-1, 2], 1 + Rational[3, 2] 5^Rational[-1, 2]}, { 0, Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-5 - 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] + 2 5^Rational[-1, 2], 1 + Rational[3, 2] 5^Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), -1 - 2 5^Rational[-1, 2], Rational[1, 20] (15 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2]}, { 0, Rational[3, 4] + Rational[13, 4] 5^Rational[-1, 2], Rational[1, 20] (5 + 5^Rational[1, 2])}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), 0, (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), 0, Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), -1 - 2 5^Rational[-1, 2], Rational[1, 20] (15 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1)}, { Rational[-1, 2], Rational[1, 2] + 2 5^Rational[-1, 2], 1 + Rational[3, 2] 5^Rational[-1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2], Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2], Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-5 - 5^Rational[1, 2]), 0}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (5 + 5^Rational[1, 2]), 0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 2], Rational[-1, 2] - 2 5^Rational[-1, 2], 1 + Rational[3, 2] 5^Rational[-1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 4] (1 + 5^Rational[1, 2]), 1 + 2 5^Rational[-1, 2], Rational[1, 20] (15 + 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2], Rational[ 1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2], Rational[ 1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-5 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (5 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (5 + 5^Rational[1, 2]), 0, (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 4] (5 + 5^Rational[1, 2]), 0, Rational[1, 4] (3 + 5^Rational[ 1, 2])}}, {{-0.5, -0.5, -2.118033988749895}, {-0.5, -0.5, 2.118033988749895}, {-0.5, 0.5, -2.118033988749895}, {-0.5, 0.5, 2.118033988749895}, {-0.5, -2.118033988749895, -0.5}, { 0, -2.203444185374863, 0.3618033988749895}, {-0.5, 2.118033988749895, -0.5}, {-0.8090169943749475, 1.8944271909999157`, 0.8618033988749896}, { 0, -1.3090169943749477`, -1.8090169943749475`}, {-0.5, \ -1.3944271909999157`, 1.670820393249937}, { 0, 1.3090169943749475`, -1.8090169943749475`}, {0.5, 1.3944271909999157`, 1.670820393249937}, { 0.5, -0.5, -2.118033988749895}, {0.5, -0.5, 2.118033988749895}, { 0.5, 0.5, -2.118033988749895}, {0.5, 0.5, 2.118033988749895}, { 0.5, -2.118033988749895, -0.5}, { 0.8090169943749475, -1.8944271909999157`, 0.8618033988749896}, { 0.5, 2.118033988749895, -0.5}, { 0, 2.203444185374863, 0.3618033988749895}, {-1.8090169943749475`, 0, -1.3090169943749477`}, {-1.8090169943749475`, 0, 1.3090169943749475`}, {-0.8090169943749475, -1.618033988749895, \ -1.3090169943749477`}, {-0.8090169943749475, -1.8944271909999157`, 0.8618033988749896}, {-0.8090169943749475, 1.618033988749895, -1.3090169943749477`}, {-0.5, 1.3944271909999157`, 1.670820393249937}, {-1.618033988749895, -1.3090169943749477`, \ -0.8090169943749475}, {-1.618033988749895, -1.3090169943749477`, 0.8090169943749475}, {-1.618033988749895, 1.3090169943749475`, -0.8090169943749475}, {-1.618033988749895, 1.3090169943749475`, 0.8090169943749475}, {-2.118033988749895, -0.5, -0.5}, \ {-2.118033988749895, -0.5, 0.5}, {-2.118033988749895, 0.5, -0.5}, {-2.118033988749895, 0.5, 0.5}, {-1.3090169943749477`, -1.8090169943749475`, 0}, {-1.3090169943749477`, -0.8090169943749475, \ -1.618033988749895}, {-1.3090169943749477`, -0.8090169943749475, 1.618033988749895}, {-1.3090169943749477`, 0.8090169943749475, -1.618033988749895}, {-1.3090169943749477`, 0.8090169943749475, 1.618033988749895}, {-1.3090169943749477`, 1.8090169943749475`, 0}, {0.8090169943749475, -1.618033988749895, \ -1.3090169943749477`}, {0.5, -1.3944271909999157`, 1.670820393249937}, { 0.8090169943749475, 1.618033988749895, -1.3090169943749477`}, { 0.8090169943749475, 1.8944271909999157`, 0.8618033988749896}, { 1.618033988749895, -1.3090169943749477`, -0.8090169943749475}, { 1.618033988749895, -1.3090169943749477`, 0.8090169943749475}, { 1.618033988749895, 1.3090169943749475`, -0.8090169943749475}, { 1.618033988749895, 1.3090169943749475`, 0.8090169943749475}, { 2.118033988749895, -0.5, -0.5}, {2.118033988749895, -0.5, 0.5}, { 2.118033988749895, 0.5, -0.5}, {2.118033988749895, 0.5, 0.5}, { 1.3090169943749475`, -1.8090169943749475`, 0}, { 1.3090169943749475`, -0.8090169943749475, -1.618033988749895}, { 1.3090169943749475`, -0.8090169943749475, 1.618033988749895}, { 1.3090169943749475`, 0.8090169943749475, -1.618033988749895}, { 1.3090169943749475`, 0.8090169943749475, 1.618033988749895}, { 1.3090169943749475`, 1.8090169943749475`, 0}, { 1.8090169943749475`, 0, -1.3090169943749477`}, { 1.8090169943749475`, 0, 1.3090169943749475`}}], Polygon3DBox[{{36, 23, 27}, {38, 29, 25}, {9, 1, 13}, {11, 15, 3}, { 54, 45, 41}, {56, 43, 47}, {34, 32, 22}, {33, 21, 31}, {59, 51, 49}, {60, 50, 52}, {27, 31, 21, 36}, {23, 36, 1, 9}, {37, 22, 32, 28}, {25, 29, 40, 7}, {35, 27, 23, 5}, {3, 38, 25, 11}, {21, 33, 29, 38}, {39, 30, 34, 22}, {41, 9, 13, 54}, {15, 11, 43, 56}, {45, 54, 59, 49}, {50, 60, 55, 46}, {43, 19, 58, 47}, {53, 17, 41, 45}, {59, 56, 47, 51}, {52, 48, 57, 60}, {31, 32, 34, 33}, {1, 3, 15, 13}, {14, 16, 4, 2}, {51, 52, 50, 49}, {3, 1, 36, 21, 38}, { 22, 37, 2, 4, 39}, {29, 33, 34, 30, 40}, {27, 35, 28, 32, 31}, { 42, 10, 24, 6, 18}, {41, 17, 5, 23, 9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56, 59, 54, 13, 15}, {57, 16, 14, 55, 60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53, 45}, {28, 35, 24}, {5, 17, 6}, { 10, 2, 37}, {14, 42, 55}, {46, 18, 53}, {10, 37, 28, 24}, {6, 24, 35, 5}, {14, 2, 10, 42}, {55, 42, 18, 46}, {53, 18, 6, 17}, {30, 8, 40}, {4, 26, 39}, {12, 16, 57}, {19, 7, 20}, {48, 58, 44}, {8, 30, 39, 26}, {12, 26, 4, 16}, {48, 44, 12, 57}, {58, 19, 20, 44}, {40, 8, 20, 7}}]], TagBox[ GridBox[{{"74"}, {"\"MetabigyrateRhombicosidodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{74, "MetabigyrateRhombicosidodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -4189.090909090909}, ImageScaled[{0.5, 0.5}], {360, 366}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2] (3 + 2 5^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2]), (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { 0, Rational[-2, 5] 3^Rational[-1, 2] (5 + 2 5^Rational[1, 2]), Rational[1, 10] 3^Rational[-1, 2] (-10 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[5, 3]^Rational[1, 2] + Rational[1, 2] 3^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[-1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { 0, -3^Rational[-1, 2], Rational[-1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2] - 4 15^Rational[-1, 2], (Rational[41, 60] + 5^Rational[-1, 2])^ Rational[1, 2]}, { 0, (Rational[2, 3] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { 0, 3^Rational[-1, 2], Rational[5, 3]^Rational[1, 2] + Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2] (3 + 2 5^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2]), (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 20] 3^Rational[-1, 2] (25 + 21 5^Rational[1, 2]), Rational[1, 2] 15^Rational[-1, 2]}, { Rational[1, 2], Rational[5, 3]^Rational[1, 2] + Rational[1, 2] 3^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[ 1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 20] 3^Rational[-1, 2] (25 + 21 5^Rational[1, 2]), Rational[1, 2] 15^Rational[-1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 2 3^Rational[-1, 2]/(-3 + 5^Rational[1, 2]), Rational[1, 2] 3^Rational[-1, 2]}, {-1 - 2 5^Rational[-1, 2], (Rational[1, 15] (9 + 4 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 10] 3^Rational[-1, 2] (-10 + 5^Rational[1, 2])}, { Rational[-1, 2] - 2 5^Rational[-1, 2], (Rational[61, 60] + 2 5^Rational[-1, 2])^ Rational[1, 2], (Rational[41, 60] + 5^Rational[-1, 2])^ Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[-3, 4] + Rational[-13, 4] 5^Rational[-1, 2], (Rational[7, 120] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] 15^Rational[-1, 2]}, {-1 - 2 5^Rational[-1, 2], 2 15^Rational[-1, 2], (Rational[41, 60] + 5^Rational[-1, 2])^ Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Rational[-1, 2] (Rational[5, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[-1, 4] 3^Rational[-1, 2] (7 + 5^Rational[1, 2]), (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] 3^Rational[-1, 2] (7 + 5^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Root[ 1 - 36 #^2 + 144 #^4& , 3, 0], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2 5^Rational[-1, 2], (Rational[101, 60] + 3 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] 15^Rational[-1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2] - 4 15^Rational[-1, 2], (Rational[41, 60] + 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 2 3^Rational[-1, 2]/(-3 + 5^Rational[1, 2]), Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 2] + 2 5^Rational[-1, 2], (Rational[101, 60] + 3 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] 15^Rational[-1, 2]}, { 1 + 2 5^Rational[-1, 2], 2 15^Rational[-1, 2], (Rational[41, 60] + 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] Rational[5, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { 1 + 2 5^Rational[-1, 2], ( Rational[1, 15] (9 + 4 5^Rational[1, 2]))^Rational[1, 2], Rational[1, 10] 3^Rational[-1, 2] (-10 + 5^Rational[1, 2])}, { Rational[3, 4] + Rational[13, 4] 5^Rational[-1, 2], (Rational[7, 120] + Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] 15^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 2, 0], Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4] 3^Rational[-1, 2] (7 + 5^Rational[1, 2]), (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (7 + 5^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 3, 0], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] + 2 5^Rational[-1, 2], (Rational[61, 60] + 2 5^Rational[-1, 2])^ Rational[1, 2], (Rational[41, 60] + 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}}, {{-0.5, 0.2886751345948129, -2.1570198525202446`}, {-0.5, \ -1.2228474935575289`, 1.8001977627471544`}, {-0.5, 1.2228474935575286`, -1.8001977627471546`}, {-0.5, \ -0.2886751345948129, 2.157019852520244}, {-0.5, -1.8001977627471546`, \ -1.2228474935575289`}, {0, -2.1874960973678967`, -0.4482508243160453}, {-0.5, 2.157019852520244, 0.2886751345948129}, {-0.5, 1.8001977627471544`, 1.2228474935575286`}, { 0, -0.5773502691896258, -2.157019852520244}, {-0.5, \ -1.898820962773083, 1.0632718038362963`}, { 0, 1.8683447179254313`, -1.2228474935575289`}, { 0, 0.5773502691896258, 2.157019852520244}, {0.5, 0.2886751345948129, -2.1570198525202446`}, { 0.5, -1.2228474935575289`, 1.8001977627471544`}, {0.5, 1.2228474935575286`, -1.8001977627471546`}, { 0.5, -0.2886751345948129, 2.157019852520244}, { 0.5, -1.8001977627471546`, -1.2228474935575289`}, { 0.8090169943749475, -2.0772320076596285`, 0.12909944487358055`}, { 0.5, 2.157019852520244, 0.2886751345948129}, {0.5, 1.8001977627471544`, 1.2228474935575286`}, {-1.8090169943749475`, 0.46708617948135783`, -1.2228474935575286`}, \ {-1.8090169943749475`, -0.46708617948135783`, 1.2228474935575286`}, {-0.8090169943749475, -1.0444364486709836`, \ -1.8001977627471544`}, {-0.8090169943749475, -2.0772320076596285`, 0.12909944487358055`}, {-0.8090169943749475, 1.9786088076336994`, -0.6454972243679028}, {-0.8090169943749475, 1.0444364486709836`, 1.8001977627471544`}, {-1.618033988749895, -0.9341723589627157, \ -1.2228474935575286`}, {-1.618033988749895, -1.511522628152342, 0.2886751345948129}, {-1.8944271909999157`, 1.093748048683948, -0.4482508243160453}, {-1.3944271909999157`, 1.3824231832787608`, 1.0632718038362963`}, {-2.118033988749895, -0.2886751345948129, \ -0.6454972243679028}, {-2.118033988749895, -0.6454972243679028, 0.2886751345948129}, {-2.203444185374863, 0.3379867346077773, 0.12909944487358055`}, {-1.8944271909999157`, 0.5163977794943222, 1.0632718038362963`}, {-1.3090169943749477`, \ -1.6899336730388865`, -0.6454972243679028}, {-1.3090169943749477`, \ -0.17841104488654497`, -1.8001977627471546`}, {-1.3090169943749477`, \ -1.3331115832657967`, 1.2228474935575286`}, {-1.3090169943749477`, 1.3331115832657967`, -1.2228474935575289`}, {-1.3090169943749477`, 0.17841104488654497`, 1.8001977627471544`}, {-1.3944271909999157`, 1.7392452730518508`, 0.12909944487358055`}, { 0.8090169943749475, -1.0444364486709836`, -1.8001977627471544`}, { 0.5, -1.898820962773083, 1.0632718038362963`}, { 0.8090169943749475, 1.9786088076336994`, -0.6454972243679028}, { 0.8090169943749475, 1.0444364486709836`, 1.8001977627471544`}, { 1.618033988749895, -0.9341723589627157, -1.2228474935575286`}, { 1.618033988749895, -1.511522628152342, 0.2886751345948129}, { 1.3944271909999157`, 1.7392452730518508`, 0.12909944487358055`}, { 1.8944271909999157`, 0.5163977794943222, 1.0632718038362963`}, { 2.118033988749895, -0.2886751345948129, -0.6454972243679028}, { 2.118033988749895, -0.6454972243679028, 0.2886751345948129}, { 1.8944271909999157`, 1.093748048683948, -0.4482508243160453}, { 2.203444185374863, 0.3379867346077773, 0.12909944487358055`}, { 1.3090169943749475`, -1.6899336730388865`, -0.6454972243679028}, { 1.3090169943749475`, -0.17841104488654497`, \ -1.8001977627471546`}, {1.3090169943749475`, -1.3331115832657967`, 1.2228474935575286`}, {1.3090169943749475`, 1.3331115832657967`, -1.2228474935575289`}, {1.3090169943749475`, 0.17841104488654497`, 1.8001977627471544`}, {1.3944271909999157`, 1.3824231832787608`, 1.0632718038362963`}, {1.8090169943749475`, 0.46708617948135783`, -1.2228474935575286`}, { 1.8090169943749475`, -0.46708617948135783`, 1.2228474935575286`}}], Polygon3DBox[{{1, 13, 9}, {2, 37, 10}, {3, 11, 15}, {4, 16, 12}, {5, 17, 6}, {7, 25, 40}, {8, 30, 26}, {14, 42, 55}, {18, 53, 46}, { 19, 47, 43}, {20, 44, 58}, {21, 29, 38}, {22, 39, 34}, {23, 27, 36}, {24, 28, 35}, {31, 32, 33}, {41, 54, 45}, {48, 57, 60}, {49, 52, 50}, {51, 59, 56}, {1, 3, 15, 13}, {1, 9, 23, 36}, {2, 10, 42, 14}, {2, 14, 16, 4}, {3, 38, 25, 11}, {4, 12, 26, 39}, {5, 6, 24, 35}, {5, 35, 27, 23}, {6, 17, 53, 18}, {7, 8, 20, 19}, {7, 40, 30, 8}, {9, 13, 54, 41}, {10, 37, 28, 24}, {11, 43, 56, 15}, {12, 16, 57, 44}, {17, 41, 45, 53}, {18, 46, 55, 42}, {19, 20, 58, 47}, {21, 31, 33, 29}, {21, 36, 27, 31}, {22, 32, 28, 37}, {22, 34, 33, 32}, {25, 38, 29, 40}, {26, 30, 34, 39}, {43, 47, 51, 56}, {44, 57, 48, 58}, {45, 54, 59, 49}, {46, 50, 60, 55}, {48, 60, 50, 52}, {49, 59, 51, 52}, {1, 36, 21, 38, 3}, {2, 4, 39, 22, 37}, {5, 23, 9, 41, 17}, {6, 18, 42, 10, 24}, {7, 19, 43, 11, 25}, {8, 26, 12, 44, 20}, {13, 15, 56, 59, 54}, {14, 55, 60, 57, 16}, {27, 35, 28, 32, 31}, {29, 33, 34, 30, 40}, {45, 49, 50, 46, 53}, {47, 58, 48, 52, 51}}]], TagBox[ GridBox[{{"75"}, {"\"TrigyrateRhombicosidodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{75, "TrigyrateRhombicosidodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -4189.090909090909}, ImageScaled[{0.5, 0.5}], {360, 361}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { 0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { 0, Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^ Rational[1, 2]}}, {{-0.5, -0.6881909602355868, 2.0645728807067605`}, { 1.618033988749895, 0, -1.5388417685876268`}, {-0.8090169943749475, 0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}, { 0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, { 1.3090169943749475`, -1.8017073246471935`, \ -0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, { 0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \ -1.5388417685876268`, 1.5388417685876268`}, { 1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \ {-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5, 1.5388417685876268`, -1.5388417685876268`}, \ {-1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {-1.618033988749895, 0, 1.5388417685876268`}, { 0, -2.2270327288232132`, 0.16245984811645317`}, { 0.5, -2.0645728807067605`, -0.6881909602355868}, \ {-1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}, {0.8090169943749475, 0.2628655560595668, 2.0645728807067605`}, {2.118033988749895, 0.6881909602355868, -0.16245984811645317`}, { 0.5, -1.5388417685876268`, 1.5388417685876268`}, { 1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \ {-0.5, 1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}, { 1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, { 2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, { 0.5, 1.5388417685876268`, 1.5388417685876268`}, { 1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, { 1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, { 1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, { 0.5, -0.6881909602355868, 2.0645728807067605`}, { 2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, { 0, 0.85065080835204, 2.0645728807067605`}, {1.618033988749895, 1.3763819204711736`, -0.6881909602355868}, {0.5, 2.0645728807067605`, 0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, { 0.5, -1.5388417685876268`, -1.5388417685876268`}, \ {-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5, 1.5388417685876268`, -1.5388417685876268`}, \ {-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \ -1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895, 0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}, \ {-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \ {-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \ {-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \ {-1.618033988749895, 0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \ -0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {-2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {-1.618033988749895, 1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \ -0.6881909602355868, 0.16245984811645317`}}], Polygon3DBox[{{1, 13, 9}, {3, 11, 14}, {5, 6, 33}, {7, 38, 8}, {15, 51, 16}, {17, 18, 54}, {19, 29, 31}, {20, 32, 30}, {21, 25, 34}, { 22, 35, 26}, {23, 36, 27}, {24, 28, 37}, {39, 52, 43}, {41, 45, 53}, {47, 55, 49}, {1, 3, 14, 13}, {1, 9, 21, 34}, {2, 35, 22, 10}, {3, 36, 23, 11}, {4, 12, 24, 37}, {5, 15, 16, 6}, {5, 33, 25, 21}, {6, 22, 26, 33}, {7, 8, 18, 17}, {7, 23, 27, 38}, {8, 38, 28, 24}, {9, 13, 52, 39}, {11, 41, 53, 14}, {15, 39, 43, 51}, {16, 51, 44, 40}, {17, 54, 45, 41}, {18, 42, 46, 54}, {19, 31, 27, 36}, {19, 34, 25, 29}, {20, 30, 26, 35}, {20, 37, 28, 32}, {29, 30, 32, 31}, {43, 52, 55, 47}, {45, 49, 55, 53}, {47, 49, 50, 48}, {1, 34, 19, 36, 3}, {2, 4, 37, 20, 35}, {5, 21, 9, 39, 15}, { 6, 16, 40, 10, 22}, {7, 17, 41, 11, 23}, {8, 24, 12, 42, 18}, {13, 14, 53, 55, 52}, {25, 33, 26, 30, 29}, {27, 31, 32, 28, 38}, {43, 47, 48, 44, 51}, {45, 54, 46, 50, 49}, {2, 10, 40, 44, 48, 50, 46, 42, 12, 4}}]], TagBox[ GridBox[{{"76"}, {"\"DiminishedRhombicosidodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{76, "DiminishedRhombicosidodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2160., -4189.090909090909}, ImageScaled[{0.5, 0.5}], {360, 362}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ 0, Root[1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { 0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { 0, Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0, -0.8506508083520399, 2.0645728807067605`}, { 1.618033988749895, 0, -1.5388417685876268`}, {-0.8090169943749475, \ -0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}, { 0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, { 1.3090169943749475`, -1.8017073246471935`, \ -0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, { 0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \ -1.5388417685876268`, 1.5388417685876268`}, { 1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \ {-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5, 1.5388417685876268`, -1.5388417685876268`}, \ {-1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {-1.618033988749895, 0, 1.5388417685876268`}, { 0, -2.2270327288232132`, 0.16245984811645317`}, { 0.5, -2.0645728807067605`, -0.6881909602355868}, \ {-1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}, {0.5, 0.6881909602355868, 2.0645728807067605`}, {2.118033988749895, 0.6881909602355868, -0.16245984811645317`}, { 0.5, -1.5388417685876268`, 1.5388417685876268`}, { 1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \ {-0.5, 1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}, { 1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, { 2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, { 0.5, 1.5388417685876268`, 1.5388417685876268`}, { 1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, { 1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, { 1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, { 0.8090169943749475, -0.2628655560595668, 2.0645728807067605`}, { 2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \ {-0.5, 0.6881909602355868, 2.0645728807067605`}, {1.618033988749895, 1.3763819204711736`, -0.6881909602355868}, {0.5, 2.0645728807067605`, 0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, { 0.5, -1.5388417685876268`, -1.5388417685876268`}, \ {-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5, 1.5388417685876268`, -1.5388417685876268`}, \ {-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \ -1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895, 0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}, \ {-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \ {-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \ {-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \ {-1.618033988749895, 0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \ -0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {-2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {-1.618033988749895, 1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \ -0.6881909602355868, 0.16245984811645317`}}], Polygon3DBox[{{1, 9, 21}, {3, 14, 13}, {5, 6, 33}, {7, 38, 8}, {11, 36, 23}, {15, 51, 16}, {17, 18, 54}, {19, 31, 27}, {20, 32, 30}, { 22, 35, 26}, {24, 28, 37}, {25, 29, 34}, {39, 52, 43}, {41, 45, 53}, {47, 55, 49}, {1, 3, 13, 9}, {1, 21, 25, 34}, {2, 35, 22, 10}, {3, 36, 11, 14}, {4, 12, 24, 37}, {5, 15, 16, 6}, {5, 33, 25, 21}, {6, 22, 26, 33}, {7, 8, 18, 17}, {7, 23, 27, 38}, {8, 38, 28, 24}, {9, 13, 52, 39}, {11, 41, 53, 14}, {15, 39, 43, 51}, {16, 51, 44, 40}, {17, 54, 45, 41}, {18, 42, 46, 54}, {19, 27, 23, 36}, {19, 34, 29, 31}, {20, 30, 26, 35}, {20, 37, 28, 32}, {29, 30, 32, 31}, {43, 52, 55, 47}, {45, 49, 55, 53}, {47, 49, 50, 48}, {1, 34, 19, 36, 3}, {2, 4, 37, 20, 35}, {5, 21, 9, 39, 15}, { 6, 16, 40, 10, 22}, {7, 17, 41, 11, 23}, {8, 24, 12, 42, 18}, {13, 14, 53, 55, 52}, {25, 33, 26, 30, 29}, {27, 31, 32, 28, 38}, {43, 47, 48, 44, 51}, {45, 54, 46, 50, 49}, {2, 10, 40, 44, 48, 50, 46, 42, 12, 4}}]], TagBox[ GridBox[{{"77"}, { "\"ParagyrateDiminishedRhombicosidodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{77, "ParagyrateDiminishedRhombicosidodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2552.727272727273, -4189.090909090909}, ImageScaled[{0.5, 0.5}], {360, 366}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[61, 40] + Rational[131, 40] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 10] (85 + 22 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 25 #^2 + 5 #^4& , 1, 0], 0, Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 20] (610 + 262 5^Rational[1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 10] (85 + 22 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[7, 10] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[1, 10] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]}, {(Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (1 - 2 5^Rational[-1, 2])^ Rational[1, 2]}, {-(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 20 #^2 + 80 #^4& , 2, 0], Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 10] (130 + 38 5^Rational[1, 2])^Rational[1, 2], 0, Rational[1, 10] (145 + 62 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2]), Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]}, {-(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[ 1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[7, 10] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[1, 10] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[ 1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]}, { Root[1 - 100 #^2 + 80 #^4& , 1, 0], Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^ Rational[1, 2], (-3 + 5^Rational[1, 2])^(-1), Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { 0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {( Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 0.6881909602355868, -0.5, 2.0645728807067605`}, { 0, 1.618033988749895, -1.5388417685876268`}, \ {-0.2628655560595668, -0.8090169943749475, 2.0645728807067605`}, {-0.9510565162951535, 1.3090169943749475`, -1.5388417685876268`}, {1.7290530718466575`, 0.8090169943749475, 1.1584191620695654`}, {1.8017073246471935`, 1.3090169943749475`, -0.16245984811645317`}, \ {-2.0645728807067605`, -0.5, 0.6881909602355868}, {-2.2270327288232132`, 0, -0.16245984811645317`}, { 1.7290530718466575`, -0.8090169943749475, 1.1584191620695654`}, { 0.9510565162951535, 1.3090169943749475`, -1.5388417685876268`}, {-0.9510565162951535, \ -1.3090169943749475`, 1.5388417685876268`}, {-1.5388417685876268`, 0.5, -1.5388417685876268`}, { 0.9510565162951535, -1.3090169943749475`, 1.5388417685876268`}, { 0, -1.618033988749895, 1.5388417685876268`}, {2.154378476022677, 0.5, 0.30776835371752537`}, {2.0645728807067605`, 0.5, -0.6881909602355868}, {-1.8017073246471935`, \ -1.3090169943749475`, 0.16245984811645317`}, {-1.9641671727636467`, \ -0.8090169943749475, -0.6881909602355868}, {-0.2628655560595668, 0.8090169943749475, 2.0645728807067605`}, {-0.6881909602355868, 2.118033988749895, -0.16245984811645317`}, { 1.4661875157870907`, 0, 1.6841502741886991`}, { 1.1135163644116066`, 1.8090169943749475`, -0.6881909602355868}, {-1.5388417685876268`, \ -0.5, 1.5388417685876268`}, {-1.9641671727636467`, 0.8090169943749475, -0.6881909602355868}, {0.9510565162951535, 1.3090169943749475`, 1.5388417685876268`}, {0.6881909602355868, 2.118033988749895, 0.16245984811645317`}, {-1.5388417685876268`, 0.5, 1.5388417685876268`}, {-1.8017073246471935`, 1.3090169943749475`, 0.16245984811645317`}, { 0, 1.618033988749895, 1.5388417685876268`}, {-0.16245984811645317`, 2.118033988749895, 0.6881909602355868}, {-0.9510565162951535, 1.3090169943749475`, 1.5388417685876268`}, {-1.1135163644116066`, 1.8090169943749475`, 0.6881909602355868}, {1.3763819204711736`, 1.618033988749895, 0.6881909602355868}, {0.6881909602355868, 0.5, 2.0645728807067605`}, {0.16245984811645317`, 2.118033988749895, -0.6881909602355868}, {-0.8506508083520399, 0, 2.0645728807067605`}, {-1.3763819204711736`, 1.618033988749895, -0.6881909602355868}, {-2.0645728807067605`, 0.5, 0.6881909602355868}, {2.154378476022677, -0.5, 0.30776835371752537`}, {1.5388417685876268`, 0.5, -1.5388417685876268`}, {-1.1135163644116066`, \ -1.8090169943749475`, 0.6881909602355868}, {-1.5388417685876268`, -0.5, \ -1.5388417685876268`}, { 1.8017073246471935`, -1.3090169943749477`, \ -0.16245984811645317`}, { 1.5388417685876268`, -0.5, -1.5388417685876268`}, \ {-0.6881909602355868, -2.118033988749895, -0.16245984811645317`}, \ {-0.9510565162951535, -1.3090169943749475`, -1.5388417685876268`}, { 1.1135163644116066`, -1.8090169943749475`, -0.6881909602355868}, { 0.9510565162951535, -1.3090169943749475`, -1.5388417685876268`}, { 0.16245984811645317`, -2.118033988749895, -0.6881909602355868}, { 0, -1.618033988749895, -1.5388417685876268`}, { 2.0645728807067605`, -0.5, -0.6881909602355868}, { 1.3763819204711736`, -1.618033988749895, 0.6881909602355868}, {-0.16245984811645317`, -2.118033988749895, 0.6881909602355868}, {-1.3763819204711736`, -1.618033988749895, \ -0.6881909602355868}, {0.6881909602355868, -2.118033988749895, 0.16245984811645317`}}], Polygon3DBox[{{1, 21, 34}, {3, 11, 14}, {5, 33, 25}, {6, 15, 16}, { 7, 38, 8}, {9, 13, 52}, {17, 18, 54}, {19, 29, 31}, {20, 32, 30}, {22, 35, 26}, {23, 36, 27}, {24, 28, 37}, {39, 43, 51}, {41, 45, 53}, {47, 55, 49}, {1, 3, 14, 13}, {1, 13, 9, 21}, {2, 35, 22, 10}, {3, 36, 23, 11}, {4, 12, 24, 37}, {5, 15, 6, 33}, {5, 25, 34, 21}, {6, 22, 26, 33}, {7, 8, 18, 17}, {7, 23, 27, 38}, {8, 38, 28, 24}, {9, 52, 43, 39}, {11, 41, 53, 14}, {15, 39, 51, 16}, { 16, 51, 44, 40}, {17, 54, 45, 41}, {18, 42, 46, 54}, {19, 31, 27, 36}, {19, 34, 25, 29}, {20, 30, 26, 35}, {20, 37, 28, 32}, {29, 30, 32, 31}, {43, 52, 55, 47}, {45, 49, 55, 53}, {47, 49, 50, 48}, {1, 34, 19, 36, 3}, {2, 4, 37, 20, 35}, {5, 21, 9, 39, 15}, { 6, 16, 40, 10, 22}, {7, 17, 41, 11, 23}, {8, 24, 12, 42, 18}, {13, 14, 53, 55, 52}, {25, 33, 26, 30, 29}, {27, 31, 32, 28, 38}, {43, 47, 48, 44, 51}, {45, 54, 46, 50, 49}, {2, 10, 40, 44, 48, 50, 46, 42, 12, 4}}]], TagBox[ GridBox[{{"78"}, { "\"MetagyrateDiminishedRhombicosidodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{78, "MetagyrateDiminishedRhombicosidodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -4189.090909090909}, ImageScaled[{0.5, 0.5}], {360, 360}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { 0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2 5^Rational[-1, 2], Rational[-1, 10] (25 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 10] (145 + 62 5^Rational[1, 2])^Rational[1, 2]}, {-1 - 2 5^Rational[-1, 2], Root[1 - 25 #^2 + 125 #^4& , 3, 0], Rational[1, 10] (85 + 22 5^Rational[1, 2])^Rational[1, 2]}, { 0, Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Root[ 1 - 20 #^2 + 80 #^4& , 3, 0], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] + 2 5^Rational[-1, 2], Rational[-1, 10] (85 + 38 5^Rational[1, 2])^Rational[1, 2], Rational[1, 10] (85 + 22 5^Rational[1, 2])^Rational[1, 2]}, { Rational[3, 4] + Rational[13, 4] 5^Rational[-1, 2], Rational[-1, 10] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 10] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] + 2 5^Rational[-1, 2], Rational[-1, 10] (25 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 10] (145 + 62 5^Rational[1, 2])^Rational[1, 2]}, { 1 + 2 5^Rational[-1, 2], Rational[1, 10] (10 - 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 10] (85 + 22 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { 1 + 2 5^Rational[-1, 2], Rational[-3, 5] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 10] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { 0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2] - 2 5^Rational[-1, 2], Rational[-1, 10] (85 + 38 5^Rational[1, 2])^Rational[1, 2], Rational[1, 10] (85 + 22 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-3, 4] + Rational[-13, 4] 5^Rational[-1, 2], Rational[-1, 10] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 10] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 - 2 5^Rational[-1, 2], Rational[-3, 5] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 10] (5 + 2 5^Rational[1, 2])^ Rational[1, 2]}}, {{-0.5, -0.6881909602355868, 2.0645728807067605`}, { 1.618033988749895, 0, -1.5388417685876268`}, {-0.8090169943749475, 0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}, { 0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, { 1.3090169943749475`, -1.8017073246471935`, \ -0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, { 0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \ -1.5388417685876268`, 1.5388417685876268`}, { 1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \ {-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5, 1.5388417685876268`, -1.5388417685876268`}, \ {-1.3944271909999157`, -0.45307685931859754`, 1.6841502741886991`}, {-1.8944271909999157`, 0.23511410091698925`, 1.1584191620695654`}, { 0, -2.2270327288232132`, 0.16245984811645317`}, { 0.5, -2.0645728807067605`, -0.6881909602355868}, \ {-1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}, {0.8090169943749475, 0.2628655560595668, 2.0645728807067605`}, {2.118033988749895, 0.6881909602355868, -0.16245984811645317`}, { 0.5, -1.5388417685876268`, 1.5388417685876268`}, { 1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \ {-0.5, 1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}, { 1.3944271909999157`, -1.3037276676706375`, 1.1584191620695654`}, { 2.203444185374863, -0.1902113032590307, 0.30776835371752537`}, { 0.5, 1.5388417685876268`, 1.5388417685876268`}, { 1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, { 1.3944271909999157`, -0.45307685931859754`, 1.6841502741886991`}, {1.8944271909999157`, 0.23511410091698925`, 1.1584191620695654`}, {1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {1.8944271909999157`, -1.141267819554184, 0.30776835371752537`}, {0.5, -0.6881909602355868, 2.0645728807067605`}, { 2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, { 0, 0.85065080835204, 2.0645728807067605`}, {1.618033988749895, 1.3763819204711736`, -0.6881909602355868}, {0.5, 2.0645728807067605`, 0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, { 0.5, -1.5388417685876268`, -1.5388417685876268`}, \ {-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5, 1.5388417685876268`, -1.5388417685876268`}, \ {-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \ -1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895, 0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}, \ {-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \ {-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \ {-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \ {-1.618033988749895, 0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \ -0.6881909602355868}, {-1.3944271909999157`, -1.3037276676706375`, 1.1584191620695654`}, {-2.203444185374863, -0.1902113032590307, 0.30776835371752537`}, {-1.618033988749895, 1.3763819204711736`, -0.6881909602355868}, {-1.8944271909999157`, \ -1.141267819554184, 0.30776835371752537`}}], Polygon3DBox[{{1, 3, 13}, {5, 25, 21}, {6, 22, 33}, {7, 38, 8}, {9, 52, 39}, {11, 41, 14}, {15, 51, 16}, {17, 18, 54}, {19, 34, 29}, { 20, 26, 35}, {23, 36, 27}, {24, 28, 37}, {30, 32, 31}, {43, 55, 47}, {45, 49, 53}, {1, 9, 21, 34}, {1, 13, 52, 9}, {2, 35, 22, 10}, {3, 11, 14, 13}, {3, 36, 23, 11}, {4, 12, 24, 37}, {5, 6, 33, 25}, {5, 15, 16, 6}, {7, 8, 18, 17}, {7, 23, 27, 38}, {8, 38, 28, 24}, {14, 41, 45, 53}, {15, 39, 43, 51}, {16, 51, 44, 40}, {17, 54, 45, 41}, {18, 42, 46, 54}, {19, 29, 30, 31}, {19, 31, 27, 36}, {20, 32, 30, 26}, {20, 37, 28, 32}, {21, 25, 29, 34}, {22, 35, 26, 33}, {39, 52, 55, 43}, {47, 49, 50, 48}, {47, 55, 53, 49}, {1, 34, 19, 36, 3}, {2, 4, 37, 20, 35}, {5, 21, 9, 39, 15}, { 6, 16, 40, 10, 22}, {7, 17, 41, 11, 23}, {8, 24, 12, 42, 18}, {13, 14, 53, 55, 52}, {25, 33, 26, 30, 29}, {27, 31, 32, 28, 38}, {43, 47, 48, 44, 51}, {45, 54, 46, 50, 49}, {2, 10, 40, 44, 48, 50, 46, 42, 12, 4}}]], TagBox[ GridBox[{{"79"}, {"\"BigyrateDiminishedRhombicosidodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{79, "BigyrateDiminishedRhombicosidodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -4189.090909090909}, ImageScaled[{0.5, 0.5}], {360, 357}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { 0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { 0, Root[1 - 25 #^2 + 5 #^4& , 1, 0], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Root[ 1 - 100 #^2 + 80 #^4& , 1, 0], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^ Rational[1, 2]), -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^ Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], ( Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^ Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^ Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{ 1.618033988749895, 0, -1.5388417685876268`}, {1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}, { 0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, { 1.3090169943749475`, -1.8017073246471935`, \ -0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, { 0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \ -1.5388417685876268`, 1.5388417685876268`}, { 1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \ {-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5, 1.5388417685876268`, -1.5388417685876268`}, \ {-1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {-1.618033988749895, 0, 1.5388417685876268`}, { 0, -2.2270327288232132`, 0.16245984811645317`}, { 0.5, -2.0645728807067605`, -0.6881909602355868}, \ {-1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, {-0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}, {2.118033988749895, 0.6881909602355868, -0.16245984811645317`}, { 0.5, -1.5388417685876268`, 1.5388417685876268`}, { 1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \ {-0.5, 1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475, 1.9641671727636467`, -0.6881909602355868}, { 1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, { 2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, { 0.5, 1.5388417685876268`, 1.5388417685876268`}, { 1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, { 1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, { 1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, { 2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, { 1.618033988749895, 1.3763819204711736`, -0.6881909602355868}, { 0.5, 2.0645728807067605`, 0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, { 0.5, -1.5388417685876268`, -1.5388417685876268`}, \ {-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5, 1.5388417685876268`, -1.5388417685876268`}, \ {-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \ -1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895, 0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`, 0.9510565162951535, -1.5388417685876268`}, \ {-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \ {-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \ {-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \ {-1.618033988749895, 0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \ -0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {-2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {-1.618033988749895, 1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \ -0.6881909602355868, 0.16245984811645317`}}], Polygon3DBox[{{3, 4, 30}, {5, 33, 6}, {13, 46, 14}, {15, 16, 49}, { 17, 29, 27}, {19, 31, 23}, {21, 25, 32}, {34, 47, 38}, {36, 40, 48}, {42, 50, 44}, {1, 31, 19, 8}, {2, 10, 21, 32}, {3, 13, 14, 4}, {3, 30, 22, 18}, {4, 19, 23, 30}, {5, 6, 16, 15}, {5, 20, 24, 33}, {6, 33, 25, 21}, {7, 11, 47, 34}, {9, 36, 48, 12}, {13, 34, 38, 46}, {14, 46, 39, 35}, {15, 49, 40, 36}, {16, 37, 41, 49}, { 17, 27, 23, 31}, {17, 32, 25, 29}, {26, 27, 29, 28}, {38, 47, 50, 42}, {40, 44, 50, 48}, {42, 44, 45, 43}, {1, 2, 32, 17, 31}, {3, 18, 7, 34, 13}, {4, 14, 35, 8, 19}, {5, 15, 36, 9, 20}, {6, 21, 10, 37, 16}, {11, 12, 48, 50, 47}, {22, 30, 23, 27, 26}, {24, 28, 29, 25, 33}, {38, 42, 43, 39, 46}, {40, 49, 41, 45, 44}, {1, 8, 35, 39, 43, 45, 41, 37, 10, 2}, {7, 18, 22, 26, 28, 24, 20, 9, 12, 11}}]], TagBox[ GridBox[{{"80"}, {"\"ParabidiminishedRhombicosidodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{80, "ParabidiminishedRhombicosidodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -4189.090909090909}, ImageScaled[{0.5, 0.5}], {360, 357}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], Rational[-1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[-1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2]}, { 0, (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-5 - 5^Rational[1, 2])}, { 0, Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-5 - 5^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), 0, (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), 0, Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2], Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2], Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-5 - 5^Rational[1, 2]), 0}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (5 + 5^Rational[1, 2]), 0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2], Rational[ 1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2], Rational[ 1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-5 - 5^Rational[1, 2]), 0}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (5 + 5^Rational[1, 2]), 0}, { Rational[1, 4] (5 + 5^Rational[1, 2]), 0, (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 4] (5 + 5^Rational[1, 2]), 0, Rational[1, 4] (3 + 5^Rational[ 1, 2])}}, {{-0.5, -0.5, -2.118033988749895}, {-0.5, -0.5, 2.118033988749895}, {-0.5, 0.5, -2.118033988749895}, {-0.5, 0.5, 2.118033988749895}, {-0.5, -2.118033988749895, -0.5}, {-0.5, 2.118033988749895, -0.5}, { 0, -1.3090169943749477`, -1.8090169943749475`}, { 0, 1.3090169943749475`, -1.8090169943749475`}, { 0.5, -0.5, -2.118033988749895}, {0.5, -0.5, 2.118033988749895}, { 0.5, 0.5, -2.118033988749895}, {0.5, 0.5, 2.118033988749895}, { 0.5, -2.118033988749895, -0.5}, {0.5, 2.118033988749895, -0.5}, {-1.8090169943749475`, 0, -1.3090169943749477`}, {-1.8090169943749475`, 0, 1.3090169943749475`}, {-0.8090169943749475, -1.618033988749895, \ -1.3090169943749477`}, {-0.8090169943749475, 1.618033988749895, -1.3090169943749477`}, {-1.618033988749895, \ -1.3090169943749477`, -0.8090169943749475}, {-1.618033988749895, \ -1.3090169943749477`, 0.8090169943749475}, {-1.618033988749895, 1.3090169943749475`, -0.8090169943749475}, {-1.618033988749895, 1.3090169943749475`, 0.8090169943749475}, {-2.118033988749895, -0.5, -0.5}, \ {-2.118033988749895, -0.5, 0.5}, {-2.118033988749895, 0.5, -0.5}, {-2.118033988749895, 0.5, 0.5}, {-1.3090169943749477`, -1.8090169943749475`, 0}, {-1.3090169943749477`, -0.8090169943749475, \ -1.618033988749895}, {-1.3090169943749477`, -0.8090169943749475, 1.618033988749895}, {-1.3090169943749477`, 0.8090169943749475, -1.618033988749895}, {-1.3090169943749477`, 0.8090169943749475, 1.618033988749895}, {-1.3090169943749477`, 1.8090169943749475`, 0}, {0.8090169943749475, -1.618033988749895, \ -1.3090169943749477`}, {0.8090169943749475, 1.618033988749895, -1.3090169943749477`}, { 1.618033988749895, -1.3090169943749477`, -0.8090169943749475}, { 1.618033988749895, -1.3090169943749477`, 0.8090169943749475}, { 1.618033988749895, 1.3090169943749475`, -0.8090169943749475}, { 1.618033988749895, 1.3090169943749475`, 0.8090169943749475}, { 2.118033988749895, -0.5, -0.5}, {2.118033988749895, -0.5, 0.5}, { 2.118033988749895, 0.5, -0.5}, {2.118033988749895, 0.5, 0.5}, { 1.3090169943749475`, -1.8090169943749475`, 0}, { 1.3090169943749475`, -0.8090169943749475, -1.618033988749895}, { 1.3090169943749475`, -0.8090169943749475, 1.618033988749895}, { 1.3090169943749475`, 0.8090169943749475, -1.618033988749895}, { 1.3090169943749475`, 0.8090169943749475, 1.618033988749895}, { 1.3090169943749475`, 1.8090169943749475`, 0}, { 1.8090169943749475`, 0, -1.3090169943749477`}, { 1.8090169943749475`, 0, 1.3090169943749475`}}], Polygon3DBox[{{1, 9, 7}, {3, 8, 11}, {15, 23, 25}, {16, 26, 24}, { 17, 19, 28}, {18, 30, 21}, {33, 44, 35}, {34, 37, 46}, {39, 49, 41}, {40, 42, 50}, {1, 3, 11, 9}, {1, 7, 17, 28}, {2, 10, 12, 4}, {3, 30, 18, 8}, {5, 27, 19, 17}, {6, 18, 21, 32}, {7, 9, 44, 33}, {8, 34, 46, 11}, {13, 33, 35, 43}, {14, 48, 37, 34}, {15, 25, 21, 30}, {15, 28, 19, 23}, {16, 24, 20, 29}, {16, 31, 22, 26}, { 23, 24, 26, 25}, {35, 44, 49, 39}, {36, 40, 50, 45}, {37, 41, 49, 46}, {38, 47, 50, 42}, {39, 41, 42, 40}, {1, 28, 15, 30, 3}, {2, 4, 31, 16, 29}, {5, 17, 7, 33, 13}, {6, 14, 34, 8, 18}, {9, 11, 46, 49, 44}, {10, 45, 50, 47, 12}, {19, 27, 20, 24, 23}, {21, 25, 26, 22, 32}, {35, 39, 40, 36, 43}, {37, 48, 38, 42, 41}, {2, 29, 20, 27, 5, 13, 43, 36, 45, 10}, {4, 12, 47, 38, 48, 14, 6, 32, 22, 31}}]], TagBox[ GridBox[{{"81"}, {"\"MetabidiminishedRhombicosidodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{81, "MetabidiminishedRhombicosidodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {196.36363636363637, -4747.636363636363}, ImageScaled[{0.5, 0.5}], {360, 365}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], Rational[-1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2]}, { Rational[-1, 2], Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[-1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2]}, { Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2]}, { 0, (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-5 - 5^Rational[1, 2])}, { 0, Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-5 - 5^Rational[1, 2])}, { Rational[1, 20] (5 + 5^Rational[1, 2]), 0, Rational[-3, 4] + Rational[-13, 4] 5^Rational[-1, 2]}, { Rational[1, 2], Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 20] (15 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), -1 - 2 5^Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), 0, (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), 0, Rational[1, 4] (3 + 5^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2], Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2], Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2], Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2], Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-5 - 5^Rational[1, 2]), 0}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (5 + 5^Rational[1, 2]), 0}, {Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1)}, { Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2])}, { Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2])}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2], Rational[-1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2], Rational[ 1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2], Rational[-1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2], Rational[ 1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-5 - 5^Rational[1, 2]), 0}, { Rational[1, 20] (15 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), -1 - 2 5^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, { 1 + Rational[3, 2] 5^Rational[-1, 2], Rational[1, 2], Rational[-1, 2] - 2 5^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (1 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] (5 + 5^Rational[1, 2]), 0}, { 1 + Rational[3, 2] 5^Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] - 2 5^Rational[-1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), 0, Rational[1, 4] (3 + 5^Rational[ 1, 2])}}, {{-0.5, -0.5, -2.118033988749895}, {-0.5, -0.5, 2.118033988749895}, {-0.5, 0.5, -2.118033988749895}, {-0.5, 0.5, 2.118033988749895}, {-0.5, -2.118033988749895, -0.5}, {-0.5, 2.118033988749895, -0.5}, { 0, -1.3090169943749477`, -1.8090169943749475`}, { 0, 1.3090169943749475`, -1.8090169943749475`}, { 0.3618033988749895, 0, -2.203444185374863}, {0.5, -0.5, 2.118033988749895}, {0.8618033988749896, 0.8090169943749475, -1.8944271909999157`}, {0.5, 0.5, 2.118033988749895}, {0.5, -2.118033988749895, -0.5}, {0.5, 2.118033988749895, -0.5}, {-1.8090169943749475`, 0, -1.3090169943749477`}, {-1.8090169943749475`, 0, 1.3090169943749475`}, {-0.8090169943749475, -1.618033988749895, \ -1.3090169943749477`}, {-0.8090169943749475, 1.618033988749895, -1.3090169943749477`}, {-1.618033988749895, \ -1.3090169943749477`, -0.8090169943749475}, {-1.618033988749895, \ -1.3090169943749477`, 0.8090169943749475}, {-1.618033988749895, 1.3090169943749475`, -0.8090169943749475}, {-1.618033988749895, 1.3090169943749475`, 0.8090169943749475}, {-2.118033988749895, -0.5, -0.5}, \ {-2.118033988749895, -0.5, 0.5}, {-2.118033988749895, 0.5, -0.5}, {-2.118033988749895, 0.5, 0.5}, {-1.3090169943749477`, -1.8090169943749475`, 0}, {-1.3090169943749477`, -0.8090169943749475, \ -1.618033988749895}, {-1.3090169943749477`, -0.8090169943749475, 1.618033988749895}, {-1.3090169943749477`, 0.8090169943749475, -1.618033988749895}, {-1.3090169943749477`, 0.8090169943749475, 1.618033988749895}, {-1.3090169943749477`, 1.8090169943749475`, 0}, {0.8090169943749475, -1.618033988749895, \ -1.3090169943749477`}, {0.8090169943749475, 1.618033988749895, -1.3090169943749477`}, { 1.618033988749895, -1.3090169943749477`, -0.8090169943749475}, { 1.618033988749895, -1.3090169943749477`, 0.8090169943749475}, { 1.618033988749895, 1.3090169943749475`, -0.8090169943749475}, { 1.618033988749895, 1.3090169943749475`, 0.8090169943749475}, { 2.118033988749895, -0.5, -0.5}, {2.118033988749895, -0.5, 0.5}, { 2.118033988749895, 0.5, -0.5}, {2.118033988749895, 0.5, 0.5}, { 1.3090169943749475`, -1.8090169943749475`, 0}, { 0.8618033988749896, -0.8090169943749475, -1.8944271909999157`}, { 1.3090169943749475`, -0.8090169943749475, 1.618033988749895}, { 1.670820393249937, 0.5, -1.3944271909999157`}, { 1.3090169943749475`, 0.8090169943749475, 1.618033988749895}, { 1.3090169943749475`, 1.8090169943749475`, 0}, { 1.670820393249937, -0.5, -1.3944271909999157`}, { 1.8090169943749475`, 0, 1.3090169943749475`}}], Polygon3DBox[{{1, 3, 9}, {7, 44, 33}, {8, 34, 11}, {15, 23, 25}, { 16, 26, 24}, {17, 19, 28}, {18, 30, 21}, {35, 49, 39}, {37, 41, 46}, {40, 42, 50}, {1, 7, 17, 28}, {1, 9, 44, 7}, {2, 10, 12, 4}, {3, 8, 11, 9}, {3, 30, 18, 8}, {5, 27, 19, 17}, {6, 18, 21, 32}, {11, 34, 37, 46}, {13, 33, 35, 43}, {14, 48, 37, 34}, {15, 25, 21, 30}, {15, 28, 19, 23}, {16, 24, 20, 29}, {16, 31, 22, 26}, {23, 24, 26, 25}, {33, 44, 49, 35}, {36, 40, 50, 45}, {38, 47, 50, 42}, {39, 41, 42, 40}, {39, 49, 46, 41}, {1, 28, 15, 30, 3}, {2, 4, 31, 16, 29}, {5, 17, 7, 33, 13}, {6, 14, 34, 8, 18}, { 9, 11, 46, 49, 44}, {10, 45, 50, 47, 12}, {19, 27, 20, 24, 23}, { 21, 25, 26, 22, 32}, {35, 39, 40, 36, 43}, {37, 48, 38, 42, 41}, { 2, 29, 20, 27, 5, 13, 43, 36, 45, 10}, {4, 12, 47, 38, 48, 14, 6, 32, 22, 31}}]], TagBox[ GridBox[{{"82"}, {"\"GyrateBidiminishedRhombicosidodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{82, "GyrateBidiminishedRhombicosidodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {589.0909090909091, -4747.636363636363}, ImageScaled[{0.5, 0.5}], {360, 366}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2] (3 + 2 5^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2]), (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[-1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { Rational[-1, 2], Rational[5, 3]^Rational[1, 2] + Rational[1, 2] 3^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[-1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { 0, -3^Rational[-1, 2], Rational[-1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2]}, { 0, (Rational[2, 3] (3 + 5^Rational[1, 2]))^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { 0, 3^Rational[-1, 2], Rational[5, 3]^Rational[1, 2] + Rational[1, 2] 3^Rational[1, 2]}, { Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2] (3 + 2 5^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2]), (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[ 1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 2], Rational[5, 3]^Rational[1, 2] + Rational[1, 2] 3^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[ 1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-5 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^ Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (-1 - 5^Rational[1, 2]), 2 3^Rational[-1, 2]/(-3 + 5^Rational[1, 2]), Rational[1, 2] 3^Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Rational[-1, 2] (Rational[5, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Rational[-1, 4] 3^Rational[-1, 2] (7 + 5^Rational[1, 2]), (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4] 3^Rational[-1, 2] (7 + 5^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {(-3 + 5^Rational[1, 2])^(-1), Root[ 1 - 36 #^2 + 144 #^4& , 3, 0], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 2] (1 + 5^Rational[1, 2]), 2 3^Rational[-1, 2]/(-3 + 5^Rational[1, 2]), Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2] Rational[5, 3]^Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[5, 6] (7 + 3 5^Rational[1, 2]))^ Rational[1, 2], Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 2, 0], Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4] 3^Rational[-1, 2] (7 + 5^Rational[1, 2]), (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (7 + 5^Rational[1, 2]), Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Root[ 1 - 36 #^2 + 144 #^4& , 3, 0], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], -(Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, { Rational[1, 4] (5 + 5^Rational[1, 2]), Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^ Rational[1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}}, {{-0.5, 0.2886751345948129, -2.1570198525202446`}, {-0.5, \ -1.2228474935575289`, 1.8001977627471544`}, {-0.5, 1.2228474935575286`, -1.8001977627471546`}, {-0.5, \ -0.2886751345948129, 2.157019852520244}, {-0.5, -1.8001977627471546`, \ -1.2228474935575289`}, {-0.5, 2.157019852520244, 0.2886751345948129}, {-0.5, 1.8001977627471544`, 1.2228474935575286`}, { 0, -0.5773502691896258, -2.157019852520244}, { 0, 1.8683447179254313`, -1.2228474935575289`}, { 0, 0.5773502691896258, 2.157019852520244}, {0.5, 0.2886751345948129, -2.1570198525202446`}, { 0.5, -1.2228474935575289`, 1.8001977627471544`}, {0.5, 1.2228474935575286`, -1.8001977627471546`}, { 0.5, -0.2886751345948129, 2.157019852520244}, { 0.5, -1.8001977627471546`, -1.2228474935575289`}, {0.5, 2.157019852520244, 0.2886751345948129}, {0.5, 1.8001977627471544`, 1.2228474935575286`}, {-1.8090169943749475`, 0.46708617948135783`, -1.2228474935575286`}, \ {-1.8090169943749475`, -0.46708617948135783`, 1.2228474935575286`}, {-0.8090169943749475, -1.0444364486709836`, \ -1.8001977627471544`}, {-0.8090169943749475, 1.9786088076336994`, -0.6454972243679028}, {-0.8090169943749475, 1.0444364486709836`, 1.8001977627471544`}, {-1.618033988749895, -0.9341723589627157, \ -1.2228474935575286`}, {-1.618033988749895, -1.511522628152342, 0.2886751345948129}, {-2.118033988749895, -0.2886751345948129, \ -0.6454972243679028}, {-2.118033988749895, -0.6454972243679028, 0.2886751345948129}, {-1.3090169943749477`, -1.6899336730388865`, \ -0.6454972243679028}, {-1.3090169943749477`, -0.17841104488654497`, \ -1.8001977627471546`}, {-1.3090169943749477`, -1.3331115832657967`, 1.2228474935575286`}, {-1.3090169943749477`, 1.3331115832657967`, -1.2228474935575289`}, {-1.3090169943749477`, 0.17841104488654497`, 1.8001977627471544`}, { 0.8090169943749475, -1.0444364486709836`, -1.8001977627471544`}, { 0.8090169943749475, 1.9786088076336994`, -0.6454972243679028}, { 0.8090169943749475, 1.0444364486709836`, 1.8001977627471544`}, { 1.618033988749895, -0.9341723589627157, -1.2228474935575286`}, { 1.618033988749895, -1.511522628152342, 0.2886751345948129}, { 2.118033988749895, -0.2886751345948129, -0.6454972243679028}, { 2.118033988749895, -0.6454972243679028, 0.2886751345948129}, { 1.3090169943749475`, -1.6899336730388865`, -0.6454972243679028}, { 1.3090169943749475`, -0.17841104488654497`, \ -1.8001977627471546`}, {1.3090169943749475`, -1.3331115832657967`, 1.2228474935575286`}, {1.3090169943749475`, 1.3331115832657967`, -1.2228474935575289`}, {1.3090169943749475`, 0.17841104488654497`, 1.8001977627471544`}, {1.8090169943749475`, 0.46708617948135783`, -1.2228474935575286`}, { 1.8090169943749475`, -0.46708617948135783`, 1.2228474935575286`}}], Polygon3DBox[{{1, 11, 8}, {3, 9, 13}, {4, 14, 10}, {20, 23, 28}, { 32, 40, 35}, {1, 3, 13, 11}, {1, 8, 20, 28}, {2, 12, 14, 4}, {3, 30, 21, 9}, {4, 10, 22, 31}, {5, 27, 23, 20}, {6, 7, 17, 16}, {8, 11, 40, 32}, {9, 33, 42, 13}, {10, 14, 43, 34}, {15, 32, 35, 39}, {18, 28, 23, 25}, {19, 26, 24, 29}, {35, 40, 44, 37}, {36, 38, 45, 41}, {1, 28, 18, 30, 3}, {2, 4, 31, 19, 29}, {5, 20, 8, 32, 15}, {6, 16, 33, 9, 21}, {7, 22, 10, 34, 17}, {11, 13, 42, 44, 40}, {12, 41, 45, 43, 14}, {23, 27, 24, 26, 25}, {35, 37, 38, 36, 39}, {2, 29, 24, 27, 5, 15, 39, 36, 41, 12}, {6, 21, 30, 18, 25, 26, 19, 31, 22, 7}, {16, 17, 34, 43, 45, 38, 37, 44, 42, 33}}]], TagBox[ GridBox[{{"83"}, {"\"TridiminishedRhombicosidodecahedron\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{83, "TridiminishedRhombicosidodecahedron"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {981.818181818182, -4747.636363636363}, ImageScaled[{0.5, 0.5}], {360, 397}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{Rational[-1, 2], 0, 0}, { 0, Rational[-1, 2], Root[-4 - 8 #^2 - #^4 + 2 #^6& , 2, 0]}, { 0, Rational[1, 2], Root[-4 - 8 #^2 - #^4 + 2 #^6& , 2, 0]}, { 0, Root[-2 - 2 # + 3 #^2 + 2 #^3& , 2, 0], Root[-1 - 22 #^2 + 64 #^4 + 32 #^6& , 2, 0]}, { 0, Root[2 - 2 # - 3 #^2 + 2 #^3& , 2, 0], Root[-1 - 22 #^2 + 64 #^4 + 32 #^6& , 2, 0]}, { Rational[1, 2], 0, 0}, { Root[-2 - 2 # + 3 #^2 + 2 #^3& , 2, 0], 0, Root[-8 - 15 #^2 + 8 #^4 + 16 #^6& , 2, 0]}, { Root[2 - 2 # - 3 #^2 + 2 #^3& , 2, 0], 0, Root[-8 - 15 #^2 + 8 #^4 + 16 #^6& , 2, 0]}}, {{-0.5, 0, 0}, { 0, -0.5, 1.5678618484651274`}, {0, 0.5, 1.5678618484651274`}, { 0, -0.644584273224155, 0.5783693583793041}, { 0, 0.6445842732241549, 0.5783693583793041}, { 0.5, 0, 0}, {-0.644584273224155, 0, 0.9894924900858232}, { 0.6445842732241549, 0, 0.9894924900858232}}], Polygon3DBox[{{2, 3, 7}, {3, 2, 8}, {4, 2, 7}, {2, 4, 8}, {6, 8, 4}, {4, 1, 6}, {7, 1, 4}, {3, 5, 7}, {8, 5, 3}, {5, 8, 6}, {5, 6, 1}, {5, 1, 7}}]], TagBox[ GridBox[{{"84"}, {"\"SnubDisphenoid\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{84, "SnubDisphenoid"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -4747.636363636363}, ImageScaled[{0.5, 0.5}], {360, 509}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Root[1 - 8 # + 12 #^2 + 12 #^3 - 11 #^4 - 4 #^5 + 2 #^6& , 2, 0], 0, Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 + 73728 #^10 + 8192 #^12& , 4, 0]}, { Root[-1 + 4 # + 32 #^2 - 16 #^3 - 52 #^4 + 16 #^5 + 16 #^6& , 2, 0], Root[-1 + 4 # + 32 #^2 - 16 #^3 - 52 #^4 + 16 #^5 + 16 #^6& , 2, 0], Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 + 73728 #^10 + 8192 #^12& , 3, 0]}, { Root[-1 + 4 # + 32 #^2 - 16 #^3 - 52 #^4 + 16 #^5 + 16 #^6& , 2, 0], Root[-1 - 4 # + 32 #^2 + 16 #^3 - 52 #^4 - 16 #^5 + 16 #^6& , 5, 0], Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 + 73728 #^10 + 8192 #^12& , 3, 0]}, {-2^Rational[-1, 2], 0, Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 + 8192 #^12& , 1, 0]}, { Rational[-1, 2], Rational[-1, 2], Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 + 8192 #^12& , 6, 0]}, { Rational[-1, 2], Rational[1, 2], Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 + 8192 #^12& , 6, 0]}, { 0, Root[1 - 8 # + 12 #^2 + 12 #^3 - 11 #^4 - 4 #^5 + 2 #^6& , 2, 0], Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 + 73728 #^10 + 8192 #^12& , 4, 0]}, { 0, -2^Rational[-1, 2], Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 + 8192 #^12& , 1, 0]}, { 0, 2^Rational[-1, 2], Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 + 8192 #^12& , 1, 0]}, { 0, Root[1 + 8 # + 12 #^2 - 12 #^3 - 11 #^4 + 4 #^5 + 2 #^6& , 5, 0], Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 + 73728 #^10 + 8192 #^12& , 4, 0]}, { Rational[1, 2], Rational[-1, 2], Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 + 8192 #^12& , 6, 0]}, { Rational[1, 2], Rational[1, 2], Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 + 8192 #^12& , 6, 0]}, { 2^Rational[-1, 2], 0, Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 + 8192 #^12& , 1, 0]}, { Root[-1 - 4 # + 32 #^2 + 16 #^3 - 52 #^4 - 16 #^5 + 16 #^6& , 5, 0], Root[-1 + 4 # + 32 #^2 - 16 #^3 - 52 #^4 + 16 #^5 + 16 #^6& , 2, 0], Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 + 73728 #^10 + 8192 #^12& , 3, 0]}, { Root[-1 - 4 # + 32 #^2 + 16 #^3 - 52 #^4 - 16 #^5 + 16 #^6& , 5, 0], Root[-1 - 4 # + 32 #^2 + 16 #^3 - 52 #^4 - 16 #^5 + 16 #^6& , 5, 0], Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 + 73728 #^10 + 8192 #^12& , 3, 0]}, { Root[1 + 8 # + 12 #^2 - 12 #^3 - 11 #^4 + 4 #^5 + 2 #^6& , 5, 0], 0, Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 + 73728 #^10 + 8192 #^12& , 4, 0]}}, {{-1.2132055458663134`, 0, 0.18560702128217985`}, {-0.8578658684551972, \ -0.8578658684551972, -0.18560702128217985`}, {-0.8578658684551972, 0.8578658684551972, -0.18560702128217985`}, {-0.7071067811865475, 0, -0.6768685090313561}, {-0.5, -0.5, 0.6768685090313561}, {-0.5, 0.5, 0.6768685090313561}, { 0, -1.2132055458663134`, 0.18560702128217985`}, { 0, -0.7071067811865475, -0.6768685090313561}, { 0, 0.7071067811865475, -0.6768685090313561}, { 0, 1.2132055458663134`, 0.18560702128217985`}, {0.5, -0.5, 0.6768685090313561}, {0.5, 0.5, 0.6768685090313561}, { 0.7071067811865475, 0, -0.6768685090313561}, { 0.8578658684551972, -0.8578658684551972, -0.18560702128217985`}, { 0.8578658684551972, 0.8578658684551972, -0.18560702128217985`}, { 1.2132055458663134`, 0, 0.18560702128217985`}}], Polygon3DBox[{{11, 12, 6, 5}, {4, 9, 13, 8}, {11, 7, 14}, {13, 14, 8}, {8, 14, 7}, {5, 7, 11}, {11, 14, 16}, {13, 16, 14}, {12, 16, 15}, {9, 15, 13}, {13, 15, 16}, {11, 16, 12}, {12, 15, 10}, {9, 10, 15}, {6, 10, 3}, {4, 3, 9}, {9, 3, 10}, {12, 10, 6}, {6, 3, 1}, {4, 1, 3}, {5, 1, 2}, {8, 2, 4}, {4, 2, 1}, {6, 1, 5}, {5, 2, 7}, {8, 7, 2}}]], TagBox[ GridBox[{{"85"}, {"\"SnubSquareAntiprism\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{85, "SnubSquareAntiprism"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -4747.636363636363}, ImageScaled[{0.5, 0.5}], {360, 287}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[-1, 2], 0}, {0, Rational[1, 2], 0}, { Rational[1, 30] (-6 - 6^Rational[1, 2] - 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[1, 2], Rational[ 1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], 0, (Rational[1, 2] (1 + 6^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 30] (-6 - 6^Rational[1, 2] - 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2], Rational[ 1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 30] (6 + 6^Rational[1, 2] + 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[1, 2], Rational[ 1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], 0, (Rational[1, 2] (1 + 6^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 30] (6 + 6^Rational[1, 2] + 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2], Rational[ 1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, Rational[1, 30] (9 - 6^Rational[1, 2] + 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[ 1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, Rational[1, 30] (-9 + 6^Rational[1, 2] - 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[ 1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}}, {{0, -0.5, 0}, { 0, 0.5, 0}, {-0.8527269428464169, 0.5, 0.5223569286836384}, {-0.5, 0, 1.3132954242635542`}, {-0.8527269428464169, -0.5, 0.5223569286836384}, {0.8527269428464169, 0.5, 0.5223569286836384}, {0.5, 0, 1.3132954242635542`}, { 0.8527269428464169, -0.5, 0.5223569286836384}, { 0, 0.7894276266608717, 0.9571999001908928}, { 0, -0.7894276266608717, 0.9571999001908928}}], Polygon3DBox[{{3, 2, 1, 5}, {2, 6, 8, 1}, {3, 9, 2}, {9, 6, 2}, {9, 3, 4}, {6, 9, 7}, {3, 5, 4}, {6, 7, 8}, {4, 7, 9}, {10, 7, 4}, { 10, 8, 7}, {5, 10, 4}, {1, 8, 10}, {5, 1, 10}}]], TagBox[ GridBox[{{"86"}, {"\"Sphenocorona\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{86, "Sphenocorona"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2160., -4747.636363636363}, ImageScaled[{0.5, 0.5}], {360, 273}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[-1, 2], 0}, {0, Rational[1, 2], 0}, { Root[23 - 56 # - 100 #^2 + 48 #^3 + 60 #^4& , 2, 0], Rational[ 1, 2], Rational[ 1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], 0, (Rational[1, 2] (1 + 6^Rational[1, 2]))^ Rational[1, 2]}, { Root[23 - 56 # - 100 #^2 + 48 #^3 + 60 #^4& , 2, 0], Rational[-1, 2], Rational[ 1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 30] (6 + 6^Rational[1, 2] + 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[1, 2], Rational[ 1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], 0, (Rational[1, 2] (1 + 6^Rational[1, 2]))^ Rational[1, 2]}, { Rational[1, 30] (6 + 6^Rational[1, 2] + 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2], Rational[ 1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, Rational[1, 30] (9 - 6^Rational[1, 2] + 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[ 1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, Rational[1, 30] (-9 + 6^Rational[1, 2] - 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[ 1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 60] (6 + 6^Rational[1, 2] + 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2] + 2 (3 + 108 6^Rational[1, 2] - 6 (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]), 0, Root[ 197037369 - 5651497536 #^2 + 55632772864 #^4 - 243092221952 #^6 + 578722553856 #^8 - 828332834816 #^10 + 727828135936 #^12 - 376229068800 #^14 + 94371840000 #^16& , 3, 0]}}, {{ 0, -0.5, 0}, {0, 0.5, 0}, {-0.8527269428464169, 0.5, 0.5223569286836384}, {-0.5, 0, 1.3132954242635542`}, {-0.8527269428464169, -0.5, 0.5223569286836384}, {0.8527269428464169, 0.5, 0.5223569286836384}, {0.5, 0, 1.3132954242635542`}, { 0.8527269428464169, -0.5, 0.5223569286836384}, { 0, 0.7894276266608717, 0.9571999001908928}, { 0, -0.7894276266608717, 0.9571999001908928}, { 0.7957255978951869, 0, -0.3417905394453557}}], Polygon3DBox[{{1, 2, 11}, {1, 8, 10}, {1, 10, 5}, {1, 11, 8}, {2, 3, 9}, {2, 6, 11}, {2, 9, 6}, {3, 4, 9}, {3, 5, 4}, {4, 5, 10}, {4, 7, 9}, {4, 10, 7}, {6, 7, 8}, {6, 8, 11}, {6, 9, 7}, {7, 10, 8}, { 1, 5, 3, 2}}]], TagBox[ GridBox[{{"87"}, {"\"AugmentedSphenocorona\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{87, "AugmentedSphenocorona"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2552.727272727273, -4747.636363636363}, ImageScaled[{0.5, 0.5}], {360, 312}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], 0, - Root[196249 - 739504 #^2 - 45773760 #^4 + 112811072 #^6 + 220764736 #^8 - 241050368 #^10 - 1829933056 #^12 + 1323041792 #^14 + 5642255872 #^16 - 4412968960 #^18 - 8240873472 #^20 + 6431883264 #^22 + 6638747648 #^24 - 4433969152 #^26 - 3086483456 #^28 + 1246494720 #^30 + 722534400 #^32& , 12, 0]}, { 0, Rational[-1, 2], Root[ 225 - 7440 #^2 + 111664 #^4 - 1002976 #^6 + 5980816 #^8 - 24790592 #^10 + 72449088 #^12 - 146991616 #^14 + 193093472 #^16 - 121877248 #^18 - 69881600 #^20 + 233392640 #^22 - 227413760 #^24 + 103437312 #^26 - 9675776 #^28 - 9646080 #^30 + 2822400 #^32& , 11, 0]}, { 0, Rational[1, 2], Root[ 225 - 7440 #^2 + 111664 #^4 - 1002976 #^6 + 5980816 #^8 - 24790592 #^10 + 72449088 #^12 - 146991616 #^14 + 193093472 #^16 - 121877248 #^18 - 69881600 #^20 + 233392640 #^22 - 227413760 #^24 + 103437312 #^26 - 9675776 #^28 - 9646080 #^30 + 2822400 #^32& , 11, 0]}, { 0, -Root[-81 - 144 # + 3968 #^2 - 29440 #^3 - 57920 #^4 + 625920 #^5 - 6144 #^6 - 4438016 #^7 + 4651520 #^8 + 11030528 #^9 - 24870912 #^10 + 6291456 #^11 + 29999104 #^12 - 42008576 #^13 + 25690112 #^14 - 7864320 #^15 + 983040 #^16& , 7, 0], Root[ 2401 - 282240 #^2 + 13754560 #^4 - 377069824 #^6 + 6727235840 #^8 - 84324296704 #^10 + 772426682368 #^12 - 5262207467520 #^14 + 26761473384448 #^16 - 100903793983488 #^18 + 276682587242496 #^20 - 528565132066816 #^22 + 633482930814976 #^24 - 329536776437760 #^26 - 142452405043200 #^28 + 179608485888000 #^30 + 41617981440000 #^32& , 8, 0]}, { 0, Root[-81 - 144 # + 3968 #^2 - 29440 #^3 - 57920 #^4 + 625920 #^5 - 6144 #^6 - 4438016 #^7 + 4651520 #^8 + 11030528 #^9 - 24870912 #^10 + 6291456 #^11 + 29999104 #^12 - 42008576 #^13 + 25690112 #^14 - 7864320 #^15 + 983040 #^16& , 7, 0], Root[ 2401 - 282240 #^2 + 13754560 #^4 - 377069824 #^6 + 6727235840 #^8 - 84324296704 #^10 + 772426682368 #^12 - 5262207467520 #^14 + 26761473384448 #^16 - 100903793983488 #^18 + 276682587242496 #^20 - 528565132066816 #^22 + 633482930814976 #^24 - 329536776437760 #^26 - 142452405043200 #^28 + 179608485888000 #^30 + 41617981440000 #^32& , 8, 0]}, { 0, -Root[ 125495 + 7459792 # + 114590272 #^2 + 173683520 #^3 - 1314165568 #^4 - 1200348928 #^5 + 6202611712 #^6 + 1850213376 #^7 - 14698614272 #^8 + 2453762048 #^9 + 17003921408 #^10 - 8458223616 #^11 - 8008646656 #^12 + 6489309184 #^13 + 401604608 #^14 - 1238630400 #^15 + 221184000 #^16& , 7, 0], - Root[256 - 110592 #^2 + 12491776 #^4 - 122358272 #^6 - 1040984320 #^8 + 22955173888 #^10 - 54157925888 #^12 - 1102427274624 #^14 + 9203072912224 #^16 - 29118781861632 #^18 + 37490052242112 #^20 + 1334845174432 #^22 - 39976383006224 #^24 + 9052033486080 #^26 + 17011005753600 #^28 + 2852072775000 #^30 + 125581640625 #^32& , 12, 0]}, { 0, Root[125495 + 7459792 # + 114590272 #^2 + 173683520 #^3 - 1314165568 #^4 - 1200348928 #^5 + 6202611712 #^6 + 1850213376 #^7 - 14698614272 #^8 + 2453762048 #^9 + 17003921408 #^10 - 8458223616 #^11 - 8008646656 #^12 + 6489309184 #^13 + 401604608 #^14 - 1238630400 #^15 + 221184000 #^16& , 7, 0], - Root[256 - 110592 #^2 + 12491776 #^4 - 122358272 #^6 - 1040984320 #^8 + 22955173888 #^10 - 54157925888 #^12 - 1102427274624 #^14 + 9203072912224 #^16 - 29118781861632 #^18 + 37490052242112 #^20 + 1334845174432 #^22 - 39976383006224 #^24 + 9052033486080 #^26 + 17011005753600 #^28 + 2852072775000 #^30 + 125581640625 #^32& , 12, 0]}, { Rational[1, 2], 0, - Root[196249 - 739504 #^2 - 45773760 #^4 + 112811072 #^6 + 220764736 #^8 - 241050368 #^10 - 1829933056 #^12 + 1323041792 #^14 + 5642255872 #^16 - 4412968960 #^18 - 8240873472 #^20 + 6431883264 #^22 + 6638747648 #^24 - 4433969152 #^26 - 3086483456 #^28 + 1246494720 #^30 + 722534400 #^32& , 12, 0]}, {- Root[-23 - 56 # + 200 #^2 + 304 #^3 - 776 #^4 + 240 #^5 + 2000 #^6 - 5584 #^7 - 3384 #^8 + 17248 #^9 + 2464 #^10 - 24576 #^11 + 1568 #^12 + 17216 #^13 - 3712 #^14 - 4800 #^15 + 1680 #^16& , 2, 0], Rational[-1, 2], 0}, {- Root[-23 - 56 # + 200 #^2 + 304 #^3 - 776 #^4 + 240 #^5 + 2000 #^6 - 5584 #^7 - 3384 #^8 + 17248 #^9 + 2464 #^10 - 24576 #^11 + 1568 #^12 + 17216 #^13 - 3712 #^14 - 4800 #^15 + 1680 #^16& , 2, 0], Rational[1, 2], 0}, { Root[-23 - 56 # + 200 #^2 + 304 #^3 - 776 #^4 + 240 #^5 + 2000 #^6 - 5584 #^7 - 3384 #^8 + 17248 #^9 + 2464 #^10 - 24576 #^11 + 1568 #^12 + 17216 #^13 - 3712 #^14 - 4800 #^15 + 1680 #^16& , 2, 0], Rational[-1, 2], 0}, { Root[-23 - 56 # + 200 #^2 + 304 #^3 - 776 #^4 + 240 #^5 + 2000 #^6 - 5584 #^7 - 3384 #^8 + 17248 #^9 + 2464 #^10 - 24576 #^11 + 1568 #^12 + 17216 #^13 - 3712 #^14 - 4800 #^15 + 1680 #^16& , 2, 0], Rational[1, 2], 0}}, {{-0.5, 0, -0.8608394343819528}, {0, -0.5, 0.8039970125282816}, { 0, 0.5, 0.8039970125282816}, { 0, -1.283102338831269, 0.18210415445946904`}, { 0, 1.283102338831269, 0.18210415445946904`}, { 0, -0.8547430824889651, -0.721504360056562}, { 0, 0.8547430824889651, -0.721504360056562}, { 0.5, 0, -0.8608394343819528}, {-0.5946333356326385, -0.5, 0}, {-0.5946333356326385, 0.5, 0}, { 0.5946333356326385, -0.5, 0}, {0.5946333356326385, 0.5, 0}}], Polygon3DBox[{{1, 6, 9}, {1, 7, 8}, {1, 8, 6}, {1, 9, 10}, {1, 10, 7}, {2, 4, 11}, {2, 9, 4}, {3, 5, 10}, {3, 12, 5}, {4, 6, 11}, {4, 9, 6}, {5, 7, 10}, {5, 12, 7}, {6, 8, 11}, {7, 12, 8}, {8, 12, 11}, {2, 3, 10, 9}, {2, 11, 12, 3}}]], TagBox[ GridBox[{{"88"}, {"\"Sphenomegacorona\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{88, "Sphenomegacorona"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -4747.636363636363}, ImageScaled[{0.5, 0.5}], {360, 465}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], Rational[-1, 2], Root[ 5308416 - 60378624 #^2 + 354890305 #^4 - 1551068256 #^6 + 5171166400 #^8 - 12174590464 #^10 + 19238761984 #^12 - 19788308480 #^14 + 12682706944 #^16 - 4601020416 #^18 + 722534400 #^20& , 7, 0]}, { Rational[-1, 2], 0, - Root[529 - 15032 #^2 + 105616 #^4 - 303984 #^6 + 415496 #^8 - 1085888 #^10 + 5304000 #^12 - 13361088 #^14 + 17041168 #^16 - 10916736 #^18 + 2822400 #^20& , 7, 0]}, { Rational[-1, 2], Rational[1, 2], Root[ 5308416 - 60378624 #^2 + 354890305 #^4 - 1551068256 #^6 + 5171166400 #^8 - 12174590464 #^10 + 19238761984 #^12 - 19788308480 #^14 + 12682706944 #^16 - 4601020416 #^18 + 722534400 #^20& , 7, 0]}, { 0, -Root[ 345 + 4464 # + 12976 #^2 - 10560 #^3 - 47008 #^4 + 68352 #^5 - 3328 #^6 - 207872 #^7 + 387328 #^8 - 270336 #^9 + 65536 #^10& , 4, 0], Root[ 6561 - 347328 #^2 + 6973168 #^4 - 81591424 #^6 + 690379360 #^8 - 4494628864 #^10 + 21900300032 #^12 - 78744037376 #^14 + 200126890240 #^16 - 298144628736 #^18 + 184968806400 #^20& , 6, 0]}, {0, Root[ 345 + 4464 # + 12976 #^2 - 10560 #^3 - 47008 #^4 + 68352 #^5 - 3328 #^6 - 207872 #^7 + 387328 #^8 - 270336 #^9 + 65536 #^10& , 4, 0], Root[ 6561 - 347328 #^2 + 6973168 #^4 - 81591424 #^6 + 690379360 #^8 - 4494628864 #^10 + 21900300032 #^12 - 78744037376 #^14 + 200126890240 #^16 - 298144628736 #^18 + 184968806400 #^20& , 6, 0]}, {0, - Root[67 - 26384 # + 99216 #^2 - 9920 #^3 - 426592 #^4 + 643840 #^5 + 70912 #^6 - 1201152 #^7 + 1514240 #^8 - 860160 #^9 + 196608 #^10& , 3, 0], - Root[1600 - 309888 #^2 + 10362496 #^4 - 150640320 #^6 + 1108772352 #^8 - 4874307760 #^10 + 13891942264 #^12 - 26107499520 #^14 + 31258427913 #^16 - 21590613504 #^18 + 6502809600 #^20& , 6, 0]}, { 0, Root[67 - 26384 # + 99216 #^2 - 9920 #^3 - 426592 #^4 + 643840 #^5 + 70912 #^6 - 1201152 #^7 + 1514240 #^8 - 860160 #^9 + 196608 #^10& , 3, 0], - Root[1600 - 309888 #^2 + 10362496 #^4 - 150640320 #^6 + 1108772352 #^8 - 4874307760 #^10 + 13891942264 #^12 - 26107499520 #^14 + 31258427913 #^16 - 21590613504 #^18 + 6502809600 #^20& , 6, 0]}, { Rational[1, 2], Rational[-1, 2], Root[ 5308416 - 60378624 #^2 + 354890305 #^4 - 1551068256 #^6 + 5171166400 #^8 - 12174590464 #^10 + 19238761984 #^12 - 19788308480 #^14 + 12682706944 #^16 - 4601020416 #^18 + 722534400 #^20& , 7, 0]}, { Rational[1, 2], 0, - Root[529 - 15032 #^2 + 105616 #^4 - 303984 #^6 + 415496 #^8 - 1085888 #^10 + 5304000 #^12 - 13361088 #^14 + 17041168 #^16 - 10916736 #^18 + 2822400 #^20& , 7, 0]}, { Rational[1, 2], Rational[1, 2], Root[ 5308416 - 60378624 #^2 + 354890305 #^4 - 1551068256 #^6 + 5171166400 #^8 - 12174590464 #^10 + 19238761984 #^12 - 19788308480 #^14 + 12682706944 #^16 - 4601020416 #^18 + 722534400 #^20& , 7, 0]}, {- Root[-95 + 76 # + 756 #^2 - 1984 #^3 + 376 #^4 + 8192 #^5 - 13088 #^6 - 5632 #^7 + 29456 #^8 - 24768 #^9 + 6720 #^10& , 3, 0], Rational[-1, 2], 0}, {- Root[-95 + 76 # + 756 #^2 - 1984 #^3 + 376 #^4 + 8192 #^5 - 13088 #^6 - 5632 #^7 + 29456 #^8 - 24768 #^9 + 6720 #^10& , 3, 0], Rational[1, 2], 0}, { Root[-95 + 76 # + 756 #^2 - 1984 #^3 + 376 #^4 + 8192 #^5 - 13088 #^6 - 5632 #^7 + 29456 #^8 - 24768 #^9 + 6720 #^10& , 3, 0], Rational[-1, 2], 0}, { Root[-95 + 76 # + 756 #^2 - 1984 #^3 + 376 #^4 + 8192 #^5 - 13088 #^6 - 5632 #^7 + 29456 #^8 - 24768 #^9 + 6720 #^10& , 3, 0], Rational[1, 2], 0}}, {{-0.5, -0.5, 0.9762060878207004}, {-0.5, 0, -0.8384380274642825}, {-0.5, 0.5, 0.9762060878207004}, { 0, -1.101296042047277, 0.35295407633716075`}, { 0, 1.101296042047277, 0.35295407633716075`}, { 0, -0.8356590717227328, -0.6111190536673023}, { 0, 0.8356590717227328, -0.6111190536673023}, {0.5, -0.5, 0.9762060878207004}, {0.5, 0, -0.8384380274642825}, {0.5, 0.5, 0.9762060878207004}, {-0.7168448157135572, -0.5, 0}, {-0.7168448157135572, 0.5, 0}, { 0.7168448157135572, -0.5, 0}, {0.7168448157135572, 0.5, 0}}], Polygon3DBox[{{1, 4, 8}, {1, 11, 4}, {2, 6, 11}, {2, 7, 9}, {2, 9, 6}, {2, 11, 12}, {2, 12, 7}, {3, 5, 12}, {3, 10, 5}, {4, 6, 13}, { 4, 11, 6}, {4, 13, 8}, {5, 7, 12}, {5, 10, 14}, {5, 14, 7}, {6, 9, 13}, {7, 14, 9}, {9, 14, 13}, {1, 3, 12, 11}, {1, 8, 10, 3}, {8, 13, 14, 10}}]], TagBox[ GridBox[{{"89"}, {"\"Hebesphenomegacorona\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{89, "Hebesphenomegacorona"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -4747.636363636363}, ImageScaled[{0.5, 0.5}], {360, 445}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[-1, 2], 0, Root[ 14641 + 631136 #^2 - 4124152 #^4 + 48951424 #^6 - 111801072 #^8 - 526660608 #^10 + 166375424 #^12 + 799604736 #^14 + 70647808 #^16 - 79691776 #^18 - 352321536 #^20 - 268435456 #^22 + 268435456 #^24& , 7, 0]}, { Rational[-1, 2], - Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 + 4352 #^5 + 1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 - 1664 #^10 - 512 #^11 + 256 #^12& , 5, 0], Root[ 5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 - 421654272 #^8 + 36028416 #^10 + 4095672320 #^12 - 3897556992 #^14 - 17811111936 #^16 + 8925478912 #^18 + 41070624768 #^20 + 25769803776 #^22 + 4294967296 #^24& , 7, 0]}, { Rational[-1, 2], Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 + 4352 #^5 + 1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 - 1664 #^10 - 512 #^11 + 256 #^12& , 5, 0], Root[ 5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 - 421654272 #^8 + 36028416 #^10 + 4095672320 #^12 - 3897556992 #^14 - 17811111936 #^16 + 8925478912 #^18 + 41070624768 #^20 + 25769803776 #^22 + 4294967296 #^24& , 7, 0]}, { 0, Rational[-1, 2], - Root[14641 + 631136 #^2 - 4124152 #^4 + 48951424 #^6 - 111801072 #^8 - 526660608 #^10 + 166375424 #^12 + 799604736 #^14 + 70647808 #^16 - 79691776 #^18 - 352321536 #^20 - 268435456 #^22 + 268435456 #^24& , 7, 0]}, { 0, Rational[1, 2], - Root[14641 + 631136 #^2 - 4124152 #^4 + 48951424 #^6 - 111801072 #^8 - 526660608 #^10 + 166375424 #^12 + 799604736 #^14 + 70647808 #^16 - 79691776 #^18 - 352321536 #^20 - 268435456 #^22 + 268435456 #^24& , 7, 0]}, { 0, -Root[-3337 + 11048 # + 129208 #^2 + 31520 #^3 - 688112 #^4 - 14080 #^5 + 1587456 #^6 - 711680 #^7 - 1328896 #^8 + 1230848 #^9 - 83968 #^10 - 221184 #^11 + 61440 #^12& , 7, 0], - Root[2209 - 1436544 #^2 + 216014664 #^4 + 376397056 #^6 - 12078370032 #^8 - 65149629440 #^10 - 258660978688 #^12 - 50417041408 #^14 + 1208931975168 #^16 + 2202231898112 #^18 + 1595228028928 #^20 + 512980156416 #^22 + 60397977600 #^24& , 7, 0]}, {0, Root[-3337 + 11048 # + 129208 #^2 + 31520 #^3 - 688112 #^4 - 14080 #^5 + 1587456 #^6 - 711680 #^7 - 1328896 #^8 + 1230848 #^9 - 83968 #^10 - 221184 #^11 + 61440 #^12& , 7, 0], - Root[2209 - 1436544 #^2 + 216014664 #^4 + 376397056 #^6 - 12078370032 #^8 - 65149629440 #^10 - 258660978688 #^12 - 50417041408 #^14 + 1208931975168 #^16 + 2202231898112 #^18 + 1595228028928 #^20 + 512980156416 #^22 + 60397977600 #^24& , 7, 0]}, {Rational[1, 2], 0, Root[ 14641 + 631136 #^2 - 4124152 #^4 + 48951424 #^6 - 111801072 #^8 - 526660608 #^10 + 166375424 #^12 + 799604736 #^14 + 70647808 #^16 - 79691776 #^18 - 352321536 #^20 - 268435456 #^22 + 268435456 #^24& , 7, 0]}, { Rational[1, 2], - Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 + 4352 #^5 + 1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 - 1664 #^10 - 512 #^11 + 256 #^12& , 5, 0], Root[ 5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 - 421654272 #^8 + 36028416 #^10 + 4095672320 #^12 - 3897556992 #^14 - 17811111936 #^16 + 8925478912 #^18 + 41070624768 #^20 + 25769803776 #^22 + 4294967296 #^24& , 7, 0]}, { Rational[1, 2], Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 + 4352 #^5 + 1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 - 1664 #^10 - 512 #^11 + 256 #^12& , 5, 0], Root[ 5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 - 421654272 #^8 + 36028416 #^10 + 4095672320 #^12 - 3897556992 #^14 - 17811111936 #^16 + 8925478912 #^18 + 41070624768 #^20 + 25769803776 #^22 + 4294967296 #^24& , 7, 0]}, {- Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 + 4352 #^5 + 1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 - 1664 #^10 - 512 #^11 + 256 #^12& , 5, 0], Rational[-1, 2], - Root[5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 - 421654272 #^8 + 36028416 #^10 + 4095672320 #^12 - 3897556992 #^14 - 17811111936 #^16 + 8925478912 #^18 + 41070624768 #^20 + 25769803776 #^22 + 4294967296 #^24& , 7, 0]}, {-Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 + 4352 #^5 + 1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 - 1664 #^10 - 512 #^11 + 256 #^12& , 5, 0], Rational[1, 2], - Root[5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 - 421654272 #^8 + 36028416 #^10 + 4095672320 #^12 - 3897556992 #^14 - 17811111936 #^16 + 8925478912 #^18 + 41070624768 #^20 + 25769803776 #^22 + 4294967296 #^24& , 7, 0]}, {Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 + 4352 #^5 + 1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 - 1664 #^10 - 512 #^11 + 256 #^12& , 5, 0], Rational[-1, 2], - Root[5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 - 421654272 #^8 + 36028416 #^10 + 4095672320 #^12 - 3897556992 #^14 - 17811111936 #^16 + 8925478912 #^18 + 41070624768 #^20 + 25769803776 #^22 + 4294967296 #^24& , 7, 0]}, {Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 + 4352 #^5 + 1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 - 1664 #^10 - 512 #^11 + 256 #^12& , 5, 0], Rational[1, 2], - Root[5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 - 421654272 #^8 + 36028416 #^10 + 4095672320 #^12 - 3897556992 #^14 - 17811111936 #^16 + 8925478912 #^18 + 41070624768 #^20 + 25769803776 #^22 + 4294967296 #^24& , 7, 0]}, {-Root[-3337 + 11048 # + 129208 #^2 + 31520 #^3 - 688112 #^4 - 14080 #^5 + 1587456 #^6 - 711680 #^7 - 1328896 #^8 + 1230848 #^9 - 83968 #^10 - 221184 #^11 + 61440 #^12& , 7, 0], 0, Root[ 2209 - 1436544 #^2 + 216014664 #^4 + 376397056 #^6 - 12078370032 #^8 - 65149629440 #^10 - 258660978688 #^12 - 50417041408 #^14 + 1208931975168 #^16 + 2202231898112 #^18 + 1595228028928 #^20 + 512980156416 #^22 + 60397977600 #^24& , 7, 0]}, {Root[-3337 + 11048 # + 129208 #^2 + 31520 #^3 - 688112 #^4 - 14080 #^5 + 1587456 #^6 - 711680 #^7 - 1328896 #^8 + 1230848 #^9 - 83968 #^10 - 221184 #^11 + 61440 #^12& , 7, 0], 0, Root[2209 - 1436544 #^2 + 216014664 #^4 + 376397056 #^6 - 12078370032 #^8 - 65149629440 #^10 - 258660978688 #^12 - 50417041408 #^14 + 1208931975168 #^16 + 2202231898112 #^18 + 1595228028928 #^20 + 512980156416 #^22 + 60397977600 #^24& , 7, 0]}}, {{-0.5, 0, 1.104437942079934}, {-0.5, -0.7671311139834615, 0.46294760391536477`}, {-0.5, 0.7671311139834615, 0.46294760391536477`}, {0, -0.5, -1.104437942079934}, { 0, 0.5, -1.104437942079934}, { 0, -1.1264831470789796`, -0.3250029759499703}, { 0, 1.1264831470789796`, -0.3250029759499703}, { 0.5, 0, 1.104437942079934}, {0.5, -0.7671311139834615, 0.46294760391536477`}, {0.5, 0.7671311139834615, 0.46294760391536477`}, {-0.7671311139834615, -0.5, \ -0.46294760391536477`}, {-0.7671311139834615, 0.5, -0.46294760391536477`}, { 0.7671311139834615, -0.5, -0.46294760391536477`}, { 0.7671311139834615, 0.5, -0.46294760391536477`}, {-1.1264831470789796`, 0, 0.3250029759499703}, { 1.1264831470789796`, 0, 0.3250029759499703}}], Polygon3DBox[{{1, 3, 15}, {1, 15, 2}, {2, 6, 9}, {2, 11, 6}, {2, 15, 11}, {3, 7, 12}, {3, 10, 7}, {3, 12, 15}, {4, 6, 11}, {4, 13, 6}, {5, 7, 14}, {5, 12, 7}, {6, 13, 9}, {7, 10, 14}, {8, 9, 16}, { 8, 16, 10}, {9, 13, 16}, {10, 16, 14}, {11, 15, 12}, {13, 14, 16}, {1, 2, 9, 8}, {1, 8, 10, 3}, {4, 5, 14, 13}, {4, 11, 12, 5}}]], TagBox[ GridBox[{{"90"}, {"\"Disphenocingulum\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{90, "Disphenocingulum"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -4747.636363636363}, ImageScaled[{0.5, 0.5}], {360, 389}, ContentSelectable->True]}, {InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{Rational[-1, 2] GoldenRatio^2, 0, Rational[-1, 2]}, { Rational[-1, 2] GoldenRatio^2, 0, Rational[1, 2]}, { Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] GoldenRatio}, { Rational[-1, 2], Rational[-1, 2], Rational[1, 2] GoldenRatio}, { Rational[-1, 2], Rational[1, 2], Rational[-1, 2] GoldenRatio}, { Rational[-1, 2], Rational[1, 2], Rational[1, 2] GoldenRatio}, { 0, Rational[-1, 2] GoldenRatio, 0}, { 0, Rational[1, 2] GoldenRatio, 0}, { Rational[1, 2], Rational[-1, 2], Rational[-1, 2] GoldenRatio}, { Rational[1, 2], Rational[-1, 2], Rational[1, 2] GoldenRatio}, { Rational[1, 2], Rational[1, 2], Rational[-1, 2] GoldenRatio}, { Rational[1, 2], Rational[1, 2], Rational[1, 2] GoldenRatio}, { Rational[1, 2] GoldenRatio^2, 0, Rational[-1, 2]}, { Rational[1, 2] GoldenRatio^2, 0, Rational[ 1, 2]}}, {{-1.3090169943749475`, 0, -0.5}, {-1.3090169943749475`, 0, 0.5}, {-0.5, -0.5, -0.8090169943749475}, {-0.5, -0.5, 0.8090169943749475}, {-0.5, 0.5, -0.8090169943749475}, {-0.5, 0.5, 0.8090169943749475}, {0, -0.8090169943749475, 0}, { 0, 0.8090169943749475, 0}, {0.5, -0.5, -0.8090169943749475}, { 0.5, -0.5, 0.8090169943749475}, {0.5, 0.5, -0.8090169943749475}, { 0.5, 0.5, 0.8090169943749475}, {1.3090169943749475`, 0, -0.5}, { 1.3090169943749475`, 0, 0.5}}], Polygon3DBox[{{6, 4, 10, 12}, {4, 6, 2}, {10, 4, 7}, {12, 10, 14}, { 6, 12, 8}, {2, 6, 8, 5, 1}, {4, 2, 1, 3, 7}, {14, 10, 7, 9, 13}, { 12, 14, 13, 11, 8}, {3, 1, 5}, {7, 3, 9}, {11, 13, 9}, {8, 11, 5}, {5, 11, 9, 3}}]], TagBox[ GridBox[{{"91"}, {"\"Bilunabirotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{91, "Bilunabirotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {196.36363636363637, -5306.181818181817}, ImageScaled[{0.5, 0.5}], {360, 318}, ContentSelectable->True], InsetBox[ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[ NCache[{{ Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 15^Rational[1, 2]), Rational[1, 32] 3^Rational[-1, 2] (-13 - 5^Rational[1, 2])}, { Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]), Rational[1, 32] 3^Rational[-1, 2] (-29 + 15 5^Rational[1, 2])}, {-1, 0, Rational[1, 32] (3^Rational[1, 2] + 5 15^Rational[1, 2])}, { Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (-5 - 5^Rational[1, 2]), Rational[1, 32] 3^Rational[-1, 2] (-13 - 5^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[1, 32] (3^Rational[1, 2] + 5 15^Rational[1, 2])}, { Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 32] 3^Rational[-1, 2] (-45 - 5^Rational[1, 2])}, { Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[1, 32] (3^Rational[1, 2] + 5 15^Rational[1, 2])}, { Rational[-1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 32] 3^Rational[-1, 2] (-13 - 5^Rational[1, 2])}, { 0, Rational[1, 2] 3^Rational[-1, 2] (-3 - 5^Rational[1, 2]), Rational[1, 32] 3^Rational[-1, 2] (-29 + 15 5^Rational[1, 2])}, { 0, 3^Rational[-1, 2], Rational[1, 32] 3^Rational[-1, 2] (-45 - 5^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[1, 32] (3^Rational[1, 2] + 5 15^Rational[1, 2])}, { Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 32] 3^Rational[-1, 2] (-45 - 5^Rational[1, 2])}, { Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[1, 32] (3^Rational[1, 2] + 5 15^Rational[1, 2])}, { Rational[ 1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^ Rational[1, 2], Rational[1, 32] 3^Rational[-1, 2] (-13 - 5^Rational[1, 2])}, { Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (-5 - 5^Rational[1, 2]), Rational[1, 32] 3^Rational[-1, 2] (-13 - 5^Rational[1, 2])}, { 1, 0, Rational[1, 32] (3^Rational[1, 2] + 5 15^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 12] (3^Rational[1, 2] - 15^Rational[1, 2]), Rational[1, 32] 3^Rational[-1, 2] (-13 - 5^Rational[1, 2])}, { Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]), Rational[1, 32] 3^Rational[-1, 2] (-29 + 15 5^Rational[ 1, 2])}}, {{-1.3090169943749475`, -0.17841104488654497`, \ -0.27489212338127944`}, {-1.3090169943749475`, 0.7557613140761709, 0.08192996639181065}, {-1, 0, 0.6592802355814363}, {-0.8090169943749475, -1.0444364486709838`, \ -0.27489212338127944`}, {-0.5, -0.8660254037844386, 0.6592802355814363}, {-0.5, -0.2886751345948129, \ -0.8522423925709052}, {-0.5, 0.8660254037844386, 0.6592802355814363}, {-0.5, 1.2228474935575286`, -0.27489212338127944`}, { 0, -1.5115226281523417`, 0.08192996639181065}, { 0, 0.5773502691896258, -0.8522423925709052}, { 0.5, -0.8660254037844386, 0.6592802355814363}, { 0.5, -0.2886751345948129, -0.8522423925709052}, {0.5, 0.8660254037844386, 0.6592802355814363}, {0.5, 1.2228474935575286`, -0.27489212338127944`}, { 0.8090169943749475, -1.0444364486709838`, -0.27489212338127944`}, \ {1, 0, 0.6592802355814363}, { 1.3090169943749475`, -0.17841104488654497`, \ -0.27489212338127944`}, {1.3090169943749475`, 0.7557613140761709, 0.08192996639181065}}], Polygon3DBox[{{2, 8, 10, 6, 1}, {8, 2, 7}, {2, 3, 7}, {3, 2, 1}, {3, 1, 4, 5}, {4, 1, 6}, {9, 4, 6, 12, 15}, {5, 4, 9}, {11, 5, 9}, { 11, 9, 15}, {17, 15, 12}, {11, 15, 17, 16}, {10, 12, 6}, {10, 14, 18, 17, 12}, {18, 16, 17}, {18, 13, 16}, {13, 18, 14}, {8, 7, 13, 14}, {8, 14, 10}, {13, 7, 3, 5, 11, 16}}]], TagBox[ GridBox[{{"92"}, {"\"TriangularHebesphenorotunda\""}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], Annotation[#, Column[{92, "TriangularHebesphenorotunda"}], "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], {589.0909090909091, -5306.181818181817}, ImageScaled[{0.5, 0.5}], {360, 281}, ContentSelectable->True], TagBox[ InsetBox["", {981.818181818182, -5306.181818181817}, {Center, Center}, {360.0000000000001, 512.}], "InsetString"], TagBox[ InsetBox["", {1374.5454545454545, -5306.181818181817}, { Center, Center}, {360.0000000000002, 512.}], "InsetString"], TagBox[ InsetBox["", {1767.2727272727275, -5306.181818181817}, { Center, Center}, {360.0000000000002, 512.}], "InsetString"], TagBox[InsetBox["", {2160., -5306.181818181817}, {Center, Center}, {360., 512.}], "InsetString"], TagBox[ InsetBox["", {2552.727272727273, -5306.181818181817}, { Center, Center}, {359.99999999999955, 512.}], "InsetString"], TagBox[ InsetBox["", {2945.4545454545455, -5306.181818181817}, { Center, Center}, {360., 512.}], "InsetString"], TagBox[ InsetBox["", {3338.1818181818185, -5306.181818181817}, { Center, Center}, {360., 512.}], "InsetString"], TagBox[ InsetBox["", {3730.9090909090914, -5306.181818181817}, { Center, Center}, {360., 512.}], "InsetString"]}}, {}}, ImageSize->500, PlotRangePadding->{6, 5}]], "Output", CellLabel->"Out[237]=",ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzsvQmUXOd131mpvbq7et/XAhroRmNfGsRONEiC4CJwA0kRFEU2aZqiForU YlK7WqatoWRria3NkmUoJ1JsJVYsW5HlxIrbTia2kjOJ7UwUZbGnJpNlMnG2 cTLJzGRy3tz//e793n2vbhVA2WfOnBzjnFfoqu763rfc392+5V1+8p3P/uBz T77zjT/wZOvS25984dk3/sA7Wrc//3b6qPSnCoXSvywUKh9vFcr0c1Io9Hj5 g0LhTz79k0//v/r0EL/WW/SyRVcbvx4ZnkrkZ3y20fnlvxS+vJ9fh/DlTbq2 R+oDycrYXHJsdleyONlKXnrhZ5JXtr7J/9+28Wiys3XAFtxyqvX1UPIavza0 5Gv4dbPa4JKfOXZHcvXAeb1DoYp7FMrxLlR93KG41Vn610Lpq/xa0UbHki+v 3FQoovxCKXOHPr5DLd4BV66D8nf6arjTruydYg/hTmXnTkN8p6rtsba0H99/ TTpa2i3bcsdkZm5JK5SrywOhLjvSumzqF9HyjdYBumNnXcZMqx+6721uq2/D S5EHsrmlhU5Pzyd3XLqSvPTijyWf+NjPJpuPP5/8wJvfm3ztV7+H/3sN/72h qov8Wm3JbTLDT1WsObWdzo2RyNq2vdk5LrZku4/Gm6pLZaGSqOz2t/8neofX RnL40MnkU1/6leQ3//5/4ksaoF296TTgcmjAfHbc20O1vjjuDaf2CzLuz2y+ YmV4S+5yExdX6xh309OFulTdVJpELLyi4nfd91gX+bg71HkmW+coq5CPfqfO O3I9fuzwbR3ycZDLrOtAdhORPqn7z37lr6FzudY1fq3ETpd2bzidfkdowGTa gM2CEXCSmkLTNAD6DQ1Y6Q3bns5O53qjg0VaCoNScUjOkePnuMp90unv+/Dn 8VmXTr891Hk8rXNGyiEog7k6o7Z7jbIDlPQ5emS5s67tvICMSl0VR9RyINvJ vdC8NVR4lF/LrRdO3mGletip6wF+LUEwNgvyb/EGBIKkYMIR5sGcQPSg8EK4 2YjUFTcZawwk84Mj3ep6UOpKcrCldQ0QVzdtHc3gzzh1HLkh4M5nqofyk9t3 7kueOnQW4z/kVO+QVI+G/JpWL8drohfkct4BavzGgTob7jAcOgB3SAZrjeSF my7y9eDaejLbHM0zhSoedio6xa81rWh7sq8vuXt5dzLWaCSfevGt6MBYYQvS 1A2BdNrWtcQQoX5UT9LteC0lJ+eW1XMgOjsrfUQqTdp3WysdlEljw1b4R85e SD578S7u5X/9V7+e/OLHf4QrP+eQNWMkQchKOit/MtxsKFSeOxpCimqXpfIi tFztulP5o1J50ghtrXzQKkHwUebKyCgqX0TtSbGiHYvTk9wGbQeEG5KjUg0Y 0fFoxRy/lrgtXSTmRKYhTJuOQsVpSNVpyLo0pGD+GYJ56CEyb1s/UeaGlPBj cubQfjSCBhuvpeS3v/L55MqlO7gx0w6i2hi8n55b2u7emMHQGDQ32Ts+y82o SmOEVW5GxWnMcWkMvW9pY4acxpBYVZ3GlExj8BkaM+kwPW8QueOBx5LDJ85t dLYnuA+FZiplPEBoSV3aI0hLSzrbc5PTHumfTYMIlRcaA1xefOIRbkZFGoOG QL+jGeM9GgOENt/6nuSTX/6V7es1Bjdn5YlmNGSITGNitEAVPyltIDu/oW2Q Yvg+p2bngQYV09mGqrTh6qVbGHPUfszRWfOiZPGe6p/8+j/+P3RQ8g05Hmow kI5Ke7jex03oFw0AxUXulzbglGNQ5eus91BhVL1PGgDswTaqXpMGoEHAAVX3 PAJtAAbl537973MDZCB6N4BFWpkfMMyrCJ1yTKytPbq/W+3rUnvRuFzvkR5w Q1MR3Kg9KQa8luIwOC05Fj7tT4ciquGmacnk8ChsRGyJNXIDRh5H63UWJG0J QAfJaEPDtAQ6F20YlpbguxJrZNQU1TzTknd95KfifXu2JKOHB0QbQ3WhJT/9 wgeT1dYau8Inr9OiEzNTyeP7DkY0jAUhYU11lVqRwa54Z1tUuv7YHA2f9oXa 4K+iMm5Ki9DC/a1dyS9t/WluFUlcbJG16QOmjMf2rkLC3BYNOKak2RX2UlRY tkU9xijbIh4jjEnaoiq38Pn7XsctwvWjm89BbZ1wbL1osOTOHUs8TGRGoha2 JqXpmJSBrgqgZDUYaaLrDtOR8GnDCA20F5ozKAjBhcTwUINIlPFa0oZlbEzB /JMh45a99eghKAm3dUOOjelzFESv1vUYMmldPdSmVTC6etBYUBFCKjG07urG HRxZdvMIpHXt8wuzyU/eenOye2TYtaDDxvrAMQvpie5Kw6q/qrSO3sf75lp3 ONM6Hjs1qYPGhUZr0K6KtA6tRcLCOm+drStvT/f3c+uAHCmRmtPAEWmghAPc tFoPHeI1sMfwSQNr6fBpPEOCk+p3CCOaVnUaeMxxHqSBbL3QQFykU2qOARt1 DFi1h0qxSrJ2/RE8lGlgJggaNB4r1D6aVncaeLSrc1HZQnkfOnMTNxAkwrhV nVaO5YwbDR1JS3cdYxVn7frDKK2smmFUUzDkyKm2UkxCppWdTkhl07ZSdU3V MeHjRpMeP3SUNWn5BnVN/fpjeTDTyox58IS14WjSI13NeWglSFSBJWeFxqjT CE469qLk6JxerewxltLKSmjlpjeWVmL7nVZ6uYbQyupGvpWie8pOQ6clSDGm Q3VOYcHRN33XH8ID4dNyKqjRXAxL46Bgbz18EzdrQBoHi48sqs34WP8lmPoK m3ptGC4IqhcSz/BrOQYtomh6NarHiGUbxSOmVmLYkcumYwMPdvVfqqxXbKNE z5SkXTR43A60aNbEMlAzpEbiSFnF2X/9kdqfaZTNcrliOOQozoNd3ZZqe+/Y aKZREEMarZJjAqck0AFv0J/4HCLamp9g3mACqaFzjursv/7gSTtL4XXLGzzr wAw77TyQmvhcO0vRxNNFrh1eqxwFIVumF+I7su8TEo6inTD3GFS0cePE3mTr rQ8l7d/4FBWR/N5XSdDpZ/5M2o7BJVw79c2AdIAdglwH7OvsALWQnvSOOB2w v3sHWBcgdoDonNgBYilHJaGQ74DNK+eTax99U53bXo1tR79o+4nYiR7NJ3nY uqHmZxwET85HHdO5N4VXpx5sCohNJhpe4teKxvO26eKmp22HpjJtH8yNO34l bSffIjQct0JSAk1uXn/c92YaznmevDW1gj/m2JldeC3KXDNaLjNdSWtpLtk4 fwKqTBKfVouJHJRVk2nquGn6AJDbPtj+ygfHc31g2Kcad2ruAYlhkKwhBYDP t643/m43WNdp3OmGJTP1pPOU9LsiuoGas/n4A8m1L76SJP/lHyXt39tu715m pTvUFZByBESscV+XjkEvUMfMOh1z132PIfcp81hZ7d+Q6EA7BvnRxcXZ5OzZ 49c6OyirIDGkHYbA6ocJx2TP8ms9AoLP0XkiJsnWB54j5+LLFXQRO8QPbKrQ DhmOxG0RjkqaTUIPSRqyFo0EdAdLYtpNhZb0E/HEMmWVZ8OxHlVx2dBP0Cja T1cfvTf59Kd/JPmd3/3L7Z07F31vQPorYzi9iGNK+gsuD/oGPTXRo79Umqi/ 6tJf9DZatxEZJg2cU6kKiRAYVhKfQqmLroVSpf5Z6a1rq9JbkDJIUJosqHBv oQdFotBTVIN/++/+Hv299FjLUUfSbcVQf/xFRyRqOZx2zNCw023Q0blu65du A4vabaNGzCTSETGrsxihe7qo5v09VHNYZtDIJL1xaR+BSPTTS+96E/1t2kcX L57z+uhgZx9pNtZDccbpo75UZde4k2Q5SKaTqGdIVtNeuvOO8xu45bjIdKcu ryBDE70yUdgUU6Jrmp7G5igJ752uSL7xjWtUYqY7NpzuOJTpDvxFjJQ80maN 6b758BlOWFd7qW7WRJAY7opR6RBSVlsqNtIhbDU82tBodMEJfq1l3DZ8xza4 HhrcfuUj797Q8q/f4Hwq0UZPcxJDGV8lrjrroYYnHbUyYfhQd0YbCrWMEUcT T/FrCaPP8KNJDRlJamjsOD8NVTR3yTfMCvacZDHQMDQWjXP044wDenBQq1Y/ xviDGnFa6o9BwsCg5jIwUGTd6n8kU3/8VQwimo4kBjBrXH/YSbRBuWFte/5E Yd7hbzpUno205mM0J0MaWisPZU0SxdWuXb/yRzsrrx5w03EEJyUTiMpDG+Nz ow5LRgIgVGjFrIOOtIWF2OYjcm1ByaQCuBXVVCV0i+aOZdpyzWuLFaRRMxD4 DAOh7VGvoSY1Ya+BhAtNmZYGkZDFHMQsv1YykS0GicqKWIB/MJ9rDWyi15r1 TGsyvumAI1bDXcRKbDq3pl9qwqMVnNLCpBE1cU4Lc6E1m3lRw6ce5JXrt+Z4 Z2vUMRpw5Kxp5AytycnZsBF2VdHjDjMLfLtyJoti2mBBvwELfFOmDZq7yrTB zFCFFGQRTaAOysOC4Rh3WjHm0BJaUckk1OH+Iidw0sG+dH3reSLTlIyf2u8I V81YTxEusgAQ7pKiwvWYclo04ijiRSNgyj98CPSKtgi/o3bYFvUyj9Ki4Hpj 9MC6q8PKvWVrwWnDkANJK8hWNCaQMfr6CYf20vWN4Mke1e+zzm+cznUkqmXu vfnw7ah+rLqNq6Tq0ZTkqm7RLl6/6qds1TE8oECqXmONi6pCH0GcrHbdZeoL 842aNh0HZKeIKURF6ipeVdUyzJfYulwdz3TUkbpURL3Koo4uxueqL6lOe5zq efFDWGYalJo4flK9iuUymq5c3c7aum1q3RqmbtAqixPN5N1X1pNvvv9eFLrP sbQNR0rDUvsSF4uuI0mRupUjYX4oe85Wi7uUIKIBDWtwABSGFtX67LO3lJI/ /Nk30q3/3k88xk3GDfY6Vaw76m23jC5uoa7kcamiUuRX8Wa3imWzogOOGKp5 du8seo76M63nYxcPda1n1ZHClXCvayoltp74LtVTLUeveqpfIuswK1H69s9P Jq87v8r1bOTqCVr2Or5I2RHHVTPkuCCOx1OL1y74axXPy9d5vju6G1o5FT+q UFPqhj5Vxb9mLCoiCdSq6BjksIOF185uaf2MRjhowmlN1HSp7oZUtxKra6pJ RifUEf2ZrWPVej98iSweyFZt21aN6rJqojitGklBW0Z006niLVLFsn7CF1Vv TGqHDtUocU0kSc2OeJdHsrXSFJ3OCwSNz64At9Op1UZnxS6GehWdss04D0st Ce/I5R7DJXWOqpng3bE/7w3rNL5VZH+lqhmltvRxlyreGaoYpnsrsWCjBSk4 DPUTjcg125UTINMXsiS66wCPGm0vXy0UGSoOi1Te8hUNm49khU+67NxWdMCp 6FKnOOUHTYjsOvb9jkQWwg6HawUfmvtDZc3iShTc3jk9RLRSdfuM2rn58E5W O7NOTe88f7hdMBtaLvUe/9KrZ+ehUNOhbLfymEHvgPG6oyMnUkmrWEmLt7mH C+xzheD64DwSajWaHZjtQhacqqMgh29gvHM3+0a42UR6s81CTrroZmVzMxSM 23iSIY3b6nKzb4Wb5XdPWDEuOlqrau6EpnpdnrvTr4Y7hW0kcdk3ZBAlF6Fu qAGicOLlAN2t334t3GApN9J75oO3AnpQOtSX6ZBcIX8tFCKepxbitec3w1/m Pv3/0WbWP/n0Tz79b/TTF/nHqBuv4fOh4emkkFrL8PK8+dLb+cfObaP44sEj dySXH3iJdN17X94udJtCf8588Fa8hL2+1S2nqOSxpz5RkdLo41bv0t7MP+b3 4tL36NvnLmyiMC6rLiXSTTZ7l/iGG2htU0qjn6/1Lu3ptLRujSXfu0vfBesZ Ns7J1S6kWyv5bwbN3292Vj3RG0pnkMHv0rXhZg2u4ZV73pecXH8gGRwYS246 fA/+1xtvxC/0my8/dgOdNtNtCF7LPw7iw2Tv6s3J889+hS/UAjV4y5NfSJ54 6BWuydz0qtsNNVPe1Rvo8/luI/gw/yiL7Yamkydf90n6M6oOvdLPXKH773wn vaNqkTnXipku2ox1qGhdt23vfcXc7qEbGLId3eQjfDlMQmC4UMuyqev87Fpy 27knqRqoay3WdW3X6XwnFh7ksvp5EAYHxpMrd77I/8+OtpJjuzbwf0dDvmTq cn9nQzokYHc32Xsw7fRksDnBTahJQyARqHRoQs9Ovy8thu+9tusMKYO3PvlF iihOHL6XOxZteebODyVXN96WXD7xpG3bNdO2L5ja3ZM2bctpFo/Rnm7CLU2L WKFRdWkaxgwCjUY1eo8R93cInUqbKiQ0RjTeaF+J29dsDKM9OBLizg9xDv1t ycbB+20bw3kWYTo0/vuUqe9dnePYIZD7u8FzpRALZ+FDM/uksUoz4BngxpYt 1W2t2x3pILaHag0IIY04GllONh/6iG1ozbQTbXTa2bLt/ISp6u1pOzcKXeT1 SDfw7jd1VCUxYMBbWznH7RzMDSqu/KDeZgb12OxiMj+9SgLS2V4S1gbaW0Rz qUfQ2JW5w3koPxaq+Ydp68sbMpab8mclNLa4PdI/Uqi1F0cXk9nh2WSF5JD+ z1TtXFYWYv8s7TgcBX9d+og+2/D6CIVF5dTMKSfqD7J+3WUhlMgxT3txaCSZ bQ5B6PtM91B3afcMsDjUPbRtD92ZFrplPpaM979P27xVSO1u0qw3uY821m4h nXL5yL3UjKunHkueufBGXDTIeK3wZ8da6+hX1SdhrqLIvVKKAobOOymdR2Bt ZTrPaLKoEIeN1oB2QLeN3oCAnRUBWx6eSDZaKwxUM9eD0PLUbUOmB3OKwyrH cIZDHTLRHmoMob3U7tdxu+n9lsiLTNH8G35tZqRorDmc3H10I/ns0x9MfuSR 5/nnlZlW7OlQ4mM4b4N7lfpbezW2K8xehzkxXOPjsyyZb3nHzxZOddNQ0rEZ dTwiHXvxwhuiOp7oIZUnUwFKVsamkssrB9GJQ6KJ1XJCE49dT0OZs2QAJBqJ jeAXnmVR4i4Fliq/Oi0cfPr0vA/056mVw8nb7n6CpIF6laqu/YrfUZ8WUVbo zypLKUky96kZ2ING7Gabg0mQ2xffhWahe2EA0LEnuynGYCqzBmDMMQBTNyC3 YT6/zHKLLoZyJGU4YgxeIRj0wiR3c0m7Gb0l2Utuy7UJQgg929fZs3pLXdix mg7upvTu9ki9P7S1anWJVhR/GrzGWv5bpLRGg0z3jYgCCEUsTywrUJtSzL3p kG4VDCaPn7+XMMCQ1uKQ4ioYVKCOmp0KKErN3rRsqhaOhpnn72Nki8kXv/R3 qe/uve+NauQLJ7p5M5fTTt0eG5nHmBYmckod4zvbA5/DaWUYn2eOnVPFTrLS 6c3o4Kpc4N9N6ShtqfWiQR3k8a3G8TXijT+VFYF8glWIQIfsaFEthqlG06Ql 95DEHaZuaiXrey4mb7z3o8ljF9/NP9NIctetzO6lrju28yTVjH5uL461WOzE 79BR5X/B4vRv5KSj435XD5zUe1LZdFcSWL2vDvfKzCoN92Wil7TJjqhvg9vG ef+oECAlUAhjLD3VjKJVc0Y9VGRNW2YdC50geqGI31Pj0L34a26cRNaLrcPJ /iOXuMFhhqpCmI5RA44ma+OTycHJmeSpp1+mv4RslZOP/PivWPk63k07i3ih kzQSJFURxEv8BRasuZx4kVpBQWHFX/naRF+TqnKcL9LEE773OC5ytf/Ihe3x ibBmZN3IFY9ykKtx0RuXj9yTV5m6JH4pleqt2YEwrhhLGlc+om0D6onGd3Z4 hse3wuNbi+M7O75MFRuERCVXzz6ZPHPb89Td9BPmxPdd5M/pgpyx9biY1pRl Se5VcW5VzYkSRJg1x4715Jlb3pBcPf2oFaXbTEsKcgAURAaKaMaIEr2PiggD S0JRhFRgD9yFJ5K77n+Jr6tPfiJ5w9v/HH364g//Gmr25CfaOuhhhjgkOKCT ID+LQ8MqPxVHfMhtOibiQz9uZ8RH4iMuTr2mGSfWCuJTYvEZHuPsl+iGrFYS i0Mi6LrjoyJAi6391NLnILViRdIsPdwjkpqZrOHRrmYBCgeE6dKrjADRKIYB LUfdADmhgWzwmFZd8bl87EqZ5YfgHZlvL06vctUupL2jEgOvlcUFJUMsqDgS FBRd8cQFEnn6Ufx9Ki4yWZ/NKar6ITlZZJEpQROx3oAUNEUWSC7a2g1h4QWb 0O1jM/NUsVMk0PuScws7oj6pGYFY3bOu7t7RbnmFcCQdxzvs3UEUZnPuCAlB NFdkupKl3UeSQyfvRJ3CDHcl6hNrqWb8GGTYyMSLP/wX2zt3H5Up6dKmysPG 2oXCoi8QPFBhfYcsKuwQiKoh/NjCGhM+yEPW300aIAz8/+zEzuTejWe202ET /4gaaMUBZW8sH+Gyh64rDmUWB3HNUV5Y4FRmACbJA4JnStpip0gClAm0Qk4S IB0sCXIKHTV6kDUCJAHa4XX7j7A0kCooNMRrIQ9GPdMYrnd4LXelTY16Yd54 LXMze9hrmRExgJ54/Qs/kdzz+HsgOmFPT1Y1iGmhYtxAapDFoKxioOrB+NfR 21/OSYL128JsmkwyGqsUJEFHC64DdD3gHc3p+tXF9SgJ+J9GP3nsrpfaZ47c g77OOMkiBPWcCbn3zLPkQmSFgAWstxCESCXE/6IKCrscXTAkEkDv46gFivl4 Px55SAAu+BbvOX2LSkG/47oe6uZb3Gn6Xl3XRSdZGkKTSjQO7/vMX+eLflZJ 4K6CFOBCSI1E46IT/jVzYiAa4YCRR1zD5FSVkx07DpXxIyeNq+jeMpyvCpyQ KkSjzJqjxl4I/aSeWSaNGxaKysL9rMSQmFi+1dGcFkeEhjk6t5CSN1L76X/u xBPXEZNsWUEPQfK0gXt2HGNxQY0LuTDvSE5OICErjqZQOSEPY0sHNjhddZTD tgIyoj4E5OQ1u9aSM2fvHfDd0IPdotiAXTw3FmKpedDtKJ0lfBy91JbJVmty ZkKy1WpVVJLIuuC7e9O7RLViLEzLiXP7JZ1g5In652XmJshmWKN6aOduvp56 6mMDycsvf7uavOMdXynjbSV54IEXq8mFC4+XkyNHLlUgdRyYiuBM+IKT1wnp YKeq5tJ9b07e9+O/muzaczxZ33cbCxBUDfkf6MVjqQyxOYMMNUyxq1M7uNgZ LnaAixwdn+MiUTRs9QN3viN57qmfSp54+MP88wkKhOamV1D8ITMosDcQoFUR I3irGHMI0LCIEbmo0XmU00S5wWpwIE4wOEaMBn13dH837yMUywsqVIS2R8hN aNYGkpXJXcnG7jPJ1XWyykPsgi6lHRSTyjud1NS4iJVaKRUr+vlaFKsKu3gq Umqtlp3wuuHIFC56L7FN2HbSrNaTxy/enfzqRz6jsrUG2aLiSIaSu+57E/dn cGMLY1k5au+bnEvlKPVmUfAtRx4OolRiUdq/5xzGm959/Et/n5qJsW+SrSRR YpG65fhDKPGwuYGIE0r1bkCayN5AZFVuUIoyS8JEXyTxKpTaS3P74ljuT8eF /VrI1JpIFiQNQY6VLFJYUbJCb9Q56aJGDIm1nGQN+37t3m4OTXAI4vG3Kl0Z ybp84BJFAWefQGeQkA2PzySHz9zdinKZ9YqXnSTdaC5MIiFDd/ErvY8dFFJm QZHBGqrUSV50V6/Jm2qH3Ik+W0vHN+ZKfvwNLxQhf3R/kUAWwBV+Zc2WnDh7 X/KpL3032b3nOHpGVk3lDwDliaVoD4O0IAmDm8yOjReTZ+65Dx7N6h42iZAY Mo/jRoiWFvcnb37Xl+iuEKIaCxG0laP4VDPnRTXcvC9/c9w7+cYrP87/o0vh axEj9u63n91kEa6KCKt+JL1I76II6wCJTgiqBQ45fLF9IsK4BQluXoRjXCbr zraXR8aiCM8PDhUhv/SnkGSILAR4xHHK1xx/7LAhqllrtIfqfYUqXgfai0MT FRy6Sb1Pv4kOREGXjWUPrXe0aV1kHm9J3pMnXvzMtQhiNgTY7SQuR0Tmjc2O Mk/hQMRQZD6jZY3xXvEzBpVsdIgL+XV65c8K2dJLuFtygURjamSM/iJI/pff 9XJynu5E0k8tCAqYrHty7PhdyfMkkUXIP32mBOBf2G2XPzlWKQgRZTUKImw+ BPHy6bPJT73zXeXkf/jCl+jXKpOWChLGYZFLElG11+QbprobMafqbqJjK8u2 BeI69ahwPSr4kT/SOtCNC8M5NAFH3eh3VAz6vRjgAChRR685cOwXOOCQIpkF LEZM0mLn7hMbaceG0FADFXgQBydnCh4hYyZiwXdAyB7HDT2QHSlm4fKeE5PJ M8dx4M/VgxeSlfH5ZG52gW5z/z0Pw6afujnm1UImusUiqrAQX4PWODQFFHgf BEnywS9+B0ZCQMlMkK06KdghAcV4IThAGKDEnsW/kMwILoQ1DuKSrPlplFIP UMhAbGnpK2k/JaskLvesHoZpKBtWKKJiSnYJK8ZKRFY+9ON/JfadsDKYSgW7 PsjjBgGtROdihUYckrj15NOkx7OUQHANJQMioHh7nO4O0ewT20F2pKvtWMlV g279qqphQSETNpDjBLD2G1jJmWbnWpxsjOSetAbbMyMTPKNw0LEdBo+YyZHV 0Tz4Gp9ttHYBCRePCSegX3Hca2NRWYmFZPvuccajwnjQWz68mRBJPvzDn6Db fe93/jn9jmBJXvn4Tydf/vO/Gk1cWAvC5xPqrNyW/i4shOxtdoimYaapGl0t 0IRLXK6QyyuhhBgyrjmZ6abjclXE/JA5ih0gVHWYH3G59jFV1XxWihc+EVIV x+SEEsPcyesQ5QV/q+KQtNNYneVdR0EPERxIIgsU8Z/JkIQe5VJDyJdV9Tnf Z6g3TDXHmx/MmRyAZEyO7JljnxfS8n1UIucN1g3RaveaUgklGvEpUKJYFXde NT2hqQ5FCbMp+49cYojG0pTYlnbmVCqjMUZFJPHmY6cjSvQz+12AaNIPVnc5 IYWZHY7meKO1CgtDMQCQqjJSGzsORqTe/Ozbkz/z0z9fZqqqyU3rp0BU8o/+ 6f/F/xfsQhFrxpoEy2uKybHFYyTXs0Mz/FEhXSRp16dFaX+Sf8FvozljCA2A EwIg/Zi0Vo9GAMX/C1o9G1zvy8U8QG/A8f8qqf8XXVjZJopqqlnjZz6d48kU njZiBveLfTNZQRqKSSXwDW//3Fa2yKAs4fQ9u77BKp/Qo3YFDIlIjrYB4A7H oFUc5y+cHWGP7adia2zQisaS5Lwt0sXB3XIYpPZ0ulvDRvYRr2sOUayZ7Pnd DFpgKHN7JLD923f1OkuOChjhGlSiIRPyWM53O+gdFvQQ1MNqWfTI6YtjHZ7h Uc4E8UO1esmhbjoXyIM6CuR3OkHQWkod27CrB07wRa4etSQYMnL51M9jw0XE kb8A5Gr82fZv/SNGzmDH4nTBcDc7MMrUEmzkOJz9wSLZqEfI6G/sPg8M+RIQ FcL80hRZoR2N4FbBN4IzzGCJP7r3qfeDPxpjvJZgFLXlIpHZpYH7nTXW/Y6P WRUYC+af7ic31jDCKAEZY7gHr0VYRRqii+eeQt6eL7KRxZB1D1juP3KhpYXv TMeJbwAsYSARk9UdLJeMdYQNAJA1B0s5/HEg7VoKscc5E6yOHegHE+TYzTEO 9UxiwOCgztxoLqdFlhArSR56Bb0zlJ43uZTetb1vcqbjrqDNuau1w5gvkDzE mIAH9DVNS6Zvw4wNxCbmZY84Nm9cwLvr/peiAyHJ6DbS+RpZnVvYURbwUCTh xsjNGPB0pRqB5y2dDy51TeAI5u6ZY+cZvtnmCEwdnpmV8SQRf8HGwZNsMICl 5Nu//J1kbn4J8NG78CoQXtu7fFx2oyrgyPPcHB6Etvs8yj/7g+wuPgKDGEFc mVwBjGEbbSXvjLJM3p1WH52asYXHFg+DQ8wuM4gmtosgEpg5GQzzbAXJjCDI g4sKMJEdJOu45iRKGo6nWhM2Zfrc4BMMJbxTy6bEgMzmsscmfFdmc3xijko/ d/7+5Jk3fZiv937wzyQPPPTmZB/JBfxYY1GvZe8dVogiMgS66zTaj1+8m+rf ie6ioHvhwuPIZ2fQtY5tBt2qzFOH2S7jP7YYnnIGWeJywsCidpIu7rBWKJGc cCiyszdSIgWTWqJCD9u3tvsUl7jDdD9m0wDeMWd2bTzpXJ0zlgpwTG7IPHzB Y3DORG+a/ms50dvuVIKj5VMAV8ZmYPXID+vudxJ4/cIgGUQkPpi+sjAIo0gd u728sF+W12YZfObYJdYHk6k1LFkISTwJQVI7hexazyI6MVjWzJassBww0LdD wDNhINWLwYtSyfcO4G3o13/8J38m+bmv/xr//8KLH0wefOSJ5OSZ82HJaDly CSbpKgLKZScpUxMobzv3JCDMQGm9V5EKtEKNJkdDee91oRuURG2AshyhBJB0 VZMvf/V78vFbPvBJvs5ceG3Fsawt05dI3gBPXBJ69gmhP/Tw45iqZDbnHePa EEIfe/pHcy6bbFEL6aGN1m6SrkmYtd3MUQk/xmRMHqLV1jFYT65jmDDhfRSk ww7kiwGOqAwKmOTXcjSFhaC5zdxenENad6zgROp+RlkZzdx9ny6EqDgELjj5 k0Un4ltOqxPnYjH+5wthKRhMHvhr5CjM+aKDDoUVYVEobA81x1Bzc5ZEBsTL K8dB22LKYjXjmYpXilYGlnk6lbOTiBz1T8VuBreInFIyfAgyDzPZlwAlg6kO Kuzkxr1PWzwzDmoQn+CgXlicBY7E0f/8B/+V/vq//zu/z6gCU7qK4FTOBgKm uMh8FsGpxJYwm2B1zkn4VB0Xt57OscUaBVZKmwVjRkuOiztlMj/47Aag/cSn vj3A0FaStb03JR/63M8nP/+3/gUb1qtPvqyGNaO+gjhXYrLI+sQDgi3mimFI AeycYAuMCVMGts/xiYPDJ480CnN/8ImBLsWFq8IbnFPwlfJGCvfpD7PSxxfN Skp2bnNfh+VEiGi/LtS3U9qz8wE39TCZi63DeVZZcMxiFGWVokb2UEHpopOg ofjQ25hqDlVQgxlxlUQNg1rPea17dqwwqvBaR4RVGNDn3vZ+prRqWL3ttnvb izO8lOKkkTU4rMQpu2yXWDvsYuDgvraMEwsQ9+7am5w+eUZ13hkzDEAeXyVO K11cX4lBi+CX6mTcWVzjjkdbdjxaidU5z/fz919MJvsaILYJeIv4ie6sRhYX wZvML/A6gSLYpd5T5xeX4Bv3ONhFo2XHA26kHvBmFpZSlGaLrvWAR2Wnahd0 QS4DmmN3hNkt4cdkcmYB7FJT8FpKTt96b5w+KTkWWB6Qjd6LKSdcMo3SFJRv P3aSs0yAeMaxwAOCMr2PRY9nUGYfmU3n7Bzs5apjOqey83XcfzL5zA4xXGz5 +h5HE0wZTaCVmDNdr3MXJ5w1iIoydjfkUI5ZH1mL7KHcMiifOXuv5lrnnODT CEO0vGVBWbI/YnN7+r9jQrPOZoDjWo7mgyscAoStMsGWhafXXmLxu8SWY5QZ BJGLhkvwCJpf++DV5G/9jd9OvvbVXyomR0+dy+2nDcsCs961FAkHnoqru5gX elvpfseJrjpOtKQHtheaA8z6W47tg6WeSFkf6MZ6t0h3yFkVXHKcauVc1lzZ oYXcdphoWSQqhH9fnE8J53gL22w5/+wv/k2dKiUB6LTX84YDyWHRd/FaYs8b LjZQbzqra6bNIi8KgjPA26BYgA/nenW43GuOy63E4n1BXJyQp+9wtfXrmPuH d44vTsvXRyZmt7QSM2lDry1OzPKelVPGdmMuH5tRRrMbEPifLFnjWRUT6irw SEJhYQtQ3+mv15px9kJbb0JttwVeM07l3q72pABvJloIrhR4zP4L8Os9gBd3 m9lc4NdKBvh3vPASgCfh+F//yb+hoj/5sU8ldz/0uuTrv/VdDPTJFHh5bPEl hp7sNra6qgtfzvvlnlEnuqsCuq7VMaBn3HEBPdk3PsKg46IPFtgjr0aP3A2e q/ngWVGv55Ja2ItedLzxPmfFm1lNxPvSAXnZ8carPVBHH3ZBfUFQR37r4R98 h0AeXuGeUzydMen0PsrbvNFCkvOKqEtgzZAPOqhPOrZ9UFC/6770PNtAijzo scNN39fDTQfqFx98djtltcNN3+e46aop0Cj6+oZBncVcZ3QC6hVGHY9NwJMD YIwRTnvLM0fTKsQMF4XWVQf5Xc7atmnHVzeqNhr4iuFdE1ylnK+urMNXnxHY zRQPiWHIbhnQdem83GsUtPO98o76XI70hfnFSHqZSa9E0v/mP/0PyWf//C/z WAfXgadcNRDga4NMDZE96wXtGok79l18d3JUOv32YD1CLujhPcsRc0TfxPUu Rr2WD74VdSY9+O8ly3qBM2VFORhHD04Qh33AWda3YOhRGx7AHlQ/na9XAfQu gVkTYsC4LDBLjG1hzthtM2utGbIIs8TbjPGwA/OEY7eHnJh7NANz3lHf1yPH BTqJxuThN76MDguuc4evvr+HOkC7PvJzv9tePXwmMymY5bnOC/jl2a184cFV 4FvYHuyO9kZBsmYSiSvasqOQoV5xsmaTDtommoimvMpo1wm3HWy2CeqO5Ufk s885c0YDDtGHckQTaXyLvLMeLHg5T3SNYa4y3D/4tnczzLjIdUfxnmdQdEpv 5UJ0MC3rNJLnP/ILdccXDyYhRJKW3w+dWweg+1KfvGQBLoT0WTWTPuOLgmxy tpvOikI7DGp8K/wanj7Ug8W9wqLJc9FXO1ksOoZVWGT/WXJekUWZVMqwaNfp jguLYJPYYwpHnKA5LFOXw8zULC2qE3zAsYyatkbUe+z8PaAp2bl3nUuczCBw IF+M9aUVaSD+rp/8VvKGD3xxK5aQTVufNptq9HnKJX6tRC7x9yDprvtfomgu prS3cnCysjGxtQfnqp8mm3Bi6+kMPMNxR+t5euV1kuRSO2uYyI/sTGM3HTjN tj0NdyOc4gUzONM+nA2Gs2ThJAHCa1a+zep4JTX67/Y2O3IBO26DgH2G/m+t Hq07jnSgNCgAkEmEIoa8H098gHMNMmFoj1hcger80hKWQxWazlpEXduo57Sk cW+Z81tYTwAWib9DTq6q6sSwYgvjsQxmdFmawVsgr9OxHXFWLI45tnDEiWGF v2rKHzu2gIfM1yHHko07/BFAXKLZS2cdXC0GK53wNYux8odi1NGdMA3XKdzT Jomlz/wOj5krM4R41JwYx0aapt7I8RdzWxLqevyt+bmtMWdWaSrDR7CPgb8K p6nRALuSqeVwN2i4k3S07ELLcldz3NxJn7t+4Q5sfODjn7PcRU8X//K2F9yV nbh5iV8bHd403YWTZeCPysUEk+vqCoQ8h/XZS2czEEoKiyE8JhNO4O/t731f 8vHPfwEmccCZz7V+omwlFQSrjODZhR1Ji0zlJ972luTUgX1A8aCTTqqZGFNR VFN41/3PxRaYgY7ppJLjlo45KI44pnDMiTGHMyjy6TLGLT3k2LBxswCRTCAz hEvc0xBhdLinh6UkLLNA5tlCjWiVvq0lsZsqNKKe0U09bXaL6LPp645J1OxT 1UHS7FCzoWhNkJQd7wzjPj/7NOK4rBMZmQ4msSpIIhrV9V6CZmHZmSUaEiQf eOj1EUm7Z0aRrDue5LiPZFOQxGwRUAkwhlfxVfmfsbgkaAPAMAa49jYL/m1K Ett+7au/hGLVFbZBaMaJledaxoRyYDK8ykRSah4l8QTL+M/+0//J16lzNyNt NOAsUZRsRcZIFsVpVUI/ePZWpvTnX/nh5J9/82tK6gEnG1QXUvE+57RmjKY4 cJD/mA1SUmWShxkdd1ZDDTmbyyacADLsKgvPFel0Wo841m7MzPSMTMyCLao9 XkvReTVM4E7WgT3SA/4csnBkrxWyj56EzbTUwqbigb/gtV9saC55VA7AxlRx HljsaZEA0wP2gJM7GhZaCdxY7HiGKpsrbmRonRwgFXaY1MAVfhJ08t6nryIx XNjpJImHDb2yFiOzvVAneOuOhznmYzXk0FsO9GZ6yLPbFec28/5tKg69uNYO n4h2lfzcPL02SxzpRUgKOwpuD/Nriel98NHHk7/wK3+F3hG/9CoEZxK/djWj CTGioS1KBGoxxhVqQyCj3IAyk7zPSQg1xBU2QaieG7NRyMZhmgcqO7HnhIPx oLNNYMLZ9yYYl1Oxtr7vMcdMjglzhZDFiZf4vwYQdn9zJVkvWhWCZpSsQlA3 OGUuG4+eMXvRJD9EYQpea/k8ka7y5zbLdA/K5vhTYlCP30NOgmjIWdhoqpdb VlWN/CJUMfwWk2888RD9GigvzUwm//k730j+8mc+zH4y+cUth+gRIZrsMxrC nWO3N2hmp+G4yCMGNWR1BLURIRpvv/5b37VEZ1xku488HwFbF3nWv42mp2yu WfLNmP+pOs6yHXHkgoFzRaDGZ4Qy43xIoMYc0EOPvV5wDq+/9b1/mOw/ciJ5 7uW/EKG23rM+KNYe86VbVAnoImhGoLh+JlmYmhSiU66RWwLRXnKpYYLboeHJ rnZa7ZNNLpWd4HbSAXzA2Y435QS3gxnA2aPmCdrgBx9zjKpiaaLSiKV41UZ1 lONC6FyRNnesRZp4md7xK7vX+i+4/37QazNPwzk3W4z2tiE8ZpkkylXC5ewN Zvuwf0JQ04lyQ836hIHs6uU84B++tFFhwGsZwHH9g1/4YnLz0QMcCC8J5Wis bOcpjArlr3z8pyPlyw7lfY47POTgR8yNCeX4uqBHPdfpde8xfS+zvG68Pe3f RvNchvIYbyPvpcu3Ko4Hbodd0sgRd5kKYtAPGhsuHjj9XcCd7HncutfnLKUM xrTz3CXBvSS4P0H+HPAG6GXB/eHbLkTc9zi5rH4x4yaAtmZcojFNX3WNm6ed lc/9jhmfduLmsM0vPDkxnlE9qa7zccf4jjqUlxxvvGmKNA7+cWdlx2h3ymN2 zAw3C3Q+mLaprTHJMhPhsaEarOm5JBQskxPbifZRfyNsvxMtBw3ZQAvNuRQu 1tgURVyX8DNzTEzTu/CK94igQfW8M/Mz7rAdujmbfep3nOVBH7oJh+2q+OQL rZ1R+FccFeIF7pP+bfqdHLYG7re85mHddRuXZlr/3A62Jp+VbZkmyrCN92AZ VFcdtr21loHt7ImdwjXqxGDfu3svgwykKwZs+ONAetXJjA3IVBHibVl9gYtt +LhplyyijLYb77F6EjzPOAujG86Ki1knxh6wVAf1CAQJ48IJ4Q+fEXVM3ojw B0NOETCTVw78ZaYa5LmGm155VkVoeSa1puXBEYjVHBImC06YbZNjyjPxHb+b T4BJPO0hve4nwPqcOaHQwrDXqFAIe//zKPc7KJcFZQmtGeI5J189kW78iyib JV8kiIM8iTsgjMnSCaZrwDAGz1kYmxTGNJcMumqpMx61lefz1x1nfMK/TbMH ynDIZRO9u8p62IyzprCrzjzSfscrrwvKSGnffPeTmR0PdjllMJadp64C5Yqg vLG4I3n7o69liKuCMnLcivKKkzprCso21Nbktp0fy6Ns3fBZZ2F03THQs06c nUWZu1D85YieNaWKnklsWfQ2cyjzlE6+POuAjzi5t4qUR+8jOPa4gHyobTNm PVDGexta150TX25yUmMNJ7QOO7nC8Re4LL+Dwu8LZ44nr7/7Via3IvyaWJpG o5PfSYdfs4QrRrlNx0b2CVh4r2B97au/NO3wW3fcbLOrI1r8PsfNHnP4pdsM OdNaZcfN9rYfqp62ie6qMwW1z3Gz+5xUWd1ZI5nOtzQtu1VB1yS6Sbul6CJ6 BrS7nWha0TXRdDxkW9C9ZtH1fOt5Z6lU1bHC804ELU+8Kxo0cOHcpVOO1Ry+ QXT7e5Rn13oouoU03xbLIy87jy7jp7GzoguUESsD2lFBl95H7WQ3MAFbOazS Q/ekc5ZZzQmYpXn8NzCxgHVYkAXCMLGAtSrI2sh4xpmPmnKQtce75JG13nND WMJqRbCEFDaxNCssmVQz/Wmn99xykO13NMNI7jaC7IiTODcBONZWibHt9J7t eWSS4cYsUMfc1F7He+53kK05qx/Noa1yIsTxZGFwuOYgWxdk8V6R3eUgOyjI 2ohYn5WgEdxYo9GBrJ2cWnCQrTg7CheccLgvgyyLNRAFXKcc6zjsJKIVMZlK sjKdKe90DxXQBdlWDlkuLx8I23TXWFdkS3ExBwLhhnM2zWkni11xomDLK0xq N17rTrQ75eSrpx1e7TyKppgGHRe5lgMJxo5Amu/OK8CKCtvstmK1gPljL6ge 9m8z1oNXpMnVRS45LnIvXm0ma81xkQdM4lp3FtadlZDpyPcrq/R3AVbcF5PI wLThwLrTSV8Ny+JkE+XCtlpO8yuv7OzTosNpyTGtS06A28hwyqEaMtGWK+sV DzkJJvFiM45On5FlcG7Ls5nuYZMDy3NqJ6CEUzfA9RJW5CXnViSHhJUEty6n Z/yEVdmJbvtMd3ETDaq37moln3//Cwxpw4lmvR1FM+kRGhFVu4RAJ4uHHJtX NpsMwBHYEo5IMjpTwn0CEr2P3Wv31agZH3Bc4kGf1wlnGkuSYOwi65b/kuMS W6dJM88NZ6Jp1bjEJ8+eB6NUnc7sVM1ZKWkns5Busbza2aV+wytWToLUHU5W akR41VBWjs6W22zvHhvvuVJy0VmpXHLs6pITxTq8ElVM1hk5pQafnTizwdfc You3YxVBWBHYFcFyEYa2CIoLIbkEu7tz7zqNWmeyqq/HvbC6hO6RCAi525Tk vHdoC9zlzXxMMg5s9Il34moes3wc7KW0bIo6n9KSo0/7nJM7zvoHxxWdUFj6 gSOdh1aXAboLfZ8TAk84M02zDvQ2p6m5pSHHcJZy0JtNw4WWk2DqFxopLo7j mt1W0T3c7s/dy4BPfkdn+rtmPOv8IVjWs7a+l+alG04yS8lHcIy1mGB+yElm VZ0pZkUS9yDqmfm6M9E0IOR/52c+G8lvOUmsUZlXhuV+w9s/xydgyT3areGR iL23WajFr1W7KpMvMdE7ncC3fj3aRaL+dYKL3tFrMdn+7XYx+fIvbheTVz51 rZg89+JWMXng6ib9WlQC2zJBvT02nYqENdse6nIj5zYl3AaddXVTlQ91At1L Sstlw4F6xFVQBwAdcfOrTXlJ3OyhfjO/VjNH1RHlGjPLmUUsjm86sj+ZoODu i1fuGhLCD0xPMNFgu9+JmMec+aZ5Q/j5C5c2jESCuhjKjsi6EeOB8+UcCUD+ Y3e6rQsukTlaxjTjDl5k3tdFk4DuGYfuulh3e9gyLvHBBw1wmqFuOBmuFYEa kCM8Bs4jTrjsHTs5ZORluBZwbjhQN3NQkwknm9oZK4+KOddYWcy5JNuTveOT HVzbMHkHv1YyXMuGh8KyExrXukN92oTG4BRQDwnaRFoyTQ4WMk6aOIbJvj67 ITRWJaHlgdILr3k4Q+W7fvJbUXUKlcyDhsavjsrwXbjcQ7U6CWknkhtifTWV tbTj8LUURZZdWFrgSBbWQ7HpBMMjTr55wRxSR59ZOcqgOCqrLtQAepv0dzkZ 4IE0Axx7we6sVGPuBdv1HsZ81klqm4g7bt8vOq61Tk3YbHOfk7ra5SzMHHNY rDgLM4dMG8GeZdHOEg0aFu+55XZmcdFhccwssEYoDANrxik5ObeIlZiuX73T LNICiBTnFnY7MW81A2AGmO4AlhnAwyfOJpvPvwvmzEsnfT8MfvU3/i5z7IXR khJyw95Xk57SR2P0O4foXJD0lJrFVHLKyfmF2eSr99xOKnAUKWSd8MEkEGwf 0Bt0QtxhB8A5OaUOAOLkHHxekLPHTc4mbjcYY1D4mXwdAK44+aFm6nXG4bDH yeW9aevhVnsAOO8A2CcZKePh8gXv1s7fATLg1u8YQIVOdxkBtzFn4aR3CLoA sYl7YFWFhe7w5AzP5wC3IQOdrISm9nTmnybMVlyCbis3Jh3Q4TM8jiz1asts /ZCQgrcLuJL5hSXSo/hThHrYcoTZWRzvivgWxnHBiW+/LzYrkc3f+P1/z/+T ISuU0jzS9wlome+DMt/90c+gHG8tR5/pqHyg6qWmPEaRmtITXj1Gz/NrJaam llqLuK4ZVtmPAKsfPHMcFlJZxcey9pFa1RmZDjkzPTNyrhVYxWdnzp5LNjev JteufRrlsXwYOc9Gj0XZlISlELBybOnG5hg4VEYg3tODYevHmr0Z0UgPO35s xTlVRxledNLW/cLw2uET1ofdTLs0m0MecHJSO51p2gknJ1VxVkMKXxsoD8xa hu2Ez4izk2HWyUlNGob1Hja3dpG8VTDsebAhIVXPMLw4PZm8a/OR5Hd/7gvJ v/v1XwxM/y//6r+QWPzm3/695Ktf/3bysZ/4YvK2H/pA8tAjj5vDQIh2ajB4 B+u4sPMXi6MnnQi38v3xThFncseVR5lNNaAlJ4vUMCOJLRQo8WxX3iuRd9Uj ZOdjuXaVRp/p2XzI6mWnbD46n52Sp4l43J/j11rk/igZ2PduvSf5z8l/TG7e CP52EFY+szz51G3nWAfAbmOFRtNRAsMmeL36mjtZCQw6OelJOf5GDfYDD70+ aZHe2dp6KWm3fydJkn/LCuHoOj8sxTCT3aLA+qAINVCEHijwY+Z48ml6sJ+v I/OTJDd3rmF90XsunsBPycbxAzp7W/BUxWDqb8fBHk2rwOu/0tA6uzCr5KgK dS1aPVSFWZ2Fy2jfbPp6wJlu2uH42FOOqig7iyvF3KuayCSxEP/CvENJjDqq YsZJYk2azRGFrDrndlxZ259RFXauiVdgFfnZKBVPV1ADSFvQlx694xZWEEFl 0GsReoP6BpoDWgNXOBlwqZeXMOw48OXrKw1MMsG7TuGuZpSGMerezopeegPv e+kNXNAVpe5BOrq8I6i+say2PvpmFwfVA86JWWEeq96hNP5B+7usOOj/dhzx sLILATb0Bi5y7qnYoDfM5gmSrmzSixwG0i+demPcOPo554H+krQGiQj0x8zs dPLpL/5pNCeEObxYlAcTdl3dBz69ltRGkZ9OGQZbFEdQGkXoDPrFT1y5JfkL m5eTv/7WR+ju4fXJE/uTrTc9mrT/ys+wRiHKC6vOZNWQs0xs2FFoo5KoM8FD R6JONclOZ+5tQFaLmXVi0Cg21aKZ8AFnhfYOZ8562smEl5xlnaJE2E1UJVJz 5sDGnR1W006gPmXOLCjICh27rDmvRGygPmUmwPDZ7cdO0t+RFqHPjM9ByAZd 8ul3Pc9OBnTJEL9WuzkhenK/ahPxQYpQJQ1HlZTs/4p7RL1Ti5SsFqFK47Wi roLufN4yqN+gCgm7Oa0K+dN/7i9BdRS7pxkyaYHvJzUHLXJuYYerRU7lQg6j RegvSY9AvjZft6nlykM5NvPqBPm7q4f39TsaZdxJHfR33ZJVYQ2T80Lo06BR 4Incfc8dyftefrfRKFZbwM1g1wJKASqjCJUxxJqiFjVF8t1v8oWfoSFA8m4n DT7khComT5XTGHUbqnjHAe5ysvpNURa6Qk2iE5sTUmXRdKbNlpzgZNbJ6nlP lpbg5Nr1lMWEsz9rylEW02lwklvUWWVBfPLQenwShUyZTZrZMtER7GecPbwf +mBAVAM+giqAUpjk13JUDeJl2CcFQC3wAwIxB056geRHohN+erVmIsqvWis8 9+IWJwahD0r8Wk7WjpzUKe5rr1ohlKxCiIpGco96TlEr7ciSJh86NmfrstMe 2oCThJqAGHBOIzphtAE+s9qgLNpA/AojQNWYQNRLJtX6nJ0fE7nkxLd/+Tvu I5+Gc/4FPt/YOMv+RS3nX/zW7/5G8gPPbmoiHL0BNwHIT/BryYJPvYzXErsL rbkpdheWnfzfSBp8bGmLvXyI5jDhywB+A310QzziTaCRToeU2jP9fTGP33RS ikvOEtQ5h/iiswTVEg/CLfF2Tm3S2bg14aQUZ7Ixhks8XAJz6v1Yb+KHHGdg IQ0sqtETyAUWISORnUH8U38sfIuFBozbhWxOQNemapEFM0vv8a1FSu5SYxG7 JFTRPi1n7SJc2HzidWwNMQ9AoQIJZtccIz/MDakGwO0hftxBnAw8I14VxD9/ LX3IlyAe8456yWSdh/ikCSFOHzvGqYd618PIfIPfyBl8Qrx96swJG4fD0HdD vCyI4z3yCbDvO3ogjghBW2zdW12R1zXlKXELhwrC/Jozb2jyGLxMDlMIdtTV wg8683YLTjgw7yxhLTlLWJumLTqFUHPm7aac3V3jTvpxJg0H8hY+6JSbzkTe JRQYNrxjx3WO9zHhHd8mypn33fxaAurxLsU/EstlwU8MK6+G+eMAWZKSOZAZ Fjx3Kj1kt8Egb33gPUny//xHvtq//11+j79FPuB9H/48DX8n2HZV48rYBK9r bTpg667NHNR1YVrziCnTJZtLJP2J15LOATLWdWfn15STH6g5cPf3sN/9DHcl Y78FcJVYrhuyhGB7XAiHW3/tR9/GbFeE8O0vvRKNuJfVG04Jb5+6cPtGSnh5 q5BOGJoUJuHNeUy6hdKthDerjYIstERioh6DDRNwcBAiWYg1J6VpkhCY1t9M EcpO4avpt2crzTurYxed9GLRWR1rU39A36oCO5s47ewWG3PSizPpFP5WXhVM 9vezKtgzPmWfs9zsogqQRCRVMCmqAJoBjj2UwC5RBXD2C7J6MhPMK74RXaxj x/K0bqqgIgDDBmuuv/EqVQEW6KgqUNWCNCOpgi07nviuPpX1pHkeHQw66QAI Mb9CD+AzMfDgX85K8+YUdIP6PEf1TedEpaNGF2C5q+iChuPCDxneJKCPukDm GDO6wG5RmXEi+4oz0dgwuiBv6JuiC4yhx7W9Y7mleorVqeb8xhxdUMtZe0Dn TQYOZXXBVqoLKnyPgiyiw6xFQSkvAnKdt1DGcUkmkloXspDQBTangDmN1R4K AD7H8PjMNSMwgFWVQPQFCmYqcs5ZJLskRziY1CBf5PdvFfxpBW+X6Iyzi2XU CfJn0iB/I8t9hbewKPf6wLr+3tDPOP7+soH+ysOPdMbqNwQ93gNKCz3stVb6 jwK9USLRU7YLx0frfKp+fBoWVvFA6oF7XaBXB8B69o3uEwJbCj2Cdw/6ww70 f3n7W/1OFs+uLFHoS44DUHOgn3UC+LIzQVDNOQBwDNBUOABDDH017wAkf/Fb X0Uz7aS5evke93XjAyhxC04+ftAQp8G8XZYOqlF6uFM1kozLzCl465HUvYCj n6UhC3PTmSycdRbH7pCzlkwgz5cZtfZovdFBsp0gnHVIHnmVJGNzi5Ksz3Su 9yZ5wcnV7Uw9+WT9pqNbf3wkIyrPkczijPXrlmRZUnBdksk9iGa2z5S3e2SY H3N1kyH52P6DoJfi6yzJBXHlyWTLceHd03Br45PMcNM5gOVgbreKkDzgmG8p 0mbgovmGa6/mu+bsYJlz4vSSQ3K5i/ne3v4GyVUgOWe+2x//zEc3CtkTazQl N+qQ3DApOdBGiMUleTZ1Nuik5Aade2hOwJAc037WPu9yZgk1J2A30XhIe1N3 M46DvuwgrWtrvQx8xcnAzztb1oacfNysIF0w/wRp3rgCpOeaQxqb0716It0S pDFbh3wbYN5hjPPs3Ez76usf1uU9XZDGIQvwwLshXTbGeXZ+vr3YamUQfLVI W498/eSJLTOAXN5je/mw/MJxB+lh45FvnD+X8chL3ZEml7HG82rdkN6fP1OJ GCKkBwVp+jHv5Len+/si0mqcgbluGq866+Tnnei8yEg37FwbX55hHuttmM1k OYe5FmegBkMMyPodwzzbNRPOOOdnsFmK8ik+3FNxLuVUhs3iF8wUnrHQUWWY LP72qbmpDM52cm3aWb2rOJvUW1y166XXPZwXnH1ogz3SbZ/9xb8ZNb4u2sZ+ FeA8WKvBzy71JnmXk2ZrCclQXi+/8n5uQYZkpa8nyUi7wRjn02JHT55OvvDV P2dS5jcMsy7xzRd5z4NXkmdfeH4j9gIZkR1LbKLx6NljhufbSai3/+q3INDE c81ztkEz96pZUMapc0TVgw7De32Gh50M24gRBGW4LAzjMyKX6a04DC/K9lIT VeusmGeCJ/wAmpNpo6bjYW5B0YjD60COpdc+eDXuCrO8mu0veQ8EbEVHetzh tZIzv3YZnk3JG17zOoFHSFfqeqvtp5zJ8N38Wrb5MXA7aLpGM+MVZyZs0dld 1uyRDrOZ8SCkfbywHqjODw7xYtwujK46+a8lmeyGA33P/XeD040/MqY6zQym 7rryCDDFxerRLl1DOa+GVVsu8P/tf/L7YLaV9gXVY2aKDfCplcOFowbYNz/w OAClIQSwZetTt1NGN5RRBMGDzqlJe3LP0xFGRxzXedQwqllwZRRBMYLebowu yZFKGgSDT2NHp3wzql6xfUSNeqzDDpaDggy8ZDWjU87sUr+DpdzDzZ1ZLKvO ZPiSg6XNneXQd7G0M1gTzqrY1RyWshLWTlhplto7jnDJ2Wg20CPG7cxS17na Fk1d4yo47nUyU4tm7Qk5v8nv/sPvtM/cfKr6x4IjMtRk3hgbMXM9cZQJL1Nu w+IYV80D8W/+jd9Aue0zG+e1j9t7x0aTn7yV92dFFM0sFfUdXkuwo3nnlA/9 1hDW43DF4fDz1z43Jhy+d+s9cTiskdJkVMUko7CWDASWnW1pC8Ih3sNewudt zU+wjSXbOOPYRnJl2a6YHSfRl/UgHHL8zEknE9SX2i0A0jL3YK2VT2RZCOu5 BDZs44KTwDaJLByc1jKgZyDsc7JNE8408h6zqpQgtD5sJl9cdghsObvO+nsQ eOE1D29mCQyHj2LHihJIcWbhoJNGWhDsgCFZwOSLf/YzKCuDnSIS8YCniVWc dvWlwS6uDSfUimCDvqLU4V/jVZFX7SDvqedfhFGVojOz8rLxmS0PAIRNfPz8 vYcdBmeFQXofgbFpJI05PQZ35U46EgbHjS1c3t0pRJJKigxiFghpI8sg/k53 mvAsUBEIkhxbCLfe+lCy/ZUPJsnvfZX/39g4O91j5tdu41RHcsgBcsTJ44w7 QJr90wCSB1bu4eaj8JkC2TABrFpF71S0pgOkeShYB5AFM5cz5jire806LlUi qq53k3nKA2kncHY6+0LqPXJETtqXFRWWdGPd1v5J3skXgbRbPeZzbqnYwdqr BLKSAVJCPPpLRoZt1fdHYyWzAUTsakEpJ1sYIwuJpjdR7ofO3KSu6SFnsnZO UNw435n+kbAxg6I9dGyngyLZwEkn/SM2g9dQauhYceZmis5Sa7s4A1ne1999 K/0dsQhcUhqxPIpeS0olQznZaSvVX9UnEmawGTR2DLYRwIw6tnLMSbHWDTaL i9N8DzlGgRGhkjOxqkWz37GVs103YWQXfpgnK0Y0vbOIxpwllvtSNDez0hP6 pReayw6aNSff0z19W41o4npk/y7G8xuf/NGDTmJnll8rbD5vOnky+dav/QIu FvpXi2jYHA00JaorC522jkInGzRM4PSmsxzpFPMrwMcYNA8moBRH9aAzoTov YNL7ln7dZipxIV4ccsBs+WBOOzkdAdOuhMzYSJ1q8cAcN36qgMkmcvPK+eTa R9/U5/A47phK9V3tw3rVr/R4HHdM5YiTI62lrCQiFvGRigUnd2R5HHBMpZc7 6nd4nDHtyJ/iafM6o47vuj/1XXPaPJt/VR7xmZ7YucvZ/VTtkdTpzL+GHTBg ERHkj144QT7sQZjIg04SR3lU95WspSZysjxuirhmNi/j0IM8jzCZyLCQKSul Vs2dwMwvbZDJ1Uw0Ch7V+pYdX1gWybQsjOK00jh0J7L9+x3JAh5rbH4Gi8PO YUELPpEzTgZnwgy3ZnCq8ip7ozXTqguUR3Mgqq8qIA4KiPQj72YEgmP+UmQ5 eQusxIWKTYfBCccmDnd/nAwzODO/uLW+vlfP7nMTRZbBwZxNROlTPRi006ez PRi0SZxhx13db5YhF8TF9pYcl5w5kBWzxQDMgb5Kj/ixM7Fa476Hq4rYEQz+ 4mvvTCb7G7xD+YCTvpkREAHm+k1HGURxXXOH8HH3qqN5uiuNIScqOdSIjrVj dpW3Hrl75jooSu40lrd+8kRLy5PHRLUh38BQHNZ9zlzmQo/8DaqjsaNH4ZxP 4ZyTv5kwA675m5pYR+RqcgTK8SSdORsgSAZwVBBkIgk5wDfi2ELZAqiMZBKd Aw4jU44tbDqJzhyHbFvMIytirkhDU9wTdg+lD+fmPW2uyHLY53A4bzjURzHW HFs47CwB3J/6plE59uLQTnCsCofI6+jS//INZlLtjmbkcI5OYycwUQjWgz1k Cg84OZ0ps8NXnVTwKLmdLI6s4scbNX7uymmzSA/44fhJPoSyyedRyo6Kj300 w5A1Z7pM/9DESNyid8a4q0jW4pzLfryW4RAjxJuf1yyqFpqJUGWjPdcUkSTg 1GWAa87M5GJ3Olnfazjp0Tnj0zlvbOSlO4OLNWnESjM7Sic27cpqAl3jL4de 1jKeKr5rEjoIFRnRjRN7kWVlOIdzVhKu6p69q1aq1VP16Jx2rOSAQ2clS+f2 8vK8PhCKpVATR4MOnSPmHmIpCxPOdErDoXOxB50Fk9QZ7OGpgtb1E+s82t6q XH0Sqn2C2h5nY06xR1LHoZNX40tCh/4i0Ik647wfcLnfSfBMiaXEqp9nn3s6 Yymzh1Ozgrl/1yJPeehDHxAEbm4+QjLxr3ix579Ct7f/NkMEdCqOZes3qJ+b m8w8pwWHA125dBFlktLe2vqhEv+ImG9B50wi6tYTDtls33Pd41C55ORbvVhy xDnGZ8qnctFJ8kgighM6GkvWZAYSiR9DZL136DjnsDjYuT+2/fDVBxaNdlFv st9hcdaZqe9zkp9lw+JrHnigffWRO/URLpl7NB0Wx3KW8pMf+1TBex5EPZ1V iVFey2Gx6sx4NJ3FePtl2hEe602nTyXPvvUNWymOmRxr0Zn0WJNnoZnNMXxJ EmfOSa1qjghr4yV3Eym8Zccc+6eWQpyKgT2t6Vb3qp1u5EuSOQKiPOsseebg 7mRtdAhuZubZZGAECA4LiNvbXwd4FsSMJbNr5d5z4gAHpPaBSYRfpryNjTO8 hMAyaF1geX5xnG+EdRxrDu9xpjuWnByrfWitBo4efhM+fi0nlSP4ZVI5ip9s bNU175XeAeOSg1/TP6xiSYapYBKcfQ5+c86MfMPBryQQGvxaOTrU4noEjpvb bN53G1vDUYdAkxuKvuVOc4/8c4TtcthmV1+1zNbxhz/yIVjEjYJ/cE3RSaXu lQeLmsXtmrIpKH5kFFt5/LCgHakaix9CRuRprItq8zbj2X0ocE2pTgQg/Mnn no7iVM9wyG4luMEa2JtyBozY42gmz6Fnu8SDZ2MItmFgTzgGdqQ3h5tZDivM tXqoWDtHAFI03gljq3teFWzH+HHEOVdmzIdxh5PFkWRmJotTNxMegJFApJ7v GTfuFBLbv/GpZPO1d/Dq9IGcIRSnVBDhjtDUZsNBZNGZaqh1ffx2IPGDP/aJ 9pnTvO1yp2mYZojU94VthJ+LG0w6q2WHnVmTapZEbsUuQyKiREuindHod/aa WFs4Ozeb/PKv/6V2OsSZJKpHoj67W0mUYHHWyZnqFCaWoEuuhr4YIJR5jIwN tDmbcbGBOU8UNnB7edeOPsteeEAA2BM7eNwxW4oL3juu41a20mUW9U9srOeL tJZ1pIeLawPP0LVV9kDVEz2xY5LPdCHylp1Zx1b3VGomTPQgHMlBKMe5LDvH PEwbJDSJU5dXTG7gc3ieTji4YsDjBDAhF3Z4l9QEwvtUHDKuYd2hbsmZUKg6 SRR96D2II9u3YXDIJIP6HeSmcuEmjN+Qk5Q14Wac319xkCs7iZo+Z9XbfrN4 /MrVR5Kf/vIXcG2lwhGGQM9YLzqTF8odFt4gTMTvDHc2T6rcHZ6aQW6GiSv3 yM8UzCTiaHafB5s9NX5kCKNMixNaltGdG2gwLTidYd0xVqM36DTq3t/bl2ai MV13jOlo7+hSi5PerbP0ad70rbccSH79nffy/4LgAiNY5ZgQGOKcNQghvkbx 4Y7rJG2w/MbSaA9oGOpx1Noux0m1k3ywg+cXZmkA6JXNYhFxYpgpDt4npiwA 4l4Hx0biHshoHpEb05oekTuc6YUyv9YskXwRjck9lzd4HHebFqgr6tE44xjA pkNjOUsj99SeHjTa6YuGs5VDaYRres8Dl5Pf+cd/B/9vpPISpvkkfcqXTGGs yWM6ASGCQYCImQ3VixgNigIVyrd84JNR1apbhw0cmKwAjhWBUiYvuqZlRhyP tBSg5NSMC2U4gxgpGlxkCo86JmysB5f3PHglSmXgMszLG0N7zDG0o739XN7n lQIUinzr0UOM5gNHdxaTf/yjj1LPKKH4NdxTJFSn5FAVYIrPFNPN+29Ltv/M K0nyvW8m7W//DAAo7Oi+hE7jya7MNnsciLbbyevYScHnLuxJ/uHL91Et8VpK 7j+yyKIBPPc5E/51YzOPrh+Go6r2jLtGU5s1h9CdTjqlxARVbWqTSQWd6+tU eKq21Bz3OXDO5kwl9ob0O5lZC6fO7+811dcjjkrOuSb1rnOLleidAk662mfO n5Hhq7JcmwyqzmusyGOvFU5MdZiYHaqRbpaOgC6/me6eROVbwXVFErUqtGIZ DrZGWlrhyiL8tbSaVXLRhOp6HPwTHzZs6iiz8MCEynzHYcfqjTlWT9H60Mc+ GmsvPsX2ienxaJWVfsxGgnZLv+MTt1/a+mCkX9Zqs+OKEJKcVxoicFpmRudG +vnAE+JyhBGtMaI4vRQfw8hCZLfe/CgwxZ6g77Fhoff5FFA3XLF6pxuu/T0O N1t1TKx5Nt41QTbi+soDR1lguuFazdpUuLgoZ7eDVdUhdtlJvxQZq0pMv4Ba obWwJl0gdjoTs1pc5509Iw0H15JzJsL+HrgWzCRH1fFsDwiumtYBrhRQbqdS U/FQDatWi0CV/gBpVgsrJpvqDqhT3fOsDCr2RCLRU+sx22ETPUOOr1tyEj0C alh3HnxTTcwcdgygR6lZrhP5t0+3Q3ky+2HBP3XsCIrhVWEoEu60TnF6y+dk QXdcYo53NQH1I1dOMqigkXzcAQMqXF6ACinduOlAcu3Db4MdhQPJoOJz7MwC ootd18OGle0FyddShKpzmPa4kj7/vLI9ToZoMR3a7V0TTca0Lpj+2afOsvtr MbWrdypiVfGeIlHIdiaCU7+06rC0W04XMn4ps4m8D3F57coDFzMmLp9LQtIH bKOUBceM1rtmdbOTjwccLovOhEe16+RjlZexrp9YVzOKiY/NFE2bdtUJj8we K/Fx3dXE/Q6h5jklrRyhGyocyALVesyEdJ4HHlbkktObN6XRAeu3hHZ4qQed gHTc8VLNSvE4M2I37f3ZO88yUYfNwiB835ZnHWlv5fm4qSK8XqwVIFe3LpDC 6yUnWCGtmbg07/ASpE3hE7xq5kj5LJh/YbjDYuK7984mT59ctpx6xwrV/bPE 9jpJpFY6wO2l0X6wSQPcnVMIEXYxB0LDK8wpfZ+9X4ntwEH0fisOpyuywRic 4jP8PfHJE5L7zbDls06WzyXHblYdPosOn4dCr1o++ZKpkOp1Vs5JIoiKJjDp M8I0MhMUalhVonxKElYOBal2c3NHjDbEEyAB5Hj35GzEEkDWesyQFEySqOl4 uGo4dYWrwbImgwF3VJM6B5xgdMJxR4upOxp7JzCZxrdijA86tjgUGc7fxwZL vQRxnRHEEhk4t2QjyUIBxYEMivI0j+jVWhbFqx0RFmE/t//qt7ouiA0KgLeh bu8YG0g+8+Dx5BeeOsdMCo84fqDPYbLqH/W133FxdxqGbtoxnvzaO7A6NjBJ P7PAWCbtsrtiajvbC4tz3O1rhifNsJYdJpdlYyPsHZgCZ4szI9z/68f2tV/6 oadQnuDJI5hPQVk8W876oIoEuGYqhi9ZKxAeQR3OobZUyrRIxdnjocYSCSIy kNFYysxIELfwLBWZGYkwTpuYEzMiSAjlXdkJh8ix7kSyPtEMUb3HdInNEA04 rmzZyRBliOyYN9nnxJyTQpBxPfmin1HTsNCszJ1jpkv298Db+sVFJ9qUtWus /BTKAYaylsnbqreqYeW4ECgZoAyBNnMbym9wlUHdd164PRII66gUUshJd+w8 EKTsn9N1wEkM7UrlnG8HF9Zi+PDZNRaRgGHVridQk4hOFm+Th0s9V4++Jdkq BVxgFYERfgcCX3fXseRz73so+e7XXkpOHV3RdQOFg0ZT5HNNFsWdJhuslrIk kavNBstG6EJ4LJIsjBQOZZ6E6t59uZxJ/ETTqHMl+CeuK1OiGVo5Bk+eWFHL pGdBoibK0dUzRuO95QOfzDz43ZlE4X4BfZZGO4niZYAGHLe15GSAgmssCwmy kyj7HGMWUKxYHzNOXcq0QWbiZJ8TSSrOxu+1ONsJQSwSIANYGGT2Sswe5zG+ xzNpHSmcOSeFY7betU+1JsAajSpeq5G5mcGGZa7sIFf0z+A55BxyuZLeMSZ3 KgY5WMMUuXJEjqwdxn6/UT7qOJa6Jlxq0dApZueO7GTMvvWpZ+gb//E3X6FX Qi9OVR6WsbblaxBqj7JfdixfUaZgFDdZEXATF1nOkIZ7OOvgDpiNxpiEtJDJ ihwDWfCwEBfK9MeYcT3zSRvia9FBa8RJrlq0kEwFVI0eORu7frzPcT3V0F19 /cOxBRm0OqZC1pxk6BS/lqOriDU5y7t3h81qHTHlXrN18tq1n8jwafzXyKdM EXDEDa8SSClYMGgAyYJlUy56GgCFeFHMp1MxVzcSk8MvYIG3AxaNMqiqWary NFFc25mEWTP30SSM4iQoZeYfCae4SuWAabMmL4uOaZnOsYTP0X41W2CpKiwR W1how/1wJJSPMe9I6FiWNKFjTBdPj+DgHJ3eP5GDSBIsxR7bLsz8YYRIXEb+ p1u6kf/UvOeQY6EK2YUVhZ1mcaFuwxh2Up82gkMixWJ0vcRKw/iLsg1DMcok VsI9ZGKxzMSaOYpVx8BMCQTq5Umk1TIQZOYl1pzkjKKoIAmKkrePaUbQMyQM YT2NTAGCw460yKyTtpTqMNriCFLF8dqIDBUkTYL5BuweNqdLFY46yZB96aDE ZEjZ8KJTgbvNfD0nLq+cLxQhOofMqGpm0YNmwkADwXb8PPJXAjTw+QqywfeY 6URdnlZxoNHsihogAgfV484L8UQ1wlKQWQJZZnbAuHJYbU1Q0LvoykXh0q3V ONlYARnond1YddgYctiw57ypiVHv7Quv2WCT0i27URc2zL7dyIbNbggbYXag HKcFkBUkIHY7sdS0yLU4Xxr1BLlOozGZCFh1YigtAUaLXDYly8xodZDx5adv 5TDJWhebpJhxEoamPLYuRAOU1gtYKQ0yECbhPiT56072QRQ/5C1mH0oCAebH dYKtxa81hgCGBJ+LAYFsYfQ0nrcOE1/CwqhjO/CnQOE9P3Ab245+gwF9zhgc F9krGNtU7uaHFVE8DLtwVgin03F7z3BBFT4fGIUhpsm7WyaxEEGg97G/xg2T moav30BmYZ9Dw2CgIVoh/LMHvyN2eTWZhZrQYDbPWksRswuDloaQFIUsz4/0 8SVULDthzbRJ+5HF4OFZkF5FSCRpd96zh91BuxyrMyNlECftq5tPbKRlhCEG BBYK63JNOnmDSXMe4bWf+RzMCMpZMoKtFiNwUWIu8pbBelKHUqb4+/CkSmbW WdPk8wYKWAYBYluA4KYFl79ip4VVamVXeC0mARzjQN0QiCBCouUSIlB+NDwe ETYnJ8Th+a4zI/TXIA7Gh6IgtPFcKJLZnV9ogYPCASfOL6chSJTZcdPVyLaR MaAGXz++P+QwMeBk2+xZrbKJPOa/rxffV3t7T+3FpQXDnT6vlN0eeE7tH7uS /OyzNzMXKtStrso+JMzINeKRCpOi4WnKCGZQ3l9/z53Jg+tLXBaOddnpxCYK iEhfIS0rDA+AuJ4/ZYP90U5AktbiTDHZfN3duXPPzCbKmAOw0Nx/9jBDc8SJ 5o+k0FzbNzvM0BSduaWpHDTQkIWgpa8pNKcDNJtGwCM0/Y4Z0XBezciICUG0 fidMF+bTBfak+3y6IB/iAMpSCmUcoptD+az/8kcS2Umkchp/xL63O/RxIV9d 7B3Brzvw9DvJMXuIah4ebzGjjeArAo9Z2V8wqy5QJoZbFjHptjSMoAo7tYIQ gnLKCv4cy32FGUI4AfnH12AglCXiob179w7uYL5NoY6fOaxHcWAT/79w+5oW u+REKAZNFMfysCPUlIvLh/ieE2ZD/EF+rUaccAg94QSakmuffX8xSf4Q/bP1 7qejaLRSNGIGwGJ1dH6UsTrk2KKgZnklnUb1gIqRInEYy/llCFryflmYHi9H yReSao6g561PE4Je5AilBrLYZOBCouzZh063bz8Zjuo/lTYxThN5dE2bWacu Jg93qziAbRiAFbC9ToCvgP3wRz4UvxsAq28oYADKCehPmFDvofsuAaQIlU2L 2aUGClW1h0Wy8XzZ8dLMQon2S+9/+1YKbuYEsx977TrjVDJQGemfzEEFR040 Bt2BdEahpCk0sxCizEaLPlecZUKybe8YMK7EO+J3cAxx2sMU35azDJylw+fm 1ig6pglwK3IeNe+0HG4FKWUzZjkEl0gLdEsT9BsO9WEQyuH2Nz9TEQ43zh7d 0GHbaW6X9wnBIMVITOABJ1sQ/DhemKHZgjg9S5Iz2N0V3FLZvSVwyIwgCSYc lrvkpxWHmFPLcwhrZzjc3rNjqlBEhYtoYRH3vNm0WKeMig6W42nsVM0waaxq 3fFEbzHSqUm3PY7bWHEy1zJ5yLIkbmHhrAFQT07oc86nHe8BYMHJSxdM0qDY Y9Mo/QyXsJVCnlm2eHJ5QkDojsOQwcGaNhsNZo93PGMW42cQQVfZBeYwoOnt y3xrE7GN5u6sEKJzNWNZdO481nlnyKxdhJeHE6sTEYRZOG2motYFTrKKgLPu wLmc9nMukVHiJAZW9QNLbw3FSX4N8/7IYgBOnbBtOP4m9UrG37zE3+/j78N6 gQAvTSEp7lcHYujCltb1Dn7tzJLICbqjXWO2koLIHPY5Lu5toQuvWRpXhUaz 7Ne6oPG7Zvpve9/uee66cw6NDSeFJ+7r9sLQQKSx0iO9bZMWRWf3qDGDoWj7 PBgeJJL8Qs2noHEdcwQ103AoGMpRIK6n7MLYsvhX5c65yHDgBsivOXcecRze NQe+puOhehmRcg4+fG7g6xP42n/vF+Lor5hWqmWsCnx4j4UTwG6v46FKsBbH BttodOqWFV2R93NUPd8UX7pbpIe7Kuzkk2f4Aib6BeF0Tb7jEvVAIArvdXLJ EjV4A37uYJp3jO263aFpt3mWryzWjbbN5stnTJt0399ZM/S6CreeHoigX41H YIMmnJdn94Ta5X7htc86l3zZs0gkxdGKxdontbRbY/2Q4UhSTp7LN2BPmqZR mgxppiS177zz1i0ZKzM/2cFwLjys3gDDAw5Jg75Ha2Z62HL9+jvvjTB1Zk8a MXsCgGDR4HKydApERA4ayRQRUHHUV8194E9ait5/+36YLOZnzTmk7yy/craI 0ycqOR2zToHSDf3e1/k1mD7x8FTwSTauH2yRPelPnctq3qbhb1GnOxwYlp3s RtXJmds9dzqf4MFQdXJ/1iwJENG0dObDazF9YZw7mBXu5jARnzlhUTV6kMNG Xg5dFT5qrKKKfJ/vvB3oCttAPniDxGcsR460YUfc+/27HjR3XRprwl5EcUdj sPcSgh5W4VXZdiCyUhEnrwyZjBEnk7HHDIdmMlTCsTxWJXzVsRMhDRFO+iqk Cb9NfPrL/LuQosCiVZHgfIrCiUrot1DdTZ4y6pKhUAuyVUgT86hG4TVGqnXP 8U4npSBSzVsb9Z9MvKGsmNv0pLriJOXMkpC4Ys3b9h+kuhpVvDylFctn0JZg Zezj0ViooVjrkihQgcamkClHcGu+73+kKyPVTNBjFPKEI6CNdL4oejYmT8zD DekccDybYX6tsXRCQWMjBX6nt0SLxh0Rtft9sksFgohi4gfCueIsAv2/gxjy mEIERQxLPWYuddVLsYsStTLIMUGo2oZchYdNT+sCy5YTQVedtPGCEUHJQ7gi WE43ucdumukhgh15YXbHyCVZ3rWjlS3APqUnqjgVPmSPFI3JnPBhkr2S7uyJ 4rHuCHNDyoMk6iqmSUfcqlnzj++30iJV2ljW+h3zP2AkDvpQpc3OWWn8zKvy //A7LH+jTjS7z0i5RrOV3PSj3aNuo9n/wq8N1kq4YLrzjis0IIke1SfMRxht 1z30fLwQ5S/K2pKzzrDqZFDtFj+NDz1ZK6Xp0k39rj3BWmXNO2FvT5A1HA5d 5n3bcHVFEMI5pZln0GQVU4ndV0/cwmFTX+fdEioem5uPbEvXnOghwVCdug5o 0nF1S74FtnNN2MwJWetz1ubWcxIHHVfIuRtVuS0+z0tcwfyzKzngbIYlIKnE nTy4ypMMy45p/q94kZgLP3J2wrOYb3QkaMGJiWpOvq9lOkVjojPOhouik2Gw xlYX0HknpepTVKG9IFVkSF2vWaIt411yv6UhSbCcZw+0zHm61ShNmKqV4UZX nOkhlJ06sGYNcN7wSjQdXBKd6VXRgShBRELInzWPiFmsebRpDr4fOXYQmrEg OnHo8e+g6V2NW8rO/NROJ25hGXy7IxZzztKympN4svufNDo4I/0N9ORRD3zJ ZlVr93TJWNHRJy0JCow0IEDIeJ7h9tYcRiVQNZIgpgceB9WsYvP8caL+5h7S 1KmbyqpI1PSdMx2hk5Jh5BvRTHmmSUPxAWe0h/m1jIgVkSomR8Cf9cHUja+Y iRAabB7qJee8ah7wd5oB19PqZp0lVLU0NxLnDOykj3bJGekSsx4do7TEfxqW KMlqKL7ER17g8a3z+CIQFJORTzCFEx9Uh3D/ZjN5wbNQnZSfysktdeNOuOU6 4qLe2IhRHN3Kkq7QLF/V7C+GtwLo6XfigoVNEOIDDVkfiII2jHXIS1TtiNv+ WDd3VO+47EyBeWcicw1+KBSwYUd+2vFX6zLyelwT/tmzENFDSAuqBZB1DHyz Vhh2Hil9aoR5csR06iZU7ZjbybaQbBKvgafcuDTELTRWFRkqvFWd480T5GfS 73BEqOJoiYEbKCsk62sbOvZ2vIE/Tm4pJosTTarZoxuryWfftJF8c+ty8j9+ +tHkXQ+tJ2f3zWbWog86wtDXWxhOplIcndSyM+Wy4DipLAwvOsIw5TiUdSd+ 3m0Q2t2a5jacEjWg/SZ1Dcs1wgY1lQdRAYWJG7T4YbeQuLFVFQh2RpDyFMEo Ola7fAODeTnUsCUdY4tEczp0THDq6r3K3IjyFk4D0MvIQj353//8G6gsiARE A2JREK1KYtFvnCvMikMWakYirn32/XmJsDZInciSMw8w5ziRLBHvciRiwsmo 1J1wdtWIYyE4iYX1G+j8YFBC8kjFg34ecax/zjqIIRQnIKoJlYqipFJEm3er wIP87YZ+eysnALxQSTSNxI/1Xut10Hf3BHnakOLaO6eHeHRplCl0TUfdUQQ6 w8RnN7z7aXEAeo76BTNo6v+VnLz1rLMugkf93c6ojzn+XyPNDm9pATItwHBr qHXwxnppNTfw4vsNXN8twLdlAWuY+qplRi/3l4XXpZKpf0MjyRJC1SqU80U/ lP377T3zI/T3NFj5sQPM6rFTI4Oq6bNjx1eXcbuY3ia6cSUnGzvTTX+/xxm3 UWfCuOGEc5Jn4/5SVblmp/u6LIPR8z6QzYfzTiNDY3V9ix6MVeEP+JUV+IYO FxlJpSN0cDN2cKGQLvDi6A0dTT2b601u1V2hZujZ6BsVnczhVDff6H1Odw47 0XGfmMOC+WfnqPTIh647jwIucSh0pyq6VCZFCPkbs4tikP9dKkr4dV5ia2xf IK2FbPaey7kn/fL2rbun2Y8oOmvtJ7vJ4fudjht0ZpcaqdWADmElZGY7otvd cqxGITflEBZ0NVh5wDT0MhNS2z/kV7bym4Ws7FF7SeSKsMzkEVJHtd9w54H2 xSOLmkmxCbn4735+rW1B6ULCcL6BnnGga63Hu5naDzqd1nRMbU3WfKDTCOj2 4tLiVio0PGgoAv02dwPWNiQowmx7rk9RlVtDDf9T+ldbhc48UlCowfmFp2kb rtmGsW7WZstpeL8TgmjDSXLgeV6Te8u2Om60GpyJG/PHPmxqcdX0nyrfohND j3QT+g+ZZuipQ32O81wx4ydPJ8J3gvxm9e/wjdnNj5pahJEIsZYesYFLgsHh brru5bT5sfZ1R9eVTe0J2bZU4ZRpvNa+v3vtrSH4uKnFY6H2PAjQPFp7yBT5 qkPOPgX+3o84ta923QuZqT2qcdbUXnVO9QZs30+YKoRkfCXDvjhbhHEX5j/s 1Lsife+ciWPrfD79auS9eIMG5tOmCk+EenPbFV1xNiju7YLsf5erNw6kLHG9 a/nzY62OEm0SFss5Svzz5hZhgFk5x9OatF793Rh8xXTK7rU1rldRpEEZFO5U ffwz8/WnZAwLAo96CZjZqXcbw0Bf3d5TnzwGna2E/AvzlR8wbRMDG/P5tW4y /mPmS7gP9Xtb++lfmr/7Qf6xzIIIARTlVelW/4+lfbalv/jfzO+fCeWhDSwg Ul65m2wYTzT8/IZQAFccI4nP6VulboPYUUCYpQg6DZfkMbQp6ZfeZ770JtNd +Ayhria6/W+8JXSE3qbQ/S/Tlz/4k0//5NP/Vj+1K8abtT7GnCej+UHAvJ0v 5EpYOeAX2/J/cYu/ib/YKGSC7uhtJ+bP83+PvxFfgPXqhnxHb4HvtuVn+Wr8 WmzEEv/Yjw+39HvNxlBybPlcsjJ7MJkdWcJ7LcfUo2zrje+zbS+2YlM3pUx8 8h/CLZfT1m3NDgy2F4dGkpWxSa5JMZkdGq8kK5OLpO7oR/zE78rySp2LP7w2 MTiJAu4xZaGlQ7VG0qzWUWsq6+rZt5CRuLz+WLKx7zK3JtciMfk1bdVWwVkq dU/au9cm+prJbHM4WZlY4rLoDlp+CR8UUXKh3B7qG7G91aWzwiIs9uHimI3U +7kVK2PTxWSjtYc822OzrWR9z8XksYvv5v9XF0N0vzK7l243nxzbeRI/txfH WrYherf7nSHRYQkLJrZH+kcK1fbi6GIyOzybrEyvtgup63aFa1nWWqp03EjX BZmvxQai+6hhaBeN7hQPUCV55uJ7i/KjM1YF7tNwt3L+bvelN7BNCz1JEjtU b9L3VyZ34Ny6XTclxxb2J7MTy8n63kvaxCvp8JI4DrP4QDxyotKlAkXcNrgE 8d/96bBuFTpxMu3p3XsykxPmAKLioArWcBXppUGUrC2fSh649A5c1MjbzmzW khOHLlNf4heDgxOqAVB84c7sgEDaeEAurxzmQUF/D2BAqGCVbboKRrhL3BZt 66W0wC0tEPL6zLEN/p++Rj7ojYxwIbvv+2LaiSl1IjpU2xLugEoeOEkyOwMu SDu88d6PUh+Ak1uOPMysNBuDzMfGvovF5Jnbnid9cPXsk8nlY1f4Y7qADfE6 zAMiiTBtjugkvFaSY631ZGPtluTykXv5unrqMSrtmQtvpFvSz/g9ENoupBrP TI5E2UdD0CultFf6uukoX4+UVEpY9sJMSV2rzMoDnYQR4N4JnI2ktyvH29Et 8B1e7x80RP9GIUVIMaIyJgER4wOMLu+/kFw99hqwexqngOD3955/U/LGBz/G F342iF1OxzJKHYQDUkfCVOstcL42zUmyq1qq328Xy9KI3JRZWyQC4FH9d1HJ ByCDs6PzyRMPfDh57vGfKgzxazWZm15Jbr/9TcnJkw8BQu2JINXprCyEgWpc NNIMutAfE9IrVO+2jvWtqTxlGk0dWdAyhLpMGdTW7YL8M3sxWd/h+3Tfqvl6 s28EEBUaDFQluff/Ze1NwOS6qnvfenVq7nke1GqVJEuWZMmSrHkuWx4Fsjzb kgc12BjZjmfwjN3GRgGDjQEDZrCbECZjSCCGAAHScUgg5IZHAiRkgPS9uXnJ vXm59+W+m5d330tuzlv/tdfatc6pXadLfvH31VFXubvOPnuv9Vv/tfY+++w5 4Z1JAg6GnrwJMOhd6OsZ4uadl2wejbNLYXoqfYjGu2+BFy3fi/f06mGPIk8C cc7G/zNeNCvf0RFgepvjHA731Keh/rOGmLNjoAY0Jv1HdpLqPzfh2VPuYr/A i/yCvoM8o5udIoKDxD1dg3AIoImOxfi6Qw/DMeLT69s8ky80V6gDAs9QB4ZO GQx4r1qF6/UmAKb7BkMA4K9AJze9TP1f5aBbM8CTrnNq52LrMHUw9yI2kdMQ YtjS+/lY5Qg0NXVGfNddn+fXG9/4QbZ9+So+wYE2vU+NzEUBDxgzXNDOaiQd SGlXCBi//rnpKt0QoJ3x4+yitsionPGr6kKHqPG7UFJAVKGh3BJvPePc2Vxi bQz332QPphK2TK5Ay8jubz7nAbxwsXQswyP488n+afET5xOILF0msiDqwC9y TVHWSPZlkAQS0LkbRpuWPKeWbDsj14RRIeAIE/Ln1Le+L10TJOeB5iaVNSC2 jwABnQWrL6dsnz6fl2ZbZ2oxiRAUR41JqPGe3eF3QLMjtIwlr4VN05FelusW 6ic2XUiWVaMegSudWRLDJx+Ie7uH2OQH+ejkF0BPRk9nw7Hojd+AX2abuLPt YBXbdnZBL1I7fE/GdRYD9j/RDCBE9P65kf5JKd82h1zsvxxQU4NGTaXsH9DP 03jen4sWpsdPb6hBpb6d+U/Wjzi5l/O5cXUDIgaOJe8CqZBQhfXn2RGKLLbw Of1/DcHpU6U5YE1/PGC7nfSlHZIlyb7kEd1nmuBYMoaAMCguYDQRqY+EC1DA HJlVFzBfYw2jELD+iaYT+ytpbUXLn6vhTzSB6Hkqy4HtTq080D2DGCK2ejgB 8A57HxKrx+8I6nEfMh/F6rVl21uMgbvYobbADcMogRzUw1PSttOXbKT8djO3 bWegZ+hP0rCGRpwSl+GgNrx8Yc+ZhxrJb/DmTp1TCWidUTb3QsLcCe35+JYr cXusED7XbJdlby998yR98xYGzrkwlNVb2KYhenrF4tXWV0+454Ag19akAv9S 3o1UiNzUbfDb1z/Or+n6pny8fvMF9LWHLr0/3nP28flAMxJiphjwg0kz/GrD MhllLUf+tuxHCGGhv2dIAMCJsfhDQf1hYXpsNfrb3BDNI3Z0w3Z2C2ijMvwi z2lDieMDEgkVT3AWNIRMvZ+OK5dvZOlEvpLrEQGV8p3U0CbNK+y8ACMZh7nw zD9vrNjYcq305/Mrl6zHn7lFtbKQvsDmJZ5DvbijIs5DP3IuALcZFuehHD1e t67BblPmY6Q6if/b0nRGPyiuYRVv9HAbDMrm03f5gaGB1bZizM/echnGBV+z zQyziGcZ5qofZpwJ34RvXT652lcs0IOTJiLBQy/e98ZZ/7Vt3Yu/eeVmjibj 7F41714XXHIbv3q6BuIjjZvhZQgoCCf11m/mYEyRJBLvoniCtxBO1KvwLkSJ Y95ryEXgKkg63vDeSnzf238Tf/SG9/p4vzXVcpE+rk9KLX2CfqDhD1i96d16 TuJQM4h0N8cLmcIIGXrvaHz21tfHT5x4Pn7jxffwz8axJlIdTWPYNPYePsPu 6ZX03fvZt/Ct5FWcaqhLIUdXl6L/T30AnypSllqnr9wUn33mJfy6eMcM/b8T F82SDV7buCseGBiPnzr5rfjBt346Pu/gDd7/etn/Ivgfjc6aRqr7WsVMuUlm Qw4xp3betC38jSUxVf1G9TJ805SVSY756Cun4WT7DK0yD9Jfr5TXabmK0XOn T6zi0tmoOCec9YorZtktSxLZoO9Ey+H7zD0E3psKAWhidLZMredxp3Gm3qZR hzykcYffqoeR33rNh/c06OQjZ882UcCOKzmhnKrX9PIQnwKnWjo8Hd977TvY vPAvzAsjYJx53OSBYmKKb7myptudMbqk6dDJmH1kzwnn0xH79Pl7Z+DPdI3P fOJP6LNH3vPN+LQ12xA3c6EYKmeayYlMlPhZsA6+ZC3CpXdwhM7+/rH43js/ wf+++Z7PkIM536afFwYGl/BFnJUanqY7diX6DK6IvlE3tNBryqWmLyaHxHu7 Y12TzunRv3nHNRRKdmDEi8YAUo4vKrWgQ5L0i14h9zLv+TmpPjjX6vfevfW0 hno3vLrCDh5ZB6d3OBYSjk5CVf2cfL6RHCV3rbCFpvn1JBipdIP54eKs+Vnn n2iVaTNtutSqcOlSoIyAVmLnCXx9Okpde8G98wM9I4nbdXn1BoeToxv28QtV dJW6lOtxQgcUKBBMZUOidYHfX3DBrQv1+iZ8n9k11wNBTQJea7voMIm9FpMo +cuxXKBeGjMdRrKYL4ksQ29Sh1Wgg3CqvEFlygYRBzcdpiatI5eS8aEvTZ45 hQk9M+yTwr1GojNThMBweUI4B9CgOdg3HF+491Jn5cMrEfZHDDGWTa9nYhSZ GOWQGpgf6BvDmbSDGeQoSAESRYMKZJYU/yk9ceUVVdrnNK6la3/ysa9hHI/c AxHNwDDYgLpme9+UMYghv6Ye1f6MUl2ZIslYa1A3g5hwLjuIKavB/9uB3etw YgwWzlnJIApX/CFmmnOUfkIrh2kNAppbw+H/c33QnAtr1E/3xNk2tSreMLkG pOkzVJmmj4gkdJ4mVSDfUf0hydAjVDln2zX+TMZdSM2saulpG9TgJnAX9Dhd oBI0BJd0N4v7t2dYuUWdwTmle8U/wqeaMLAm59B00+UCLbtSkOzggT1fkmnk BOCNLSuBPPiriUBZqWTKSpjQu/vul5Boc3+6e5+rM8ZqfeFX8wQEOupH9HEb A2pruq7u0MV9mrKfeHB4Mj7t9G1Qwuhr1V926xcFlLfrAA19s2SIg81KwckU /CPbLjoPtYrOg/aReXO7RKXLsv0WdJXTtkA91lPujg+etjfetnQTEEZf++z9 n6Sv/YWjDzLSUDRAFnPO5qvIzZJMI+VD39aZCnJ3BBSYa436GVw1mOwZUBWE FEeLCBZt6+rbGG0FQZuoIYZaj6CNsDajp9GH9K7sH/Fo64Q0dkRK2YYyxIZS 9oaCj2UQ1DskdlSs36d6vQt2WjBmKnqWgN2ec5WmMVTaGum2PUfio298Mh/f 9tYXpbxCAkQZ4bhXq+d8Brfdc2+qbyR+/RnnxA+ed2t87dYj4F9PgH9V4d+J m55mpXU6jRHxr1v4RwJrPjkctUQ/aF8EooyOhiiGBPdDcOpv7xxsBpZYiR2T QkHItgcMyQcGp5zRmKFmY0q+Meqd1BAUPWR/tgHTFJfvN7HZqFMaNbSEgVng Y8VjE5/3yUzjgbP2cYV+x8bDTr8VeWYWs1X436i6EFU9UUHYdesOMFGvvPIx HiF3O0rFO0ubUWlvpW19pLSYoYqRwkaj+JmP/5haiI/7yJwEZjBWbaEFbIj3 xYDddKeGynA1V05NELZyNbItRKpHTSzhZzfkFAegFCVPMhtmcauaVaxqqk+7 mbM3bLkivm33THzJ+gvj06bxAC8wtxQ/euIZZu52aHXhLiWfPYJdvB0cXsLY rTF2S15KkoRkKUmSElLS9VtNYuUKQJZfrCB7BvzPjRWboR6HDXGXjq+Obzz+ LmpUq5jsFeLSe1/CkyGyBbdEVSSFOjtEtWwjqvEo9bZTdd6OLrj4Fh4pJR18 baR/0kWcsvf3gGXnisa0ReESVFzbAgAONSVkL2WxF7Rsw5YL46kla7j4IChy VOQbY3yNyzL41r3X0xcShQFex2HGcM3A+IyVOwFgMnOX6F51xX0MY9Sxupt1 LDKGcTtM9ZxRTwFNWAgIp7QnWehVjCehU5Ke1D8wQS6waeuh+MjVj8THTzwX P/bu7+LTuH9okrM8Ka+KPKhaOLek3Tpo2kY0+bKzjxtTSrZRo2ZXtoSq2KGz 4XJhw4qdGCOXTsummrYEPImsWrmNBBuSFwtl8sztHs9tfA5unzl+Wnx4zZ74 F3ZeHo8MDMcvnfxU/Nxb3xtfefAyZbnMttYY5pDGY+NL42tn7o3vuf/ZeHBk Kt7RuJylMWZdSSYXRDcjTyeuM99vvPE5zdcdmkqMePRjarjLga7s42O1nVcu CsuKgeX0ik3x3vNmfI+SQF3bdMtZNca0W5YCVujcsjdkhYlm4bOUFEJTtFX4 +HVXPcgtk0gDlMlt6XM5qe03UyerG7vjNaOnAdvUNgI4HYHyZaN1oJsuPIlx QrvFeMWoZ5kXIBNpqmeg3ajnhT2bL24oZO2mo8LznJshKHimy5yzstzUEIlH juXLyRaPvuG9CZYfuvR+L9dkbPwcWdr7oJiLgbHpzQZ5niFRa0mt2gxVUQQB 3kIQKD3JHSWzae7BYLV8JaDlXfvKvhCNv0mdDoPApoGm3PLAS95g6ZwNT85y oi6ptO6r9jCti0JrqGfUJsHpSoDWfUJrO+vQFZh1WCtuq+aYil2lgCJz/tG1 qH9o9ASb82AzJHuTznQpOJaZ0ne+46vxkeOPs95BqZ56xTTPhVbI+nQpA6NR CoxGb0ZuE52iJnNWEtkYS79H8SRV6HFaW59AiCbLYo2V7ODn0zjJZAnjGv9a XF+36YJ8/HDjOJ0J1N66fH382E2YYiV2UxuU3rgSSG+iNsXLphzHBCjmWUBx Ijj93a/P/y317oZNu+M7Zz8TP/6hV+NDV93JZBeqy9qayBZB6DMcI18MwX+r JCCd2HmN9wXq7WpbN3AOqm5gOrOX+7LMnnHsze9jLxAp7tMn2YdhNuV1lYCC GjZn00kxPdsj7/pGr/gbPn7gXa+yv4mFoVi4yrBusqfPrPMqpoQlVy4QaRjF UsFgCHdloJj4WwhM5/QbRT05siKhqHOJ51hz5HfsxbHEBK6Tl66eqHMRA+g9 vPlYf6BEWxUSk8JG3YIZ3JectTXAdzcd4mJNkTBXDnj/IHd5ZAnsV3On8i0M AXVQMhzCg6DHhHlmlxY3CTm1nvjtTovKIQCPEw5LfR2nXbV8Q3xg38VwyH6x J5UAGGXYFUZZcqbELsNYkkA45WHezznw6YxWQLUcQGvJoPW8bdcAp7mBwFwP 4VXo6sma82PpOrddELGKaChgz/WVmxWb3UzMitO5RMvHnv8hk7O+eqv1IBlS hiYqL3bWohLo28FUHiL3IjAwA1HTjij6Gl4l8yjIhuRJQ/qMhRObLozFlLn6 thJ34KyXcqLybx8ZKPGPPnUAhHRF2QHoK/GxwPCDlIV8veyCeyupUgS4d+6F V8fvfO8X6VOwL8LP8aozdsTPvfxzGnEcC56DOD0xj0EXCfMuuKBZUDIPEHHt H1nekWHecvPb0TMDYpiKHsWPCfe6ZxVbR2+5xlZRCzBVT4HxWbd2K79oHNT2 MSzwKpwCPBXBCQksV6HZzgQvHAoVCqA0y0ZpYp4JYOuTIq3iDZ8L3qhHscYr 0kknptqAsO22Bz6hMlMnnqB4T2t2KpejmmyrebY9ec2d8Ydveoz/fd1ZjTTr ug3rzt18ObOuK6A6+8wsdk7W9UkcszEMbKsGPHFYMIf36G8a0px2OGGNg1YI NhoqAZshAsuFKzehdlQNaNkR0SgIk7Caz33qD3Vo/anUx+zYkq8hetlAISWr JtcgHzGxBKJVhWt7V27jqWwQrShcw3swDEQbCnDtnG3X1AJz2HbrvbRztFqu S5ZHR6fij73warx+w464cf6NJIYBMycJN+26GDCj5uNYiBuvP6G92kh2qp4O zlINhKcRGTe0YITYZTszFCRECqh4s49nWtE/FJ9bX0XNccct41P82bL+ccCq bMSapNjU1Y5VEGvrlq9lVpEwKzCrCulMuyqYArauu+0pARSORY8pudkMGXdO MSVZNzd1eZP1bG9v2nwwXto7lIgwrf2TZXSVBFBSNj7jyejuyMepcErypmqg 7mbHH3D8wHt/nc+ILxiQs1kTN5TU9TPuAktzI7Uusu294rs+P64aaG1Yuh6z SWTIrdDCn6GcOcKAKnrxBTgRpNiyVzQHn5U7VljbxTPrJ5bHd7/uOP018Ykg 14ZQlVSNE4TqDqix/sCEebpvERYModr5Fiw9hA+kLOjPED6cDzttsmtqdXzv ztczreDL5YDWHhFtAiJCfeF8eD368MfbBTy8oPnIeOabcCwprXyCC1oRnboF VAAX1ts4RLWCalRyW4Bq61kXAFS5WmBO3OzDt9BPwi+DxcNG1a5euRGgIhh9 +ZWf0WfXHL2Dc1QSYBRpWqEVCbRUicly2JWpSIA+Tp092bXNAC8uol0K7YVu DAX45MNS+VKHqrX4/h3n0B++88Dr6EwDlSpDCrgqCbTAMMouGVddfKwwtMxc Tzqj7BZaYYCJUcIpHCOmFRLLA4eupM9wjOJ1m3fpQOjOu2xrGAXYGl5CqtIp mBsQQqK0HT20f3BzRpMe3gTAKpz4qnW7MBjltmG5xAIPtq0nBi1pJPqlGmBE ALY2o2PBZ7N08oa/are3zeHVG/SGfLCKOr01lxzhY8Q55OjoEogosnXwqsCC CtMvxCqs513eHG9eKg9U6eIdlO2AJUCqkoGqxtrXFQRVWOerJbzegJgaCEyA 15uRx3etdGswy7C5+vYzG75vEwNaDoYDBnLPiAKaO/SMkaUYSep7HCM1JT5x sS0uI4tLeueOgk1uQZ+MrwmCifEl41I9uSKAM/wrOOtlnJUszvglKJsUioFg oxPTQAedgqBS5B8jzFx4lNk9a9HJxoaDWbrKIATiO+96SkjmjlaE1YRndz70 RZ4pAcmKQjURYabnk8EiLTNae7vUEvjFidR7tRCaUhoa+10pLVdrGvv8WBcl ABt30t86uJE04+wRWAtlj71GkUGlAWaUFvYKzDDXgXmONMxGJqbiz373r+kz HKP4bc+97DND81jzFiuUMXlNVih9k7BCS5lIjuiknLunSJ+CMGfA6tuCcZLF srnQzPqISXGEsJkeYcSEb4t4J0NhqWEtck0gr07S6/iGPfGSvvFaIL10xCvE xw69KT54zqXxK1/6Kb5uTKCHyQoINVCuebG8sgereprZYxJ63YI+hd4u3BLf hB7/S3TrF9Bh7TNucADiBpvzzt73JHjZPrb+FyqR2yzkistOcKfmpWvxHl1p u9ZkJu1gs6zpBIpbVB1a2Be1leGRRS9Zp2sOrooakWiOYXB6pBtNq2sFH5Yz Evj6GXyFeHpgktdMA35EuUnJLyHjjr7x/viFL/whmFONZxk3lxx/PHWCaGYx 0BfaCgdn1uccvJyhVwpIuaqgD+dAIc2i7/g9H0PTrIvhHz73YkHHdry2xWgJ bwchF8uwAxUVPQkmMpDBQNCwKkzEZ0RCoWEzS11FwZ84SGdrMnFyfEm8ZdN2 MLFPmKgzBs10NOL0lGQd07AkTLz8xnsa6iNTGdYpScVrss5OOWScRfmcMJ4s TwmVfSyfC9IWSXS4Ff0ZniJ8nm32S5mz16MbttL5B+I7tp4XP7r3SHyAZB7J PwJVawo7YqYVIAUBRrzuuuNkvG3vJeMymwtVqD4zbSxCZ26VjlgHCQqCi/0p OkIS4m+g/zZvOg/pKtJUlYH4CHdIWjrq3ZJN6id7O8ro7XauqhGokDHyJhEK ckm6wKokP/JSpeBWhFZ9h5Bd7DAyF4wV0mezzba0MlKWPg5KrgtGorlA4wQf S7zC5uCho/Erv/tf+SWgrAgoZwhOy1Zvnl+75WwbFbhWsJitt9MiKM4BkZWA RqwIKHWeFogsNzWir64uDTAgCvR+aOVPlhbp1O+sFnF1vFzVGKdSsiaURDkP StFSEkoS8wzgo1ISdbyPvu+X+UVo7AvMLURGOe4+9wqoReo1R0mbBsszY+at fRb5WLKjxS/pndEMs1ysYwrNjllINSFhMMUMF2lnMCLqqeGuLRg0pEztolkh CWquAMrOEDAeFotbJqcBxQh0pF+FdsTCRdAxNPWq6TIWMYKLxEdqNo4Uw9Zv ZzgCk2MCy8HhJb4bpoxhpGGJUt9Qj8PkEB+7GJLvecdc/KmPfyN+651Pxjcc vTXeuH5bCJxkYI6c+H/EyzQ5/XrGrKGwvrvYUGicyjILk2hlxKkkxUtyNDmN Fbkhly13GLaL0gSyhJlkd4SBeeve6x0wizyLcdb6TfGbrn4DL0PEjOyYKQgi lSZo0jt3FHgyO8tCUFzlDfc+N5uiFpfp6GozHaKdctmx6Zz4HSc/TbbSKjVL QlAzbwuqeqmpBJVRQLt8NlcIZJb5jFgasoiQc7aLXzQkbKGuopirGCPF5AfY 2SUEvX/HOTx7C3bmA7MhfTJ/e+sVN8eHL7w0/sGrf8Yv/EyJd0hv5oWkeE/k ZIZWAjn4ZMBey+JB6juh3jEVVm+si6HLGKv3XfOAN281en7rL1IAyynGzbSL Pz9GC6PRTunY0clJfHNLbV1p2+TaRUEnugXrvgHNQtu8O+J7b4BKB013fOGj 3+KpW4tO3G9z3hUn5tLYSq5PSaJzmI+RR+c3f+0n9Hs4VjvCqC4Lx3vsPWAx iimUgeFJawqJoVB0GQe2N4iOBDKOTq2hEMg4TBM8ySvivajCIMMQSwy5aeUU hQ5OPTAyiVdn1KwwNUHM7//Kb/PrS89/3hP0xE1PDxuArlm7DdCk/ncAPfnc KzytAXSW+FhgoN5+8gvxgcNvbKS4JdVBGYJiS/TAbYBW1ICTIGZ3QHkWhZv0 M1cjQcyqcBNKlJrRMP3fCEWvtK6SKJplAiGHtOVgBQK994LCKc1cuWkJfh6m h3FZYnxet+kCTs3NCj9HyYiz8Y1rN8WvvAQLJ06KHxMkGZQ9gsu5z/4+z7VY XEKIEh4ZlNVAem6fEJ42UB0gSYNHAiKvmlEras3JXMlixbqt8ZYDF9ebsEyY R9o9MkRFJZCFZekaiIyrbnliznASeyIzIyX/Vk5KaVII2S4NjzgN3731YHzy yV+CXzAnJRVnQuosDd7TqXHxjWSUSC13iexyF49KpORjo5MMyRofuzpBJUDJ gnpI8Ihq5uU3PzFjfCPR+eXU0GfkGpWMoQ/lGvARcClldZ7MNZEzsELZKCJY AKp1iGM1OZggRSj0frPnk1jUtX6ExQHJvulHRSONK4GRvglohMDEDdfEwwGD xl27DwOH1H+taCwKGjErfPHMw/HbPvK7yNBDIr8D29fCZV9ATUaBOeiaUJHe e41iup/zcXtqpaIExNDIlzPcLjTyGBEa+bqhYckYgE7c9DINi/iZZ6FBQ5mw oa93KMTkzeyD7xQIuuObZ27nu1MAQTd7U+T3WCSD6WiZtaE44vPuuvbEaIYh YhAwONhMJlSurXZIHy3XwgHe/OgLeM21IW9VBgHqhN2Z/IBOH8rpahkJVWux uMitqa8+K37X5/5I6StX79LsRn2VptllYaCUIZl++Yw0G++PXnMb068USLNH UgykJiwMjU9bK3RbhIQX1YwIA+ln5hzo1yeiMcVAvecWNwvqLdpuuV+B35My jN/xy380nyRwqvubI98uPwiNfPt5uYKXZXTxM82RT4C3KvgFeDedtjqeufAw /ysWwHNHAwFf7MpQJjavViPcuOMQmwC9mkZY9DTUSeoNk2tygwaFV+08zCis MAqj+MNPvC+eGHU5dr+5oQSzNyBgJcDBgtAQ0zkbdx0CB32unc6aUCFUPzSO EKxMDgT0YV5IiDtKcH5LwiNuOsmSUH3fkLCZ41tdatVHtUMPTGsfsYIkCSEX fSGyT9Jo6EIQkNJmT0CdmgH7ikJAvIf4axKwwNPZulSQBF93IFUezbBDXPz4 4FD8ubedZFu0gzAQ6Iyutp1RSqyu1JU45A55GCGuct1WbZHsIxaygzI3EU3R JlnX6A8IBW2SLCMxfK62rCWBSCAqsmsIn6UtLZl0lelYtEVIzaDJTJqqUCZn IAmYiKQQOVtuEtGtNYQ2sae1ISm01nBXfW18w4EjdC6HRczUAH8A4jAfi/x+ 87Z98cSSZbpDn9xsV7QcjM/a5+7vG2vb7UVOmy7cvoutQS1gMJAKtLeA8JIZ dLmJBqYJLTyGMa6eWIqRpz//rfdidb9agW1Wb4DV3W2jdDGxyATWQBaQU6vU GGmsUvaF24i18n57B4hEbFYBVvYZYu44fQsTs0uIaauSPQFi1gLEjCS1vosy 2mWrNzMx8ZLkOiuOoEiIUUs7S/Pu8mRxcpghWrRykm+Uxhm6DDj7h8ZnjMXM tJ676IfLDs1QhoRpddBw7ILFQEDBW4gfAtCiMRwsaAQ6+wWgV56+0c3i3/Rw zmbT5+4+F7M21LUOoDKDYwDqFgAhe4Z07A1kzsPmvDr7bw12W311/Oxt99K7 pMFabPUEeqW7bc2nmMCW5DXeYCWsJAy2dXQiT3a0qhNnsmpD22ZXqmjbcmZ5 L1TGAx/4Wi6E+CGH1XTirVjFHDhWcdtke9QsfwRGAdSKYBXCU+8xGZZ7TI7e dNLTHC9JuqVXuKVZq4RGA/VJR9YKC9DnPvH1+Lt/8k/xF7/50/jG2x72e6AS WbsEslgeuZwIBMje9JAD+1jbQal6d6Xh4JcNu8g5LmOAt8a4To1F1L81lpAh t2gvwP+BozNiJkljQdtQtUbbaoGA0Ns2IBQTkgDGQm7t26aBsNk2t7oQ25r0 livxeSvWxZevxbWs7B/Oue0plMA9hsBrpldBp9JnzfRdKXzVFffVBMLYQmjD 5r2M3+62EC5yZVMBLCm8DmmjHQOSflbyXZdS9j2BqucIHwtW1QLM3cJiOuPC yjN2Wm9nEmno1HqCGcDEwEks6MuwqZCT24iJf2nsgjZVTrCZ+0fniAbMWiTM B1158DJZixnZ+SCKYY7NsgappdIJgYsp9D5hc878Z/aE8wsObFqPXgiZtOVf lknb2pNGLOUfuqTgumTetmnI9IWWokMCpxRws3SbrMDpbZsBFrzuktQjCoQK 11UtNYAuUwcFjrEvm2LYrMmEbGnJ94dkbshgWI0ESi/dI+5xFjJfFAV4PCY8 xvwREv4mjyPLYzoHjkXPZVW/2Ju6KmAGp8+59ASDGS+CtCruRb1YrYWiOsPa aqquQLTsabuus5i4U1AjuQyPh5/pIwZgOpKboEGfubbB123boDJKASfvy9Be ekM2onYhEMEHTX9NUfR2ML5j+0E6/44ly+Pzl6+N333OZcAz4NwCZQIxnasJ 5dedfZFON5UD8/W9ASjnRRmjyonpJgWz1BMMEb3/h7RZ2tdC/g9fA4CB43FT dMXVH7/nY14dIz4cOPwGRmBWSLWjVpDzh6o93RkW1errxZZ7GNtZVCmBZl5x hIprE83FeJSw/PGHnomPnn+pR3RXoP5QCcjnLqnAAtGowm48a088Tkwh6exR TZK6njKmxDp1HSothlkDD2GxHJhD78sojOmuLsj3Cs18r5FqU8J8Qooo3aZ2 Tqfho6+tWnNOh+GDEtLwMTa10g+bu52rpRrRbWTz5JC7m1G2Apa7HZPViK5A NWLIrBlFgcrwOiHGBptNiLdNLucX6eh8YCnpWGDeSpENhAPNgHWJjwVG9qFL rlMpXWZal7iOe/nNT3hay9TVcGB8Qu5dyZZd5UD2lWU2mpOaCJ8oE1guhiK8 xpHuDOoUAl7fH4gjPSaOwJxR2sB5jfkEwryLI8RrprUyGww/sXkfM/uh3Rdi KizXbZiNQi+YPRSeBysElgj0M7NL8V0Pf5AZTbTmF+bqL555OAKsoaNcIYP/ GzIg0FJsNaDZQiDQNMQ6nd6sOWGE9OTSerx19wE0w8yLUYsemjPY5k7KSpvL GQNYzZBoWcs42hmV4LrQNHlf5RjkY5lx/Wvv/iS/0tiuBibOqoJtWW3FwK7I pkCKbSD7DW9+IP78Kz/ify2+6WdvV7KN6Ew7m1dV29MGldBOUaCe3B8o23VL PRk2j2gHX0D3scXc8oT23gMf+FoKWcl1tSH51IlL2rm//kBu2x1wSUgrtKAY iDJC9HQhxCnvKhN914o18Ufe8kD8Bx/7RPzKO98T33zxJX6jd2z31h9Y6Not hIdChwIH2wfNHm+YiHKNcUfSCb5JbjT5KdrxkdM3x7duPSexVycpcPKn1uk4 RTuqJag7A+qVlBrHd6oaL5jVWjc99ALYTjTCkTKEsWaGYMVBFhO6Ohg+G4j7 Aw7ZKzmTWheGjoarEAiEdu/crPjTL7QIaBYNOgTV1oBTkVkKa0loJvB15Orj 8RPPvsgYI6NXy0qkmq59JZKeXUC8f81s3EPwqEUgPSofxHzcZZDeCgS8B+lH A5N9+cCih0GGfTEBe5nko/5k0nO1pFNmKGZ7MnKayDjlO05+2qjzMpP+/ENX xy988TfjH/3t/4xvufcxVudQ6xW5JR+1bFLr1MaL6rlk6M4q5qYNLdcspeSK GYZmOWELBpoeRwErS5Kfm6Y1lEGpoRjy08jgWEhHgJIEANzTj1IK0N8VWERW lHnDVACI4t/+wT/Qr0oM4Aig1fATjzzjG9vfdIlUDcotWUfOjK7rS7lESpIl XMJ2mtvOthZ0CbgCxhjjDdegTi0G0tb+Ds0uy2slRNEAtKbPlUAT8bfWa9FE NJfGuRjIzdxtzU5hoxAjxZhusyADIYDCAb3DsejDAsS/Cv+ewCLeXgkLSAQQ BmxYwOmkVq6WuHD6pj2pnivzHmkICXghPKBooyvVJtpOR0b8HiEAAaErrPjz EhHQFFH7GhH8LOWpsMPZWaXFUeV2Pk0VBwOmVg3EcTE1PMZj9wEXx9M9FrK1 oO6wgcs1NrLNpHOM8FMV0CbIIch+vKi59P9QvIn8XfPtFgnzhuZ53mavnGWM NBBEyLAJBMSK82/kC838IeJ8ArUeF1Xc8eq1W/w2U2UTW2SpMZkLjkU7LarT oWQ2iCcFvtMNcQTxpH9oQkIJ8oeZLOyE5Ge/lFtSAiHPCiHSontLjQdUQf/k pZe+/vs/Z/elKCc3urlIQlEkvv3ky7O5sDYIlZ57M0o/+QzFaYnTJWhsB0XU N0IkdLUfjSyJElAoshTCkSUKTKh2S2RBqoHNq1y5vhlZ8JlElmIgsoRq+X3S SrtEJyThh1JDjKt6Dd5UDvRzJHzP0mPkTEWxEnxMSUjCl2wu3reI0arYGDZw wFU24RD5y0EwyuOCJFeCudhVsrZmEAXMJcWEnF6DxFFuvakB1/Uaeg2HEaXq fcM5DVNai0KAKqfCVE7qU8cOvYmuuXUNdV+gPpURphKCycGgxNsXapi6fsNu d1PXgSOTbad1kxGqJ5C4YNpggO2IQ1IiaC82nMqgIePxKmfxN80hLNghhAV2 B4yx2JkxRqdmjDyQWQF1VFqP3/utb3yfX5968Qvxu558FoHglnup9ZcduSre sW0Xv5ZMLs135n/u/+nOsJLU0/9DvI38JeFqKnJN+EyWDvlrslm/RIUG2ooJ CRuszAQFtdgFK5mokM0pWheAT0kipJMV+PZRmZXQIEUJBl0JR6iApAuvMLa1 ZIsvcXaEoAmzuBFDiQ6wPqp5Tak5L0yN+A6WC2koCmbPdmgHUmVSzZ6hkWjI hgIoKXVmhPkMdWGNUAJSZDxJi1xDEpDWr1zjA1KJj+V0QOJnGeDfN8/cTvHV TSKb6WOOQJinQAR6cPZD9H/bh6ADh65shGC3uI+U+P1f/Phv0n6yuJv0hdyE YYDPdKfdNp1NTXK9DdUiqwqV3Yl51x7TzQBWetG7SpQRM9+JtprLwfyAXlBk LyhnriY7SuE38rgeOkMoEtWyATabGpx5GIyU0HJdJhJJDY0+a0aiw7v3Jupo pcBK9v7AzPZA84Zx36bQBJJrE29Oz7MkGo3Oqa+NcfPXrtWbfMJkp0hGArPa /XyMOFnC9930ECr8LjNavrYlIi8KmhFRFYDMvw3Ae7yAUkRoDQ3WqhXatLWW 21trophlrRWvdLFNw+uoUUvUdjggjTkd8zBaugC5WFwqv+hi6QLoUnUpp6kj 0DVl6iDfOgmfsMbUvEpk51Xo9K2hJh9YYD9tlovu2LkPK5MSoUZWIWldbW5y eo1vS69pS9ZagRETapZMTMW/8KY7MMM9ZkKNlM/8INnEpyiJj7vV82XMnszk FhcSOk4jJtrgd429eXPLw9roFCl7C+n1gixMNBk8vxaJTKWAlAhNu7ocSSMT HNwX4UKRqRJIlXIo/x++8NIK4lIeqZF7z6FIw9H7PvoV6q324ejEI8+0EM/2 dCWQP4yJR+D3EI4694ic2wnb9FdvRiS3MwhpbwWF2ofKyMeWVNsi37Ymnkoe T2Iq2r7eDF/VOw7xn93CuadURjktFyqt9WSU1qLAnPqgRAp8L8UHjhH9GZHC Kh83lhX2WZ1xQc5S7xuMP3zeYY4WFCHGM4IF/hTLUZvBosB5yw2/8EC8cfte TJpHEi/ox7QVLUoLHSkUKdSKKp1ZUcWP1IibB/OVCYwcWVVPh9Una1WI82T1 vq02toViwDAfI1YuqqD7Tyk5ajuRUmaol3nSfPnAGIMcK1Ht+v9lMmmOCfPP fPbX+UVQV6Zj5aksXsrprDjmTV6bP5XYn7Zv2RH/6e//LP7k85/mm6QojRgJ FLWqgTRCdyyWWXGkEhRiTu9NtcJW90P9b4mT97aSZ+VYSBuLEsfaio8BVY4B ss9+2yqmakWU13UFSyFApyTNOTHCLQLZNI88zetLp6iLX3z23ZX4sXvvjOLj V11O/5c+ZYQD3jVBOGUXfle8fofwRFYow8o7ASzvH+RhrQQkeAjhatD4DNNb uPS+9uEscV5BIDqEz0vyPxE6NEjreTGwoK49L4YP57GOFHJg60jdBja4cQrQ tUtMt5y+hqE7IEWjQLlIV//TSLXeZt9vtiORW0SycJuYyYAov+GMTYzbXWSD Nxw4Mp4xmWGXLw1IqUhx+60//Yf4gkuPYcYip8zV3UjMsM9ZP6oEvHkswFzt fgTArGEPFUTced0i37PGlqjJlQO4HwsEZj01SA9625EPBN22yWbWxEFZZLJO StsV/I6hJa6/TE1Nxz9f+O/8EpbqfAE2dJpcuoyauA+LQs0io3qqNdwRK6kT lvYOZUincgKneH37y6+qXCY7dEzF9LP2SldKL2O/5rxsIOrWPjFTMfVcT/dO zq2AzAzCNrD1tQUrfoPGRYdIJhzbQsHhMJc3bdHqy3CAimVDxe1nbgIKqS/+ 59/8JX32m1/4bIucDbCQb6pKjQmf86aN23lM1DLtCtCxUwzuoWBgV1Z1G6c4 uOw0flGflwNxTU8NLKOD7anxXkNqf4cYlk35nYhdtZlBWDM1i7VLpoFAknhu qhc4BCJ5mHAsQHxybYIX+hRQtciDiFw5z7lpXl390ydwNPff50LLWmT22dfP oUMpQEUgozQWj9/JvkUquQhoQFZ54v3Tn/wKAxKv+37xQyhe5Ju6dCZlDpzd XHH6BtZ65YCLjsuYaLHNjgnMI83IkDnYTD5tDm/dfgDhsRTA83iHjBw4taSJ T51Vr66YyVX8LhZl1s0iHRQMiIv0tzhG8VPvfl63C6W2uEU6gOQFFx+LP/bF r8df/f0/4UJxFJhZtSHjqjXr463jkzZkhEQKvOXS118OUNI7dzQalLyjWWDY tGUPIJnrlYo2RkdEqM6o0mUQKsOe40eJoJEZQS0sRjKEUyh3tLBIMpJPr3WA ECOLqToANOLPv//bI4JJ+jE+sGsnMn1qfXtM0vv0gHDsPrn/Qo7jhKtiQL2N d0jKgUCAMOrNd7xzjeKMuiROD1qjFFcMRKvxU8TlYqSWQV8YIbWs6rEWSNxH +ViIZ99wU3zl5dfE//Fnf4dXIf7eqz+I4s9/+ktR/MxT7y/Ed9/x1jx+gcx4 xx76jqmppTpdrPVrytvzUJOybQnuMJVXHlzN8yM4Ir8PPW62KLYVXu5ZsVoI XjM0Ab2ZU66uHhjixZSLcdXOUQ5IURhC9NPf/hGYSo3Gscic1Rv86cVtEbQz VDF6IgBLAW/O4qr1nJC6aC/9nfHAY3F6/EvnTGzBrFyfyEg9QnDtMOWZzS1S oS2JAEUyD+CO9/fxy0IWVdk773pQ8NoKWV32jpv6T9z7UPzDv/2/+IWfSYZG gflBCTvcvBObtsVPNc5HN2eFHYwURCgIWxDOWmHaF0j2HecKVpjiXn5BLOM2 6W3NQChBuJQRg0OBMASaxeotScom8nOl7MGt+1ILU5wSfX3jXFaiE4JY+pmC zF6GaykDsXYRY7fxVsWssC6x/64uZjxVHbBYgdL1vLvbWTkLRQwJVAgYhLoK uAvtb88P19F58yzOWwFoOXtB/TQukFYDWfqYyFLDWTovjkzZeMeeRvznfx+T m9ExH8//cIEylC/P0zW887m5+Pb7ZvWVjy87OpPH70O0Tdc9hUuBiSDxFAYJ SqUiTwuCUaTwevvRyCnOrWGpxzhpbgC0IBgFVoFRrE+nfB5GoTGYyzYYHGhE MohixtjkFqncdJpHu7EpJWxDSU7njQIkn8gIw7aIo+YBNujdAe0TpkWqoSUG 6LrxifgN+3fHv/3IW+IHL74IqyaUoVoIBT0LAYbq7Z5YTX7x1deBn/QOxyJn 9jfc+5y/3bN/aEJCW5FD24MkgAFQCNa006g4mghQtBRQq92B9H6QjyUWLDgf VpAjnZcpsJBO0upeMSPUdorPwFRpgh/5BD4X0AzsxNwOn5EcVaBS8p5bEkjk iwF8DgRW6omJMj6hTtVEJYBEAaU40SFBBzusM1ovATmtl9Ao5AMxbPIUIbrY jLB7/kohHiSB/MzZF/G/lNOXA+n9uHAU+pU0aVuO9vExYmriynCTXzHACCGk r25Cad69dXdRCClzSYk9mO1dPEpIEBNEtIQEMTGZ5NjoOAlC4jOi45yHY5Ez A+13qankogxHXCxLyRp7m0W3G3upKeUDkJ7sMFEZ7DBRMg9bzCx26moA1Zmf v/1mekewlMuUzZhzS83CMyl8En1amdlttrRHBRS0LPCxxEk+cdIzc+OuQ3U/ WiXefRPI1NdK5ylRoApm5cYvPvoUM7Mc0J+1QJ4/LHk+ru7KG3+Bt7O6/eTL 8yMTdcVmYuAksmbKnlCG0Knh2M1KBJtOfeJTpPaUirm7Kw0x/R2WSPUhNqcD +Xwhg5b2xvd0JYOummwFx6LiCteuV05k7mxKZrB9XpSQU45T7uFl1l2k5/OB eKXugoos6JyelpAbrnwTFpP7aVTetnkH8ntF5cbRaZaYgORrQeXMnQ/Em3bs 9Yl5YC3AwnTfIAtJSsLJVxwnZRIowcnOZoIiOxNEtoNjxIwMEUJSDBn1EoPz XnmEHF7S9ZOnyMnFEmJ5QJgd+BbDs5xekhEgQ5BcLMupGcPPqnbqrSSakJOe hBRhSF60cX386O0PJiBpK6BlgeTlV1zLQtLusGcqoNTpTlg+/uxH/J6kWgW1 y0VARaIjbn+kY4mFptwnyC/RNEuMg0BLgo3VlLbEbnv6MCVs5qz6YoiPZVbh IxNL4s9/90/j2ec+yT8TLRtN62kNceBHSt7o6E12WE7p1Hr+lwxYlhKwNLJy eSApz2dw0tY9szgpoT2h55Z0mPUMBaKD7noBaKXOz/kF2Ng8f0HljTJ66hT5 aD0llI87Tyl6PuJ1Glki5eI53age00dYzgo8TmRA8pmn3o9k20Cy4CH5vs98 BRK2fem1uecH5oZIUpYDc0JDpzQnlERlRVBJSXiaEwFUFrUqYn3PD/xiuURo 4M2io/T5EwMfyRHLpgXPuaxRtwnEUCAqGoNbSBkcO3lWwTJv+Cj5NipdzEfJ uRN8tMXLSoCPVeGjKV4SjpyUNIn3XAqNmBgCFCM+FuLz6ivb+YQisWZEI2bX IRr1QZx4JrG66LApTAgS6apxjOLGoUvj1EjNtbpoMV7W16S0iNlMRISY2GZ+ IsxEgAuPkBMmFpiDOg9EADyNWViyGTZIqBwcbG7UPBuyCKkreEtEoo3rspa4 WDozFEhnzIY/aUv0swb2vBArGmP0vCzQSZGkp2Ixfoshl/rTX6/b2dUVEsA7 Zd8juxpxf7lWCKTSk6eEviK/f/CpD8Wv/vwf+F+zW1Zo6mlG+QedWAlM3PSb iqM8O1O2CC5wPo0cG/qRQDiQMZ9j5sk9E0k+ppnUyDVLLDIibmKQn6jqRuVU cRjKbVvrGmFjQBzUZRqnikMbBNsbYduqY17u5LLTNpROVwSEMoPDCJwKVCCr ARCWAxXIqtQhJZPmdfd2MR2o5/jnWAj3UEUSQmB3QBVGgbx5JAOBH/zit+ey RkdVCpCBYCWBMosSIYG0mGFk0c/dSAwViHR5NaOvaNNlxR6drXWVpH2UsWYq anJ4j8+tyS2WoWSZHAEgzT1f5k/zVquXet5coMbfyr2y1db8Epk5a67VMo/a hmOkczGMvXwgOVb4QQcCdtnwKyXghxclyRhh0xWNVFdwSXEDcYy0n+efnXHp 4eNA4tnBU6Mj8d1Hr4pfOjkbP33XbfHVRy6Pf/8br8ZfnPt0fO+td8S7t+3g rkvxkXyjdaYmNOEtgPTDlgakZgs6dJAG+Nz65GJpUZbJBLKEhMmo/+G8a4aH 4zMnRnHuTrOEYZlsyDWjJb+2n33xwpnbd7evNZZsrdHKw1pAHSoUscHPq9/5 Y8ZhLQDFYqDEWBMoYi0RCnpYuG6n22U+20MR0zLpMAHNAB0IHPYEdGFeoIgt OLVnRowuO2Pz9jQUZ9NQRI0z7ceIllpQ/LfghzWGREGRe+Lc+ipqtSMinvJx /KrLmYVrTWKM31uEhIGajTOvnVNL42s3r7d4X2w+Q83LpCNqXvNLlq2UcbTV fH9GtOC8VcvTBh3CYM5MdSoGjZzmF4LLmo1bZtphMOJjkd/rI9Il7aWha48+ 6ECkuLYuaNBHl4NjUec8+aXlSa0Poh2oB4J41cA8SpWPpXbcK8R/9crL0g1/ +5Of4UXvcKx2hMJyh5PWqhUJjekoNhNCISTBWHfXolmD1QPtDAYRjYZPeyxE QJz+nv3b+WVMNJQvhAho4ybOTGeDidrKULKQ2NyH2M6wdAdmWCYDMyzdgj8U E7HpcPqhwVo87Bb8ITmWWZVEyiSz0R5/0Ijp+IP3sricbNSt6FFNiOogXfpY Bu1mn/tkmnZB1QI+dCLQLe3ajbe4a5QJOSyORIYLvK2zsyRS6RtsD7lApa3o LehrN17NhmsL050GUoNtvqBLbrjZmBEjJ11nUrZ+4urXx+86dDZO5U+7WD1+ RE5r9DPP3tNpZzJJV9CJEN1JZekpQg6TIajpWchJjU89dtZAzgFt78EE5Owk SCkbcmWB3M4NZzDQgLfKKUAuL5CTuZS2884KOUqQ/UxWqDRiBw+2ErKZxUok IZuR6BjvPf+wLIVJrBLTyTOKinmck75RAmRi8iwUJW2yoGe2URLmc9NbZ421 8gWHqoOQfagE9gZmSiYDMyU9AdjlA5XAHoEdab+ZtMOaOWQPO8yY3LD1zFaP mZhizPUL7FTr4XrokseMxEKJLwW79KntACTyXYghSBTS950WJELRxgx5mHe6 rgbrbJDmgnTrhXd4//4vfs/ObAR4V7I5uzcislc1IgmapzQDO2Km25U7D7zn I/PGZQK8KzFm0XVwGbzEgDudghwJeA26j07dSCFv2/gSgZ0DHxDYX67xVh3K O6w3xOTuqfAu4mOB5zXgNrIaW1GHmh1u9APkaoFJjHw26mqCOk1nAbkeAV47 1OHfR05+NGvag97PhoiWnp5F8QFhCEMjZtEx0dImIUIKpi3nLFuT8JaI8Efn zKk5Shg8JabpuTUUwiY+8c0/mGteb5nre6jp4fE+a4cnGGb4XsCsT2D2vuuv 5uqdhZmd1ujlY9HCjP8lhUbf4QBGQPN9rRRBkpMEWIE/+9R1l8YbJ8daXEAY 1pvKV5dNT1M3vfAhPIlXVHMiXw1B7dZHftFDrdrWM4u+iIChhxrBkpAsHW3J ljX0CazpimuPNeSqyE0t1pC7nnjkGYu10MISm3VbQ4oCsXGiw4RAL0QR3WpH rasPhaZRwHyzVh9arI3KafEe5ksKDuG4YUyoEWLa0bVncp+DZv9/mFYQskmd ji9XgcbwSgCt4icm2kCsN5CU9vOxzBDbt3t3PPfi8/HM8WtZk4FYlGySuWcS zJuxjETLyiL8TKOuIyGS7JRWsqcNAC8KLqiHZS4/pZhWCNhd6Eap0F1ielo0 A5oMzpPiF//+cLUS710yEb9pw7r4we1n8c8PXnwR9a7j16ZlS1l8NXdATc5G 9MmqaPCLd9Pethfr9/qaiWYjxApdneLQVeTEc6ynO/7mLdcxwsCKEL+6RYNh MZ/wK/7WV34tiv/5H/4L/SreJgnuliBj/V4KYcFm6QSVigsbvfASfbbkNTq/ iGIe+2yK2WRUKfbis+9OLzsJUKxos2m2JGp0rpDBklyHoVAX2xOD4/d86pVZ 4zjMEr1VypAzy4IXm+UbNZ2H05LTZCJMM1FMuY73dMUPHNyJ9PPfgmIvvfoj ONF8mmKyB4NQrMjv8bkhF41Ua6rZJ1U1oOvYFVfF89/Ggyfjf/lH+o6Fn/9x PPvoQ3G9Pq0oI6vPnGv1pqwTj7lmOcLWA6KAPJ/oMNVQI9AcT+KYwVixxQgI l/QX7pwiANoyLBTEXGZVcOUcGn0xOp24wOl+6cKDeFHv4RgxxpA/Al59gbmD 8UDxTCUY5hKwRBlzCPhuFMz6mzlkPQUMvtzkJGqJ5w8gv8AxvM4/fSWAYcO2 bM4gS0qaKLvh2FGgrCgoI03m65hZKKP3KZQlvVHDGFFAvTHnJiEXhUAIZZon 2fFPoIyN7+aNO/32NNinGVOngNiZgjL8DgHM3tYWQFnzzmGxplIGTkIXkDMB cTTLmJL3eio0s2x3sVm4UQNNfDf1FURYPU0vTJQ2J05LTK+900vjZy85GP/W bUfjTUtGkWBOZVAM97PhLjVLMdyZBmq5SpqjGCYRkqRIThbUzCIRfA5uDQWy x15Dr/vuvBvCixqepBf+HrSiLDJXbT8Rmlg9J0ORKC5Idu+HIjTyi1UWdOQx NCKD5rcdODdELdgbMkc1NIn3i24zE5LeOvIUs1Lh0k2KPX1gj0DLHaHEPn/7 zQl05UzdfyxQCuuSpXFAFzJKfF6vL4uPH78+fvHFj/G/jz/7EVVjJMz8XItd qZCe9QTVUAkjgqHUScckNMYCOHO3VRQ5s0whjRromGb9UVfKgXEkxxZhWmtw oczSWwXqP+k71EIC2aoaywNjFdkss8nlmYGaWScsExsrBRSZtl3a3ZZlFsaT dPpWEyvwuAJkgs5yhkUvNo2mFg0HOhWW4f3MtvXMMbzANALYvxHLWta+rBsa jAcrFcwLyJxAAYs/4i31JfHhTWvAsOFAHtkjOEMRDOgCyKqCMxJmLTllscPJ TLm1LXHnrYlhoXHvNJ/QW+KhxGG3S5at1HGf0XGXIFYJxPzQTpZZJOPtD6+6 MkQyPh1ElyVZSITZov5YoA5WlmNahIFmjz76SPztb/8G/cW//Mv/oCPea5G/ t7mgw3udXXrQCdrwPmtnmGIKbbt37PJoqwna8D5Zlg+jrXHo0noKbX7INOCR PvcRyJYcsnaICaEN50fhR0wkG2024zzTrPHQbV0FbaGlS5wmq2iqBCL1WAbX xNgS8xm4kG2798a33ns3XwDptZkU2iBphaRZJt5piRlDBxPHi0zclJhLMwZt fk0vJZgFMA3ywym0xLI27L/6vVd/cEpos8nm1p07bLLJlrxjYow3YalIsonp zwPLl8cfnbkkniWyXnmwkVO+0c/xs08+xWTrDvCtOyPZjDLmMYlv3svSfJPR KGeM/2KrrdOjoXwLxTVUlkmYVwISYLRDjW7nfnC6uS+8xKdMmJsLbSiLAW4F QRw+w04BgFtvoNQ/1nbrgJJHXEqslYVu0G26hre3/QwAO3BoCvM9R84Trrkj ympKEOsWupNA1IZuP/vRDyk2tgo3u8gWd3ul6ObhUE15q0w0lwNFiJC0zipq Ih5uo5TSxr9Wut2/4xz/cCCbhG4M1NMWo5tYm6ebTQm19dLyRekGLD/57NPx N77/XTW3Ri6ZG+CUgGk1w7oXW/qXhilOB6CiAHneJdeE6KbJ5+duuFjpRj/6 J+Nk0W3Xjj3YMKUt3XSSE+/P2rk7/thLn5nNJbc6enzPdnOzQomradBtP5i9 jV+T/T3xd1/4UCgl7RLGgXnQa6BbPx8LiZSUGJcXyOnmp/a216c/+RU/3a11 PmAtHdusdsva7za0SALvodl/8jd/ZYvydg4V83jQALVAYBvJCGyWbcOyctGe Di9jcP4SBW4JDSfzAAkNZ+cC3JM2a4nNTQE2wA7azcKNtFtN4EY/8uIzCzc7 R9B+ejPy05sWbm89Z3dqx9GqhVtiB1QLtr6AbMsC2xmbtwfBBsuQ6moloNhC SntkEeFz5KrrOBIZ40iwbSHNti3jU8wyUG1TICnty2AbvksWqXnY2BRxNINt YmotC2VBZjU3XIQW7e1CQ+Vplol3CjjlKc6Hf2WGxVb2MK0JwElGSn/k6Ibs VLfimzhFuuF75XYEv2RN6fbV3301fvzpp4yXucTsjrM2xqsG+qHd9NZ9yDiQ jQhHX4NjpNlqogKXMylr1VTgIN0AuuEA7i649Fg1sF7DLpSW1WaZg79YOSI0 EGBOsl7PgU1PVwuogCy0ta7qLSdOh9fw2KS3tW5ja2m0LTZH4NBWZrRpKgqU HTiwn8UZUtFe4Rm+X7bM84trbZXNXrumopEczZwnmU6rWHP9Ufabl1iOPfrA /cyxAeEYpaItN4AAMB/84rctxxY279yf4phrm9ZZq4FxCcnpLIjBPyE0UmYQ hthAYDXa5sCyjSyIIdWQGdpMoEjj20JMb541FKaOo8vgC51Kg2zBwjPLoDu7 r7A1Vks+YubYCrNKM6y3pcyzIiDDhCe2XLYbj+BXZT/RDJDVLMj4BYgdomSV JFr8w//w8/jEXXc2csndhq9bdzq/dk0utVuQIA21HJO0NMExm5pWAhwb4yOl Egf2xVdffx0YFpzrtPOw6Qhm1XkWxKz1totg+JkE02w6guk5uwJhf5CP7pnb 8Bq0Bed3TxvjB0i4p1cBa7AMvCgx7s64g8e0K2iUtlSgUwuFjKkFe5tpN455 3je0wAoPlTpU5wiJeeSw8nQdk60OnhoA6zmz6EMBaCZLPQCtoNOnucF/dLGH gm9YwHdg757gJj4dgG8+FJBs2WKkQ/C1818pJs166um/cZp+Nj3dHEhPQ0+Z tRIuTT8bxUPGiL8hg/SPTsLV6fNN+Cl52J0/0loNX3ItA5haQLG2CVvVSQJb LEbT2vmNe6yje8wXBkEeipvntjoRKi3NtfGgrkDVPAvrkoPbCjojFkJx3cgw 0l9FrKwneQ2ILbUgFkt9Cat58BV9unOHH1blGsp9Hzi4n4dct8PT2QzQtSCM layY6ToYSI3LhrFYJkf6kJrvyn9g7n/6H/8Uv+9jH+WpDMp/qbHtWau3JrQz tdADjZV2/PhFSVK1BtgbcCY7WlK28KMFG0uxeMY6cVcgCKcfqw6YTI+Pxtde dJD/Xfij34nnX/lcPp774Hvy8ewDd2El9rEr4sbenfyqT0/lQ0bonhkFIywm jFDY7bltrS4y10FWVzd9y9ehEynK7UtOW657kgYnUiLP7Tw+k4eTQ8ei7ohX jlten5qk72zs3BLPXHE4nr3rzfHcu2fz8fxnP0pfES/8gKEOng8J1QF67MJn qf74s67j08FGZW0+MMNSEqrLimTj5E0eYUDwPZSKU/BvXfxi98TDDlOW6uNL l6WpzqpM1ux5I7UFm1CaMZKR0uIzKDFLdTXC8CK+gcCUylmBlS+97anO3yW3 NXizzhlN25tyNTHrPOwaT2wmCxbL5hcZd25R614kGtj14XYDXgl5WdbNgwJV 1k4q90quo0aBz+Gd+6gLHnzjUfxMbaQror+T6+GreW0e2wwbEieGAoFML0du 3bSjwyECW1xRTKDLaZ0HGsuID9i6f/6HC4m9XcYp1dTYgGU6FBvoNzk4LEzX 66ngUFg4sHSSgwOCBAWFyNQSZEqIvrSzWkIxsBbRxYcy1xKWLlvGMQKvf/dn P41379+HYoJsqZpMyOxoqwuGjNcxuZQw3mWTo/GjNx/Dv1H82H335OPjR68E tfbswojy33dkqAUrWxBadDrW5KU+ouA92eqMaX1Q3VtZ2BVoPWwVdvrrH3hH Pv7vv/Nr9Ccw3fj/+Pd4kY3QMW2/TZ8sJewX50dEJLscDDQ95Gb6QCJbyW0/ VVXiZACfa6jAVgoaKfIIEngkhQsTiBJ41RAoJDRQkOBAoUmALDNKhIuLr76u kbILNDW1L2HEm3FB9NtwgSksxXVvIFzAVm44jFWf3/rIL0oSQIGDg8doYCn4 QPsQkliqIyEE1tCiU60FWJ2qtKpPjXRMUqurK6eoq1HxUotNhB/0Nu9s2B8o qWyR8IMk423PvcyBp6e5b1dqUjecVNhJqJrhNXoFPYDEwvhBzjoCbB6O0OUd IY/P6OqF5PxSL4C/wwPI7O0+xhKFvQfAI1INX3ToasZ5baCBHHz+oTu1zX/8 8se5FWhzd7bzFn2z1XGxC1IoQBaaaXt6rQpHlAvXLOdYohFF1kslIgqix+IR peAjCpayX3zF5RJMUJj2p5ZHA8yPd3VxMJGCTmT2ypHpNx9MsNYAC9nbFXQK gWAyIQUdrKVC8KBAQu/c8S2PPOzXGOQDa6h6zKhKlc+PqjXH7hSSYYoaUAgR +fif/+ArkJWzdyGqxP/6939NtkvHfPyXP/weWeKXX6amzz33DAIPv+i38gg9 SJKawYdfeHrnYIb8EQdtpK1SXMq332rSSnZIKYpV4is0pAzzscCGt7Dw07jR 2Ad/6c+wO+sv+jjPnCmQa8RYMzjAixkQK3r4WOCIsZ38Cr+/8J1XRiQa4G0n 0cDO8ck+3jZ58Pt4E/krgZyh1kYwUBDA+BZkfA9s2cCVcBsHbCqhTqmb1baL AzXTOWnVaoetNwUTfE5xIJ65nGD11K2UW/3sJQLHq8+RiX36MZjYU7fGs3dc yS/6JTKxHesQU+lvxERs/Cim4wcuJJFYaoIcsr3kk2m04M6xoTdQdtoSKDtp hLj8xntmUqBlYKUTFFvLKWUoegItCJsrBiKEs2sH1dnZh/klaijx6DONiwVz 6SHjzkoFy4HxM8GgGAgGI+J27AfkdpBDxu1smCo0K2F+VUHNAAE1e4C+S3AP /Ov+aKOnhPuIcY+6/eTUFLbRZ9bLEgvLevY5rLMA7wcrlbxJHNZTLvHKXTdQ p3RWWCoE1pUp6/EebAflC3wsxb/yG1/XIhMvvJA9MfoCYxWyp3JAceBvFPM/ e+UFOonjAD4jsDPnB/hY5PeNfbvj+flXiJV72ZX6AzUaHTWMYs6pqsQDHtM2 b8VF1IEqKrc1qpJ7H/8Tv9Tuybh6M4wrYPbBKQA76dllsgCUl6ZHB+MfPv94 fPTsHVD8ynbKBeKf//zPEmy3i9O6AuV+ebRNPddU+vp8sFw1oO7LGZkggb0s A0o/qsj3NSIr8Ptl6tGAnV+y3+RrFYeW5wTwoRTPS2me8y8b0WpmqD2iMYDD Y5MBRGv9KIFoW0PaYnYlGpmYSiB63eZd9ZQdxKHwZYsuUbYWroqlapW0Secy q475+a+zpar6gHlC+nYHAlSxefVBcZc1KlEbcYRmkkdVpJn0IzfLNhPNBqGt U+F0KND2BCbWis3c2qPTPvkWcwAW2fiMQM2wHjJPvkUdiEcWt5gWsANS0T3M 8Xuv/qCSgXF8n6wf8RiX6VfjXmWW6lr/sQ8Cn73kIGnJ9oUf3JgKbQ5y5wP8 nhR+Yw0dJgVA7qIcTfEHD8Pl/ukzQ5hVhC8ELA1uDsFGorwW0OcDotJR/wGz aUT5NTf3QT+EvQE9oEOo7M41/R/vUzK8ZvVAllapBbDtrCyyVobbeGPEPDiF kS5dGS1t5xM6G1AMzOJWzboVyPL7rsZtN3//Kx+gz567/Tqu84Piw8JyvAe7 F2O5vY3CDa7TDNgHU9ar1AL6PO2iqfyrK0OfY0I3+XTVku4Zl8a4DcNpWWen /ENBxWB8GTAOkULQlgjrlaVNm0KWlHxeGRsUlt+B1T1CbBAcn5OQzm0zy/G0 6t8lxH7/F7/nu9r5tRPVSRRWvAhqI1K72+aGERsqDLFpmBFTW0Srf/a7LS/q VRO1U1E9pKer3n+0iYH0lc7j2ghfgq63bYTuR/RwrXNHo33oPK3RpNRMaNOY Xjh/2YSrNRtM26nbfj5WGNNQ2/i8Tqbc2LqB/5259qp49sF7CvihSAFlF7px Ke9Ew8yWrsbaZnrRKXbsaRSwSSck89QUL/0DuBXfF19xeQrfpfnNYyOMbywH BLZlDWBVyE0qnEndJHfJVln4JSudp8xqGQhsoLpsiis5t791rt+MYLK2XbWx tgXQSLCJykRa58H4e+Iys7mPj1yspxF7AHSmq8Yx4vc6gl0B3yo1faueYl9A ZRe5jSl5Qm1qF/iTSC4YJBudUgk0q+yaFZrUYF/X20CKgVXSZVMpgaqGmiZV HWVQGSV23MxmqQzFrbsVdwVu/xAqo9d4AacsonFUrurmKZlpUq8Jt1gAbVV1 zqzrdANX4x4CIvT+z8mpJay0sRUBFkrLBsZZes6uEsi3yZKAaDAZ0nolM7oA re05TbGzO5CwhUxJMB0Zq9faR5c84wKYvmLH+vjd1x3CQsOtRlsvq09DT5OQ 9Q/cTXV/SFsX2bHwuRGn3kgX0w3FAPpCFlpqj2fu+GSV1DkO2mNxrG3Ce5Td bZu4FE9tSDuO0TKVQNQoNdNR7zh27evNZ65CfQOF2pbJ0m4+ljyRUfJmEh85 N5574m4KXD/6KmTSE3cznOP/838jKuIYAdTUsrdSO/+OcIQjAtyXsKCG8VuU OdQ9jQO5ZG+5G19MKYS3FP3ozCW1tuWPoi1/8F4uRN3cUiEwvk7mST2BQWQ9 bb8ZpFxCg5bYcBAzbVmTnHNA/BR+C8gCt70C3fkvv8xlDOC2JOhdWPgjD14a p2ogC9VxInPyztJjACdmLSZdYBN/3QaK5iP9MJ3+DgN5KSA2yhnNIT/2JTKx 5sRcZjEwl6kPVtMKBiRwSWCL38O6FmB2SGCLucz0OpecWb1YC5Sq+40JA7Y3 bD3T3TWcB2jzKGXkMXtJF4clL9jtBS+s4jbpDZ2uvf61d6C4Luplh0daiq7C YC6rL40ffvS++Bvf/lK8/8Ce+OOf+6X413/nW5Qa3kamvh0wnm32XEIfq4rE Z6npShSfuYJBkF1jeAuZLNNYtUDaEjKhJG8ThYwaH4uetwvP3ccv/KaDboFr ztfPXBs/MvsQas1dzZqGHwmbaWpwqaaM9Oj+jUjZ+jN0QauRJvFGF1oMxBjV BfvObtRTLUr0tm0RXGbv2jooqy1CUMDkYTvglsJKpZgdB1KTt+5OEwB37WAf 5hC7AtOJVcNc3ABjmTv/wjtLwlyI4vmvfoFpOyDMnfvwe+OZmWuYtv3CXDD4 xF13JpibM/+5vir6RY2oXwCwqDfXMhaLQwUDtPX6tAetWZTiQYtaxa7d2xbO PmdfbtCMS3p1PsYJnxNRcyMBSdstdNViMREVe0GwpAVdQVzLMls7MiOCUWqx kaTVFlni3k+u9l8/86jaCcWwziJzJaAWCtltWpheXm9pU5qvduZPn+4LPYs7 /8DXivAVvF34zisJvmKdCG6RabeOsNbcSsvbheOrKxfjBXDixUyJlwx05+Md K8bz8WVbTqM23nHupvhdV+7j16duvoh/aySgZRWtP/vRD/1eFgWzRptpRmgF VoHTj774gfhPf/6/0l/83//yv9MRnwOvf/jvf0qtwBEKorl+3AbMpN4q8Kia KcAzpdYArkpxeDFZ541HqsMF90brDIzTiqk1CFSxPI6OEb/X2wHPkscXYZLv N+a/Fv+P+B/j/QSWtz33Mtmhr0N4Xx1w50pMfFZEpFh7feWR46woCbFZWZil bcWwbWbmOhUpUUaEIZUwm7QUx3/tc22Z8h+tQuvQSkJtX9vZxcjWr70zWbGi zmSnXErNINBImUK8j/TsQzs2QNcGNW6Bj2VfHLbMnb3lGJgL0DB06WfUHRi3 /QLdhZ/8HrVtKeN2QKALCD/+9FOJaoNd32HFC6BLL3aqLlG3ereOFozxe4Rd Rq/btbDAChgLPrBSnMC7NLCWoySzfGDwlVcfib/3B99AEwbNgOVE79rwuKU+ ET8zcxE0kfowZC8WYYDBXYbEx6+9GiVgLMTxxYWclIALgfJQuVnF9wPVZ3xW rDtxOzcITLZDHYRjxDYEw4EJ9XQYvqtiTql8ifNpoybKzepVunmJqTsH5Yqd uuOXnbb78hN3VIXJMnuXKDDkAsszwGg8/sg+I85O4Q2aphB847945xtoNHCM wGEmLcZr2Ey2grRN8lbtXTktxL3++DUgLtmNoy2RlysKhrbx299zcibVNQGd 5aq+wCoge5Yp66p1lNq7caL7k6hN1AvKZjXdFAkqB1l3lNpB4rYdTNYBsYRa uhwcI0UuA7fcXHXnU54B4ysqE8rmEiElrXH+4fvuiI+ds52T+Z4OJUNNFKZZ K+SHhyJOOaAUrJLSntdmmWjgm/XBE0dafGYx+GqzjJLhZkk8KLdNEJ3MBXMT MrfL7ljBr1ChV5HbE9C5vQa5M9ddhXoC+Y5DbqOxR2+LDC6zcMitctNQ3OU5 uuWj8V+841j8W285El921gpG75sb2/w6C9zQg+fNAbi9Uu0FdlFsYPQuIVl+ 6blA8HRgeYVOzyl+//o//zh++Vdf5CYNmQHUimrFFIZevvfq+K8/8pZ41+ql vJI2JIlrgSpvb6rKS4NFRtC+KkRGlbb1hCQuGVvftnwJ7Ju61xmVSg2YU3eH RtUlJTWbR0m7cuVA4mTFhc66lYTBOuumC+Agg7sEufQz13AtckOrJuyKuGpg pk3GifsdwtYiF5/RqPDIDLUVuyV/BzheBrNVpmyJywcoFxBf+UX6dmG6vkxG AyBMySo3GhdvPYPrsdsCc2ZRdsLhR7yQgCt3MrQsnkVSCsC1KHDF7xFSE9ta ALYfm3s+Adc/W/jjeOuuPdCxHq62cjBooK6atphhcIAr1ACmGLoz4Ir619zc R9nUukXc6voCDAKp11CkHwz0uNo/0lUUMdCQtP2D9VlzffyZW+Yg9p+sbKQY TyLWmv78jvHh+L2NrViUJgK2xLtjgJqpguxAQKf2BgqyCk3o1vSsmF3UIDaY uOMxAjKxbICgecc5GxSaxUCtwD3gpMzMBEex8bbl5vwvvROTnz9Fk2dvO+bX OoSmznStmoUpXve89ZZG00957HKiacumhnvlrvXMU7zA1jbathqo4fbzschV hpmZY147IhlMjVs9bUZi2YldaxGLYUBFY9VqRl0ZGLVTxt2SGGnKhjNWApUw HcDWim2BP0P1QNaYdZ/iGgW71WM1MBsmI/KaxOoQH4v8HqsQsKAM3/ONb3+J Lt1hU6utgs2F+2cfauQWV0bAJIC5nY/lxDQWRjWQrSR6VJBZdEey/lp8y353 myQWhAGd+QA6S4ESwMbUxBagWRB0oiRAqGRoFprlAEx4cTowbJCtsboYMLKS GBnYhSQJ5lXrMFZ3G1Y1Dux2I/D974bqm8OBXi8EZHIpRXLYfKfrd7pT6Kwv m7I61JLcodNtiAEdihrAAwd3dpm9hfC/iJhY4NmiM7sFmXgPXWmRubDwA15M YOqpmNNKIbPgU3vMXxEqC2FqFgIJfslQE0oTNAUxG9s3MCVBzZJQE5+j6gpe LglQMzJVWKEmmSeOEVdkU86akKM2Ek8N9QGd9M4dRZYmpM/PXnmBxw8ErQSq tUMiTbFkjHu/Wb1HRJ4JgUNNuxAIw+UMW8qZMDzU1paK3rRnH72T7ckuYbE1 LqEK3vOzWGxlFu/xOeRnb8Ys12ILvQpyRFUWVQDIUvp/eRd1vYGZLnpNqnRA VKmy9cB+uvzH7iXB9CyYqng1ub+q0rlcMs6mNRIcHxNXAOsuM2uFz4BX8lCT NPq+Ldp/Kjzs37j9YPzjR14fv3j9rgRdiaaVQIJvt43EZBUQWuRj1YKUAYpk HzdRLJ0cjndvW8utGHEXlVhEFQUsrhLIpqsdRmyb5Cu9Fn72ajxzw+WwtFIg 1AwH+joyTimFVWqCa5ZMVXCDKhlQtbVfm4/NHD/KjhD/M2+PH5zI0vC6pLsa //JFe/n33E1xBV7Ldc2e9fH7b7wIglTJuvD1F7FOi5naZTL4xn5wgf2jZXWA itHHn34q5YOuuIBZKiFricla8WTF/yay8lIt7E0pSXzB5O9pHTp38u6aAJXg ygC1S27ttJa9PS4FVC2vtoxdTkSgDYiH1p8GHUqfOaCKJk0oIitMS4Gi67DJ 9ZeROWGFR2gRirSlrm3BYxSiQHCuBewodE9EKDg78y63mDdsSUw8sX5RC1nS toUzR4ZSN7sVOd+/etfq+C2v2+KXEXRnTHPZZQQOsDW7qyWDVaDKn01PL4n3 7t0WHzt2ST7+8IdP5pJP1JSmwf46ErAMXrnVuZePlRbILvzl9+P4X/+Gf6a8 38G2yKsHsFpAtSymtARKbSXVjjV10DW3V/J/TGvp4o1QT5csZp1hAq2EWfpa HKN427KheOeq6fg7j78ZQ9mS659pblWWOSsyOBzLvEAAnBWuxu9/8ub4D77x 3rmN6+q5UXdO9lyN6PkMA9TEGjeiKcjsrQ6hiF4zGZFEdOSW/wyKAGpa+CoE ovtooKvzJmfQamrNzEComC5nTLK1zkAk1ev8tz6jTRTxYZuYmM0S+LEPYwGB rNqqSD0AldWlw33x3734Fn7tWbMURQBFMJcHPvxehm81UEQdDiDY3Jfs3UK9 FZtcoCbwrst30veBv93M3iUDXcxevCBbNfHHzwpckbC9AlyoWsxZ2XvULHDz BriU6wtq3VGLqfjPuovaWGTG8J7Duxm1xQwFi/e4qcEC1xZXh2Q1F250uP6G K+KPf/xpZCAau4+98Q2NZHPKVsTyy8bt7sCEVqnDuF0Vc0eZS809Eluae+Gp lnswbXZkYxP2MWoyt8zvwdv/9OE3xf/uyWs8e3/4/ONk/q3TWaElBgN8rHCt FQJX4w54S6wFauOvfvUTUfzf/tuf0J/++MffxP/m5o25pnUsbLH+DnwFbbtT RQMUt4S56Jp/xVYOjcYuhi2w2yXwRTn27e85yfDV2a0R00Uh6aXF132m+Jpe pm+7vGT/cSEF2tbCF+9RTbjr0J5gtWBDoFpQNIVWAJjgS+/+808+RUeC78I5 +zbmmt1asoCzBdZum0mRcSKT6tQQKwGuUeAP2WIUiErSMu5os4eZTvz2BBS3 tiy00jG0EsdGhII0SyRJ+va/FOhcFg+ZKxNZJbP1+rblk/EPnrqZAEXApc++ dP/VXEQAcZW7+HOiLRO3EqjDKnftIq18k7t+gyExR1dLI+4Sa+EWxN2y5y7+ n5YJSNBymWBAILvwrRf9Lp4OsiW7UIBfAtiisFXqqvb0jZwRs/aB4lJcpS9t L2bxHlVVULUgbIW4RUW1yVZXZYWY/X/+3/8Qf/NbL2H6wt6O5UfIxWz3gFZr 1hKve42UUMMpdhiqyymThrGQSReyTTrVMjdYWiuwe7e/74YDwCsiGx0jxuzS oR6Wt52uGOjhY4kRi0Is0Fuvu90wHnjgtoqgldTtjDZrzLBnyUD3KcnZKh8L abQWhapQtZjYAk+dpC3YxbDzK1edNmY6JSSxtCyrQMXi13QMs51ctv8k1WxR gIr3KL8CqIVA1WBDYOYqkiKsAnXv7i3xW2+9zDL15IM38EnH+eg2MddtjsX4 cr2BCavQlgUhoJYDkb0kpodzyWZ3dp8s76jSJr/A0k6i9QZmrYoZk2i2Epxe jyuQLwb0dT4AefGIxFKsokHpYRKzhE86gUOpqFeG6HBAwpYDS69G+Fi26wD4 BYzuaRyom3YwM7DX+2VnrSBPAkYjxiikKYA5HJiT0o05zQS/IhPca6moCp+s HvWLq7538uZKhzI0Mnk/E9yj0i17PUAW8ud/8bvU7QTMNhZiJxWdhbjABquV ONsfMI5Ch3G2GDAOsohye5tNVLmEDIkKQN4sev2Vu1/PoCwILlWRfvmJO2i4 289Z2dn+mlGkFpezj1GcnH+JAPZdqFPFJglUD5oJaR6D68p9iypSvkHkQ88x MMthbJYFm/PzX2BMWjFqyq4LR2eubzR7yIW6tEZq7FjXEGTajo4CHS3IrBhk Htm41CCzwHVXxeZn7zyqi6nwFrITvDwjIEOVmqCoEBOoNNScP33lEj7vpDu7 d4uj+7EpZ+scVdRhrE4bn8RqZ3wlm1bzS0KIa0XB9yg8gUy/P7CIS70gtMLQ IlLvEsN7xXY5oBhC2HasaFk2VTDTVW89spvhqIgk5ckT/+3UZjFQaB1lRJbS iFy4f/axhkdDxJuOycooT0e8R2nU0tHOPY3JIy507knIWHZg9FXR5sW6p4bm RA1oNbTaVkCWrYDkV6gSCjGJpBwsVCIuM5UVs1PfTMrBuS0aKwcCU0tRh7Gy YKfmXUUd2XrQHKUINWFcUhPyEAKLAkIoxt2rJ+I961chMS8KBbFRDKjXbua+ xMcyUxB1UdRKcUpDQpTM/vWvWNJ9N76BfInydPoLn6gDg3Xjx2yyp6omC2Es Vtvm6AW/RkpmoVyHFTmKqc7ReqjiEItPA+M+q+PuOKgbS+Ki5i9YO8EgLPGx zDg0NVG+OUpS8tx65mDFzjnxC8oRi0qvPrIP4Cs4BkI1+jMvMcONF2xtMJDo 5jMCsF3ipBZngq+3uMaBHXaLZA0IS4zRa/U1bfQQrVHG7FbOLGuKUhjGaQnD rhVFG5r8bJIG1o0jA355UxQgXkmIh/dYHGpFId4jn7bEw7on1DHBOkc8d34V hDqlNGEsGC+Lu0/ddJDzaIs7OzOkT8KAIsOTMIwIxCzQwttPPmDZwtEOceae w7vJpNspv5JVfvyS4qPiTeuODmw4lvi9fdSOdG96gFFvHJIlGGZ+h18S2kYC MEvvmSJV65qMqymjeMHvzuyEr6yX5xdWaxK4KiLjwDTNeosdzppHJuvVZ2gD Xo3GTuqbp0vCLvqR64ygVjmQCUvfvCZJlw+zq6stuyKWeG9/z0me1NFhUdGB GuLZDKySBZbtULcvnX/AycqRHl86LIl4M6VDzXCFTyU/V2NKhPGvzj1cSGa0 zPRpY61qM4NiM2ZKhm1GomB7m4n8El/gqCtgMArjqSaBufvJPL2pGknIL+FQ aAYyCuTNeloTd70kdr5ZZgqbNUL+cdiUhBJFHXvYMH/01QR7oL6grhx1Wm/A VPaYBUN+LsV6JxagW/ZgITrqd5Y9dpJk1NzVrhMixSR7uFtF4/oogyU8xJ9a W4lV8BJL6nLDJs+Ukhz9ksOOTH34uCJzH1Pmwpb0dyGcyVgW7TSHjqNsr1e2 sST2G5fJIHbLIJoqg79/yJ2vYJNHfFdXIFeM2s4cV+3MsYeL5ogzx68EUVC/ 9coIMxmWLjZhnDJxJUsZDYmuxbIprG+EOkpRBZfeUmBTSaSZIqGlkTIpXYSj ZDFTw/yS3EPIok+MWDfZ78lSTtXQ8BtnyB2LyPxwFqUJZXv0aWuqt8wY4Pb6 CL8II4NiDmayQSOQNwezcCYdesQcCj6pEkwKvFgS3tZYZyhSsKIKLXdnqdiq W+JMkkPqiZRZsmbJXVzRroDR6ddcTXghK2ASvLCbZOQDBawxPhb8HKzU/8Wc uBc1K+sVVKDsj9I+IDEUKPUPmmdJz734PMsXfM+u3dvScsWQ2MnqnaeNxndf sEGx4VOzUMEKJs0PA6BRsNDQ4lSRoVFMQENr+UudleD88aWb6vwi6uvQaf1e pv9DuwemipK4cyhtIHPNE3FHyp0kECDdpgovOZXfrq11orPE7/WRg4oHSpy6 hA6QIpQzMRdKgbxJzLRD7VFg7YFb9oQIvW1LRxHrDgLCfLNXJXD97CXmgEuM ira07kvqTl0k9gnScno5VRuCoCAErDXVc6VAKZDsLHfdzqLil2YOMAUoEgzK +GqygfElfxyRLYbt2Goc6JVxJQjwTS1CMcEMfzFOIMplMFXRJKT4zVy1gJSq WPaayUH6claz4hJsNbruAj9j5q+rbbm6ZNWBrcGMi5PLhN/C0Znj9eZwNVzM 6Fo0F7GF6V4+VvzTReHk9ekJYs3r4vmvfojyo5vsvJ71d3faClrAF/XSbQfj 7z5yhP0e77Fm4nsnbw5N67kNcIocvXh16WEOvJANifr08ePXYBqPrKhZn9Z6 tIwc+8K37joUn7xkG2xB9QKojf+FYIAXaUzyTEp83eb+EZfj5Ck67gk0VbEe BbuVgn1iPViURt+qMtBqXmQrRATqUVdsQYqCz3EvmVSYUdJb+EEeAiLnFj2A B/TKuWdzRPwoJxRh8LV4aMcIqmIUj3UP2tnH7u7pME+ZNt6IVzsl0cfHSmIs dBMZ/At2EDB6M3KUhx+9zyNKjJGJjFZbdlC+ojeUeSEt7Og1NoyiCahRMWsb dq9fxYWT1aaADJYYcCSykZXG8xAUfjp7BQd2VIwHTamCTYS6mddJ85pbyUdQ IqGXfxaEMRd+4akRJdkzHLwxMaS/OXfhdZ2zVhccwRlYrEga3x5I3ER78u6R RzBd2TddnqeBl3tQBaw30qVt0hx35OduzFynVcR+U02eXDrVaI5Vya9TmBpw Dw1FsYQQVQ2sTXCEKlo9wv/Ozb0fawN0PQK0R6N53S49A5uIRx2XhWuy1iDN JjCJ2IS06fcAXELVM+9/MrG2y3JKmsBXeeW2FfFfPXOMOg7HgtMog12sS4hV oeVdPXyssX9gwRAYZjYC4QCpt6bPzj4wYJbVvu1tdzG4yqaYrMVj1yq3W5ka qAYgMkw7mXDtedtwphzvUA1wkBvhzO4zOnfOrd+Ex+K5A3nzzJp2Bu2erAXD Fb2q9iGE4zbWXc9xFRnqBmDrSyVHeARd3j12rh3CIo8weuGXqd3uKrC+36HB VV3xe5hRA+FqJmPav38HdFAwY6obBmdpIt6LOM/7JBZDA5mLUjcdgHSUOnVn F2dmU7zlc+p12ck1LVi4hEl3P0DrtSrjgQexhMk1AlxupWylBeA9du+dWoFR 5hH/ZndvXcNftsoxxoslmJRExVzanlA64guO2hpV0RqVhoMWMEWqf9h++s2c vo6N03BFzujRJLxExyWapfs9pJ+uUUzsxi47sudCj9hw/C74Rw1J0mdNmxq2 0HS/MtdthquUErz78viu89cyArEUlnIwGo72CwrAQ3BvZuYazz3UahoNZxHL zfCeNtaX4B6aS7RLJF62PlwyT2lD3QbsQ1Jm2IffYfg19p6FhazpOwk8/JYb q4RAA/YigR/eA35I0p6ZuSgKCLWqKTNYoWa39Cyl9ucg8vmNBGzNuSIUpPd+ Ss85b2nBmixC465VkwiNfSYy6hqfXm8ebVDI1npgR8IeMfRkDbZLmLyoIVPu Rr/n5sZUtAmsQqzqD7CqKqxCOof1qen8bcWKZcYVmnM37TSZPh7BdLtnqXS7 3IDqkIX3rNkcsqqBwk/N7Mpy/fFrFgw6Z3MtWo39yq/AEWTZ3Uw0v7MaDZth /+YXPpurG422b8emFo1247Hz0QO5050P4hwMBIWDycNyPQYQDx47l8djTO9Z oMiFO0QwxL1GoNPgqxxd4eyLrxAo1FOIFLQrrfZvWsVGNWruiIBYwvf2Gayp GdVNb4Ag33kIO7UTR6gV9HN8xdZlTBISU6XAtPsgHwt8fxPEFIBCX6UpHliC NI/UN8620uAEJwROugUn77p8J9+H1K7kmzc4QR0HzwAASoAO4GThJ7/Ky0t/ j0tKvxpPLZ1si5MVxmJUSxUFJ8j98JnUfPIBLVWUmao2WqrbkATAA0m6AmXk khST//wvfpfpQq1Z8I0r84iopFKgwL5QTu4JEGXMRGm1px5jTxLMzDh4ByYV 5BUR2KG107EAJMoCCbzHjUM2caNEbkaZKH3M44yd8doJmii7M3tTbJg5fhWA oMuHcMMm1q6DCmVz1ybmysEM9OmK+kS9SS2GtFJwf3P/u4WLDmzi33D1H73J j201pGyQ3pGSyS0NKBvCQzGZzbHZrXMj67MnO7KXb1vVcj9EemRx/XI/ma8A m5FdWLFswomnUkKlGAHVHSCFfjsCkLCoxW6OXnb2bHNMuQvfffVWxkRkYAHp IbAoCixwLyTAAEy47YyqDAsoEcxc8772Jg/BOJP6kJkjR5Abrrs0np4aQwtW G6sCMcCOrkAi5gRJxVeC09RAtjX34bd1MzDKFhj8srA4zVy0ao+SHLVQJLBQ 0ZHvQG/0p7YQF1JUAnWjgqRfAAWSMQBkemo0fuiua9S41aWtaib04RgxRdK3 b6GwpMFyfBH72rdnczy9ZBS94ezLLRrLifIgYvSYdEqtdjwAj2LGyhqbDaUB 1YRH1SuMrM4dks6FRbmCE98CUwwkQQVhB6iBnTZRUZbOjb/22Xegg7U5jGTt tH0GHavq4zwIrvyTuGkyrTDwXhXG5CIK45x9G9EDuTOaKFKF4cfWRoVagB3j AR3QlRpb8u65TWesXG2uUlSGP40VM9VAEjYRCD56GgCEzAd4mm2OLZ9m58oR xkdRjgqRXLN8Q1/aOv/s9qIsJ2SHVvvUBgrSJCGK2cCi6HUJUSW+9srz2M9d 9ukKLFgIDajUBC24rxo1HUBlkI8lRgvmqPG5QUofI6XEZeddu7elcbLKXL1K jwofq4myM16h9H40jA23x3rV1mv4BWRgxmn/gZ1q1TSmf/ydjxHQYNkhhxPR QZftjjKTmLj732a6EwET08UxGkAw/r/4thu5o09vMoQjKyLp7tUTOgmFEo1m BhMBhhSEIVit98ADt7XNUqSn3TT8QDduX8bjUOhY8LyQXp2wis3hgk/zNxSy UDgGG4gS/Epz4torzgEn4n9c+DL6lXt1lQkZKjX2BHjhqid6a5HvkHZSY6xz qXGmMWYNB5EJB+n9Q2w4mAgIgmrreMZf/tQTs3u3r1fH4asVvdGCJ3CjHEiC JgO2Y8+FDPi+26/2trPKdNWqsZ74syf257jsQUctfKDQgRwF9wDLJHSulAIG JqaRw5jnLuG8LcDok+XCFhgP3X1t/Pwz96A96wzpsWbFMsMmND18LHpm4POc r5GjEBRxEkPoYHw4iBR13iqhR0433a16pCYVEdADl4TLWRImRcSkqPiaRpoQ Ys95GDR9I5n03KYNDg9WfKWNSgNEeoMjVZmTGUaFyUzEITvQrmcL7A+ImRAa pC5qAgm8Vc+aaHpWPHP1BbyENwosVCnyscD32qK8QdlLo9mfPIbTw93xr913 iPrzv7xwI/350T2rtDqODdno2N0sEJGmwDYGWp4AGCAqkI6YjowCHWmDgHrd bsOHnOTlbgunxF1r7fQEMYHS5uYeryE9sXx6jL92k5DRVCv8OEqi0LI5m8J+ SSDQl43DyjjGP5x/nuGw1lwqAgnOUpBziW5JnMtql5DN6E0NKRDBbjCYa0xX QVygnKF8IFbYwij/Cx6ADHn8hFnxQEpCI9ITQEOPoGFu7v3x/r1bGQv/+B+/ pmhYby5c16zUAplKhY9lRgM+w7Q26h6tNX2h5IffxnDo52OB6x/PvP9JxcMa c1rVF11CB1RJ1WmcNdfSdOC8A38LNBgrLgSsWBwH3e41Q8FwX/ViIYCDqYAZ lVJDu2fHepiRIsF1aJGH9smLN3kqUPqBBy34BSxJSy1bLAAKidwjEvVgkKBl GJxnrYk2OO39RzYTtBwaCBO+TjItp1I0oEiBf/ft2Rrv27k+fv7duPXR9+Ds 3p3rbQ8mdMLOptEv5OQ/V7LUm1PQ4Qv7Vo5CGyR0Apa/QicMpHQCtiJpoxO2 CApQL4B7kvu3IB03g0QBFExZcUYIdxBodU8aQ9YKOc1knP7SU9JpQsokCgAh ZDX2jNcfO6zwgdVg3NY1h5Ath0QCygI+20B9E5/zTAgJhVB9eiDg/TW51RLC AKtdKYuI//h7n7AEUBHWsAioBjKKokEA1IG6v81mSrazKbVoIgDTRRMLb7jx GJ9TrpfNlbw+oQ6ePrrTh5tpmbHUJ+qwuYqploypqgmuC49cSOflA/nh0oDO 05HDew0bf//nv6Iod73n7i2Gv6sSRrGyFChWOuPoSfi7ri6Bf2NFGn4+dtWF 8fTkUHz08M6FFdNc1chtMJ61YqyXHb0ijr7n9GY+Mm001f4dZ3CRgHop1GEW xNrpO5p5hi91uDqj3kvENtouxtML9rl0qoo51QIvcY800rNzq4u//8mbfbTf yt/c6z0AL4RBHcXUZBU/osKgemkgCBeMz9mRe+njb5v1vVlNnNEAJjGjmw8k IHpKW4+KJPqn4r51dR1F/OyTg4oUKeHruGp491jAn8upGQsIffLjPByaflVd Gv9tNG6tC9WqEt/NHdT/H3tvGh3XdZ2J3lVzFeYZBECgSHAASZAACZIA59JA kbREUSJFiRoowRMly5Ylz5Il2/CyHcvykHiejQweWrYTO5EdD3EHT53Efp05 cfI68Yob66WzOp3hpTN1kl693rvvfPvsfe6+t3YV6f5trFUXqELdc8895/v2 /vY+w7XEvsQaNYPN3ezQkYt0n8H44xKsI8hHQN5/96lzgdD4TGY2SqMJNBHj lw1c+vI68X5doLA4PUjsRQcJk+VZKmx/Jw0YZPvk7vPXkbFnElOfeK3p9zbh lbbacxeMxOFGJU0aDl04FY6ZSRt/eOX++Pefe9v6lUsN3MVexRzR7yXm7ode dLwJVVYDOasXGkhbUM4p6v3Fw/f8LpAy55xAh2DFmarUcKKYJz0qBIes6crJ PtiK6BCVV0v1z6M3zRCB4B/xm/be8pZ1iort0C6RXlkHzH2ykvRJLfDzwv5J egEGKB7dD8cPTroWmDJsd051vbIARMcbTuxTXZ/W4kJHjB5IxwwbdCyqTWFY XLt3zVzcm7R+mJhFmyHm4GHdn4jC8Y+MpO7WJsYRDtTr4KCbCYiEHnpgNeG8 z1kpJlaYiFDa6Tjx6jjzRVbBDLJW6IFn7tobOpvw7HoB+Ku36GXpYd38wrx9 VD6NS8uizuBDkWPDhAHZfgU7DKbrXw2RAWj3hgdvjp/7xGPx3/3ORzT12Lck 6srFy4F74KKI2vFrbJPZpJlXFP/2GfTzSXY9a3h90sU3yJ2VDfpVVQ0+/a6X ZRdsBEHsN6+g6cCru8d7qTeef+NJ+i01ci01xTZKuSidxpDOwN+N0E4VInV9 oINKk76OWCC4mnkjW9JGVhM5hyJh1Z5+BMn0KOllS9/mKeCV+9ckk9UWOeXz QDxEsE7DWjzzcQJtv0ATgUArSFj8Pr9vcw761rXxpDOAR3eNxfc0tscffbgR P35xP32mx2YkliYsc76rwklzg3rL4eoEC8poYl3Gsy+/oWy4wbE2SHNqLdyQ ajfpZ/eNH777HOJkZ3JRWwSqk5mOVknJ0Mnojyv3vwBlHfCkDmkr2cAXoZls KccJ7qYEHRMtB5ZBPiueLSW1JacAfVowfFybu19/98pLw91721MMqMFL7ni3 KkMI5/crkDmodIqI1JIKQCUyLKsijh3cCTkaFQyyXZeQbWVp8yDRwXUBEQ7m kGGzkRmMuwQVlNVDu6/xXYBo0aIvEn+TVZUi8Rv9ykzzRVZCt/IwGHWl818C vINJu2fSzV5R0ulhtk3JP0fPsUuryG988V0Fg1EHEkaFAR9QB7T5+srZcvwP X3wQycoP30Mswr9oPqxrD1GPGHUSBhUVg5AiyjBoKWEQ9R5SQS4cLBr+a4OB IRXgBBaptpHOcxYFDCrEn3/oiKhtlCsukWZiOvLgxBza2+taqSTXkpaj4hKB RRGPNOO/Y9fOmqMKrqIM88yaSNmMUeOOfbqmQHfsPNT6TY19KMcb8sKKEJFv kJ5PK7P5UCtndqkKPnUrs6zwi5YYuptKEefikRmeJJqIRB7difwOMgX8Da+F zWRRzo2q+VET3/yOOe4EgF2k6waVBkMXwyFw7VeFNMrpteRhGCZLisLkusgL osC/I6rNRfSVFGMuHd9Jdzqo2pyrJZNy7739uGuIowe2E33ca31zfYxyYV4b B7O1NjPRR+RwnHEmGoQpgTv0WZTIB1ykZHAm154zxwzOON2XZ85g7EW8q4Ug nzItagSFBvc3kkTIojIM48e2pUJlw3szvHQnLku5Xu5RkfLSrnfw2rlzIlMc siC/9667wB4ZFTHvOp+564eWb87QO3HjXLVpCwrrAUb+xhIubU6AH0ZLiwaX cmk/RoqvYMyuOOPBj0uRNoMu04qPAdSfAT/PKk/ZrxuSqkm3mpwcyNwxzQT3 dxwgknRCWtyJ+wG5JC3VzUddt8nR3vjo/Kb48RdeH3/t/S+O//4/vD3+wy++ Bn+vv+vRm9dPLm6Ta/lHx5bkMnQpqDbQyPmfKjMr44oEVXnGJwYiwKwWbLre ZlOO2QRJJ7cz3BJXBZqSozB1ItN5cDxCItXifYpDhhEU/pyi0oJ9CTzyw7Su nO4WsRHHRfh7/eRhb/pvSAqTwQNiD0HZuMOc8jg8swvlZK1QShOl4RhlzLpf tykT2OhsBH8YNijyrhl4L9PCodRAknx6kjPdzFnfzlQL8RASwChH35mxVQZJ UDNFuSDSpDRlszvb3yNKi25KKEIAAEXE3yC3L0mlqkERwrmjyT1n9mYpAtpo ityURkbwPM7bRJ4fHYEfCH50+p4nB6WqfSpNOWGDpOiHFc4YHzLBRGOjnuCM FG+IWHXUyg3akaGAakztwM8lHb0sNyuwU+MRZVWaEIFzc3Ahcp+nPXiXI1Zg eLmLD6mz5fYyQgt1uS4D/chb45FrgEXdQ39bAn3KDkB3FTi3DugD8tBVDvD0 G3lz5xfw/fMJsOj0EzMjjqLOMXPWSIBVtN1zFvKqXVFcIBFybiouKV2Dl7nF Yyd0DxgEqGP+i5NYOUY/3oo+KRidj/8J+j/yxHmgPwf4uy8r8OMqZ9NgJd8N J8D+oUD4rxL+ob4QweDleLC+ebQnZZLOqg6pD3VxJOBXvMj0X++8XVW7VWMA JphmlVVSZ9LtGjJpaNco8d6tGiBKm8y7qLTeOr8N6I/SQooiB4E+YXtsAHZf irkljR2+Swrf3EVzfk2OO5cW5uR4FRvnyhSoSuG57BklxX5KOmONX15BxKmL YYkkj6DyS120Pc683+CBrA66mf31QQrI5NlE+Js3upTYhE717RjGnJra0CCL NkL6dBBFVvSyl2lXa5zjqVtM9SKTxLUMPESVOv8qbIiEDu69psNFKj5IY2Ac dFg/uXdyjWsS5agZ0g+sukD/WKF/6G7z0i/3I/RbgUIvpgGudC4NODSaLxC6 bHGn1daC1eX0qb5CdCoNgSzz13yj5vC1XENukG4mh5JydJ4fpeKXt5MOymrl /zpfJVuadxEr6qVKLWRtqZ82IcspQj/AwI/11sSA4/PovvR3VrhuqZD1/vR3 BKypwOpe+k4h+x0W7dSTM/Wh1fntY77m3sSFn/+jbePxziBcNr7lIRbkhjQb VYXa9gFfbpw+/M2PP/3xpz/+tO2n3iKEnfYa6W++R31TcX6tr1KNu0rltat8 2c9WadS3xtsGhuNds0eX08W/W51xD/3pE8BjXT3xlYWj8cLYZHzoyG3xxMaZ dieVqT53795PJ+Fy7lLxq1/306vpyz3jz/yf/pbjSP34ZvCPgsdVURBeZ7ft pqu7wuJTZ15CzfNA0mTrEXuM5CJsjf/Nf2llrLMXH69k2nq9p1zBBVw1cPQT iXAR91rbuv2AN8JF/9Vaf9zYcz7ePr43c0Nez0f/qhp7YazueqYS795/spF0 RH51qNZBN5Ncs4gejF9y5T103YuX/HTqjGWPu6pOBDRek4sfPPM2d6Krx7q0 WVIPlkb/QkffhajHlYXrXMePxrfc9Zr1zTMHfGf5iSLAg79xHEv03rWvNAE6 EMXcnbTYWl/nULx/y3Wu3r4qrlaoSiNdFT8XM/ofdPTbGKEKqIqqTvzwG38G bXlJl+8w5NvFt5GqklMAOKY3rb4zuR3qorOLL3IKMtQtHuvfRC36DfoeTS9A D61P9rjvbptzON3uWmkK71ejxKHRXSz7S/xzUj0HGFTvOlcVHIvUwEdvui9+ 4t3fxB1RM3ih6FMb0tlyO4oWcjsB0fi5I9Pxrvq4jRrfkWv5cPd3Jf28yjVe i7JyNb/sGxWwmyPIHXe9jRvfNjAS91S74t1jM15ZkaJZybaBR2L0T6ku6nA0 P0SloQ0a9R0AOrUBXpPTe6RbuOeHGV/NbZD3x/X6pj2hS8/razHcurgBXPei mvifl64qysK1cEe37Lo+fvjo5fjoNM2bzTn2dLu7mxyoy93hlNsyd+RAQL2K NP/duw/iPVF4sm8MJbr/PXHyYadcpWRXaLxtbGd8duFCvLB5KR7rm0DNWEqH Do2kIX3PpqZfyo08n1TFWYguatwCNW5eNy6q4I5p/Kcay9tfh3/f0DChuI6z LtLQ+HtFzr09qUvgTo/itfuM7sM3FZnBVWlkNMG9+8+5xkKz1KjRHZSoWdAc dx99IX6v75qc16h8ARVVC7eKVnZtTi0OKo519YbiXUuXqPQO3Z2h9Cs3Pkq/ uQPQv2QUqQfipG14fq/HyVhn9/qu4Q2EQfi3sb5xd5u9y4wf8RVnt+2l9pde wHsHa90L8b0PPbOc6QW8p6ITuBfoPcwE/nekcWeBO8J51ACSW+nYxPo+w47d kvSFVFpA73rB94VuLfRHY9dJq7UsqPrsVpXbqjfVP8piUNd30uUKdCl8zpcq 4FoOg7garsxX0yjw3ePTLjyfvZMh0UGoFRWB3zAfrpviKycfcWU+sH545gTK +Q53V5S4ObKy6C5HoLinb4Q7yh/FFSeA9taJVQ53Vyl0F/wU/u98FLQHd9va wOB4aCyVUQmGasiw1KeTPgv8kUbsoUYsUp9l+AMDeyMmPguXDm9v6FbUA6TS V2K5hEcOFn3cTZkrlFU34YLcTdoJSlKvHiVR+UqUpHcYQMvydfxcaj5lWZ9C FM3LVaiAHL7IetJrKcFf99rCho1CKAKDqNieSidrx5K/oelFDQ6c/80o1C4A pMwAwWfsrgQgazNzyTOCOHWhFS278EoKIAISlOXsAUgthtZJudAoN/vi8D4Y 2pG0R6Pv3pgAZTnKkHtQASXDOFQtAEURXFp5MQMUgEODhG35kAKKeDhXUpUK LwSgRJ6+lOH32YNlqrV0MdW6q9wZj/WMOmO5bXgLjODWY/HZ3Wfiu/dfxO9c vDA5D8E5vAVfw9fXoyQFRMB6QeYCeX0BePVyZ7Z0vK4cfWEOl4EwcR+769CL r2IC8B2+l3hIClcUQ4QJIc6h9gV/4XAX7xndEp+dORK/YulCPDY6Hq888XS8 2LgQv/Ujz8cvuPNRjUf8Fv8SfT0pX9RwVGkNSABqRRB0awrMkylNCYAKwEWX QrnAcqFM6FOHxiABnDULQOexkHqU9jwb0p6HwHldAs6VKGPFNtg2JkdmrEKY hCuAXnI6ie62b2gsXjhxK4ry81fKAnvS5oJNucKYDU7vbCrB2eAKXHJ858ve Fj/+wW8ALseTpscF1wOC3D0CGcChQ4v7zEGoBxiCCvRYFRgR7PyQWxh1WOtz gRljHYXkqJS8AJEK6kkgmaey3HepQd/uu8BvARMmPq9N9w0S3MTcadjdN38q Fz/ZeMAVCvQtzSzEn3j/z8W/8/yfxgvzB+NHVz4ff+hLPwxI7B+aSFnHXZOU hIx+KWmOENFUGYkKOa65PRIdghqCmFtS51aakCjI9tFBKYVEvGb3Xg8Rmkv0 6KoUfSopOvjTjYxE0T/4OZogEXgJZtLhIprMyHSB2uad+wMoHnzzp/Pxu/7d H7hi3cfhzvy07WIoUhc7RcVWm4SogTnXar5sd5lQ9qEEN6F84AamySFjjJBC uAmq4br2p4zzKYKm0DdkMqM8zhGL6XDd1zviOmNh/sZ4cz3ZzIGDmJwnq/sL BfZNhB7x01p4iiV55SDRENnidwaeDgvAZ4ks5NnTtxM28QJOt+5aLACgzg8L RJNa7BDnHX3FgGfNgGfRwxNZDamwuNpUpqVgwFOUPewMPHei7EtQ6SEFghdL dR7Vb0TKi08Zci8zISxlxjYTjvKEoZN3PERIKXu8pMI6ntq/ljl/izod/wLc KgaU1TxOCzuTBtyOpU9Z1ae4700ZcLupPdzyBLeLt70qvrL8tGvwp1ewqvAN j30G7+MbG/fgWxScM/5gyvMw5Y79fiGLt436QSR0O85E4hznnwsBf8fq88Bf meCXD87ZQc+980fA8b6XP0MILNIxr502xMrYDkSA/RN1uccvJpcOiY8Oxo6k sRQWgc3QpC9IAJNJtaWddrElFvMSfqTyX1u3J3jPzmBiB77JUJcHk69q27a1 NSRhwpblSnoh22BnH8F5hs+F+XNn0FmMx7WRielQy73twbWZweW8YzA9h+lI u0yHr8NNu69H0wYY/YyTsmCQsIWXxmAXYbBKGAT+8IrYAMGaO52CIIvKZAT4 JZB+6QVsCvqRItI07GoMu6neUfHIrqs97HAFeGUArpSBnfPQnKDKQyeuyN38 O9/YqWSEBbsSw0Ryj/g5nYJstQl2gJn3zc3l5blUwFBngp1+XA5oS3voLWmt SHhRS3BWR7uHyIVuZ6wgUwRXqbAC21WX6u/KnIvgZ0drnAGjodnm2oBmG4MG mJPv+8iogPPXeyrd8l35qjOV65N9PuA/kUBY0q3kShlbwwStfICW+5d0bIA0 fvzSINk9A6UtR0lIUyq7IhSsok7GlfubFB4QVWRcSdwBRFUZXdqtRskY7eHk cvHYwCBePJ5eAuxgbyUiQnXQfi9UCBRD1cmIUVlvZyo8bian94QuZCGH4jLD HWkElg0EFhiBHLUEBDojWI8k0ZCvPzS/tB55e+cK2D6+twIwljA0UobVKwGP VYamjNngZ5+qG0wegGVBs2p45Z3GuRY0+VyY04acu1udK5CcIZwVKNLocbZq du4mNP+BpLcIlYgpdiQmEl+jCOZoAkmP4HLNNeW4a95+YHCCIFnQHhd34zfT 5v2dKOgKeAbyYMGAPudAo27lTHfUt8fPPfurrs88+lS84SyTiT5UCuVz/oHM 8sdf+3j825/86fi5p98TX7n1NkJjiBad/SUp4Izhrsl5yRrqnHqAmBreCPDs MnLmFc7uDI5MhW48mbRv8MsWPCsG3It8RBijNCLB64Tqt/ENk/HrH0Uw4I6V +P5LLyvFp64/V47nZveX4tHhsYqMTfR6F7EutZtXdwbZB3jNtAZoykfvMM7d yefiMwFozZ+7vn3+SGgVvSnFWPcoZWg86koE0PER53Yf+bn4dW/6drxxiqap L6iGhKnFl3eo6BmYxtcv3f8e6kg/1z7M4/SytFR1HQYbcdo19BagtM621IE2 0I+nDfuNCdLCVlDrIo5+BiwA/ODyIwRVASwHIATVrgxgEShHyUDyftWMZw8f BWCx1sUdSxZwIVkpV+vzHVVJeyOgEhBnzavkoBsawN2tAZzKBjGAU+nJXAbA EKpVA8AlAfDciQBgGYE8lvQntaxDbbQr/s4v/qErw4E3XF8PYmF8TNtBDdGa 4d63K8xAgeKsXa0hKhkc+lFb35BhhA3dkfhqgah751DnjgxT+tELvyEBEqzm NVZdO/pzj5y4HO7X4yGJ6IBZYPXu3Seo3U9TGxN2CbqbDADzsIHfNScR4ZxM HDTClqphaXs4eFGWVnx8atk50Am8VtqjtqIGAWQgU8bSnC4gq2ZZXzXBPUTU PcZYWdUYfOH1KMuRGiuzwFszyCDghTyVCSHuRcPHDF5yZs7IEmxnGbzO3obr zxoAFBvpYhrKFLUC4DYFwL5aD9JB7hrN4O3gc118HkCkgE/gRUJQA3Bmah6G 0hkaD0AH5OAT5q4CXgF+wQC+hwXNZXQGo5MUwtltB/OMW4dhwa6T8s249QEQ 7/rm5x2NdHTGm3sHgNshI+4R3Dq1QIYViO2nY0HjtpHcl1YGru3aQraTIFsL kL0WW5vJJfUaw4Q1YxToOoUUGSbUSMWAqM4HaKSWFVJFxsrsHr0c0SEz/twn vxntZqQ6tYDGwTV1JBTQtstAqkLbstR9i3HubgOpnUb2SO8ECKmaRZsgtcRo E/eOH8WuoCJ2GkgtGUjdk5y7NlDthJml3IjA9MadRwim2wyYbkjBdGVzb398 ZW6JXg6bYl5VUtK1mocpdAIgmcA0T+Z2595Da6pW1BoiBnraY7Q3EQN5ADME H9rBSjap3xgCqhpO36OxTFkIGR9Pxsg9EjtbCogivRck8sQuTlXml6cdm4Fw OPw5RqKzoZbjDbmfWQOJnYbD32ycu4fPhf119pXO6mJNOjA6KafKDsBog2D3 dNCEcRYIT+e8K4bfZgKJuaUTBYwMYjqrZJhcH6/5uX+9lVp8x4799HLBVaRt 566NOwiUMwYo/d54vKNuie7iRufxnj5xM71gQ11g32/4/i4GJ97DZgKWfWxD EfM/9NT78EKR2p+J2x+4BnxGlOpvSF2PGNAcMKBZM8aEfODjn9is521qaHa1 lAcFHUxhgsWSviOHSofEaJ5R6WylhJaCSmpXCccFlRio4ZA8oFJ78s3GuW1Q iSgrMyqSX45Yw8GTbydYVQlmQOr26V3xgcXj8duf+UT8skef9OG1k5gOnqbt 43shTyg215dZoTJ54DAem5iicrksQNgyw7tUFbud23vRHFzXYwdPuosvjU+T x0fEJQh2qN1pAJhXN+snCC6MTgC8rjQc8/HF7XMkYoHhPkYy3iM7pZGss1W9 Kvwa2jARf+G7f0EvZ3IbSeVTqmC4PaK7GNHI4GYQncqhCqIxjCSI7jCGkbyh puyIjHKqOSjbUF6I1rSMqLKxVWn7EF2p/Pv6ZE9fvGViM+C8l5HtbC9Ooa/q 7X8FnbsNZHcZnr9unDtnILvbSFLVVRWRTWrUZ4HGLSoNoIEIYH/r+T8pxN// 4b+6m3Z/NmHdUqS81zqBE2oU4ZQreqvKHNCUDXeFcxcux5/5/Lcc2nCJUriE psCZW18rV3F/BpZq67BzcIzAX+DjRHcfJR0mh+vA+6wBfd5dhh+8ixaJEW4D 9AWGPt7DaPsB+eZEbU/LAK5E41AnXnAxQP8DP/89AJeTMNQ0IjbG6Fi0oB91 JpY83PghdeOSWRhsjfvUkBWPAmLulWRuNeZ7Wirngsx/knjsQAIlylPALziI LyTqQlK6Kb0pWas5Q6t2GeqCHw0IbIVUxLyB9h7jXJ8RLFDEeHbbAXdvp3C9 zQqHNEFJ4bBGOKxYUKdMFysIj/Bi4BFKhsmFGtbFZ8iEPfpSMMdlFcxzLcnE e5s4y+5tPI6+8ZD9Bbp3Gxj3OWB5zjx1FWK7Nyxe7+rXbN51OpinnjhT3pxd 61aDXIdvvCN+04e+5N45lLuj+3s1U3XiliiXyQzYo2R4LqomI8QSQMomVMsa 7ENqPFXA3pko6tB03kH4lRKcB+a1KwT2vpbqp0CjFRDTPJ2aE4aBNi6qi/Yz 0t/7jk8D6TRqq6KykHuYb4N0rVg2Gufu5XOBfKdQUkjX506m7nSc8IgX/nYY nMxYXprR5CDpxIvr4DQkBfEOgyjeZ0SKKQ4xj6J6GyJ1ZYgkSJ+du4nQzhDn hMuqRneZ0Q1d4zBNuN5joHswhe7V8a5uCgeB6xKjG8U6TBOuu4wYsc+YOdCV jhEJ1wVGNwsY+tEPJhAVs6kNusuMbuTfpAy1nVXIsw2rQTOBZZcxCKemHMkw cEC3Y4oVdnYwuqHPgW6e+OKHzAoB3XundwDVB5QpdxoHPNDBXkg77DUA3m0I l3Hj3H0GwHv53IUTt4bGVjNEKMl19+7jFKWd4uvKZLwxhqShYpzZACQLGuno CM1Z5g5lgU5RHxB/qNDxNiQaUApJRQTUz+rpIUGnVJQBF4jPe4inBiR5n2b/ oG/vAzjAdHDyEIdeB6QB7k4j0hwwZil0MsRh0J3BJnAXPcTXRzcGhEnToAeD WtnaBuJFhrh7H5yAmipA6gSoHFEGXMYtuo2BPG/8/e77olYY3imlLxPGxAlw vEmT+SU9ihSIn9pNOmWRwY2iZSp3vQ1ANbjFAjuVHqq6QQFUsiALbcDtiBGa aEI1sw/cBIEVej/S3RXvnhj3Tc0zHnhmTWeYfOqnplbClGu8cMJg3zD9hqJ2 hnmckJrH24ZcXz9wV8jlr1/G38QC49rOejZPpMULk7ZzND08nyLgBr62q0ZA uTxCDvlApF+uwo6QG1DsqOnm4+i1ajiADiOXPWAkCTuUvOHo1TmUIG+yVSdk i7zZ0YYduSSGjbu7B6n51QhrSF+P8ARGiPCpiQl6OYR3GzlDP/JOOjQoHAAc BBlsSZBCCF8Z+Wqj4bA8x0mcJeIIjXDTgj7nLvCVyTZQh3DJ0kTbcaYJbiAE rxZN+gyK+b/8M28RUooUAURBk3sW8RiJr7/y5Q62n1m+P37VyRvwWYo6fs0C ZHohC1lBrJDGvdxXj9I0lpfe8Yr4iZe+lV4/884vx+99/UfjPc4tAtUbDUbV 6djnIekZHap6bNMMVctVtF01iWWgdIFYVstOV9drK0KdZzbvoirnUGNmn6sd 1VCY7/xTsDz6ocpZ3/SiuaM0wQ6828vsO3DifLxl52JDsa+qWCABdM3wTTVD fg0ZWdAas0+yoOBdmdnnAurQxKxEUvJrlo5li320frO3d0TvwRvyoCM8TROM W9oxG3/r2S/En3jvu5FSxwKupnwoZ3rC+DxTbshgXFfCWllkLw+ZINJjsSKK YM0VHVKiy7GToorJNqSxCKdzmaPGufv5XMTimC+vCefIupwmXGl1qNYdtD8Q PD04DMRWiWsVAvHTF24jEOMFd+WACBwChjmwpgrauOJBJIQCgKIQx5EoCOKp NhzHZR1ZXP/iusXUdW/c4fcu8Is+KpoQVI/bbrgzkNiRt8TVwb+g13R1mnns vRP40J4fBXAjft8XfiAc4UfoVBLIrQ9UaxR/dzBFeACLyFE1pmMNG/F31XBQ 1SRCqWdqj/4M8m3ecFDutTo8XJcpFDiNFu8iCTrKU0kx4nT54h3xv/75Or3Y KfUYuVXerpYuK4rLsWNYiT6ZBd2dkAshBqF2NmFHiGtYtEWH2SNxzC3h+UQb kGuC9BpeZVg1kiSnDrQhiCaX92YldHUIu0WwOXR2E1DzBFSAEZjrYOTBg7B1 jqYMXcQRfYi7xclliobTYKcUisZ7qD1dtAb1pLpjMfpVBjUkGGa9JqAuBlAr YMtD4soJYiiz5NCMSdiEbB79IkxXjHlbI0b2tMLIVtnTgGwtvaaS6wbptcDT uIDs0YnJeGJiO6qamlrBCSSJP0RhOUA7y4FjXux+Cp4OrqHP1bbwNHjFy0Wl SD3VtSeJ2qGfqOH4YVQUa8Pus9Q6ysDGIAHcBAuzsTbghFzKAltLLfWAz5BP OmgAu98ghR8XEg52piRWH0MPugX2E6CrGfa0ztBz6n9FyvVELQbCKD3k7qE1 W2DGHTtSkNZuQ+XOyFYDzLU2kO4fGg+QfuoDa+vNkCa8SKzdZSRLrYUoo8bM mIoRa9cY0hdenGzNzqxM6ZkspOcXj0LD7DEgParwBwh7MPvj8aUly+IGpLAk Cku/ED2MGnjuTcLrsEbFj8IUQ+5Ia5ljDGrMgcEOOBw/jLYBpgVqbXEHk3ND iL7YBtQ6/+RBXeBm2yIyZsAwpRXDSm82TOmYwRORKf1cLiQK8IsSLRm0ybD+ OiNwkzu3PZ5L5MUFz3i9/E2fRVn8qN+SKk0C5B5jjKto5P/HjAxpyciQdhoZ Un0Xoj/2s/4AxB2c4+d/+Pfx/qWTpD/0TAdJFQkOMcALHAPRBcY1ZLpMNVC2 Vi4veqbhyysDy9GGNriGZo94WyC/hNpbKpnyICrkeEaF8G5Sas1HEzY1rq3Y tj85N8TUS8bCrQF/buADfryhL3CzVUUiDDH+8BY4BvLKhj3dbNhTXzEv4VSR gwZVyooqEhJPc5EO4svpIn3nIrMPMHcwpAFxrOPSoaaCtPPNOOYF1vTjB26j oipWws9ew1wXjfBz3Ag/i4a5Fmx/4Oe/l5nu6zt7cngEJtp5Zj+HQWP7/Z// migRPWcDcjqrRDjydAW0Nts6+TOnqhD5AQTkv5tmhPepEDTiqICHdeoa3ixF ogbDm0NQEdkslKljMCdMm23MWQDEsV7VMr0M7xV9bht4p0ZxWceQYwTwAMFh w7aWDNu6xbCtnIIiTHMeJpSnuSLlIXREBlOXp32ATmlJBrMdsBEzCrDzfDx1 4ZHQrX48Kyqo3pWgsd/IauYNHTJhzMkpGEFjt6FDmKcUeKy88CUEaQvYeJ2+ cA/0iMznQTqFd00JwFZxYwC2Zbd7+kakBpHWNzIqZgG7P9EywSD6IQsaFaPc igCbNYnHdpGmmXX3DMq03YYCmh8xO/lwCuAA6aGloxDYpg3uUyCVc9sBXJND aRoCIKA4yoAEQAFAQLFgWNpthsgeUT0oAB8xCFM0RM5WwxlovSaWu5MBjjFb WRVhAbzAAJe4ET9+NCvKJ8WG2HHASBzmjUlnG43YMW8kDnsMVcK3g+YPquQg HfMa4M7p4OjM8MnbSJ3gh5+v2tDItILJCiMdyBeVISbcvQ9drx4BGxTPuDHH dyBRN+E+NidIT43/skq5npEuyXu10QE/RdJS4EVC66tf9UT8F3/+j85xTWKa QTDpziy3RfyicgezW3cRW4YMtgwohCKMBDY3GNoib5jg7YYJ1qGuMGhDGwbp MHWb4SI0g8SkXyviiwbiaynEr0QqtBzk+QpRYtLpxfPMpoz0X86w5L2JRFnP 3AVaJUiURQY6LLuz3imgQ6rIuNSM6l2ZW6lHbWHCAfEqAz1SswwY6Kken1Ut KuWNK5Muk80GDXfgBymKIWWitcqNGa3CUtwCuM+blGgB28WL9xLA8cLfzhxb soUxvh41eQS/T9eRPYfiLz379cCTQUO+KGUfsDlmpDpyhjXewdh070N57C3Q S0EOjRncyRnZwBnDW2juiHXvYqxjGmU61MzTe8F6ycC6Hw+Kcr5YNGWIOYcY 68q661x3nbBeSu10hBcnA/sZ4s62B2gNK1iJWLEgnufj8qOP0yAQftRar6aJ CVq11BjiT77qsexkBdjn0DG7jPLGM0O5LOkHk9NDu/lySjRPQc/MZOFyI5tz FXOGvZX6FSRkjuR+ZYoBT4d0Bwkc8wRZWdHRb5hnnwmzhFDaPTBzAuwNxZ+C qT+WtAihF5vjnYYlZrSTHcJpV2OPDmx3GJ5Cs0fmm3XypGEM6Az39sfvWH4E KJcxHeh3jHvyi9CeQwaRNliopeDu6+mXfzDci3qIRxLg0SbGusoU0ovDzgFD twwqRoluWTKwXmCsOx0TepXnIK1EKvQcVrpldnpL/Cff/TXXFM3mXI1ghvJ0 KCsZSMG6uAdXHsz4kOENfPq+mFpLIsmVmxjop64/F3YoEYXep24jOxAqmuN7 3/0jVwkPdLbLqayLts0+P2bpoGY3waQZMraN0FJIQDpBx0IwyWyGZ41BeMtD TPAYp6YKB7bRbOIVQhUGVBXSiqVI72frW+JfWnl/fHfjNK1mmlPbmeCcwzde dKL1k7/8X9xn7u9we5XW8B5W4zyw5i74jKZ5YxyZTsMZwiGGs240dddBnRxi OGNg0pnqFJyfff4Pw6RgNWVPgs5gugFHmGoAubPNmI5OFMrT1/0+2ntVwNk8 8MluYDApJsDJp/CLKTUuQuU0w1py4VqO9xqw3qdgzTLDne1hzXY3BWttey1Y HzD8Qd6gyUAykhTuq9cA6KTKmCAYxZzf3QxM6SbFDdSNBulx1kbFDYCag9nZ JGsY8Ke5kVYnJVInsNXANV7A+JXlp3erbVFmZvbHq1/6XdRI0P3CV78v7h3w +0pdA7qRQ8TnyIVvUflCGG3Me28D7ZQqsaBdVKpEzuVJZahe04xgHWF2M7R5 HD5lqXWEqVZ2hn1Pxozy8obl7zfK8yNt8vSByaxMOW1Endg+ZXi0LjCiZpYk 4D6VI2FZ4XrWwxLfy+TMU15Er1qzZE/WG7zvvR8NO1dYeZheA6qTKm8iqlxg jtjLGTcN85QL0BSR6HU2UeA4d0XBhe5DxuM71SQTaBKHb/fOHxnnBPOdPACk wf7Lv/438e69R+LXPv1FAT2Kntq2F73GA5wC+nUL9FAs9Y0T8QN3XnBlu2Ml PnFoqYzPyiirSsbeF8sLnJwIbCZCn7qzhe0zRIHDBhFKhmTR87vEJg8bEWh3 axufmkvMEW0qAhUiWIOmujxOv6z3DSQjNjyUvezLk7nJW6FbohcwC1RUGpZk 9xgskBn0SnNE5WvUMBYLFgznYbGKWRCMT7Z+guQpRjLHkSkk43syMGI5CjkX jJKcyyzPxMd7TPNgmavlXTbtokSMO7GZCDNK0BxacnD+4FddUOCo4D579Rs/ CFFDXCgnIie+9YE3rg1tqF8LIxCyfuan3h3/v//1P0db6Xh19KvWCArnSBv0 a4WjpmQHsz1sBKe9xlhRV5IWb0hd9FIsCU4F/XpotWi4lX4jWvXoL9Bmxkrm 3Gyk153aWVbAouYFMPXaKK1KKoa5tlQOA58IKHNjFtq4E6TvZXqxpXK6DfDW Gbz4LA38ArkDB3wMnjSS2yPwStZ9SuUg0x4gwb7DDdZciAPh2StNKUcId439 Tz32ljD7cLvC/r3O3Nz7ote773nsozoO8YT6Eh0LJIHmDp2JL7/6g6huKQX/ WMN/iOH/hsXrySEA+NsY/s4thDy7wN+5xCz8UypI4I/49YlnPkLALzP83ftg iOqqMcVYDxmqpc8YUbLSj9sUVkRVbVDlZYdetfHvN+JfP/rrh09lL2+Z9XJL ZioXpyR7VPNKUmXOUCu1a1Q/XaqJskGDhn+5vfoJZXYb+G0N/2KAP6/rr6s6 4e+1qYE++I9QBvL8MiwrZSBTwxNIwsJRbidQihR+Nh/Jit+d7YnA2RqigGwc g/y8IwFRQIhw45lLBPzECRTigZGJ+JF3fCk+fsuLcL3i1YkAZeSkUIoI8Asy WVERoS4tq+9IVNBRgwgVQwWptRbBbg8bqqW/jR/QSUq9aFGItcHwK2WjvH4j cuaJIpSbVwro1szMr1NnXlJP4yMEpnOGVukwTHafYbK5PDIx0E5aS0Fb4XyU VG2tfVIeu0u1jmifulLxWN6n8Qs8swkMGqhL9bYkPi0O7OYyokRFiCtJcTEr hHREUDY4sMXgQLGlECqIEIqf+tivr0/vWmIO+LEq6qi+SjUaMWTQdkMGDRjw V341yKBjBvyrDP9IZQ94XudyFDWv/tayZcDwA1Y0rNdiiqzaYPiVilGeFQ37 uR/Jlh8sg841TxBbzUBDpPqcYbI7rlEBabhKKGEpqlp7BRRau9OA7qaW8C+l 4M8mfCUpxmQR3sto1G4uRjNAeRO5u6spogqTgFObBP/NTAJs3gzDD/iXmQQj oxvjp1e/lyIBquAIAGeAOyiYJBg2xNAMkwDv2Ru2I0FKDAkJ4BMw9qpJ4N5n JzfLaqXUfh9avAwZkw6EBHo8lbOnuNEmH2CN7Ro+IJX+9hMqCgQb2H8WQrel VzIhADYZsMcIfrtai6DUpTXUhAHtHMrVRJDsJYDyZGKCMACMkKElncZxRps6 PGeM2ejFcRJTSHkYvkqnlEopUaWcitrAo60mqhqBsdpsl7JCIEGlpSYqxtsd olxgQHRwQUI98KAlH7QmEj685TWPhoax+KCBIJrouMGHmqGJ1NTLYMSHDA0j fOCBqKxTCJ2k1vGGNbiWJqoZ5fUbGosnGNEwgGSEzqvl5rJfFPfqShTZm0CJ +e5uk/bXaojLSwXYQgYEyAA/Supso4b0nGTedUCAmwJvczYnryPaQAaAOUOG 5UjlVze3jDDymgyhPN4Tj35qqv3aqaQKayWEzHASYAdh2IXPcBjOSUQbVQgN BwF+VFuqpmIIocESSaymWELI3tw7kBom+9UvfyHFEh05qCHfbI8SMkU6nTBY 0sEsGZ2YDKjW8zjFyg8aUmektddIxZucj6X7khB6VJWXHULW0yX6jBBazU6i dVQYJLugNkl17oJGDSyWzBpxc0970ZQ18ak4fI8hwroM1inRdE0sac775HXM G1ANDMwvzGmWpFxQa5aUm0QYGHP9zbevbp/ZLnW7qoTysXR3iiFTY8Pxm6/c E3/n4++M/9dvfy3+s+c+Te/vP3tDij2OMUNEnjKRB4pLP4UKZEI+qnYN6ssR qdGSR1YqaqehvvoNN6zduqivdjzS6ktt7BEi8CFDLY0aA2idhnewxjWER3rs usvIxPYZak6vX0W4jRTUHUp6dfcM1hVOU1JplyGV+lpLr1SsXFPtIrG8JeW6 20uvlSyPUF6WR825ozIFI3pvSfT/6VtOrS8ePih1W7M41BzINHMIfy+/9IFV XS/WXSkOae2Vo2OpFYcqIJH7t9AI/xIKOWlGTy7KgUGu44VDqD5EAJoSzQfT dOjI8fjLX/12/JrXPSXcgoMK0Q3e33rvq8wQn+nUnl9aze00Ur0Wv7iNqCxR cw2DX53JgHewx3o6tkxNGjRC/A1GarbT8CvWyMmo4fesccM+I8QfVljCnCQw 64701m/LV+OX9it9bdScVl8Wvyx12GuME8pcVr1y8lr5ZUXlzp/EP/kxUl6a WpImbkctFSERRUc3jMZvePPrG+oWCTbpyXhVLeBaUcp1YZpTJxZ2h0eCOV6V 1EQQ5ZZyaCruAJHEec6TIEMCdv3Xv/43ev3H3/lTYtqdly4Htj39wa8WrzK4 4hxZ3D80upwlG4F8YXQikE2Lwp2GKLTIpoARROF1TDashccwImjWlYRO4VwW XamVOgOGiBs3nE+nkf6t+/JWNHmtJW3WMGWfITL1EhxHMaLZxWT/3BD7cxuk Qp2dBtn624hCvZhBI1HyEpbItMgrZHPkM8mGOF+TzUqBIdRRjmf96Z96Zz1D tmzE1ByBlXQEFt/54kfA2bXGjSe4NsvNPCvRCjXwLMOtQaJWF1Hr0yuP0cdR OmYKMk+7KCgIGXFyDRZv3DgFIjmFiWMpEApuTBFKRup52kpqpB6DNAcbp5cD i5rYNGhIw1kjO91nbCOkg0gMyoNH7dikpeGwQo2ERIOGlBtv47q0q6kb7LRm pPca2ek+Q2oym0j2IqQCj+5MnpgS0M8hh7gZwv0OYxhl0HA1vUYiwmKTJTUt dg4YWb5aGzY1Z9GSocnd+/bHX/jFz4ECKfd8LVSSMA1rgJ2sBJUaUXonxmzO AWoQ0RFc0zjxpxhcE74v/JBkJGYUgwdgRoWOhSw/cjyWz+kHipzcKwcvk6NJ uwVK2KH403cur2QpQvW8sb41UESrO6EI3stSZ0WRAEtpflZ2LSnSbag7vXg3 u0e7VmMbDQfRaczi0ttBt1uAZ42H9iaUC/XTi5rF4Yi6+9wnv4nHvKXaQFNk xlBjQ4aDsDZn0WZHshqWWhxore5Ss7Y0RWTMpXXWwI9cQpY5WAu0BdvkVGX4 Z3PLTIbf7BTfhTp0NKPIS0fa1mJo8APMmKRjnrILYl6EF7h3cACM6KBjPvDC +RP/YMtcPD45lYvP33M5Fz/94U84Hnz2uW/Fjzz+5LXxQAuvWUN4teMBbziU 4gHK51XRUY8hvPSCNMkiDBpZhI2GaVdZhFCe3i2m3fq8/jauQmcRhhQeMXFF 88C9X8m2gebBdkMoDRumXW19mm3TFA92GlmEwTbCy4ia4t5y5RqyZwXiwfzC XLz2m/8e+JUUen+lGsZrNrcMknzmykUzgD8gr4ejZLu4mspI765PwSNEdQP9 epCWQxAnOjz68X7x6PH4B/8dIRWOeYAesmg1YLwJ6wOGLNpjyKLe1linsrKy yMK68wHBHjHWUVYICgYMGTPV2uanggK193PTQj2dIRg0MtnK5gfusM0nO4eJ ikD5eWXz5XvaHgLv2JNlmyFjRg0b3dMa62Qbs09VtHyIsUzPxHq9p8fMcgnW dyl7ffb2i8A6AIu+DWNGW/v6JDNgAj5r88EXF6Q0VBmEesmQ1VSWGfoHeN/E qMd78W8VI1boZtTD3sOgW6jfuHn7VVCPhRvIW2nU6zyxhXrd49hzS+exNOp7 kymLAal9CUrDmiQrtK63sfB6MZHePKndkj1rlLNNaE3lSR7rfJInDuzwbeAf mvG6E/vjuQ1DGD2c5mVxACpiAgwoArDoSAfUEcM+W9uResz6vYpGumrCK8uF jBi0soY9hQbzwyNmRipNAz/xFooeEH7lax7pUqdnGaBDde0xYPLd6Qgs+HR6 hJiAv6pMPmJqwH6awQ8BJFmnsiF4BPwIAKBoDPCvjU7U0+CnznKAD+DX8maP kcQV8DsJmAU/AUTWl1rg1yZ/8YSXJHoJi8jyASMS3mSY/A4jEmbwpyLhYaO8 YWOwsdcgk07iImkL2N+WJHFDtOlNmd/Q86ZtU/GvvOQCkYBhOqlIAHUCEowN DsYHduzwmvSNb3jc/fvY0aOp3D1zpN+w6z0tk0cFqux7bj4uDBTXI5sOoLCR NvktiyONyUkz+hWO7My4CoQHiKDrm+qRJgrklYu8Qxk6CtfuBtleuBsJMaQM XsqXYguWPiHVBJ5sYbYgoyv3WmojkBAeuHiAeFJhtoA9W3bNr80farRgS78h kOaMYECxZSWNlPR2jTKBRbZr1K7CBcXh3H51roj3fiOI3WyY9k5jKdKYYl92 sYgub9TI6va0HvKg8uRJu+eUQDq47wj1pp/UViJ3Cabg9dlLZwiwTsx7hVNt Ysu5Y8fit1+5Ev/Rz302/tZP/mQ8NTnp7Or/+Lt/cKD5v37/+/HHP/xREElo FFHCPgcWMXl4SXYIGA3hZeSPSrg/YnOG1XXlfLiePsZ09dEUlvyN6LNIjZBK bKMftqb1mZBOp62mxsdoDbcQRjmmMESiZzhbpMPnWHorzg3eCqTleIanHaYG L2X/aoTn4BeYts3gW+EapZnwbe0P/gSDHuvHz5xP841wjt2d+g1pNm8EJD2t +UaYzE4Y03zrMaSZXkQs/Og3Rim2GAFEhxFAWFNrrKWJo0bet9cIvi3vdGsy FSbch17xxDh2QMXR6Yp9O0KQMtTCTTHxCmCeO2X1jU8Sx8C8Co450M87sXLK icHkagZYa0qYeKnHu3pPViKDYBiICapnf0sDAbf6zee+njIK9919Tyv/2qsc hPG4leUsL8Gn9DTnAsU8l8+fjX/ls58El3YY/pCFX6o3OARL+dQ3PfIg0Xun 4Q+dT11WPSrLflOPv4J6POKQjnTyjMHPvJITkka21GOGn1CQV+GnVo/zhnq0 +Knnoos/PGbws7t1wmAlMvyhThhsNabYdBihjt6wLrtoRpc3ZqjRHiPZZvnD s0bCQPbNEeWo+algj/CsHT/LzM+Hbz9PkAc/u+lYIyqAElehQt5wUd1GCoE1 P1ky1NCyKNjGdiRTY6QvVI3zXGN8hBp6X34Vj87RItc45L+uMWNIVU5PqS4S m8Hc//mD3yX64ZGLM4Z3FTmq105Hfq5QKEs8NMpia8A7CjV5WVnax2OrKRbr pLewGINC2T04rqZqa8xiVBMMpmY0WdxnqNq9hqoVFusptXqBluyrb7G4S7F4 vL65rliMv8M0akvVbjNito6EdfUMi9HxTWt/dHnjRkKl17AKlpe9hVl86vpz AWB63apwoqA4Iam7zvacqDEnxImBDYPsaw1OBD+LGhgRnI7O2b64byS2BckU 2JYBVSsk1HWtnMMvcq1Yd1N9OoLvd/eZqVZL7W1ZGJX0DIjSD+eKOL1Sz4hg RzF3IRydLV7cH1ZZbFWec9+Bg/CaQjnpJYo90stVS8GJg7p4ferptyJts72N IxYK82brqaes6sz9Tp5ypDL39GKR3GMk7BVz13fsXWxmLt0DtvftM/TxPkMf dxvM1UsGJWEvi0z1rqadRvZGb4omTBPm6kWm2434UR4Xr6fgJQsgkgVLQ0Z5 E238r55lxMwFF2iKKzh7s+F/9V5DwpEicwSJFNHHlTbMdRzpYo6gGMcM4sg4 HfNEi+NnLqQcaqs1GCIBLOPR3YKm8PmuChVDovdlJHohazqEpsDl1XOwNiUh XEEXT8ZmSm5p40214ZR4V8pVnrkN1dOe9fxdt4ui0vq4ZOSLdvF0C01L1sVR j6GJhZPOu1J+6Oqc1Jp4nzGcoDgZGlrveCHDCUfacFLniGTjQ82hPmPQa8aI MTuuwqHsoildnjUAbeWI9Ba5MrfoBcZwQr9BiGJGEyPhUmjPyR7Db00wJ1H0 s9/4Nk3osx56r+ckwAy0MgtVqkI5NcRBzZXw0jVtszYfoWMppc3xQj1dnXpb pnjTk3EnDa9YYKr8YO1rIb863cYrWrutTanBDFBOl6spOG27x1VFbaqv8LBo jHL4bFIh8JBHNroNQdtxNQr6uSzqcQ5a0C4YYWkbClKDyKCGRcGOJG2UpWCK Mn1G2min4cZqrdOqqbSRtY53ykhD9RhzoUZUp8jcpdNG2kjvti34L9OxEtKg oJwhF/sNPzSuArsJ15n/9z//G9EPO8F2GQGbztyJVy4ZUXGxzeCK09M9hp7W XvmxNz5F67J6W08gRM8GsTipRrlZLLoqeFpwvKcej5L2eKIa+9vQWHu8djTW Hu+Vr3mkrunWV6mEx/8UFN2oxz/+zmhOjajjMyc7QwpIS1DhmntPI+dX5xq2 J8caXs01HTxaXNP7+0kK6LDBtVoiQUMv6amqwo0+I2Wz03BPHQY3NHezq7b0 AOKUMcRipYBGFIJkftSp9DzBurpuCuwVVoHgHj5nbg0ZrmScXQkAvnTsOHEL rzvuvQwJ12kEWDIAHSkH69ld1UnhVmFq1N9S7XqBCWozvVuneNObPWw0KFBi CnBahsBfb+HJnPBLTSJK7xua9pAlg7Kb1PZCPLkreDL2kPHC6CjRC6TKsT8D tZDDQSwNq+TUZTTPyhL1qE9tpJEQjH44VxYmJ+rREEW10EXtqaaV5X5DWXYl zz/MUo1glt1YUe8FXU3naTTVUtToM/Iqs23cms7TWNGjtdB4k5H3sR6wOKoA LdOzbjKmIg61BL6n2kPH98T7p0Y01SzfAerBdziaOSDgmCfqyQhCzYiguhQ4 ZSCmwroSLi1i1chMd83RrF7HlWoUN4oX6uKu1SZbSy0tAxcThrqrGOpuynZj q6oHUxyeMNxj2eBa3XBjMjHMc622PlCtxnfObCdXpjkG8yRjsfefvcFTrUJi cv1Pf5deK0+9PkU759UqRjwnrDt/z+UWrJNng/UYYvKAISYt1ulNXsXBHTJY V0nnWIgpepmusKTPGDOcbe3gUtlMveF3Vkzq8jYbORtrC+wRVT+ZHnbSyLHo +xDolxn6ZDMvn4z/4Kn7hHnRQJvATdyLpt5v/PGfOutyiNDf0Xrbu9QYi7Ae 1Bvr7cyyvlm85rWDNVkvnlYvErP2NRo3XF3VoN9GI7gSV2c9vWZcubpbXDmu 7FAu6CjLVSZtV0cTdrw6LZKmelfjBE0C2DowANpFkjpm6hHz5tQg49q3vxrH //Y3rm1wLAUuNo4f0VwstAnsMN7ovGDCwZZc1GLzgCE2FReDYFTTLcNIRRsu rr/yLe9azmA4Nbus18iF7GnjATV3rPkFg4Z4nW6zHb0OFCV/GqmRihuN3IoE gJoLRWYEuAAegIt4feOR2+NzC7PEyf6W7iiv3ZFjlCcGJ1e0O0yFV3rsV0ZM xCYAYG+79XDKJgy2VL5pd5zn45nzl8L8ng5jCw6xCZEKwzYYWrFmhGETvN4L xIQuzfhGhspKpCLHMcPl1tpwXrnGMK/HQ6ZA5T6+tOhEYC94KWkpfIxNN0DI PWrm6OonP0iELNKx2oqWtHaZVakzZZ6P7u/Qa+35qBXpQWP8odPgo37Co4w/ yNNJ9GbHZSPRYq2j7FUKUqY6zxnBmpVo0XWxFp1JeVsNflu7x46o+sn4/w3G 7FHNW+FBURla5oEzqjjmiZMHttTBQ6cFrs1ZFRUn5aGCVUMraonKOos5WYrP 7KhbdmHgKhkWcdX51q7aoiVVQUK4DYas7DBk5QYeDxBaogznN3MgkbPmvD5a o4fiAFkdusFwy3IZWAPZpSB7GViF5DI0zUd+vMPx+71DzCJ43DM6iFAjjPBA 1GJwX9MWuRlQFISt0DGvaevAgDVteZGyRNaqmvA9Nu6fVZHak5DaA6sdug05 u2gEkRZlB1TDyfDEokFZtT95oIVO/wvFeo38yryRy6wZ+Rq9V7pMHhAXqocM txry2HoYl+VCrzOmsG4waCKUVTRx7xLKIrIDU3qv0Y2VmC+cxCGmlI1Mjt4h OjtUgoD21rnpq5qPVuMjHF0Glw7uZlx6irvdqv1E644YmrTL4O4wHauBVPX6 ZPyWlcfj1dWPavdKGpX7CX0RQtpRw3V3GtcZoWMlXOfw0WN0HVxP/K377aNb P6cfxJ0Z7I+/tXwrkddZaVHCEFEynCjcxfvly5eItTU6FgJ3l5cvItysKbXr qLp+7Pii7CPtN1Ynel2a3U7dAM/qaNthCN9FQ/haD57WiTEZ0bBYWzRSP3rP NUn99Bqpmn3GRLuqMRFWp6Gyyz50edsNR2s9VkyjQRztdcaIxpjBFD0ZhoWv a4Nm1l5tHEG8XNmICotGLkiPemdHF1VA3NaCXE2Il5TTl7lxlWSkM2tBqH8l khwx1CqNwOegg5lSGPJ3L/cP55RZxoJ6KC4X1yfG/Hx4vycjuIY5533Evw7i H1ZFCc//v/gf4v+8/v34rrvvaEoJbWhjV6CvkR4OaV1fw2qoIf4J0SC105UZ yHhyrkwONcFG5EnMDa/uQ+4iZYFHOmtkD372jhvRYdG1GoSqCo0bJw7HKyuv iuP4v5BhcI7bT7stkGE4eGgxfvs7n0ALiG2gPTeWxTZ85a6z8duuO5y1E66T mxW5ZSiqdCzK8yiwcwXsTv0vf281tQWDZK0OGgajYGStrM25eo0s0z4jt1sz lLR+uIy18kWGQGfauHk9c35UkU9mIZwwslbjBkmln+H2haQlJinew0CAnl1t XCvew5Vqg6FlcSEZ+287S6mgjBcyWFczXpgdj+m/raIEqQskiEQJpURyZLMo MCAhvB1S7hcu2bHN2QAc/Xp3Zw3o1VhayMXLd5zNxavvXoEH/MIn4vVfey6O 138HaSN3rOLf8eqnPhqv/+CP4pU3PeEErx+81MztUMyFawdznVTIw464Rlhb +3pqEAf7Wo4r+y8B/zDP28VnGYPB1a+ISdO3QFVceexB3EQO9xDRE65a1rbL tjNS2weW75HVoWFelCdgaf3w+HgwNni9+/QRACBnpOL2qA0CENvr4IFS4vWJ eH39e+6dszju2GgcCrnwojI8t991Z/yZn30/VEn6KS+kSmB13Ms1D45F0wIV jI1jDhkBRpGOZW2B4o1jg/Fd546tX39sjhpCx/kyaiWWSD8JoJDk7BoZpqdy dj1Gjm2/ke+uGgGCftqP5OysTQp2tNlU3cjZUXkyR/GEMbt4XLWBsD9nsL9i WKLONjkCLReqRt4upyzRwKgfrNYBYFZG6XyFZRW7uS4Y4sKc4VbBT8UIfiyr qOsiUfwAL8qBUNjvAh38z1mYHjIueTDWOeN74/h/YiIyjuWUoQFtYVBAU0dX V1CSg0f+XIyNszDuU8/fRuNok2YZVwZb8hiDdCwHI2lYk8ibk7wYRap1mY4d 9H3U1dWaXq3qDZNTViZH6awCVxlSS83XoqSF5EQw8sYmx1UHx2J8eX67+ED6 fWJhd0j9I3mB4TavbNLJCqdv8FmTvSnwESPgL3vFMuwNmiptb8jDPHJwni0N jpWUvUEOEuEQHrjDTxk5bAzL5VjuZM3M6x4+H39l9cn4t7/1k+ubJkfq2mRE SvgcMMxN3khJ6khEIpseI4V4wEjpV5PIJpSnp2eLkLIWR+w0UpxWSnJUlSfz UY4Zwocf16kpHjr+1rnpmsFsa4qjpTFqHJqoTCRl6Z3FQf/rx1VnFyvC0HF2 xTR0XdcYo1WNGC2XNi7EYD1FQbIMfbxYAAyG9DkyuzX+vY+9Nb77ukWw1zIy JToWiaxrv/J1Imx9apJW+eVosZHfXQKJCAgBZ1hKLVRM0jfpWKhPrT5CrSaH ++NffNsrKfrq5SrBzuDyqEyBjl2pKhm2jxb4ZwRWVDI0i4xP6LmKSJTAdOTp WJCsJ+HI/X+ebQe+6iwGp0kS28GxEUwf2Q6nW8JYYZ5tBxKd524/HX//T56H VuEHMvpRinw83FELWqVMx0L88VtuCLbDvY6QraiEoKiFfcjFf/VHDljrP/HE /YGaeoNvGUm0zETOSIPqcFbimR4jbXnQSIBUjZFEGUnTKqffiLd2GfGW9bgv rl9qiuhRYySRzYQmK704gdFhcNRa32QJgA7OO4oA4HyFB1hJj11eq2G6Wrak gw2TGjak37vm5pMrJzsYY0l9NysNTbvX33UmF//tL3zQlf6hR+4jzw7+iWEg uHvvjVRAMAwwFo0TPnBA7qFiK4u6sgApu9SrsiEQPa4akdQD1ZIQq5vrISEW alBRKihjoILSKbeRDXqWY5r1RUqPYHwDncTjHEE2yIwdT/rmMKVK1K+6639R 5qTSi5OmoD3yI4BflOY+GSDRDWQFuOkRe/zql7/AsUgx/uF//A/0uSK7+yax nUSBYzwVP6HKlUcB7KdjSbOdXpw6lWgTGVNZitFt+O7FNlpAhwp6QrRoCyG5 nn6wu80mzK68rAEj8srUnSNG1tSPthQC5Tjc6GKqQe1DzYNk1Wt0wB0q5xH5 XDeDqKRHQa/Vllxt8LODh0Bxub6hMWK1+726c+c0K6IiXTbi/KfQu6ZGHYVT hf8dbt9/j3Nlr3M4/ir43IpLq0lrF1es+nQocwPeu/pAe+S5SixBUjTXOqTG rh9VgqlBlRy9xdLocRbx53p6lzC7wEfkIdA5nPD0pC5rUtNLxwGdROhCIDQn OV2I8e+fzSjVUorPMHvx7PAAMbnK0QB8eX1sKF5/7v1xY2EHPXbczzsoEK8x RAJeOx4XFaVF5/NemNTKsi/nAlNaPX1AJzY9pQuhc0DthbF6p5GKPNTadafu U0+Ezs5g1xHDHsNKWE9pY1anpsEeMmac1/2tBLrBfT90fE830wyzYKHkQbDy j+RAC0Qz99k6X8XXzY+Ai0jg0ZaonRG52vhoJxuR937sk2REjhzZx3dfIbhM 9HXGzz9+e/zoyTn6WzGpqIiE0BzMcUQqMZGIxxx5C5FU5M3+Mh+I5HiN1GX8 1yDc6gdIGXtOtfbhvv3L1P7P3HnYqqXDYbO8cKq+yNUE/ZE0aMX3KkcfUs11 3FL812KGSsoKLR3y0+jFo4sAVHlH5n2eEgHg/Zuv3MOevKQnGWnx3k18L9IY Bxy2i/FB9fXJqXHePZznJ3jHisDeh/hesgvB49/+PL1WVx4KDlxWl4Doxxbn 4bxdPTzL3d8rwocpZcFk3NOzvKhZHpKGLGnxd3zzzrH4JUvThAd4XBeBV41c 3yFj1KHM1IQDBl1RqH4cnwyjigPXkx/mDNPRaQyjWg78kDHjnakeCMgetYe5 h/kBvK+Wa8Fr86g1pjq4GHkH3gg1KgTBhzESR23LqFR+JKngrzQ2NgyW4378 UG6Vumlx80j8w3ddppdBeEdNkCkfKORct7v8tUnjcobqjkOIUonq8J88cBnl 27h0P4heIap//sGbWtUzZwcT5WsUHFZN81xTZjzVsdDG3TOiqFXF3ReZ9nif HmcoBtpj2q+Ids/5EsXr+Ezi83sun0fHpWlPV7p+00ZF+7ymPcyqO+aDj3c+ nfcWauvjJVDXT82SXN4+OhYC+zl/5w0FuY61TQOd8UfuOBC/6aZZMgLs5+GQ i4aCP2IQtsBHGAAXaoMhuIqe3CYJPWsVzbxhU6zH6+lMgkxYWjQSetwQhBiZ 5tBrGIDiNTrfipLU+OxVr7wcX7xwEzW63ucM9sYFC+a1ym1MgB4hrWau5a4D M0CInVA4YjsAp+COxRTH8H/n5Z3hujatXGI2IRyu1zcSm0rMpkbjCCXmwKNc czIsuHhuc/y9Xh/oRn24bqVQt4glPocXtWtUIFI9mCmpXtEge06ZJZlXIT6e 41N0Gfl07eOh7fE5VovqGYlI8jcah2CAiORw7FMbR+kF5/6yVyyjK/zCWZ60 4MEpvr1skLzAJF+5ciH4993s3zF9IevftYqfVgCQwcF96hlisqEfG2G6W/j0 //Oxm+KvvOgY/b2huyoUzxtZuCNGcj1Hx6LQW5wgVUkmwelsnLVmZ28bP693 odVWWaY3LRrZuM2KdzIG18e84zn0xLjCNbresuLd0uGDxPH3PvNaak49uAVv 73htXsvaOKj12GNyLcfxeGlxbmX//lkJ1KjrwBkwqMBH8GjjQFd8eNsG8Kd6 jdK4yPyhvLejM5hT4aOit+XOtySsJsvibY23O8LoI7Nbg6WxFIZOxeuqLC9f okqU6VjVVKaXHg4Qny17HuO6oK1OueP94a1j8dHZaSTedmsmO9cMDnfRsUzu Gmx+8vUviv/kd78UHzg4D0aTQe9I0ZlwKD5b6Ax6wz+DyEXDZ+/M+OzDB3aA xsLor6w+uSIw3qpuSHz23uS5MWv1rTORYj6Z10P1ITDa0RLHUmB2xFIbdHY0 O06MK+tRefq9a9eu9caRPStL+2fCInpOsaXmLmnVv8/w0NbTmcbU7YiHPmCs AtiivifziixG5a+RvaUMo777/M/hRYqAE8jx1a5lbflphQMV41rOWqxNT28M T6eKEvUbvCDeg7n/7aMvjV9788KPKnnzijoQ4yBNjQkkLFYyNzjmrQrIIhoK TGS8/4VX3UIv/B85v2sNFgpGfapcH5UXCPkA8cRs4NbHujtCtJ1jCr/26N74 rqXt8W++jR7+Oat2SmmcWIzXvvNZOOROxeITxw4Qi//1b349vnzpDDLkFHD7 8JMTa0wv54TB35LB4rJyypjB45gbbVdzCC2nLLJ7u7KRMja2W+0HiAy6C8Z5 u2TqiPDDPFjZN9FPGhyEzvNR0dpdt7G4s+JU0VAV76uQzhWQvAqKVhFNF+HC eW4XKOrovb58ye/OIAv6xUI4358aqRchvt+YyGNtpm056f3GyoFtLWle0tTT u1xPGP6yxEfo4YmJkcDuxomDjYTgvgN4alB/G2NyNbkvUkBf7tnPvWd9cnJD KsYSgufoWCGHCGKD4Hj91tsvBaK3TbiVNdFTU10cschp/TUl1o40RduMPeAw qAVvb8qB3FIdqcovvu2VUekaI4OcirOlPp1UnxL5b5A846P108ckrNbTal5z 8/74Lz/yYPzzj52laTWyWyCm1Zw4tC9e/7O1OP5fPxCy14jsFcqiQ3jDXYPs +O0ugZFwdHya78uR8toW3yvM97WPPxU34Px/6t3RlozXvuvcMe21Qfnrj82R Td3hL5MaIPNqvKwpD00OF4TvoUrRTtU2rMvdBT3dQf/lCyfi+M+ejYZwrMbr z3/I3fjn3lKNV595uBqvvPJiAV9xpzhrEE+MDcbvfetL4Mf9xLAS6kbIhDlR YXynofP3Gzq/pvJ4rPNTY4Eye3jBGDjblpBwbXqoFzNymYTFFNXZu4bZwdqz 6oU3HGc76Pz5n33bfeb+XpZraYhJfG8RPneN6qHItNfxvbsq2Zh6fYxMmYpv gxLOKSXMxHfv/BHkh1aHSy22dKml1CQ3/F791EfAMiE90tjwruLVsRZ+R0sb 5I0LE959llSFQ4ZQFa02xAgp4isj9HjKCKE+iMHZo9NM47pHHxkhjq3pxWzP ge7ukkz41C6/lFP79NMgPGyNO+aF+Bx0J/NhINiPH9nr3jn+w0ldOgP2U+/4 TBOPi6cn7hYN+leVaF8+exwuP9rM7l6SbHD35YT7K4f3eyW+y18jNZI2TccK cR8qHksGMtxHNfcojnDWLUV/sBr0P0THIvgP0sd3nD26vvL6e9HAMieELJyk 7CWkVyl7PUZ+0JgIU+GMHby8oz+whGpprSxzYfYaGbYZxQZxuX3MdrVaVlxt YLu1cl1F3IHtEnlHUXjiq8H2ZhHBm2tbQXexzeUQfMvlfKTlx0R0sp3daYlJ pb1p6zHpYmp2P49DM5lKRKb7L99Brc2EQr96L1FsSqE7cxJlLw9Oy+UxBw7B dhJBFIOwkMs7ZZ66PLjMokJ2VtukLs8xdnxyy8b4p+5vuIs0c3mbXvdz/3li ccHgckFx+YHLt0O2By6zN6dO6E5xmYDOy39MLncoVy75tEk1XgY5n+FykO67 1TVkvGwKxxw9MbykibzG9QMw/H4nXnaJH9eyXYi8qIh83+3HQeS1rdPjhGg/ F6NMxuCGraMhR6dS8KhA01j7kjHjpajy7077S/59SlVTJsDuNebb71BsFoZ5 NhfCAlowy/nQq21LwwFxYJYE4fjZbBDZMhryvBsrFNDbbbA2N42Gj3qLKRYz gx0SwKFy8Isyq9WxSCjM/CkQnTFXlAeZNHWOH1uMP/ahtwT6LB4+OEtXLQTm csjvL1jIBgS5lgFBIciCNteFJOBHFHqbVQgxNXS3o2jBYOuW1Cz2ceJpidkK T4yVeeBpTrEVQfa3vvpB9xnYWiC2fuKDb4yZFX7BWlTx3ZtyvgUmLGanwdGC qp1GxmzcGOX6yuqTGc4Sb+b8ZVIZs3Er3F4P4G8IKpYSoIcsmubt+aXt0NvR AeJtAbIbMhtxNMrxWriio/VU8o2HzfPGMPeSMaMlr9LqPGwe0uqbVGPKzJY5 wxHvaskpP3sMn0Nu++2w8yKD1Z68PviUndVkd7UstzjcprptUdeU9fZZc4Fh L3fddn4f753jpQtY5iIb2+JdjZhUpLiW1bVIWcR05PKgsLHODi/Qd+WxByNa hBf5YSWUhyGkLk5WCaf++Pd+iXi1/NIHwrI0JjRZRqh+JnSVqlHSIp+sBwv8 DtQkh78wq52rAc8so1dCZ6S8Jyc30KWPHVnAZaHwfQMXqIFBZaZzkensHHEY nN6s6PzA+dNwuGgIR+fOQGcRzwifHY2Jupf9DnxaofamaEzNLpNKLRp3G+NY o8rv3nfHLVm/S5NOUfpehSAZxxq5hvj5BNdNp8tyBn/3Kb/7qadfRgLacZjQ q4NH+FqdSTeGwOFn/ZhYRY9dhRgZ5qE+OYLm4hw9ahqmqMwZQ1ezBmdlyBhD WcgC4C5yEP8Yo3FqAt/FkBJeWNQKQmFJmeNzn7FJoopkC55a629988OhBltV H6cHzzyD2Wqg9HE2EsrhZ6/gqt1sJHSQCoqAMB0Z8Ypv5PyiUlojS6tl8WER mU66b7zQHmiJHOwxlN7n3kKWeXn5Eiejyikm/dPf/lZ88Y4XgE2Ucd6j2hsv d3muSiFUBS+qCEibD6T1S9SkclQvWR07JHXEFy6cgHFx7MaUM9Sog+uF2B3M Rp1QNyTLZGdk3Qt4/ebb7nHd6DmOLJn1TOCVNz9C7K6wy0a2DKlxjFPnfYJZ 1B/1ts8M8USU9CqRvEHqHsM3D7X3zR94+xWMT9PVFlSni2/uz8TGBq9x7g2q k7KSGnRHp4PUc+yaQe2jB3bQSFYU/CWgF0JrK5FOmfNqOnNehVeuQlyXaPZp mbw0cuhMcAnA66rXUp55t5EQ06gTLylzw8CxO47MEsuLuKEc7gcpGAdrRPyA vKZ91oXLA6SqvM84TAEWj+jglomP1PWKVIp9KmXzJCHfq4iPSuH67trCRG1x 8HKX52f0lFJGQV3aMjk7FTTuOrRN2YNCGH7CXbsX8TyHxumgzs5Ts8jIdZVH rjWzFLtkReo8Ix62h7PgrB6ShJi3P47G7jMxNKByUgFQwQHN1YJh5+uDz5jt YQwO9Xni9VdCffA3/DkeObDdXwnHAtUIg1yguPPqElLjI9lKY8oQ6UUOrMF4 8uwu1HbM51Gl9RffdiBAbyRFeups8eRCekTU8Nyge1/Gk2Pwq9+YcVpOZ8IJ VAcS3oXBr+42EbTQ/XSGr46jga/wwOhxtPVubneAkpU4zmEJuqytRUFZC5wO RpVwrKZz6FX0cRUdjuzrkOza8tiDt8XPfvJxGhbfrooXTz5rzCufV9/DfE8Q qSvjyVH/TjpSQp8MGe6GaUZeRGjueGYq9RzvNQ4ekmz2UXYh8buru3d7w6T9 rjC8x6hSno7UPsHqSJUIrP6Js8J81Ma9Og2toUJxy+TMKhQC+vC+QkQQU3Il fVwttI9wvawmnzK3XM1wzMf33n0LhpwI9FpPRikPnyeii/PoNfgr15BMu7sO X6NANgVKgoe2fNazY9nbsE3xB+5fil9386y7xLCfl7N1TFhNf2NC2aSiMg9v caa7BZULWc/Iw67yRE5eGKI2pUizuV+5cMw5gwvvsSeRWqPZS6q7ZGirdo3h 9dkofBZYKfIc0lqwt1P5cJbnoJ0aSJeMWCA1bIL0os6qOQkA1sI7NxT8yTsn +iw1eF7D3hNVKPISyJ2ZYzqv7kGkcYdy24d3bSLLMsjEbsEf8dpEIPydYQgP LdHFdhmU7TIuWbOUgojkqIVSEBNS4KOMt3H0XUzqs7Z1q08YeuVSoCY4MDVA 0HYus6LUO66M++83SFswCFVg0qLI07ecogvs85dBd6+LcXj//SeqBm/7MrzV M0Bxmc98+n10mTxf5pd/8WPQAjQ65YVHhWwDiPpXH72bXr/99lvjr7zqBiGw uAGIbNmecpyOHRRsQ3grrtKdHJ6bWt801qczwxxepp7AKbNBLbYOZiaegKed bVZ7aKoeYYsQqZGoohFFR+k4P7qQ8Cwzlyw9DDXDNEUvOPJIFoyVnDlnBawX 170/M4oFB/sbX3sPOdhZxTLB0g7uZPd+RdioAwqhRs3wZmPKoqC6+NwxTqF7 ZWnJ43q3UWSnUWSfcpBZnx2JgyylgnH8Da/oJHAxHRIr0+LTOufmNsZjvTWQ qWwAfsDgVc4AvHdURXJUcJBOEAP0hEQ/SFFEN6/JJXENR+UwjAQlDDOpr4kb bhzZRwu98uqayJFlnSPyZS7sRn/NJqha276hB9wCaj96t6seeEcGamyYCAbH OMzLKkA2TPCS5/NsHOlxl3DUclbckWtViLU5RSxqRJnhYRFryBgWqrZbS1GQ DNXq3M467uIoXcl7ex4cole7BNXddE5pdWa4O2SI8WJabVMw5YHd1d0767vV PUlKKq/8pjBEp7WeesWF1LiwDjeFwNuSHl3/wJtfSN87aMC/YjibCYWGo4uz lAxWcV1gqKTjMecjy1CUJ+gaTZxXMeW8UBGEq5Yn2pdAmDzRy45vk4DOfd9D GO85RgtOWdEmQBd6EX4Bv5Ep4m5Dg3nNU1jdOdZLl2BiFg2VOqiswvJdpynv pK6SAyswHOe5KNio65bCzcDxeGrgWCYndO+J7fETF/bHRx0CNFF6lYJEgIhJ U3miSYj6CHt+Bo48T54uw56HXiDL6spDI5kMD9YRl9vMdPzK6pMhvePTr34Z Z4spDtFl/x3CoSw9kHESYAEAmFY0gGOJvP+cUxYkm8PRfmmeaYBeZv0XRlXn kzLC5bYoGmytj9L3lgwalA0vIDTA+/c+89qmwQqhwl5Vd1BB0wDZH3GKUh7e Y9o/SrKiJm28T+3YEH/rkRuIAc6AR3nDeA+rNgHyoZKQHZkcG3D1Pbqw1WmR +Z2TDSn/sC8f3RZ/5vKhFLPyhtDzV6kF3GOGr1wD5sFdYX3z5LCA3RPX+3dg W2Md2AfW//ELL4v/6AP3acy7qjrUVzOAd/KLc5sF8ghzW0eX+To7Upgn0LFT 0JjfwJjXS2rz9my/opHjuD65mdB+L/QwD1gFvAXmMgqxSeUuIiyL8qt4dNtk oyQN893N+ilY+wUFt11bJ+hymw39dJhhrq1z0bDOFiwzMK9nrtu0C59VHuqO yEfBPOU9/JOeK65+XQRDvCIfwNM0Nja9w6o4NIVH9YdXsND1DQ/eHJDtH6Ti R/2BaGEN8gE5Q2b5ylY8qh3DcZ4rDyWvP/36O1cYZZzkomIhZSBtPJrzhGag 16HZXQLHUkA1XjgHY+8O1zmezq5wjX/psP/yzfuWGWZeFPDEVj8bh2ewC6yh emnuusrWA9WpKWzWQtEverpoBNKL8+yTaZUi5lml+kJ4nh18g7ndlQnPdfJc qw8xiZOGSjmqriXmVHCLRJuYpXEDZ7l0iE3X1WlKGXIrG+ZZl3ffhethkqO8 wQPPqzLquj7Z30Fgk1AZAMNw1WAGXA60AFb8+8+9TYP2Ok8BvtWuVFGgAesb XRpTQErTUD3k4YK3pMIBVxhgQDbHkEXke/eR6fjrbzrnGhWQLeBvMsqRV+mS VY6Utt2XAiQ+CrZWALlBiQsIb3wmgTXGfh0UGY5BcQsoUfkve1yiVSQwDbh0 PTTRLBtw1hL3hZ6VkTXFOzJpZLajvrW8Kc56fK0Wjhvwybc0e7RYA9ChScQ8 kRjxJ4uOhi6mnTVGbXkusonqY74r6kxQuo3ICx8/eNzbGoIAjUDwZHJ7Uk7o NtQhnT5tWZx0o69WFX82uLgsFulv4M+bzAqZzI8+dD2Z0iidr0AZnr88zZdM JRlD5EIdzgZ4IqCCHY1owibiq5OjvfGx+Xp87+n5+I3LDdhGh4Uk6PvA269I 0PcVD0FioyyMB5hgJl1TbLBN4xHVsVmXrgcvtxrzEsQ06jJEAowlQFjjxmUJ kgZRrqUpK2mXjpe438NGMQU1h16qfBULG9IqXiRVNIbWoiQJKziqUnHlFITE 41651KBU7C1XgzUnRmRUrtKmzJOHdxKcb6QyO5owiXJh9xh3qVDmUAp0+Jgy DAy6rh8BdB97w7n4Gz/5gGvgf17DmKL7mxaFAoK5tOKkKz/nW2BZ4YkSAchm jygIuvfrXFtPunTwlFPJc4GFjr3gnXkFibZw6DIYzRHDMfth+qKGjZiuYP0U VMRp4vtHFeKyj2mBNhXQWz44Z2jHUwniQpcqqAji8hl0UN+MDQgyqL3PJ0Ut twFv4RqKesZXjpfFk6ViwPAiwx8NMTVCTInMlnhQIOXF99D2E7+cUCWEIRxD sLj1mp5visVGs/Jj87a5ebQ13BhjC2cCHENpN4lmYz9SCD3M5mhc4YI7lHDx wgduQ5Eeen5FgzwFT56E564kqFLOUKPKP46nVuc7XNUIcH2kx53xHUrQ5ep0 jokY45z36i7tWZYz0IXYqOlH6c5e6s4CdSd2fWfx823fcNQt4Dm60FWo3/Y2 noPeR8nMcZVknGoeXUOS0VtAHtjLDN9w4dQsnlbJnnz4LiCETt+g8IG+4IFn j6pCmFXCbG5lD1i+fCNB1Qq3dvR+39T6KU8Ywwzv3FE1qWOUO9bQmgV85v7r Gn1F7uQ7/k6AEpKTIMehnZN0Jz1pLSne9Sa+ea0lhU8bM/KTyeFP4V2r2YT1 pONV/C96gS+6HiU2ZpWBxpNQCjLTTexNn7oiGvC9z7w26X8fRCFdi/sZV8pC cYzcMzUcP7bq/0lqQQYDaGOFglmpGg1U6zMea2jD1E4inFvbkMlRwGg0jvjd PHiKB50qyrYrbTXoErdTC9ApZWmZlShDTT+Om/h+yfiWVRO5+8ZYC849mYB4 LUobc18Mze4ZTMNZvAu11znfXv+djt754/65rWrNzMQN3OxbK7QuoKPCEO26 n3rFBWlkf5Yfj3ONQn3RYTDzHvpeyuHJDerx7uT+/HwlXYYHYacUkQVicHgC RCZ+p6o4rqYb6jbfUH/vG4puHUYJa9JcCRWjw88lnRMwJRgcah5zRJFnkyaS 3EFUMUj24qs0ETfD+aSfrGbI0pFboZAxAOy/qBVu963wj76eZD/wwmyyYjNW GuEMYmIIdjnQjbKGn7fr8KekTXjRaODfwMEzqmDeG89YXYvUj76Nf/IXavDH RJu8Hh5c9Kr6ou/0YC5ZRvQ2B+ooisedlyNlKaVU17wB53E4+ClN0T/TsRx6 n09GUwVDdZevClUZ1WC53K1Cafnqnb736ausdaWlxeb4g5+QEv1LFFpS+wo/ 1ucRL6bUXbHDdtqX1Ld3bZ1YP3OCNtpOLjajuuFOble8R9uyta2k21WS7UkZ 71Bl3JVccH1jb01sUMkw8kkB71QF+PtLpif76ZCm3UsKeFoV4O2VHwqKkoRf CqrJmc+oM++lP5Oha20FkzPerc64nFQ2/NjfTA5/8+NPf/zpjz/VH/wdvSdL uxwx+bo7B0C+lYgJeD99hwzLCv8/Hh/dlkkZ419RrhGJHQllrg7VOuKFsUl8 fX3XpB9im81W5G/pPeVrVuUiO6YPxedPvSZ+5P6Pxw+c/4l4ce4sPl+TivkL BYUtlcf3nNtzZ2HrQj6vq9oTbxvfE589gCTEwpZjLk4Z65/StUcZqP/t6n7H OrvXdw1viM9u252LrywcdSWOdfXEZ/efj+8++sD64ZkTdDs7s7fzVy2qduOR ZSdhUbUC3Zpq64vJKaGZuQVcXdN3g/+7e4jvPv4KdzdXTj0Z1fA37o4+x4vv bi1zd17g0/S40DN3796Pm6PfjfpW3KLv3ZJrt+54YXoRd4vfq0Pdw6jh9uwN /2VS+2z/OW3rb5hrLzd8W5vu6+RTuMup+xqzZ0u41xxu1fdhXt9llKO+SG+4 5JMNfdnODLeL20eP9lQ64z2jW+KzM0fisdHxeGH+YHzfy5+JX3Dno9IGrqVd vzvETw5MrUj5W7IN8Rdter63uRtREL7LQYHd/b2qAfEZWsPdfi20BnYLmj0r 3R5zV0uKua762t2Eu+1oMHXjx+rz8X3zp+InGw/Er1i6EC/NLMSfeP/Pxc89 +6tx/9BE/KEv/TB+60eep8bYumsxgMI1h1BgOtsOf97mfobSvbvObXVTG0AM tWFAJzEgD36vSr/4geaa9PvawoaNAer43VUq61sv4N7xtAvX/WdP3x7/zvN/ Sq8Hlx/BXefRBC4AkUZAo6ARto3tQENIJ9azjbDe5o7G0p0qrLi+TbuN2ayo 8f0DAtL1B5JiqOu3DQwTtd1vBwF358isuHtHd+PWi3TM03vg3928e+ePeI87 RxsU6FgOLSFQGOsbX++p9eIuZUps0gw/bHNPk+mOTXmeo22ab8rmREW1xez8 dWvbdx3igcyQ7V3DY9UAfbQJMDDVO4qOr3ETwAysPPF0qgnwfrFxgW6+lGkC YYQDQzANE9km+EGbW5nOYJt9HLXlUpumm07bVWmCMjcBvn5p+a0EBz/Vinwy mWfAP2P2HI38/cMSwPzhzot8/3j/6MrnmQbp+wcZGOuh5/yGcX6muw9M88tR KgGGYyHuGxrX5yXt9bNt7ntGOVDFnIU2TTxjmA/IAZiPArcXmu/KYx9d37R1 L+uTtC7CS7dXt6IMW0yHDd9esJ7ABVqqg1Ej7cVlrUb6CRLsUfvliqvhDsrV eKK7P941NB6f2rwnfvXiGfq9fBc9aCx+44e+Hd908eF4/4nbpCEaqZb8VJtm 2W175rl046/3dg+HxpdTnD8LNsiBzquQAjXqmdteAeDhan6+Vil0o25Dh7M+ bkJYIphaNF6ZmxBmGB4YjddFx2Kgm4IbP0mWpwtXm9pP2lDa7+KORVdN14qu uJfMN2h+WPzf/ixeee0r0Y4Ome9+9o8xAOPa9a6H34HPtIyiJh1MN2nKj/8a /S9kuckDKKm8HPFPMjCRo89KqRrzmfiPl0mF+jsbpzUL9rbREn6BiX8yMXc1 vudPyWt7EYmOOtK4M37dypfjjfVdnJkohM5iHzlguIgqdxa+CpWAburmzlL2 IXQWL0/e+CN0VpU6q0QkWPuFz1Fn4YWOc51U5P566C0/TTxQ0GhE4k79hg7q 4+/SxyQPGlyBuKfaFe8em6Hfp257edw/OC598Kv09U6p75p8/ej0gfjho5fp N0556r3fiQ8cvV0qcD70sc8mrap7zbnyx3LxgSPnnEG9+0Vvj1/++s/E7/v0 96kNMuWobCg9ExTvDnJnihbAZ7wYCqfQs4odVKID9L1yyvI5x0id7awd9Qrv 5Ycq0nNGnUN0gsv3NpwjrJnube0N+1gWKOuGFvU7kPKmR6GjV9p1dBd1dD5Y N9fJWAPhjvl49f3PwMJRX5cVQ9Hj0zsPSEPhGl7x+73Q8XLNHJ+69WXxlu0H NDCep68lNq6v1hNP9o3Ft+y63l31iZMPu+vg/ft+5j/RK9Ml0bfo/JLcWQpB 9+4/l6ciqgEZuhi8jxIHIGMuAkYpDg21LkhxLeygQkBhsJSBFocdXLhF6cuh cJ92HqjW4jcsXk99jHhEMARHOrRhgsSz90M+r4rv4dmz7u9F+mqJrI/7Kuw7 QchBCUVvSa4SzgICndmIxG4obe18YrOu8EjKE5LcJdbnl64TGHmDW9Gtk4LQ oYktgFAfIwh2fc+WrfH6bz2PIRFCUOPwItkIYKfKOFK+s0nBZIXXoYlt8Uv3 3kB9kYvf96nvu8Z46l3fsqD1K2loZK1FgaCR1+hCie5Y1B0YavK1TE0EZUBq ictSMHN37I93v/QnxIbhPD9omxoK0igjnrgbCTCDPXI32EUwy2uYuXfJFRQn eCR5dbyrmx6NDhDg9/joNoZaAX/Hb/rQl/A8UtRia9JUhE6cIk87dgg9oPQJ UPeF7/5FPL1jXw7Qi/Ih2MPPphYlXdw+B7XRr5zXjvp2hLZO8DaLNTFnUB54 ZqqrK1qI98rx7quwEqXN1zDjDm9hqYC4gmG5ujKWS6lfNMZ+dQu9lQ6C3GuW bhHYFduj7v4EJlknmB3/yhqrsoHIIvex8oQo7itpMGps4wlwTWAspYFtUMxE ZLDcBiIHGJH4d7q2Nn94+Jw6jZ+m7fiGY55sFKcYowWlqARs7kV2yNs3Px45 0tEJKxrKgEWFB8bZ++lYIXUM+KAMwF08rpNZ9Si9e4kUl+fi4OAlKu81QtIu w3T2suQCinE5XPbCi19Nfc+7tfUnlyS6O5MZjTBunekk+wjElgx72UPHgsYt ytmnigReHU5dozjEutPv3HmI+g6QLbcHrh82qjKpavRq8VVWQrbXrhkoLreB 37MJKZYzUAYpOgw0VzIwUxLRT3WXWbQKstGYgdeKza6Gb1GUJ2404AKGDN43 gWqJBB2e6MxQFWvFG1NpQxyKaUZ8JRhlKQbIZQe/Ojo2zWhd2dzbT7XI1gro BE57jAChm9GqUonue97RA714FnXyDPs83tcj/ulKIbchZsEZ3GhYefqju/Yg MMDUEEIuggSnCQmzfXTMwwIHb6FX/ANrgG3egG2tNWzRQSpfvxqxQIC13tg9 AAfZDvGn2iDPCYROA8jVNsj7nK9JQ2qiLLtr/2YUdzD4MpLW509CqBQ/+eK7 UfEJA761NrRSSznIlgEnRWXbYF4BOx2Nbt4yj6eTu3ceBWK7Iik0Y74LXB6r CyppnxKzgipfXoHew/yeue0VKHfKKFKqSHfeeICg3GVkeHoZ0JwZVhFvXpvf AGh3W2s2oNcGqh3x0vimFKChZJGKAJQrhinuZUBzqEs/apvpFUaiu51mQHdl UOmMlAb07QnPyJyfnp4P5tyBGidTAYX2vLguAbeFyB4D3J02IH86YRjektsS Y99n4LqrjQiYT2pFXfwv33su/uaHf4JQ7Yy0ZaM7bcqhSFlIguIkqnIt0myo BeRKD7j7bDZ1epNCMfwlw2JLecpiB5Dj/cb6LgAdae92ReI9wjENch2e9RmZ /850eJa6FcfXFbkVfjKDj9y8Ndk5uIFeTmcMKcPNqTfs8EU4d+EapEUK50jB SR/uVo3O+tjdkQeoAys5XUCztz3Ob0lqRnQBtp0PyBtQLzPgMyXRQKManCB0 ainSz+gE7gVO3W3QeSlBJ2ooClj+f9T4t/IXAwYXem2B4U1FeVnTAK//9Auf jo/t2016ZYPBhZ42Bl+vE4SYdUbZma7EmmL4HqidN7BbMKykfryLOJCywa15 5UAEkEUuFaIICobHPybaFAn5jiwnWNBpKJh+I+klXIADYP3FlyZaN+RWOlJc ILRd2LEvywWV2cSeP8QFJMCA/UR+ey5s3rFAQkZvqCIipmxwYcDmgqSz1bZs gVJFgwhZLYSXKuZge4AOGnToswHq5wx2SEmrmZLiLTMHm/TPYvrqWY8zbNCj vw2eeXsmKmZqwzD44c72R3Dk1LmXEUNGDJ70tZFpC6rLRHVUlEGGjwCi5wxc lwxDO676TnxQ1RBaUh5489BT70uVB2EkY17tyuNcHtGjwwhKB4ygtKYcxvY9 SyTwSgbfmSQ+xeLzF93lSvzowRuEKNGgkRruZKbg+44fxJFuZgrU0sLxW9ZG JjbJ9kX1SKmjKkMcmh1QBriHFcRf/rrPZCF+o0G4ksGUbjoWrSK0CGkYQB0x aDLQBqi3Ji3WpPvznMIGXzLZ4SBi1IDpij4fHmyDQZrBNuCWbQgBPCFNgUnD gQTRZdggzaAt//RmiyJgaoZf2WPgu2wYY3lyr46Kq/8/e28aZVlWnQfe9eYx 4sU8ZsTLjMzIOTOycqqcKqMmah6zRpKqCkBVFBRFQWGGogoIBAUUo0AgCgEK JCGQBDIWSJYQaqclWZOtJSRrcFu2Omy32u5Bbq1Wuwd3r9W3z7fP3ufue99+ N16Afnk51no3472Md8655+zv2+M519ArRwz8VVmvOLklG4vTmzOJbEmzYYjo AskTgKVhpNbHjeijQEaij/pW3K0F6DdSkKEZunHXAYLM/NAIQWbMiIW3GTKc 61SQ8bEdBxm8cDvqgS9BMTQM1MzmiPtFA3k1AzIjvW0EGT2YltGUlTVr4GUi R0ZvSbd1Zbw1EtqSQLrCS25QXh/uI/HPeQMzU7Zsq6dnxbNOcJxecUPwcBG3 xBERbqcHLpP2sEjO1aFcwdBpGjrmsCHjNYObWcBp+URnNQ0MHjb8nFqisyi9 jNRyXntax9SMcP2kURhQNzzvmoH9egow5HkDLAIYB5IAGB3EH2LAcK45pWOc JRY//sLLJFl8kuVqpCKhTQMtO3Ik/VymDa2nNFrGuQ0xxXQbnLzrRmmrad4A yrQtmF7N9bXkagZMJFOQyTexKKIV0ir44g4DITNqICzOeKmIe7x3bIIQUmWE wFtZOXSMvJVxRggpGB7RDGep0JwbKUakzYBg3bSMMJIlyXWDgqfU7Yl2auUg TXs9dWV93XL3G9e3ak8HWWtGycyUUYVRNdz1hu93M1I//vEPnCXw8RFYXRl0 jBqZgmEjwyXgGJmYiT/01X9GBtiywjz72u7OvGAfnNhBcXKIdJeuRS3YclJb N0r76g0DF1MZFyVKJ3T1o9RB+locNS5me8UR37mYxkXW3moauMjLPehKDYCh HzjmWZIdrgIn6ycTQne86rbrnVQkyGAfJRozkDHH7THicWf6ebbBfx8yYk8H lc5YWbke0uxIrpdrJ9T4RAe1jVzZISNg21B21nBnUsoLrCaHlKsj+bKK4b9P GwFbAQf8eTEZGRy4rZAqSIGjTIsO/13A4dyUaNTIRIwYaqPNdhYCXA4ZYmep 53yTMID1hwxw7GJwjE4kgqACL0FjtAxkzGaiWDAmovTjufIQoWQwMIcV/BLX YcjAgpG+uMJQSj33Z0AsxDfd+/RGlLkHYMG5Gm4hE7eDwiBfIhOzLxbQ/slr CA+psYh9MmT4CAcN2W0m9lOYp3G1RKJ1hnOwpbVEM9E6sJ82tmpPa4mKUb01 YwR1y4aWaBmY9g/nk1MuCIfQDA4EzkrGtUg+O4pTAYeOkc0Y6VsQUaJ0HUDB 9pRiuCDYw0qwYT5lQBHfdOlpkib9qD7x09sGKHbId8dnA6C6/rtop8dk6YOI +KkX/BOsfEYgVLpmDaeOAQpJezz13E9qE4wfOEJs4/C0BR5KNIoXfuQfARP4 +k4DEk2GxI+/8ObgiXf6QoILe665B81uJiOieRHbpGNEmg4YUtwyaFXVIgSN 0zFQdsDwUtrKdnIeRbdfeyNGPq9kpDpmDTe8bLjh0q8bh9wGP31aUEHTw254 QAVQIqgYNnIfY0aOr8WoAEre/qlviSElaXgt2Z2+qCgRKj7+tb9w4KJn5qoT S6mJLKgMYMQPPfnhdQUM+l6WonuBUSIpd8AQ+TmZYGMtiw1nPI0Z2MjLluza FkDKYTSf+Jl/CaleU3dEKMFmCIcMN+9pBxzuxXBflJQDStCua59oROnzYKmM GKK93xDtIYN4R9TMi0IaMRSItKcqQkJ7zpBCGceW7emsYNFwwOeNIG9RKZCz N9xHRuFQAvlArWmoaAdcKZB6D1R0amTMqO/wUClrqIhlJTnVlMCP9sWLf3Qu 8MKYoTbUEcVBE3X6gqZEYvKGd38lPnnxXizhYo6kRqqgUiTVaYH44dd9OCVR 2bKMTFZDg6ZPToVlnWDnvrkFXiqpUSjM8M2sCWQcTBwrpv0OZ64Cun0gUyFV t3v/qdA036SqhwtmzZgRZtpnhHqHDWIeVkMVhTVqoHCfgcLhRHrF+eO4kd2e zh8WjdTIvFEBVTQqoKRfXftS9v/4uhFPVuyc48s9qBky0iQThoJpMmoQA77v yfdq00tnX4PEjw2Imuc/fYVE9nAisoQ81lYjfYFTJkPdaRutsATAptz2oqdX blm4lOKjEhKneZxT2IueMbbqWOXQnSxuCzpFPQSEj38GC+/kPSwoz+66xtAw Y8j58cFfaeX4KxgfdLvuQ8hCTRvuN1hD40Zkaq8h/B2DurXRLypt3LD+9hqR s06i0gZor6JjwPTihMmiEfotGKHfjqFBSykMaR/exFDbMNImDc0jGEJSXjAk Ea95hVex1MZZ+KW6NcFQhYwNh52AI6dBMFsHt4BiHoZcc5sT04vbxJAtwFq4 jiTQ3hypD8UPH7kRgLLwNCFe0sRcsPxZ/gmHSOdvhSe8d34ND6QXT/MZPDk9 5ISg19lpMp4IX5lbpmnwlGHeMo+Z/k5MpnEjnmXJ/wgLJG930JIYduPo9tA+ TDjdnvamRhJll22Pxpdur6KTkLqKscube6MkYCwhAKfXeimAMdRSyBX3XzD0 6qPnyFrTekinUqaMwpYG74fA++svPSEYEguOCxJI1lFZC8nvD6OihpFbSFyL CAusy13sU8KShWUvniq+0OXS01lY5smwBSlLhrV8+URJOUDqdSfvIVgtjMya ekpwBdfDtbPx/eBKuS6o5+zB1ZyaqsjXiTnZ63WPGgPiyrrveTVm3q3j7q3X tVk2cDBqEL2vI/Gsi++jpUnDiNxjxO6U0IfYnZZ20VOTXH4seoojCTsZT6pG TGLLjrF7S3eKqR7WIkMnaTy1jezLtFE0KXji8peAJ6ef0IcUQKA7wdMEyz8t Fsu/4EmcGY8kfxXbDD/LasIZo6E9K6KAWLZzjFL4dO2HWRG8oz0nulsCyxJi LWA+5VdJAevtF14l4OqPrVLwUZwqXE9E1RzZVvAqG/DSKyHVMqMZVwrwqufA S8J++u7dcIOq1bOZhZdOeFpwGEv7QFvCS5uVewy4jiVqcC3TngEv76NBbc1O z0VLKuoA2w86asJIZBZSmEpFGCxMtYy8zaxRH1PnjKbUxzg8OeHFtUi2nvxM c7+DgksZa275esG1R7WHRNB2wFVMlF9oT5UqUewNwrswILjKhnjpAiEGl5sX By/8nQcYtT7VF2Vl8WLo5TTkmoKGOc6toFYxoDZjQG3cqOasDgg1ay5mDahN Kk0Giw7HbdDJPVUgpQa40ab8hgGXcS/egcjww8/BwxyFEMRkBs7oo5zuo6L7 0J7e+ICQnFIalA/GcvfhrjUovhrSqlXovSrtjvFl0ghzuHbzYKrZREIaJYYp VCFMRw1TnUmaMyo/66z6UJUjak+ZkiwFmxqdYvrx9lrC0VIOOuFSyV3o6hQk vhxC3Wr0RyeiJg7dfdE+/QOgs2JIpK4vQ3AK6CwyOm9dPhuyW/3RWUmhU4UB 84jEAqgK+YWhIi+w/+g1qwqgRHQAJKA5YVSOVnIAqiL8oQ9Oh/VMb1awAVA8 QAnPTS7hWsUz8mp4OmsVEYBqTNh2Xh6vBe+S3DZK4ZshooCOyumOKviPmu5I Ng9voT0JP1ltLB3hsWdlXGt40l8tdFlFl5EvT8D3YaVuDVXSqGKlWlBtGpGT eSPpG6B64EQKqmylsjyQh7ZdqJYTqzIsC2dkIAvENIiiDApVbo8iKfIzpWZe lFweVLX8V1k2JQuFH00lgCpAWmKonls4EvJt/aFqhzBcH6uDjNnCrA4xVg3M amNHMDtplK+WczCrI03WvEwZmM1KOB7pt4cfZon3KBvaApokBxLGkfbwnh+m Fu1WD8eUME6OsjQRCPvVAW2r9iy0NdRtS4ylrNAGRajRpjNkO4y6o1qoyJsT pJn266Tql6EX7E0Ldio44rDcG2zxLfvzr2Wjq4NeHvIQz+GktYnk7SJPS3HN kDBdSCfIK28TeTANs0EObX5ODoi8HQaSNfIyc0DIQ8IAmJsyymJLAyLPmhct ClnkaaQI8iDpko3bLvKAHKehUu1FSsmq6EkYXx7yBm1Pjy+NPBqm6DkLeQ0j y7Zg6DlBnhQ3KeSFHHVWRLJhFL19e8nw9KqGLekb9ic4oRwFyLt5acVC3gI3 GSVJPI289cwQaWoEFSLFhIAc5NUNVHSVhAnyKoy8Q1NLIVe+FfKy8Q/dB9eM QmqCuTso8moG8ngOyIWAXQrMTRtlt8Uc5OlQsDUvE9uUbEOnbIm8CUOHLhtI tuKWTTWnYt7mtad1cg7y6ok4SNzGiYNHHiRYkFc3LMyukd+uJqd+SFVIQB5b mXpJabr5+I6BkVczkOeNxFKIPcHcdO0MiryKEbaZUCuYhzxLii0J06cCCPKq jLyF4amQI8xDHj7LhkN0H+NKSgZBnkZy3UAez0EKebN0LesiX3oBgQuGk9zo P06aC0GbJc17++uRlAXHaKNQk5yTM2HozWUDvdtFm9WehV49vjTa6LahG7Jo 41NmA9p0Fq9rZMIttBUNC1OL8veLNh2D8aLsNwzLlhVGnOngCeR0mtDSn+Nq GUURDQo5S8zm1TICYgBbbZuQg8mWDXDoPsbU3GZpYivIyZh16oTngO4NeXSA bY439eI9eQMebhbamv2HSGKXRZuWZkHbxTNXZ/MHA6NN60oLvaP90UZTmNWV ur089OrxpdFGOgH5B402PvyHcFYzcny7DN1WUQcAcd2JoC1lVWq0AV1boU2H PeqG8+UzzP4hXrIHBv7pdtDGKN7ct3IxTBOLRapAJQ9tWnItMZtVaIMpCZzV FdokO74V2jKhiRD6wM+ogTZJB6J9KD3XblBE1pg12sYU2hA+Ac7mlWnJByGG 9nRIqWXMwaiag6zisKBhiLIFNVoj2Tk/bijKfYbZJ1DTeyctqG23PV3uyVDz u7XSoZOqAbWqsTV+yVBsAjVV4hWgps3ICTU9Wajps1iWjDhHwwid+Mytz1t3 3XLpvZiPH7s+D206Za90ZlbSUmibo2uZJBefQXrx/05nmBJsSdy0gboGow5m piTN81AHHZUNCOqgI0t1Si/P8jHLGDs+Q4iFnwRLj4CjvWKuXYeYUD+pkwUt A40jSowYkQ7d3twEGmFy8vxQu1agt23M0YiBSkvq9/dXWAOjUivUfYZ5qFAZ ckZ5qBy0PYfKro1KalbCKhqVUHgalTrTt9tQgGWFSi4ac0YJoXJjbte+MD3j anqyCXmNyt2GJ9YwzEKvWPyTsOWwDUalE+v+kNT5CUuxslinSrd8aUozBUl5 VCeeqiePX8V3WMRN8bbEcNKAapOhGqn6lvEcWphUNp/EM2ppyGqRT9GNp4CK Cdnw+O5KuEXcsqD4hY//+rShotsGiDsZEKMw1PuMTQIxjFjET6VnzKrRXThK QEe0hoxZ7QwInv05Km1QcGsVvs9Q4TngTlnL223PAHdVTTMf2hTVDHBXjMjN HqOCTcCtKtgE3CnrVvwTnSQUcOsDNyxwNw1w+6Rj+mAQ2eE9KLiVKl+TdhkA KWBNKAAY4K5kHrEcKVWTJ/1aVWrjP4txVMFJ3n50GzwjYxgzsG9FbToG9sfz sV/P3Dr+S+ht0rj1IQP4vPVnVYCfJEgqAfgI1Srgl3O6nTacfGvG8/Cv8bU/ R3ka+CetIEXdsiMKfADvGC0dMPhkZED8jxnGxwHD+BjZEv8027L1VfDPh7el 8K+zlctGRbjgX1Wvmib3WIp3fLZycpv417EkXSAi5UjJvsRsIUKZMqL4W9jb 6AvJbklj6syoxTXDqi8B4lgGGBkgtlhCLQ1lOa1DhoTqEBGym2CDlsEJw4PR kzWUTk7gVVPDsBJuMXlG8qlhOIcVx5QDIYw0bBRFDRnUMJ5DDa7bptEtTfTj HzQTUXriJ6YXu+puU9SQB2VL9Q5KDdrUOGBQzXapwWrPohp9lnGaGlKFuJoa YAr4x3D1plP3GRV+JXXullCDZferwwAy6dQEtvJMoKfe9hPBK9eBqlb/6gNa RvFjLIrwW4xpdwlRET/Lm546nmiX0P+sEe1uJXGyMKtaeKWQoNOHNVivjeTo tTGDNYYNqOr94sIabcUaMpRWPoFlcaSHMqT852wA2Q3lSmYGUqwxlM8aE9sk q47BGnrzrRQQjyjWQDggwxoy8TCh8JHudtRgDWvih9TE56HyYL7CNllDapRH DQPgoMFC0p4+w0OqAiPloIwZBo/FajmsUVHoFUVcV2dpCGuUDIdiv1G+H1gj KTY0HQr9kAlJTo0zkgXFkCLtlmomcQbAokEkbYNI9GFW2UN0kCEQ0hpV0foj S4voNiqb3vGs2CFT/ckkFQa0yKSdTyZThiZEqAGasGMo4E5/vZ8ikyFjz0B9 e7wWKVugqfz1bIhcuwl606Q4Zk3VLcL6GTKZHYDDNJmMGKVVeseXkAmdoVCg CEU5xSboxPWL7cd9O+4YUR9r6vX25yydaLgezDEaDDqJLTrRRs0hg546A9KJ 1V4ePenNgGk6odsWpZ1HJzrXfcCopiwa1ZQlwz/RGSKhE8GzGAbAs7emS5ml nS0AzPNGTH+of756LTIME80n/tySUugf3OH69U53NWWjRBkbacxIElrU1lZD kcqPRj6Yd7Bwo+usrmznoMoAc3fzQ2uUbbh1+azTqQmvyFAqg1GcZS3URW0n myJMXmGAizdFHdb68ArjuzsAnWnbaNTgFV0qIgXZDZVBRFYR50QW0DFUpO+a ep4z+hd6aRtmorUCLYNe8ujAgq8OL+TRC3In+L5uTxcLWGdY5NGL1Z72caxD JZheyix4kQp/NoyTv4pGcv+gUTJaVKU0Qi9lw8fRVrlkHEdU+IOlC0+TCNjG 0lrYnjZCmcMGzUjq0Dq6yW8D8ZsUh9U4xGwZzjdbOga9DCXR1PWMlNFtS969 mo/pXTm6s2nQy+gWtsJ9J5bIGS+AaAqwYphjsLFYF9Nhl5WMsZg/xvmcMVYN 3rHyHU2Dd8r5vLOcQ3c1I6c5lqQ9Au/oAlMpR69mQiqSZmFXcClztzpF2zDo xlqRQeF8OMf60HSjClBDxbvlHB026CuHblIhmpGc9rS1Je3pI0PSdIPZD9FW i24KRoHDYcOaKRiVe2XDOdJpPKGbYWXNwMIAzDv5MJ/IYRo+r4a61BGc7HFX mmnayqDBZ+yfjQ1g0LSMUgyL9HRsTGoOSvlo3pejTmuGOh/hCnYEA2DB81G0 bTUJVy9NxZsfeZVbr9967p5C/OYbQTr4EP/peCiyiKjApU9wtHjo/YYcZVky YhMEzl3J2OlC5RkFDNnNA4CKmwFPYC4jf86WWELs1NGkFfIZ6WAOEVb6JmLL YerUSPyTOHVJg1QOl/rQU2r5+uafq4arO8RlmRgGhoDPeTLURKTIyiKDIzm2 x6BkpW0tIRe4dnKwg7TX+/wdm6ys9izy609WKXshj6x03cdhwzYqqMLHLFlp 10uTFZgBHDGUsY3gVY8PQBMjBmN1DL9nRNFE9iAXv3XIu4DNjAuGsTiZm+nD m+jWDaVhJLEssvLKuKEzrnmoP5KjiMuG/m8moK+lQI/+Fhdm42vOn8DvQJs+ 403Yq0zXOjgMFEYvRWKUqAZZuX/dYrvBAguKpPbxgmGsGU+Rasnc+6iYjLEU xsjjLGCQbpYfuXxX/IXPvT/+tV/+El6bN914rhtgWgt81YejjuV4ayUjWayo stpDlTJrbkjult2gHAyXdi10Myuq+Ss8rs9IZGdXVPNn2TB267yuWeKSBcVM vfDc6zGwzTc8+UoMI5fNNFscyTFtdNw3j810YMpix+H+bJbyHEcM0/CIYRoO J2wW6ITZzJ+Alj6vQjYqKTajF8ekV/h52qp4jV7IdT/+wstVw6/jKgI67U/y SS3D0JrN+HUSjdbp6LaRjh4xuEunoyUcLdv7/earZY6DJ+O4cGAfjWNBjUMq qLIcWslhL52C97JeJcECW1l2yvF85VwwbIRKro0ARihqRnCf/d9/+8/dEnzi I+9ct6ZI2KxO1wqx2UcfOEtsNj/SEi/nMI20qKHomvYU1TuEUhgCD6PkRxH/ yz/91UAI3iIsk4uXIaXotOLGzKQQN3pMGNzITJQdBrjR9V00huEJoLohnGTk v6ITOcmCgkFEJaYjIaKsZhEiwgLpMTnqXkumxjZhLNBbJoxBSoR22atimWxH DZJTpBRk2yKlTk57Opy1NSmlzA6LlNQZV0JKqs49kJKzoqqG96elX2ptWoZB tcix7Eyiu6BNGJ2YGmUScO8D0vRR+tmzRngfM/VcMwwp1+9SJpzOhhQNoajS c6m9zgXQUAH2XQFj8UYVq+cZAuhMpvLai0eJllPR0xnqvWapXwFhAsF6XxNK s1FZCbswknaPhY2adC0SC6FrDGRFgRB/q9utG8DmuadJk9jwuT63hPbU+PvQ R60vi5U2Ze6Ywc4yX6o0gJt6GC4NeRJFX2bgHqvp3lbVPaWIwQLeSo510fsc OZsYtPVz1CCa7RLDoO0ZxFBUIiI6vcUHGvABePTimpvoKmKFcspUwb/XX3oi qho+lqYESS81DDtl9wDx54pBDc00Lj1JECzpJuNkCCn3UjOFxKmqalgSjt6X kerssPCvM5F836XQN/dPjFCIX/Xw7YX4xz/7Hjdtv/rtl+N/8Ue/GP+f/+s/ xe+U1GwpyUM/6PGCoRbx6meLNNLop+lXTwAK6G8w+mGHADwJ+r0BAqCgpUYa IXopCfXuG/Sta3KYo220wSgjPQQzMLnXNHMYoG0aFCFD2goUKznad1DQahdj pb9LYNC//YyPrdqTZ2Po80zSoMXHQfe1WK4FtOxaHGe8qtJ5OaDSTXmvX6Hr PcSe76NC9+fHIooGWst8egGKXpCoRqREMMO2pccLNg9/9j0EF/fveoZIxK0q GyguG4N1Izyc0fdo5sL5476zYujMvZzGc+iEy/GOx9dlWnTWUuT2ooGbISWk zg8mwdKH5KR9AhuHUGzQ7mhJad+Nq1b8MbXs+tGdpXHYdyxZF868D91v2wCb 9GuBzRLmPhooCzaS4uyzorTGPdbf1N0SbHntaQ2+NdhS6iMLNi4GOUFgK+k6 dQCtZpjK2nwVnFUNv9kHasb7+s1AFwxQIApogv+uNCAABTmHmAchdwqobMi4 yMZks91zqhGflsDYSrbGiZ5M65AZar3FfbjuNj/+4beuq9vG78H63Er+OOqW qrwXHNUYR1978kbRS2EsaB+uIFpS9mUoJNI7brI4ssbidFD4bifnPoBn6Cx8 q2XgSPplGSUJHTbk9KocpTAojrQSPNYflwPjyGpPK1WFoyBXBf1POi7WZvEC frjiITqVqejetf+4aKqUZalFKY/83VL6YFDdsDBmCBgOBQIO1ML0SK3eIihG ckUlKCR5UMh0D0lwfR5TAomu0EFTdfOKG892FQBpIUUpXDSE2RIqfRiygKPK 4EDgiZVFAAfAAt8LLVUTAQ+LNpoDDmssTuDDd/X25ex96H61RZft1wKHFr6r DKUwZLg5dSUlsqXCUlp5YDPAQVIsFqLVngW2rcFBIU3h3naQsNGQmz+VKVze deCEk+teM04XcWZ5W6uX04ZotpVoLu3a0c0uqYyvwhu0gQAOQaeAh/avUnrh 4pkjaDMl+tJ+R02r8PhWIiOiP58j+lp8jxrtVQzx5fKllD92Tc5YHBSysEmJ vmWbNZN+NzP9mqJviaolWluJvqVnjufYQ1uJfl57kYKSPBNTn+3Bou8NLFo9 bJAfVk9akiTvaaUSuJ42soyqtkJRP05mlXBaLcqj999A1G8JPi9oyvqrhPjI SBB6AdQJZUDA7kKLolLE4VftmvyqhaxhCLx6bFcQ+Ioh8EcMwasYQjueI/CY Ltd3aiz6u2M5Aq+NKPXdjUy/IkwkSkM5AvWDCLw+Z/d4juGiK9fzBF7rIqu9 LQWeRumo1IeiCqi/LuB9Aam0AiykAuHBPy4Zf+ymw/EaHf/t7KQavAyCSBWu Rx1x+irpiCLQQgURdBOG6eRxUnVC3Q7MnRXkM4YgtwyvQW+HkTPiquweYeQK cyeVfMMPQWOWs60PORJZvjBgkKprYKPM2EDSTeTbwkbZSOjpE3sk1J03FgNX NDWi1Cwbqm58dyIHG1r2Thjk3TacWZZlMgik7NpSLnlYM7CB9oPTMWh7W2KD mMghIPIQKAUIzHUaeBXiU93xQnzPsYVC/MF7jhXin3z1Odferz97I37DXPtI cg1LVoPfXMeEV8FQdfx3FSLptVvZaZQZ2iqKI2LwevyFl81Sah8DqoQtnBmN ctaQbjZ1giOhpHtDAAMOINBHPpAF3yi5d48CcTFPpiTPu9k1w2HR52CmQ8pp qdXhJRmfPutaEFTKQZBm+ZKBoEl1v+mQb/q7OgUk39fHrmYRpLVkzUDQZA6C tISeyGHvrRBkaauTOebPVggatL1WgqCwboIgSvViFoAPYGI4/hc/fJf7Y4aG EiQft7/m1IH4e9/9EXp968svOMF7x1P3uqU8d3I/W1yEjwLleGhXdQYSJcri qLTJOUNMLb9aSC5iaDtURwRr99lT1+4DtvGKNMDf9tA1KShApODDo/Wq4VRv V/ycRR6mVD9wQaBQ5CvK+6W9IwapFwxxns4Zi/5u1fiufsiBOPMWFKoGFPi7 ImYkZO0cUbPI2oBCqrJryDC0TuZAy4ACCa0YbnntaWWXA4VCMmXUtBOpyALD cbUETvTj//jnP+OmEdeygII+f/jua8hZk/Q3FAGnF6LzhjjWDX9Cnw3gxB0i 7fryY4J4P3Dep1VOGNqk0r+9gUVKi4V+9E9SON5PvKtazOjF4rmKVmbUfYm2 knHogGglLdqrChYp0ba0VcWAhTwDxhJtLTqnclhUx2PyRFtrjTyo9BNtfN+N Kbc9DZUc0S4lU3Zl90SbRHvIEG0dl//SS68nZm+QaBch2psfftejdOv6nBUx c88bIlgzRFA95inArMZjgThLe8cMrSAizUm+SInDWqRcygsG01murLfWKlqk 6cXVLkc5ZYn/zkgxvjI7YM+61kayE/rJbuK0yAxqPWPV6ejvIvrjODAIsRYS EWId9GwZxrSuOuL2IHgtg/JP5+DiwLEzGTn2E4vXdTt36KYbRtOnDIg0k8qW INb8iFPegL3qLpuLo01S+W3FjCLS2nNj08UxLUS6JCKNZjFSFbcXBy6ybJOa 4YSqqOLGwdkOSXXVkGqdbZIIqpVdm8mRLR1kKRtS7fO+5ZRUc+aYp6OiiVLL 5VxOtwoFkVVGqp8LmhVprVtKaTisJ9+tEKG8/9qz8UOH9mpxrOeIopaXBl1L Ii8QSTTPFcCQlfjQ5Bi1npHIqG5ogdOGAdFQIuk0AbE3V/hvyOg/f/v1Vh/V Abuo0rVM74Fb3F3k3Vx5YLY++1TsgpYh/YcUpSzMTZD01xLpB8FvrBzchfUb V02KSj5jSGvFsMy7CjnQLwBjhYeD4Yn0HzHQVDLam0vaCyr+fOq7/UMw/qnX pSD9LPmyhUHI1UgJkHzIzFndWVKvHzadlXqtBDIVz6vJd+uENsjLNx+8g14i PwoBbjp7hedqg40rfFUQiHfMjuNvMEVeVOvEb+hGd5eFRMXQKacNw6OqugQk 0CXL61ro0s8uunBdOrsR10q/rksD9lzm/tEzUIIbPev80Le94d7NnQtTXYUY laYmEQdBW4jZr9adLXzWF8X4Mx983eauxWlaO/3MMPnu1YYJVDbEWz85UNBb 5rHACxe4HFbolaBq0TCp+CHtKeY9p74rxkTRMCaOKqhFnvUZpiW6/0cu3yWy viMHlf26EZjo58hnYRIpxVIwvrugvssQcX+Ba9mEStGQnqsNni3StdYDlQfv uhB/+gNPbH7wObJ29dkjIr/FfPktGPrqakNfldQIBDkYgZNfGgHLMHuQBFro F/Rdomut3wik6zNGr4VMr3hyL3p1Pcb/059+Bb3jvr2FpZ/dG3yHpuGC7lXA effT9xFwasp3uP7CUUyhLj24cnDPPFlZpwxBLxuCvqyAg4gPRlHiseC9uKCH DCAWjPa0ZEmg8pzSeX2iM3Qfx+i7pTUBDtf7qq5DqnYxB5/9upEMhR5i9rta N1nAWVSS+/SpFZbZtOQq4EBezpK8tDXLmvj45sbzJCt/8J1PBqaVyuko0S1u Fb2wajGNUOrswOlGy4fNKYC0NERNYEjXLKYdA57VDDtwr/R4Wn+HTXqfRQCa d3cU7owZgI+c1Cf2kc+BYGPDgMIew+eoKig8cfmmdbW2NGEiulYkp5QWXfqW ekz6OnQIYClQQCBUrPcDhslVMNzoRTWW9CaNqo7IaIcB8xCdoO+Rs4G2SE4x diQF96iwMe6PMUFu3M6+mKiYkaMoWJlXer9S1fonfEVgoLsS/VFTcgnp4Mca e7qsEF1C5jIiX4RkgPw3ng8TZ8lfnZUEyHqy2VByVyFk6aZZpAvctBa7UXXD Aqg6Dxxivf7EJXLu//L3f9NbR2X8SveppDkqqqYFq96BSB2ch5A6DPd6RqJB 0EuKrRDohyxXjMDQTtWeSOBVhgSWDJf3YCLRpGiArqIRpJJCchU7xUusKx5C KsRpCZbyeq+mr1REhmm+1bmMO1jGRIzdjYkYY9UJBmzSGTRd1v56SJ3pUWbF X6kELfq71NwKm4s04P3q8f30cgLmpaFE0gABIcnfeL5kyJguXxJwSKvwla98 /gUBh7QK0r5wekUkt2SIl67zSIOiTO/jP/iqb3l2gh5bfkINGM1DfF3TZQNv 9RTsZM2I/yzJ7Rr2fCUd/1nnCeY1XJXl11FIHagvGCb90eS7pBpg0hcM4ZVD XITedRt6gcUDFxmK2EbWvHY+R2zdrU8qsZWtk8zA6yK2e32XKUo9q1hbQkRS 8Larr9iWAri4SG2P/1MSojTrVgJ5QQw21p8UATueLwUQsOsuHKV712cTpsFQ ph7R8ua3P0WAAPtmBYy50RIwnQ3PDlxkV17MwFJjh9YZGVHZAJu3pfVGy42s 7Opg4Y6MHQHZLWeiNyy7KjkTrOoVlYhhU4JekLnXP/Eg5i66ysuQQAiDoBfL 7N6ULMykjOcltQTC9VnZ0eK6mhbX9Yy46jOeDJY9aEjeWZY8Uf4cBF3qK6RF GpTkbJfV34lbVWP7UUuoliWQ1TFjtSvJaq+fPeGNM/1g37QgVckq0IKkaDa0 LxDoJ01TagE4fMTtF7WgOh7CtZjq44gBNYUHzeU+fqP3BwY/sGbE+OaMkGNJ Ca0KovhAtWcfIbzDirXYWghCK5J3Ii1JQXDB+06illX4wnG2fI3T86sid8jD aglyoiGyeiP9aTBqwylzMGr1saYip7dcXLkSKVo9oiQLo8ARE1Lwg/euK1pB P6RSCgquXflTFv9ICSuGJJQaFlsJq3vnr3iPxXYLzAcs5S62yBRn02hEwqvS jZLZIFMaF0cULmB1ZHARuHvGwEWV+xDu1rcifTjDJpyjibhOFnsgccGed9V0 RVDIElUNoZ02rISyEfU7rKYnHWMv6yA5pBUCoS1LAY22TpZUtyw/rJLpeZhZ jc5VLKWg0pkjb02L66b6GhbqX/9cgYS9rE0A4dXIl+fQ48d6ZF0ft6FOX1hP BLJidZpsoilrmOC/KSay389iKp5VNWS5pARALMWD+eS7+dpXvoKETJKkENqs kGlBLmXwAnI8YNshFsfPGnixZLnM3Shrhx+JlXSDyHUfWHo/LYVOCRxbeZZJ JVeSxy+lY3HU7EoCj3DaxkFlzsFqYBftXCImEvsINvZEkLECva+EvYdYdbzQ mOugsBkWfkPk/UBajoLM85MWj2bMgoz43knfrmW/nfXPzqQREmuEHMkQeqaH 1bxBsrB7CqhZprY00w2tpDMhltxXlExK5e5em8MtmeTsWcqusUS/bHD4vi3g JQIpKQcNr4oh9xWjD/2gY6sP0RPexTMLRiyhH89Yy4633bveGMXxpL2Q5t+f sgNmxCXzDxssBbwhROL+pJFwqrdzIDbQ8QVIbYEqikuSAtvkfgpYj8JakIBu xD9+PJVVQzbRhY6rM5FGjKN1EU/8fCYtopuZZpZ7zRYZYWjmWB8pZ3WQbYIl PGX5sB+cCllVlE0K/oNEVA2bdI+h26teLoLcadnTnqX0gX5F9qqGKbR7SxgF DbKgYJSOnqdFvGZ0syvTDeKHqhttqfi9cjrlHczrsiHlo8qMFPO6YEj5aTV6 sa1FlGA2OKOYZNHLT5oZsbhARYGEumwxOYtgWahc6JzaLKyGewk/F3PEM5xV nxbPrKXyxT7iyU0s9o93hCa8PVbt8o2HO1ZA6Tl7TiFlQyaMOQRtBia3xLyW oT+EIrKywWo/w7I0eYtqEYXJLUmvGYbSLoPJq4a28KuURlPZEPO60UfX8FQt beHDgQJczGCwxktKxiVcO2xY4wW7ZuuMWggxyGe1yavoWeQ48gxdlo3dmywF NBPXR0F2Yxay/tR9Zx+JZMKcSQZSscQRbf0UNVHKNlEI39+CcLfA1dQAuPKg sPJ2aWFuGJy9aOhyJWVX9i7NaSlbtQCjJblhmD4LNmdbqkGH1QUwZcP0aRrd zBvua9XQCz4QIthE18EWL6oiDhHmtrINOYgHUc6WX51XEySm+NAAdkZKikU6 lMQWVoM8h58v0zWfBUcHNDt+Ni1/oS2GwGi+/FEzr0g3keX1ztbGNZrxDkoR b0M0TPMYpFYvvbZI5211bUkYR8BTYClxN3gPakQHLQMs8/0NnBTt60SEgMWS YquPGdt3lW4+/YEnAvP7QLcu3qPVg+VhCXJTLaVsAoIg6/jIxaQtmiEvrH9H UvyttJxkqa45ANX9om+in9TrJvqIWXQ7NWETdmMAwl71U5SKfpUMOW0bgYkZ Q98qAcJ7al6HOkWALCFtZ7CACFtWgNg8UQKErqmDPQoL6bqktJxmu4EVNKXY 9lX33d6Dhes4RDGVgh1mPdRXF5SQSgKirnKobB7r6iOv3Uuy9iJtBRK3ijZi Zb3R4z9OC142RFEajKB+JUd83VdLAzhol9JNZEW4OIDleoOfSAwqeDWW+A0Z NDm5hYYUntRZReHIoiF+w0ZQbDLfoAhysTdHxCNlUAwbHDm2ZXwv3IoPPjCg 0nFcZBy40qaqglSyLUwV+mBAzLbNLktEdu1MrvhHXlyzIkNc40N0Wsgu01+H WFhoPfNnt/iZSxFQ0ZCATsZGgl87mjdzJeEgMc73KVlLV06m5aBjyFp2jTIe tF4jnUbKipsWBaubkb7xrpLuA3fjQ70c9y7TTXHJjIhBpB/4DhWJLYDikJMQ 6MJ2WeTfTi+yLP43/Z/SSgpQrWUa0QLOflknh1y5rpS6PmiIQsFYoFEjxNEZ 0Pc7lCMEenWyfQCo7bzElRc3dzsbRw90MXu8jc5LXYkmjivjsDhFXhswNLDE 2OyGtaHL5/1oU95wQak0yA7GOWY4EK2taUXY67CaFFlc6QaaFOKpu9FOd7tv mi0BIM/IkZz15bXt6UaQ0dwiEuxuhWTIh8k4p1MXKSZo8IMg5RRCoQU13V/w A0z5a9Z0jxss3hgwVO2THBU9CfTieZ40VrKev5Lu1wChFbWS4nZYUzxhsGl1 67ysczrpJrp+lj1gKVonVsgm84Wa1S/5MeGvQq7YmtWJzLLD/BtgTDKxunaE hVhP7JSxZlWDmCx8cFKyZ83cjCJX20N4ZcNqsIbszUg1VX/oO9ICSC98OmOY JyXDhSvb4OPKWJ0ikakJ96At4tLW1U9yGyd905o+wvTMckRQyTO9Moq0ZCu5 pT4TBAkT+g4TJF0p2kh1lUloas1zyph33MnaHddws1UtOKFZY8718H3Uu5Sa czcpc5zvkhZRg5utrNGj25Odhe/5drWJEcsEFHD/rk/IIhrnIZYNsT7DwxPt wnc8y6kyzCMJ26w/cJKxV7LVHTe2oYXArcJEMqYyteY6oBdWaGG64085z4wO ksQmde9dp9be/T4eeiigAzdw1Ty9Lt+8ku1ERPecGjUWnqdgnNccU4BVkoGj VUyHH/iFla5rDtOCCn3feK9G4lBamGUAblivVKbxArVepVG//I676PUrn3ws /k9X3kv/OjFO9SO3sj87X3/kOw5SAjgOWR1z59RxAf26llWv7k5xrdJc8p32 7Em4kFkcnsghjgzlTCSmMdwsuvyzrz3jeyzK/dLdFgw95DOiicLG3Na3nNtS trsqdVeJ37W2SqWYmZs72Gdm1+RmMbO1rWZWdctd17lbkaAMY19U64deHIVy amXb81nLv8FV31NXesI0FhULGD31mck2dVSmMSA2o26HTW81jX/sZcb7kYlx sr1JHKYeS8LuArtr/S2tcl80eYWcycPf9Jm8ofQ9aYKPrqNuarRGaKbPWhTQ HsuzaxEvN7XuWsdH8r/uC4Hzj/SZrDW5oTAr9DF1hNXF2N2/1G6T23Xv0S4h 5gYlVBgkllrakAGjnXQbJfrM/f8VvnEqSawDd3U021wLsx1+eu7gn+NSDX/e wl/fhM/IZmuFzz6b/SJd/pf/+ul//fS/kE8fwaWwmvr/j6n/96GzpApidnQn XuvpFj+qvvFK+tVnOkZaE/GJ3dc6WL/ulvc7+Lvfr0RRdlAvqQ8eTr69OdwY je84/RoHef9t9zsIejX97Q+rbz9Iv4aIUdyud+JXrr61wg24XzH4TAMfUg08 kHS/MTE0S4Nv8LfdNzd6B/+i/+Cl5Ivome6SsjQUp/Ieyap6dZOpSkID/MWN KIm2h7+9nJmY1SP3Ov3hR+Z+34x6Qggf8CPzt+dD47OtTtyu1OK9cyvudrrx dScfKsR3XXxDwf924sBNhXhv92Qhnp1YKsTt5qg/0b64Fqkfn9sPInFlxE3y 7PB0vLrnglvoh0+gEvyOw7fExxdW6LU8uZv+P0oSWDSPBZqZdN3APf4uaTZ4 8ZyhGFYPd74abvCD1Ap9lxJXa1ESQZY5/E++3ReTMW9MNNrx8dnFeLW7FxPh xvzkLeu0vl3MRfz6+z7uZhbXUvyqW5/HrIjY3ZY0s8a3ErerLdym+8oT51+N J46euJ9u301H6vbd30WcJ5bB0QTcmiws3TZEbiQtsOvhll9IFtO64wJG5Bau Ui/Ey2OzzkY7PrvL3ehBvIsP7L0Qz8/uj+em96xzA/+bn573J81eGak1aXqe OH5N/PDhU1iGkjFD7fQMXeFVVCnr7AxhZiYxSV5IijRD+D984+ZkFki8MQvj /Vjjnckf417j2fZIRDdcwL2CKZaPu7Gfd/dwg7OWcK3TLGAGnnndV+JXv/KT 8f7lc/EN514Vn1q5ZbMz5Eu3/8Z38sP+JlJToaajYkzHEF2LNB0OPNTadem5 2NBz4SRkjgSmRG/PXXwkfujRj10JM5iGwGQ/Bnwb/bEnvNnWKC23u/EW3XNR 37ObIFxrdO9D7k/f+NiP0uuxS+/DHFzhUf61n4J1NQqeAtcCrkWZBpqFqjEX w2ouHIdQUxfSghvmAuhwc7GD5qIS5uJt7/41ernf8XVVe0QjgnTM9MPIs2pO REKcQLR5TjBFMicluhb1nLi7xLUk8yKy8T/7eXkvzwuY1JoXIP3y6pudvPXO S4fnxb3fHG57icvUX28O14ZkTqJFmpSinhT3zl93LHqXPopSPlPAznw/7Dzj /3iN/rjawHQ44U2m5uoT99KkVIypKdG1GN9z05uCJvwf/T/kUREX+3IwCmBd 4demCJRCOc3gHctHXXO9s9c0Zm+EZ4/pmNrL7LEnVYTZgyraacxe2Zg9dty9 qDDeFvrh7Y3JDTh2aNHsDRuzV8uZPSdYV8Y6fsfCf/Bj8GG1UHe0FiWUfkW6 LsSd9lghPrb3jGv93msfi19z57P0kkcQq4m+ITPPbm7NeW4b8zyanme6d1// 7F01UfVLxvxWeH6fePqnN0dGZ9G/BJ1kjUg6d/YzyF5Pf5xgF2rL8Zk1xQ2e 4kt3PA+Nlp3izcW5A9Tuv/dTvCMjoA2Z3E3uG9Mb75xdxgzH1564Xea4Fr// yZfdlONxbJ/44p/Q64WXviNTfiVSaekgGc2+Uz6sptwZXWrKe6yNwxlhgwWx m2cduvPQ0VfQfNd41lmB0M/Z5LuBE3b3M2Qfz8w6M2bHmPWWMetlnvX9u0+v Srt/5f9Rz2wTwfZmMYeMZd6DaBeDaL/18otusjD3RT33kX8eXhlPssQaiMiv ZWTNkVudpz9ZhL2T3fjO02uOS/wiwA6WRRhTi+BsYDFofMTNBzuWx+bo5SZ/ l7EODWMduITUTyuzy3I/s30iI6PlHhkdao5yjKQoN05TztK3GilWHzGWbyhn +ZyyW5dh//f+H1/N5M3mKA0RNwy3Uu5rWCu3SrRSE8Z6lelaCZhx/6eHfrVa soOTs32XbMxYsnHD6NqfDJnk+InjN9ELn+40Fq3Fi8aWBv2cTMZECwfw7O/n hbTCoiVeyEaUJu8CFq4QH9x50lHuzacfih+47g3x424N3vrQx+n9matvjd/6 5s/EndGZ+OIrXht3l66SSaKWzyUjcv7LEK3vqLG+nZz11Vr73/l/fPk5AX+z 40gL54+7tZ03lrGWWUandfQynkgGGOwivYzH5/fG1x6520lIsoyO6mgBJxK7 KNiLPuVChWeOik6GZTw+uxsaR0wjOFvDnSlawyFDufOwAn72zh2jzo/VsKgV QLAKLV/FujYNi/KiEgVo0tl2Rzuu4efX6ZrS4CIIAmAvBW45dkwuQRRo4VkY 8GzQh+BUQSjGxmbiz3/2d+i1vOdY/NjrPxu/52O/G7/p+b9PwuGEJCUcp5JV JHF17hCUpiUfoznyoe2Sf+vvyp/HUA7yIY9qcOoxsoSk2V9I0IYuCbCEZHXp qFuWVTdKJyQFqMsCCU2JxEXW0InNJEuMI4JgSevSztk2bv4mahxXEAFEBUIz Q9dyj5+Ob48YInQsmd2gsvbvOVeKb7zw2lp8+thdFbytxvPT+6rO1huv4i8q IHsi6vPpxSGOc/fqfYaSx4abiuWxKcyUJVrfSkRLG9WiDyBOkeeWouYWhweI VJFEatfCgfiDP/wL7p0TKneFiEGcnFi57+Ja6Sde6v7pBqBenF8p0gU3myXM ATlXuoJJ9m/8jfkNXr5MAmfA86OmRMIsARvKCNjo+KweK5dUpbyzEgsY3jvh Iv5ppAWsQHGgEtlkUcYi8WqurK1skBSkMBBXpMr+eaMFiQuMtocP+yHcRO74 IXJPIIAjdO3khYt6rFL8i3Hgcyei0FlDyuJOSyxtlI9H3Ux8+rEX4t3Ti/Gl W94RHYzf9JqfwKNVH/hIvLJyQzwxtQN/x+biWsSGExyzkkZmd6+nPoJJiTg3 UmXCaOObiaAQ3440hyGPUyyGYLy1R15gAfRXqDyn6kgAy3w1xFDKtcKkQv2N KQG8dvk0CeCUIYAVwzrlfQT6FnxsrgJkkdapoeMKJoSOR6bIxSf9t9UjlGmO nbziXuihgAcndpAFC9GdYwHGkokAj7BNZAiw7P4n6cWE95Pe4nalN22kldmh UcPSDo1I92gi3MFs2JmICWliiHWZhRucC0GGWNfoOrwt4VYuF9n+JR4m/g9P 58Uw2ean70IEHQBahtHt99pWaSKXHdOd3n2UQLB+6em4O70E4Y8OEBDKIPD4 0iNvjZ/8ez8ScHw6JW5NhYbRQNi4hb0Tu+Nrd5+Lu1O74g+89fPx8s5D8eXH Pha/4U1fiW+/623x+YuPxgvdoyJm2lX8OeqiEsCyMDIdP37xoXiXkx9H4BMM mjOHborvuPW1BJcygwa24l0PvUBwqWZAE6lgy/4Ejzo26Im7FIg7CiZqexwP 45vdT+ExWAx43bj6hPs/BygxLd0HwFIKWzece9V6Rka6RAGdyfgdT3/B/YW7 VuInHn2xEt9/5zO1+IaLD1Xi40evq8a7Fg9V8HekNqsYPG2d9YFuOeCVpgkG CKBWGhBq43QtadmG4O5R6JXYSFmhDF4ajI7twqptDKGYQbuCV4iS4rPDJ27E eFJPXWPnxc0xrqNaefwguGrxMBWszGEyvIJTq/0jH5goMQ3shGaIn77pkQJA 5v4UMHOGEAFsH10rAWZf+7X/QC+ndzZHJuaUpyXRdrYIy1rv0I2dmKdczRlo YyDv0Xufjj/3/m8S8txo3afPvee7UZ3QB+TloC/6aX8H6zLRJ2b3xMe7hwrx h+57mxsAo5BAOMpQFDcNIKwaZlQ9B4oic0+urEpwhd3zMuEQcXpY7bjNueFp d5u7F3Bq6R23PhO/8XVfiF/18Iv4vRBfOPeQ6/bIoevixYVDeHmNvCV4ORSJ 3IdHcX8sazdRyyOw/OF3/2J0nq6E6Fj+7l3+n3YGrc6g40dJF8m1ZLiYaJ1k SYS1J80uZaQDUNVWCeDqRD3qi8kJo6NKDiZbjMnhkan4uY/6Ayl5DsjkZk+U MdmAcRfckhzMjRuYs4YhmKsZbgjHoWgpoNPuWD4Go67EmHPwgwdCaFumaxEO ipPEB4E3N0W4FgmDR05Ruo7LlCWoQElRzmVUaHqd2oNfElTdnQdvKhL+iqT1 zhy7DvhzX8G1GL/lNe8nvAGFtXwsbmgsZk4vICxePnxtfHB6J1SiYPLttz5B 7g7QOKJcG/aWceJ3j03Z6sUk7hzEldqv6pBIaPSJkFrAJMLPuPt9jl/vPnRL /Kjj3cXJbiF+75OfgJgMT8bPv/0X8XJfctcC0Or6Y7wCrvRygHXTBLjW6Uvo 0yGWXhqzeO/w6Pil1yVf9OPFlEFpEgovMBYj5YA85//hhwvQjLJz5ZZ1e1iE XB6/eOcVNV2EbXgICRa9Ezvn6CsTPtJN1jOOm0Idwnc1Dr4y8EQhLqh7RuA1 wV6RsDfnbE78hfQI3KH1pEcbYBUDYCpwuLkwDCvpOlFseOQIoeyWlWtIkwFf uxll8KScNiN8lRhl6OvyG/2DhNRzBMQvZZSVA4nNunWfHZoGrNynHmKXr7ok hqVr10NMDEyAq4lrAQhz4gJ8HT76CiEjjbHocwm+yHkHvp48cWt8bfcIdF6J 8QXrE5EpIGtY4Wtl/3lgyrGdxxfMUWAJyBqia4kiVEdP3ib6Tosqyk0AqrZS dzA7BVbX77ngGn3qHLK/eH/51sfjT73jp+j19MPPATTjCbSqKWhBD5J8O+vW QSWoMB1rYBEC5GFwpmCza//xoOoYNg21WhH7djWGDT2w9PKLW8CmRBTvYBM/ 8Pr3YwhdhRyJcJdYALD4Evq4eWmFAusWfFq9cQ8Nn3IGPm9410/ixtRzKWjl EYvw8CmR+yY9O9xaCMp2qhCEeEPBCD3sS0BEGhsgevjwWYQh8DQSAhGHIgg+ uxSIlnYfiz/903i+gYcSVNftr3x7fOHmxzCNPrbT0DgKRRkZMxHYqTKMACto JgCobMBomK4l0lT4jDVVJskC8Yk+RSOosljXSUkBSEpZ4YG3PWgaMiIgTUaT iu+6oeBapPcR15DJSfiYTNwhQNTIQEksx5MLK8iLnUNgHNrK2ZCAkXvnrzef v4dgA3VFiguAcdbl0u6r4retf9VbMU7jnVq5pWoETfiBPgQL578lSCoASGwC qqfJBIet/n3i56Wf/eN414ETi0mTdmrBfYZuCtwNhw9T3QAv0s1wPpYKjKWF pSOEJbzc7zvU3cMV8yhKVBHwpEeBmxUzdNYA1zBnVfQoFLgknsGAIvsMQAKg YP5dPncnHlTSA6iuAhTie+/+2C/gyUcEKIQ4nO0Xv+tH/pvNXftPHVBUlygm r9czZl/dMPsqDCZ2vwhG48rsU2AyXTBfo0DbvlcjO2OifSj6jkqD0ULMtkcR DTtxK8bm1Rnhr8IovP7AOQqhAH8tI6TSMmzGIWUzHj97Z/y2l74uoQP9MDvW 253Iq7dKj83o0AgUVhiQMB0PO5/N6TTXuAckAAp9BiiSknNTB0BedfxmAuQX v/6X8bnVS/Fdj70vvnj763r0nA676LMN77/zmZSew5OH73vyvTSFPpTq/YiI dWKfQEwmGEo1rHxgVS0Dc1iXDZZ8tCqS3x/mPoHv4E0wf+eP/grRHaNsrR/W YWXqcOtWWB/NwboDdQHohq315EfWZCLVY3hCDKaUsTn1ELYCujUE4MXZnrhl 3jXP5VDHUhqzYQB8kQG+f885AjSgXWWAwwx96j0/gxdWzedQw7EHZHzAp2PJ JSl1iG4qg3PMOfmAdc3w6abpWg7RTbY3FTBHtgKz5KtIFQKIkq/C7wiuOHXo OMhBMVPfoCKyFMt0NmwAvla/NSOA02Dg4z3ULSA/ZBizbc6D4f2dl5+Nv/gr fxWfu5E2aHcVwDwTn4JhS8ZUP6O2zsAHD0DzAvIVA/hjdG2QZr7zgWcI9Hi9 9GO/Qdr4PS//YfymF39JNLMVpmGR9a7soy/2YP9DX/1nGwn2vQ6TcM4ErlUj PlsCLXg4d6UjPpKxqtoR37KZg36NyEkFh5GJWUI/Xjfe9+RqMssUKcsSgDKW QxB4KwKYYFdW2bDunUe9IwC5MTlLlbJLEuWR7LEylUO/+jYt1E9kgs9uTAAE H5fC/LaT0I4XfnfOZcOIoC4w4FUE1Yk5rmWt0eFvElS4lhBdkB8LVa5tY6fO UffXYxzXGfLQ74B3AnlvHI87cjl/4wMQMtqEruqUKoLzKxmcW2npCmtjXemg 9G+I1WRKYNThtOLFwqTpUf11gwFqRia8YxjgTc6pILsC5IMB8HrNs5+Ij565 9crEzE7GmsThpsgFcVRQzLHJm8oEGB0eJw6oMhO898lPSBjJaQpci5oJ3Dtc q8EMABvgpc0BnWLvDE1oeSbiRaQ2Ey0CJcBq1zWGTsZroIXopFBHZ3Itg/xy 8ueEfijCFkMCniSCoADDvAHFKdb7+J6g3r02966cSyld7+aky6rFxq/k5H56 +6oQwxw+cWMw5G9/8K1rUfohwhJXKhjGfGVAtE+pgFnEKssHzPyTnjXUWbm3 jMDtvBG4bTDU0QxgjtfCbn8O9K6ETa7IzCmrfdiw2puGCzxJ1wqh/KrTt8fv /Og36MWL7EWErL+NKMoWJYfCtgTlqGdqG5ArGEo3W3ySQT0Hz0jW2OUOqNd6 v2mgvmIEsUZ4CG44VGuHzhvsdmMI41PzQDxgR1f0++hbP7OWQKpBQgMzCsjH 79kEDhv+LcPwrzPqObBFeO8w6mEP7D14mvBeZtSjeUF8xg4wy/r4GHz6nsOw Qn0poN45ArgFLpWBqMZXz+2E+R+A734PuXQGfikBaPDr29sCfiULfBj9G2Fe q8Gw0rttxN6vbgv3RcK9syhg2Eds5F8Zn1qUm9J1yaRNsgQgRn7FuMW5LQjA 9Xtlan5JJ8Kd6b0D4Kc+YFStdvdLVUJkMcGsEVxuMhNIXIzZ4Mr4dJcttOT4 G8IL50xHDPu+ZTjvngaqZNf/kDMsvvydf08vKP6jV99CpKaO+9+QfqSUUZUt WLU+WtGW8kvOdGQi8hkh98e9ur5ppIYqhps/ykPAkI6evI06rynUL+07Gb/0 ZQwLqC+R7r9z7fl4cflYN6CqygFNL5gywZwZioYZ7c7yj08dvkA4bxhxtyFG O9z88Yl5wnmFNb3S8e6dv0LPo5IJer6UBOW6hiAHk/6aDOLZ/GfEXxmrN+NL +69KIR5RAJ78DOJ1Zd42Ee8/cygH2p3o41oUQ1+N3kdU9UY7benXcpJWvX1W A8sgtPCGd/2kqH3q05+ZSRv/JYgX9L30V90W5JNo5eve8yW0q6KVvAXhOnIk cOV0EuG9baSUpo1oeItQX0EgD3o/2ACcXvLxYX9qjFL9Y4aB3zZ8eh+wK1Kg 7m7nXDi8u4XCtUgc4HB/Zf+xVU6OJTkk6OItypVKhqqt5uNePcqJqtw17rW2 bxtB9pJRpjFuUE9F4Z7De1C3hHu28+N3f/63Yet7aaGifqnHo3/x3mG+Y5j1 LcPBbynII9TuHHsn1B7yUaLgA+Qfe/YLQckz5IOCxw8/ho+GJYlggTwo4O2f +paY97po4MD4jMBeo/74NbevKdQX/ZUQAt8aWBhiRDxwwJegbgf1RX8lI19+ xhNhSnEqG/mNbQG+FACPLpOY3sb03B6rR6kNJ9yf9HZ+fVuQL6cSFEJnKtfG tSpnA+65VoMQP2zE9CYN3A8x7g8cPQusB9xzNmxeCQFe8OrHDXt/mEF/27UP EcgB91EGPZUo3vgAwb3EoEdbT7//57H+HD/0bAnAQ/UC8A58onJdn72VGBXD zq/nIz9dXdBAV9ha3KPxhwzkF4whTBjkI8hX8T2oXkI+7P6nP/gN2PqYUtZL PRr/LkckHTc8B/mg8eeGp8me1/CHV7/TeT1IWTcV/Dmw72bDwx9ePjQ8gF82 NH4h2Zq1ujX8yyn4s53PxlSJVhH4v3HXAQBfOACZvOsvPbExt2vf3yUHIODv NKLmALwPRMY7y9aWOhPkTGljv7ktAqhpvqE+z7/iVaT13b+rYcLKIbQn9v3N SyshZ6FvS7qCn8F7DwLydc5CYheSGVQRfFPjdwzkjxvpumEuIlHBPScIuBaR tgukpqO+9yyv0PbQMcPWHzFc/g5TgAT2AP4yEwEo4c5Hn4uvue3VmD51wjNJ hJSPgEdVeZZG5Ijh/Nf6xtv6ksKCkkNx/quGOdDhnJ/K9umupwzrv8RcoCJ9 rmlcy8H6d1aAeAAsrpRKCVE//AsyeO/5u+LHDp8DEQwZXsCQ4fM3jEhfwzAJ yoZJwJwQ6sKS4aVT8xYnSCJA1zp1O2PxM6eupyCA+y67BCVKIjrjAC/8XSfF DSR0AI3mBi5g2ZIbAKoHXv9+YoWS4RWoXWc0ydobaOXUEuDv87hBvILLT35E qjuFhiI2DLQj0NwWN1Sy3CA5Tc5oUBccBwz0wLFAIoYRI/Y/bsT+O2wYSLJP DAP3+5XACn7y8Hr1kbP0cp4A9tX1eAUjRiRgWLHD0t4T8cd+6vddh54d2CuI X/ix39xcOnB6KWGHVHHZnXtPw1YoGYl4q7isbuhrKS7LsIPOweMFVqgZpsII XUtkscAp4K5mDB4qGBHAGrMB0v+OBYgN4Bco5RUiVr5QdjruDo+7thwfuLZW nQeASCAIwUoAdIzgQI1pAfVtCAaAEJqGqVBlclCmAmoBCEBsHqTqAIQKYC48 /sLLQgWAtlABvkumQR4VuO+uff9U0AvPNBWUDVdhRPUhOYChbVGAFYQoxV23 oqrO1DNOUhTBfkF7WwxQ1DnNEO7gIkD64fDsqqaCElMBF/UQCYwaEcFRgwpG 2FJQEUGxFEL5adKvd2Q7tUb8vgt30GvFUYhzFjqG3zBmBAvaihY4T+BE1tMC jAjnN+AF0ePYJ0YQVHeBQcqGA8OzN24/ZAQTrOLTjrLnI066zKoZRvRl79i8 aTKMsMkAN+a+k7dI3Syxwpmrby2gI+ySdCYDcpN4OWoaY/cGf4lUpaQrOY7Q YMoQZwKUwQ4FS5h4oLTriCjj+GwXVFFk1nAMQqV74IuG4WCMGPGFihFSbDNr 4D2SBglrlLQxgSrZCQUxKR7whEE7tOBHBMJgn4KL0iiSCL6wOANN7dp/nEwO 51ukOYPSkhJUHDJS+R1cC7QPsEY+AOCG/5RtsHDT0cj4yGQh3rfrYCGenV9k sMNdd1AMuX8OymuSSfkifmxF3BmRCkhmOKecwSIZ7e8IyeA9ko9cjTuqmBnd wP+w+NJimGnuJkpSKIFhnM0RGEaHg8EommG0sTFuMEzHyD6OqYJ2NjQCw3Ak gn6mFN7BKo5d3N/hCpkeQ3iCSKZt+CcTRoiiZcQla+yliH/iLBD8S2NYSO6b xqDrg9gUSRUGar5pGZHDlmEliD0iPoN7bQbKKVG3t+8+SLTjqMbKVwxxhYKw Dj4fc2SwPNONZ2fm41/+B78Tf+FzPxe/7z2Iajz5+Fvc3d552/3xiauuphf+ Bp0VEOcoULFUhYYMWsRL+MpxVY33jOrSCng/r3n2E7ApKPah4p3a2+F9+YQH mDaIed7hHEzwlnN0hKuecaKNkDNYqm44PmMGV5WMWOgQc9VrnvqIG80dxFJ1 FQyJuPhyvC9RFTVRudnBNR0z3aPoF4FQYS387qybk2wgoVKCC6bE75EnjDNz ERJwSEE/5qolzFUJzAVoK+YqgLaw32HXwfj88Wvju69/IH78vjfGzz3+vvjj b/9cIf7JD33D0b/7Nb7+wq3xT3z1O/Gf/OX/FX/nN/7b+PXPPA+mCzznnI5R 5gYVlXRt97pVw2r+hHu3S3PaXismfZBLhXKqEcU/4kcN/wAcx31QPlV+xpM+ QoalbORVJ4wMy5CRVx1njlORVveuN94yqeYPHpXmOPawiN1aiuMOLx6BCeXm rzcG0zDCsHXmOJRfLO5ZIY5jT6tnN4eugNI2VcXIijaNGGnb8LnaKiLDnhAy o2CGJFXvue7yoRPEd87EKvfN0dRoFPD+wHNnHIk8evGu+HM/9F7613FbI/7e 7/+7ApivAOpzXTvyA/XRS8jPER/vc3WDd42ymZbiPdwWCO7Oy8+22RDDMIXb xHfzElqW/aRkhIHc4LuVmdk4mkOcVlW+2+Jkl3b+jRvFW0UjzNsxrDBhNiR6 RbLGFLdI2UYOswVqUsxGS4LwrjDb/NAIWPKUXf3BpFbIwFVTgi61ID6jDbb+ lLYKMVnk7S96MZUVwGPuy8xkRGR1uhaJ4e669AiozA0I10qgtJOnr9GUNmxQ WtVwD4cUJIWUZfycyNkWpZUSkyrUhLN1CBqliLTuw6o+tSjNyIhJvlgLANYh JI/KymxbHJ1GXMiNuTeE3DKSRxNGCJkpTeJE9DOh1p8dQzcHntJWF/ZSvSjI rGl4iFNG4KhuhJWbTGn7jpyJH3nzp4jSnJdIY9CxsWx5lzbbakaQuW6EkYaN UG/TSPgWuLxrrxvTnWvPY23ZSabDJ+J3nb2RXmzLmYWmDbqWA8FhrCC5265a xX7NH8JDQ2DYwaBzHOfWRJjO3Q5beT1Eh84DgVVofM6DDCTG3qRHb5KYBoc9 fPhqcSYrRghKtqGoLZZuRL2R6YIRme7kGGh4PzY1R3Q0qqRJalEu5tCYZKjw s1shYM/YFCgMJxa7a1GojFo62ZvohnuZw2feSCvJRkfxHAvedcxwlmMqYqsO cxY4DOYW2KqWw1mOqFqMdRUGFs4Cv4Q7Zc7a/EE4S3u0wlmc/iYz7O+as/pH 6dNpL8sMmzY4q2GkvaaYs1RcO3CW1LbjR+c64FqCrcqGq1k3XM0ZI6pVNYLd LeKsig52a3dzOhEzGgaiTBXDEqsbtFUzSuSsWvSGka0W2hK/zVllQlubI46+ hbZgluXvkEkiX4q24rfc9liZmcv9SoQE5lqga4neHzx2jgxDx6LNzGgcQbkR 4loMeTP8+FNBKnKSkhOOfU5MVsWdrBqhr5Kxi3WKrmUdMBeWcq5m/3AX3juG im+//Ka1RGwJGpI+v5jOhTM9eS8SeXH50Y8f51h5DkmlU29isw2lmCqF0LZi quPz3fiVp0+CpGaZi+ApfuAjP04s1MxwEewqAJZPqasbAekcLko5tdvlIm2j lZM+wEPUD7ud+J1syu+Hi3R0zUoTdBQnSGC9YqTgp1WOTQ4Cqysuuub8Q7CZ 3N/12k8l5qKF3cmZEWy3kc0Ae0lz0VtOXk/hEbBQzXAJ54ywV9mIsA+x/YQ+ hIfwcu6hhN0gWFTeoAvmtP3UNNJwFSPsZZXH141UeUmVx3OxXCr0uDA8AiJC qNBdK2RHISsoL7ajKhkukngY/ERHQDXDivJcVCbjafXWh+Mf+8b3iJMcRUbN 9Kg0IQWLFz9NT0g0UkiH33CyKm5gzYhvFQ0vcEbFt3ASxbnVS84z7DWVhIi6 yyfiZ1/6SvzYsy+tb5+IUk4fE5EOwAciwi4e2fFz0kj8idWVJqIUPH2SvUJ5 rz0TU/GHL90d//KbniJCuvv6B6YN42hYERLiVSAlNMkGUtWI7VQSRyjE6tQJ UsGA6zBZcAZuW4RUSRy6IAJDiiykvMlyevMIychb4j5CH5r0soSkqwFnjaR/ zcj0zRhxeCYkqv+XHx1/i3ycyslfb4xKTseAgwcCAhXNGzGqkhGHH+JSQRWH d8KHaxpmyqmleJUjpJCL01ZSy4jJl4x41Zjh3FWNzL1U84rzxE6Trpu7sGMp xU8wmMBJmdM8ShkXT8WwnH3myekDDz1DcXnQ0iJdq4Gcvv7b/5FeD7zmHWI0 ofSPSEpVGQWr6eIdr1nLkFR4WhHICSTFPl7dCFUVjB3HlDD051VVyNGD84f/ RJQezDU6PM5nnZD1BJ8PQXnLoirzVSyql3/lX+FF4BVvIFIVSMJmUj6g2Uz7 fqr4U4LzoN++bJbJSpKJlmazFLYbyqzCZ4fn5+KfWHu0CEpzPeAtu37RJDMb olkcdXczgWs5mFqK1Vyj/WmNdzdti9am6FqhsgbJHeCF7zm/crp/WAxm3mqm u78zhrOyCfqWJNNYNUyuOSPTWDEyjbNGLUPJqGVghoPwhJBVzXD/yob7t8AM h/cwscBtBSMKP5zeAaEZDiGs1fRY0s/NcPRRNSywIYPkCkaZ5IThCpaNCFaF qU6n8NLFin6KwGzguCJdS8ESYwuskBPEajPDwTNEjArc1mWGA+PB9BKG02ZY Lccv1AynjtqiU8KWx6Zpf9wqSxCoDSTnqa6sHUSppHImn3cKEYkXdsPLsRsf ojlihamzGbfgW+kUm9ChjuRru07oUOw6pkNQ48B0WPJ0eGVqfqdMS6p2hiP6 gQ4jlSE42adIgw3Fdn9G1PsdYN85u87dh6dDx4w0UyDCCaZDzBKiXSDCKbpW LTokd9P97tr3WbtI/fB5hMBOcHgtChxK8qedrSo/wnLiXyyZhOTYDZ7ICckZ VidVZiBLqflSF6GPJGOr5o3NBxdxdnA6UztpcGs1sVC7Mp5mgoyQ4awaVRw7 mFtRN4bzYPzR7r0ZzjnmVrWHzK13bxUHu9Hkzkporc7cCq4Fl3pW7XVnF/lQ KBVaoxenAkaZUqVOTFOq82S7mSHQCnMtaaju1Eaj59OqTnKGum/JBkwa3mzZ CKtV2WCMEr8RHq0ONCLZmdBoUSJsMBTdbTjflQtNVSRtSBmIh5cPUeB/J9Fn kcL9Tz3/GVCne+ev2kiscvxfV5Ixw68F+fAFGv58xVV6IQfQqTZaRJglIkwU ZPDu80IwBQvgyAKRZFmMQI2piOLiUTFQpHu5Vej1+oqczNMhcUebBfCmlHVg TztKzrJb3JaPnAZdur5wLYYsQlYQJaiWQ58p37ibgEf840Cfrz56LmQmTjF9 Kl9b+8dp+kwVudZU9GpqqA3KdCvm6ROuMtgIczWmZozrOBwU09YkZhJtO2vR tesjW2PTCwPRJhdTEDWVE2oqpUxHOhnZcZMDcrS1InStYsxNs/bE8Oupzm7E iDbWDFprGXNp0Wxty3sZG0ipI5mjpDUlpfg+awnXWm9WpZpY8ZsZWqbv8ll8 gZZ1+e4C0zIyIDBxQcgFg5Z3GBmPchJlDDKgDsGnvlcX9kYNw6kvGk59lw++ lCijznIIJ8Oxv+a2VzMbe0d+YiYsmwQzqG/2kiPLxu2wManSHVLE69yKXue9 aEQWa2oTjmQ+5QAOHW3lVAdcBHctk+mNz1X4EFsbenIZwsDKRXdteAbWRmyF GVhvBuplYB/45XyG8s5byjuXJ9x6c7SoJTfqyT9KzcSw4YhWMjF/gSLbqU3D RBW+VSZq4NszN967NgjfqkLewLePv/ByMJ66iqEkKdKfb9P8XTCSLM3+xKtP 4wD5wm5tGG78qFFxssAKC+DP2oKOtLKEi6kJ8dAORxBg4sE1Zz7ytTDlYPkp PjI1aMsYVjmzqBmLcSiHWo9fvHMAai1rapXAQlT4fsbfMBJRUsjTRzdYhTyi 5iL1w77ghqbWimHxdula0clkXfiyYORtykndS+hySMlsxGHSJjFqRde90IsD CEsqOgoCRWpmXG2a5rSMjhOsZbrDalHo0ZGVadSOcJAAuRAQ6Jmrb41mec+B fhCc7Dtw5mGjTymvc7Rxd+yH6uxwsGGfOn4+3jM6Bsp0d9KbatnFVIlRs5/v JrPXWC31GcLo5PRasrQ015xpMd38BlutSLugcgWAdhp91vBBs9lPxYLw1mt8 qoqyPOnFVmeJCfCxZ1/KEiAVZUi40SLAMhPgyMRMkN1Fxp5OxmyTAFMGbJoA U1slyobj3mIChCUq6kOXrxxxroubqEgsdjDPxVvvh6UTCNCgkvUoyu7+TkKo zBR91deo0X/d8BUcUxRAFS0jjqrGtpoZm7F9pELv8XkmPtB3jIOU+GTYuNWf zVI6RLMZSmE0m+nSmJ10LRGbwVDkUpiukeyx7EIOWxDpSyi0xTloCYVqF53O gqCCPfcH8NPxBB15OQPRSeOZY9cVQHEFUB67xAtzc/Jyk3nypPv4lXff7efY Wa6OCMeYB1WJnxiS4eSoZMClVeHBI5OzMCCtjHWHt4dJYBIPkwMo4u6CLgUu W6XACKw69987/vwgTT5wvaKDATqg2lR7t3TJ8H6nBXVSTTLbJb7iNt5w6nh8 cHIcduaokRVaYh5VMVM3jl6Ts5TZPobX7oMra4lESQ3NStbjbxJ3VohLlz0v UMKWjaJpwxEdNqrZFIeWmUNxDDWsR+HQ4xfugiUpHOp+DYageixe4LxV9bAg 3lgRONRxXpAMtX8npIBKzKF8aE2KQzUnW+WEaQ5N1beUDO+9bXjvwg/wKjFB mK5F5jC8v/TaZ+MDx84gkFgZkEbbTOKSV8cy8RJFM4Zx2Opj8TMl1XNY07H7 WmYoqVmQWiMZyg379+HOZw2/I6ttJciKKKYaxYCkuKZJ0apxFlJEShxbN/D3 zkPeaeSHLFJsKUlqV6rYjeZu1pOilORoB7kAPiyADgvgwQL+I+HByCeLIm8n oqu5OWxBO3mSOFBe73zqDa6hz37wxUL87S9/uRD/8Xd/rRr/zZ//GazvhW78 e3+6GZ85v0r8CMd7xMgvCV9KabTiS5IhjkDCXrRKDbPbLcCji7OT8XueeGX8 r7/9pfjXP/+hePXcmWL8//31XxXi/+57iIRe+cWvxxuf+UT83rc/S6/HHr7f 3YX7K3iMC/Phrrem2qqm2rDljGOsToxtX9r59bg1XawqifkiJ+Zho040G/HP P3AvvZhmxbOHpw9PXtOsjq3WDHO1wDSL6K+zkinKcOpa/+hzptlQEZRx6+uG ieroo2CkTqYMOI/2oVzYqY52/VG/pWC24uWc9Iqn2pS7pB2KPKqtGFvh9BH7 kl7Ko1rdnlUU2eB/aYMcjWio2ggsq131Ds8TlxHRDA0ZVliXWRY+JizVr/3O X8Fur/SntpTf68/tqGbz/aQQeYkiq4RpxPAqlPFXVnXRWbbVNZUqeRNy/a2c IYkCmDYcnWGVbMNsWNHXspHkskIEmn+lJMmq1/bRywbxLyKa+Hx2fDy+68KF +OT+/fHKyQs0BhCx87MX+ueWUrvndCA7Ypd7iDecwOWWz4lvxNQsgF0LoNeE XV1fjl7BrsSwE3T1xz7+D38b0+sbv3yFeBeBTfBtJ8dP5wML6MfzbZnsdjAP +JZtVHNbStOopRbSdYRbiv/fP/glqKzjh4lrHfU6nh6IgCuBgFH9hFdE5vZ8 m5PrOJbESK6vZhiCpjtdA1CJTzhDdP3aC4FUP3vbzQgCdAzbdbcRLq0btmtB pdBAqJff+Nx61J9P2e/XlZbLmTz0W268ngJNOg+t0TpJ10ZPYkJsWIRBYbiy wVpJskyRNUfCetdmzkjv5/Qzi6acfmFRPmGNWjpttKec/tBeL4vuGBqLioa/ P2oEPNtGZK7L8UXNou/+zNfBCbpOO/CWRaUNo/+SYStPGv2P52+XKeTT6boM y6LTZs6wdBikfzlXXxe/MGDAVUe1pPyp3Lf8qWKy6QeeeKIQ/+lPf8V14H6N b7nrVfFv/sn/ET/3gc/T70gLof7z0z/9T+eNLcpcHIWn6GZJdn22NeRGMUz0 2lb7+a7qzpMHv0ykWdSk6aQSV+fSPbcu5BkKoYxSTzj6WeK8Ml5vhU0oMFix McbaomxtQgFxPnrH9SDOKhPnl9bfDE4k4pyhaxnMGa9eOBuvr7+TTDqc29xi UlTp8lD4DQc+Pcx0Rr+gMvqr3UUQonvnryBJRETBi5LO533LxIt7jAhpg65V bXJSJSrOkHr6fZ9aT4SnbOXuo2rGxmQXtWqgftzwUGf75JedIemaDpmfIMfM gWCBwFl5HCiPkcKPPoMUx7+A/co5HKi2w5hOu3AgPVxqNUoy3sFu4skYMwzu lqEjdqrkBFx1UCBecN2d214y6MZiwVom+smjqOQsiR7FtLFXJ+L0s2OeulGQ 1FQzK1n/uj2KskHHE4bzMZUTfh0ghqCL9bw2Tw6W0QXtM/l8VyG+86lacJ28 fv47fx6/+vXviqdnF4X3QkWosQnHIr0rI7V6CIM2lccP4nvtxavj333PM+S+ W+RXUuSHz0F+bSY/dRaDJr8gMry/TUKD4YX3lw9fW+h7DE1644viv6ZhOE7R tUr899jlB+MrV74dx/HfxJubfxx3uwupDTDIxGRry9nZ1iNObXXGizNCFaa/ +w/up2ImEF/bSBAJ/SG3vv6ZbxHxNTm8KcYhqA/dvPdzdKawMB8+yjjXUUVZ g6d27Exld/H3sjd31MCYZHch2VyaHlWMPI/e+yF1mRbdWY4zb1ZPmXxCd3z6 VV+6sxznOv9bwQUjpHyz2vw3aZjCTcOk2cWcjyaE4vBylKd3B4ebsbIoVcOk qhsm1ZjR/zxPPt6DVpBZYlZLTaC2mYTVaka/NSNOoGupJKOUraUSF0DVUlme OQvfdX0P6p3M57A6cViRnOFP/cSvgr/cNONaDjyGLmC7YWPzdP+NzakKWW3p Lo9NUplPU20mvGXvQfCYQ7RjMr4N8YJ3M6chT4NoI9isojgNiRpwmmxsVmWY 9GI+00X9cHyze2TkdE91/m9JURnMO01lzn4bMkw5T2VFcnlhxjkac+/8Vcw6 ROokt62O36SXM/E2ApYrqZ3PeHFKpsosxiFD4q+mURG0bLi4ba4LwnvMxae+ 8ZsbfdiLXdlwdozYbE4fu+56dfOoASBhL7hOsFOWj5zW7BVAxOxF8Qk52/Na g22YvegBX/Kjn7CFvcrgrUoOe6ktg1HRcFiFveiJYOsCad4t6GS+1zayzoFZ YtsoS12f/oXfRTCrZLCIRrFkMypGTqeRM/k6xiaTjyFNzMzDDhP2SMGT2Ytu VRI61Zx+By1IggozzotYz9zvpmatglEaM57PWi1mLeVpuu48d4GxENZjy2vS SLXkEFbwNhHSayjC2j81Hb9wF5yrwQiryqYY3ivSavQ/jEFx1mrUkz5Idruw 7VXM7HYBT8HGcuTklsgTFT6DjQWKmmCiQoxube2VRFFlJirYXaur58nuqqvj WnS5trO5NsII/X5jbSRycqPGRMVhuBRR6QSHRVQtrsqBuXXDHQ/GM/PzMLU2 EoEtcbnq1eJhlpSZBbKCxh0yZLZjYEXynxJTQjzp9stvYq5KCYcuTpCSwjyu 0o4gcxXehxSFcBWf2JfiKn24jLXBULiKHmlE7MkB+FnDvKwalsZuhVVQk6Mo h0FcnXvywidC1XChf2kbrb4EsHQdD2gTayA5aGRiwRPZGhVJ3Fs5aGfxyPFY unjcoiyr65ZBlSOGlb2opoFv29xPoylLqvmEsnSh9Eg+ZQ0blFU3DC1xGMf5 ZPQoqZuRk9ETGKbLZeqqjHqmMxT//Tfh8BFPV3jPmYZAV0j8IrsAoqrbdFU3 zmu45rZXrytQ0IKkt5TUwx5kiZMZmVxHSL3W1DiTFEgLjiDoqWZYU9X+lYKK pDSNBi92/doLdSMkVjcSBvuMYpcmkxRCYj/0zJvj2y7dRyS1Y2lvD0llzkNW BS0hfajdEatOelG5BVDo7AohC+A+7U0DtJW0Su2fxVRVwyeUxwZrn3BQpioZ 7dX432JgKtz5nIHPqmFSWDRVpGtZSlXC0wlQmqFrJYSasuUxsOaGDfUwbPSf VQ+Y+dPX32OVWesSOdlyZ3U9ZPiCwoo62yBdYyigJg7xWZuxZWc9upYnrqsH s3bySWmMSQkfgYRAR80MKanIPZ/R3vscpzQpkfDJlrtaJmIPOirnkBIqUD75 uQ2io6ZBSs5wqhqH8DlSWlPyr7OeXN5WcZ7CKEEzk9mcNoylUcVDHKBy1mDa WHIGUnjMCprNcJDkEVIkxIF5d2e9UamaEZTfZ9SBNFRUCibS7/3lZvzuj3wU aUqwkBfGujMXq/qgY3qyS6bWw61nLxaHDCzsZIGMlGdz4eb7ykYMnheA/lQ2 915ruGFVw63TjxSQGHzVOJJKCEifLFMy3LpeAnL2SDRv2CZlw0DYo3wpoBDU U+KrfjSK+93a2FYwikby5lubaJLu1LF+SXeqU2DCpDMBpQL9ef1r7utftFLW ty6mmfRvuJMVXSNMLy7FaOez0CSzEN4iXwj+aWdYSMfSh5mF9APjmYXWo3TR HA1oYW84NkaF0N1nnoVuO3oA9Rh9WaitWOiBy2tSJ1xmFtKenPtXs5BOITIL FckGgZ/mmMfpQk89YCIEkDT16IBSi6kHcXLcEvy0srG5DM91n97RFerBbJBp JrsjnFfm2uoNJVWNgPi+vtUSVaKeIyfOxt/8jd/K0g/LQpX4BwaQPFVK10WM G4qwZbgHVjAYtgBiSlK1y0fh0Y9eeikluy6HfLRfxeRD1g92OmxFPtbWXd1e inyuCPnsMBBYMkyA/uRTJiZgJy2k8b0dUEXvstOLXqo6NxozZr1tsH1X5fjE 5lSZxnLfCoKqJqCe7keNROeQYfIK+YhPKIvujC8hH8Mn9RvI5dn0MH8OOWF+ +qZHGvnkM2P4ZZ0+fhlO02vzg6v1E6vkSBerLKxiBL1rAzLPsGIeVXJbyjym hllHNK+KyoTYEeyO+88ciufHhlFBO8+8g0E6tiHG6RjxoeGM64X6hKJxWMux 87dcWTmzKjW+JAbgHI5et42gUMWIXh8wShBqTDmgINAM6AavH/vq11DpSnQn lVk7hoapDGFlckGXG0wamGsacr+L5V55HEHzOpYpGkFsveJSdXWd4R7VDPdI nzEoQezagIRTNtqr9hCOu+FAONrkKBoqf1klHRl1rhdPO3B/4G7xkUnsc0Dk ybLIFIJO5Ey37lGmO+rN9OmCBn1OEy90SPZleh43coyiVnTkT0optGunTKxy XxfPP1uPS6SkVMAtWi7D7GCGiZIyAceFCcNkyqOcfe8ZRps3GYahqZewT9mI UteZYVAq8M6n3pBiGLyHNwVuGWGGkSJTZphC5umZi3tWVqO0epW9Q0Xesw64 g13+6vN/L/7E2i1ImUVCM0ifgVZAMMNGhGdEeVaS/i9mzjE5cQ1RjLasOOTs muwN55QNi+aAEc6pcv0nnCuEchy1uHf+KvSCHx91LRHFYEigFqfUpg2d1jBk fUlt2IaU6Zgrh3P0fnYrRzQox6Q8IOYYElsJPgvH6NPohGOs7aG6PZtjFgzD omBoduEYhTsHGz8L515xKeS3/R2XSMphzLAFMWVMdtOwnXblBLhxUEv2mVM6 ra5DeCqNP2VwWqOvwZq+Q+mazafUcxOcE5elGFpnrkqSTL5bi1yK6RpZ/PEc D6pOFFMKwWVHL2tRul5M4jclI6jcYHZxTEP2imYX2DPwksArY3Qtp0rYHbHQ dvMCnflLUp2ZAXvzDDL44BXwC145lkzbCN6McyhZBZHpeTCyjWf3wZVALwWQ G/MJl5U7Q7U3YFM0QsYHjYCN3h/JARsYdcQx3K/imGJ8aMJv0kKEZtaAVt2Q +SXDX5Bo6YWb7wvnucmZbjp4L9nyPFLRno08O0jHiYVUIhX2EVKx9kvq9lKk sjlaq4Ndo0W687KGnChx55smRTocHwlEAnqNfBZfqJPiEpLSnjGMhHoOZVss gj4kzd2fRYqx7jdPVfRaoUXtffFKFnXcO/Tb64Ylj/5kC6WYzx5Lhgs0ZbhA vEkGM03sISl191qN0jsz5ZFSRSP62xyQPSa48EeVMZJ9Evl6Wm0KZeuf8f7M 8g4QhfsM16IYJcQXc4Zh0jbiLhN0rer8OPk9KOK5+YFXb+4/djq4XUjPS831 iBFjKRgnUB40YixlxRbIgjtHx33m2cKxR1+2gHTNGWqqasj27r5sUZH4SmAL Du62FJQkEXSdEYetG57JuOJ1ievWDcK4un+tdqq9Soow9ozQsZiBMARgWi/v M0BVTfRyaF0HUkEQaHHWmNSaYd1YNp5MqtL99OLnJel0uqzhrOGw6ePqsmn8 KHGfQnfKytFRIr+GvmBZagT7cIKz1TwpfOeTnyTTAXQwy6RgbOpA10QKsnWO SaGZuUPnpITnzOlgbHtAUphih0VIIUUGVSID2ewmVSnndnXjr7/1QfclTwRs ORAFzDIR4D02qYECWkYgZJrLZcR8QD8ggGtuvRQIAFt7EeEA9EfpWqHPYB7g IXHq7MTDRqCjpLb3IrEMxAvunWeyOTEzl8K9eCLQLXOGbqkaIrrbME91VPH2 y28SzK9FUdoglHBEDuhTJ78w6Dcmm+0e10OfJHPGyE5broeAvhRA33EOjLvj RQUY3LwjNefq9YKjkijRVQvvfM5EAKA1mTqKYJGoTKZOUEu61gJ7HmFbyXAL 7MoYoRfvdPBr52MleGUAfsBI/c7luAwFtWtLnhrCQWf8nnoUt451DjGwP/vY JSo40cD+9pe/THFNDWzEOs+eP48hJ5RVSW3GkrrYZ+84W85R7nrDQcOIOszS tURJFXx2+Y3PAc8CZ9blCs5lHWGQwGV0xNg4UDSiCpUBsTxv2KdlQ/z2GFiW gJ2EFPjpHHkw1lHFumGcqwcfhChlfZsw1u2lYByvTE5lYQzY0Vw4tX3AsMHL iQ0e0gBNdYNI62poaT1aNlx2mUcr8ImgBMMqKZlO4vt6uXQhT142Wd+KsAW6 5SOUgxsh+xpOzkwTRqGTDxuJ0gW6FrWh7rAKxBYFQ4rpfNCWn+6jI4bDDFPn 3lMZq4YpSjTgvgOgk+zSC0y/96e/FbrxQy5v7hoZSylgp3AdqfVXvnycB0G0 bvjucwxUKN/FxXlRvAJUGNkC1DG6loKbzuG/I4adXTC88ipj1OnfIFtZjKKQ Jy+Lp/Xtnhw/FV75i1/+xxtqsVPGsAXQhrHzhk/Fg9AEPZsHUJ0HtXYGlXsA 2h0exl17gJaImB659474mtMncGP7+wp2kd67+17XAq0xOp8zj1r95XGdUn9X DIxiueZzqMBKumoLXlMqNDpXs4s7NN1sUjcA5mHDj96pqtKhThkrnrD88znh K+vo2khOhTk+k21+4+wfA4oLznYFFP/6bzfTXfQWauN3Zw5XB9ScNcMtnuV4 /cbGZ+NHHr0v/uIX8fyHU9feoot/BJLjyheWKNmRPs+W0T5vjbH47o98tAeL qC2A2nCiGILP6FPKnguGDC0bLmBFySl8pihKeyyCnev7YzFl8zIWU5ExwaI+ juaMEWmrGDZvGourCwuER3fXgkUA57tf+UL8F1d+CQDcbwiwYNGZqJtzO7zd IXyDOUQTaGyHocgKht+ZF8TnOmqq29ZHtMha7TCimXnJSG1a60SB1GfroARe zll1stWbbtvJStKhMGszkOHK4SmnPvoXJmrojfFuNIGeg52bK1wtpdtbAnj/ mUNOLvprRF0SXTXcUTFdEZeCRvzP/8+/jb/76z+nMUhzgsP8NAbxHp8/+fhb oqP88Dn99BP2Pd3YPPaQZM9iL6LkwLDCXlUTK720vOzLccU4VqvmKp3mut5I SzUMo1IfaigBpsY2cafb64s7f8MVMlIX52bj//wXf0gvYNCBbl/fuJrnGMc7 G3v37Q0hA8wj8Kbxp5VUHo9pm0JCWXifWa+13vVK69u8RJ2FP9a3Gn9rgj8Y qUeMXFSX8Qej9e777ryiOQjf4x3tA+NvlPGHQhnBXzHBX/jhePh6pOrgHN4a A+q+cl+v0YeEH3vsIcCO4PcX/4oOCYZxKstL0yIh4XFlmT73mofpdedt9x/h x9FKvgge5FWnr24wAFFgZwEQ4oiaKol5qlpWEZbIMsxEUJwgRpl2twRe03i8 Dx93R2QjxqcAT5+accYIGllbEEo9wMPL3alILm70ix9+H0DnJBdXJ5FPvy4c GWKVsQgC8X7tcf+EGF3KgC7wzppM1kphMiPFYtZk+qo/n5WQRRLSyLIke/P7 DIVaTRRqKLRtKqkardXgBQawaZNzkU1OeIRz87Pxd//JP1zP4A3BGI03pGYQ jOm3mXFE7b5++PJ9hLTSAHjjpG1zQFVX6uv8+RK0d7/7zcAaFt5dixKFjdSC Gpgr0/uX3/VM/L//k2/RvwjbHGbgwQTF2Q5cztpk4Om7qqmZu3vPMtVxdhWT QlYgI1a0QrFmWEi9k01yr9cbudKmYWHqc2klHNPMAZy2WKuGhdkLOL7DHSoc w5rOzZYHHHt+fV2zglJ5K8ePbp4+eyq1G18A11VWLMDAvpiFNWse62oeZV0E w2JhWkmgPkALRKQLbk7NTNFQjxpW5Q4VLj1+6gyAFn/5Z7+4qsSRvN2r5seA uIA2q+xTo62j0Pb2595MOCv3RZuvheKMZ9TKUW16g0txALfOg8xfYWU645J6 tLw8H3ipkpf3D3/0RYIaXvgdFuYXPvdzIdv5y//gd+i78PJaSWZzILyBQ/G5 W8OAN22llJXoOWtoTa3nwHhzlmCQBf3sW1Fwgjd90kAe3vQxU2m84e4yeJPo CpBWNvBmpXAEb9fddk/8jve8fS1ZJF8KgC6MZAk/aC43ysrzuKrkbcNaF0AY 8NWGhxX1QnuRz9kxRvwQd3eG6bXxruePGJmJebpW6P1t9zwImMV//m/+KH7q zVQcyi3RyH7s0llC3At33TiaAzi9+XXYAFzFAy64i2oCCNSHZqfi3/3gE1F7 QN1W6OvGFbUbB47tBziKFnFREgOuqAHn+sC1GP/Z178YXzh2iEC3n0GHkgN8 H0BrM+icodkDOsjJ2uEjVNfXzYTknVGVCzqEGKQ9HZKXnMMNRn5fQKfPo+Sj QVJhlDzQaSvVqrQu9oCO71DHceHCadBxSEWBrtpz9hp8oZtvv2nz3gfv4UH7 5wEowGmAiJFqWebWHArBT7h5yK6JECFc7P05oS3HEUFhCnHDenzl/uWUBalz CvOs2BC0dAgjpLnX5oXVc3Kb8W37d8S/96Y76F+Hr5GcgmO9pWHIgFq1P9To Fp+94yyBrN1Xt5W1bhN3LZiOgNfFi2fhomF1CV7Qb85d09Oyjr7gnml4IYEP OAFYJYYXoCUVPHs4igKdRhnA9eed2fr/s/emQZZc13lgztvX2veurnrd1dUr Gt1A70ADXVgJECDWxk6QRUokQVCgIEIiSJAES6LFfbNEGpQpqiyPKIqWPSMN RZOUKZVo2vJYM2FZobEV45FUtsMxMTHy2OMJ2+EYR0zO/c495+bJ+05mvab0 y2FEvId6r1/evMv5vrPem98maPWyKEoQR3HiIB0vnj1HlW5iBsFmgS8TBda1 K6MD6wgmoDEru1eGNP2oAm2VyaMKesaW70uGupTSQL2DcxhpPEgdgsf4gLEm I42DJwpp2aYADBRq7Wu/TjuMNciAiCgcKsZqNIPDGfqgiLDogauAs/yieH2M 5lB2aFUV1AzFxvxFeuJHbrgeoRDTU9uXD4sAY47D8W49btZnC4A5vD5012kK WU6UFM5o4PVUyJLBl7T3AB7X2zrQFum4etBx2mfTeo1jJG5JPfDgw0XA20yU zybAw3dsRLq7eOBxzEQ90KlJwAMYB+56AC9N/yOBEGHMXpZyDxIvAERIbOvy Lcrx91G9+91asyoQMbL8Bll2ANNpgA0FRFp2KawvA6J+8JyO2uYOsq8giZf4 MCYcPIdKJyPO9eNG90100sHyLJ6SszzbwldtpC2aCOW04A62oS6bQHID9BD1 xbJR8yAGxHiilo0gTMsA8VqEE4c912dnmUb13my2bZporgc+VEuRWBHWWqbq oIk3NKRPOCNSlnkQJU04blSWwHTUE5ImzD20vJ+//RbSot/53OesfMOiSsoj BKOALeEYtep+1yYALeCGDSvpwLERAd5VAP/8a18mgHcKAe736C1PdQnUTsMW K1c/NHYUzXiMYPvnf/4zwUFlDsw5iVIWiyq5lYU5QnWTsc1xGfVgdu8o3nTp ZuA5wZl6/9G9b26+UfYBJipKGttMJr6V8qEXm3gWvnXU/vSZUzsbd14J5hNn BXP4xneCqZ5h0nKBIm26ESgznCmO4753EuLA7K47P5hJH75hJf3owzcgOv+W myvpH/0UDpBxX6Q7X/1wmv7x191yu/d2uvu9LzTxXSvd/uTz7XTr3Y81081H r9TTjQvHcfD+8iytAF7Q24i9Otqx8v4VjXriIZ6+fUYkqGN4prJZW3B08saz 6c7v/RZNnXejaxB80rC5qO5wOiVaGCuYizs44qXWhXhRFGhxum464vTh02V8 hsOtOc0Od5zm49WbzlE8yKlwy2peUKDncJD75EHv/NXNPDKa5KQK4PH67zfv SG9cWaBQUb+kak7v3+so0L/0/g8S6Lse9DkLgqt/NjCMx84dTH/3gw+mP/a6 kwL+nqHg/bEoNfoMJQ8L21nV+9RRBLc6Yx/Ibxbjn9hSqmIt/LcY/zpQtJ9j s1q37+7+UY0pYGPjFspMagpwn7cihgsUwJ7YiuHsVQztZSXYqpk+CCkEHQZD 3sS9nLzl1G4LarcNtduERTBbQhZaAQtZoGUhAyYE0EH63ffc5QY+zAnn6X2M Pr/8rkfS/+uffpVev/93Pk+fbz53LDABglTMBtQXZ8VLbIqyn5sCVZ69UBar A1RdgwYOMA1gOgHaz33ps3htKDQFGuAo0orRdNnKWETNsa+NbP5qgQ8iAbBy SHoEVvazwmaB+CN8K00PsPTZq7aM/XlFDxzCcu15euAwlgYONQlKcNTg7o73 qqcIH9tyglNcsacr5tuKIp545o3pF177lLt2mCK8xdQiu+Dr77oj/ZeffTrQ BNHGpesQ8GobdoI/ya0dqAI5VGgep4iglqCVKH8K+2HBiHm1mD+QQ7WmQcoY hD8QA4MTDuZoq5jXE6+/l/hjnyr3E/uhweQBLuFjSwJ5OGc9TL+Qh5i9LDtl 6RDIUj4739QuYi5ShFSIflSLU9OAq+teTom3MHdt/GsTM9kOdj3V7/GJKAJh vBx9OClxYHb94fLbwgo/VeG0c2i2n77rtqPJONMJ6AVLBiI5S+/V9CufeKfQ iWvPv4NSvvDRdwRaAaUkWXg7oxAVCsvtpBEG7qpw200XLuWOP0I8C9h3yhiW BE3ehKIQrE9EIbrpqpEfLktX6TXqjy4GVSNgWEwhvkjK0QdZLjwamilwB/yK xM42zWU1TBKUE/6gwFwEHJIuDtKhrJ74A5+l1qJrlBmuGfzRUvyBit9f/+bX nHlSxB+8yevQHPjDXYX3WvqZpy4GX8MRR8swNybpvUGfcRyS5hAHjRrJYg32 rqaTWSPS0Mmyw+E/K9JgsUkniqA7BnGMlbdG4IE4a0QIxf0Z6oeVQxKl7TNJ 4mra/YYysvI96wahqKAYcJBLCoNQMFW3R+B1YIUP/i7kw5966FYCLV4r+8hD cP8Gd6VBcfSIWPAv49nq7q66lXQ84QyNYc64gW+LdcKtcdsucUYVnLH78Vfe RF1mopBnmqoy47BBV4cK+4Y1sJ9nRp4nd5O3/MEUYWYYX8GdKUluFyfbWkMn IUULIGQBr8ZYYm3W1IyBrPNd9IFHcpeFxQWxnvxY6jmu4BhEYuXMZo3oYt2I LvLSkqXOvkggjB++kO3b7YxIGM2IMH7/f/m+E5VhwtBxazY43H39OwwP+Cns nzQMo6NP783wQFB8Tz6KIw0wBLRq22CN7e0vThsxjE6Wdws9tGIYE+ogAMQj wRc9Zo1n7r0jxCdnDB/G2SEtZg3OEeRY40Of/NRGxBq7FxaXSKQ4NLZsCG6z UHCbuaOMWO/sfvzzH9vIsOHNgBPryzRhVwz4tgHfCtDr6OF/+GsfDHpfuRRc gAkwkMcCD6Wv6AGTj5ZPqfZvPX+cGu0QPdSEHoBV9KmeYwhCME9CYAit7McM YPnnR7XDMzXAEG/efNqJwGtiU2BGBjFTwDWJMoSaphslE65pWib83S+9QLeI bQoeTlkSUpsucov41CL87SiCzBa/Dr7g+J4DK8QRHLIwM30zRqCybgQqWVaI ezhQiU1AxBESrAQ7tI0CTuEIvduvYXDEuOeInKmqz9cSo6JB7/U4hkHZeGuP b1sRBbwTEAVIApoSasvJopOejChgcYAodna+MWFUxHSLiSIX7LCIom8EO6dU sPPqI0+Qs9Jhltje/qth/yCzxO6lK4EkhCWCeotYQiuepmFnS7JNtgtEUbtp BT0JMVw2ADym9Psdt5wioVHbBokU4GNoQsAko6WT3J4KWXjC8YSA77ZPnziI dpo5QiBRlLrmBYMWJ3jAmADZ4OOfG9YJhIBl/rBTAn+6+4fp/5f+OzrjAfEK zjZ6NHnr3MhlWiQ8XDWQz2WCdlzrmF7JJ+DAE2PxrEypZpw1gw44KBrMH6aD QcKVbKCDOPGvYxTTRgizYYQwme5DEYCmA8QoAH+EMVsldKB3FdYNOpgw6EBn yeBTgAiaMR046xRnf4AOrLM/GsrRMIIVM4oJwBAQCedd9I2wRZsLdhC2gBlx 65WLu0m+JloiF0IGqhLVwWY48jluWA3OVOgyH3Bik5ignfkaYY7ihBqH2ZcN DVOWt1PnjrspdICI8nZ6y6Fo9psUMTzz8K0E4b5h+M9nxBCCDz1FDOK/nDCC D21uzxkguwdXF6hP7WFWgK+OuusFgwYnDST5h7vWYlaoghKcYO3sfDNEIJzt NFAzoJOjicW6ZbMMmmD9bc4yLyZmTedMyhZzOB2Tr1linyWYgH4YNaq8AzeU hB8mjfBl0whfMjWQVS/hy0YUvgQ1NEtKz3GtbPWoRlutQA2TxdSA1SEKACl0 mCDgXahUpz4/zLVcGndYVPqJPIut9yH1NlRX1OREiOKCdGV5Ln3m6u27BweL JDTaiJIgxIRRxjduhDT7bCXgLEMJafaNfEg728G8EU2Nru7O7Y4XLdMxhFWS eqAE+KY6FMfngG0kKuxwkecLtCCw7Rk0sC9brhBP6DINOOchtHc0ckgQwGjn 7Q3MJ1tCXLrgJUg2Gc8pdc3VHc7oGraGphQNYLhMA3WigVpsG3gDJzO9OEC4 z0Bnu2Re8Vm0tswrJxVITlSFsJWHbRtmxxo3jcs5pBnysL7X9d3ZdjsAvsw/ mDSCjk0j6DipRBsxA+C9xagH4iXoWC+pyNWol+c3o0JXNnhNGajXWQIxCLr8 rv0DGAR86LoZKFhRYiuZijbDHNW6yGxm1bltgjm+E5i/8uKT6be+9tPpP/n+ l3fv3rhxkJFrPnowbsB9wog5diI7ABDf3f2jMSOJ0VJFEOIbiD+C6EGMeO3J dg0bWfJ3+MzRp2BPauWNkAFcp3MGQnu2S+8f5pSPEnQM0B82nIyW4WT0c6Df tkCv+W3awOG4Aj2+8xGi1xqs++EYYBK07p9W8FQJ0iXjjmXzC4phfRyFK71Z Ea+bqoYqZWp0C+0iuCF5V4F9wqVLe/kBE0bosMWw1/BjEc+FDltG6LBWCPuG hj29UM908+WL07zhxen7LbmdTA8uQXoSOO9xTECnKpVnf9DOGzQKd5U1hrDt VDiwXUn//S6S94C40+hJNq95v3/cqByeMgKETVWYz8FBOm89zim0jSpiTXtS GL5kqIe+YReusFcqYXOoDRHxd7/0wmIEcbDjGYXHD71wFUFADurnnHSI2kEF cWfaE7jbCuI/8eSt1NghZVchHYHGmoadMJ6DOGFODiyYM1TtjAGMHkMcgxWI O5u+xXodAcGXX32v6PVZljHATzISVt6yZ0ztqqJOTOvm294s0yoasnDJzh87 Ai0e2tUj0PlQtIvuirHgj1mrb2tosxlv2vFjRsSvlUX8QoReB38Q4QOo2yri J9CuFhb+16ksQWDNW0cThetAJXpuRIuPcQIRmBYfc90O5/vH7bZ1SVIRiN3F wyieUbcXh33cKEOeNqJ3NRW94/p/Os68CMW61GBMCTVsc5SdW1U2EtoGqiEC EIZ9KjMlyS9YqBcvnddW6j4FR0nRnTa0a9fwrNczJtiCtoanrqH8+OVj1NJB w+RvGFCeHIYyXgDYrMFdc0YIvKWAICADfh2ccXJUocpmUJM9FCcRLL7UbsFy NNMAJWaa75GPFfphAd96Ma1MpuYNncmU536r5jczIW2EQkTBeVSFrBOAfSOa 186ieVsR1LHooWKgEwX34bJXCiuRawHqvLXAQjnfJqe9BeX4zkmRsv66cSw+ PB0gcq8J1o0M1tunT64latE9vNjdHjMqEGe5DlHicICyA3Ucg5syMnctowBZ 23C4NUSgLGGlXbfFKD4tCSvINJJW4iWyXC9rmeOA+vWGYu0YDvOxDN0Uh0Ox cctA96ph3jds895bg5za97tVlid78qgEAvqUYczOG4ioK6BHE+Ekw1TcHI0w E4X6dlaiUM+7sCnzijXv4tnBRhhlifXIlhSdqChDGA1u88gTD3vh9Q81QmFh 5KxbvnrPiNB1jAgdq7tchK7DcToVoQPYBerratOsbB6yIM5Ng1lIcWuII50v KshHdRohyI7fKzi3DDTPK/YQb7pvVPDM8Y4hmN4Xb7wxVwM4Y4TR1TFjgRAZ wnKyNK3sgsHlE4YozUWSq1JM2ANshZJWFP+KC3ydoVTbhgt8Mrs2xNEExoCw 5O2WDaVft/NsfhE5/+4f6fXJx29Kf/SuU+mFg/M5OI8ZOnTRsFYqJZPSK9Hb +vElcprKgmE0Fy9Ey+RS5Prwf2ctVbAKUVSJdTmZC/H666GOG+bCgqISFVAI t4z0usa5FPUo79xyzntGTE5wfu5i9jyRGTV5krPvcXUPFxHL/oI54JtSchUE 46mepwJzvgL0E+4ZenL6CwfjUA0Y0M+rRd6wKPg+ox8heCum+wuffBeCZ24A AfIBhguqPfGuLcjP8EYiQB62Obxs2fjCgbMAfR0rbxkZ9QnFYPHSa2qfNKzT aTuPVCvJI6362+Hv4G0f2yPkLfb0Daqr2B0A0DcN6C8piwDlOmipbtj7cxr3 HerS+vxE+svvuDv9k088m37vfQ9bHNA1eHGRk9bKtIknBc+BIi4U9cpcyGtO QTWJ5c0btyief5tlJJlnaPOcq4v76jXX0VKLZWbt4EKVR4fbSxTAaXWdMWG0 O27Eu0eXA3vuJNFEOe4dIybXNWJyEsBYHOsEx72n6n8Rg3PWuuvcMObdl/Dh YdzzS7AP+54x4T45dFUA5yrMzgqUVAW6nWQsoS+xzYAognN1+BxiC7LIyMmJ mSBEgSofkdzDJUTxpU/9aCCKRbWA4sALUeAzCAEUMUnvDSIKlOSAQFTqv8Lh Bcn1MXdMGdTRNAp9tQco1DFvaI1pwyqcsKmjYRsMHGQj1WzNlRUzF9Y4mzEO MQe8eos1FgwDpGb4EX4t+VhvTr86o98xhvsh3htFzNEyaHUW7xXS6U36EtjD C5MFKhH6mCixGrTeiDlE32zqz70QWsWWLfmUwRyTUSwD30ssozY8uhAI0I+N 5BK/wCF8gk6OQ7SL0DaCf10j+KfusXNgug8ewaExZDrAlMC9wQjuVUmHGQFn dTuxgbXPL2EGSKf4+eNKwuQokImMLYJF5tFdCxLLrNFjwkDAUJzf9REJY0mt m4QG+oX1ennLAmEDnTpsRqwB58KxxgSzBm7BzyzVx4tvSFd0ltAJTi6yrd3W GUNY+3bGulmCDe9MeaNBwqqHDOpo2i7+BSUYUr3TYPZAjFDYY9awYTR7vP2Z 121lC8GlfV4vgiXAG/Vy9qgZMOtl7FHV7OHw8ewjb+DJw49xtwodm9AgqxTy ozerORxO2vaJVjVxIkJ3Za/lUtzSLLEPRZlb0qFDxNOGOTQWEYwKaiSNaHRs n3jmbIRawRG8kZYRZOwZQUZ5vHai8glilsBUYWZI1lhysBTibIwbrLDfswLa J6KHHfG7H3yww6wAkoibNFhh91NbbwtdXFaTLSGGnsEKnYgVIjOCsuI9XVDg WSEZM/IClg8ypWRMFn3W8HpnjQhi16AEt8htW3+tK9yJd6bD+RJAbNjJvpuz y0PwoW6wwbRBMFXDNuGCan2GKpAPHmjSe7uIDWie2FZPqhYNOGSU0EBV00BC xix7TCJETSWXQBHmc0wR7RNPXaUqfEEuE8UmBiFHPM8ZTsXMHouoiKJgEbXb HXOElRvVlNQtibNqNYK0EhcqbCo068LBkR2ZhhGn7BtxykUlBlJT1FXFBaK+ 1rR/e/kicQXvN4JdERhj4BljM2KMlmFHHByRMZiEaHjI94MlnMPRNap8Goo0 8B1MCU0cMCWmFPTQJEijZ6QdmkbpL5d4EJRF5gAO7LudNhzoOcMkbbHcQTpU 7KpTYk8c9ouEv2ko4D6dMmD3IeT2dcDhilpgKQeqMX0goCH0Mamgh+2KoI+K QR8+jionPJGm4eCFIw5vUsT04RnAzYnrIDMCDUP2h2Bl3BBMRtCrBT8fk9S3 rYZ9Sk4Ua00bhkPZukR2XqfEcNCkwHcMOsQSA00KrZI4Sts2HDRWOTsZ+IAz lDk+0GnKhhHP7BvxTG20x2lKOCUCXq3upXawn/FBAK83hcmv8Lkqp8G+/q47 moYFMTD4oK0qCYQTPMX41Nf5wWz68OmBcIObDscOTYMZqgXhS6liAjPMG8zQ MbIZwgz6xDPOHBMzwDWH/Ku83KShKuYNc7Jm+KvQRDAne3ZK7mhGDiG6ub8w n5iPK9yeXUtSBU9Dk4OkksYMsqnknZctXhkfbM0980/4ocsBC3wWQ0gWncw6 H8EPA2UVLHDz+G7iT0Lco2fWhnIlE4bZbs1z3a5I7NnKf0FJHO6o8T5lrOyc YW40bHPDuONmgOGwj1CSmawboUtB+Ec//VMBkWyAk6Ty6UgB4ZaPgN/hiUfA dtdA+OEM4duCcKfm60Zp0aqB8CYhvAaEI3qw+9zmfdsZb5BUfvShc+kfbV1N v/vi6yvpuzaOR7aAe1UJ8e1QDigvI/4YsOFrm3xJoGwY1ueeNYyyA0/4LRon 0nU6ZK+Eol+YsWtrHRBC9rHj2C+xBY775aMuyLwuGaZ/3chj3p3BffvE0gTB vcpwRx2hwN37VS1NH/qII8lh8hMq9CHEAvUOQx2TJCrjgAH1Dou/aFcGnDf5 2hsCuKLUCOyuvgHABUPhVuwkQtlce4XbDCMzltrMzi4Y5kXVxn8/mgBW9Z7r /IMEdSFSSYygZoQd+0bYUSfCgXddcwiNL0Ig+Ad2+KlnctRhDv/HMvxvCf4d 6GtG0dF+A/8NhX/3eZebYZN3E5dDwTv8Q1Tdews8ABqglyYC/O30ujibHDtU akYXNRLwG0bWoZGVAocxzhsiXomsXS0UHcMHXeJt7ZBJyGDkCY5HySxGwnX+ zjSzAiTJGmBwYqrXDFP99RncKY6IyIE+5VDoo8O+t6IPgrt2I9ZyWB8kKgMh WMckSJPi29HJS060Mba2rda1PEpYshKFJXWFkwNa27Cx4+mNov3jtvG0ZIzH WliQC2qduoZ9IYlYZV/ETkRIxEZq3uvi+pCax7dWXXHFiAMqjGO3EBHXQK28 pBZaJVa8xnjbwPh1NsYrRtXRsoFxXw9cDxi/e+NGNLOR0Qc/B8RZ84B4g95r AeiJ13VHbBDXjCRAw6gE1sFRAXGtZK0bRWnF4uB3ncQv4eiAuHNlaTRVWhRs 4jkjK2hF8h6ga31ZC7v2QDdhm0428/VfyqPXxr8PS+YOfxD4tRnR+CwMumYg uslSLQNjUA0UZ0loMZ5ohWicL22nDf1Ed3I5SqBMHowqwQTGeNk87zOGKX2C MMCZ0I5EUy2+7Gecz/rUCH1CH1QMeMLW596gGdbnucLiprbn6aWjd2NchvDK 1stBpA+U4DxRivegMr2kZqBl4PyU72aMcykssrBdUdiG/e6wvS3YPqm6d2h2 HHhGGpxUOYx6oaGjNrArBOyahPHlVYFJjhypM9RxbofDOKwGi8qbBSsMeFeL dpL7Fa5bUsdhrLoVxnL/RnUa8DFqIYaFlxONgkTXKTVB4rvrOL747lU7Ufgw XV6npeJ9QHLuB45iDNWfQiQqKXjEL7g+sg0ThOlqMfoxieIMHjLQ79NbVa3P c0UTwrGNEkOpanBs+9oTjPVcgpHT4u7fsnw44InuTth2wH6DHkbMjWojpPfn lp9ojidsu8HbTHm7AWUKzz/8CG81bGjfgF4c+RszQgKH1KpJ2rBhuAQWjTQN GjmjFAC/EipgAgJ8sE0AMqtczTc9uiH7e3UoAAO+IWKSX9y8Ephk30QWQzym mhMmwfk+oBDFFxWnEOfcpTdfuM5ZuIvUcR0XERHwUOgFEYi0BGksLC8CPSoH 9ucRVKHstqIBEV6dCuNkUVBwp9UMJb5kKcT0xbCPwnY6y3jVSxQxP+9DkpNC En8sZD0w0lMP3RpsEG++5fZKcmCEcV+lyYOMp6qASst4zbYi1gwqaUUJyoTN NeZ0mnBeCzdQcEYjZzCoBRk1JdnZYx1iQ0Nvvx4lrwrmQ0KRjZ/kB8irji5U dWP6x6LpZ4tlVekWsVhkN7N3TWrBNeGQ41jmiYSM2WE1HZJfrBueiFCLrkho GNRCtTEV+kjHQuzwa5dmI+EqqWhdqzb31JWKBPc4ztEhiPNKpjkEicT7kPVy guWEJIQrop965Lb0Cx9/If31X/pI+q//2X+X/v7Ol0A0g8T2dztsj2rr2JDR oiTZnCGjBUkyTc3irI9FNKFTfzoG8CRdW2MS7lOGwHWtoqw311+xME74BRs3 YFw3mOGIIZpVfmdlTVt8D2U8tzuYHkMbucQC08I1Q2Nm9DkcGEOKc5/i3/iu /Plyn3pK+sP2y2boUt4gsI4txbOi9y0vJQqqu6sDL5KcSEJzIfVXN5yJAwZU 6wZUN8JCeWnf5JeXvgL41rzIY9vwlrRxSXUM4QANRK38j+taxxeeAPBco3iv EgA/9qEfojsfUBgQihYR0kGsgSESBbmps6qL4sb3OKyG5sT/5ih6SMC9ka5r bvAU0LXu90JBNHk++CKbJozwRT6jdpRNICU1uX0x+aok3CG4S10Dl9YkdJXK EDvEqQzL+C+bVy3XXUMLXbjpvF+qvBaSo3ROshZC2hvPQefHMIuf/MzmUwMR RR1kkpxXzch5iWjrKpdqtgUviPfPqPYkaFVjiYSEykiP7SGRrBJMW8cKqx4w FqMghXJedRFrmZ3U28z5hCKRUiy66a8jrScSeH1OAnMiUzN6eYz1qpZADmtD TI6onuUVYF6QywYbMfLBEmG25k9LXsdmVN9kLT7R8ZgSOhSBO48LwieaWj3I MRRouu82RRBPqI5K8qVqlFvpsUt5RUXtBf3YJ7dotb6Qtbe7OtXPCWKiOPsI r/xXPvG8CGKwS4QWDxtCaEUCDxrrUhDb15XMCTslTWV1SXJRRTV/1k/UpCEk VaMzx1Rrm0/cQ4KhWI51GvGHUH3bEAxrTC1FSVJ46MT3UIn4WtOkZa1ls5xO dgvLYUFI1joka/DmQXJiN6jkFv3thKxvFATrCJwECCuF5ndDJ/u1nP0V1Yy4 31UWM2TnJECgtwawqAW+c6bwztFD+4lQjhh4lWXRYrtmLEvT5rublPTKqmrH lf3f4Lh+0U/QlLGaFWM1j3OD+Lxx8xlR0McNzEj8DMGCOJk6wkDWjR6VzY0V kFf0COrxIptxGVuGBzjqLPKF6DOMRF0tqT1Gfh603swSjEcffmiIkIXnbbF2 PcgrgaYj2Up+zg+YNI4TLBKrisFha0p7aR7THHbcmLymYdWsG+thxTMvK/4Q vVRRUuW+h+YMXoEHitSJatqhF3UxH+zeXR8sbGVIzUlS0xDEQyP0HE9KPqJ6 no9D2DOhxahu2HeOptYjmmJDbD+JUStWiXG1fsuQpI6Ru7zRz50ORkoQMpGD xjhfufv25zbRmy974aOOsYNAL6YmLTjPPrIRnHLnoG+fPrFGd73OEBwJYGmj 5LAx/QUBrFuoSbLtZbaltFCibsmXvLz46sFartDEXRLlRYR0ThuiIn3VgLGE vGaTztGSJq3hW/G7iHTYnCApkcDRksE4kUYLmzrwvZMLLSe53NcZJY0wnVid qRj17h13baAnyVe8SNFKsLlOuWXYbKL5MEm3XDhBwqEY5ZQBIwlfaAPiiDHX cfgCsLziez1gocCSolt/1Y9pVi0DWkf09bAtBB4meRVaFlexOqb5wtJkZQPV ElAxLCXHF5qCwBf4NGdIQEQWYc8iuiyVTB0jbXHOt48lJobAJ3piJ00WBXmq fssx7Z12zVd9vIr2USb8mNnoQGiWFZpXBBcgK5AZiOZAMT9kxckJtBB16EZj /sQ50paAuOdqPSz3/E9yAkG9SbxlwxpgSCB4NkjI8xluOz6wRweOZ3cOcTaR B62PisINimCwQEQwFZBB4svWZPPKON4rFKhqmKrD3WjKEIi2EWz27oZ/cDnP VunSV7BaZHhQRLmyKRNYwbC/5lvDn2T0QrO4NlYjIXCEAbLAtRIGyglBmddC 1qQDISYMLIHCL0ehf+qHo6vOEs8XnEbLhy732QJxUcFDcrtVA9HahRKBQKfg DLvOWJqxVjImLQhCMI4MOASDjlGqEupgjCOTigwSq3pPNrri87mLZ+PjFMMh yZcymd3iV7yovxXNaVYtXwsr+tQjt+HS8wYCZP4SpWaPs0DIYuL3bsC4LuGV 9IWkLd2xHV5Rrfvm7YXkHYC55Fqxj1IPC4m7DA4MqCO6zij2c7S6OMFdQK8Q s3GMgLA7xy1ImaMJrFt7BCqXymQAOT7jVitzHyenP/0pmzIzHCP3AoGjRVQK h2PlnObMEhAHVxc3gvw39JBTKSR2PzuhrnKtih3+z32HuGAHc7ehV4z7RjCc tJfrVn+pJgF68VLF9n+ijTpvw2qXgXt7naJAEW1dG4qX59BsUQrYNFcBH503 ntOvtCj+oLmaTARem3JXv1Y7ST6Ov1cerqoX0Q/J76EKN/a+fD23cqzCmGbq sftEQv4v/OU+dJdDW8i7SBrI3bpjL8RtfsCxLX7M/rW3Quu5xZauykpDuu69 cnqbp89HU7vUJaUJcziS7opRrGvn3RLRYjUMDUhLRt5nceKlqhctqXgbKOXO 0X/e663RxEEWWVscsafgX/mLDmezvpkMI0aGop8xCRudf3qHvyWuJnOWZ73g luejNcp1sB4gzZNOM+Hx1aQxARQGOHK+sLiodSPYQbP8VvrTaxL0GMu0bnf3 f/cz5Em0PSiaHZ4OWireqrEhrUOeClq/mE0d6SnuzHo0GRooJLUEU7HkowNu 9AzUDCedLv1hunE9NwYR2IHd1//Dz4Sqe9uSEftq9VquNdfvwbC84Oc3K3lJ 2NRz9z1Ywg5eaEJx45bciBWwBFbwtYTwa0Wq6m30554Kfcmehf/Tt/Sh4UYs nlq0Z+DW/NXbBVcXGIe35CdjN8mjVO/UEou7ZsSXaTKez9raSAp0JVtvYjNN 2izwr32rPzlCg9OqBTfj4kjfmcnFprrUsipn7Jm5PT8z8bIuGzNTVdtsDq2v ZTPz4mhi0h8eCzr/b/xsfLRETFQjvUzb4GvRNveNJiZj9mTcUy4meieKGOaV Irr4iWsXk5q9yP+3n5hPjtBgPc+Cema4fHZPjdWyp+YNBXLCkyo+i7Z8K0V0 8gr92dtLTmQEMg//j2/ic/TeLRUQ1gBh7L6Wp5/rvSEWtBLRwJNH6Nqmnvch g2WSvUFlY9KL7Usa9Vbx+uHzv/ej8wnBuv4VeoLPyZuynsQrGHqrqpb0vJJ0 jLF0KLMqmFNpePugWqmnsjsOzbWMXQxLUaJsOmQNfkg1+Gw2Cbp7smhy8BVH Q6WqwW5rM9+5HNbRHlnaSs25IW/mh/qqas2r98AcMfbFDcku/rC6+B3GrOd+ vKV+nL392X/99r+Mb9Wu8N3xzlS6NHVgQ/7te/GPfWLJ+7799kT69MZL6Tvu /Qgu2pLf/E58EdfM4A70o7OHbnM4cZc54XZ/7ySJuuK346tVxQj1D1c3+Oo3 XHirMKz/8W/FV3MF2abqcNLiq9F57rj/8XfV1X/LX0hwOLN6Gi+nFdx7Iz08 f6iZLk0suCb6rd7ueHsML6ct3Ds5aRRRoGcTkB93TzT+I/tuSHpF4/9N9fff VJ3H6+23biZH6D3vBd5pTNFY0RR9R93gV7ML08PTc/TdUb6BG2Xomff5/MlW uAFmcSI/i5uh0W8P32BnstVOnzp5FvMVbrBx5HI6Nj5DPWNXPkyRaxANT/M9 3Ixt52bpb6u//4a/lmbpDYdP0sutzrFsotIT13lH+Uo23u3ZsSWaqDm+x8b1 j2CiBqHdb6p7fJ3+rIeJevuZy+mZpRWSCrmRu2f62JPv255bGLDJn62IazxZ yCYM32Ur8hvDN6IJw02Gb1SjiXMjSl937w+jEZ35FhFfKhLxb6h7/Qr92QgT J/db6o+nbzh1z3E1ge/5ib+2OzhwvdRuhHXCBK4UiTLd1asl9HOTX1jJnSQr mzymLvla1r7Ms0Md3h3WGs30qfNXqVcyFTzn6Q+//dNo7mI07ejeoAgIL+ON Qs1JS/q3rfpHA5/oT6cHlg5X0huOXEqa6SO3vRkf00NHzqVTM0u7ahhMpHoc jdwy4rUxWMe/N9Izp25vpgdXr2ukkxNz9Jz0JsBBvELYc7YOBod1dpOfXrr5 Ier5eWOxDxYt9o/Sj4P5t5lk1gYGuEsTgCG6m2FUbow0Qrze+sB7XDc/8tyX kjZ9/9Rb/1L62Z//w/SDn/hO+roH3jk0+jU1+l/298X9coIFBlgem8KQk+vS j3/o1zmIgBV0g9xZP3IuPo8XK3jYELAHh4e27edkLHSJ+jIeVpnyC0lXRh8v MY3ytrP3y+jTl5756aRPM1DVM+A+4b1uzYQctEF3vpoNZZe75xeuio5UNqRf nr0JJoFbZLb29SfSt56+BTPmJ6yeHjx+Nl09dD1JhZs4kgreKyAyT/N1xJD7 e7NbBWGYHZvbXZkepIeXjqcbJ+5K33DmUYe4O/GUuqcuvyU9c5D2bG7KqPgZ 6wM9e+7lAVINkwfxmTUmrxFNXqLs/xU1ed5zocCyA5EPwR7Zdzrtd6dciw9e eb6S3n7uSScTx19XSY8MzlXSpdk11677993xPmXrQ7s+glLfnu1048l14u+m 17XoJhjzS3N8XM30O179SsAgtIja3ob2gWOYBRaa2xNNwLFJ+p5oNPzn9Wnw hlJ5YQ3c/GPinW+CRaji8+6JldNbYWpaqgsTfmqSZWOq28NTLbTLm6x9ex5K bekMTffG4IhTO6tOmDbS5+7dSh+4sEkTPJ6+8+pn3H3c3GOaqS2vE9o0EEE7 pvfozALJ7osX7hYZZtS7aZpdSj/xK3+Q3nX1OUE/9KbeZTvd7qVjzXZyki7J Gzz+jx7+R6gfb/fTlcmldGpqMb373rela4dupPl0bJAuTS5DiDGP7bxc72i5 5uwJmnS37aRvu+GOdP/YtDWxPZ7Yd/3EL8jEbnFTcv43NfmGbJXx77vjzbab oFNugm6VyXUtu+l17zzBNL0yyU62BXqcMCfnc/fE3GKQ49vcQl095sTfzbK7 xP0JOaQpO0HvzTDXeEGkna4U04GTjf5IqLnuGF3vGFrm3F26e+S0j+B6FOWd TMz5/SduT99/1/Pp85efxfxX00//zD90K/yBrV9L3/nCa/FyVDDxXqqxGLQg dZZ0UM14ZyKT9P+GbumL89xapC9dvJ9e7m9T4sd5YbAo525+UAiARjqrFuZ+ L2ZbS70Jx7jzWBSyMm5FJzKpd5JStDi19I2v/4AsENr3NR15joHddnF5zTVQ vDjokizO+372W+ny/qPB2OLF2YLKvPvgdQQkhwi1OKCnnQyDJB6bGhSX185h YapYIXcJrxEtUVMtFBapYKGAFVmoSC9gbnHH/+ynUyQjvbR82F3oFsq9A0pu oWixlnjJoGSxRFisSdYKQlLOsNLLNqVWTR+SA4566uR515hfNfAV1APWq2Gs 2kR+1Xa451zBiCkj00xMtOOzS+7HRavWyq0aXtASzkITM/SEatYJAC0cLx7T WS004RhwI+C7HtA12RlPTy4dBbrcgIZXr0fvrdzq4d8ixos1OcPrP2VTSSoE K1YbccVmIrUCU5ink/ed+OW6V90DzOcXani5WsZyTTIDYrmccidGOJ3NUGBA Nihdb/xaASVOF6u1quq1cgKM91pQO2xV601HbumpMWFUfCeGwQk2DPTyO0Yl fjmTR+BOhMAWr+EzZx8klGH1Jui9X0SVZA3wOmIBd286siGQ45Cr7zKrK9cx v4L4rmwF59mMdYZrsKf5wbIUoPY+EZXDYihDPtHM5JykJINBgf+eyFZIrpXr kwp+6S+q4aRFDXJ12N3uTStrOUlxICc/BzLSMSRlSkmK+4764tP2NeJiSAjb eo0SIYH5B/qFeFT5/YZL94hXoo/uBIq5pdEkxL1omm/IpmdLpAMQdyKRdA3x mKX3DonHk8+8aopHkpm5d4alI0ensh0WSOx09vVq+ir8/nHqWMdaN3ET874w tRzMa/zH9Vw0LtbUjrauTRxBJGeuPIAuiDh+LIzJVwdJt7Q4Vkgex9KjB0+k l8/clr7t6o/Q6/1v+8n0Fz/2N+lvHPuDw75wwiA/UVQk9w35afNhu5x/6JpH 4xW07nhX2pb2cV+0K8cFnrtwqxZudXAr2RZFwt0zhHuahdu5O8HaZt2CpklV KUs7EQmHzrnzypN7SHgtGBzsRqrDq51W6FCTtUIhb+gmRQuiiyczOd9M8kzo lmlYzpeKDRFM5M0jyYC4oBV4oG4y4YOy0NFLzMSC8MV9e0pBLhBUzQUJqiTU TfqJDpEkygc9l80tgQQat8kAgauBa9HKvhKAOJM2ffydH4HKEYB82JicrSSP XQ+QugUQp3ydCLumP/Pe19LrrztLj+yTk40NsHhpjkmmloOKe3moVDVUwp3w OX/SZqMIOhxE3VybmC2FzpgBnRnDhzqaCWawINh/cmsxGnRqDCCx+BATUBu0 yWvVuGHHl1q6zmivwu2xGUj/Hcv6GQx5URQTBoAG9J73kE+PJBjFob+uIYeV yFaPMLRRLhslgSK5mQAou5kdKNJBGDFfW9cEploAk1sIdNEfi5N8gN5rNoQa AUIP3fF4EG4HnXGWbaVqnEAVo4irJjeTYSbztyIAVdAeIwaKBvfoK7zeccvr 0TrfqRBFHLInZ9dC0dL4QvrMxovJhIGi2TyKaIU5XxisK/ZyWyUAgvsEwEDU 6yzwiERItuQQdxGOLtwttDQqgKpZewMR/vUMQFu8ggQiOFPT5QAK4Q4uw95S UsCAaRRFi6cMcauXY8bbTSGaWqTPqlqfOe9oGC71ErjwUCBuwVdoM1weP36J hlMOFx9SgdekXFY+ki55P737nHDCSkCBY06JbP6JLjY4vKbMTjbE2SyitlyT 8wbWOuUI0LoXKEC4p2YgYKoQAUOBA94HjtbJCsPLSb44BnAiH3vgRwtB0FAu hoTiDmYCJ0GD4NdaINDtCQiYzJKsvcKQ0Gw5DsSY0+cgyAqH2JsWlFa5oKs1 IDgCSMuGHLdKgtZHo66cmN3vJKlYjgFN0LyWY9iAzskQm5XgznL8ciR4OPNL zvtygrfAggdZxJHF+plilhwrd293aWI8HCEGTbJgmF1j5UKsdB4JMaJflhDP GEI8lxdiWZOBF2Lq4cr4JLG5k9xOiRDDb4bW1EIMIXReBIUsdbmFCHHDCKRZ QqxMqy0R4tVsEvFdLiy2UCjBNQqFQUMwVamTz8VgABNactwtl2O/DDUSEHDp PWunIXeWKHeH0wRBOA5lq7k9150gC6Z3TaLciEUZ4wXI/THByXsV4Fj8EjnD E5QK0YMQzhr0PFUi1kovUjs42L+iDtiEiYQWhfZhKsmzPCbLRVwfgSEBXkvE 5wwRnzfiQF54qmSpIDGFfF93ROFuZnY5GFq3h/5RGhstNUcUbmX2bIhw8+Oy 8Fkz89IIco2Y0smLd7FHE6QRxi8SJO5vk6THyoXbb1PKGBAwQXMskZaQj5UI +UCJIFDnsOIMWC/kwA1MqHIhr1K7MBWLfCX/9BquWM5LZc2QSpF2Cdpkz6y2 pT1WOUBRXT0yAFYIWpwxUDRbLu3H1OxIfFxL+5G5ASTcGaxO2isQ/Ep62/UP udsjcr40NSA17egcMp+Tf5mbZSVfsNK5mEAgABF++5t+uhACLWWpO34fZCKb hYjQUqsEAoa+CBZ21sUqGSfgdUj+vkL5r9NnhlTQE8r9FqlNqiPGHuP0UwSI o7nhekezUiLBGhmTJcjgYQ9evPhQsMjHuF2ADl3cCxnoMqd2xf7LTa1/7lvy kiHBcmQ6TBLwM2R32rCrF0uQoTRY0C/6eHj2WkO7GnEL0RPVFDJyQcgTc0uF sPDx0jpwQYrAQYNeDhxuiRw8ePU5JJX4mFSLxoe+YIy4N9Da704JkMTjle7g P39eOVfINlsUbnXC3ivBETxgdpecq+WXaPXQ9ZRLwH/7slGGkFH72nAUcr9K oMh/hBrROEKC/tyF+xSOGvSZ29MunarUHcoL7gWlGQ6sRFDSx8qKqFdHhJA0 qSCUhvXwg+WSgJHRs8DoSYaygjSh2xF63mNIeduQ8knDoN/PMU5IvZMyzG/O yRM91TL01JQRLV3m9gQ1EQpDcEejZWPtFJWZ1DmBZqCFVAlCqYKWkOvIB3Dr hoqrRCpOg+nBK89PZWBKV9auV2BCOGqMqt1QING/RiRBA0jlsHqYgFSwJB0j 02chSYw89zkCu2T6WuRpLBciqaqRJIK0M7+8Js2JEbSh5b9WEqu0qN59jtz6 vLarlwg/PAnBk0r8hvHqZ638RYCpahhpvmIt+TE1FSL8HfVYAQifBpNWRSss /ADD7OIyzaqyx2kqAE792B946mhpwgiarnJ7CW+uxn/aeRUw1em9Q58BFIAG 5UEjAsfdMsRsdeCgPmwbauCMK+A889wn0SN5/i/NHkqhAZwxFnSkpF9+4cs5 4MC7YffQ9T/zZhxwEtUezZy46mXA0UBsGd6Mbo/6ffbBUuAgzSftKQYOgrkS rS6KvhrXCBwoDdfHLbW6aC/otsa1AyekqBk4uxZwTszup/7sBRy0F2WWcjZc 0//P+2V7FlaElDz1T53oSfPn1FV4Ap9WNeMGrws6gL5Hf+g9O9F6BFXYN1Sh lQxRaEuf++BnqX8Dlhedl/Cqq+29feetMKqsnIvpcrVLYHX7uSd7DCt89f5P fXv34NFzsow0rMTX/7ghjAarbgaDYDjwUUCbGlZdIzdiwYr12+70wkoQAeHn 6XaXHLi9YIVKEemfcLGILP4T1yMhy7OfS0SPFnmqhcgTczzzMP4MKq55jchC 8QcM2pMX7wpPU/8LRlbOvmNkHdoLWdwNHAiPo+H9ox269KgHPPIBLzzGYrC6 P9393/5RuvWh96YbV27OAfFMNuPb63OzBJxxAzhjhp5Y5WdRQpgdEAU86gko hEVo0nEjuNc3zNIBNwnM/Mzf+gfp8RsuDTJ4S4JEwbFOcFyboZ5Lj51vOOzX 9aInZwL+DmsV4K/NMWjGXnr/Ey9tZHDZSlRh1bXCD+sskz2nZFFK+Xol8NPt KfMy2AS+fz5Bd96xFEzC5y8/OyoCa4ZFqCxMUkQOdSF7fa0I5BSGCsvQTEJX tksQM4zALCHOOngua5JAjcbGuUlUeHFC0icjK1QH06AvcS84dXjhPk5PV8kD 9yIHYEItO59uLo/9XJxUm48N/z8v9LkytS3GqmRoNVblKSwKqv6pYYl/wDSg mv6/f+YgjfeGBV/cQm1JIKjhgWSTBnp7hjoasK0HNF95/WPp1373Xwnc2FzK djyiLQfjCUNDWwakoBga7kNf+FUgeSfJsXuUJWoSiqFo2fSm3FackNL+5kSk TNnnpJC7A3QjArR77czMr2oAAsCIbEwUFpHlAdjLALgriz+Tk0NPEP0RAd0x hEn37+Gj/gkk+0vQjMJcCUBbGSpt9o6SXLeSkirIDTKjtlWEKGSIOgb+iiFd D5DWSftZNX6p1LRw3Q64phIEX7bjSx+SLKwm1pmvVemIcUb1KgoJOYPMMUAF FDAdlbUVxYjr/n+eiXtlkKenRwHbgnmnmsfVE96hpT3Y85DffNOTOrZ5Qi2p +KlTBi57hgq0IM/Y1KZmMASmjVBs16CSA9wuVKozAqhd938wVC4EMtvpD+XN bjmwTvcqS4ho39hIiIgVDUA41Nc16kWVi2hRYkDKeMqgj1CPQKufmdIBWlPZ uEI96piRv7Ogr0zzAH05sxem9JuvP4+cWyn0UZAqEfa6YUorFUmyAoh2rym/ 1dBRfA3TxdzQfeqse43o1yU7UupQjP6G1/LP/HQomcXf7j6+AqkW9DkzQHmd WstQWXG1p4gW1L/r60QxHeQssrpeTF91tDo/TS0p2M8z7PEV4A3Ad+i9nu58 99cI9omqkVJpB2oSeJk1sNkxvNsDPDDgxal3wiZeTi9v5cUkWBCzhgXRMehE mtawV1YEi4nkD3O1fTDiYbTrByTr280YI1mIlkghH/+vAu5JdXth37qsRu6x DJIUnxwR9GNG7Z56dA1lRhDPHS8BvW5POQRBXFjiyXeGvl+ZXDJBf0DVPkks s25Y78oeCWGk3jXFS4d2hxAyWTmQ8Ikd0bsmxA9XhLCdwl3eTHzNlPKnmxRJ w/dsqetYZmJlASYN3dQy9AWb+Y7Xs0ichDmaxrL77bf8OIasAuGVZ9+Q/ofv /Fz67U+9BAW/yKiGrgeKgec+o1qUuUa1PjtGYlbzBhasMvg1xgK6IbBj6G1k k0q9FCNhzghmtw3L+iA3rY0EZShIyAc1MILqCjvkYsSzu9AynP4pY4mWI888 8YHligd0evnuN4aV0IAWD1q0uFWHCA9dtORYxtfBgJ9QE8W7WEcGtHIItqQ9 LyK+qgGAZlALppH9RGh5D0wbTeax178mTDdiTEs1ljoWnpoHXUgsSync0DS0 bBwbU7A2a2CmVPe5ZIe7XyN8r8/Ok7w4HbZk6JiuQfripTvzpG30QhDsPscI 1kbb2tIcEOx+6DDs3oFmmOcA8Zxhl09GdrmCMtrbb0BuwYBcy9BsayoCzXBz c4n3alAVSlrDeoExFg27uWnYzXIPBWu5h9gC9B/LxCbal1BbRdnrHGoLuTEr MawNK50bO+SQA0wzsrf12CbVfSU0PSqyx1kV6vbG1HrE7elUroXsfiZBkRzX qD3Y53ceOIKioDJkq3q4YCxqk5+HnGpolGU3oWVhjxaFki34MXuEwlJ9j1Eh rsvcrGIeHgfVScG1QOs9tttxTx3TieqVteIZN/L1CuqNEqi7EW9Kb2q5TtF6 wQT/p3/9o45ePdRvuf4wmeIA+SxDHd759s//LIF8JoK6owAN9UUlqhgPgLBk wKFh6LpDDAcJcBfBcELJBmr59D20cdAooRNl8rtP/p0NBC0bGBKdNKGhjk3w QmM9w9WYMMamE3OgmJNn7xKo4+9BJC8mNDXU1eEqQUOyEg8KHP/5Ennbyreg bhkF2tzz/auRK/4j526l0LrD96hQbxqGuV7OUbJGe0G9BIY0DWJJS/AsUfVR 1wh1MRb0PaggAwFEtC6BP2hzwF0Xc2vNN2dopekSzLu+VI1uqbqYGPPjmUCT cEG9txjz4ACoc6B92lDvC/ReizG/YGB9n4GHuqH6DinVhzB4EQ71s61RGqLv oW3nWgmfYAJnF5ep9ZphOnj11ZAQHJnuYq47frFSfuOGObbK2wfF5Ufaz5nq FGl7/pVf3M5ulbepBd66fLAE3qnuel8tgdj81wpvzsIpLPrjEgFtQPzYzDwV U5VhXJX3BiHUhrqSvtKkVBnGdbbJ2jelrSRR53IPrjnZE+O6NrdmmAz6CdGC 8bbCOCx2XWquq5lmDXU0x354FGYXjEt/Whmuw5QyrseymQ1me5txzc53Dtc6 rraP3quk25N8HpYkFADDOJYNBFQNwK0rJcdBLwHc7oJ/LKnuM80ib9YKoNZG Qs0gjnXDH6gaRoKXBtpCTQpbQM02+oRBwmOG4SXpOsnjcyBBqe4wKpYNMvXi KPqo2HZrHWObVkJMgUkjw75He2HaPQb9ARTwvYFtKUwpw7YulLTqx5QEliam yrCtY8e1TNhj3G39INi2ih2tmi3mKMpN8X6ckN5XpnppsbxGw9JwsTxhG3dp ZRwZ7Ifa8LKLcd41AD1lhNQE0BtXbsazIndjQOOlAa2lv2qotBJA58A2pqZO LPJlwxKoGNN02LD6a4WWgD9Ib2V8KhzGx8syZTBuz7CqDjDjRnk+lDmTpuaq TW3MjQJm2OVl4PuLALO2wxnMwQ7/QcDcLjYoNv6iwKy2z8VAI6IUJXqtYLbK xLQxwPfIORUNwxjvlMRhrVAN2osMnVyopur/5w9bzVvbY0YwbYJBDI8boM1A 7LNd8uTCnZ1v0tBmDTDvp/eGlnx9ftIRI7hVN/DVNzAsTSuq00cnHTGgWy/U 97VQogbYusm3cmldw0gSyMZpOjDS/U+8RLB18NWQ5eNLA2R1XXQZZDXE+kpM xVa/VsjqKJmfBSIwgqrANleZVqPDArGjDib1O1947YBRdd3OCMYEbqwhrWCW BVyd66kXgypn/co9uFzmmoBbNzR9P0NO8BQahoXdNexFK8e1qmQUTqADrwA3 Fyhh4Hay2wdzesIIjY0Xat8GAVk/p/XNm09vJvnE04Rbc9gSKzSKeoCAzmNZ wG0Y6OoxcKda7eCG7+d2lYIXszY5aij1uqHU/Ur4CkqEwNhynjcYs60mXrp/ 0PC+K6zdgWK4xg69mBm27oh6+MjNa0auRlpfyakobyu1vUd7m3nk5i1nvPCt 3/TdIdgiLY2TdZdmZug+r7z8vvSWy5d9YmZqEZCuAMiJr05zwCZwLxr1p+2s G4NoWFt7QXzKquxEwDxX2UltaWczmTOiyA0Dotp9E0PZooGsH6oSrRoy1qv7 lmT/g5SSUAes6tKGYUaw3NOqiKlSU9kzZbP3S6K0wyGcTKFduOPhEM7QZMtk 0coQQovC5vqUEVbrG2E1sdYRVjOeGx7mm4NG25o4VhUKMSIH5gBsHdtuZMAO dgpPXDoYHw8uvieiWqBTNpctrmgYxkNPiUSc4dMMLUShD5coyfCJVb5z9NQt IU7MxaR7sgRM9DJU/0WwhE6uMEuQJAhDSLXaPLFEK7AEFDxYAg8i3X7lA/Rw 0nPHjlXT//Bv/h0eFPuP/zD99je+SQQSkUhiMcjMD8Agko2ywuB0kDDA5CvJ 5IA5j+DpUEuK6s2SCk6IfFCQqko7RzrTJakrjXZtnopBb5FOVv7q+h+RXwW/ TKq6735jSAXddiaFdFyhVBed6ZRbUlIFmwupWjRVVQbNmeUBGTQThjVcFpES SCJ67sTQYkimKb9lxldmHVtdJJtmxogo9EtChPi8vf1ajqPEKdEctdTtE684 0AeOgmOC0aPfRw2roMlgd0ZO6Do7UOnpufng6KyqGRLfQNpT8bnQnms/tMd2 HcA6lJfUWqFpmJDFeckazf7lu98opbQ6FiZF78Ipuui9jKM0p2iOEp/mWjlK B42Zo3YOTc4OcdQMcVTD5Ki/9Pa3V9WT5FdXVoipWvTeJr4yuIp8GDgujqtc t4fr8tt7DDnvZNQ0R2UwbxfZOLrCXOO8KlY8yXvT0MzV4a0lhH1gXVW87pV6 6+WkwfsyE+zRcI2xWbTrebalLSWLZysYR9sAbdx9DEtxrlWwqwqDYgxCeIK9 KYeoYGXgigHnk4ait867tErhgVm4ZHVDWzF9+V1Efs8cXDJHWc5GHKavrlrI Nz3+MIjbNLHqTF8f3npfwIXEDmbbXaIc1N6uKnrA7DuKSY4Ztor4To4agl8m JtbGyopJX+gzpuRosY8Hagn02jXoa5+hMBpG6Mqir2pGuXDEqDBYc1dcKgDu ArfgqTl1vLdBZU3UALaQZGwiGtJWJzWUkZBW5WLIyY3043zKSNK1F+xZJrWQ sMRLKoYnFanhXKKI1BpMarDBQFygs75hhEWkZhphbWP3QdtgBU1w4j75eod6 rqqXrSx3L9gpjSIra9LYGuf3yTRJ7JHcs+yXnpHytFK3msTyEeFm2M4/EuGK KzRu4LRZQLjorLMMy4qRNWN4mDQ1YwVXkAtvzY07vcKoYz2X+cPr5rsfNTc7 Mlvx44jQJeoGgkbOJ1wwgr+dwuCvT8m+efNpoqqG4RNKIloT1ooK+tzvhAXt xkRjhGrDQQExceWDVN43RHtYONeOxV2KC2F+bagmtyzu0irDOqemLAF16Y6H wg4mq8xJl03h+09/5FNuKt27M8uee7GZXn3gaiu9ePZiM11eWm5xIAL8k/gY v5ROWtyVc0Kvlbt00s+359PUOrTEJZTjRF/1EBQGdTk/EdTluMVz1/MPP0Ic BdaaovdOmQNJKSA2yppGnXXL4ADL+dKFyidX9kt0dMkwp7rl9kjHSNAqTyqO W2xoJupHAR/EXBwD7TOg1bE3D0rsqVPiiGqce46ph4pOHZSeM1RypzA2OryP AN6EMyhrhtbI0YufK95j4fyY4fh024hPLyljaOPK5fRPd//QjdBzi/s7Lvwn bgEPYGQrnAkSDmDrWfjFygTVFBcsLC5onBr04mPgYpjj/4hVHzFCWoq2dvft 36dFgzgmrlrRRF8zgn57JLkRg9qOOUZqrcYVx9y0vJI+sH40OZX+8z/Ydd85 fklPX7hMVGJBP+8deF9xqoRKLLNKw4OpZCumEi7R7CkqQWYYB5eCTkAlPaYS UAtoAySyoHy7n/via6W+XaWER4a7WBVniLDbVbaEINgpTNo9xBKdLBpOzliJ yeBIpWmQipWw7apVFSdHCrTRpZvXD8ebmZYMbElvCqJFZQXaGuX8kM4doTiO pUrORddrdIxQ6kEDLpUMLiGcXtmbYJYnezT9oJZ9BsFYbrNlvLSMYJHkEU84 8XvIze+dx44GgtEsgBcbG0dKQHr7fQ8HIhAJQ7MSh9qvZg/WKTpeUVazzN5h w7mr5klMEwEBLckl4fPMXzGsysNGvEoRWjo+OT9Q5IDVCfUiY/x8BZDNgYnp 9Muvfwiko/nmt//Zv01vu/9xkx8034iNJHzD5SyFfGPtIukpvhGuUfWibeV5 gW8kMQZz5Tuf+9wYUw6+AsWAbPbv4XkRQoyeqGqLEGfpqhArzBO9nQn0IoKw YIA53s4k1MKWQk2lsiNqyZ0AZcVPpFvCdAhmVI1gxrwBr6lyM6pazjFbUbfI mJPqS2unVMuwx9eM8G2VoxYgnOipUtuBUJhefDYZ3PKjd53CmuwzlqRpeLS6 so1z6043DftFUom2PjkZqMXCf1UZiBJZtwwBwT8+33P/67bVPah98b32q1g3 nHR9D7aR9ixfdTyWbr7tzRuKY3I5P3+PZi6pL+d1jFA0gAUKZKBlU/ilz4+u 0PzCHMNGTQ3+EpHML+/QExTHitG4oXlmUuXpEk+bfhJa/sHLjn+a+bBSHWGl yIEaN+o2mIW257r9HAtxMVyjhIW2X/nAhBHUXqP3KrHQ8soqZVQ6xfAmiRZ3 pBPBW++s0vC2NlHO0nuL4F1gRuBvq/hHr6bk9XRZOroDAmxwV9541yWypXRX 9Cav2WjDBxMgnf6S2HFvrWk0w/DmNnODVrMkWqkBUlFKODpTPmfLVTTV1APV /Mknnk0vHJwnrt1nLEa9xJRRRXiOuz3fDAYrA7mleMbgm82T19NhjfuV4yGx npphbxwybAHJK2GoJ288m7786ns39qAcZTGF22jKKdtWB1pzlLOzcecVuUeO csQ3U3pBzJnS2DXuYwmn1NH1lN8Eqvn4bXhwqyMb9x38KEc2RDgn6b0eaAev z/3SN+CQy07UHBto7rH2wE+3O2jLzZNrt5X+vW99v5n+yle+1syHheh+sIGX loO8jRuwY+7JFeEq7qlGCbWIe6aN2LPnnhpZPxdvuTV98ZUPQo+WYJ6GKlva WgbmW0bk0drYuTi8yQtLqMoI4lvnCnhbhr3VMvyGGQNsiyowgVu7l68Mahsg 7yhyKdsRVjdy5+sGFKpsg3MeXZQNqbSc7dLIEYoilX3GDAsQrVy6tmG6hnsk nHJh0Qnw2XMYVa5i//yxI5g+J1nDYC/byv74D72Qfu5LnyWwS300OEtiPMvK CLS4MZ8Pb+m9e6GMHpz1tV//6mbGWWZJADgLPOKaDDk17bQ2M5coXniSOqnX 6Ro8Ui3kkUaOR/B68wvvA756xfjCSIKFNK48MDT/4xcuo0nxwBx/BHYq5ov6 7ur4VI4vxpott0iOJtx0a6Lg6iCnoocjvZ4p6vQZLPEv/v1/IsZAtKmVYXZg DUecEX18rGC2Y2DW2hO6HGVWYSWV3DeX7WoYQVtnKbWVL3DrjSdJxmcMHC2r MANujeluGYYoC0xqMYWVeLCCgsMBTV+9ypEUGIQGSYAYhCS+976HMcBlY16r hu+5FM0r6KFvZKwlUQNrYOsyZThMADcNkjho7IERADsnRwCsOUJ8qWXD6GgY vtRatBlWboHbOQ7affdLL4QwkM5hDRSTi0k4atJdi5oQREcRxKn5ZSKIWiFB VDVBOEjivSpBXJKwzh7Wdz5Wk/elmC2CLyUBm9c98jTat/Yg+FVuU0xFMwZu FbPEohHEFZaAffH1b/0mscTf/yf/K3W/BK00FHEk6hFaOaPZMwR6qhCtNVLs ToDp5RBbnFrJP9KgbtgVvZL9rcMF+f6Eqc03PUVKF8a83gOgPTpNGBIZsbII 1ZLAnt7QLkJ6+PoLZFZg1nNs4a03Zgsnb3ivpr/8jruj0GtDz3IIizoqFirU 5XljRlhEl9PFbKGh3DTU/UGGst5+A6ZAuGLn935r95EnHg61uZoq9hlhl5bh Bh00qEIxERl/FlWsRu0jX3S8hCp0mltLmtTVtSOqcHB1145GFVV+v+3+x0O0 om3g2fKF+vywxTjs8pbrbwRFnGIXSNgCL0kr9Qsh3MTnXEUMyvzwnTMi3NIP B189VfjzsEAT8gJtuPaLsxV+NOIH1Ay8jhlBvuLtqw2t++jFmG0UdyGXUaoZ QZgxgzImld6SJPGysfnuT3f/kKBrlSVblCFxunjXnBWnK9iEQ24nXK4Suqga dLHEdKFmml7s6FnlcGNZBpi4GTfyaqcW6ILDAUsGotuG8pf0tqAQA3z51fcK moksKuAKZh8cfqSj0DqI2jbslwPMGGK/KDaCcbERM4Y4OKtcyCLtc5+PFdp6 IZCxkc2KJw2p/Wgp0rhv/SSRRuMaSYNjqYVV+9rdFrumLIDCxEF3vN5gD7yO nb5oHuXl79Ui9kANik4if+SBm9Kzq/MwNpZGiJs68nCf/PvVZ54dOinegHGu 6LdiewkTBpKtbbTaS5BkZCWL4FkPmdiKUE2zIAklXbOPeAuIbbJkS68mtuWC nYH42618w1h0IRZAL96OGycA2A6xauEbmfILNmu1mFNqzCmPnllLf+7HNxWn 1MKER6aHnt8eF9gKl1y59UJ65fKNO4pTKKphcIoOlnYMK+GA4hSA8vSZU4R3 DpCKAQLjQ2Immq64Hi4UCWs6GUTVOEJXMG4u3HReymF0tnrVqFnh3oa4qLYE dapaVlj2bfLjOHNPpdV00mRYH5maKaWTGtMJIhBCJ61CiOfdpLI4yjCdNIbo hCmslxn1EbTbJGa6LAVB0q88e1f6Bx98o7BKcGGGQ6LVEBIFodSYVvC57GEx bAvp4EOoCeXCDuc4DPNJ8e7eqnYmErUTZuhZAzohovlEUkX6caSgNge30Bft U42VBF90dkLtHBx6Mrdbj1JiWVGKEckYTvkeM4KJEplznoC0mM+7VLHyRCCg kjoTCodKc/VqYE3MsHNecrMrtWk+NtoMbLK6spi++r63pX/8B78GVtlQrEK6 Ebhn52DRCJf2CqFfJ9WP8KizUAT2sicgEBY+LRkRlq7hMwml4D7Ikwtbufa3 MrbKZalXjKYrRpcPG5ajOgAJtyLsWZWqQi+glgfWjxLAR6WXOtMLQqZxDfYw 3vOuVVkUZpheqppeQhSGA6u5KMywCVHf1DwDn2dpoud+6VjGvTPPEMvMFwZV qzqoGrgGYRPBeL0wL9HQNbK6ymPWSL1am4ItaNey+F+YgprRBf/sU19MzCmh YD25+84Z7GLt+Vs28hQ1g12qxioIuwCHUuytg/6IsTo6SSxqUcnD3dMXb1Oc YlJLw6CWRXqvk+2C32JWEXjCHoNFw2Bp8+BAMfiOKaaS/ud/i3pGxzSRuq5R F1QadtGAbd+A7Yo6zRGWwebb3iyMgCb1ObEx2egATc9wt1bVQVO43rlARGKI sQqJ6fz0itFuWa2KZhqdiocxg3voIzuk4EOYBvFQYZrWiEzTMOKuJb5/bh9R HMQB09RHZJqqYji5r9rAsxUxDT4Tw0i9/nO3Xh+Y5lsvPJw+eOY6smrmCwOz VR2Ydf30TPOZL305hrmR16jJieeS6V0w4N1TlrSUUlnwrhfDO3dWq2cYfxIG bqujPPNGlKenGE72+sSZI31/DrXsSS/w6KXOe1UhEP3SKQPrKAQnymE6R6AX zt/Q4PQQYb1sPnrFIWL3e19wv95692PpxoXjOdpxQ5w1Zruh3CREbTHrYJ6v fPFVt6yeehwLBYETVQ7KkVjGogHivmGJ6AcIAMjo3sLiQgUM4bAD/Mp/E4rh wBXsoS0YUZ8xw0Pbx1kl3Am0DnpCU4jjMtPtDA4MtFklnppVoVczBrNuaI2o lEVX6OYYqWEwUruEkVD8IczQNBipXsgMeZurZYSVGyMyUs24r3V0oOxJ0UVw 7F+5NjJGQrwXXDRnxH8PGuGbpvKzYq2vM2CdMO5OoAOx8vUpKJ0RDZ5GMR3k EjaejmqYf/KrOES0WLI72AoR6exJw3DprKccy5BhCiRJfocv3CrEF4syElZw MR/opRGhRBYc1DQCvTMclBEmGizPgoEaafrHX0cE/XtfIELC10JGzu6ZNOa6 bsRs3vT0fel3v/Ga+3bYDtJlYkJGFkWMG5bKgiIjoQinAiqYffe1Ygo0P61o TwrSFoxw0bhhu/g7dcLhmzc5mwoGnqQA2UaScPGkupWYX1YZX90YlJTDWNl0 lMPwLaztQ3WDkzrXyEkIvcQPOxvmBtsPtMJMe3GS+IE61VVcBJqdFM++WMOg o5mSaLIO+7SYjkBP8YMddFKmregfLySArMLPzojOT7OEE4z7EjTEZLCKwzpK YK3wklhFLcMqs+pe+b6ktIWL9GZgyQTJrjqroEI4yUlwgHoJJ7WYk7iMnwY5 payjZ19/MwgIWz8dITUDITmLacgx6xtTXo1YScV+XGuelZy5FKaBWWlTWAkR FYsrJgzDxT82sWdyheT/Ll46L8EhAbQ8PgSGjNS3zRsh50mDnmaVrYRbYsUx TNxKEgOnz5wSKw3hKPlPIt1WKl+Hu5rGSKUqJz5JE9kBVOXgPmOKp6SapabK 94WnuiPyVMsIS1uxWh0jFZutVRKvwmcU3GmesuJVOrtWXCVWC0V5iB09cGqt yTyFEDUcNzBUccVuPmQkPAXHLuYLneNpq6nm/XbJssFT1mZeiy/abMGoOBG9 +J4dhWNO8CRWWVqrxEqTKp7sdnVNT3jRiorWUX5E2OKn0rshOe2Up3VEQbT9 DvCW50harNQ2QkLjhqW089UPTxAx1QIxwXVzg61ghG1jbit2pKjDXCTxaPwn dXMgBYmwzxkW0pRBDFMqlhMRQ+BEmKpiKkmwmg8XJdWD+6JAZt4ITU0aXtV0 5CLyPWtqecVc4miVPPEpLhDYZ9yxZYxSSn7UNrK4+DDH6MJDVcVDyK6DCXoj 8lDbiCNbj3GxeKgsmrUXDzUM/msW81Ao9WP/rWXw0FRJ6FoHlNr03iBe0nzA NXd8R6IfIIb9i2XDYmmO6D11DEqQ5BPfjkRUVc9bDCS30/sTLMKT2ynDTKpy cwwk6tmKfJblWKyn0yDqKfq4hIo6BhX1dYHzmaNkIM1GBhJeSWQg1fk4H5lp K27UNVw1STPpk4HnDIhOG1MwbpNCnVUMuvDEU1djP0o/sTTxZde553bGhaLa jxpX1KecQ/IN62qhJZcmtYfTSq4MLtK3tYqJDvJtEzaGUUjkOIiaHlcLK+V6 FfUUAOGg/ogc1GEu4IrfXJhVc4E2DMRXLItf7cVBTRXZjp/YbsRTiPtQ8cM+ W8fgoMmSoHaSlRC6IfvQtgohhYiuZwQfTeawa6lh0hiRFrrKeZBndEf3DCxk bQ7UEexGiTGkM0ldtg+AS3mUr6MkzULxxj1rPzJuc9OFS1QjaGV6K/lML2mt Ro6FaGSffPymHAvpIHbXMIgc+yyVGET+fC6aY7SOMeowUZ+5x33ejLiHeiOR +jkDktOGQdJn7olYoGmTAO1n4qec5OowZ415lv0k2ivqRTaX8v+SZokRxMRD ZIdINmsZq0qyY4xSiAefsZzICObrnf3ZClyjQy/ewzjOuMd2xjK+6Rrx40oh 7vM+X1lsai++aRn3ldiUjhtrvkEGDb7X2dX5rsE3slMbP3UsUxiy7jLf8C4H wf5Whv1Gjm/2sERqI8K/x/AXS4TpxmIbxqLp6Ul80do2qAuP+lFkCKXCQjWq DCZQDdwQqTqoGbp3neMR8XYdqazlKjtmGj7jjtZCznJwjNM24tSypwsJeTF5 VolpWqbJA3MGtOLMmDHDotHPeEs40mXBfNYYY9uwLwTmbQPmUkk8p5hM3LlZ I7Q0axgX7RJ3rqW0lPNtDXfOm+aq2MAqluwaQz2gqEUKo3kJ5clBuppYaMWB 7Np4BbGVY6cv5gIcw/j2yxXHkjSvdEfklbbBKxJLGg7EZo8aZ1+qx7yCQmbs mgKjjI0Ye+5xMZDEdNhl1OdKS+a4UlLzpk2Lsj3CVoU+hNUBXVPZjiYWvEp8 OH02QBxF0gkhuZ3s6sxu57kl3i6scWdtBTzEzn58kCaX2ZL6bmpiaW14Yumk L959LL16djVHNI4+GwbRNCKrBoFmRzCHiGuqZM04OiFKGTfix3x+uZAKDW3G QNucYT80DJALsXRKbJZ5JTtCLDNGJHfeIJaG7Z6J5YvbcwlzMFf42VEUrxb9 sGisYd8Yoq5eAneCWJgnMRR+bGio+dNlxKNySo+jtipOIka0uW2qLBY0Ko/o 3JnwiBGg9Svk7BPUEo4ZJNIfMTDc58AwB2S2FbRMBtFmu5XAqijrJC6v0dbJ eGYubEdj0wwS7quzOtbhbxUF8zgcpLM4QiX4LPfVVBLvKtYbf8ryF/HD+6A+ RcyZSnxopoOl3Lnv1HK6+6lH6fX9V+4lWgG9CKU4HqkZI6/aOfZ1phSYLzBX QCYTRhjYU4ovE8Od4AWBSoC7SQN3CwbMqwrmyn7ol5grCwqLCTtfuG18Urt1 0pi4JtWSUEyvxGzRplJcqKTvOWYMVZcPiReG8ck9eHxcpBSohmlmckSW6XNd jWYZh3hNMLInomIQTH9EgukYQd9qMcFsCcE458eB1RPMA6fWcDgnUUtvxIjv WFawsxPdI0cw1t5B2WqsbIaQNXagXjbckDGVFIFZ62REGUU5aqkaRlHR5ma2 UKzKIGu3Ii1eBWTCno4ocKuAtjgd0cilReWggkeeeNg/5kmeQ0CMsj7fB5tg Otx7I7DKxbVZwjpG6aikwvU7atD00hnyI0wn8IKQ4dYWyne/8VpYRu8S+L0s CO+AqbCc+IwBAmtjBo8uMpuqAdP/BdNuFnlW85hGuR6slEW6r98RiKFBJ+He GJOitDFjrhd4xpU1aAVZ5O5Yz6gsWhhlUxgF2sIqfSyuAWqbSXZtIDm7LNRJ 4z5iuUyVcAp+J2Afi6KrmTPeyHlZRgBnLx7pqqYlaSWOlt50IZUnKABE4Bal yBMGj3SNqK0VRRlXpcgWV0mWQ9QmBBI7GzJU13OoZkSbxX49lVLQpR7u/xsF ZFIr9LDqua3PHLVJ9hu2idZjktB909P37QRGSXyNhVTNW7lNCevhfpAyvVFR cpvRUQZMJi0eFYjka8/dSjRSo/cukQm+A6EkyvPB/xFHUVns5Kjybxxb5NhD GyPe+O/QLIL0tb+ItpO8pdAxIEauT4VPnsKXUBKwGABtLKab2QnD/5DAgw8L dPD30AE5Bpl1DBNpngkF64oewHPGWiguw3qOl5goC7y0Ojk/b9xqwjCL5mxr rGKzJ4FTCgsxMJz/AtiPyivjKtqRd8QzT8uK3sBY+fRHPlVIKj3OS6soik6R COBQuCdFxJPGBqpOSURWR07GMqcH9LqRDSPPJbJVUO891s4HFrsIzJ2CrYJw +UWJ6u0iMZFABm86uqoqBbP9zrx3wtq2IDsUo2Qs3dZxyYa6La1YzCUaXvpp IPmDFHxukvOSAU6tPPPjJ0IkTXqv56wS/DvMjWOG9zJuRFpZ8Q6EgLLZqsUm QAVwbRRFEjxjVANe8UAYejYMa2v8GLeqgNNc42AyBG/wcnM6WWKa+Me7WTvY G0XE1jBiOnt0s667ScTruuh+ic0fVal8UG52vkDH2ZBEBMw7uVz8vBGdnzTE YNrmnRpb38puAsVNqVlBQvpaKGcioxwRBAmmhmMvmG4mS9hm2OOq59gmn4z1 VLM04cOzUwbVtEqCtDq+IkFaJH/w3cULp7aS/Dk1wjbW7kF90gF+C4ZxcLeC pAUbB6uG6tUHVgrv1BXvxAEe2bu4/fM/a9bY6LyBEI9kYq2Ni3r0IKD4aIR4 r9ZwIqFGGpAlGshr50a2pbmnzX4RuAdYAdscNVycftZTfLe7dnA/uxp5PDfY hRLOiTGNwsJKUZbLg7oWQA3E01Op8ICqWsAzY7oCSFfS7U8+j8X+6oeJI9Hz Ovcf34kAjBtOi1DzfsXJkolvlHBnxQj61q6dO6uaO5OygeB3+RhdPa7oIWNp UQ0kTuJr0ZEkvo7VTZQVENnG0rTBXGWBncQwln555w+C5EtpL07YMGJFozKX ihJHqWTfBedsEWdNG8zVLIkM68BNVzHXxZvOp489evf2yZPr+rk28XYgzVwL 6twnTrPq/T9UxLFQuLPB05gyYGrFNJKjMSsRs8B5Xx01JV0e7Y2EOzhv2FRN JSDxfiRrc6Q+2JQ3YwV603EQK62xX9WhSpwzijey+svdBjZVzHVP3nqcHLIj hkPma/PqgesS/2y4AXXV4Lx2xHk6eozfjWpCQQIcCVTQsUnul/sc0gL9Ettq 1fdLO4y86aNtcjG4F/1gik2ulWMnDGqS/unkmSzLolqPhCsB5oxlnzECQ6X1 RTVtvoEFZxUGJWEtrha+GyU0BFbat3pwoCSJfheHmvaipLEofM0bKDQb8Zk6 buDDbNQoCSPDrgL7ZEV7GRt9/auf3t24cl4/lEL0WtOwZObsCrPqCKWu04Wb w4e3S4MRGkbpmZ5gYSrpps7vyHkYuhy3FvWRq+CINHlHd+ijzrDFuyj1fiVr F6Xe0i37I6y4ppUpWeIcjQqlOri5nrjvlNyyVOQem4dkehFzWXmtTp65MKXb wlz7FS5EN3WVlQM/nsnfAvwS3w5EJaZtz3CgxKgaGITUZWMatwNJKtJLiPWW DVaRUi2VPMN07VNSIwmEWWNF9irzkfS4VABoc112kUXRbRqTRIfGr41adh9+ 0zs2LMl3tJJz/faiFjGgmFp0bprawzldmlf0CReNEcPKUgwM32x5eT793e/9 t7s/+erzA4WIHLm0DPti2s7Ktg3gJuzDCbmMFz7MPiMXbW40DeD21JQIubQM i8zqputbi+1wdBNoUEZaQlbauCJAOQirpqw0RS4to45FHi6Mw+riPdM6cj1h SPF8UXjT9yGy1ju5GxK7IM4Uswu+A7scMnzAlmIXzLlrI0QIi+HuSRztoMWB gfCO4dKIXXPAt4vmQ1yrp9bPtUYtrio23Lj5jDqQzLZHNH2wrZYr5hFXac6I KzcLCpBxz45tlCwYzDE2InP0s6TSViTWtIxx0Ggv5pCg0eseeTpOOlN7sEDA GbMGc9RHDCK3eCuTRHZ+7N3Ppv/yj38z/cwnfxzCqA8lEPJoGyp/0lD543xm gsBRVD5YwgGyW7gZcNhHgbZvG6i0SMPaqzhhc9vYCIZT1zBKKjZvWHsW9TMN wRuoFlkwtJ+VFpm1eaNqS67XUfpp81Kf42Td8wZzBo36oOFPNUp4Y83gDdkF AYsE/g9aPGDwRrvE/DioBFr8NOEjfCe8MVC8kd+mNmRx+PC1f2JEwkaUoo9J I6o1b8ToaiU1xrGtw9y9oEgQgZVrYY9eZicE+R5T0iMu0qhRlgmDjXRNHNLX MXvIwRHVEePCTcUeV598LLCHsz8wBjkr2pIZDc8xW6dPK3hCvCx4Nvnhbgqe lq/QURbH2kH/XAtxFdSThwJ56LzVuMFtMwVW0XDXmrnDiaOwdthdqAtS9AZd vPReP2ubs5bZqbKMxpDixi3YtpW1It5A8tzZGCZvDAxvps7vSNE58ksv3XBo d7B/lsRuXUFC7AItAxYfCW+0hlG2feTokUNqgqTwSi+chMelSR1etjYHiKnh Ha+WpqIQklH80TfWYpET6CoIlqvK4XWQui5l6ICwdKxKjIR+CW0s7FuxtgwE W1pOVk6UESORFbT/K1/52p7uyssf/2KsZskKQHluEW1URgzKNhRtcBhEaAPh EDmJQ0TGzX9QCZo2rA13DoyLI2Czop6IAG8AC6Ioo2/Asq96xRtzgiBrP6pn k5nVqzgAIr2ShFiU/u4b9sW46pU8i2nOyMVamYSCrcgN277wQiCFF8QRn3ri bM4vAU+IHbBq+CUVtjJgX4Arnrl6J3HFWx67FVxxVMEgH7L1JC0RjjWDKhrD LsTuxz//sQ1FQYUeMNrR7Wq+kNilKryBu7NqdLWigiYRZSQdI4K6xDvT4Coi uKGWIJmw7Qt2hjBZwR7ojUgUHUUUF67cBUKW3RlmnGQvohgziGdMtSfxUk8U Db3pkF4cK7WebtBQ5fwcznCz6xgiqYawRsZzfsuV1GIIYbQMTd5RmlzKRL2c tk1cwlNBm6KtrQIwTwtkbNKwEQlUe/esSEvb5q0V6knHCmGEB0dCPjiKYm3j 08Rv7daVJKgVa+vZwXtDB28GlSDnlUAgdwfTXcrgOFZoMSFgMiSgsMITrRyO EP68fP5E+tjrzwsRJCcMeDUNDX/IcAoattFwRE2N2KI6eC3dPGSQgJVbFaNh oCCZr960maBZVGTrc9J1nZOOkj71XLEM/o/Y9KRtU+w3oN29NqrIhUCZKjDc 4NqUUUViBEZ0tkaLap4q6jmq4NBn6eMKVPDCffI88Yu/8NNR35u0RtBZUr+l +cI6lrZpH3G0pnb0Q0zwtVNnE4bRMK7YQTSmbL5zd67g1g0lhRJPaRo+xyF1 WwTkOVUzYWRqJpRQxltrdbRyzuCB1p7beYdkzXMgV9LT86G3ZMCgZTdgmFrE CBg8Oo+hLCvqxWBiNvipFx/ZEoSd9CMySj/yOnzdYITaMHyDbXDUoIWGQQvr ypyRc7pqtm1wsLDJhsUIIOaKsTaN0kKVsjSwGyona0g8OTmUVA2zadxm9xWD POSMAtgAZeTRNuIOM4rPxcEZG5E8enm7ZUORkUEe2eEGqysrDjLDMYuqIo3P fPFnNWnA0Ij67MuqOb2X2+imyAPLau38qdmK/vCIG928qV3TJai4e4UA5SeJ 98OYhfvW3d0tDxuGuVWoyqqd6lLw4vLx6aIK9ih4GW/e1Yd/dG2pYxqZj2gk YesOo64xjYBHhUb2sWcFeadFWZwi+vjrn3n79smjPtZz2sBk3aCPw4b2r0Yw Z4PimG9yIHIQFz9KYEOa1PlYq7JdDAor0NpKiwtXsBDOTnBtOnLYkxsqoXBl TEnh5hP3DO07E6Z0/L6qhiq6f1Q6aBlhTU7PYnWDG9O/RjrQ9KJsk521WV9Z P8duB+IVuP6NTz1NNPBzX3wNNsTACEtUFDMgLBExw876+qru/kAEM9uw1ja3 wWLVEEtiBZ9UDTfEKuW0UMmlfIBLcL+rXJau97YIMVRYfqydcoqSyra7DG/n b27ILXQ1uGyWGy/Zg6tjldUR4uuRoeH9S67tCgyx7SFIxxrgsQGBIQTVfbz7 5wnUCZegCoko+5pOX3oudjWar6SB/xDMBK1g2GcMeNYMg+EIGzeKSUIEODZC jvs2w6xqdtKBjyN8wIvS4PRSkRoYIIcMZooLSPBvw5ywaHBCf5j+IH0D1WdR 6e0ROaGZ9weoJSvx2huRE7pGzHJGTYKUwHsToU2pD7GQ5PBkiRIi3eFIwS2/ Ywv2N+Qo/wV6b+qSrvAoV4lT1Nj/eMubHxpIX+YVP0lsva42pcWEIWCN/I6w x8RCqS7d1OaWVCbVORMYkwSEgf0d7W1Y21nYRtm9565LG3k+amvRTeP9b0IM PSMuKbtodeA8IoQiI5XJwNuqdPjUliICIYDqSNinrUCV3SCC2/xKKrhTBY1f NFBVM/T9UTZHNPC16YBWrvNtUX8laCAGpI5vHOO2BPC61kkSqOsGeXSNtqwE atfW9zonGx/Luhe2G0aYccnAdndEbHeMMKNWwILtaZWPkCH7svxeLqIWYnxM 9cByZBtM8RObVUiSXrzzpZ5FIgMMZIR622kj2sMOwUzYJHO9OG4gTMX0pCxQ k8fuxtEFtRGtkQMzQMwm/nHDmIia3lXzaIhh3QRwq2jrqN69CjcV/6jC2RO2 mPngCFcOBW0e5ggquRyXXkQHsgi3G0ioGgg9xoUpmB4gU6ljtHVSSato+IoB qOMsY5AmNMObkaka6ojRFZ0sEsvkgAHKjq1w2S/Y1iBqXhsod1/40CdikSUQ iVE/KijbRkBvQQ1ZKpOm1FZ5SQz11Cl1JQrY0r8deq+HGKCO+9UNF35ZybeV q8oLRB4vPXqvxXsLFrNZE7CHJoFGWdjjhqrWTb7p6fvQ5GaSt3zyvqmNwnrR Joxr29VUz+8I9RomRJMj4WOovs8Qa4EGvku5WOeYqsYUonXwIByfojYaerjB YnC9OMGXSrEHrH93KYntUbWe8dH02vY+aKCqZXPQupp8QVVjRFTVM7MzFjma ITGLxVUGyv7et75fiKqWEenSpQGCqglD1U3/YKquToiq0Vd4lji7vQpM2C1F fVhRPYk36mgwWa5kxwaT5Ci01mypGldWZ6FJ3AL1JdnenyEw7TPA1CwAEwpr KkY4q2qByYdYfvAtgo3CLYJDMumj98n76b2uQ96if4IKk6wlfnPphkPbzzx4 ExboBn9pDmMMkNyl6IxKwIPVjhsTqOuwZZnLkuXij3JI6zA3udijIA+hoV6C MexoFkzUMkwE105LYnxi96gY0+GjfQbGxg3NtXRtmguhJfEKFaBgQtINB+q2 cYW3TpweNqS/bQNqoAhSFJ4GVLyZDr3ncxVyTSpAMUbR8u5gegwSyJaMPwsA /qPeQxfij81ctpINOtlJYkJk0oBIQfSBIfIKvdeCsLIOOWKgY3lxCtFgzLYP 4ZDBGYr/uISVZ6aeQ8dtF4+RrFxfyC15aBSnkGvagwPUj2SzG9TFqNCoGlEU LQCizlol0LCiMjqKovciyXbcvqF+DqgZF/WDpWb5V+K/Oxh4nXYwG3oIirSN 8P66IatNW/zXFKLiHVlaRemyAXG9WqpJh7IIUVpWcrE0rDvkRCJo3KoYQkvq ThJQ69ms77M9yQeUkKFxgGV9WJ7RP5Fn/8yM7HkjLIvrSpT58WBBlE8bwxJR TpQht26Ics1meV29JawszyLHKTllolwxggY6jRr7O3uJcsMIGnASg9SpFDH2 DJZfU0v2xkdvR3Gi6VyI5WgZL9oTWDOETRfax/StC2ZjtaAL7NYMtdCwhVjj Ig4R6dr9gSGt3Wi1c8/VFmmlzuIFaV0rllb87pKiFBY1viQvqlJAfMbovD7m QyjoiCGqeqMG1z0DasdVF0S0qtcmqjlXWlJ22sBpjCiqdcOVPqBEX9LbHYN1 9d4vLr0P8eeffPX5IKpH1HgtUbUKpkWkaiWiejRb/XByo4iqLvSw9prU+J1r xqXdw6qr1iN/hMKtwEnb1rE+Z5V8SE1q4q0S7Ax892P7I3l1/6BH6Q/saeAa fS391PVmvxJdJe009+cN0ZWQsY4CHWXDMs4VSfaLGfaEGoGIbaVQbBtabOnF fqomGLE5RpXWmuGi6oS1SGu7hFjx+bFH72ZKzQwDJ7GbaMmjkx7/EWoKnXHQ VHbs5ZMDUrYHDMGqlAisjrtLwrBlJAytTQ5VW2CPqdGLUSgxiURp0rKYRMSt LLAfpvcQF90aEtx5JXqYVCW4HAttysWW5CbztujSImiWjjMUOtQi3qQ6/kLy NMCej6XWNTPSy4lrcorkq54TU3HzdPw0totHlVHt4h0yZLRpMKpW1pcvXEe+ m5ZRyeqdzK+NllPOtOV36eoqYxYoXQBL+lGE1NtmNWlbBLVh2BarijiYsOkV yeh1hoxeazltpEJ93i/5CL23LBkNhwaEQ1JqsZTes4eQwiGbLBHSy8a4JByp 7Zrj6vZ89PXuu1964fpsEUXIIuGsBeFk9XxMwQIPdNZGLr4TCrbkspr5V0Eu FReHypVmCXdi4Xm3jFTE55yqG2zZqRv2436Vp4TsKL8/iOI539wWf0dOlePJ WmQ7QMJXmAjQQ4hfJIKnjKUatX5TfGdRh44mNxJJPScfy0RwUwuSRBxYBLta Bi4cl349kMlAGGWiSbZryx86kFyhi4dD2WyoiNjxpbvrgwXcg/G9ocXOiZyW OOUH6XhcbKvuJXHKrdoRidMRB8md1kuYUGvriuEGnbMlrmoEspZVwoxFI0ja pfw6kDkJQkV+pWJEsPbz3CaJ357B192gRhcX5Wm1ZdX51bjaT6kvrqRIPpXJ 2EaJjNXVgisZu5of29aQjEVBg0okcu532yJyt3mR0wOkF5cJHbVFjn2oLRGi jOHIuQnOjCgKqGs556RSKGxNLWyaJWlFmSpJzCWqWjOoTRtGCBcpQcs5MV5C mptJnouoKpadjYRqGvcu9GpKSmSXXzuJ0ipX8hItur1Cyj0fSFKFZVV9v4Tr qqjCKhnKYNNcn1XzE/u1w4Vktl8bOQgsrZ+j9+6QtCZJzv4TEaVBP51dIzK6 m0SK3A0MAhVGcKefKD0C/P5IJIPcHDtDoSdXH7jqfuTeOzipvY297G0kndsw 7uoZmwUBYOEk0RebsFg4G7Fwym4WvbdI5LJiEOBB1o8qDhQ2qYqrcgu11ZBZ C6wF2aS1D+JRi8WxwufcqgQdi0ldxGSbm6VbVTbC6MN/d+dvH6xQcDAFJPeU TidxBhSSCm6dlT6xnYXPYcP1qKVPkUPAB6YnX/CyE7rOw6SheqrcTDKVTKN+ nVo4DruyuTAka+y9EE9Q3TXlGtx7xx9p5L6jjWhtjJ5ce2+f+EemalsQ3542 HBVxLrwj0NDSRC9mOImFqQiNPpzptmy4MguRMNRiYbAKXx7LN5MON1NU1BYJ 1F1q3mSXjXh9uhBVvD5ZaAllMw/xGtP9vYzWtpI8+RywF44ljX6ddzFJQez+ zKtvoWlnO5emnYPNaVipzGr/3C99Yyssrn+gKBaGYS5RR2XiBGM69es6ZNqx u3SdsiaxcE6ycaM5NXAvrnu6Rkv2RHgl5IVdwmhH1EQ4HiZBOKNWDJo9CbNQ FUtyJ5swP7Ew+4CIg8rOYM1Lpt3Fi9dzCbSXq9wksLGeFBi3C2oG7stmYDMp tppm7BnQ1Vyxd+Cuws/QMhugXq9wyizYNk4FhHzCjX4wQ3E8DEasMNkyhbss qtlh/g/2CA3PPxc4n0aU2Smww5bU7DzoJQyXbyTDWrqSHVA0NDUMU1y6c2J9 mQxibUa5n1I3uWQ1DNVXKrj3Nr7qYLrasAXbUMMNqGF/Du1Gwv/R3FZo+uqy hLqj4WRUZSKgN9Pcb3zlkCX6ki7xDxDLrAa2dQ7bQ11WM3Y1kyfpiF5Fkaem 3dI9xqQN8oiiSbtk/I5q1mhnNhX0tzHOGsuMGzqupauuDK+pTNdukhVeyWyJ IQYN3VG9xs9ZQ9DA/aPXPBTwys59GxrlipqvJ+nPvu6NaQfC74iaSe73tyRe yUcMPPrciEksLqvfxeV0PKv0O8+GtXhmKkRO1WEwUjK1ooMBPmzkR0bnGPEG jZhQV+yJGaiJeTZbYpkUbo0IMvz3hiR8F7TRkoGzK8bv1OOnQpse8h2ZhM0k s3BiStqSvvpNcXuS6II96oNq1N/wvcSdA6EuqKW698pp6ultxu9UZDDoYGr0 R2juaHJroW+JorDItx23+3lI9fM31P3FGJ8zRO8Oo58HDdGjRt+TTeNWEllb RpQo6t5h1b1v+tuipcAP04ZQ3G38bmAIBTX6Mv1Zrgx0dAGkw787qpr5lr8n XSponDCWWHMh/zage2iJX6Ufd/TUDRky3J/NRAJW/tJv+/sQOwgwxoylvE/9 Ll9tZSyljzkTlWwmmYd0nbrvd3x71FWxnrrGGj1g/G6haI1+Q/39m/5CrFWQ vbYx0Q8Zv5stmui/rW7wd9SFEmJtGjP3SPQ7/GK6aOa+pW7wXX8h/jGIZy0/ RcSLjxm/m8ymaCc3Rd9Wf/82/emfq8drKpomTI/XUHl57RdNz2+qxv1t60Gw 9JT4UEZe6Lr5KdmI5tn//Tv+wk3+TI290X+HXgQJaWfDD1aomlP/N70dUKsj y98oGt9vx1frbTgiA7X8QDajGVFXc1oWvQsLVynq+e/EV/vEhK+sY1NlS/7t 78Y/5qQ9/t5KEvWvQ7+ktz/7r9/+l/Etb4aAKG0kifrX349/qQ/GHG/3d8M/ /GP7l17wnjn7YPr85Wd3C5v1e6Mam/h8culo+v67nqeXu3BHfvOP4ovU7rHd yc447uBk113m3vnC7Ir/ueBqfUsHyoKr/6f46tn8PNB1Db76/hO3b+eu/r2C q4nZ3K/puiZffXnt3Fbu6n/o//48vVOOFX2maZmZXhCsDsLvP2h0rc2Nu4Fu 5hr/H/3fn6X3EDVO+81uenj2YLo0Np8+dN9b0ssX701XDt6Qjk8u7HIH/PW+ cLcaVhm36fDNViaXNnI3+wf+b583I397I8nChfTbx+nfgpW8I505s3wyffvF Z9I3HL8zPbp+upL+4l/5u27C3Z/pU2/7mfS59/5qevLMvbtJZtawKVZFM2GB e0Vd+13/N9lg3goek75tJ5FlP9GfTg8sHU5vOHKJPh86ck5ujCsfzoaXm0vX dcfbbhDu/k/d8JBr4lD6mY/8jcSPpZW+/8W/THP88se+Ty+M6fIdb8mN6cez tQ0iP1Y0pr/v/z4QxsQhRxkMgbeC4ThXVgb0yG1vptdbH3iPg8NHnvuS6xn+ 7V0/8QvpBz/xnfR1D7wznZr5/9l70yDbrupM8Padh7w3b87jy8yX+eZZeu/p ze+lhGb0NEtIaErASDJYEiBmMyQlZJCEAAM22GCewYCLsl0G2zRguzpN2Nhd XR12uT10eMxwRUX/cUVVdFU5osod0af3t/Za+6x97ronbwoc9adfxL3Km7p5 hr2/71vj3mdW3/Cr0xvOzpk7RHrDR3YexU263+GGSx5Yr3odbtZdBt7L5k2/ zZjI4X43/Xv+Z7UoTubRJ8NZkWQe3auI+3aH4rtOnn3oeedm4M5L4c4//oU/ cZeI94o1ChwV23Ne5SEAhHHLuPkKD4HgFzdfoveKDEEvsX2dnGKLK3IPeA0P T+K/maLDeiFbdLgtHZMgDF0eR6izA1R6Mh5Hr1T+4cYKNlkeFDF67jAYPzdy NHojxhhWMmNYUE12KofeA6O6ghFEz7Pfj6HjEHSJRq/KMML4sVatyh35ZeaN zPGHkpMLx5LR4fHkqQffkywuHEp+/J3fdHP9Y0983l3nww8+n1y+9ZnkwrkH 6HXk0HXu/7lvqWpgOTviNNiZhPwlP/aR4o+osZfv0ZX+rv9Z7XywPt8Zp/81 bwxqvXdQw8SfTwd1vZABZsMQozoPqhIjZ5lSbrrfRdz0G1GT4bgiA7pvcldy 56FbkkdP3JccdgOKgf3Jd305ufn8XRhERy43xH6Ey9kRpsF108iY3iykxSwc v4gTq8RewPFYP8vNnqvnDsWam916KzkzTw/CsoazxcOJoTx57g65XZrUa9Lh VBjyGB3i4cTwvvHR99BANgye13OkrmIefyh51e4L7ihvPvc69w68YijdkDos 4r2U7FrYRyMJ7I6lw5sCGMDmA0o2ObLZ4/3G73v+Z9/K6MtqnVozeeNVr6IX jIcMIszHg6//MA1fm96rAZMZG3lVDizbPI6rK2fI78AItngcwX2MG0awkTOO /1N6/Cws3V/4cQQ8wXuMYNkYxwl6r9LwnVu9J3nH+tcEkhgGLldgmoJVmuw3 ir/jf/bN9lW6zB2dseTZ07fRi0fSGshujtU5lIPGYUMxhwxyt3Kszj/moLGq RpFJ7o7iR/GDT36cCIzxG6f3OuCYjE/MJ1/4pb+h196Dp5I7HvtQsrTnBM7H 5S+cKjg20/38aR5btdM5jajjtPu2G0/3fv+BM0RqDOicMaxjOYZobw44u4Y/ 0zH8mXZsiDZ4SK8PV+wLJ2uFNPfla/V0b+lmbXh1hkY5qS3Yo39fTC+zB+N1 QyuqPDvazo3Se4lmZ2XX1ckLP/097D/2S3/jvg28u9lJPvC5P0wu3fbEZkFT t4SrDrifMWKXW3h2njx2enO40cHL3Zd7p1psFZdcx5cp6KONqHwFDn/l05r6 ERgi2m5IB5vgSXov0QQ7zuAknEmx+TJmeGnDhnp3eGLxWUVDaYGtiFthT3u9 oIv1G2EOZVrdWOO9nMxP7U4Orpyi15kjtxaTm84+XEzuu+EZp3I/cteHkrc9 /Bl64edjh1aTd73v5+kYi7uO04B/3rwzz9SmoXd1AwtdAwtlxgLY+tjbPk9Y ePr530i6Y7M479F0goIlnjNCzZvU9/C6fPRmmMuLa7XkwWvureJzLVnde76W HF885izo1C6fhAr/6INPxEcPVGJT5Ig8GCqmGBXOrieMZy4opb0bw/V2oPu4 YYu6ht/ZVbZIxaFeoMty3xv84lYOQQEjwWGgCAC4/+EgAATgVfAwKGkYOHXB e52+d+fdb06ufPXPkzc88RPJkVO3JRdueVxO/9n0znoUomXod5NRwY4a4aGj UHH18ZuhCm60gYoSEAIkABXuMvFeglIE06f3ehWnd94I3LjCsjFSbyTtKmGi cADwcN9r14fWLRToB7+yKXU49Si4eeUYzfogKLjh3ifpev0C2WqGQT7x4MR+ wjCnowwEOHtu0gkCI7ZTsj8FwrqQwE3eAs1jSc8jFlS792qyb//J5OGnPpf8 2PqvyZxiwD7tj6SukVjeMQS/ZTg1bZ5OTO/t9z/D9PbTCScHJllPpyN9MDrc cEdoFrYvGNPp2wlLayvdsWR1aTemsHCQp9ORPBBPT2czPTYNEKS+ztMJX/3a E7dtMZ1lsuNuOvEIYlzLXEw+4fSUYcHHDaEfzXGMdqdgcaAdosM/ed2Dycrk Atg6z9PqfqRpxISW6L1Gyu1UO/nxT/0bemF6RcWvSwdB5teXs9OQ07sGIiQh JCquhr8M/87xNMj9g/XDhi1oGzBpGTCpM0xwLNgBDRPYBPbkokZ3CS8WDZhc p+Znz9hkcnnP4WS2O32IkYJb3L3Xe9l0575ZRh6chj8LTkHjFSIFD6xePnBC 7xuBF/yBacMfmGCY4DucpXPQ8bkbdvTI0q+kd0bwOO6CaweNYvLSA+9yX2WU EEhmGCpQ9/GJOQJJhQFz/uKdyeWHPgiYuIHGe0mre+EinSaUwoO8QwMwmWzc S2k8WLcSGuQADJpDulpNGl6r7jxzw9Mdw5p0jGigybiSmAqIajCugDNnPQhR 5diaEK73KjyL47nTwJXPI5XJmjx+/Hwy2x6GgyG4cs5FcvDQ+dUsruoZXMGt aObgCp+BoxRXFcLZ8Uu3E67e/elvE4F9JrJMM3Tt4u5kZ3cUMjTJ+OKENiFr 0ojPJhlfgq1CIfJYNoedB/Tg4YvuLkchQe6bvSCbUiBbXjqcvPTJ38I2ywQy XBZrEYOsnDU5Pt8ytFTodS4x7TTpi5NLNNEqzzNk5SHyEmmht5X+eWvjK8Nd d5MfPH8Hoc2h20lWr7UbNlzaugG3liFjZWXtRicXCBtqRVeISJeNbKnHXYWs HSRMQa5wSFk9h7nNq66+IcIc94MRNsSVbTHmDk7soJR0PuaqEebwcrqGS5ph FuDQrz96Knn2mmvhz0wYOb9phh0c3FvvfW8ka/h84eZ7N/rB7vKek4CaG0EP u/defpJcWgBuUsGOgxY84I1gJ96qB5zXNm0KOdG2WjBc10ETYVP0XqbZH5+Y Fzjr/b7b1XpyzF1+EfByf77kbCJSlziBFTeNGB5yVXnInOFwwU2vplViW0lA 9+1SJdAqaNqKkRa+mA492UqA7MHDJ8i1OpJ6ysmPPP4xOi6BzPthnFOMXas2 gwyeM+fsc0BWotwoHqfuAObGCu+lzb3HzsnlyVbvhDYg7bmLtxLqZjtTIbLW DtdsX4fLu87j0/PJl7/3d7iNRTp0NULd48dvEsGrMPDgfiGKBuQmDLe6wcAT txqQqxhGNZOZpGjdGTiKpCuMCCAEQNsqc6hzXjiOQwJmRx5VMeKszGy7mzx2 +BzMJAEQSgfA4UR1w6iOGacrG4F7hwGI0wNwgF6VAeh8/ODT66f9ik+/28hi XuAJFqOKFztsDMAyYvfkzLk7k5tu+REc+xte4nBo4HtjZGgs2TN7IDm+fDqc 3q/HK5TTq9gYc1cBiHa2CVEkekYmZjVEkyc+8HPBnui9ZrvuLhxE3ffwXiK7 zBVmR/Fex2/WMMwjKj64+uzl5D0/+XWCrIOubGXcg1lWy5qB2TEDs03GrIoZ oDaWjT6UnpEGu6CKWw4/OlvLpjonW9vQUCL0vv7NLyZHz1yOwkG9X/Hx2SVA 112Xh7GDNLFGw1jL9bgB46IB42GGsZwfAK4ZMceSv5Yo07DHgLFXrGpkrPE6 PrsA+B5NY4/kbe/4eYo//J/40H12qOvkdwpDQGGXv/vw70dj7SDEO7Qnl4/f g0L49UjjAP3DzS4mqfCC/7OSQia8gPsPnHE3Phj6pxn9+Fv2AAL62ROgf7pf BR6ox71/Z4+UcG+VDeaN/HaXy634fNfaWwj5eO07dhrnmE9PJwRA78Pxm9xh WLiJA8KE15y6lXKf4MAIMwEJMIRA4MCQod41w23YH89A5DY0XkFOXDJeJcJh Jcipxl4c7bWS1aV98CkqBhWqhksxQe81ouHOhQN0WncB0elHDDWvGwk3tcdf UPN9Bg10BZXdCZqe8zQ9wxQjOToArovHqnBf6/Bnq8jMTbHaO+VP7nvg3XA5 MAxqV3WiyfHZRTrkRbioh6/BZzJ2s91Jd9BDmwujMxaF1jxBcZhVOtTo/MaK k8jVgzckD55/XYNZ5H7cXBhbogN8JGIR/iokBIVFYNWzDz2/LRaVDDdH78d/ 1dR8xCJ2sIk/HcPLXuhbTCjRZ8ccMMgNGt5L8LrX5Lx6i+d2tRHRCbZlpDVM RGownU7sPEz0AZGGjQxDm+nkAsFkeHSGiNQwnKFdKZ1wLdqqRAnkbFlBu8e6 rHDddY9CyrmsUNOyrstMhAjvmfi1fpf3HBNPqcq0cgyTADSq6IqjNEWXUtHM lmyWY3ivVakrq9Id8/Ui/eg9yWTtN4qSHvvVyDnCC8lPjB8WZFWxNKuORVpV LNeq4X/U4bPXyIeqEufAKRcnwvbAk8K4620ZmFfgU5WoVSdqYWRwiY5WjqrX OKZem0exB+JJ9eFVowOKQf4Dv87uXaW/fv6Hx6/R8VnkRTS/4KOtZ/iFz+ST gVll5heHE8SsttFqsWCUZdrML/hoK/tPJB//+vfdJ8+vN77n5cCvGXVv4Jdn Vq+5ahrJlbaRXBlmfsGRc3xS/Opx3JbS2egJdIdyajTacxo2srUVppgyGaF6 J5ZrMcXW5sLwqAPTaXhxdSMYtmJuslxF8iXLxLNrDl8gT3LvwVPjTDFVOAyO GwLiPUdOEX3YUSCWSwB80Kgm+3xArcdxQxB8dn4Be0mF5d3Y8B7Hg3USL+5E eh6+1WsKnkPDwTwhGYAnYGP7X+yjjX1/aUqcUd8ztdPil+kG3qUoi7/HMd2r SI+jqSTCN3iG4h22iXdl8A6/W2dg/LOIejRISAtp6uF30nEn1EPaCLWtftQr M/WOX7o9XDg/jyrki0C6ihEetYyK6JIRHg0x9fCZQyNNvaCd0+reQDVNPW3a hgzqtYwE0whTD6YOVAPpmoanuIMnaf30nTqhObzNOprOLFYNs1Lq66WVSc5h 2dhhFNo9c+IGuhpcSNEwsp2UdlWi3UO3vpGuFfTDNbovFpPxkclism/5oJtE PMkPz+qCFEAetEepmjw4P1AmiRibmks+9+2/wjVzdYRUQhKhh40iv6eYbxWV HJVQdKk7Qkv7HU2P8a4eYCkWtl+84U6yd46tAKPa+Ie86ct7jrpbSI3d6tJe 70c6UuHJ09/9xCfkMfUl2gN/iJ4ygW3xB+SwReFb0nvB/90QGuOM6mG2RfWA GZwtOmOjUwSXAZLj94DfxPF6zHSpbqxHTCfZQNGhH9NH8V6EzfWdt00qc6Hz AS98080//ReTD+7DFL/vhe9KW8yuvSdheUkIKl4ONqbmV8IA6AdzckIPz+Dr iRcbRry4bHi6zTifTEJQZjlw8hDkYEoNwJ6xORKCMssBPiNQ1HKAfPOSm1cn AUEOdAplxEihDBmervKwN1kOnOfaS74hI2kyxFoAbYC908VSbf9KRk3dk0sS u9PuTldDTrBBglDVEaR2BWqD6gCaCZYPJuePX5vc+ar7kzfe+2PJe974oeTl d362lHzpI7/szoP/zY8NDg/tyirGsHFHFVYMnxp6AYoB5WDFgDIEo36Al8g4 9aAMDX4/M0ZNzaupeEQuNITj8OSMbGCFr2bF42sbf5zM79hHAuIcZ9WPdGWi 2aYgtKyCUIjHnrEpovIdFy5AOErgs7stfoo9PxgO7/WthKQIJXFjwDqyXlCN wn5Nc5yPEwFRZ8Wv3blYRrYtJlUjqXQ5RdRqIe0wJIZxC1rCV0TI3xspD/mg 6J/RyoNGf1GeZkZ5ylnlYdPj0OaMpGANLwc1YE4eLBuAllEobs303Tn3/+hz WqKiYGEkneyQ0K2pYHzH8ARkKVo7IPWHXUY/cV0FC1x/cANMEhXqMPg3oSQK lX0tUdpj6RglsYYhUWNGbmtIeSwok+GMXNEjVqFMwLKQV3rXaa2mUaZqGB5L 2ShTcQ2bOIUggQOFFgnUUHLH7qtC4wE7TSSQr0yUmiRKJfoVnj2Gh4uW+VHE fcRpyPBmyuzT4D5ctEHahNeZG+5eKkTPf8qkypo9GvXqM+eS9z/6huR//ewX 6eeRCeo28L0QcTLZxyNL2MInb7890S/ezZnKJk7DrkxOL+nt0UImzYtYJc2k sYB9+PHH3S16LWGfhJ2gbShYWRRMxJiLPassG1ou3TX4s8HvQqCUnm1bylUy EnnUEOQX3zVEutb5GiBXZJjxwvNI8GQS/xifBj3WB4/3wbMnVy+dSzZ++xvJ +vvfmRRUU/euSOZIj9Es2k/mituQuZKWOSz5IPgqm1ooZeCbkbyuoXhVVrzl AydWRXm6CrOSxK8b6ZGaUcLaZcRoNaV4XMJyv/NOGcpY8k+nZUTxKoZTNmzU tWpGNn/cSD9qxbv6/O2keD429HtkFrjZSLWB5HWB6Axk3Sgstfp6M3F9VD3D nIpc8M84XnOXDPlrUZ4E/3+U/wvXu4+2OX/UowOG8MihE0CEu75ccWv2dSWr JHZve+ErQdycE7aWiltUDtutHDAkMzPiVoa6ueNC545fup3S3lep8dcRHapl t+/e13/32kokcHi5n9HJ/MC7M4GW2sU2iF0pK3ZpuOfY5eUHn+VpgiODx32b Z1euvjLRHgWUT6VTuy7qAg2Fptb5NBxZqtM0+qmc1LYpn1M08qinU3mr9pO3 IrTNTRIeTIZHAkLRRN3+cuM3avxYM/xviFzyj3+PrSDceyXZ/Ks/7BG9nVuJ XoVELyNt/bWty+jFZ3n6dy1H2978ji+2WdtUy6X7Ex9waiDwYh4MTCitNIz8 U8XIP+0xCpRV1ZfJBUqtbUty3rEcbdPe3IihbRWjtDJppH5bnPpFM+e5G+/B ayloS4m8Kon5ttuIpHNSVaNwaXlGVaOA7rsjKpRygcbpOJR679zNIjEF6cVT wvCYPSBihhEBnePHPrvbzdWzmnFJqt0cDhq0zP0O7/jdC9n0ACmSeG276L1C wnZ+5WSyb25ncvWefVAyx2Ovavi+NGQeC7eahpqo1DhFy90CXklaQTbk3nPg avhtm0s7j3BbTxO03jw4OUvy5YTMzFo5XWkajtQUPx21n5KheKr4rfR5rZAJ Mt1hm0ZoO5mnlUrEUG9ViWgeszWWKy1ZW2lWhzXL/ZgsLe4gtaryu6FZONuO SLZImLFCEoLlG9fK9Hn3xBRdt8NeEWCcUrb1VRduhfdlYlGpU5PVSTVRijpB rdYy6kQqIYWpppEOKxnpsH1GOqxsFH7raeF3Vc6rYlxRKHh3PZ7XKKvTjYfO U2zpdam3MDVtZMcb3AuHz+NOeb/wW38DhVpNZcHzTXp8SkaeujFgq1rFqFS1 80tFwRXzSu2XIMMFg0RxIMoSVaVrunHXQXqI4beefnPy0XvuhCs2rZDB6Qdn APurlIuHK5zSV4tiSDCPX7gjef7nf6fsxSkIkxqsqFy8U3ldECeIFryuH3n1 HcmvfvjFJulTmX6F6gznN46kdMtElgvh6SmDSVQZW+dSTZn7NHzXFu2CIPl1 Uin8N5MaczPT6wXN84NmMwKiFqiuy3gciOUpG0q2jbh1zj66XwxIox2ocVBR suCDQixd/eiHCiWRHlKeCdYfSNOVL3yalKeR0R+nS1p/ZiP9oaPzSm2nnN5t QnIedhBPUGeQBVuoExedfP2p5eiPiwSz+hNV51qc8ULuC3qD7XHw0nmu/UZR vGQUxRusPc5TCudU0aZzzUcj7dGe0Th3cqnKXHatqhua3jS86A7yW69/x4uk O+6/a5pK0k/l3I6BewvHjBR92dCdjuGH1A3XaCSFceQecRjYUHK4x1kkPIy4 xA8jhgzBMwIuJhkdiAo//OLPEi5GM+gAapQGFbmSr9ZZkhY5D8n91ntHY1Nz QYA4M0myIXn3xYwALYzMagFqkwBVKArk1EPoG1TbC0RN50vdkfCcsa1UqMQq 9NhT76Z6PHe1+B3xqL5G7i/8I12G5zisa3gwOzMSUdC7Z6adfzpDNmy4Wjv5 EfRyGDxPm+nPXYRhO/7kvY9cTv7huz+TXDiyB9IybXg07f6KgrH0fivvw512 ekJLZL0HPBqoCp4Mn4cfnTnI4iejLmWje1+py7qlLlLsa3HJT+WV6MU5pYPG 2tciCws+v/E9L5OkNNKSfzgdC4uICkmKCAs+w4mBpEzQeyUSFk6cF+b6NoRW yZHZ6y4bgoLXOz72tSuBHT0NZRUj4urfp1nKbBPU2wXQNdyZBsvK0TOXN+NB r4bLyURd0g0gAZczNG4o0mecc0UFS1d7QvJJem/0kxW6VDThrBw46W7V6win xemf2ngoVPx3ZOp3Wkd++q3v6pKOVCV9FFYjOdjhMLyYK8Rc0hPw0WtvzJWS jz33UnLT3a+NHgcHaXHODLX1LKU6Is3ZVofAqOFqLCsdmV9YTE5fuAimqpZH AFbHVIVRQ0dW6L1Eh3WHoAhTPU5zc2V2EvrhvuEUBBbIawhJyCQLCaKltUcf IAnpZoRk9dI5LSTjkZDgN6EZr6mEBKERhMRCzIQRsk9kEJMREuiILLBwNrJ3 cYXaqSPU4trcvifZG17peJg3QFPhkHQFONHp7QhgcSKeSIOQ5YZMqQYhtJJD JeaNRLO0jSPJ7JQBCgG/0b3H3rzvgOhpjqsZcpHXf6oS0VJ6C/2nev8EkQgX X2zMLO5St14hNIs8SMRTU24HNAKzXePZhlOKJLTWB12OmOnjdmCIH3vbCyIJ tz309FpGEmgWxLWY7SMJ8CWcJIyza1FIm6rx2jh8+gYODdIAR0r9bz91PugB yv7Z50D06kE59ABwA5FPHoRnEZI7kQ1sJowssugBEzn5/p/9BcjsU6h9C/nj Roi0wkeCS/Hy5z6PF65EPxF3cWos+fMv/4T7klcF9zNVtbQq6CTvWL4qjPRX Bb00XuxINQcnOkTO4kSrgjtHwwtBxJq2EgIpUXVUogQd8udP49mazomowX2o IVCpIkLRy+u5CO9EhBQhShV31EDipRVhdekQdb+n/kOdCvDwKaAU+D6SH/Ab kKJ9wxM/MWtkbGVloGRsSR74fXwqrYyxSKytdCdCK59jY81IkYhIoGkdxXDI wzQvIUSKBD4EV6fGjA05apkM6Z4jp9iRqmwO1xrZqKRQzYQl0IcGzzsHrDTj o0bQusBFS+BAsrGVNBu7Lnc/piZbsrHT+aIwxX6CJDxEGDg5q7z4EHJwtSk8 M34rXZAHcSPxgbr6wUPnuc0qfcBWIY4Qpvoa9grFHW957/uSv/uv/y35+rd/ k25ebRYDsmUzG1NG2CKHg0i4w9Dh2OXQO3wTqOEv1FgZvvPSs6QE0IRxI/CY ypR/lDKw/RBZoENLU2HNiDoseIwZ5mOeWzJEFnBc5wzUjaqO3qtJ5KCtenTw OzeXBXpmTQ1LJGphiUQdB64hjUr7/BZKst0x1alZGJJ+wrAwjObak9TknXUV xriFEMKADCpcBtF0TCHmDGYBpgA/c2xYhHIUybHwmQxsu6Q7eHRWtaTq2c7P Ju0os4Jw/Yf+jUSIjxsA60bGw+oIHmNfQ/fc4OVkxn3fiQuLKscAhTHD/6hy CVzlOENMMGzojFxjxYhTWgyk6/fvI10BhLpG+LrIOgPdmZiZRyVb4hHDFYvL 2RN9+glZZ2a58KPyGnpV8Koc2hvldLMQFpv6gFpTVTGJ8z+of4f7tGhGC6m3 MNvXU6hGoqCEQXYw+qMrVzYXpqYkKzLbN5qphmhGjsRezHKqMCEiabDCILuB mg20ZcxIls7Se4kUhtMazDRTWapGGNIywpARI3BdVIYHPVs6YYHQIyMrdF4p x4is3LfvKK0IwWMpZcrwlHF89661twTh0EVgLRy37dqP0koQDu1RdOm9GoQD v1e6X+SJwUfklLwb6N6LmJcitAQRoJtsKIV7FSw16RhbZJTSlmXJlQY1uf3R Z9ZiNfGNeipakPKIClroBVFxgtFKO4kb/Zr2jMarZk/jlarnhYSDE5mu4c9U +J3zmbp7hfXGb4Kp7qJshDwdA1nDhkujpebJ932cos2qkULVTaXx3sK21Lz/ 0TfsiDtnosVtegm2j+kk/3SYXg6ojQGlpqZKzhzqyOIZ/EwPrXSKUJgznI9l TlIodXCf6H1zaTnt+tdPd8DDBfXxcpIedKQiH5WjHfq3kEohcYvDnpaRCxkx fJs5ei975VlawFNyNwL7RXyijuWKEe20GSL4DOujIaJLxUsMEYjRPW94G+Yy iM/ygRNZ8YlqMUMq14HHWOKR8k6A5FHg0B88xRZmwjkvQ2mlNytBdDfvPXtt MlyrR30oCyPTkB3usauQBGn5QZ67YhiGhqk/nqC2/jQzGxDqnepc7FNl2ZFS Df5xIEI4lNKslG18k3A5aA/HP+WgOUXITZGclWZQGygNq832GqGiFLwWISn3 4Bpl36eS6hGG0yNtdM75uWLoEMdWJSO0GjZ8544RUi+x7wy/GSB7/2d+CZau YmRhRxTOpJzczW/i26naXfLWsS+nvNw8ODlD6ZexhjMT25MiRFjzO/ZR9ws/ 7oVo/nOP3EAvh8P+vkqsHqxG8IJCAMGHDOqWOaQlSCpYC4eUKAv/1L4UG/sX Z8gP6hhq1DUys3McacEvemzttfJAZDr2UCRJUaNdyYi0LLRYVkvQIlYLiHHe q/QGO4UKaNGqFNdwKsnde4+Eh+uyMhWy0oQmzUPHzw4Zuw94aSpvjDdaJE3w kJxXVDYcpCGlTpJygUJBnWrGvHVzOsf7BFsVlqfsRpqczxV54qKPliezua2l mtvgDhHbjNiJBcm7PlafQXuAPictSe9Y/5o0IetdwkppE7IsqZJOOCPR5rUJ /hHfT9EIx0aMamLbqEZ7tFXo86Vb70t+8ff/PSEOYVk5Fai1eFhL+Jx5Lovd jLeL1UnlfmQpcrT2kHd+cE5sSxeKBlWnOqsTSs5nzt0JRQr7k61MdMOTvVlO CjN9k8GxnpRZT+596JGgJ3zcoHrWcR32KYOgdUoFfHLcUBjEP16OiPNQvPad l551Q9ubK+4adlDHa2uPPgivySHIqZX7nfOigmI0+2tW0Yjh8lCkg/qdGc0C ig5cdUZpVhg91iypGKmuuippGMI4eX575FFVItmCGdp37HSoHulac1a78HLR XcnwrJoquIN26ayQ06yGEb9P5LSEI8TDggekldEC4zcALoddXeFanbvxnrrX KyPBLdWRY1HdZ0jp1REnJ/gOHCQIUhGCNMWQgMcEzbH6nRCrKR1qcK9bIXWN dL9b2YiT/NTVNuUSZYdOHZuNG7FZy/CJdnKZAflFhxRCDKMGnljJyDyrRz+E CnU7v9Vuj5ERKqcZoXBozw8fpqEtmMtSrQHVp6EyQrLNrN58C46MUwk3V3gv iVoQuCZzPButGBVWIhfKBTb7jin/nHtROKVG00ZqQg6NU33/z/4iEjnDD8Op MErkKDkRGjEy1NLsC8MIkKV+U4n0yflLpESiRxzR9eqRR5Y8HwUvHdKNGcga MsraOw2L9qlf+QMK5ypGm92QmihJVzdVunrXyBjBQJb2sSiploVqpEx4wQy5 mK9p7H1hiZOL+0qGY1XLZJ60ODlFGjKC/tmcZnItTvjsnKeGUd7yLPf7GKIG rotMjuW66xak5/BeMoozyiO6dO4U1KenT0or0evf/GKVlUh5RKHrzfG/bIRJ fI2EFyTQsTGUiswmjFpnyyhq7FS1TuSiRYQAFxegWf2+HLKTUoj/08xvt9tv 5IoqRlpaJU4oQOO09FCOCL3lybcQ1rQIoTTeGR6nVhm9bPnJi0dYfvz7c7ef JWUAiCb65qljpagYSmEJXSlH6KyoUOeoqkYIp5/6KanscSOV3TZcI5EiWiS6 8S0WIf/+wfV3r8s5GlqKKtKqF4VwebjSxm2ZcaUlCC+4Rm7Gy/1VaFWrUEOp 0AkHTzROyfo7hHaYfd04pVQoLFaBSfr4178fLTZwn8Ps8QPyNpdHRoMccaxH u5fCWTo4vZO2Ga8oPcKSqEwmfNiY4MVMxyX0CIDae/RUoWFUxpjYYZucTOSm +24v7tnbt8lqyjBJ2SYrhPgYbfTsOenx29OVo90eVw6cVCXwtfgiK6Q+eCHL JVZqyojyG0aUv8IQwd8LPAQi7lzi/2jp0W0Wkqau53foHTZyQ5U0vRn4xZve UfQlpfc2I835QSjP9tWdpkoMOd2hUeLOIXJMOERyQ9urO+MD5q1rrAkuLAuz oBcoi7aVDd0ZHzCXXTMcLH0Oad+ZNPDW6pvIjl2gCuuOpJDwr651pxwetMch mIWnpmHKljmRrfxppwF4L9Fnib2tXZL1Y3WkslZX2nP9zj3UpFXepvbAEslC p4ZRuveArlPZXrSHYzXSHvaFypn80qHFlbBmt3+Tp/eeEce/42NfK9SNuhnT OFTgdcTVUFV4TDxi8UpON6c2OOP03tQ7EgR3R++rDP/mbS98RRTG/bieoXpQ GBifWaPAXjNi8V2qngpHJkVClZCgl4676A5Y13UIqbVX8nt6jhl5naqRddbb AqG5B6uZOgMqS0vZsPkdvk2I2wJw1VStAt+rhrKMDZiDrhveht4WT9SrknMO y2vSSaSa4TWp+yDewZLNGABrGpG95dGIsvzt5p+EpFKkLN4IiJmaMYKpulGc X2EwKQ85yAoHVZGsOChkZSWqmdXV6m7OTg8sKyVlaGR1d93YucKTZzg5Mjkd yQpkRj1EAKrSL+8TplYbjWXly0i7BWD0wle+56a4t0Bm6YsUyLKdvG7KQ/eX zvVNGIZlunchbejkdR5LzYhaeCo2R+p1mnJM/pwBgarhqeTpCQdK2X12LE+l lK8nx41MTTUFVeCN3rNtYXiE9gAdHlBPhlI9CaPDBTdwP7n96AqxvMZch1fB m/8FQ4PvyeZdVsK4ns/1oFk1Q09GDW/ISgXVDW+I70OiI4LSjAGohhGfz+lm n6UFUpIa68mVK58NY1Xj/9IaSRoxh53CvFFqrxkeiuCokHq8QUpQEZWNIopG S2FLSYkUumTbL1XoCutkt5ISvaxENiqtGQV6nRtiOXHXh/e69AxRucvIzkwa xsFSEEwqoiFREKcmYcAtBZEalu71RU5Yd3dZ/aO6u2su7u6ivuKakfDVsoHp 1bKhHdKKEQPvVp0VmF4/0Xiv0OfbHno66v/x99rQle9+fX6Fa4yMSs1I6+ot cWTl0XbFAtaG4R5V58UxqDORIR6o+mDWuwPmdBspkcM1W4JUNwRpxEjuWqFT 03Bw9L4reMG7nTOwU8/J7CJ8duJAMlE3wpqqFou1rFho9FhGZ7dhdAQ9cGJ5 G1O8NsemF8yqkmxdCt+Dq0phnYklEHoJq/STX3/HA/KYC9kXMCqTa4G4sGOJ pKFE7+XQB8rpkZm+sW416jfHCz+7UKVm1In8GctBEzhiqaoasESqLSNDNmo4 FPOZlis0OqglQTrxKoogyMFszhtFwrJRapY5VUVC9z3/LoGJe10Jp6kRbOAo GB14hbNGbkNt4xGAyNvH0LGct0CRbHdAEWinZeXMGs7YmjcNERjuawBigrYM gnYNoWnkCM1WUU7T8Eq40YlE4J7jK8mp5SmQf84AjdV5NWs4DU2j4lzp0QFn SQo7cjCjg9k9hg4IZrhZmF4jE7NWHaeqshiYe8x6bZsSwJXmSAL0cwQsCSiy ELz5+Jmensp+qQoxCsUUD2GtYsWo04gQyEJBDi2yDbP9up1GjG6nee52UtpO qSs0g1iJUEsNdhhhRdHwD2RmpSnOa7vXeQw3b0Qut0nnUPS/wOxHn4nsaV03 MpuqOrE52WyhelcYGZD9ndRLXJfjcaqEWCPVjhYzE5/BdsxzJyezqZkp7P/+ n/1FrsK0DPZ3ctwMHZO0DDeDy5Brwv7vvfsu2I15AymVnOSm6osL7Nf13Yj9 64yTwoKBkZJRyt3T12J4H1IWnUtPXEtNjkhAJVPKhQ9YH1ACqqn8h4xDxajp 6uINwoJUAsokCfDbBuiNtFQAlTfeoCmogC6YZFWAw4OSER10c3oeewtmVa3s 9EKqSbWt6taMrBAgxeQn2Vc4sA20vDgm3Mtzq2pkgf+YW6wPQCzCh6bDYC9e 0P4ikx9VDgkbG/0f3UT+v4SI2yU/ktgF9v/1khEpOQwZ5Ld2ObKSBUNp+3ym PyAWmLxzWMlHDaQhw73guJLI/8wNR5O/eeGR5GtP3EhZKEsBylusEJKOsyGj rFrOVQBdSbWsxF5DASqsA0ANpJ/Z31KTk32OkFRQ4fvJ2guEBGji6Uf+mpEj sJ5e0J/8FUo5ZlsEp/umFmO/UHXlyM4m5vIfIQjWvEv5osj995kmjREjITRs xHjzhroX07mV2L1gNUi0+kpBRUd9Eu0V9hk6UGUdwGcuUUTH/dUPvxjpgM4D NIyk4bjSEPBe64Bu57F0YDh1A8PxdN+1uOdtg6NDOUlDzdF2X47GWpN3Ditp qFs3hgxHg6vtkQ4oLZgz4FIasNLZNlICJS0JdGPdWh0AEVPx1hteRRGjmAqO HvcZrqJABAv1ZdNGnSWUgkPZKDhsVwFgAuThABXj4QAtNYwPHboqFBzY+7ca bvpnB2P3sGIEA6W01rAei0CNRID2JOBds3WjxHhO716/7ODqpfMoKblhDNMp BcRCycgYapYem/Qboy3S7JYp1sOMcmy3z6hY19KK9Zoc0rcIeiPOG/IXLhmx f8NIAOo+BCF+N4f4+Iyt+THv3VT/s7e3VFCe+bBBSmufV4uUHZ5ejSZdNhNx 6RjnaA3YT9UxnAxd8WfiO4HHe4migZ95+xqBZdaATLHvMpm4Itk2woG+CiAY kYiAa5D7c4wDnMQCPzzUqg+UDOY3B2R+3Yj9y0apkZm/nmU+/AAn2lbLy0RO YKh9w2p/5hv21rvZ7PzTszm4a2HSSOcM9c0Bxia/nNaU5dlggfQ6KWiRfkmF eJLU3W9UgGQ2na6H22LGY2Yp3NeM1/XBppHt09uTSMZnUMaLqXefTaaIGe4a bLRWClhsHE7ZGFhvqYp1juaA2b5hw53Q3rEwvsTvnPlTjK9qvNCLA0TL1HcU TNzv1nuI7usvw8Pw/5ZUtRCOPxbhWiyvpbhYz+AiSvIXVRVQkvytAVneMDz8 krFTgGY5bLpuKHAKXTGqM+MDhvlVw8lnlve6GLzfLhn3h284QzM1ndON1pva s3tGOLCPNmB3Ln6W38TbVWe90I20qAK4a/bvRcBWOGDwW0L6T/3KH+CGVhWn zJBeu/KtNJ8XroX5jeMke0fHaaaHB+S3CukzLnBsbUcM7tUHzOd1VN7GcX69 n4bknWOrfN5W5xB+l/vyuxzwwjbAgscQgwS8RtR36eIpd1kzBr9nW20RfuE3 XHkJ4vcbTUTK0wsa5Tuw4w0Fi0YGf2hAfjcVv6UHWj1pO5zX47sS8Zt999Cn ofOueb1lOAZX8XTXKiJ2vetglMnX/ILZhrM+l9MLZnW3a0H2vRtVHarrUrvQ D67Xnbv3oKEw+OiI0HF4nFL5X7r8UkmD8+DX6fxfNjj/6be+K7SJDRkrP/XD OMRP6wzI6LZi9Nzi8pJiNKFIrOkoz+K3n7orueP4IdoPsL6tJF2Z2IbfFfyG gJZwjBqkrg2Yp2srS8CnkHOQ/Xzx/rMRqTlhTzDRYMHsOSfObOppMTyE0Y7N yQfe/cbkt3/9s5s333BmqYfZGxONVpbZ8OhwEheN5yr+k+/7eFBZb7lrYJwk 5umlk/LtbbJa++bCar2VObOaBk/75Y7JZtPGyIB5uQYbbuWYy+MTlhS7hms1 mg89P1YjlpV30ypcZxVWkTdeVxTtDCZXaJpYOMiRw3TtM3pyyqqbc3pmejWL u2zIrRt+W2nInc21RSF3e3t03rzr0SdW5Xh8LWsF1Q8zZtC5NmCurcV5FdD5 re96e/LWpx/ZfN1jtEF5VMoV6Rg3OF3NcQY0VIbUuSAdp08d3fzQB96kZSri doW5zfm3yGDD4cN3gY31979z1mjDaXDUBnojhmN6F5P/5z/9a/dVx3I7ECeW s2Mn8IFfx1Altms/XbNdw8fZ9rWUed5f5ky8zsB3coiuV9W2uAanqm/04qXe frIqG5rf7JGHXgk9ad0BU27Cb1V5048p0M5rtmZi9U5ZxlprckN5WRxkU+0b +wFb/NaVE9GSojqXtFtatdOSmqzrXn3X5tyOuWhBY16wPWSsWLS4PjQg14fS 2uq6HK+jjic2ddzguvU8yv6tNZ5/p89ek7z84tvx0hqHn0OdzTqX9aTN/oV8 f657H7gPuoJzran7irheZa7DWZeG3SllJ8D/9afvc3O78dUPuuO6nwlzSNig 69thqjDRt3HX4wnCALsBIfi5n/qAI6tXgkvnrw5z2KsEjLRFTspjvQkiSZ0J cCDb17czh4L2zVNnrymkYuDNMJLysqAIjRgSuCGQg4nvpwRD3JCjAvVQguMC eFhPzY671ZMxPGDqrclTqYLykGyXejtuB6USnr55I81WzUmzadlusmzjs+yK 5/6ryb92+Ai1Ty6otik5Tckgv9VqV0r9suTm225aV8A0ya8j8bbRWWNl2oaM xgqL/C0j08ZdL2J4af4mFCHRSon5Kw+o4zKLmNX5+ank97/3C3hd6Sc0EzlC s1WMoBEDofn6Vz8WzqUftAGDAdrXjMh8nA29LKZfmp8A9StJ8tdfRzfG9z5D GrB66gChif2AUSNvWzEC90df+2o4AO63XgL++o+/Ebzzsv7vxkE3ziwBebYG qM5W6Xt7vYNfGXFVtIBT890BZaDNvftci8Nrw1AAJOId7a2mic6AabkWx3zK x0/bUiuB/HjxFJp9E9I5ZS3e0po9xAogPj4n1yUvgNTpW06cjBon9ZSUjSnZ beRUiyzSPCWbH/3kR1YV8QoqHWcV2NpGh42VjmsNKAJNIx3XVdcixJw0RKA0 oJTXlTOH38Eq/7u//k2Qc3P10jX61kVz8k63VUN/9nTO4SfdcafE6XRbr0hB 3ZCCUeUHXDy+j/yAJulAjXTAyYLpD7T7Vm4rPTG/EwB3NC8GThzWTDHY3D0y IsZnQWX2UC7WtofTRVs6ns7pTN71gXeupmLgs/mcvQ9NGYMqgcoBJKkShM0M OByw2iakfUpvALbTcCFVawaUYHNqdolPU41kQEmBpQRW24T4Apg9zIwumkIZ 5FEcWgbWz1+gIsAOYzIqxmTs6isDvrvmE5/7+Mbq9ZeEd1ECz4r42/27ayIN aOZoALruMHGZTUtCAk9vxytR+JRByuKAYi5pWIkCnAa4v3WUdPfrovFVuQ+r 8y7vvFtl9PR5OdMQzvulLz4fzms5CHUjy9c1HASnBsNKGAwHgVb4Nfo2dPVk CxqGgyBdvKkmsDnSjbzZZkFOOkXWSHfwFJU/uvbGxyhgkGU8BeVTDqoJnTSg pHQB6vSSl4YgSEbf6tdo5QSU2qfUSVpEBsji91ODTEe11URltVBov6ATF+iu pGpQDmrADRTzxkxUjZnwC7rrPfuuwSdwUQEEYTW1w2YGUGcFOv2bbvCZsgC6 5WpAPYgygNby2SlelK82+qAXvrkrp86qggHhIn4O197tqwFVrQH0Yt9jxbAa Wcl5+cW3550uon7DSAJ2dIKJHYJxwyGAJGiHwO9FWtMJ5Z6kQIsJ734OsVhM +FMzs2J4LPezagSguxhm2R2QALPDV59IfvGbX10rpJtBguvY32o7fB9W1T3p yRFTCcPPYUBuJ4UVQ1qVVq77ROdQfA+9U3rOrAWVxZykoNbm4bTZNtMV00P8 OWNG6saM+A1iaj17ncElc7NB8suWFzOTmw4YNhpvrFygtc7CYn3dyAVqryJm YjmwnuXaYmBFMZAdf/cpMHBj9+5FLS7GaWJxYSfD3DloC3GB509nkTX6OBes AzDTNJDTyhh6WHTH8hkifCcy9IW0IkCWw0GJgAULIkTn0L9tJP8inlOhL8Nz lfyLVgEKqlYYVVmew8g7U7L59LNPRcmWbPf1oCTnVRgRAbEgXxL+VjtFIydG 1LYh007Rl+SlviSvRO1S7OMXdvRtiiyHaKzgK71i1GUGuFlqzpiFRl9up5uJ waVyYRZ4vZ5ifMsAf9jI8mlai0JbKygtWteMLN9kX775XbtgYN3kmDwrG458 mR1qKeHh31jfc6TSwXy22mvKhnSUjXiB6Cw9WYj9pO+mYaT29YN3YKVhwReJ 0CVtvd3xAJ0SWWfJ2XUMl1yW11ci5rJNKOQZBZ0lEvpqbxAm+tjxowCPzpVi dGkFJWr1r4C+m6cu3dBDX3HnRozcayMnvNM91O2YvjRCukgn9JXGCd3fPJfp huI2+HmjqWaIm2oy4ZLIKTOYHGbMBDdNzBoT0TQmQhgs1RT4SBv/27+SFB0z eMvwvNs/RYf5y10DbTG4aqToss+fSdlVpwK9mCXMEbZAB7Uwf8467zDYVjKM J7Mt1M/wTz/nXPoAxDNHfzV+L6fDfhjulEuG2Jf6awiy9uvxqNXwOXnLjfvp hZ/nR4aI184ImFn8qlHC28U8h+EGbMDmrpF6izgdvG62BYHTOuXTMFI+2Z0l 2cGTyE7v/SHZmrwEvLUWSvtp2uUWOOS1Ww2WcCtLKUWE3WJ0xRh/3QqVTbRp Q9zkYik+q2gIsxJ0ltOJBDkkQTOc1hPRMiZCNqIGp+9/w1OYAHCa8m1Myi3j 624aXwf/x8q3WfuaWISuGPm2WYNZE7y0BTMIc+UATC9A+MqLb0oTTe7/9SE7 qtn/EUOcfdCdtquV1E0OLgJv2EHUk3bZSV4HC6av3XMpXAN+tgSHFWDGAFie 4OjIwAuO34PkpdecSDZfuif53ffeQkpwemUCSuCstdMCC4Ylu5i3m5UAlw/r Dg0YNqy77LRFSkAgQcJN1lbMGbmeppHrWWYAEsg+80vIspFRUaFeBCIpx8NK YLesfjLQMfy6tO2tHiZtzEieVgfMtOl2CqmkOHNAsqOzhKIFVWMSZliRpYyS yYzOGBm3utE94Sw8uWElnihn9dezt42pkdb4WWN6hozpWVS7j0MzkH5z0yNC PaZomReMd40UXGQsM3uj6barHImIUnBzBiWlWQaSATz7bBTeW9uSiS7LhPEU y2ChK0Y0rTf3gixkG3jOHtyJ6yhUjGvqJxtyTWM51yTSVeWQwF3PkoyTjm7u PbEIzXAagfdm0I6sJ8GZAMkXl4za316WDVyyQ2IkGzptF8kGTT4K+SIbli86 ZEST2m7BeQAmOV8njui6BlZnQNloG86kprLV8SWyURkwYddUsiFdWCLqnRzZ 0HUW34U1lK2zBPvXp/o6YbT2VHM6McqG7su+v/D9pOFvxpi2jjFt1hOap2em i5g/HJL7sQqptLyihMCkop1kc8oDSkvZ8B93qOMJjbX/yN6Hu+XtS0uTt1fT NFZmv2oE9ewMRZ1BYsfE+fAXsv3LafPlwDm596FHsipXTaOecDk62ILTASmp 0Hs5CMr8SBNiQr4IHjbun9SioRsExIpAdD6QBUR2DLasms5FtQ0YLiirhqwg rpw9X2QD89rDtxKQIcN5FVJz6LFl19hWyUDd/SudXOje4DDE0hAJA3VecMJI 99SMQq3WEBRqu4ZPkm3n0h0cVcMK6M7yrIjo2Rs2Zm+G3htBRHANOCcETfwT SQyxk7FlUqKT9gxkkwgRDEoDqkjJcD8XDdqOGLT1RbPmoLStEELKxFh4pmz7 a0bUMm9cgV4PBKuBc4+8AuGo8b6xAlQdulSNa9GbJK/umya9qNF7SYcwIXmJ a+AIL0iFFaLoFQTx5uIbFtgsi6WTXvNcJBSpOHv+AjnczmppoE0YWBkaUDJa cQKShE76LfBcwGyPmX5wRMlIQFoZizqXfMU5lGZT9JlJBksazeD0iW5Ij4dO E48a6aM2zUg56AYXeYsQjbbRQ1TKb+zQeq8X10Ds0WM8bcxe15i9KeVvoNeL paKo1iux7oeWrwmlTAN2FQRMs7u/MTPUlucDhkdyWYqBRyWhapR5IEVQoJ0G X4eN8GGORr/Sw1cCP9jq/p/wFfzE7CM8qBkhy4Jxzq5CHo6Ls03T+/B2NILW POH8kKl+59dPwt091ebAxOsCUhyikvuMeKOduqtA0+bK8o7M0yQJRXAXtAbo JNmwkSTzBqcZGRyAVsCLMpaCkH7YVLbpfFAt0N6nfqbgwmgHMx+Vo0QLijnZ S+shMkbPV6TQlh5I2UinMIbtPNJIxpWwmkHrhitRVEsNVNazaei7XCHSz7L3 95QxqSPGpI5xBCnCjt9zRZrVqUKJV5SZROj37tsrsQUBKS/l0TH6D2YUMiSh 1V8falof6KWdyhWDpx3Dm1jCe5FkokxExf/AHzmvsW4EF5aXMmz4CAt9NMcX CP28SCczzmIFMqI14PkvPnmRWN4wuL7HCA2G6L0SuF7wm/XQ2BicB0Q053Xi q2skviYzkWrGcoD64gLg5VAiOeFVPbutAXnfNPzF/j2mcdsHpynNbRiqmVJS pskrqK70tGuuNw2ut43Mz1Sf1R9IMjiiV7i/S3qHdNpS8gxDRqVJt5zipcmt Z2/UmL2uIjd+B68N58YGkJVe4y8lTJPcqwMuM/AObZWmXx5qjhcT+xg/hjPD aUlh7jZo1zZot8JUADWwVBBTWTNqg0speILR6BhmfNf2jkfXl6UqPsvxpHqA 60VSGvPajKmKkbwih+QH1JcYf2gOkIe/6MeKSXPaqBEPjtlOniwq0Baa09ZR ykJ25GkOSNWG4agN0s3BacG85+bqmKlk6KVeeSIFXmEpsoNn9y2qTfV7urC9 m9iOJLsQW2RqzkLtgYoKKhPYNjKB+jnrwtBJY9LGjUlrZxgqQTyWg1RzzO+0 GoJsWlAH9ENpQJ8Jf/0eKhykCTsLx/j53Zqe4oTtSbkkAVnY7lZzaUVhH7Ug xSVMY+DScnq8IOx5XDeOR8Gbg4o+3vpW3NxluMz1Xm5ifglynYibFBFlvSwt xGPGNHeZmxkPq2KbUSo7z6rTSSgtrdn4nZunvtysG9m3ib7c9LOH3zuTaS6P 0J0YmTarqEfam2qv/QVOg6ouDImidfbNarba2Sf7prNpVk0lj4g6mzZhzFDT dnQaOVaSOWgm1azl+NoF9qn0ckiUcDuHp1850M/5QRjcfQZTWgZTlpWDeP7U oWzSKbBvt4GFlgqoJZG/YhxPmOcwEOZ9lxp4JKz6MW/ZcGBrinlQWc28bsQ8 c1516mPcSH20jfhGXCBZf68zpmIauYxq9khb9NOrJWtGJkt7xdlWLHzWJU5Q T3VGzOd0Rli9UZjppSWvH94i15eEjZmuCOmFrBrMtNqj9hjSqZsibr7BbxGm m+DcPNFcjRszNmnMWN32Y5qGVkp6W9eXs8kqHYwOGf6qBF9IVsHncSxkK+gT U7KZ9AGDg40c6wfh4sAvqom7mcExCnsNQOhn00id3vJ0Kwan9fGknt1QiWTh 9E7DM63wO7qq8LszV+3aXNoxsZ5OJa81LQn/aC4njBzDhJFjaOaEIbqL4/SZ a6j9TUzgDjU12YbmQTmoM0hWO6R0T6kp7KkeZ1sQMvzEY4Z7sktFw5etGL6s L7K1AImNVx+dp9YlaV+CdBotCAXpbtfZ6D5dTFbKoGukkPwse5+wwA4Odq5A N+OoMc1TxjSXc1JJQ71RCOzokmLvWmGLaLOZ+rLhuhcVK0njTpx2U++A0IRD VIdP2wCl64hlqimt4RbRnx40MFHfwrRiPjUNdYC4P+d4lmnVTq0lE/p4UlXO 0hq7ziwZyux3k6qSaQW1H7r3eqL2taf3rwfoRczGlGtma7920kgw1HLCl6Zh XaW6sENNm+SIBmV21cgRWX2R48Ys6qanQdndNR78phzhqgGCyfT2JKmHohBN XaYVQHxjvSrdTVzvGsJ9hm5bfQHcDU2OCzYwwvFxXGE02ouGjemd5i5lNb30 skS7nWOL5xSc8iJTYbPzksO1c6GH3AbYP/cCgF58UxNDUMdUNTBXdcC+lgRm hH8Wm6sG+zSbH77nOkxe5D6JUT1kHE8/cparsabjrdXh9Okj6vrKAAY5KwCB A0NdEfqBiweI0Auq/M3KLR3PRObz1xxM7rv1ms3X3XdxPUCOyZxGYAWl5c7x GjHSEtNGNFS2fTC9zexrHryXIiI372SsF9VQZVudt6J0xcglcQEM9xb6GLdq NhqU0s1MkV570SpeCv3FUtDUCfpKpldQx7r4L9atqBWB+7fwnOW2fZjun60q soCcFg6L5TD4PWiLPp+WMZuyzhefYYQzqjzMM4iP0mMsdnhOsS8vnm0aXjQz F8fZOLh7nhB8KCXF5u6laTrHUYNQFcPrXTa86FJMUDqep1VpraCEv5JjbvXx ykZOyh+vimPjGtcVSTHTFUVUTDhucwcduh6EWVJIQtB/9pa7cRjvfPIyzjpd sDzMTSCjnK6OodAzvDZMEZVeGV+rY6QNxe4uKVJlm423ImnZSCpx8BR1BI4Y dnf8FZC0zA09CHmVFy2ZRN3LO6tuS/hZY5YKPxET4f/Dlh4wvGJFRuQhCBHK jm8ujXXI+S5zMyrIiYkrxApbMyaO6q5FBLnsMSMR5eyss/POn3bXiBlFSFxg xXZ21v1Rfxs7r4Y9L961HrDEuRoSGJme/Sk7AhOuMphV2sKUimNcMhzZY2qO RM/1QzekyLnV8RxbcU2FE55OSwZL2dcqCUXpiHPsAAJyoOn8zCjR88svP37l 8L4ddI1e53lxV5OGl/eAjHRYu1OOq00jsSEyLImNTOqpq3YRU0Z0Wc1NtmF3 K3qWjKTTkjqe1Tgjczi3DXriM+xk3Vj4N68wk80Dat9mv+HL+spKOVvInk4p KFVZ7gSv9tPOUr8VtVkKuhdTsKQpiIW98xNsqzEMfm9POKNVumTdYb72mpvT CY2CnWBX9ajkxbf1tJUqjOhuxXSxjSqm3/zUB163nrIhZlfRcFR3Go5vycjo Xq3OK8JeVMi599whmknLkbbYf7oPWxEZFQ22DqtiOn7H0YAgs4i5cX8iXVZ+ 1uiSQWqQmwjAT7uqKR7I3i0+iVLOkroIFNWMjEc3F0FFAIjXb1HTH18YoqWR HIOs21eyzbXIPg7CeJ3islrlOoZ/tVM1KmJ8cb1u/uvp1IXYmm08LtdMLAqp rU60lk3qOXVIjHvaYtnsJ7I0FyApFNUNfxFjPwh53YvJW9Lk5VUBHrnxJk5x MlJsLg+DGdf2ebKxjKBUTgn5wkS10jh4x74JpaJZJzrNHmxNe7Bhe0TxYE/S 31f17NOL7avlBBdTGQ8g8g9RqwlZnevTErISSTGY5bSfqmIxtNCXosXNANEr /CoU1/AGPPiAi1uWY8ZWMrKf8b607N/mn4vh90HxpK1o0lKWA9jxvC1HvHXX XfQi4+6H9nQuKXslmwz0MeHsXmHsQtfjoIQuppmtMBdWf9vQgPlEXSR3v6Mj Lanrk3xi0xDg3Yoe4iI341Jd1Gu2Q0FcNtdoGhK7DYZOGgxtG3b27tfctaQY asav+vHDNcMr5gorENhTrXSI3pTb9HasHKaDmbWsKtbstOq9S+lPT3lyR+Tk GKmQ9/dC7mv930esxLEC2Sq57PI3txTfsPCM4CDuVYP1WKZNcYxUGEorCoyn e3sqkQjjVQhTXNFTTMKASSZGdQxGdYyIR+ykrlhnW0Z7aVXVtJKWUQzJHoNN rS3yeeLW1Ay3RrWw9HRpazbtUrcrDm+9l02hHWxJXafIX0t1OAnrl4xhHOoV JhyX83Nbxoy11AtdF7DoIoSwY1ENkcSN59Rloykf0N6pPDkeSoE28mtn1Z9g BmA0NBsyfxI2D+Jra6grE0+ixdZC45d1vUDC7gaHwUgD514zaiWNbOwm+z9J yYoF3tdZK3RG3d/oUBi6p9QSKEmXSH2WoCLdU80BM1VVw0OXTkmraRhuWrZ+ rN2yKkMPnwFHDT1tcAR6TQN6Ow3oyfb4ytMN6lworRW2CICqDD0HxVW5TVV2 h5ukMm7BdaIhueCnBT/TpceTjgguNi4z3LeNYbrvnhtp4aAorfd/quEY0rbP f7/AiNaeGKMZl/khf+H6yZhI9GEEh5K0lZgLzYHCGnqtHCX0wl3GhYbuPYe9 LPR0GsBqH2oMmHqxWg34eCQlWejBT5Tj6WBTfAjdaoB6ZEG1++xWcy3pNr3p XtYwa+g1bNXLg57OaTP0NsemFwR5UkwixkpOey49dfDayTAX6UfagmSd6ZSL Q5n+EcahjLke5wvGgTcGPfBE5sBAqejHc/4GW2oe5VknFtVlvGk3l8yTMDLq yHQN8WyqiuUATRev4m6shpqaEkRZ1WXZYqtSfkDdjaQW9CoKQY+2mWKL+1XK l3ZMrGYIFHtJvglD3IYVg8s1tcSPuQxNZM/BDCe1Oa4Y5viIGmTxMKYMc3wr fS8qZgiEwDnvpJW1c4bDDXFqAOPlokIZ3xv6Hyzpf7BhhUJMHg4o8P6wvxv9 EO3sxroahSsGCuu9QhnaM5m+1D3ELmK0Rvmmu19Ll2HVeKs56qgsht6O7Mrh w16//PFiP13wWDOaIr0j1dAGuqeGdO3p/Wvqnuha48SJNypZfxMzIWtNq7ZC MhDNqMkCou5iPaooJxyYMLKTd6fYWRsAO+yUldWAOwWjI13G23a1Vmx+jZGN A+L5bozs5/3N6KdEZvd219ZHt4/LFmVCcglLuU2fobWkLs7fbAMfG4BlHVhs IF5poGOp4DdldL+jyO2Igc3yFmlYsdxWefNYDjYrBjaltikWvE9tky8TP4bg v2bAcrdB4bKtjysKWhKuWD5j2ShG61KTsHfMSLc9mIKpKWCy7KtkAPD/76Nj N/BHq4VeTTUwWAlmGaOI76Mb5CMR6AghYln0YnNh1W4DdHr1AGcrg/gdTo8b fBd6LEkDV0HF6gZ40GCauEsOLQhWjV4qf7rTdVldE4do0aI6qdSdzAFdSYFO hH6e/WsMG40LV+oYbFyYjHgq/cv4nThAe4whK/V6LUAYgw1Xm+slltLMUaDU 1Wq0ZGRGjMzR6+h7ZQ0c/PxIOjhZPElFI5wK/37C/0c/AEMMgTAO0Ua2VqQH oWyL1VEDMrpQLl7F1WqwpDAspSFd89+p5FvsZdHw287Q8RoWPEInrHQ5dgbL Olck67zJLz+cV3qH82oDTPqxvYLJfSyEahzplVEtjmC29OpKhjE9rqY0bm6K x59A4WVIFofSXEiQqbfXk7nYa8BAr+HlZq4gH5pj2WNAQW+5dIyuhYvw+FnK jiIRpk0qGokMH7n3Vhvgs0ttqZTOe0nPe8jn6C0XCoNnQc+mmM80eMQ2fz/7 D3r6FX3oyDz3piOlH6xdMizWifQ6AtaHjCwHzf39/m/0cz+yT6WFKRGvR28o xdXqsLmAJGpYAhiCNJ1Zy9NbpyqHOhXTfpmFWxkEHc9eR3/VlIkOVlbNnZhQ /D9PV8IWxneVX3QBN6rxErOpu+Ll4g9w+IFTYL4UVSUXbHgYVd2oSi9ePnkq Pa1Qgx/2FWs9TdNr/DTx8vVIYUqGwuxXrhZXO+jF7rpQk5GCEQm+jUoZrgui uOAeBlnFZBxxVLUy69zq5/0pcLZgW4p9B7fs0zDnjtNz6tzA7lVXGBvTqjam 9OLm3zNqjMRyVftJ34P+BkeNcS0a1D2g8s8Y1wzkr1E3m80Q6BDGc3X7Mcek kYaR1tIv0jH9w5fZbU6kDdwdY7+6cowK+2jSrcRJCcPWVLStwYu05pzCu0xh 2dB0GuTXRoMc8UwGGZojCDyoIit81w0wdjE8rf5c9rdbMPTEl7a241THua5h Pj2vkRLB+XnFAemlZWVkVewd3IKnMCeTIjH3IC6H8IPrhz5b7EVTEFSMb3I1 jOtDflx9k75v02aKJfKIWnd7BxRoeHU6rgTg0yYruGnzhgbd4k9hjWlOvqaR CZF5JL/sTxpGEn+7V2XQefTW5eSHFNZibS0HbeWnU19QQyELsNR90Kg97EfN L1ipYBjE2xGusIPWM2Q08hfV1Ys3M23Iy114Gzy5UNMY9Prih4GO8AvpPJFr gSHbrYbMHScaMt3J3CcGIRpf8t9b5euhC6dBetQPkm8gLwe3gAdoT874XKvG R5RhMkYwncYrrx2rlIxY5av++2HoVH6HbVA5OxS66zQ7CgCSc6I2wh3/vD/N pLp8saa7cm73+kK41Mxmg4YV99lJWkC7pu5XpwbSAqLvp1K3w9Y60miVxViV kaJTXfE/T2VGTSpQ6ahFt3VFjnOTGrpsINpjREfT25KpjFDOJxyzb4uNZqSO 59n04DNmCrOHvqhwyi/52/M9tiEboM/qeTWTc48+ox3HSMP9/OTprc7Utu+O rVYkXqfpvU53B2ce/STu7sRkrPEF0nm9WHJHTDj9es/pM0asG9+3HJru+7K/ pCW5b2ChndYxgiFN0hPXrRNrClbV3btfy92fVTASBp6k91qYW77zDf6T1XDq r/lb39l7BRZphuw7pju5M73jHlebv58Kgc/fDC0V8kmavVVvemJ2HsvcKoag 4MUjzAad81/4W92d3upqoT+Rqjm3eq+/jMj7rRkuKJ3We31V63y4dbYOETMP GbeUwa4/9r/0t+R9nxzeqPtgwtF9+IAndjAr/cj5tPqykGzfNkj2TX+tar3O eiHFulyTd2Nj36zUT+qf8V/GaQLyd+G9iCtyvqK6Hg19+uNv+ev5hL+eVXVC Lb701bf580SwW2KjoOZIkhhymkK40O/4nz9J7+VVnhsZX/rKs/4cEQ7mB8XB v/LH/0m8kTtEv327MWPTmRkzDhlG6HfUHdBb3Rjv8Zzxjo72e4McbWQ7o/oH 2SM2jHkaypeHdAz/9z5Hi2akPuiM/Ns+R4smo7wN+vyJfcCWHj56bSn5/2f2 SL7xxXfPGOpJ3/kr+49KImPp//3b7Dfp7e///9/+D/6tD8lCaZP++QiEDMda ITUc6/FR9quj+HDYR3TtRjc5sevaoMleu9N04cjQWDI7Mp+sHrwhefD865LH r38muXz8Hvd3nfXoBHvVCfxB/LPB9s5dlTxxy3P0eu3qs5vDTb9IhHLpPuwr hzPtmT2AM9VwGscsnNCdfL2golJ626VO9kA6JnRCdzfuT93pHLDdCZPZ0Z10 Qooz03L4FX/3HTqnu6MhdU73Kznn76R/tT471E32jE0ls+2uMFKNp//5NenV 4Fbpamp8Ne5K1gv877Y+V3N8+TSuZiS+mg2+mt+mvyqHe8XVPHj4mmLy+HGU kt2PyfHZRbnAtcwY+Z99Itt785h9N0aFBl+hu9oNucKb4yvMImFSXaG7aAAI h/yuP/oa3X+tkVzec9Tdf3R5mwvDo+vR5d2nLs//7J0HN2B0YS2+vMunXh8u z8eTqb+k4ONsbs+14WTfSudmY6TewrU407LFtd2tru2e9AB0fZjcTnptMgac c/f3IH9bxJXge448IBGusM91flOdBpjDdY7QdZbDdWJs5dDeay98St0evxgw MRy7KTk2Fyb20BXrZMTKrquTH1//hrviG295o/sePhc8PM27mOm9C9z5r9Ah e7Dqb6QasNqu1unok1PzMl6FO/wN/WQ6xXTxq0fuFq0q/GbmxoDi0Zj1NIeX 0u/RaXBLleRjn0LfmbtJfKaXuknrHg2042p9OFJaKyi0d+kGm5qMSbvm0Dbn wLl8Mjl05HTyhS99Pykoy3y7v+FPKtwINYtqtgRf3za+N8Hfc3q7XuB/HGqR uMy5y8DNN+nmG/1unjjEIsR3XaI7Hm526bhfUygTEg3TLXfolleX9ka3fHn/ peTxa+5NHjx6a7KysJdu/de+83c0DHoIfLBd+Hh6eLo9ALZiqPlvGN+bNlTs XIpCGoJr3Iy4Wx5Wo/DAQx/IHYUxYxS+rE4vFO0oZGMUAHiMwp7xJYxCCcPg DoOBOLb7quT5F5GxdkPhfud+ThZ2HtrYd+gcZ7bLgtgr/CJrWgXSKM4hXf4v /h5f1hczukRjUU9tzpqMhdKVKxOdWfrerCGtPhnhH+t4176jMmbjW4wZjIOM WZfHzP0cxuyL6Y3RlAElbqzaGeMlQ+a44gbTjxmA9ODDb+HR8u8A0K13P72h ZpkOO9KdTO67/Rm8asn1lx6oJsePXldNlhcPVfH/aAObKqhE64m897skt77p //OxdKSCbDZTgl2Rr/9q5ntOoZyo9xoEX2orb4w1WsmPnbwoIzqjRvRHn/ps 7oi2eUSVTyQ1w7UCy49DXdagkb4yFx0o/HBChl51w700kGV+ZwgmD77hw6vh ir2XcGBiFiNXOJR89P3fdH/uhjJghQfsJfV1UaQhHgg3KOHrv5JecfjegkFv XraFgU32j0/RoOG/Dnfu+4OPWtP26n46nbcgYq0MfbWIOc42FH2draJRq/LY AYpu3JJz1z2wGi6egL7ZrTeTe/efxJjJ8Dk4JiMTs6tq+F7010P4FaenYzDz X6TXTd91WCwsG0zn5i8SfjBYD9/KgMMHR6pmD9+F+DLotHenNy2KiKFs9BlV FsWWGlW2Du6kMSLf+eFvbC7vufqaFBKOR0PJ649dkJEt6KGVkg0P7UczQwYq jxgU/efqeyKiuwzK+24Nkl8yKBhaNbz7aHQr0eiePPVqdgGDd1HX3gW92LMQ T99rsA+h8Bodn01OnrtDHA8a8stqyGn2HNXdONfz7VDbsEONDJDdkG+MT+xg GNHBMdRvOXVjZsjLMuTyKBrOHHwkHc0goGOG3/k143t7DN3wHWNk/gKg8cIM uGE+jFEvYtC10wo0p05rhYY8E65wUSXEu8mZ+T3JzSvHMNbJx7/wJ8n7Xvhu ctPtPypjX8SXfJG3tFZQslvPsWJdw4r5Ea9okGPk1xXE6GZPz6/QsON14/Ih DLcf+Qpsm6yuDS1tf+OHy/crxnI8YXjHXzG+ty8mB/3zBcJqsF+Z4b86M/y1 Hl+qoGrpikFOHls05M+evk2GvYxxd/CVkcerkObArk8Rc2Wi2SbprvXGv8Hm jRo2r8WDr+AOV2I1vVUfMHTc5LqBdwDCe4kmA6OO8T/IswBXI9v0wbPgW9xj VZ823PQvGd87YLj9qldUjKK7NLyXZCZIfU7Reznr4lNj61XqXJ1aM3njVa9y x3DD746hcO+GFO+V5M3v+GJ2Bjim6pH6So4BdbozZhjQITajmgV4uZ9X4xsW yXcH6DcX1exciCb9tR9mGkPKOFFToooMaTQgPXNGBPFF43uHDZdFt+OzRJmz c57eSyF/h3+HM+dwlHDz1zsrzd5ZEYsgXns4BqyBi0fL+dZgwjDAHYMesAiI TnhK1uc7o2IScqakpKfEjUZv/63qQyVvpZC2Dq/LnHlvTVzSJf71Gk0n2eW6 JD1JxPCCBZ+c2iER5vn0T4OZ2WH4V18wvnfMyN6pRYriBLhv+PdOrU7M03M9 OjqzJH+rlqeI/Lmx9nMNKcS8YpbbPNeig3qur9HX6UQKIlhSE+3mPZpoJ37T PNH4+MyzL9MUd/rQ74lnf3YjRSUGWuyQQ6Wfa8QEmFs9148/+nxPv61e2ukn MBSMadKGG+3ktoPXJQsjs5ZHGmxuZstRX/HzapZSulC7Usg0sAkY9s4dc/i7 9gh23rv91Fry5C3r4XVi16r7f/c/8qxPgGWuN84xLcbWkWb1Z43vXZ0qSXAd ub0NN5Jcv3PvtlDDiMNQBN2uGqjp5qBGmbZgOks9pnM0me1MkN8ya/gtXYZM RhskbNTEgEQALBWGDD4DIltAJlp0qeLAdYHL4dl9yUMn7nBT9p4bsHsJfucG jAfNNn2bYfQCjD4WTcpSoUdVyllVKRKKSkARYeih1bc4P84hyI2HwxAQlPzy b/5f9OILPqOmTRysncq0SzXkc8b3Thh+MO8JoR2xXAi5e1/N/G0YSwhP3YDQ WA6EvHi1wjE4qQsQmQlPZ1acUfUwQiYQsAGARuLEFyDk5hPvJYmi6Z9aAxw8 gGoOnt711OcRW+tFatHGBsdTPGGmgwSdXznp7rgXT7Xg2bofM7p0paBslA8z /brObQpSSQuS02S8e5Bde+P9AJP7Ht5L9Hl4ZIpOqEwAzYSOV7VbQsaTXD8y YTV4nnV8uwZg1SBkNfxB1xA2tXtGcDjLA6JNzVwwcw0DbZMZd1+hDX/r1wuE +Eyy7P2czB2GkzmmEoYsWYI15BXkguVuI9fGwpokGzAqmQWRG1PzK+F4mWWf kXbVDKwNqbJEJr8azCCv3p5LB3e1sH3RmjQwVuL3z/7CvwbGNvYdvcBppNgd 2mu4Q5/x3yOMY5Tcy42we6/BR6jDKawhcq0hc1ALWdi6vz53JHc892MIN/XO beJKC+7wOxkxwd3JU+mT+/aqvxVD2TRwN5PB3ej4rMadX6BNHWaUIYTQGe7z opFMGc/RNnhW4xM79F3iyoN7VWO8IfKElm2Bt8hWHk7xhmNG2tY08DZC7/XI VhZ63e8P+qNT8/wPpGxzjDqHQPLNgbcKo+7g0TPJba95lu7leAZ1sIX7DXfq 0wp1boRolE6nicCAiF3p8Ui1gKPKgGhSm6MQoqBiQ4ymgxM7kgdf/2HC0Xw+ mvyE+9V2iJihWhn/vLBseFsT/aUrZIuytyhuVz0HSqiRyCMBZIsB54atyvEy zYiRdA0ZUJpQ0tXfg18qqH83pafAadcKaed/oegrM+v6+9xfQmsvtyF1Kwp0 K0uHIW/uOgG6cvKhj/1ysrByJDl/48O4BJ0aER/soOGDcZ19UNzh0MHdHxR3 akKD9WwbuFvMx51vxg6Nmom82MPfZeTGJg31Khme2XJ6hcEzazDk9MhYkON9 f6Jga0+KB4xCpF7DBuRmjSK+C5hEjXx2Z0zDa43hFYlWtz2W7Jzdk1y190xy 7YnbkruvfSx5/e1vS3btPanzXmvpJfIq8BR9DLcDBtLqSt4eevLFzeV9J3VS i+YERvWIkXP13Q/xYArMnEFdz0AlCgnyYOYGKvwtL8Gn6xBj2TFgtpwPM179 QoOqPP/dhjM2bSiawIuzfvSPt9SNnLFtwgtlicwo2Yo2YsBrMc3ShWsid8i3 rNUFVFcUqDSgikCU+3vB07MPPe+M+3NPfs5hQmoLeCGTl6nrrGiY8R59V12A aS1ojB07cAEK5kbFq9mPvf2TyeETNyRveu+XcCSVUgzF/mNGUvmTA8JsJT1e iAUEZo8duQbcoyG7wAPnPNhgqdVzKmjwoWZdA2a7+8MM1zqi0AqYAV17jPzl jCFhZY8xymHKv0V/PIx5cMAEY6guAlMYiMNp3TtsOFwzrOZSirG1QkbCxnMw 5gLWsC7dZ5HJUxCIrSuIkToUATI3+KJbwBjjzEklMFbSGHPfj4dV4W01XDZv iuJL7iP1ZvLSdXcH3O1TuLtw/DKwVmgx7uDKOcyJFVUZoNAScbURl6pGnzDQ Z/rjjiZdYoFBcbekrkWs6AjjbkdnjMiHodmXGSAn/nqAOgony90RWM/CbsPx n8vRNk6p0r8FdevirTVzcCcl1n7b6C6kM7deyGjbJOOuoCyB0rYQQHi5qNPf 97OJTsMmDXhV8kdvh4aXX6Ox0h0neOH1mv3H4bbtZYSpPFpAmCjbe176Dizo AYUI8dNOGk0QqoknF2HKk3EoaRC2qgMibFFdixjQUQNhB+m9rJUtCYPiO61u WFomdLmocpcRCsz1FzVJvtK/+ehumuSXtRhcXLvvC656ajjDKM6m4MLvIlGb 6QuuMo0aDDIXe/ykpdUpyL7D2byBp3o+nmY1nlLz6LDkhA7vzsXZuZ+ABEjt MoDVzkgXm0yV7qJrhMk8bdRrX8oB1n23PxPAwcDCRYcAIA9YLnIKnFbP6qNr gXSNG8A6Qu9xNdHvMOn7+49PzyYvrF7vFL1Bydhlw+XfYehW2XD5Oet0ZbLV CT5ZHrRUg0J4KI6zl0tyPH7AF7mNoldzA0DKHQmJtv0pMkMfgeMfGUcLV63+ uMIxpiJc0UW99+zNjCj/fmJmkbx9IGrZyKF1OKcBnDlzCMESs6gzCcEfO2uU m19UoJEBzQFX5PYLuGAnEX73A1esEd4uTmwPXKsaXE8cO05Gcafh8C8YulUx sq/6eaTijA1tE1zaKOpH2OAFWM33BVeFxoudu2AUvSCknSpAFzpV7j9wBgbS AlknP1Lip38OqYtjX8tdggcZjCOnzQpLDDJ8RgwJeHVZvOimHMDYKuqMgfhd 540S9wsD4kv57MHfr+Xgy8XhIXRlocBNB6s4mYMvN0hLMb6qEb7wgnl09nDR 8PeXcvRL+13RU43Y72ozxLi3KoKY7l1oGr0L+uniW0OsSn2Aeh8e1sLdxmhJ Sw4jjYA2Z8BtJB9uIxHc1nAGaBiAVjXgtmBkaEdY06Bxt73mWYIc20vRIDqu eGIXjd7Kj6rvySDnYI5GQnz9QTE3k04u/T00bXpbmPPAgAvm8IZmFfdeEpeM YDdvOP07++tblKLVT7UTv6xjNM5Y4GsZxpOPtz7f6Q4AvpIGnzTiRPk3K0bX LUgIBjQKkSATFI5nvFue926EvshTqxnomzcSaGOMvkIqdkAhoWoxc8Vohr7W 6DH9yIDoW4pmyMcBdQN9F40Grqnob71FneHRA6cxMhp9bvRWB0Hfu0+fD6mO eSMqWDakr2K4bj5DF7tu20Wfs4oBMbL7C7wPRANboQ/ZWbHWxTTKCNcXj33c FLUV+iZTRofrG46gFzlzAj18RtcRqgRzBvTGDeFjW6sj+NAs/iojycF9uARP GWKB3uOPPh8ul28ff0NrQzT0EDmAvP2gN6nOIeZjNgd6znysyd/y+FB0wIY2 QO/+fQepNgXQzRpRw4ohfFUjk+t33SrhnMGxG86Bnm4JGjKs7riiCxwTBz8X wfSHHkrp2R1A9WPC9JPWrM4qZEAGgF7INjP0NKvFxWso6MFeAnQzRkp3gqBX DQUqUT62u9p9l7L8jUZZ3pfvy/isnYJXbw+UUYSRB0rdrqYmic4DPs//AKAs GdZ42og2dht6WDVSv3ofQ26vD6DUrY0CSt1X1DZANKZABAI7Ydk2KHX0oqaY xs95MFGv1tagLJOfCIvP/U+dCJcY7eALNhmXnO4lRE4pXN56/hFqj5xiXHI5 K2uRZ9UgiDt4s1G490EfbTyI3yXvfM0tyerF88n6+9+TLC0u6GQPr0LfGqzK GQgduY0BwTqW/m0wPju2CVacV8BaZrByzoVgOmm4jntyFFTHLXlg1Y1JeWDV m2fz/RKx4dhosHJOKgIrKvqiyGXDeM8qsM53xqNWL+T5kD8eFKyc24nBGrmO LQOsk0aSb4prryp7jJZR914iGy7/phTCZPXFrUbZn9u5cNebyzMTyWeeejj5 D//y02SLi0ny3/8z9rX8yz8lFDs0axT7p3j4ddiiLGfSyQoxjM4mS/wzKIhH 1d+KGVvgScDvZMAFxM5PD4DQblIWxJzbiUCse8j39lfcKC/NxTtZU9MXxEeM bicGcRAQdb9hUTfy0YOCuGJsBq2SA0EEmtsCcYViH1mRJTmkdoTkyBMdMpA8 biB5po/sOncAQ6IiS5p9uAOXjYYCX+JJU/DnDu1O/uhzHyoCxfDZJkcJv0By qT+e1wphf4st8azcZPEi3Jh6PPMS6AjPun9UF3sx/piJxRw8P/j6Dwd8WHiu MJ45j0RIHjciqn2GKNcYz4euui5c33B6b2GdWHd7eI7ib3+/fl8xWXTvMJ0H abS+iM6rJxaFYdDKJpLQUikR1PTyIV2NII0XOxN+hGUDKRoEcXI7RhFm1EiW z/bX5xDi45+2zuLt3mE0MujCM/TZeRVOxDy2H7z2VHLlC59lVMfYXnvkIeny wUj5xiFvcmQOc7BN8yUh2zaxTfxBdPtKsY3sAFBdNbzjUaPr/oCh1TUjF99R 0yqJ0q7RTijYRhEsg+0wTgrbBEQUvhC23XbwOgvbS6o2LYe0HoJkBRjtHGwj QstGbWg7yaxNixq4mxHI1wrKYx42KkJdI3s6zyCXSmM/J2REoUlc57uMhAKv 4aBbhmA7/XbD40EONxqABrybDPKN3/oW/a4Qh4D6kaEDgJzEGxO3Fch1C6Pe gh9p7K1A/uZ3fDEIok4ZZkGuHZIRoxpwMEfAtVetH+byCkEO9c2CPITLcEwe OnFHHshVQTM8C1H7JGoj+OCTdH5wkEdd4zHII0+7ayRpOwbId+QoOfsoGhGJ gNy9CtT4XzNWptTDypRdRm9Hti8bYl9jHsAxh6iDAe2M2KvwEn972uDB2dRg h38qHA/RZeuHwAM9YYPyoGY4MsNGdHm4v9hHhYm24oHk54QH+J00BQoPUDTM 44HP+vs+MjaM1Hb/pvOPmA56DhkioIrDj+NyITaQAd7Nsw89vyUZUATKLjfU y8MaERkiZ33EIMOQkTZeZDIU0oqF6dZ01Tlefv7nkq9+Ht9w7zV8dBP1zHP1 5NEHfrSW3HTdHfXk6KETtWR6cpY2S6vHpKmRT0SnDFxT7ZrBG6ozQZzRABGI Gt3+BMGlnlRXKYKYQxD8WYhchSC8M0pEEN2EPKLOIRObR5D3vfDdYKCYIORJ wTCAGnXDG+oYnr4QBJGs8+yJGvU0gV3InGP9ByGIA9lSPPOppw+CuJ8Xcrih mhNCB6DGbRpcU8j6iriBLFdm6WTkDdU1RWKXf8zgRtPgxpJax8glFfep1xvS D9hy6E9++5v/R+EU3usxQWogiDuC+05AxLKaLfGQmgx8/M7BnSA/mh/iXr09 4JNCS5J8m8Cny5JZs4B/tG8bjg18XTRsG5WbozmWwREhAFUDX4qGkrJBnypB oDtZ4BV9tLaPVvnRej/af80Z1QrGr+AbDQ1aBAwzLYL/BH9zuNHOo4WuadcN yMYxus/mDCsX1JGhLy2m0kEPl22tUI9pQWOFyFfTAibk2OwuUIPXi8flnuUc k6H9p67CGkwGaHEPvZdgH8JILqW3TdcD7R8ysjwT+ZHwUQVP0bgfBgV0/2zX mKGlV0ABFCsB/oYRJLSMOtExQ/tzKLChKdBRFECggKdt15Pf+/bv1pJ//nO/ WMOjZGt4qmwNz5et4amyFfqOH0mpggsF3Oe1DAU2F4dHNQV8T2QFHlTYKwOH cpQIm7Ty7jI0xPP96QHohtNpeiCc0PRAD/h26WEtuK9F9IjCi3GjGlo30p/L /a1G5FHx7eAz6EDEuJvp4ehiFduDa9Q2EkUz9F6xYmjZxMXkhhPDgB/mhvST RNzQmwL9MLhhdDSta240Db+oYQTQV+dk9PtxA1xI2+nK9Pmo4xo/jf4YPwHc ESI55n7lUBgIoFdp+Sn0sQN3TIcK1TSxoB5YgI7h2fHx5I4LF5I33XV3cuH8 +eTP/+2fFJP3vuvd7nrxkUlCRECI5kZ7xmhIaRjpWJ0deKXcwO8yq2wj81SN uEFXy6sinDT3lgaqBjdWmBuqU8CNfl+PKjIddzI3nEu1OTezQPPqK1A9NYKO EVrPZ6xHIU4x6b0jpEn+3D8NQ6JJ+kEY0jIYUjNC6+OG9agaXVc6Vys1L2HI q3cfJnZ89Nobswz5X/7yPyXX3na/Zki4ZWYIXbYED8KQSWUnzq+cDOz48OOP Ozvxp7/wFfgTjimOIMk//Ec8iRTvDbAm+Zmf+iz9vg9tCuNG44K0XevoX6+V 4o39TN7QOrUiLYusUx4L9TV0NaDTCx2v+DIOsjg3W0wunjqBxwsv7vDX5qYW dQkXsTii9OVa5KYx1+oalRy9TBlcKxtc2x0v5o3skHbTtFl1EXvENRevhEtS 1bFgh7oG0RbzQ3S99n8AoulNS3OJphcM5BFNV42EaEZ7IyECOStNNO2m1YwQ /UROe+Otdz+9liFaVFwe4s2nELLfvntf8vlb7xSyFTzbyoFtn/jKryMvJO1m /OBZTbho60upN49lCAfHDKRzJHO/9YQ7uX9/8p1f/xZTLZ9wCPOFcMM5hNOd R0y4dYtw3DlOhKulhKsGwoFsinBFsM39b0e35JG7Lyfvf+qJ5Asf/VDyW1/5 fPKXG79RSv77X/6huwj8743f/kaS/OPfJ5t/9YcOlO8kbgov3/yOL7rwOiAh ZC6qhn9YiXhJdyHh07TBy6JRSNzT3wZa/iHFC+985jli5O3KBmZ4SdciGYRR I4OwMz+DoBdQ/BPzMpr8PF7qziWLl0NGbrliZBBOGgbQ4qVugpQayxBvrIQV F8JLxU1PzUqgJl7v+uhPkcs4ZDhqvK6UTiHpZsXRLlG0GsVOTNHkynt/vMos /e4nPpEsLiwQP4cVS8HcPJY2je6SRgrzMMmapVIE8CwtB5YiSeeIWQQz3a+F l3gV0GIUcxO8VNxsEjdL+JG46LiJ5wy792rg6Oqlc5qjwykoepYXa5Nejiga hXAzvHKJF/HSVj9cGSrsN8yl0HJ4ZCocnmlJw+vISIS8bGQ1si2RMJfjRlZj V29WA7SUrIau28v6J4uWaoutUPIZyqGlXovyw6Ilr3+CI9jjl5aMrMapnIVQ W9GypbIae0fHQUmHObyXhJrEzKP0Xo34iReHdS2j/K+XfuvNu7kNoJ2hqA7s HEUbTFH3I9EQ5BwfkKLY776SQ1HdUaD32xCK+hx6hSZROaTkjxZBQ3cMIaF7 OYfAsxCGE4wD/2rMxQwLi6Dh0CuiYBQpzqpOBHiroN4BoyAr1HOfs9QjnDrP lEh3G1PPWcjgA+mGc/FUJ4yMyV5FPSNrMpdDPfc5zISmniw9FOrpbQdzqBe1 1uRRT7dBttT1Zamnc+pFI2ly2rCIZaPaqs8hxSS998PO7hiTzr8jRDx94rSi XklTz10L3kvJ/mOnQx7OisuYgzrM1l0KLeXJav4hdBwyQscZeq9FBHz4wddq AkapSSksNdKQds0intT/hph4+AzyvfeRy8mFI3uIZDPK1F06dwrEcuoVmzq8 cDzexqmRznbI+qg6WpZnNQVAiRLn2NTBO8Xv0fyAyBBboew3unxKKd+WMuCk fIDzOIlptxpZGF1NFQ900uDbQW7WdJ8DAXQT/g+DZJeMJUc6myRS+YOQrMMN PiocpBd+fv7Fr5/N2VfF4Naa5pbezwcJSWfKHC/7cwufs9zi6LDvPgbMLfPp CI5b9UyUiPVy4Be4NczcAtcQEYJV3gutRtzCC/6pO0/TyG50FLCkkiidnqDQ 4YUdoJC7o3/47s+43zGViEhTTCd8hm0CkYaZTojyhEoq61Ixeotqhtcb04ng LMGd9xzLlPzH79C85qBdhM1wv+ZSlLBsj2HQhGDnb3w4SzBCgBSObzVSL3rF QoF9yWkj9XKACQZDtrAws6GIQ+eQ5aQ5BCOgS4PoD4Ngevn30XQigrG2lpMO c0u/OJCcYzlnGC21YVH2kH4CXdimt5cEsS4s7AKZHMYHI1aJ3x976t0hOVA3 8MNbUm3sGpmIiEV0ywnsXDQ3YqRflum9RJ/nFxYpjdIwUj7MpqibQm8huzg1 lvz5l3/CffJscj+TV6jZpHIkaDWIjJPOlTg2FXPYpB3UmE1RHDbNS/rx+ajj OtiEtSmM5Ww7v2IW+jJWBmxZ0p1sUkS42UigKHYFd3GG2fXN556mtV64oP30 XqZLes87H8drdQuC6f018wiG30k5VAimV8swwaKeox+EYF215AvRGKoE5/ub rXAs/ONuM3JZpcYs7FLJy4HZVWZ2cUSWxVMYP2ZX9BQrvLCgttSHXRyTjRlp kxWuKcBUveW976OXO33DWLujtz+RymZDmSus94C5qjLBvvPSs0QoUGvCSHRM cqBlEQysAtGtva1iRkVh1WTGPmUWy2gjUenNzwd2fehjvyxNT2pTIM2ucDG6 BVzK1zcbeRC/UCkt0bGDOGdkKPfw9cmVgWR/9ke/trm8vCPyMWVh5T8Ry6IG pzyWGa2v0SrgDjfAIhgD8+bnF5Izp8+zns2DaW5onWEr+PZvPGdUlxEMO2cx Mapo1wwmVrfJxK9t/HFwIGsGDjUfZIyLvPsJvEWw0DmS2cyIA2lvasTTsEKf v/7t30z+7r/+t+T0hYswcMKB6KEs+txS2pGVxnA94Dr+zNvX3O88FxGJIb0B Fo4zF5GPvPKFTxMLZzLpDi7a1Q2vlelXVVcg0dak6g1hgxbWOWiE19iEqBw8 uEdPc1ngZXOF1KzR66EnX8TIyyrYgrJmNxrJD70wUKzZDiPvuFvJwBd/9lNE tv/yH/5N8j9/83M41jb5tlZIWyAG5ptetyO6ujOHb0YnrcE3X6a7cc8i+V3F 5N//u//sgos/+P0/TX7p699K3vbW99Arw0Mq4YFvsIRX9d/GPOyGn+WflPHk CQzwO886voN5tQH5V1EBnIT91ubA/fnnt9k6sGOZHEkXsc0YyRChHCzh9//s L4hy+K82OzoXw6dbxaFlaWOViwGS8ECE5vzKphGwjRoWcJ7eS8naow8kq6vn cbd6q9AA5phyBEaJyMYzFo/tStWAejNj8TI+5RwTL7NzimxfoRb0hfr4DUYW ZFpdpGRBFowsyC4O0nA1Fy+cBvHc7DnqYdzOHV/NMOuHzkC9si+PgfzkiS0Z iL+NGegDt4+9+mJy1AmQY12NSNiMSHjffQ9FJEStDiR0BDxk2D95AsrI6EyW f7Q/lfCvouK8sUaTmFcfkH9VwxO1Fqr6O68RIXSBAKOP3yFTMmdkSiSgQ6YE AZ0jnrsvvJeSlz/3+R7O69hS74kmNZqKkTJpGwwcYQYi9Q/GgXtz9F4hu7e0 tJD8v8n/TUxE3bJm+MCliIlRNKf7hlf37I3Wbmjgd3LCOud4ym4d/ESX7LJx XkEZlcOvN3Il2eXluJolY8nhSoaGztEMNITTKcebV+eVxeM5NFxXoAg01M3g QkO95srq3vOd9TWabMgJ3PRCmiKmbqL+G17Gi8nbvKQcjigo+Vs/ck/yjksn wEH3/8DNCnHz4y9/VhtHNx6OmZaHutt+5CKxU8ebstK8kikZIK3ZGJCVNcXK TMvUld4br69lWYl48bnbzyZ3HD8Ez3N2i0wLnE9PSf+Oz1kxMIhJ8y4VnLKR fekY2ZcRI/sixISD+tjaa4mYeOEsNaMrk4lZUaOeXeci5vGbzz3tRr2XmCO9 nSGamBO8s1hmPwcafN6oLaqGX2fkWPR2guKV7jSC02WDlSVm5ec+88H1QVip N8u2WNnizWfxGb8XK8SFIKtF/XR/0hLexC3awdUgKDKILIktTiGFKiPIrFob Dm6TxyhEwLyCx3jhm6PgcRE0LoLDDoMZF9fi8SLzWFlaeaCtWXUvZ8oTyKI2 mcevO3I1lfq24rEuT0ibce+NN2jKeBE3/Xe2O5T88fseTr791F3C5cJ038RO KSR2NJnh5ma3oDAiWzq3JLKLyspybc8xpjfTM2wUJubYz4WVXb10PvnbTTze wNHZ/W5j41s9O7zoSDcm9iouiTeiD4s7VTXCobqXTeN9iA0mO3KPMrEz+7Zd mZ7bLcQmdEtp4jojvTOhRky83hUj8l1Ka38oTRCxy57Ymze+6mw4nl6dI0uc c4h9xSI2FH+q3SRz5kghbqfnRS3Ld+m8oAapE/2JTrcortdcJv5heS0ad17k yF9PQiEuUBX29u/4ppGQxdRDqryPO3Tkd8fHe4kiXr7jwuQriHp9T06Z/t8T z/4s6YDTBF0AxVZz+gnKupjSGlAG6iwDaJITh7dsRJ28cfeVyVY7mHJM9O1H V9wt/3/tvWmQZNd1Jvace9a+70t2V1fvG3pHr4UdJEhwAUACFAEWpeAqg4RG HIoWRbAgQiIJkpoZDRmUxKWthaJgSSNyRImiFreo1fIPRUzInrDHlCtmwv8U DnkZjeSRY9L3O/ec+857+WV2NShH+IczIrMrszPfu8v57vnOcs8NC0H4PpYC OJiwCMz3dS5VvXMp3CsuBXhv4Yta36Wg6WNa8vRke5o4mcb66vSq1+nhXXz9 6M6HesbBJ8wWlwERQjOBJ1zGqXmdRkjgYt5JoMtz8TGVsHrFMt1Oyd+amV9X vV1IAdgiXifPA4AFNOIAMcXXXYTye556jSwAugzA85QUweorWAaKFT9q8h5s F5oyCP7tjNDSFoJTZAcsWwmWnHq4fGCzUMfH97xcx8dTgKe+98UDd7gCYA8I KLxfAZTSSz9X7szknlfweyJQAr+lKFSJh3kQ+JGJZ+BvEwu72h/8hRQFrOpf evqB8M1e8M8RNxezthuE1LNdshH8DRl5A70j87PEyB4Z4OYCHYC6B+Jrins1 tsu1HdLkF3FfMLjHeLBnjCifpcHBnhF+ZI2ifjtzyv8GcXnF70ls55YhPyw8 G0T81xzw1dUcmEcEflgItvYCfF/9etl9rwj8uuQHGT2GlgwYCNMzyMzF1tRq YQPRkf7wLyTrLXAiUCdmVrtEBCxpxBOBTv8dKXJb2zs/7IjAkdlpWQBqugxo l6XD+16JdT+h/jdjAmEhoDkVFeLrHtnjSjBEEgErBAbxvrWUU6GWQJ0sArN7 tOybughgUTCHQrWvQ6GWjtK4sinkf4GAf7ivh60qJABgB+zrCv5gByQ7xMAf SEAZ/NH9zevV+VDTBAHc6gCjPsB9qJQDiDzbeYcpCzFdJy62Bfe9TF1s+4nA rzhjXnEfGtTrYtMcdyEZVrzidpi3rSd2/hXkQhmxd29NJqs4fKcEgEEG/z6y fZNlXM877X98daVQ2Ml7G0dLgT/V/pJVvdo/rZ5iHqofZN9j3pP/g6/EEzBU 8rlfufdJO9tEMK+ZHvLE34emZsbuEOre8B8A9ZTgAbZ/bn2+oVAPul+gDZDP DIC6t/ubjuyXCikRn0NUndDxwa5HznCPw85vW3nmTW8AtqmSbyjOb978fE81 M29kFHG+lTkbf4THtyYJzjq8MIaZ+c1SNqKDutzRsjeu9c2Nqt08ujTRPb8+ La0Ict0hzoZlh/bnP/wBQXszd90lGH33aI9FzMrsF9+DtQ8IzMprq6/9OwD5 y/2RX0i/miWKP8xPi4zMREnxm/3lNyAu3mYRYHu+leOkRUANHen7ccL/yx4A x/9bTuUD+njE8FrdJ3pZWC2Yi3vD/rAG1pA66euyamKX8nwsAWk3HP792KOX w3j14n5qgL/PG/ktxT3WgdI5HgUfmy8Iiydwv0x8e+3b+PY0ghbuG9HvyL08 FfO1Atx3MmfLD5Mg2jRRJLZdrI8dX3Nq3bbOzDsxssjZVeLKi4CL5/C9+Ojp 7nuuJzqbAtnerbBU8tUHkIcB6A1kK+ClqVZ8ZADgC6UV7AAHp94xDfKqwWUR 9OXbOLyYr2++P9ILKWAzRMcPE1trmiT3mI6f67+1YMfDe8ilsGikLkx2L6+/ a2+8vu51vOj2/Mb1lDfmo3IGbFj2z737ub7AHtGMFWfJJ83GUA2lHsh6mNBe VE/u0XXXlte6t97lCXdZtNjFFO2uTI50Lx9eh+Y2MP/0B7Yl7Qswbg3w0IG8 Q2kDxm2l7AC32gnJSVBEcsE6HyJRtxmiFQ6pUdjHNAeQ5W9sPvVHwVkOyhXi hovWczztEBD+1rP3idqGyK4RkV0g4bYWYejr/wAQRnaE0dYq8VjtuzP/3BTZ Xz7qhsnSWaa5nmYFxub2oKen+mdYUyB7Pd0gvb5QIuv1Hh99foeancRmsbeJ OwQrEjvV7EySrJcWkQHjVgN7iOB0Yo9etiH1tblomzyV7A87qF7cP9/9xXc9 CGN6hdjVDeJUY3p3SKHqYmp43nRQrTrZYAccWRzNNq75qqNHB9jSWTrLT+bf 9qXe3bdaUdxY/LpTq92/+JHXJCUbbr1CRHLeAdTCZm0FaCDYO2WAauWGAkD9 uTMKUNnRUwbomaWlHkqZOVJ98HYuNEanh/YIUzuFGoa1KdkxMiBlh6YqWckX DRgd7w/PbdzOKke0SSCtRfp8RV6r1udddz1JblEneFBhe0PiqCZamy2syY4K iW0DIbTmu6+fHCYgHN+jl2tYlaWjwMnF5BU0EPiXn3zaUJgxGNbJPnGDId4j hgUADquH28W0bvYgUMTfrNwWCWEtEEV13OFAzVvbt1OITV0i7irpctaU3kIZ AnZQjAY9hKyXiFk9VwpZA3VtpxwtbN25Q+z5yin+uFDje3Xi0znW16czwJSt kQ3nvny2pZpNlFSkxhPGyZisOhWJz5iKHL5DDCKbxYz5FuH2HoOh1zseg7ie BaH2isGxYhDqVn69Gq4tGlCDTSMKQMkfu3ZNoDe2R9/TiIabja0qO/YHBhv2 8Hz/A6fgXV4mXqfaHrXgaDG0JJZuEXvSPzM5GzyMtEhWXQ8/redl8JMpLVQ9 zooupP05/G49dGRR4GcQXJoYKmy385buLAkVD5FQ8T8E/PCZqb46YWnR3Bq9 E/NSUIg7DirNiCiSabtJYiOQmk0CNU0CbZGNSKwgS4touzbppiEtdG23dD3p JlI17wRp4znS0vVs+yDyOpRrBkj1wmxkj64eg5mRzQLMqh5mgaTgtSrv4d0B 0paIt6c6IJrjUzhGS9Ec2KFFvBUMwzqJ3CyTNfaY+hFM7wSet50V/aEWnblA 3DixwF7z1sbsaMJaiWkGWtkra9MkWjNC3DmGN63W0Bdvblttz4ns3p3TJO6N C45qlmzBMIsZT74cLakxjGlYz6aI6+pAn4wYr8ZqZM8DqwbRImGZIUIl71Zw KY2U8fQ7eWy3wiBw4XtlcCGRqgQuyZuAvY1kqXEFV+CTYrkBVsPE48IsubFi /ORmeQwMWdU9IqsywPXi4ydjLkfS+qaxkoobMrPjajxWskKk/KjbxK1aBURu xXXK4iHniYPloLy2BFxffvrugjJzfHKWGJFTDl+64S7hy/tatBCfzDV0GkrW 1/HaAuRa2HTQRg5UC56XFiDXQhylTs5DGgRBlySRIOgZp+mCALsdu56SR7xP +U8jLtfdlpdZwuAPDVZlFZICPTQAbd6vMkSaf8mRxvB7mUCvia1m2CAXCkHb 7hueeddWGW3ITbDspAlFW0Ae9gEJzob26DcZz7OTbrIxeOzsRgFt3/7QGyRa CZxF3ljvvvWBu0VvBZwZX0wRSp+JMKqmGnQXHJ7gkFky1SrurmaqVYn6WiMI O6K7uF2mj20qLWT3mA47Szwlh+P3JGShMAtrB16rBd7IBG3C4eyZt75JcDZK 4pD7XFsQFsGJNnW8ttC0Fj5rw45spRNtWvC9NnEzX43IdmA2iG5rkcjcZUKy WGbRkAs76F6CpLc9N/fOqbIuy4oqxso/NEmUYZjwwYsORBcunNsNbKRQLNAs r0FBAw8is7ze9uyH0ppi+xzgMtYU/6ACe0HU3qPZNeZS/QOwttw9tj2Iagoi 9Xs4ENWS70M3irMI/7BG+oAfuDvWA1F75i2PdJ//0Ducy6PiBsvMrkopPgD3 Q4fI8UHCx9g+Uaa6zhI3yBE3CIapqr6a6go4TlFHL2PjpThBwHMY6N627CNt uUI4qq/6VcYP3j9z5kjBSPHc0Fb2wAsTj2IFiFo8M2+BMO4TxaEWWA7CjVc+ I6SJ5+W1Ju8fe+Nj3de+9j400xekMVPKkmiQP/fpj32qL3RG8ySatILZDlzo nnPr8wKaKYUO3oPdATStAdDxptSoi5pnqjP9vlODTp1AZ8n5La6fOVHQO72e +lYBNwEz3b//6z/rfudffW334Qfu3irjp+HNKO+s309EdZMs/2xfp0alC1Hx u4j74pgTVcAkh01NVBEc+eo5Ybk5YyTCNkaas0GaYzEEfxoIq29SJ5pn6DbL +crKmsyvP6THkNMkKe1LxENz3AW8kfET1MNOllhioTRDnXggRgltO58rR6Dm 5tGjG4XKFwab0T3CZiQvaVJ2gcr34HEAYKYJbFixZeaBGHYeCEDnicce3N26 ccGTZTj3gJmGIkedfYKZmGfWiMg5e7jbWZkVLx8c64GxLRLl03LkDc4IBVEV KApf/d1fz2MtCqRYNEgWMzWapAiy8TiWsV2uU4A1323F3LY7+NiwbQE9Tdb8 405yNfoVuhDhBH1knI6dKTBKwmDjJAx2gLTlIuGXqjPRh1QzoU7i1MPEjj/v UBQWdyFF7EzAOtc/y6R7x1zhI82kgVHa8dLK0OQ956OEap5TPQR0BTTtPvnk a3FNX9HCvA57BdSwA9TFG7FWqE+aQUI2oDRDAFXfo9fBQlcA1KXLF7o/8L6n d194/r1bbjgKqGoS78OcvI4IqoA0oGr325/tdr/zsvy7874nulsXj0qbHdpm iMpqKtpgJsF8Atq+9Lnn64q2G1fzehqGNimTsGVog7ZSZ9QBoiJYJYJqMc6U GXrLYeZTxEdx0k2vxrvCYBaJHpJS2Ck5I87pbjGvcRLz2iRtuUhI5yCgeaf7 MIn7eF1w7lysVMnOIKyR/CyW7HKkhLLQHzxvlUXYUFYjOmucsL0zju0tLc11 v/CFH0N/dUucSIF5G0buEGXBUNq2obQmKtMTfM0SlNUGeBt8gHjIBYhXVua7 f/Ltn+++/JVP77h7FVDWIiibcelV0F0BVahx9Z2XwQocygLCUCr1g5Mkzaqm uRvmiQDEYEkFLRa0YsQYmKGNQ91jTVqobqeDt6knUNp2nJwSeKjhUoglnyCK 43SOLQtmKbZqKdlK2eAoEcEhsgtqgsS0DpLmnCfkdNXNk+2CrpGQ8ghhg+dy fzTgJVRr0i0dlplR5QlU66R7h50rQkdb3D9aKdOnUZdB5r3n46S1dzmQXbhw DiC79cADV+bdAJQ3I94OZEO5Az2tV1YC0INsjoCsukdvRMulQuGzoMq6/+47 vw2w3TxxYtNXtC/jzHv3ptQxAW0Gi2v7sRvA17BArZmghmdWVGhY0Xs0WtVB DkbYjesXE+RaCrnwPi09Cjn1ZsgttLJFMLf6RS2LiRP1/t4C3CZFkE8QJaKH 24rTHSDzCs0zR5bT1yJelCnSloOkLecJix2EOK/QRglzLCmK3Q9+8J1AGgNd hei0faR75lV3Qy1PNS193VhDXLW0dfAXnkTsube1p7W1QOALL7zfWus3f5k1 NjQAcQvLaz3bfwN5TEudP6vLnBjzBHF2Ihx2+4Es9nNiNJ3/T8lj+G3AXBiG YJV17L7e5frSmy4L6NrEsTHuoGdE8tZXPjpZgp5qOTHTAD1U+W8J9No9pXzK vo+g3cK3ejVdw8OuZ5ftJlmA2fb6en9vQ8EPf4zol3MOeeYzbBAqOURobZPE u6ZIWw6Ttpwlng9/zpUhr0o8H2PErUC0B5A+JZeMhdw0NaOs5ujGxoNkmCuE VXiFZxv4q0ThTRL2e0qbDPb7rnc91f3GN76Iri8R+LX3CL+Ws92W12NezhSB X1R4DV9pB+AzR8gBRR1+gtqRfmM9UKhk0lDX/cxLH9iyEfGHmhnqhhR1eI/w FfA26t2JSiznHOQCAgV23lkSYKZnSMXSytvPPCUek5KXJKiJCLVgw6WZUqjF GLMkRorMOzpHfSSrRLs0iV9iw42y+cWPEe1y3sl4EW899JJV2GuULEk0Z5qE vg6T5pxx8L9w5oo0ad3Nlm2yrxJlN0YI2+mSDzyoEBC26HuoJ8j5fN8DhEsc ICNcI/rbb84tQ8276ydJU09qUwG9wIS7f/7n/3L3ypUzPshnbhKDGgy6X/rS V/tCrVl0k0gzZ9zkIhkjh1pdoHb+QEcgpu6R5Gv0rpG6027gk5cungrvIs4C 5pLA6dHcglFshwG5DFptiNhwQ0TBBYgtC9oaScGBcmY5t6wIuawJpXROkTHi FFFsRRJZE1xBdyhru93GcVMdTac6UBAcj0036aY6jhCPyMX4vW18D9tiAKgm IZBNIoB14p2JHpGG2DdhvQe2IIwYH6z1x0iz7iLNYvCqEI02QZwOJfWw+9nP fhQDHuFVExkDl9TFwriCz4HaIINcI/rZx9YMWRUSQJ4mHPK4y+OCawTI0pYW 4pbmH2ndIbx8IHnWjaa59SO8aqlMhPpENog7pOaQ9QM/9AHhjQ5Z4I5yg6gw 46b4Sxuz8nQIY14SX4sc6IIy21eCl/ki1QwbJ678podTXbZkQ3g9D+sQMPl9 2RYQaxGfg4Kpg1bYHrPDxAVyt5s3C4i1CCesE5mrETDFHKiWgAlAAqEKYIL8 oW0YaNzrBGneaUJZO05cLc23QkLLE4Qmniz6y41z+eJWZvceJOx7Hxnpes4G tkuIEkm14g4VoqumSROPOURBrQYmi2bKmuLPijRnSHOPiGoQZ4ivB4ItKGWF hc9xihocHgFKof8RVvgM9YzLlRdhjgUyGAY4mmMvPP/ejt0rLlyxeutzDx7p /uEPv0r+NXgh9hwgZgE0fASFFZOecq4Iqw3w2hR4VQVeUE1A0wTRTU3/Tzym HJgyrhVwlK0TpVDe+ozYWLu/V6EQ1T1EPByX3cxZbKzl8p2U99EzBSraFuT+ FLeIUUyhLduKKXWsSLfLEQVPS+MsNTymUjGeoJSmSOjpRMkprpzKVYwSq0it rE3CrTtkjBt5xUhrm6Kp4dEkT3XbzxLCd6xkW6FxGhsr21aNPeKnTlwbiwQ/ 0WPfEvyoLiis/wg0B/JXAahUQwVQuUMMi96OikvZMLurlttd29aUuIQNiYA9 fm69u/upx+QJmH3qzecEalnOFVmGYZU7Qg4q0tAJTeTIxokzo+X/idtflIrJ v+rDXyVKY5EojXZ/R0Ih+LtJNMTV+D3MdoqPtR0btCzWqrSl4YVSnjBDAphE FivSmoaBbFfl2kB2iTTpBPFt7FOAlY/k01j0NCGAXhHApRGUAGwswex8jjKh 28pvWfBxnQxug7CDCYcy3eMsT2zmCip1jrTwiLbQtGlAGdTVVt7hItTqe4Ra rejGENT6zREGtRmX+A7pjHKK11bBh7BH+E25M0TVHEtHZ6hrP3QhEcbE8ued uEGbBdghOvYpZIealnPQE8ypA7LiU+jVC3JY+4EWB3ZYwFvA304Jb215jS4u ZWuFZHUwtRWiVeaJVhking0FHYQ9+c03iQq55kQSgTNgPoAtKrmhcpOkaLYT UzP9q06vwfBCDI3otaukUceJfyO6wIqnzEKn6U7oaaI6jvbhX4ieabGk5DnS zpiF61On1hzsbHibhEBE2EViYrBTxRamqJceHu41uFLz9ueCuDs3NPxKMFdI f/elmg1zln5o6g2yOvTKMTeiZ4s6Q8079uvEPlvMe3lrc35UgNaQ12qC28rk UNCcAXChX/A4Qp2hNaGFh/sTx6RAHLxien5xb7FBzApvLBNyY3uLVZcUNjd6 D8fR2JtCIHiDuBLipDQg8Tv6TCt/IJQVgCvYE37Lim8moAbxBL91J68N4o7Z PW76yzEE37QodvUCyDQ2nc0Sn8ERTs5WHBKweHjXLCtHtupG2IKQTcIaJgnC 1DefEOaJ7SF5bRT0Lpqo4THv6TWvRm2PIKsSr8aqE+eN2bjHxEAGLwfccpDY CedPICCrAGUMYQ09DMqC1rDbjEg2cjstgd4ULaD11XdfF2A1Vad5bRbue5Qw w7GcGcLVsZtjyJ83kFIrKiW/gt8r7FmM3ytseRXDhMUonCDDSTHsJz6Oh+R7 Ex2V9QSpzMUFzIeZiVNUds8Att5n8aATBvOzHyWMNApN8WhL9a8niPjY0GHO rLZzgYkOdjTR+zfZNoNlMnQtEjNQnMjQ6Q5+c1ZkC4T9bTqcmKJUbYRrbLqh MV9FdQBOsFmfHHRd9qVixtI2kgmnjC4f2wdsgNd85+UK/qxotpJXQ3h6j0bF mVzQP088hhMWe93tilJhx4aKtiodmFtGPxl5i+GomofEdoKD34ZgO3oVFbUy aZonPINt6h0lPIO5rPcRR8WXyfeOELoXJbpYyzNI8BxhVIc4ZUGwaGDFnNBj luW3SHo8RHoc5bmW5Fld2YukhZvaQqeRUgsPxQHBACVDpqJyjKDRH33zD50c N7wcy1MT0x03S+I7Tpb51SS+4T9uvvReW+PjIIRXSzCCjDp6dGtzc93jRNoL w99LKt7bjQ4SHjTsJPXG1TNoN64TU3JTBM7nClRKPixfYMkra7Y3dpQoa59D bgtqhyyoN8n3DhO7+0BJTHXRnSe0ZHOw3u9ESRWcWpUL12t2AucC6bTjgKmR U05SkfGtq+4SaeSGNtIrBhdzicZaw1vd8lRBPU1k1OV5e2pjqQKjbol9/Mpx UA+EbJPeV3E0KiFJpmERldHym8XUJ5VEEYsoFklcaZPwiLaK4pc+97wXxegL zHxaXb+tbhBFK8vnt2lPkhj6GDF8NR5RcO2uk5XwvyTfO0hsUVWIsi9b/apJ r3oLzxYjTcuyxUjataHz63enu/6yYhPzpLvGnALz3y4KYZwsCCCat0yoyX4H E1vNXRMjAavfWhwZLUtfFsWv7sVv99mPfNKPTkH2Rsj6uOGWLdDYkuztdjpL W/lI6cEW6pRhsneAKOyYlFyXZbAkf6pVLKltu1cAc62txss00WHl7ZblTWOB ZgqCfKa/xcTWiAn2cypbGfGM+u+ZDCJOBjkMSjDJoFeIB7hChINfr9FM4UlW bWuRqIA50udhogKm3czhiTYukzbuK+5dRvuCOgotDQYN2mmPuC021kJTg60k kbUkkRocO0SEcdilLML+gtjsd8L41sfuRXa9F8akk13k9dYjp1Z6hNEcKfuJ Tq6XhDF8noQxDlXhpHYL2LKNV1NER7Hti+PEsDoV74HbpkjSCjGsfp587wBR 4Bo4Eym0NIhFYmXYcuNSd7zCi5dpCg4t2lCuPbVAQg6zpNsjpNt+JxWeaOAK 0cvrxT1jMIZMGJPTHo9Iw2MxTlhFBcUcjaCgkG/mcluVrmGfPMSv7eoF2gq2 QbSxEcPwfsdufcgJoRr3SQhh2Gu4RxMXitq46oQQn3khjJGngv6wCCfblDRB dJTt/vNnx00QSq+bMwrOsmVixPwC+d4GUd0mhCiWaamai0Ql7+PU0OLyPtvO 8Fd2bKDr80QTTJOuM/ttxkkD8AGrfJk0dV2b6ldu11RVKDsmz/kiKJ6qlDV6 1H3PUtlat1kBTR3XnDp+4fn37uRyX9U4yBC8SHAYJ+F78vpREb6OOpSdOrad 4wXBu3TmAAQ5Rps9SnevbcwN2rRzuz1xlu07QTTTXW4OzLm0RNa2r5Dv7SfG iSLS5rMgft4j2em/uBQ03WEyDGUDDUkGc0QPTJExYAaaO+dVrIxnzhzJloh2 XnObj9RQSW1+8snXpjafdIKBFQimbgOvLbxt4/M2Ss61ccZgA0cRRFx37AIq WYWssAZZJpmurhWJYydvkKzQO05afYQBfBLCuiaXbHt1nQQVc9BZnb154nBk cnFXhcFYhs+8PQ2iqkeJmA4TR94kMVxsN03mXDiLZPX7RfK9DjFcLOzuTt9J U+5Vdb+lR/XfMdL1qut6FpOvks3We4BxsevMZtO9KzJxlrbIWMWKQ5QaMUld m58Vj9PueubiO54L0u5mZ8FLcSFSVh+wXHpd7XIQsWPMTWGPENZVCFUA5WIr 7pJanwahr8WpgAkTPjxi2Mzwe9sNHyNEVw3aauX3Dp+N99jKnHNmgVgjXyXf 65Dvef1quq//mtPjHLH4qE2S73rZaYCuTxE36zjpOmMoi6SpzMhf7m+8iOdx Y2PVCUK8npnALuySVMlpIoBVEqpl+rqaR4ESkC5wAaw6AYRzEheb8R5LSCX+ IzxDf0KLcbxCuHcW+cbuPZeOyFjFYF86ucTZkkkavcYaJhrLbz+y44imCYW3 LU6ZW+bmiOXyMvneGtHuSo3wmx4NmDmTYMAak+eiZUVKVhZL71Zl5WPHyBiw 7cbLpM0s9mli6XxPqc3qB5WHR7gp2ENuXfzJ59++475XEEs72xc2jcnQPqKc K4RGXpHrNctiKZlu8DBC4GI2Qj0FSlUcJRgURTJ6e1Qss8puauNNfWaV7dS/ 1Gc9VMirGJuuJlFjbZ0u8E7k2LDtOzhQZ0L38JFovKKwuEDOEXvn5Xx6e9xE gYBu2/eOu7abelwgPr7brE7peqdd+8qOB++GHSdu2FEyFpPEL7lK2syS0RZd MQllH77NaazOOygc21wRIrdZVOnojy4b0d+vcfl0On0QnQ3dq+Y0ue37TlTy RrxEQVrxxEIebluBWIpEViCQUvY2q2PivSzu9JPHqBVN4+ALaesLy9ZvElrF tr6M7i2zWBMfC17vGbJa/rKbvrLfyNtCJ50omeKcJzp+aYCjxUJ2eHjFWSxG 1OOgZcfqDpORmSTm0DppNktIXshr2pkbyzc7mXEXiXQ6B0+yfOLKEJ2aGk60 BVV1fMPreF+S4P68yTsqa1nlpglZBZ/r4eS+iF+/pHUk0DeIZvIbQYrphbdN 7ouZhEVn9jSxX34lfq/g5Vki9osv6ZGVlF/mFPaAFQTKL933rLtesUQIt+E8 aRkiwzJFkjE6pM0sl2qOkIyqttn2YeGhe3rkWqZ0153SDbK1476X5CqsdAV5 UuUMeTKl/KPxDn4zZTnp2uV/p6PTvTe2SupJNH32dR9J0Qy1ncwtLlPEgPjV +D38rMdx47/nt0tA16Bywixh7wv9nRsFXaP6u2BxMJ/oMFmb22RM4gpUS2tz +BzDsOGajUUIzZ4man2WrJ3VvNlpGK6465nVu1pUkdLFmIVbE6HKcv9NzLup moUqP1xSUmbq0pO6j8W7rhBYtXkijCXuZ/mKnZKIg75qqADZMLHkRs3cKiwe E8Qq+DUHHLMKFoieUysD195dGh8WRTBDFMH8AMB6X95FNwdl0fGW0RBZe1vO W2K+PL+jlaDJRahkSBB0myLNnx3MsqDb5ErXHOLMQFgmeixSpHYn683D2y2J VcbkakrlCp9duniqQL9ejCMZCaRk8NqlLWvW8ud6bE4sVBUZ2Xpavr3pXy1J mO4MKUjYq90Q2KIzQcj7r+WS0+Mt8eTdE9dMVcIMIcKzhLwbyn0o6m7XPiOO 3hVpCzY78LZB3CGjZEz271+1OJHcV21nYY3l2hiZU2vTgxdYIMWJT9EOXSBq 7WH5XoOJGe5bET1XE2KOFQoaMkjUiCt0dvXicSg+EKgfj+O3r881NX00ZmRP FjKynU0kaz2GThODBorS62I3C4vQGFmEvk6+N0fItpJ3NDcpjCmi52buTGHI NBhRbPClu0nItueKlic17NYrsoafcsJrvJtt+J0a4Oj1vPueHFxQb8K754jK e/0rEqR6ceWTK308Dl2MAbX6SZEMZ1itYvZfDS7WW1kOqMfcwNvaMUao8tfJ 92YJVb7shiFTNcAKaswMVgNpWK+561lEqknW2gahylUnFcVt7c1kQQAsYUgK a4yn55muk6zg3ORgJ4eUfcXjvtL1IBozOqFhfpMqezNeKvKn5CPsqLiW6ZE5 oZIkOGmIOWf1sjRIv+KZ3UVwjxAS++vxe9Qy99+76r5nazErRDF1m7XYximu xfHUT+hX1a3NEt9FBfoa4buVksWd7wbuuwioBtvJnGtojPRgfLDPQPZO4fGg G2EzkiaINtnOZ7pqMy3vPhlH9qVcYpI7bphwy9+I3ysYulNkWb+epVulxc4k GtUOgMKyRJPFLvXzXnmVRcwkzM+Yd5O44ueRDzV9WESevVVtm97CLy9ZtiZs +d6wSuHjAzIZQk9e5SbfIiNjZMX+6ziGnyKoGCJs7DfcZcsmpWdjN/I57lll Msdk9ip7Dw2ekxjGn/T+BdlC6UhZT1HOPoxCp7/Y9BESDBjrH07bCTz/ESeV xr1GdALCGpnWxf8tDtinibC3iLB/M36PGmaew9zrJsrAP0qMXhMjn07rehEz Eab6jbtftsR1bbvN1I4qS/dDpFXDZEkaGZBFm1oVMWKhuzZZif6PwtjKVJip 0SI04Jvke+OEBjgXYYIoqzA71h+i6MUb5TK1NLbnOjM5l6kWZPI15I7shIPh /plYuMXrctFONK5JFoX/M47HZ4isNYiq/Fb8HuXf/nsP5LfvQVbmFgWb/VJS o/XivyKXYQfOtfvswAr/4jJvKF0Gg1F3AA2Dgf/L/n1hMArCUSda67fdVBmX HCVAjjZXEQrsIK9+U6q9+FV3GbNV2CGy7d6UZXhAZbofl2u0ZBTUoeXrxONz dO1vYsN/gsx2jaiK3yHfGyGq4lVuwEy22eGcQ3w6rRe/lk9n8jA1yWVavXsH 4b6WZr9JrhH3wmqJ4d33ve1h+b+/LfS+ML1VMr2/mzenh+T4dfqR/HtJmNmp P2z+rNlfL10DW3ebBBCN3p1m6RpKnzEr+I3Mzt/FJv4TMpEVsnz+XvyejJ5x gzZZPh913zORZSfwDZqpb7jmmtCwc6PrrsuKnhSskHX2Cd/Hhp8ueery9fvx doWVsEVWOL/AmhA2iBA2+UxIs36zNJswMmvkGrFrPfWJpVdRkLN/Kq/1NCN+ nfp9N4K2njWJIJeXSQhXgwhon5GWe6mCEHZpa12VXKOqXbKifr5Lb47N+Wdu JoLwofnZH8TPCgLaICvNY0RoasRQqLmu6EqTuqKr2pa/RoUIXkWvhPXX1bqW rjxZ6Aqak0b7D9zlbXmpk2XjidKsYNmoEcj7EcUJKNqMCNWG/7nkLiq/tcbr 4ZGFxj8VG+A6Uhz4KkG8fm/Hz3+FKCm7r5bkt/v+vvy85n+OsZfj4MMVQoOT x1Oa9ZbeJhYGtEqQG7vV8PMq91HE9RmRPyj9ChIAPOrZhtKCt7rW6F28mSVP BVz8artnWmxG9eAq8Sn8cRyU9F33b/a0u2UcjLo3LBIononNSQOL5uux3mjO f5NPW3r0dOktbnKwxqiUbsePt/Rrdt5WN/3uiLvG98Qb4Z5Yn/Cj7O3xs459 J7vdr7d1BErf/Ez5A3n5q///0zv59F/L+ygoWV7iC++37Dvj5R+9By81fFd2 3DbxiyZ+ImVaJEtNVqBoqkb6iQPkP7zzNTlEHn/jUHm9YcXubqUB8ju9W97H 9eWdz/wYzgAOa0l4beBtEwcFN3FkcAOHBzdxjHADBwrLUabNYgNL4u73SWr7 ApY+/ZN/FtQ/2ok24qltvFUelEafpgoW7PTw+/Oji5Oo+6A19t+EAQlkCjdu yI3f8+zn6QDFtqbHf+pz/1v+/g/o/f0PdUO+nO2LTWi4/xjpuLs/bo+Z/b9f 6T1jyCiuGdiCid3ooZ/Tpduev/gIG++/iHfp2F3zK/Y2ZZc1JUhEp9QUmSbU btCmzN/5DPyZvIqgb2fO3T03v7I1oIXd27Uw/hFTnPz2/dCsbEWaWStPlKZy 2jzJ44/yUZPOjjaHA3QOznTCz+974PHuj730clfv1vkum4ru2pmNItOheVkH Ta3In81Bs6uURSJBOzaOobHdrf3nu++88Hj3qVOvxphWuv/yt/5tuP/xk5eS MlgvN/xdeafliHE0+UFteFgc0vxpw2/ODY+mujTW8M07F4Vv5FNmY909u3y0 +9ojN8KYh07A5x+6sbF2qPvFn/3jzPqic7D9XfVlPb95oc4OPj12W3lJl/kX +WXK0xAukPfh9OZdaHf4LM1Hd21fbM5anz7gP9HmQh/Cir1d6oN8T09TS304 VRYkNxkFQfql/CI9s1B3Pbh27Gr3/T/4mfBZPguhB7cOH7/yXfegp9AlPj13 5xL15eJsyLK2NDYrs9HSvqBvT731OelFw83GlXuflCuu9ukL2oy29+1LHIRo M3uJQvWGqanFu7m2KM/Hz/SZjjAFQeHFLgDjWIzQ+Ka81gCQ7niQ99AN/Hal Ty92RFZuPHm7XsjM6bEqvhfXHDTcpEg28ucGjP6wk6SwLEmj2zr66Mqr3/i+ 3f0Hz9xZu8P7nVK7eyRJ232PtLuKdt+0n/yzfMK2yXCPkCVoqDTa7/rBn0EL lvu0Wi4Z2FbfVrtybiYzmVUnx+hD3tFwbX5awvE44+6hQ64GVT4F461RKC+Z gjGyHI1of3QK8MTML/XpjyxvYJS+P6F/aUi1P9tOegb1Z9f3JybeJo0mx4Ec OHS++9Cj70EbDCSPDZ61cbJkjZZm7YMvfg3C9t320svaoF4WSN2pfIaCHp2Q s4XwDL0M1/iJL/5FWGC//x9/Ge89iVQvIZ/ZKbK0jZVmNkgq2r/4Svvs8i2T pNrZL9A94Cn9+nwyn7LdidZw9+GN03K2kva7Jt1udH/kk9+SyT5/5XXW9a2s kI21nTkVqxM+TRbFCe08vhom28R6oU/nZaWCteE7HwYjwc0fW1o+a4p1Piw4 HfutFgbC/eUIjnfcdV9mx7npAGj/i6MQRN9GAde6r8/8Q03PksV1sjT/KvP9 hqBAWgcMQUHmbQhAYqEI+g2B30ik52plVTIEbZV/G4KpmSUbAs1q6CsFc2Sx ni5JQXjiZ/PlIXhnbB4unSjjQ2QIfM46bEB/1h8bgrAMbNlv3TZAGYbQbT0R uto9Nrvafep7X5TOj5SGIMttSU1gSSIg3TcRWCD9n5H+170IdJ/6vhelTXN3 MggBGmml1kHAHPQceMgGIUBj2357JL+HrAMYhAYZhPHeQbDVX/O16kwOsiWi 4eZ0EJwQgLbi91aLpGcQMEKJtg4YhAIYbBDUO9B3EHzZBQwC1oMmGYQprgxk 9k4OkIQVogxsEPA+EMSEhpnZ1b0NwsPEPeEqKyc41AcMQpCMHfutL5Noi2JL BwErBDqN7s/0XxS30lhyYVgjemGBCENAhMzNTHkcosspJZtvZznhwI129Xvd mcm5LO7GKybpaQY2fpPshgHjKGNhiPJnYoNm+3EM45q0skvEl98DUUNkHOcH K5eNfBx3spI8rRPlsqjWU0meusfvuhfXmC4PpeBFUuDirjFpf74TJIxg9/D+ Y5Xu1bP3hBXwHY//593/4h0vdD/zwc93f/bjvyLvX/fY092/+Mu/7X7r2/9D 9z3v/7BfF8+68TMLYcA4F0C713E+kI+zsbZg0vSO89IADbaWD/J2VhLWfWT5 XibCCtDC4C6U8mrYQJZtSen+36exj1Yd7n0zy+UYX6pgCmT4Kxjt0BCMP8Y+ PMM847Uq83Hy+DnMATZH/uXfhsaR+SiUwShPiPeDLeSDmhaQxoAJCe+TLt7I f2uUMkhO74SsDtCnWp+/8/Gth73E7ydzsdJH4MPigUvFalZa5m9EOoTwF1Lj EKNCPE/jSGya/lDb4WZxN7tdlEDmthZ/aVNqy5JMZ+h0wBTmVACkoArUOE6m AxVyrMuTmfTtiTubTPmerWI2meoj7DuZ6lxHN5I2GNXJxHtMHqaxM4AXWG2I TFGFOdxP+MCaziSWsmATpZlUv0mhYGOssYqoo0bla5p7sodJzf7reImdg1Mz AmFU/g3PBkpZN3Eua7P73LufkxpFzVitaGVppRn1yFbmHjHTJgWbZFbdEjnn 0Lm0si5TOawT+uVf/FbPhPpNNeaaGDChheVy0ISG94kf7XPCAE6DqRwjE7ox gOP44zFR5nZpbDZNqOc2a+pFCoY+9A8mMwAAr1VZKu0xXphZWfkQ1NaAdnvw zN70LfstJ65alS/VJQ+zibJ88o3/ECeuo7/tvuXi+e5vvO/7uydWljF5Czpx QOiLL/2MTNlYceIKHgDlTAVL3SbOe7b9ATO2rDbJxN1LLPW1/LfSZOi5CTJx m4N5mRbTlkvg8AQU1A5z1iGUrNMHj7qyTvjJi956V1hK2m5ppZg6ZEqUpo75 ib8W2yeXwynJWuTTJjGgMR3cFX8n+wG3VRC8EpGZ+Rf5qO0uTYxjooMIhqkO 1/ry9jPCbzDXBlUg9/zF6zLXk/LaSGtvWJP9tQ/c2aTLiNvya5OOz8JU9510 54RMZtmkTjp+G6Zapvtwafl1k24ThCYXjgMAg1wjDHJff9TaUiyPMT//ogJT Fgiemi0z5UQA078HEYhZsyJRdvqNPPHpKa3zCjlAnde3Pfsh/DZuRRjrZJb4 PTPTfd21a93zR47IKQE4CQonBeDvrFcj/JKbovmxUUhGuEeUkh944D5ZByAf M25Bv+/aq7EWZLP9pQSX1vW24McyKfHOfTvB0a/pg6TEO3GcAzDZrVNESo7J a9Wk5FY+i0XpwLFFiK6uErq1odLhFgWTDokS2GO0IB1pTTfp0LV9/s6l4xfy zkpt6k/c82BmZfxxlyAfIiMntEa1SQqeYfmXQXPumu3MdhLHQ2fDtf67n/+F cC2Iz09/7vN6rARe2yJGOJIFooSDJogoZT+bt0/kCStOU2VJ1YtI0TRhewsl WQorkZclVQHSTXMIMlnS0nD4iUWxkyxp0EWk6D7iDVP/iTTdCN80kaUTUZYS r8AjnoARlwLwAjt5Dgc2BI6wTMTpwIDFRv3iXpzG8sFNxYarJJlwSdNyS3Ll Jwut/DnX2befPFM4EuJ2smRa6GIuSzczt/Tc/OEPhzUkyhKWIT3KB0cMD5Kl Ap35Qt7dpL3aKktYp9QMDyqh1wxcEVmqJVkKBBTXXb0zGZKhKWstJkPej+bc T/J7aK3Z/jJU0HgjTnZVhjI7cVe5iojRAjEgDvZfmyzO4O5hwiRNtLOGqyRB do0QUKROZgT9sv1Fl62O75ffZFU+RadX1BoFUXMFzZ2PdSezQG6QuBff+c7w oyhtOJkex+NAzsb06ChIG1azkrSxBVYyw6NXooX/2M56t8Baf/02YwgoFOeQ CugnHnu9GEReQF9/35tEGCGaa/JaNStI2uD9+ObqfhWRzll3Xz2tLABrb9Lp fBvJYWTSGVY7OIZELk/uUTqr7jzowKlELueJNXSQLHVVojk1Z9AOaclyzZmk 0yfXb9yB4Ru3NeVxXOyHQ+mezvqa6Rn836vcLJRPRst6ZLXqZTWzE5+Cqk1S 5YKM21lR3UJYWyq3YcUU2YTETstrLRE3ldtKElrpSsl3hs+Lzpb15aVgcV+/ eK779Btf2/3Is+/qfvETL8i/WzeudHc+8kH8W7BttdKPDI9RwRGVaFiJkGDI 8jix7ddVomEy3nh1rOk5SKJ9usGskyzT2SbRPnB9H3HZO7MyedzmBkh0eN8p SbS0DxLsJVp5oMjyHDEQDw9Yb8P75ERSiR51tzLlXSd7Kw7dgcF/I3ZCur4/ WBzYTlveSoudniUJd/v7eg7Y3KuE+/OjYxg199J7EjCs4g1phxhDsOfxWoF0 x5P+6hSul/Ys440eGf+dX/hC99/c+kaj+3/9mz8PSzL++9bvfq3b/Y9/Jc/d /+nPy+KPq9+Vj4v0A4RjnJDXMZV+rO9wiOTSXzPp737ks7+Ma/jacxazGgAA 4VBGOPYKACUr6EEirfMDABDM4y37LQNATQGgxFVEf4aYykf6L+kpnIuHnpuo AJCRNcLBtoIddwAgbpMCAKIpE12QemiL7CfXCp01rfJDcICfu2opYkx94OLV dI56dhscVPOz/dJEsKifGVZjxLBacSc19zGsVHuIm2cr4yC4HQpGBQVV/BlG YBUIwAba8NpISNh+5kmPhBP5yCTqPUEcR6PEcdRxrsKjd93d/eqf/C/4V+bL 15Uuw8En9bj68uIaBBDaA+DgQ2KzTs7Mx7swAA7nr+Q7z1RGDQoFOHj+PUWM uWNEHxgc1vYdt1voSdd2qwLDMTj48gV33bkX0VWKlFHw9Qrx3goW1UvwCGTI w+O6G0izD01NfOKeBxEWEGCcJPCoESIUY8J5BqlXExPEVtznWBAgo82KcYJ2 6h2efSQ/MNso+vgcYg6hbw0W/SOu10aBpgipHybesP2qBPBbiH143sqKtW0t 4D5A6tHJxIJM6n02F5N6d3aINB28fkml/k1H75aExdtJ/WSwJUzq64TXTxCp P06UQE2jHF4m9Rxqr2+MBTUJCzp/564xl8lkZCj0orcgU2uw1F92k2WmamOP Ul/X08d9s6ILtGizQsphs04Rm3VDfW560PFuZ/+GP/trd2NpTs4BxzOIdbbo VvcbVy5CrFG/pCziGDmjVy5pQGQFq/ssYflDxEm3X1f3LBdx4zqFUKuFZAfI uSx9RnYGybkPyU65WbaYwPIAOX/o0bzSwSA592x/nHhXTrqM/EBu+pKdopzL UBjZaZItzJfdflUn525HR3ocdIJpB9Q1SAWq4cHyfSEfwGTeNgfIN96X5Ltw oLHbXbCd9Zq3M8S83dCFHe9f/uZv44nL+ePq1uenu//65348UJu/+dZPh59f O3lQFnXI+rxKPN7DkIWsTyirAcuHxDtpLxQhXp+eFHGfJ7S+RYzaDfVJ4/1P /uqfJpFXQuOjW2WJ9xma/vw1S1IeIsmJ95GY9WRJ4kHvVwZI/FPf+2LJcRzj LybxDULvx4jH5mT/lT0lKuLRLEh8gc+0iHP6mqskFezbXSfaHZ0xqcbN6nWO DRbtM26kYNciONLao2g3CGGJ3gtu184Tu3ZDz6g3uf63//7vcBq3XK+85gaB Dt/sFe45FW5nsuJwtb7C7aNfYOqBogS228vUWySov6EeGyfcAXB4Lepub5xa ZsYAKUd/E39hUn4/ifWOu9+aEbv6XUh5k7D2EeLFOU3WdeMvyEK1h24QHs6H O/GXNqmQ4KV8ZWVtG7/yxYmNoLSJlE/2l3Jcxx2mmqzW9h6lvKkExc7Hw8PS D7N84Q7MsZeO71diAjq+srYO6Q7SgteqkBR77HPdVLISOhMlPSzpsFVFxmeJ WTrfK+nW9eS5/uZz707EfIkQ8wZZxg+opIPFvPtHfsJLemIvTtJlLCyrYYCk CyLgcX8Fko6pTPapSTo2oARmXpD07//HX0739ZIOxgIZbxGmPkTcNXcNWM81 qYVIOj5ODIaVe7rqJF2DjP4UZJF0UJXhvqdG5pIeEOAl/ZhrglHxO5R0UJU0 ep6f4lQArOPLAyQd78P67SXduIo8Onk3E2FpqaT/1qd+UNZwyPgMsUKX5LWW KHoWVZida4ZLIvcC4r1MuEqduCCZkFf11RwweHj6XRZyv5lg2n3PkjJMyH0e /f0kKcOfbI6dNLcT8h/55LfSfb1npCzknqa3iTl6tv9yjvQdu0VWLwh5gbSw EnVX8kLBu3pagWb6prKAVl90hJicc4PlXIkv/rSsr9CKvcl5S+X8oTe+JU1w ZKUxlRDn/ODoviDri7e3NlXI46tRFzxcKpZ0FvRlWEVdLVER8imyqK/Ia1UW 9U5nTeDo5VzTD8P3euW8ShyMmy50+tj3/SOR8BqhLSq/slha8tH/S3IuikB3 D1I5P9U/nFqQ8zYh500i5+eKm937LuYq59EFr9WVSvU8ve/9siuSfO7c8Zu5 nMeI8emNVaEtY+RUsMVeIfdM1V1GjouGeA+rkAcKI36UfkLezsl5GvmoqmPK uR0dhKcK+0Jfu7Pq+XkYtMhg/MT4Y+aOrC8KgxklXH1ShR0eR7hYcmGviWF6 69ZvdD+686GdrEgs7j9yuCDvnrxUiFfxYDGw6uW9QF6YvL+a7DdRF0oh2c7k 3W9vuJ8kSI27foCWe3n3OyZP9Q+2ClYg35D0IULT68T9cqH/up7UMR61grxj aBJ5GSbk5e5iqWk50tfv4AB5QaXvceJnWVUfOuQf8u5k3c7TkmuYJTpyh8Lu mYuKzzb6Y+dYV9zBrJByyPtcX6s06jNYpE7qC2zGhSqFtwcGE/rdK/UTxEJd dg7HsMR3/1P3f5fn1pZY0zNOMk36V+W14TNM/aaqQyr0LooUxrqXzKgwS+8s o2uA0Fu+zG2F3ufMjLvmI4L03Qr9MGHsNeKBudB/kS/YpkWhL5AZVrb3ovM5 ogLkCy+8H13d7zBj/sUJYp52Bsi9XznNNh3do9wPqdy/7dkPpZH3VLV8HqyX +9k92qsNQm2ULXWynNqAyU8Qk3W8L7tpiAK4efPzSfT/592/2C2JPogNhH5N XmuJ6KilelhFHjmLs4srIuwNwmsm8kFOSTWP9Bd5X/PlTkVe5AYVEW4n8iSn QEQemywg7CMq8nC9Y12HsFeIO+bSADd7MFrLIh9jqUVew4rwX3Aij0qhqMN6 5coZ56qQqQe1mSIHu230inzZLSG/NyN1kMjjeybyw4TXuACH8ZrCGdwm8jN7 NFybhOC4BMKbZzbXhOBME8N1TOUdodWbX/znbqmv+qU+vIuvQf5vlvqxOxVm 3AR/3WXvgvEERpMdUanP8oBSWug9uxkk9X572J1Kvc+k8QnWcEJC3tcGSL0P ovqIT1HqG57N+xpol8n6Xs2N1dSlorDLHYzUjBJSY8JuJaj1tKxO3rnkfpwh TplNFXbj8V7YdTVDp5OlOnaHwu55jU4WmifCDTFvEGHfQ6DUC3uB17hcEuE1 P/2B7aAvek3XkQGmK4T/bdtvETGvqbArt5GHxmi6nfFxEW4v7CA46B/E/Ajx uDcIq/HecMuTYcLuYkNpS90w2VJ3P8kYGHP3sOInJuy+3sMpEkllwj6q8VSj 8t5cvUKWdZebvl2S9JabMpTnRuXxcZIlcM7VIUblcT3Mq+NaZ0xmlrhlDg+Q dL/cmLk6vkdJH8mZTBqxSdemjz16WWS8SSR9co92a4swGd3d2NE+mE9ynpD4 YWK6+pV968ZVMJggnFHYM/fQoemenpuXbnthB7uH9njP+z88UNjD+6SR/r8o 7D68pMIOIbVNYmHRyym8CflVspy7hOAkCkUhlyYZdxkn3OUsqUEf7FQZlvK2 WKzp88RWPVY66NANCX6bbNSJPUr4KImWqlgUuHqLSPgEsVEZVx8ixGU8b3Mi LktEvIf62qjFtdzE+9at37hV6kd3K+iZiSBWiDNFxl6XiKoaA3JtuGeMtsM9 GQhLgcBA7G1dn3BiZFlgJuZ+x+ykkwuLopqY4zPbC3k/yY7xm3rM7f7di3lL 3ss1YwqWxJRkLQ+WahB3xtorxDtTLUi+GAggLl7yw1KPgKnI/JneowpQ43+7 JPmJzSyo5LujvbLj7hDZTLOGXRJaslIn71Dyff67k8pE2dsq+fC/v+7s8b5J joyyD+Uspjyzcg88wWKWiYnaJskxxmLMJwmZbxIWY0Zfr+RHNw3MAEi+k/5D JOZkwh/eJ/BOOMG0RJl/COH3iTKDhN+XXjlFAqv9hX+4e3l12cf22c4MA0SQ +gAJ1QEBE4UUA6IXdienFsvoaLqZthSDSUJ+TveefpEOrVxzQ2EMaJH4co7q waWmF/SMNR9mNppvAEEmMIpJ9APImAJEt+z1zIy5L4cIQMYHAMTT/GFCfkad 5OAJ1bBCbNrWANWA9wEQAo22AiTYuJ1SPwQgoPpItjGAwMZV9SNPmBGB+Rzq H6wS7bCwuHDTCT4FiN/7N+kEVUsrq3lbk0wEfI79f1L7FlXwq2bxCmK2SEKC j7eaT38Qbnyslm0JHNW0eVi9wI3apg09UcfDpwQhCp/jWm7KKRer6WXhraZr hVEpdt6rQcYf9GZnSbtEKpkEKJRlhYxuJxGwHHFGw/Mf/oAcevxTn/3oTScf MpJQJEDMxB5xM04olZ8Zo1TDBDejA8xjbzSMKG787McZjMX8L+6fl2fAywqx kBsDLGSvW9qEVRl0Xr95UAyHoE80BFD1rCq8y/VXOeDLAmD3PvKG7vY73rbl sCG8wvLUBmBIptnyjw1DUDr4HCISpLSCP0LHTUgBLaQnI8En4OradwGn0yQk PDwATjA1rIgE5s1tkyJQEo+q0jPdqdXwdYatthTkvVZAUYGWTZH4wcne877S Mdo+HdFo2SpxMh1ywWKcuooDPnHY57UrZ9F5H2Y0II3foQIKDG334o0Httyc oFmJoY06IJ0/0AF4wqD2t74BrD/+7//HApA8Q4tAqicg/eUnnzYwJUXkbZT6 bUxwc64OK5o0kuxljKIJJjiuiavXXOaR7Tw/QNBUzSkb0LR78fIF8829IjS1 nUY6s7Rki3DdqYDSXiZTWhnTWudJ5oXnKBaU+25gZr5aZGL4Sk5qik8MaPog 8ref1Lo1j5firuGE0wjfNMkpPcEPWzVngK9dYpxvjXi9Dpag587ZxWAOcnwx 6C0sr/VAzzu+PC8zF++Ygx5STgE6tlGYuQXGCPcbdtB77OyGQO/bH3oDHGAB Fr3Qqw3ggC6OF2Si10gacdADD8RughWiyBruHpaht0GC2hVVZyCDJ86c6371 61+BcET0xRwuOMXgMQjPFsihHJTUikcm/dCzXzjeH5QCXktQbWtlUYDUHc8m p7O19ejOfuSspPfOEED6rV3l4AkAis9QTP4uEiX3adW2DdkACf+yHuzuiyfN vkI6uaqALOnCnV5AijgZnZwmdPL44FN8l/JOCSihCzvEObfpnHN6JnNoOU4g r0IvJiR5ZNrOnbE9InOUINOzVWOX4wSZQ3t0W4wTdhlzEmJRJEMmnr/4rgeB yBXiwagSDwbTi6OEZRo4t0+cFIAGXZjA6TwYQWz6gbPpA5HyfNP3Pdv9Jz/1 E7vv+8FnNcUqlt/EKYU4GzA8WzhRr4nj+lr4uImjSVu4UDseXxYA3AQ820Bv DeiNcE1TMemmogxXBC2N96ky0tPAhwYpUoEqUhcDXI+TTC4G1xjhbwlcj6+u pAopctmZJYl/BuvvBAn690dw1TPXrEII5eIdUNnl3uMDbvYgt5ACM0PueLTP kdPqP3HITSx2H3GfHFDkAslAbsRsfFUm66d3yyN3dI/IHcn9KcmX6hOSgFRg doIgt71Hf4ohF++LyK165IbJw2vV0CvgXSY+lsoe3e9jhNoOD4Cw87EkCKuf pS+E4ZJ/+DUPQa/e2rr/RiGlyM5CPYjXNk73bOKzJjDdBqZrwHSUnfJkygUs waClVWiBXU8edSP/jHPV+Rpa4b/CWAXAMtK7SdJyvLvFwlhxL+CIuDytBoZT L774RQJxIMdH++cwFDbIDrnM+3LRud46YXxJ8uECbD8JQJ4lR99MTi0qjutu NbGbzpKbGo69Q8c5dXy5CaPE+wmON1yQ4Hueek0Bx0EbJ/XiN7gZjkf2iOPh 3Cwt41iuZ9x4iuC4uUf/zqgmd8JMxd5xFVu/lef9D5xSEMdXvIePJ4dy3ft8 zNeT/Dw+ODyu8A1/QytvJfhWgF7FKwoLA72LhCO3ibNnv2LYosbGi2/9t78H NSw38YUS7LDgV5HTl1mms1XVgfPUsmgqxL0uxTnl6GLmAzIFGwC7vz9O8T7t 8VpyXBjYhVKpEGGs9m7/E9zqkVOH7hC3iGaU6/v1VlBrsrVpII8eLx6SJu7Y Inrj9Ch/niW3PqLo9Y4k50xypepEdK8c3wyLYq8vaZ9DL7yxwG1N0Rvep1Hy hbstU892IOD9c+9+ri96h5xTyTZP+piWRTWmFb3g09C6wG2DOJWYZevRe+ny he4Tjz24kxVzbQy9NUWv+pccemvJ0NXdZiyFKVLnugA36N7ujesXk4pTAD93 7nxWtVymAoC9f2mI+Jf26ZZ5i4cj6hGACwDDr+R3/pj+fYicRW67GXzCdsvl 8ZUJpResVaJvVZ7769slkhDox95CiosuIRBK5esfe19415s02pDXpuDYJY56 Iq115mlulZA7A3PbKWGEI3GaPSsed/gOmPSoAhj/FwDckbsWAFyg0XN9a9VV vUcqjC9eqylFBY95dz0E5zFYm8Q1tV5KUwnoDd1Menj3wftidRaVIfFumHt4 aI9IbheRLG30lM4s4RmC5PoAH5W3hEcUyeDTKyvz3Ze/8undrRsXfAU0Q3K9 L5Kjy8pKurA4y7DmsBiM14MJ8vyH3tH93V///G5W9FTtXL0m0r9EtPAIMYY7 CmLE9QFgMGho4MCib2bFGsumgA3EgTsngqMgLiTjWh1d54YKQ9Vro+0bqICd M2qe5Hv5HHTbl+dr4gG8UMANok/avVXjPHHu9M+doZi1MGi/encn7ow4N53e Xdt3fNvBNqrfImueJ3c86GCrfiuDrfmu5OFT2wFTDBiD7ZqD7TNvfZPAtqGw /c2v/1SiY34ZMNi29wjbVjGq42Er/bWozhyBLStEzczgId0jovS5+wPve7r7 777z27svPP9eSPog+Kq3WYAbE9Ia4tR66wN3y0QiXIpt3sEaXiTJBkOaWQwk Q0krkivdv/9rSPaXPpdLtpL53YuLSz2o9i6uUYLqdYfqhcUFQTSeP/T8B7ey 4lE18GwBzw841WxNmBmAaq+aDdU+iHHoFYaAxvuDvBBptcqveA8XFmS2SWR2 hLBsXEdZ9uodgty7uAzk/VLZej0Ach46KHbDU2x5ZpH8FhGOyUpriiHcFw00 hOO9+raSYkZ+kD2igRz9mefXp43PbPTd7lhNYaMA7DCwvb4uO57Hg7x1ZyDf ffYjn0zX874zs5HnCcirA0DubeS2AzlYtoK8+yff/nkM9JjDwEtvuizwbhC3 14K8Domt3FmZ7e6874lu9zsvd3e//Vn5e+viUQG9Vlqe65uCF1k4Ik5YDAD8 gPYAnYj8G1dzj21Efk2aBuRrit4icY6NEufYqiuJjwUAlwnAr2AFCPMF35g9 dCGQrwT4yxJwvy4EQd2nFvmyVuUTfZwrLCGiN3iy54jTCMl29YC0EPCMvNaS kteqDC0i0RO6BDByHvT8Yv80QRFuVpqiXNLQr3wX+vIZY+bh35s9WC+Q8AVC wg/ktSnMB5a0uSU34RHjwzHR5z3XDwrew+rI/GErJawjItV0PNwuqX5yO4mk UEvudlhvkoiU+mu20cRHT20Iyhd0U5DDujzVF3aAQLypr6bHQcEDvA3moOKF wg2G8ybxic26CBWwH7ANy+47L8OyC1i/9ZWPCt6zopJHEaeeiFWDmN3PvOUR 8PXwaQR8+LskbXF1BolXwC8QDj9OPGmL7jwVJHvgczQFtw7aX4FvAWd5eMb3 zJPvEcjfRxxrvj5v+YwVONY0Xhtu3svr77qz2FWDZPqaZYOf2O7UacfuTfEP Edku1xwy95qifq5/kiNFvYtOJ9T3lkeqpd6GnjqMV9042tqx2NdJV/WeMs/Y b21sxN3g8TUmQrz46GnBuTH3DvFRLJPQc4swdxcQS0khg4B+Oij+cmU9nxDs XXHmOlvQra4e6OoyS85u7y6zvX5OkYd3AeNBIyhjl4cPc0ODA+MtYnVPqf8M SDetHtA9LGCvlRV7BUgfIzkjNQdyR+W73/lXXwtN7tXqlsqFNC7LKV4grrYJ 4mqbk9dWOuXmcmAFuKcyDEH69jvepkjffeOb32B3tdCI6M7A7QXj9xA3HDuZ gXH9BrEzL9zGtRzQrly/lri+wpxFp6dKql0jOsME5OWCSyV2P9M/J+wmA7ln 96ympauBlhaNIsJl/IyxL/XzdmRFV1qVuNK03KpcD+j+1rP3JZQHZK8Tf8Yi iVK3CXP3h3VYdKuxR5DXSZTae+lsy2MEeS2BXD1pG8SJ1nBBadXghm8j6/Lw uaKG7zbBty/o8PSrr4gmn3CaHOAua3J43tpEk1cGUPe2gjwAPgmDtyosX3Oe qPEpYrRPlw7BNRWOCFzFeQC9QY9gdz6j27jtQ/e+rgBy76ZjIG8QN11/Bdek Lmeo8yzjYetJp68vH9gslJXqld6+LH2ifzaZjLbVXGkSls4Kd15xOLTCnbUC lAuEfIlcokPca1XiXus4KL/uVDDPfuQ1Amcl5ix3c4EEqtuEmK+6ATco1/cI 5RoJVHuj3hzkC84Ix+cBu3RPfs3pafWqhc8Sjnc7ncgu/P7RMo69e22M6+lZ gXIjQRkfG4xvfvGfN7T2vwuDMR4+TDxuYw5F0NAevN7jNq3gBZgBVsB2wh0L 4/h3XdcPrB3mWldHnM1dIUB2g3jh/LEvthPIQAtj3FL4W8Rm3MptxrJjsQDS CRLrGidyuTKAVD/1vS+O3iFIfcya1Ry97BCmhNq2AlXiZXGbhPNlcgkDKd4H K7mgb72HLJaIkfNXBJgAKZ6eWa8Q58IcCWUN50mdadTX3KhbUNpOG8PWu09/ 7FN9kVolQWkzyT1Sra4GUkoAC1BY/D9SSXCsmBzCVDWvmUB4mZjVVUK464Rw MyAPERfaiFPI188eFoW8JCgeTyjefuxGWSGnE5y2n3lKAORDX2DZo4Rl29ZW mNBWb3KOOM6miR09WlLAcKgpy1aTPirgNz/1uAW6LdvMr8MWJ7tBHGnsvMk6 caS1Ccu+kduGZYtVrmdx6zES/pokkrvO6zgadx7qn/wpt7NyIA2ncI/MTksN j2FCfO/OlyI0v9OL5W183WzsFXKJNeIBqxIPWKzs1+rBcolDL5Ft5LMOzl/+ mZ8UOI8QDr3uRsLOzKnuEc4VEuJaIXCeUziDUwMfcDub6zkowooAqVlGuehk HKMDPT1PagJWCN9WeCOAvWNdtFo3mYbBgm4OE9sL7zbR06GJ64LwVo+e1jNK DMnjxB+mC4vYrFZGcJaw6FkC4qEBLLqlICbaGBO75ubAFPI14hRjR53XiVPM QOwDNtedRss0E0c9A4UY9igJb00REG8MZs0NkkQ2CMQ+hs3qxl4q1o2VazYK IC6w5hVyiVXi4qoSF5eron/roSOLAHAQXbxWE3vG+RFsu/sMCVSPEPq8z428 xbAqfVHc9Ci205ETgr30GIJnXVkUOJCjEYrXoYJTGej2MMYB7oBxgPCkOztO PWLyhHJ+/HueFuXcICxb9xVhhuSyK5ND4TlSAZTbxP/dJEr6gDS1Kk0FfGH1 ThKlO+GGsYxX79qaI66tZilapXgdVuIMg9vr2s6+ji+6ig0YgtCrxKW14Jpl my3qxKU1RIjz1aJ5KDTOOxgtDD3Mw1DTRCgPDubO1TuEqvdVsZK3F4srza0H HrhiR7iogSsdtksw7rxCfFW13FeV5t8d65KgWtVXeKfRfF+xyG+znybh5tE8 qXPH7hFZb8OHm+WpMD2lB0qXEGoR5g4Bp0/hBPgg62POT3TzpfcmR3CW69eM 0ei2HkDt/FpCp0GfP/PSB5qEPfuY6qWN2e4f/jDShJ978IieKxfAKgANqrZB vFw1rnU3HWShYQHWCeKomiwtD+DKn3js9dNEyy4QX1XVaVlv8gbNqpspG+Kc Pn32lGnZ3U/804+7qSgkn1whviqG3hqhykz2r+ZGH8r4d/qhd4jEkmZJ+MTX gihR5TBn2OxYPMLL76mxKjN14pgaJSvP+WLVXgNaEboCNVw9WM9Jy/qrLBHf VC3XsmmU9RTEWxuzo0aTE3QdVQ5Ld6/HbpJEj8cIV450vG4lmDxss4jbegG3 Fil2VVtD+yYA1ARar1Gn5XW4oFEJcAvEuK5HOEHTggjjeeniKSHDTUKGXSXV W4+cWunufgoZyXhtArnAraAYqAVMjTBXCXQrfieVqtpDilu0P6jWAm69jyqq 9XgQrt0LyduwbQOGJ4i7akG3YCBH5PLFu81lxYJJulGrR+3ePHT4kNWNLiSL 3E38Vf6cIcsaqxF/FStZfdlZeMYvWYniFg8RzRMpPa6ljzxDznghqDqJ9bIq w+ccRLXKMCZEjwTUpGqZItWwyX3sr7KUL1LJM1UjnqmjDqJffvpuB9FaIsJK O2aIy26ChH7HCBeOfLsmKO1RrLUEUI3u+lMeLCVz0u1ogjqCREc/z+he2a7g FEYpaG2L0Fp3CPytzflRQWBNXscEh19993XBotJd06DesZxUJtoQ2nVYoYe3 wQotQM+z3Kiw28ndhUviX9xC5jrAUNVokO1el9Oilgswa9WxXVin4zzEY2pz v5NXC/HcTTxMhj6/FapK1KbJtQ9omIsG7wPfE8roa95ZgLZF1OYiEb0T/Wvy ST+sJEedUFprn0+uPFf0/whK9JRlV1sj6UWWYLFIXEg14kI6TkBXU+jh/dLE kHR7mtjk467bFocdJ5RWESdDi+BNAXFy0k+KzThjOMHNNgIjgQpcFVLcccER 46+AIn4XYNRWHvr2t72+R2CAJqAHWGrIa9VrtqC15Hvi9jGtdWQA2/QOHX8q inmKK5qKBRgBQtBkHkYoStjslwFVkVOfo+cH1mV4hgsGjac8FV/GLSvoffgM S47FdCdVx0Hn/dDzHyzoOD29sZAtcZG4gNT7Xti0VCUuIFa2+5LTHjiL5IMf fCfmlQGtWQrLYF/rEpG4YwPL+215rNUIDR0na8EZbaW6aXY/+9mP4joKN63s uZM5HcdyFueJs6dGnD161uHNo0sTCW51QkMnict2jGwLnCA09KAbDTwffxSn cTz37udaQF2r+0tf+mqr+0ff/MPp3GV7q3PgcM9vWXEbU3cHnC4J9FHg1iJ0 cpmArl0CXZDZ7OgAWuh1k6OnovbybOZaAhg+D+CqAF014p1p5MCqJWDBVRNg VQGqwsfAlThyY3SpgkZWsNJoG7EQxBbHV6w/0G9A3G0UnEJvO3MK7gLx6ujQ FTYlVIlXZ4zQS3I8BKZkws2uRUTrJIqyQrw6R51pqAGDVMxlEP586HOcrBJ3 FVcJM9qiZWlHBGC+ZVEN603aH+CPnZ4jHpy6csyw7iT5OaX4w7WK+OvhmONk EEZIEHSSpBeqtSlzolZaJmGMFgSpBZFqQbakpkoLp8bIueul4tD+/GgDoxV5 c7ES+MZFCKEIn3jswQIYPadcdZ03MA4pGPHenENGFHH9YJMJDGMMsgbfinwW QIm2Lrgmao04zUVsJzwS3ijvAcCKaLS6wY/otJo0C03BQIYuVgBA1cUaKcK8 pBZb3qKZeJoz6Hf72TJXiICcJ74ZhsEKIZmszPkFx8CgWEDifGk5C2PW3Ol6 RjJXiewdcW5V9fVD8rCHtJMVKwJavZoq0YGTZLk4VXTFWNWY6JU156wsWKYD 58hVZogrpk5cMXe5QTAMNgjlHCdG7hAJW04pAAMZ2C4BUOTSxPpYTuJ2NztR co8SiPmCpI9fOS7ituEI4NWLx8V94iAG2Mka48OlgyB2kBDKEXmtJ4iFzwEx ua47yyzhbFg37Hm9h/8HakRhhRlVzJjOWnRq23btjPRXV52syAgs4n+OeEN8 sqVtnTF1hRS8QTrgPOdgDC2VkkME7DAs1ixNtFySMyzQVhcQwPcFyMuA8eHB SUIaDTDm0lCLSgHjy7FnqrRmyVUMMN4xUieOkTMOgAgzACrNEmnEoX6jxDRt kwjhFPGKHHOjYUJ6JCc3O/a94wQwQyTAsOGIke5IS/5G1Um4l/k+pW+fevO5 voDZJARxyAEGuTIKGGmr13W2HWbEhQN1e5sakkVEDJNkNtMch911zat/lrgn PBwsA5VpDlYI/SynRNEl2vSOfXl678Q+IgIHifu6kq+ZqclW0dgXXakQjwUr RH1Sm2zuBjT56NGNkcKVZZJNg7D6g9PEaVHPnRbb1tJzTgiLgIgsDsmnyuKG yYC0SChumrC4424OzfDxC7fh4pTrnu3yahP//X73W/j+PCYCRhLGNlz3Hj+3 3hcTBxzGIP9AQ6uEicwdAdSJ1y14JyzRBUrF2tlx7dx+88PiMB/ieWHYgtHJ YSFDZaHqM8SfsOK6VoaFT8yeJITqDGcp0V3ZSLAoucr3EzeCFaiEq7xcoNIv itFV0fCIkKfyKVaI77g2Emv8uXPHrZ7tqL9gUTNMk6tMEndCnbgTLrjhhCYA BFqESg2RQWiSZWGGuBNOuDYf21wpSB6o1E8+/3aRrrsICppEM3gUvPWxe+Eu KCR2vPD8e+V6nngg4tQPBRtuBTe3dkNfgQIkQjsUoB/7CRCGCBD2+bwQ9aq1 BygHZZO4TdpteJqY9j6L0jKdK8S0NxT4xKq73MZ7q/RoDl2t5rlrUFCtcIDM /gHnTAqzXagQ52u0GgRwSQ8BDR3NEJwecy20ss6hldJCxYE/9MEUAoP8BDHr G8Ssv+gGVHcehIkqMiTgoEXsqgZZDGbIYnCqhAOYBfuLJgX+LzsbvycMwXYJ NQZoA2+11wlD8kvrIBzsIyZF3eEArGllcap7910Hbp44vIrrHXCXNm+a4QCf mXm935Evq/DR0s2BLoIKZaA6s+BYPkUs6wiBWEdXISBP5UYzhBad5hzDinfg SuY73iTzvEHcp1pVDTZ0kiWV+N2yxCsFmiG85SjBpLZOuY8/BTWt/BPkUuOD jWhIvVzpspN4Tf1Via8V0n/DaDTIYNQJ/GcJBTpNhL5DhP48Efoa8RszClQn FOhoft/drcMLBaGH39iu1yEUKBaZaSY7+nsev7/7xKsvdH/iw0/t3nPpiEy0 d60V/VZxb07Zz+0l33a9+7wf0wAq/iLW5tw9Saxl3fWI/lpqrTzVUmZCdqpo JBuzmHXir5w3ib9P7dlHXJd1MuPRR1wviL/yHVoy7YjKvuPsFukx2feHrNpq P05Yz1j/RAGRfctwupoLR5L9IZcxa6yH1cKqklVAYpYVWfgbcnAHdqIBFWvR oMTYqMlhIBCxWM2FL61rqokKCXh2wDc2hpvdaUCAx/IzL31AIdDLgiL7ktip TAk0wHMPHmkTLKxrwq0jQgkDVy8cEwz88me/f/ftT1zfyYpkxao/WcEIkKKy 5Q09ZfUW63zxP+k6b27VE8Q4ZtKPhX9zegpx8FkiGyc4qYBMFTab4OnLevm5 XyfOwwZhvB4CunPawhgJAp6lHNa2lc6PkbZFbVJIq8p0+R8jlxodELYP3d2x Jl7Pr7d7bWNOhH+YEJ6aDEPTm7+FGsp5wnhdzs2Aj8whIKvIiiUletAdDFGn JOWGhiViGUct1fBokKeqhA23uiIprQwCo0BRCzXwNy4rWgaJL4geBgQ0SmCA korYbCc2ZPYwgPCPvvdhAcKPPvdGh7GiOWCpqN5XdNBh1qIMVbdx2rynpgwU Dhi05Do9Tozi6DSu+wxQM4aTvHm/4XGHBTumwehGdGvHfFesg6UCWP2q3MEA 9HDwxFdTaG8ZHFQbsDJdhwhKYa8iwSaiyhKbpIGmDEaIuhsZvH0COkYm7x6H LMvJHiZEKAxCLE7c6CkmrmtBM1cD9YIayOLam1VupqZv2eBcI0hYINZx1Fn1 AhI0hkct4ioJpkeSVTcYJAgEK0BzwyIGnrx+VDCwoknekF9gAOwfsv+nv/KR JPuniezXiexb3qb3k1ZUC7gEE2gBf0nTAkeJFdxxYm/8R63fJPZeIqJd2XPG gbENLf0maAMr0H0zzP9TLv3my0F547cs+RoWYAkgm65x7ugUa5wKv6sALRcF wkfI1YaI3euF3wpo3Oeup5nN4XrRFnA77zEEaQA83KPFP8SWfiM+ful/gAj7 XNEakJm97sYNwq5m734nj1alzkpYGd+5XJRxSRyBDxT7BSpExsdxzQrujtTX 0CbLBpOEjSCtoXeWGLYyO9K9dHSh+8SNTfkbWAhGgVnDGmYRtQ8boFyX2np8 WDf8OSiUl//trGA6JZfoUWIJd9xgOQt4gZCgo71cOxGN5XzgZB2EX7xcKel2 JdFahAwpBgSlkH81gxcIQA9wgFqNiHilQijTFMAQoUJtYgmX9s/J0D2oQukz GA0DtvjDMIIhhM04e6Q4j8TLSr8t63CGWL433LgjeV8JiEhkx+2yUWs3Cbxx m4iVVhL4rLiwm6DXcjmvejnXSG9cmFXQw2dBvCuQ9SqEPUxJ+HN36/Ty7tsf PnrrkUudmyf2T6Nnle00F+lxxsmtOYUMBnhvqU9HNAXTYODyLKAFzrjxs0DZ YWIJ71PxtzxetYAXiEQc4Txb2IX6k3QaoiQ4H8gaQYDVCrMyQv1qhflzA+H2 hCXMKh5tcHRKKDdew0cF0/rPds+a7HtLuJL7PXesaQ/H62Ewb+ozLs8VDEJl d21quAL7oAJNEK4K3yh0QhYtJbbGZ28kgj+VW7pp4u6V17YJ7a5eU4TQpevI Kh1tg7pPF8S/tzY317P7IwC2FADWtpQ9r0Kdy3QFMi1/BRuNCLWX6o61Vnka PksOHzv9xzt8jrrEYrj8S4u6OnelgbY35BCxcFWqU96s8hq2ah52q6Y/BVH9 22YcWMaod3CsESN30Tk4yhV1/LrupRprOixSVvxnvzavdKaF5WioYPuIhi3q rE5LU1/L59soo5eJ+0a8lgiD0c9xYlxG4ZeVczvLLcNbXhAldxPLZNXUt1xo UuXRfO+egbxKLtu0S8plg2Td2lyZGChhsTnRqaH+lK6d2xiacszd8q2vv9o9 d+aoLJdBwMy5JD+1uNFBYijaziRIkxmIS2SUD3Iyaoo4Cmf0vavG9GbSCrEV F4jbjNVpmnY9wdPvCfJCv48LvaU6xMvYVvNO5pZLVrLLTuJ2QdckVeY0/M14 Lem0JU6OEkPtdblUbTkR2ItUDekUW5KYnpIgt490r+7tLPOyqSaNNAErnjnq 1EaT36uDvRBXOeDU6fLimnxPcgcqkBBVKb8TT+7KmEI9qBrLqRnBNjRWTEJo YgwstFzOkKUp+nutE+QlpVzXKHNadZ3QQFb5WxeiTrzsVuYWIla0tdZHAMOi hCZ9i0jLcJH9ibS8KUKpn7RYCmtJH9adIykYQqIGf06uVEsCosb3IScb+Dps eAQyvGxcdI21oIPJRlhOdmyINK9Elg8b8iXCPsyWLS3StuTHqGFvBSmfcLBI JMOXnCkXq/CaacaJerksXe8BbVVvbtA60bqY+F22mS4mdaLwqsSKcQ6n33EC Zi7yNrELnsZLRf5MuoSpp0xXkl39jjxUGGSIwblxXmGQnU1HTiBO6tAxYbgS m1ZwvOwnlFvDvt2xZitt4FkmamRDR4Isq+iJr4ZgzocK2csyT7j3TMn6RArW COHe/nAlayrb7rbGRdaaOlsAgMwdOgqHPjtCrFpaF70e+T0y/808RIJBlu+9 Q74nduFWlq8MIpVfcdfI4gqjaSzFuQ2KwKI1nr+aL3k/IZ42t5kDDyt5sX+P y2oMlDa9dV1QBahMM0fCjeVyFzCuRgnYmTt4kciileggBaPhDUvtnSkMQ0dH XcBe1eqBWa4G5Gkyo/GV3ycTXM/tn6TAxNIu852Yex2+ttpnOu+5dGTbxKAE 1Q5hfLof0p/BSSuGdfa4Fh5x7TVniWHWe4xmiWXhyyCYvTxKOOBiPvbSP6CM sY9l4uS0Nlu+EB4K3rjcDG9lOXhlSNwlbUNvspH/gMxlhZgS3VwUk+uxd07n S5tOsYKHebWkgnvzfieH3zqhaD6xzUR+hSiizoA17ejRDZ+Jbbl/FR74mCaM fsIxetu8O0Z42rKTGMvOnCOkgRXicBXdJTiFR1zRdV1p22DLpW190ko+ycv9 R/LdWFdW7XRPwmTyYmJpcqP5yUvsK/zGG37qWEBPRdbUu13wWK0RGnUon+ck 32yJXR+8ZHXsen4iLXmt6tIZ1IlPy6KNE7tsnCyzPu+2vIfHL7O2bZw5nnyb dRbjclJPl8W/d2v90j+V/4scJgy1ESOZrX35bG3rbO2S2Rp2BlWAr7m5pFfq +ip4YlYI2fFpDoPqla8OXo227Xon3exbvLFGWM8EYT2jxDaaIKynbPdCwth5 owskW4C1eb4wFJ0sx0j2Z3ippIk5uLeJqbuJCR8bdxXxeHW8C36erJEVwlR0 xwne92h+ryZWBi8sKRda84/3Uj5kjMyN39ppySGTBEkdIk8sEdx2pDryXGg2 nNZ4xJBgHH15icvkyMAp0Aojftxfq93PHKNYIozCp3ObbDG35DJhFFZP2PK7 8DjjxmNQAQlWCn2IWISThFHsJ6IyTTTmbP+waaHNPWMel/S6H/Ou/pu93t3c mPciUeuniWDMkyV2aQBofTV1dQqiPWmTCysVMHKbXV9mXk0R5e6q2yRhmCLC MNNfGAptXiwP7EeIVC4QnXoXmWGWarXYX6emWAsefmOE6dR6SafCdBkmOrW8 PQg8d1LThREoR/AwMCZc+yCZc7bBlm1sYuRoqc/4FYRvnmi5s2QiZwlLWxiA EHXvyONifr2UX9YgdkJ7wMYSn1AfmWUzJRqAq2iSgQWfLNG9IAMTRAamBsvA Tlht5UrL5cF8Pt6gQPDmiGY672YVDUGlZ5aQPkc0E0PF3W5yoJ2CAOpg9jD1 5oANCj5Xe8SNpwazLZiH20pX3Pa1JBNs9+3kAObju7FSHs+PxhsUKNgMUTle mDINCrDtf7ODV5kEbs3/LRRRaRDC3CB+iXrfQEZf4ZTB9GrOZGKMyATL33eU LA3map/BlBtYDGiaqBlN/C94xKbIkjMzeMlJGwmuu/v221wMNVMn+rtC+Gyr JJkllEsfLpQEIggBrT83RgSikq9WaTDXyoMZ/6cYLZkiakc9pttZ1rsPyROL 6duoHSMXIiouBw0DGCS0wWlodUByrlHQOgH6g/ddLgDd8OBFYpgs/mP9/fo7 WYpk9oyijI4x+UmifK7l05kWGra3ZWrwQgN8SxtiVlsx3Rc0UkeTsct+qZ2a 6Bbz3Br9hPIeIgbDBNwjfWLh6m7aVx7AF+J1C+xngiicG/F7uEaiEWyDxMSA xcUPYLSNazaAeEo+CEawogh32E7aRkcsK+2F8EOFNj9A5nuIzPfw4MyG/X2G aytzZGec6JN73Pdsulgy/YTevxTeNHf+o3KZ8U6We+hFPWNkwBktfdoSxxR6 ZnTJ7D1CZq5NZq7dPz0U19koD8WPEskZJdrAJ4DaVLBabOODfYmPy2US4ixG ZZPuTaBydodfJls8AdCWxwN9eon/Sx7TUbJMP0BGmaXNjg4IWIVe/goZLJZO 0ColcvkVfrPch4/FixZI5TBZJB8iY8hOHhjhkmLM9tfIULD4dkP7YEuV78PB ch9ejBctELkhsk49TAZwiCiaYS4H1oevk6Gok6Go66urg5H6cKhPHyCuSVm1 yeJRRiyIXJvI0lBJCFz+TPbrZBxqRJBq+mpzGcYBa/SRctt/LF6vQFeaBO2v zQdud2l8uIBDf992afJ923/T9d+IbJX0v+o8wVaD9GifhhcGvUkA/GhpwJBs xs6dbJZm3LGT7Lfya6TOV4jUVBzxDZ0X2/pYueE/Hi9WWF/rBLVvcB200WqQ la/hGm61Kazhvy3XaPjOS+BKEWPt1diVtPd4n/ZuZU411glC3+gGKVNmzQ4r 99BShKagWYxw11Kf0c7wr5z0Hecrmdg97fw4GdcqQeET8XsFylojAmEIskq4 qi9vleQJ4d0KBrNUn75f+/DDpHEqBGlvLs07hK1KhK2q7bPKVdq+P3Ddy5RI nyq35RNRLvCfZvHJU4HzVKmPWGQqZCorbpFxZVb/pny7T8ZpTYuMivlb5ePh nSxXKPJ0a4EdDpIiQP+hz7VluLAOqEhKDkzW3nKjmEZPj7pLnPVvy9d8CS8V dP1t8j9NP9vSe3/C1t+Vf/6/xuHb0feC6P9Y/pK8/NWgT7P/7P8BEjQ0eg== \ \>", "ImageResolution" -> \ 144.],ExpressionUUID->"7a61dc8d-e3d5-4ebc-b814-88555c9499be"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["To do", "Section",ExpressionUUID->"b0e3fb65-3ef5-4d17-87c9-3cb5ca4a890e"], Cell["Solids with inexact coordinates", "Text",ExpressionUUID->"52255b9f-3a57-429a-9896-874eee926ea4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"todo", "=", RowBox[{"Select", "[", RowBox[{ RowBox[{"PolyhedronData", "[", "\"\\"", "]"}], ",", RowBox[{ RowBox[{"!", RowBox[{"FreeQ", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], ",", RowBox[{"_", "?", "InexactNumberQ"}]}], "]"}]}], "&"}]}], "]"}]}]], "Input", CellLabel-> "In[275]:=",ExpressionUUID->"dde4bba3-2e61-41e5-941d-2ce8803ada26"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedSphenocorona\"\>", ",", "\<\"AugmentedTruncatedDodecahedron\"\>", ",", "\<\"BigyrateDiminishedRhombicosidodecahedron\"\>", ",", "\<\"DiminishedRhombicosidodecahedron\"\>", ",", "\<\"Disphenocingulum\"\>", ",", "\<\"GyrateBidiminishedRhombicosidodecahedron\"\>", ",", "\<\"GyrateRhombicosidodecahedron\"\>", ",", "\<\"Hebesphenomegacorona\"\>", ",", "\<\"MetabiaugmentedTruncatedDodecahedron\"\>", ",", "\<\"MetabidiminishedRhombicosidodecahedron\"\>", ",", "\<\"MetabigyrateRhombicosidodecahedron\"\>", ",", "\<\"MetagyrateDiminishedRhombicosidodecahedron\"\>", ",", "\<\"ParabiaugmentedTruncatedDodecahedron\"\>", ",", "\<\"ParabidiminishedRhombicosidodecahedron\"\>", ",", "\<\"ParabigyrateRhombicosidodecahedron\"\>", ",", "\<\"ParagyrateDiminishedRhombicosidodecahedron\"\>", ",", "\<\"Sphenomegacorona\"\>", ",", "\<\"TriaugmentedTruncatedDodecahedron\"\>", ",", "\<\"TridiminishedRhombicosidodecahedron\"\>", ",", "\<\"TrigyrateRhombicosidodecahedron\"\>"}], "}"}]], "Output", CellLabel-> "Out[275]=",ExpressionUUID->"72e656ff-a5d1-4c9a-96c1-12f56c7e2a9a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Length", "[", "todo", "]"}]], "Input", CellLabel-> "In[276]:=",ExpressionUUID->"fbcc64b8-a8dd-4005-b21a-6fb2de361bbf"], Cell[BoxData["20"], "Output", CellLabel-> "Out[276]=",ExpressionUUID->"eba8c701-aad6-42e0-abcb-f2e544f2271c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"Tooltip", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], ",", "#"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"Method", "\[Rule]", RowBox[{"{", RowBox[{"\"\\"", "\[Rule]", "True"}], "}"}]}]}], "]"}], "&"}], "/@", "todo"}]], "Input", CellLabel-> "In[282]:=",ExpressionUUID->"210d4768-36ce-43f6-b9c4-794faefd0318"], Cell[BoxData[ RowBox[{"{", RowBox[{ Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[{{-0.8097582135547496, -0.7471091304426166, 0.4030724692749733}, {-0.7418882135547495, 0.04837086955738355, -0.19908753072502666`}, {-0.5055982135547497, 0.13245086955738328`, 0.7689524692749736}, {-0.22206821355474957`, 0.8401008695573836, 0.12177246927497347`}, {-0.20559821355474958`, 0.5901008695573832, -0.8463275307250266}, {-0.09214821355474942, \ -0.7060591304426166, -0.29216753072502677`}, { 0.14414178644525047`, -0.6219891304426165, 0.6758724692749736}, { 0.44414178644525054`, -0.1643391304426164, -0.9394075307250263}, { 0.46624178644525055`, 0.3236608695573836, 0.6312024692749736}, { 0.6421457864452503, 0.5920108695573832, -0.31592753072502655`}, { 0.8037757864452504, -0.35104913044261654`, -0.02517753072502644}}, Polygon3DBox[{{6, 1, 2}, {6, 2, 5, 8}, {10, 4, 9}, {9, 7, 11}, {9, 4, 3}, {9, 3, 7}, {7, 6, 11}, {11, 6, 8}, {4, 2, 3}, {2, 4, 5}, {8, 10, 11}, {8, 5, 10}, {10, 5, 4}, {11, 10, 9}, {7, 1, 6}, {7, 3, 1}, {1, 3, 2}}]], "\"AugmentedSphenocorona\"", TooltipStyle->"TextStyling"], Annotation[#, "AugmentedSphenocorona", "Tooltip"]& ], Boxed->False, ImageSize->{180., 163.0327868852459}, Method->{"ShrinkWrap" -> True}, ViewPoint->{2.7361200700262236`, 0.8414976980394417, 1.8043083402218174`}, ViewVertical->{0.15904156410459477`, 0.8870996807639221, 0.4333127476496758}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwBKQbW+SFib1JlAgAAAEEAAAADAAAAGWGVDWLPCMCoNbDY0/7Jv2Y914Wc qto/0c1SI9aqCMCh5ngF5Xyiv62UgpZbNuK/VWtHsj7DBsBY80XvVnnGP0nb Su7R5fQ/nTy9l5BjBsB2dMzOi5vjPx+o6lVcZfS/Ib0dELsoBsBqUTXebdnp vyFMUyEmQfI/bY6T9QzJBcCUs3SWb7jXvzc34iIICve/iaaLBaBOA8B2CcXk cZHuP5FcTbPBJvw/sW/8pFvYAsBb/YhfCO73P692r/vw4/a/LYxiBxq6AcAl wuPcaOj5v8HmNG41O/U/QVXTptVDAcAlSb1vGUPxv+/sx0B9z/2/U7OVJdaG /7/rR4Vq+2j9P+GNiA0tqPk/81WB8HnH/r/dYQE6yzMCQN3qWW0CRu+/A5Fq Dkv4+r+1pAs9VOUDQENgvgX9u+w/g2rlOTOv+r91xIDmTTsFQOiafp1mfba/ U6ZEccVp+r8j74Ezs54CwCNinqCA6+w/U2umKog5+r8LpoD2HrzzP0UFswZW nwJAm0gwPGmq+b/lYYZdyz7+v9dS5vNt1fq/M9cClecD+b8LXpG2YQ3/P2fi TY7bkf2/U7qoun5R9r8lGQUOYS7/v9E8JB3rsPw/QyYFJd4b9b9lYPRNHt3z v1PYRz/ODwPAoyfGFTOm9L+noTqSzUsFwDB/yBW/3KA/4wBBQRtd9L/TgcXo 0/UDwF2sEejdfe6/pRHpsvaW7L8d1Y/oAHUHQKYRA8FPwN4/FRsUraUt6r9W nr6KTezsPz2wKt4wWgZA5aXC2DQw57/LRlrYXHP8PwvTCmb98ALAxbBvtI3b 47919+YJ+7r6v1V1nrtq5AJAJTwe4Bze4L+K/9ftiXvpvy8Ol4jDZgbAy42S tJfp3L9PLVYB0JgGwNoAZhTlJN+/C65OFEPm0L+wZGN5Tae3Pzt9m4Q41wdA 1ngCBkwkyL+KYdrq2YLsv6m1H57ihAZAlgQHd15txL+LKjpOXx7xP+et/fS3 UwbAq0PYqEiKtb+wNmwT2Ce2P3d1edsNpgfA1S032AmDuj9FqrwtSQcIQMMf uy4dV+A/qnFvA8nmxj/28nGfbjXvP/cVuTHulwZAFaNaKkZu0T/78LNi7Zf9 P1dtfBJAswLA5YwAc5QX2D9VTY1/apb5v73aLA8oIgNAhXajG3YS3j/qqiTZ aDLnv3eoCDUGKQbAM7CmE4xy4T/nVym8hwYGwDrT8nf6Nt2/O6E/48uV7T/l /isVTWQFQIPLmYyIQu8/G+5JjPsn7j+lHqG+RroGQEL7GTVTSIK/c+zHqlET 7z9rWsGmELr2Pw3gaej4QANARYoHa0m/8D8dCWmzqQUBQKcs4MqVTvy/Zadh RbJx8z/VY8RdbzD8v8HxkeAw9P0/hRiP7DMY9D/9rSnb3o0AQEliKkbDN/s/ TTsF21Kn9D9VrLOdLN/wv3f9kF0rbgLAsXWjIZDX9D/Va+hfLA0EQM1BFvzV Juy/DTpE6v0c9T9jRxq61MwDwJiHv8G7orw/dWDJvhVm9T/DJ6UQ23YCwE1C NmFS9+u/oSXgoEQ1+T8D5ZoNUsUAwDEE8YhWBfA/cYP01aD0+T91TrgRCYz6 v59+RLvXRfm/fXoF/nX1/D8LQ4rICyD0Pzn8C5PSMf4/+ecjv/7h/T97u7A1 W8X8P4/W8Bvg2PS/sdcr/UAPAEC1A7wGFhH1v8GF801GRvc/lQ67XYWFAEAK Fiszjdfov/9MCWFsxPu/+9dmKatrAUC1ubgbqYr/v4xKAOvXOcs/IWupEzeQ AUDVes7Itd78v50hrt4zvei/X/bCTfL/AkC2TdR8HJbhP3lGJnVdbPc/5yRN aKBfA0A2Rc+PUpPvP7c8D8/Q3vG/l6Ts73WaA0DUAGU6TsPbv1G3Lqixx/Q/ NdN2CiT6A0DwFXfI9Y5rP+fLBpx8g/S/vZwi1kngBEDF8j4HGxHzvzMVxYRV UOU/PzhqBmwbBUDKbVeh5nztvw2+Nypduu2/pzWCe7vhBUDYCcYHzIbLP+Oy CjsG++I/38jEZUcGBkAsA4xPM3PYP7oBxzxHIdm/0S24YY8nB0Cq41nv217h v9Bt2gh5QKS/D/Eh7A== "], Polygon3DBox[{{32, 27, 20, 10, 6, 4, 8, 18, 25, 31}, {35, 31, 25}, {60, 54, 45, 37, 32, 31, 35, 42, 52, 58}, {46, 52, 42}, {37, 27, 32}, { 38, 28, 22, 17, 20, 27, 37, 45, 50, 48}, {54, 50, 45}, {17, 10, 20}, {9, 5, 1, 2, 6, 10, 17, 22, 21, 15}, {28, 21, 22}, {2, 4, 6}, { 11, 13, 14, 12, 8, 4, 2, 1, 3, 7}, {5, 3, 1}, {12, 18, 8}, {40, 46, 42, 35, 25, 18, 12, 14, 23, 33}, {13, 23, 14}, {51, 41, 34, 29, 30, 36, 43, 53, 59, 57}, {63, 57, 59}, {46, 40, 39, 44, 51, 57, 63, 64, 58, 52}, {60, 58, 64}, {44, 41, 51}, {13, 11, 16, 24, 34, 41, 44, 39, 33, 23}, {40, 33, 39}, {24, 29, 34}, {5, 9, 19, 26, 30, 29, 24, 16, 7, 3}, {11, 7, 16}, {26, 36, 30}, {28, 38, 47, 49, 43, 36, 26, 19, 15, 21}, {9, 15, 19}, {49, 53, 43}, {48, 47, 38}, {61, 55, 56, 62, 65}, {55, 61, 53, 49}, {55, 49, 47}, {56, 55, 47, 48}, {56, 48, 50}, {62, 56, 50, 54}, {62, 54, 60}, {65, 62, 60, 64}, {63, 65, 64}, {61, 65, 63, 59}, {61, 59, 53}}]], "\"AugmentedTruncatedDodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "AugmentedTruncatedDodecahedron", "Tooltip"]& ], Boxed->False, ImageSize->{180., 188.52631578947364`}, Method->{"ShrinkWrap" -> True}, ViewPoint->{-0.509902898516807, -2.593133731552707, -2.1132099953312}, ViewVertical->{ 0.6703853517035204, -0.6886450071843409, -0.2763178139415302}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwNyHk01AkcAPAfoZ5q2kIloanEkpZY2hzf8dZzJEYT636RUpJXqJ6ewkj1 KqxzEbuUfeVqlSMl+Y4uSpgjhFFuM9iYGczMzrX98fnnQz5+jnZSnSAI++9W fUeqEXOLQJ1Rp7+vOTN7CAJw6kb/s35YIW1nW21XZ8g1+vXKyhCu6Hk2xzhP YM3B96u6g1TobE2vj7zYCbNlY6yrUUuQEJG3KbpcifTr5M4w6jh+uUdEx1eJ sMSYvkXppcC9ct2j7Kkl6DV5nld5awiuJas7nhmUY2+86yylYRaYioKibTuE mKTSatbIleCOSsNaz7VScDxotMbMbBR3aYREFO+RIFFaHBLiK4D4y5v964OX QedVWHWcixjb6ssVrdgOPF2hSYC5HHU2XsqPwhUc4+bO88pG0Leopsp9Vg6i nsQR56Fl/OioLQ5LXUHlciir/e4SdoXa3aVNLeIPp9TOSNhKMC78GCnhsuHa nYXVzqRFNMtQpD+4vAihDi/v77STobviaVuicA59rY18qhhLqOdKdZFIZFB4 yIv7OGUWdTPBLy2JYJjJTEQLljxcrc/TfJI5g9z/JC+oFnJoCbYjbTcXYEfa js7hlBlkat2IpzvJgOVv4HnjnAjsp2756OyfRirZXlVNWwC2pgs9+qISbtba zutemsSFU1aefplFUGYel9WXrUZpXtzRtGtoAslnR8e/nGBiWnvui+v71Bji 5i6aidE4yvn7ZgLCRZhvkz78/rEC3dNjS26+GsVQv4xdtHEVLu0VNbz4JoAB HdW5GdtRtHVS9Dq5qTM25Fc10rXfgvfDzKLi00ycC/3mmCIlKNbHmG9Mk1hY QtrULuh5iylNO4O++U5Cq5/kckwjwbBzlG/Q8GlG1vmqa6J5Pt4kfh2y3KpG GcivTSdZ/ImhHRVFyn4F7nFoWUVYLqNIQKPpfWBC+YpHFlVXAcF9YSI7UwEm GI134xQT0tX7Xel75GA9LIqMiRdB3p66DxwrFjyZNxQLG6ZRvYVmQ68iGA1B G9p96RwIzJg74p+7CPvv6Jf6JCrBpuv5dW9pP8j7vOxpDY1wKHbEwCNXjdJg 4GF6OvwLlAY6HqFJlehV39VTLhCAjXx3cmXSVwiEvumXLDVGb1vsnWryW4im Tj1kT4+BY8CCj9yEoJxiD841LrCBL4j/KMufgHzO0LMHQgGkzz9PTbCWoSdh a85STkOyjONd49QBzt7PBFE/EYzBtSWGqrYZ+MynbKtyF+FKLi3yoUIGQW1a RIc1H1rZ9y5oJKvwbJhxXc5uHt6aVry26/7+nFWW5cxlzE4azjrQK0HNnmqS HkUAlLlD9Z6xMuDmRGWpto5i2PvfTqTWCGDN13cRIfUiaPIW5rgdX4aLrQ7W DZtEQGaOcHhbPmHi2ZvTwwI5jEgnndwil+CTZoTL4UEZPuV73LJuHoNYPvPN 5ZMrILnd28IeEENdKaeCXDcEV29Ty9d/XgHbTi633GsRSOG/+7VuFuKjjVZU SYYErlA6hiXajbCG5Na82VWM/yaOvqqplsDWwpPaFaaLGO5vEVQ2I4Rl/WN/ gaEUeEGBvE8NYpS+i8wpiBnA9f8Ep4rPSGGs6YLL2Lp5/KPtb4O+QiGOhMQV V8f9B6q8nx2eRA1CorTgR/H5JeAnzUkrLFTQS66luisn4avXcfVJfj/oN97f cCFeBcdqyh7xjg6AR+9t6aTJBJqvu1PA0iAoZEnaNqExBxvfJBy42D0JjpVR 5b+YERSXTkOtw5PjeC88O/31XQ7+D8xa1YE= "], Polygon3DBox[{{1, 3, 8, 5}, {8, 18, 17}, {18, 31, 29, 17}, {3, 10, 19, 18, 8}, {31, 42, 29}, {29, 42, 45, 35}, {19, 32, 31, 18}, {19, 26, 32}, {26, 38, 43, 32}, {32, 43, 51, 42, 31}, {38, 48, 43}, {43, 48, 54, 51}, {8, 17, 12, 5}, {5, 12, 7}, {12, 24, 16, 7}, {17, 29, 35, 24, 12}, {24, 28, 16}, {28, 41, 46, 36}, {35, 41, 28, 24}, {35, 45, 41}, {42, 51, 52, 45}, {45, 52, 53, 46, 41}, {51, 54, 52}, {52, 54, 55, 53}, {7, 16, 13, 6}, {6, 13, 9}, {13, 25, 20, 9}, {16, 28, 36, 25, 13}, {36, 37, 25}, {25, 37, 30, 20}, {46, 47, 37, 36}, {46, 53, 47}, {53, 55, 50, 47}, {47, 50, 40, 30, 37}, {55, 49, 50}, {50, 49, 39, 40}, {6, 9, 4, 2}, {2, 4, 11, 15, 23, 22, 14, 10, 3, 1}, {9, 20, 21, 11, 4}, {21, 27, 15, 11}, {20, 30, 21}, {30, 40, 27, 21}, {27, 39, 34, 23, 15}, {40, 39, 27}, {39, 49, 44, 34}, {10, 14, 26, 19}, { 23, 34, 33, 22}, {22, 33, 38, 26, 14}, {34, 44, 33}, {33, 44, 48, 38}, {1, 5, 7, 6, 2}, {44, 49, 55, 54, 48}}]], "\"BigyrateDiminishedRhombicosidodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "BigyrateDiminishedRhombicosidodecahedron", "Tooltip"]& ], Boxed->False, ImageSize->{180., 205.71428571428572`}, Method->{"ShrinkWrap" -> True}, ViewPoint->{-3.277135075746014, 0.07925588439107278, -0.8391091705520545}, ViewVertical->{-0.5523305289805485, 0.8127451767510657, -0.1854083720438386}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwN0Pk7FAgYAOAZkp6kESJHYh1LKqlQOb4hmsrzVOQ+IhLSOiIi0Vo85SpH EmJds2FRUputfLOJWeXIMW3lyM0MMeYwxjG2H95/4NXwCbH3EyMQCCY/iP+g 0DfqXBlMpCWdOOPjUdSHztH/vK3eyMBykxO9faUEWu7D/KpKqwn4Tt2YZXCt DVvaPTuVqtfRmHNez798GjvyetQZXiNwIfHRjhopEV6+uHbZa3cHXs6UczwX ykONKHvlOMU15CQcsrYNZcFe7vgVUJiGBUeS67z0Gmo4Mtyy+xbwt8k9nvRD LLxmG0DaELGKPeNiRDJlGliS5U6nPTlYeeKdG01pFR+PXwk6Ml6LTQ/mPUgX uHAn5o+oF/1CVFllfzJYX8IPc5fOHp2sAk96Z0HV6BL6JjLansYJwJ8TqUt9 MoQXEgJnUmr4GCWptdkrYBEXk4xvCGTYYNR1jxTfwMOt0aW5CduX4SHFKSbU eAj4yvmKXtJctE/PojS9GUYrWvrFWNI6mou6ogxVOShiFf+arzyJbt2vKapv lyFsVsqlhMRB33mLTJ2MRVQulWlKaxRgC1d33/GEBZTtSVaeZHGAalZXbBjP B7uW/ODbiWzsrbBuiJnrgU63Pcc1GKtwpCXDtzmajcxwglyM/gKIZSdaUBpW 0DKB9a33IxMHkxwGUpNXoZ4iCvtJfAErU+N3hNKZSO3m5p2WI9KUXcTnIh/V I3PiiRLNYQLDm1esBMJuEJ4zEsW3EmkPC8QJSkEjWFCr7Nd+dx2/G1LDB3bN gqW1AUtLaxg/NbmK69kTaCkBx3rjXdg4ltwVdD77MwZcb8255U4guzYmB3vF DYHfAe92fg4dGSfDai6mCUHN9ZXH3kw+VExEOOBNOioYf3HY5c3COTZ/+KXH OnyI3jnfVNKEL2dYFUvtAkiIvP6rbekK2prlbp+79Rwjd5WrjLa+A+M39fND fxHIqUOvzNQPPkeTVO/dVFUimS67UdPKbAhXBrds2nL8Lfhove2o0xKjhdvR 7fWSP0D/n+YX3NdaQUqtdlZqUIibB0iahEQB3OjTtDDd3QVXu+3pSzAJjTZ1 uxLeEGkVMiUVNP0BYEcKQ67OzkF91m3KUc4qmIuo3oWBA5C7Tfdwii+R1pwp H9F6Ywr71/PHj5FGwcmWjRY5IpAofM4MiJgGfeeQZROnMbCJdVZrjF+DhGem eUf2cbC/RFX+G0xBS9qm89ZHv2KEtFhRQ/A6pFJmZO/Wz0Dk4Sy+tRSB/Ivu sdjiMjqaWDh95byagYMvFTWLc0Xo56b/c20bE0zL3g3bhywAUJtd0025mLKk MrxyXwCB7y0Z+yW4wH9945RcHA+yJB97WRZwwXRAgk/bxgWfZCVe+PIIdAZp U/2HRdi/1JUzJ8YDd7sdEQamX6BJW3uj4cIy7K1pTdtaxQevar/B+9qrWO2y Kux0nkI77+IA5bJF0GB4N9u68CBSvfiLlQEPHSs2KB39LIRnL/JkWjKEyJWp 9FwIbodol0GeTfcyvG/be091fhEElLpmHqMXK3WW/ztDWgP5htgXinef4r4D Lq/c4gV4Ta8oLTvwx9fJOxmX/Gdx4mskWyJuFsYO2nyKExdBvo2WLuHOPCQ9 df99/9IIqDjefiAtLYKiqb+7w+7Noax8v3yQHhs9fXrvmxHXIa2UHphyrhFY i1WLkvZs8GG0VTicJZBj0j8XkBPHobmjbDCokInlOmOZhTuJ5FMi9cMffZho 9GwpsYZXg4rNNxXCmESyjigxQ+31v0A1j9USGtXD/9HrwwU= "], Polygon3DBox[{{32, 21, 18, 27}, {27, 18, 19}, {18, 7, 10, 19}, {21, 13, 4, 7, 18}, {7, 2, 10}, {10, 2, 5, 12}, {4, 1, 2, 7}, {4, 6, 1}, {6, 9, 3, 1}, {1, 3, 8, 5, 2}, {9, 11, 3}, {3, 11, 14, 8}, {27, 19, 29, 36}, {36, 29, 38}, {29, 24, 35, 38}, {19, 10, 12, 24, 29}, {24, 25, 35}, {35, 25, 33, 41}, {12, 16, 25, 24}, {12, 5, 16}, {5, 8, 17, 16}, {16, 17, 28, 33, 25}, {8, 14, 17}, {17, 14, 26, 28}, {36, 38, 47, 45}, {45, 47, 53}, {47, 50, 55, 53}, {38, 35, 41, 50, 47}, {50, 52, 55}, {55, 52, 49, 54}, {41, 43, 52, 50}, {41, 33, 43}, {33, 28, 37, 43}, {43, 37, 40, 49, 52}, {28, 26, 37}, {37, 26, 31, 40}, {45, 53, 48, 42}, {42, 48, 51, 44, 34, 23, 15, 13, 21, 32}, {53, 55, 54, 51, 48}, {54, 46, 44, 51}, {54, 49, 46}, {49, 40, 39, 46}, {46, 39, 30, 34, 44}, {40, 31, 39}, {39, 31, 22, 30}, {13, 15, 6, 4}, {34, 30, 20, 23}, {23, 20, 9, 6, 15}, {30, 22, 20}, {20, 22, 11, 9}, {32, 27, 36, 45, 42}, {22, 31, 26, 14, 11}}]], "\"DiminishedRhombicosidodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "DiminishedRhombicosidodecahedron", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwBkQFu/iFib1JlAgAAABAAAAADAAAA/ylb0AG98r9/mavLyMvSPzUxBa3Y +7s/8WlhaTTX6r/hNJMzIErdv99thtnHveU/re8z/+IP6r+qSkw9jDPhv2MB wW8vS9S/QuC/cKlU5b+wNEoJ7SzrP+kwo5SbpuG/F7vPJtp33b/v+jaGQoLd Pxep18T3XOk/4Pd6nhHV079yqAPFjG+SP8FXJGKuS++/UfAxeTIFvr8EU6QY ibfvv1uTngyIeM4/KBfNH9N3hT80Zc+R/9fsv2kGQjlf/ee/2mLpyNGWpj+2 8kfzFETwP/tHT2qE28A/j6evNM0LvT8J+6W5GMfVv4c+rhosw+4/a7S7/i0S 0z+sP1MZQWjpP/n8gqP25+m/6ytXukL44D+8TxoMzhTiP0dmvGWLJ+w/Qgzf VwAF5T9iJfHhRsTBv+G1Y2931Oi/JgQKYkO26T8+CIMwabPsv6UJqE+/+8G/ QUMJ/h5n7D+8sQfU62LgP5a7+Ina9qq/8spGITCM8D8KmymOqn3Pv1+GJwgc puI/ezzQeA== "], Polygon3DBox[{{14, 7, 8}, {10, 7, 14, 16}, {10, 16, 12}, {13, 14, 8}, { 16, 14, 13, 15}, {16, 15, 12}, {13, 11, 15}, {13, 8, 6}, {13, 6, 11}, {11, 6, 4}, {6, 3, 1, 4}, {8, 7, 3}, {6, 8, 3}, {3, 7, 2}, {3, 2, 1}, {4, 1, 5, 9}, {11, 4, 9}, {11, 9, 15}, {9, 12, 15}, {9, 5, 12}, {12, 5, 10}, {10, 2, 7}, {5, 2, 10}, {1, 2, 5}}]], "\"Disphenocingulum\"", TooltipStyle->"TextStyling"], Annotation[#, "Disphenocingulum", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwBwQQ++yFib1JlAgAAADIAAAADAAAAVcktQ7vZAMBNtv49FfXTv9+WHNac raG/rFgLLquo/7/iWDJOWjjjPyzCc77dFtu/QRu4mx6E/78ZEM7GeNSuP2zz BwBVRuw/Q+FnQ1N5/b/2lJ55LCDvP4G3X9x/q98/E7VpwkCg/L9SyoM2ZBDn v7aM4U+HfOy/SmFhzlor/L/lknxIjgD0v+v1UAhKqKW/InsZanWV+r8mprfa AorIPxfS3DCOdvS/jcITa1Gi+L+i/2U3or3kv7ODeXSBF/c/jELsXcfe979a AHvhbnnoP4JLqMDKh/Y/t4L6UqnS9r9rMpoyNTjyP6u5vG/u9fC/q8Ll6M6Q 9r81XY4U7VP3v8Srm/JQ3+s/7eOs759J87+mxWNf8tn7P9NG/VNVO9s/cCJH tyWi8b/h2G1/UDn1v/j1kjcQqvS/0c4+wz8t8b+NhqisrLH9v8vdkn87ZNy/ 0ulHLfr88L8ZAILaUeisP3fVHbUhfP8/+lNdKqRa7r8mQiHdSH79P7bPMF6c IuG/jPtgKH+o7L8mlIAoBDDDPyccIc5xuv6/VopiFChe679X+1GTk4b4P0Wv jx7Aa/U/QGCGu2cl579xKF28hYIAwO+YrqZvD94/qgoj+uYi5b9PUFNc9Yzx P6UDAQ3SOfu/3JhsuEeY4b96pdnnkDrpvzO/sjdH2v6/hUZXtSew07/ZaO+C 7Fz+v2cBKX3yXPG/57yBvEhk07+zgGnPTZEAQDfM3zwSd+Y/KmUt+uFgx7/v X9oGCdP8P+exXMwx1fK/tqjbZWNjxL8bLw05r7/YP+E0R79q9AFAKKlGlIqY p7/5PkgOeWMBQK5Nn5ZpktC/iGNnjSI0oL+pJdxEXsn0P91dovWKsP0/sEhD hOMpmz8rcp3gW2/fP7OZUU7P0gDAliLYbb9Pzz/BYm535MD1v6XKSH0pjfu/ 4fnHt2yU0D+PXZEnPN8BwOSbBXjvH9k/SfksGA3T1z+NI1YDyJ3cvzlrGgO6 4gDAcnDgENKC4D9Jn7LoEA0BwL6lLExPMOK/njVLjcGo4D+vK11QZmX9P8KU gvVTgPM/ygPfmGWX6T/F9XEwnBn6PyTxBtgREfS/KnPzPcVW6j9GDNe+97PL P0UVcrl6VgFAUAM7nWq67T+eMC1vAEnqPxSfMtPqOP2/uvIlbhX27T/iCRSj wgYAQNZKSMXpgdW/HOeT7lts7j9vu3Nu8Q/yP7Ie+OmqdPw/IA6B42oX8T9t OOTFGX75vyMcNqZeSPO/RXN+7qiV8j9pf7MPz3X+v6L2405faeU/zrKXBlFl 9D/00WQWjOy9vyhCxDzAWP2/D5iOnJaV9D94SRZ6Jrr8P5yVfLDgeOI/A638 yPax9j/hAvaReNH8v9f5lnLPrdK/L0wcqn0p+D/dSESxferYv9X6QeMoQfw/ 6UtKLAA7+j+5byxluy/zv/tMFuhPGfM/gws8Nx5H+z+aep9Ge2jqv1m4Tkhp ZPS/yfAyzWN3+z8p2SyYsWTxP7LUs0zHMPI/K9VbDtVwAECxh2FvnIfwvw5r +fr5Hde/CpGWwr9/AEBWnn/5RAvDP6AxIuPxEPI/75CtA4GIAUBS01azZifl v14H7c8x0uE/sBCHvA== "], Polygon3DBox[{{37, 34, 24, 26}, {26, 24, 16}, {24, 20, 10, 16}, {34, 36, 28, 20, 24}, {28, 17, 20}, {20, 17, 7, 10}, {31, 21, 17, 28}, { 31, 29, 21}, {29, 22, 13, 21}, {21, 13, 5, 7, 17}, {22, 14, 13}, {13, 14, 6, 5}, {26, 16, 12, 23}, {23, 12, 18}, {12, 4, 9, 18}, {16, 10, 2, 4, 12}, {4, 3, 9}, {9, 3, 8, 15}, {2, 1, 3, 4}, {10, 7, 2}, {7, 5, 1, 2}, {1, 6, 11, 8, 3}, {5, 6, 1}, {6, 14, 19, 11}, {23, 18, 27, 33}, {33, 27, 38}, {27, 25, 35, 38}, {18, 9, 15, 25, 27}, {45, 44, 35, 25, 15, 8, 11, 19, 30, 40}, {33, 38, 47, 42}, {42, 47, 49, 50, 48, 46, 41, 36, 34, 37}, {38, 35, 44, 49, 47}, {44, 45, 50, 49}, {45, 40, 43, 48, 50}, {40, 30, 32, 43}, {36, 41, 31, 28}, {48, 43, 39, 46}, {46, 39, 29, 31, 41}, {43, 32, 39}, {39, 32, 22, 29}, {37, 26, 23, 33, 42}, {32, 30, 19, 14, 22}}]], "\"GyrateBidiminishedRhombicosidodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "GyrateBidiminishedRhombicosidodecahedron", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwNlGs4FGgUxwdrrUYRTaViaUIS0fZE2M64VFaKpK1WurqsjEvZFdqVR6Os TdKDLZdcChWyVEjljFvppg2RSyRk3GeYMOO258P75f3ynvf8f/+f9nF/Zw9Z BoNhSUeOTsWNPXNap2X4xj0pLhd4HeDoGbDZNyUP8zUeC7qaGfwrgTo1hhYN mCB8M2r3rBffFARIGB4MfoYf8+KG0grwKZ5SdVMYgtA1tsptTXPooHVkX75A hPGj0sN2P1ag87651Da7OSwdGlTQZg9isuOQuUfwAHzO8xFwG2dQxdYyLNtK BO/lY0RMewFWftQ547t9BpX8shyrrn2F9cuCefkTL6Ds7tanI2nTeKXUqLN3 ewNIJyXf7mBPYOv8CV/D9VL8kHkkN8dICLu7ym966Y1BaLrrr7WaElzOXSZ9 NNyLvxgwxisHJlAqMMm13TuJx6Z3mxtl10L22WfK3Z+lkPSXfnbntgn8LUS7 q1xlClmrRQtjDw9hUcfunzXrxXhNcaVrhlc/Wtvx2V4rpVCU65WSZiDGB7Ze ka2hs1iY139hl34ORLdrG6SnjmP1irn7T9kS1G24xNLVEIJsgNO81aAQezbs ajP1mYbIqmI1s64R/Jy+4LK1mxAbDxbnuVTOw6i4hFkR7o3d3p6mm4XDKLyw 0UXV6CMMrDBNG0+exxNBOg8fDPXjUb5iUuz8BMjaNj9IVJ0Cm33pMf3DAhTw EpAt/YT6OTdqSkwYfLZdhXG3eQ/WSvp8XF91g4m/v4qiF4Njc9dnfcyDT1jd FO2oa/MV6uPFPPPgacxRzE/f4teJQ6K+qaqCWTS/qcY7aD2Gene56qykNiz1 iLVa4MTg5EZF7RTc6oc+g2/z1nE+oKB0jbe13Sjek7sf5vD3PJhezQrZIt+M lzsS60YvyfDjdTUvWta9xGVs53kTvwY8NCZrsWjJDN67fC6AGfMVRg5KTpzJ fYNl2dM9ypoynN7ZSFHLgm5cpWEBCY+fYPuXemVQFuNYpq7aHxGzaPootdji UQZWxB9vnHxeBglL9esimmX4LxJCHekeINg6g+6xoTr0Nd1z6os3tbmH1MBt b4Un3vsp7z1yrCszk6AaZ2xP70Jl1vFuepdvUPJ6gN4FdfQdoznBTLxpK80J shvbA2lOfFF8PGifVhMccOguUD47AKLfI/nyhxgciWEFl/4LwZ0b/qP/crjM LVz6L0iea6fRfiD8SZQ/7QdUc5QjaD+ovy1KifYJle4TQPvkJ7y1cqZ9YsKf Zg6UC7wOrHWlXPDZwVX/UC6wcKnjOsoR1k6c96AcsZ+voUo58t/b3L9HPACv vDmReMDTfT+UEg+Ybyo2Jn7g33MndxA/GHSmNZn4AV/1nhDGvRGwc7Nr2fRu Bna6XZI8UxiGsYvvoolDEO/n3SEOcfHOU85l4d5gfuq7ldaDQnBXZImIW3y8 OM2ZuIWwKoEecQ5Rq4xLiHO4GtS/nDjHJnFisufYODiV5DGYoR1Q1DJ6XnJr BjKvGl2nvkD49utR1BdwVA8bo75gdg1rL/UL1i48d4z6BZmDq/SoXyh9O5VD PYXOoXIt6inKfs9Wo55iRGRdgYWsFHrMOHcUQARzLe3iJncRtH5Zd5I8AN9k GN4mD2Amb2UOeQCL4uTLyBvgVOhZT97AGy6pcuQNKKoeCiTPgCU30IE8g0s2 uqWRZzBiqfMUeQksu0KiyUv4KradpWQvAHvLmiTyGBwQOi4ij4FHYpYVeQz9 mEwl8h6sWR13gLwH3EaWLXkPfmI3TpInOWlHz/qSJ1FntlCdPIl6cZp95FWO MHT4HXkVXt1Z0k9eBQvVhzPkYY7Kx8Yd5GEslLa95Kbkwf+Scv/B "], Polygon3DBox[{{37, 34, 46, 49}, {49, 46, 56}, {46, 48, 57, 56}, {34, 28, 36, 48, 46}, {36, 43, 48}, {48, 43, 51, 57}, {24, 32, 43, 36}, { 24, 19, 32}, {19, 21, 35, 32}, {32, 35, 47, 51, 43}, {21, 31, 35}, { 35, 31, 42, 47}, {49, 56, 58, 50}, {50, 58, 52}, {58, 60, 54, 52}, { 56, 57, 59, 60, 58}, {60, 55, 54}, {54, 55, 45, 44}, {59, 53, 55, 60}, {57, 51, 59}, {51, 47, 53, 59}, {53, 42, 39, 45, 55}, {47, 42, 53}, {42, 31, 25, 39}, {50, 52, 41, 40}, {40, 41, 29}, {41, 38, 23, 29}, {52, 54, 44, 38, 41}, {38, 26, 23}, {23, 26, 14, 12}, {44, 33, 26, 38}, {44, 45, 33}, {45, 39, 27, 33}, {33, 27, 15, 14, 26}, {39, 25, 27}, {27, 25, 13, 15}, {40, 29, 20, 30}, {30, 20, 18}, {20, 10, 8, 18}, {29, 23, 12, 10, 20}, {10, 2, 8}, {8, 2, 1, 6}, {12, 4, 2, 10}, {12, 14, 4}, {14, 15, 5, 4}, {4, 5, 3, 1, 2}, {15, 13, 5}, {5, 13, 11, 3}, {30, 18, 22, 37}, {37, 22, 34}, {22, 16, 28, 34}, {18, 8, 6, 16, 22}, {16, 17, 28}, {28, 17, 24, 36}, {6, 7, 17, 16}, {6, 1, 7}, {1, 3, 9, 7}, {7, 9, 19, 24, 17}, {3, 11, 9}, {9, 11, 21, 19}, { 37, 49, 50, 40, 30}, {11, 13, 25, 31, 21}}]], "\"GyrateRhombicosidodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "GyrateRhombicosidodecahedron", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwBYQGe/iFib1JlAgAAAA4AAAADAAAA2UoxKGDj67+JZQDRCP3BP8w1/1r1 gYS/VetwjVt957/KdY4exwXrv3praR/lSb2/PVNgjigt5b/T86tcwQrbvzHz sgI8Quk/sf+twA1V47/nO8WxMC3Ov5/G7EoGtey/arln+bb03b9WWCh6jd7h Pwl7VY1Puuk/JBq3cCUtx79Wgenwz3DrP/pvQ8XMJbu/+CSsWkgYtj/9MXAg g8zeP7c3KQ64x++/+LQSzPgpvD/mFFNab3zsv+fglNoQwuS/LLUkw2uAwz8G HbHe6obpvzIhEerpJtY/9IUT5Zx/zz8NrrqOZJS4v/DmSyGg1vA/eq8zL+t/ 3z/GTXNBMdPoP3nwIjFrH+Q/QRJeLLIs6T+2qv3xQoPnP74hGqgB3NS/89qF 5VWd6T/Xs6Z2hivGvwdS0Z3C1Oe/m7HMvDH46j+tqD0Q6aq0v+I+mGOGAdA/ Zi26Fg== "], Polygon3DBox[{{9, 8, 13, 14}, {10, 9, 14}, {2, 9, 3}, {2, 8, 9}, {14, 12, 11}, {14, 13, 12}, {3, 9, 10}, {10, 14, 11}, {4, 7, 13, 8}, {13, 7, 12}, {4, 8, 2}, {6, 7, 4, 1}, {5, 6, 1}, {12, 6, 11}, {12, 7, 6}, {1, 2, 3}, {1, 4, 2}, {11, 5, 10}, {11, 6, 5}, {5, 3, 10}, {5, 1, 3}}]], "\"Hebesphenomegacorona\"", TooltipStyle->"TextStyling"], Annotation[#, "Hebesphenomegacorona", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwNwwk81HkfAOC5aVZLCDESUerFOoZWtL+/dw05Iiq7ohyR3FqiaCLE24XY Roo3iX03UrrIke/f2exqMSJZTY7GmRhmDJNj3n0+n0c3MNozmEQgEBz+Sf4n 9XeJ6YU3cniR3x6Lxzt4EIPHKtmy+4A3yxB+rpXDtUeiqg9V9YKG10HXS8wx lD8QurNyhIrPHy7yq/tlHB3lZA6lmPWA17accc0uKu5xk7h1slKA8sLbBYF/ j6NV0RTDnE3Fa+YMnKLOLUDUrjSrygPjYO/1xw0DPyreXx7j2zYhAujie/8S 9AUtm/COVidT8LYcdxBSuUgzvbrEfn0eevvfZam7U3DVid2JDbIyNKwCXb69 SyihwrTNZI2Mvz5xJC5o2ypMZpfqulKfI5fIX/M5mWR8QD1Uh9+zhGzj0rpm znWjusRWhzBTEq7o8oErf3wcTA0Hrd+0LcFelGbqISbiinvk1ILVZyCo+5LX oZkVVJp9Y66DJwOWPc/PIKQZcVOOnU1VlcFoy0i3Y4UM5DR+fPt8WgrMcNVn fZUiyFL78j3dWQYTT33kztisgrxRAHToS9DDMh+7M0wZxI/kVu/aXgOpTvoB +S4kTD6LXT7waBWYxTcXbq8TsdZTK31bOnqQ0Dxa165iFVpZ1sl9XCKubDXq 9UCTD55N9XcZGavw0LJYkb6XhJtpbXnQGTyCFkqeHFuoF8GTe8a+tLZRxPUs p1WHkPGfgo77FLNFELfbzLJZj4TfuuL3r0lfMSjVhLYEMkRge3afu54LGR9X UHOsPbOIzjlwjROkC3A/gqP+DeUtorE6wj+H0bBN94o0CAVCaBDftwi7TMUU PJpXNOy4UGUyzRmMFcIbyr77lhpULL+kYDN/dApdeKjwdF/NKNRK34sGry2i bYcHg3O0yfifImtPR/MRKGj531Wfz0J078fbCpte0LA7LhbO7Eo+FCo+ZLO/ o2L7HHUW/bcKYS7XfzrD8AMwmu+e0JajYJyDXmzsuRR9qn3Woinuge2XyR+D 4/go9rdIs8NEGn5XEjnWXtQD6c9q541ViNjtMZEfK2cN+uFkXc9XHqjqnVdK MCDjqubjKfo5Ulhx4xhFGHbDgJJSoX3IOnJR9/7yYiMZmxD4ytM1uyGC3769 M4+CV7UnKq7ofkUf7R+dqGF0AesSZ/xndhP6fG/NXaFJHkv178tWLHuHvL/J IsPsV3Rs80meyksyHtnirZzWzEc2HxZWq768BkOrvEj+zzRcN3PolJnbR6Sv EVDCNaJg8bNlzkUei3BKpHE9z/cjWro9+F93SxkcrJilZ5YRcOencRvZ6sNI 4KuWfbqRhO2l17NS/dcRyXVZb+nUMOo9qxNrkUjEZ44H5XqYEjE9Yy1l3V+H UdfALfF+r2GIVX6vkhYqjzmnaGu8zBYg3kT4t1L2FLoWslzYf4eGB905bfCT yRiyzaSO6UVR8B/OXnw5+kkMnZKjR3qEY0jQu0mWyqHiSTri2sZZMepkJZF8 XCeRnFts1snaeZjq/273qCsF11g7EOjBm0KO6aWS8aMScMRZ++ESFcup+c+S nWAe2YdFmX/NIWAciwvXk81kkNRPjx4jiBHlzxJ9m2Qq3jQ/d1X338PQ5tQo 3LBDjMS1G15EC6m4wxXmDXLgEPp+bpJ6MUOC+Ddb9fbYvgOrAf/LDSQKXu93 5U7EAwmaedr/F0NAwhqZdqk+ZULgbky2KKcvoYjgjmcN9USMfoIpZBlLka1L j+Xq/iWUXdMawAgQwFCj6pSgi4rt/CHgQMMxKZr3dGhw8hGgx/T2l9UsCt6o phA5tWkdSTmv/tJ/LUGPPP+g5g7LYIY5a5O3gYAZxezNorwlYoXlr9iuql2g PPv6vAGDgNmnvF3rCiBiim80LZVMJlGglnvTvDYBSw9eiS0OJuFc1/Uj7vls 5LGz8Rr4EzHV089VROmlCK+LXetul0HGUIb8lXAi5m2YQwmLXEHNh659jTw8 D9etLvYaFhIx6+sJ3Q8YUqRgP5VgcWEZbWEMfAp7TMRs8o3j2f1ceGVUsDVm gYgV5OUx3tWRMZ5ujJJ70jRSXq66sai1BLZdveZzEjL2hMlqWWgSIC6han0X ZxVVN5WmablRscwSpt5k8TJ4RCdv9bT9DUUYTSQWbqZh8TqdoVnDNbDDZpou I4vAKW3EwcaBhtlMVvTtj++EXN+rISWdEvQ+rrjn7k057HH5re3rTuPQHWdd 7Rb7N0iNE1XMf5fD3MOYwd3fToL3+UhpUu0o+j9Ri1HQ "], Polygon3DBox[{{41, 45, 50, 59, 66, 70, 68, 63, 54, 47}, {42, 47, 54}, { 12, 15, 22, 34, 41, 47, 42, 35, 23, 16}, {27, 23, 35}, {34, 45, 41}, {21, 32, 44, 49, 50, 45, 34, 22, 19, 18}, {15, 19, 22}, {49, 59, 50}, {51, 60, 67, 69, 66, 59, 49, 44, 39, 46}, {32, 39, 44}, {69, 70, 66}, {57, 58, 62, 65, 68, 70, 69, 67, 64, 61}, {60, 64, 67}, {65, 63, 68}, {33, 27, 35, 42, 54, 63, 65, 62, 53, 40}, {58, 53, 62}, { 17, 24, 28, 31, 26, 20, 13, 7, 3, 10}, {4, 10, 3}, {27, 33, 29, 25, 17, 10, 4, 8, 16, 23}, {12, 16, 8}, {25, 24, 17}, {58, 57, 52, 38, 28, 24, 25, 29, 40, 53}, {33, 40, 29}, {38, 31, 28}, {61, 52, 57}, { 30, 20, 26}, {32, 21, 14, 11, 13, 20, 30, 37, 46, 39}, {51, 46, 37}, {11, 7, 13}, {18, 14, 21}, {1, 5, 9, 6, 2}, {5, 1, 7, 11}, {5, 11, 14}, {9, 5, 14, 18}, {9, 18, 19}, {6, 9, 19, 15}, {6, 15, 12}, { 2, 6, 12, 8}, {4, 2, 8}, {1, 2, 4, 3}, {1, 3, 7}, {36, 48, 56, 55, 43}, {48, 36, 31, 38}, {48, 38, 52}, {56, 48, 52, 61}, {56, 61, 64}, {55, 56, 64, 60}, {55, 60, 51}, {43, 55, 51, 37}, {30, 43, 37}, {36, 43, 30, 26}, {36, 26, 31}}]], "\"MetabiaugmentedTruncatedDodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "MetabiaugmentedTruncatedDodecahedron", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwBwQQ++yFib1JlAgAAADIAAAADAAAAbkpj6EmwAMDhdtk3nv/VvzR5eoDH Jtk/xOSu9JHn/7+Bb9SkxbDcv2a8lbi8HOO/2PpK6APi/7+bzPAiabbkP5FC i+CSAtM/vkozDAJp/r9DUHNs1V3hP7pXjQjXLua/GAUI2MTy/L9UI9Xd0pPz v6Txb5lDdns/KqIKNHwZ+7+hpZVlJW7jv1BpqqdiY/Q/TlzCTjUJ+b8QB4dZ EO/1P1eKGb56TM+/bJNAk3yu+L/tJkXKaOHvP8SVSTRq5/E/UEtbo3c+97/9 wzicsTDsv1RWicqGF/W/YhJMO62r9r90mKkC/sr3v+J1ShZOauw/sLOZdq+5 9b+uYBSEl0jMP+vjLdQ+kfs/mjyRAnjT9L+lCKKT3B7nP9Yp6j1/k/e/tGu0 hqpJ9L90abxC+n/6vzoQSlVk2+a/3vS3+a3V8b89NDEtkIT7P60nx0hseuI/ yKzSCall8L8CCm4w6CPEv0BYb9q6wf2/UJxAilbn7r9BYx7tk8/4P0OvZhGj ZfC/XAT4uSwd578kv1wIZU33P9pe7+vmVvc/ALsk+kBo5b9IDSWvdp/3vx2G SOTF6fe/SEkGKqxC5L/KIdnxDakAwDwWzOLPxeY/DOnWcahQ4b/ogHjfMn8B wIHFDSyh1NG/8ESqgJIz4b+Lb3knh8vlP33W6cVdgABA4NIyz0Mq278pHTeI bOPxP2AnpX/L7vu/IPhNHI/azr892SzONRfovwVEF/r8SQDAIGibVzdmzr+J pss1R+wAQEhZooqnh9M/oChx2A/mwr/evMLCCXzOP+MqFY6DDgHAQOfddiie wr90RyxIIhYAQGbMgbNM7OW/QTfTFrqmrT/i0qwV8Q4AwDrvpgQ88fC/UC1E joXSwz/u18JGY6H9P1thNKqa+/I/aHFrRS7t1j9Grne6YVQBwDCwnP4JAeo/ GHLfCVVV2T/OSHErHUD5P01e/8dOf/a/aDHKtTXR3D9iDReohioCwGsi2ehZ vMa/mHkjmGEL3T+rPf8EOB7jPwD93UwsTwFAlIOohZ8C6D9JC6fwhMTqv/46 RuZc9v6/rCfVdrUf6D8UGi1t80AAQGCNQ8Ib/tk/tLefVr//6j+e89k4zcbD P10EIQe1PwDA7IcEL7kR6z/8dRv/nNX+P1QysZcSseK/1Pki/0037D9/P47K 9yL1Pxz41Ykk9Pk//EL2vjns7T8EjfPs48n5v8/sYUaITPW/om2fxzHb8j/c MLXREkz7vy0h9LYBcPI/UsrAaKzf8j8NO9GU/nHvPzSOvuGNUfm/LsxRjC/N 8z/Axs7bhfhfPxjK/H8ZzP8/PhQ3fDQ99T/sAcgRDwH+v42HWPtdy9y/Eosz CTGx9z/DmyVeewP4P/jzZKAh8Oo/+lsQhf46+D/Bo89c2hfsv8Cbd+Pdnfk/ wjHLvTMT+j++yhIef071PyKSL8uQVei/vmraJf6l+j/pKAvTszfnPxPIFnDl Ifc/sntB0btw/D+41B0+j2v4v+2MQvW3z9c/O5JDrSUtAECmVT75UxfxP/oc QB+G7r4/ETVZR0ToAEB566A101bmv1A7qFOUQ+o/FQKXO4ynAUA3OXkSyr7S P9OfsAN6Mec/w7B/Dw== "], Polygon3DBox[{{45, 40, 30, 36}, {36, 30, 26}, {30, 22, 16, 26}, {40, 35, 25, 22, 30}, {22, 12, 16}, {16, 12, 4, 7}, {25, 15, 12, 22}, {25, 23, 15}, {23, 18, 9, 15}, {15, 9, 2, 4, 12}, {18, 13, 9}, {9, 13, 5, 2}, {36, 26, 24, 34}, {34, 24, 28}, {24, 14, 17, 28}, {26, 16, 7, 14, 24}, {14, 8, 17}, {17, 8, 11, 21}, {7, 3, 8, 14}, {7, 4, 3}, {4, 2, 1, 3}, {3, 1, 6, 11, 8}, {2, 5, 1}, {1, 5, 10, 6}, {34, 28, 37, 43}, {43, 37, 46}, {37, 32, 41, 46}, {28, 17, 21, 32, 37}, {39, 44, 41, 32, 21, 11, 6, 10, 19, 29}, {43, 46, 50, 48}, {48, 50, 49, 47, 42, 38, 33, 35, 40, 45}, {46, 41, 44, 49, 50}, {44, 39, 47, 49}, {39, 29, 31, 42, 47}, {29, 19, 20, 31}, {35, 33, 23, 25}, {42, 31, 27, 38}, {38, 27, 18, 23, 33}, {31, 20, 27}, {27, 20, 13, 18}, {45, 36, 34, 43, 48}, {20, 19, 10, 5, 13}}]], "\"MetabidiminishedRhombicosidodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "MetabidiminishedRhombicosidodecahedron", "Tooltip"]& ], Boxed->False, ImageSize->{180., 180.8653846153846}, Method->{"ShrinkWrap" -> True}, ViewPoint->{1.886599648940047, -0.7174997129434666, 2.7158674353777537`}, ViewVertical->{-0.18770954608125162`, 0.2765337859138613, 0.9424936029268939}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwVlHk4FGgcx2fYVCqqJ0eHbQvpoUNYHeQ3qPSQxINy32JJjiKqdeRYRrXZ orRYZ47SQ9Yks/Mb99GO5Cr3fR/PuMa41r7zx/vv+3vf7+/7+RxyvG3iIkSh UDTJESbnbL1MVoM2le06EexuYPMPVvda/dohNQBR3KKmYSEq+4+JjrTpymGQ M2ycGS7MwM9WYT1VDRT2jvD6Mu89o1hncPh5tSwH94ft3db9lMJO/FHYV6W/ EIICjMNW8iYw6vuBOI2odbS103p9coaL5m5JXW3Fw6Axmfm69fwaCpkaMkZt uaByVb/1seg0bk4z0G12W0WOtn2xuGEZXJe3uWbfyANVt6x5raQVTNQzKbvF 4oHmrPrLuvAu8Lto5BcstoyR4inwQmsJE3VGQiQah9BuW67spA4fVYOrsw2u VqFFTHnuGakVVIhm1c5E8lBRcTnS33IW5kv6siRTF+HgyLFoH08e7igo6vTp Hse88YfBPSl8sHO9efkkfwFHjvEDY9PW8IpPMNXVrhE2fAbGL7cuYNgRlTc9 59agMvWR6eJyB8LcgRwRh3l0yjiqLik2DmWLWqZhl1YxwIjuHn1pHvOV0UKu fBap1an3P+nxcVNHU37d5hl0tbvRe/BYAf68J1TUVJVCu2umwShynsKmxWgh 1pl18H+l/+in0mmQ6WTmsdXH0CpBmq52nsKOGfJrqjDpR3nKF9ZC+jCqvbxG rzHLBc6I5CHRTVR21ZuPJZQLQ6h75racvOYULDEjPGxPb8DDA/e+ZcwNICvA szJWkYcMaYZ5lO0KVDmKloQe6UfJ0hIvbs8GslhbY3SsJ+Gu+4f02pY+tJlQ u5NgSaV1bbQ07GS+h9LE4Hj7Z92ocj/zhjljA0yuS7cXOE6jkkKGxb7lduw4 fSN/TogHy85a/7EcVlGjx105x7Ade4yMlfnrK7gc75axK5qHr3fKvnA0/4bT jIRrFvQpzAyP3GogQ2G3ZVd+OR7JRht98RylpCEszZPxz95NpU1ZMlZZbUyM u1m7w3JtGWqM9EW++/HBuHs2JMIpDvxsAyNcO6lsa2nHW6V/vgNFXadEcg80 t2imkHvAPVlScA/bxcY3iMwFWZ2qS2QujD57LJhLk7gzr0XeD8W+2h/I+zEl +Irg/fBitOE++S+IFT+xIf/F+Fg1wX9BpuNBVpNaD/R71j9w9qLSTgfYe5dt IfOKqnpJnjDhLxJD8gQdjzAGyRN7TxpNkPxhd6RHM8kfdvWxnEn+6DHKtLW5 PAht+kcO2rat4F7l5rX2iEXUvWr/luwRut9pnyB7RIe0AMEeMSXLv4DsHf7l BhytNctFiQUZwd5pCkpiOVv1RsGRqYFf761DwvZer7UQLiRkxhat35kEqSJ8 q0jyrayjcNukuvBpSFAq6SHsK678nfQQ+kWCBD1kpx/udSS9habFVlPSW0jp ey/oLQRWeaeRnsP03lUgPUennYaCnsOpi+qDhAswd9j/lnCBmtuZAi5AnNtk TDgCHY2l3whHUPQk+SzhCF1KQsIId/BBY+Ar4Q6oX24LuMOKzlsdFhFLkP8q sHfIioe/yF/3pQ9M4/GnEKokzIckg7F8Fb1BpG5qVKhP46NUwowa4R0el89y CO9AH3v2kfAOqdLpnsQP8Knl73PED8ALEAolfgBD1vJz4h9gPVFnEv9g8iNX gX+gJs+bTnwFiXJm8cRXsKISKvAVKjTYDMr+9R/0xEmoeFnPYVxzVbAipxBh i7DqR48N4LhEVEyVl4F2tUEcpYuLvOxD+4kPaa5jinWn+gsxuYSbT3wI71Ll Rok/aRWmEp+JP2HpfJJQjSwHcvwWT/xQRqXNh+uKc6zrsO5CNX2grxz/B5zM Ba0= "], Polygon3DBox[{{20, 15, 26, 32}, {32, 26, 38}, {26, 25, 37, 38}, {15, 6, 14, 25, 26}, {14, 24, 25}, {25, 24, 36, 37}, {8, 18, 24, 14}, {8, 11, 18}, {11, 21, 30, 18}, {18, 30, 42, 36, 24}, {21, 33, 30}, {30, 33, 45, 42}, {32, 38, 49, 44}, {49, 55, 57}, {55, 59, 60, 57}, {38, 37, 48, 55, 49}, {59, 58, 60}, {60, 58, 54, 56}, {48, 53, 59, 55}, { 37, 36, 48}, {36, 42, 53, 48}, {53, 45, 52, 58, 59}, {42, 45, 53}, { 45, 33, 41, 52}, {49, 57, 51, 44}, {44, 51, 40}, {51, 50, 39, 40}, { 57, 60, 56, 50, 51}, {50, 43, 39}, {43, 47, 35, 31}, {56, 47, 43, 50}, {56, 54, 47}, {58, 52, 46, 54}, {54, 46, 34, 35, 47}, {52, 41, 46}, {46, 41, 29, 34}, {40, 39, 27, 28}, {28, 27, 16}, {27, 19, 9, 16}, {39, 43, 31, 19, 27}, {19, 13, 9}, {9, 13, 5, 3}, {31, 23, 13, 19}, {31, 35, 23}, {35, 34, 22, 23}, {23, 22, 12, 5, 13}, {34, 29, 22}, {22, 29, 17, 12}, {28, 16, 10, 20}, {20, 10, 15}, {10, 4, 6, 15}, {16, 9, 3, 4, 10}, {4, 2, 6}, {6, 2, 8, 14}, {3, 1, 2, 4}, {3, 5, 1}, {5, 12, 7, 1}, {1, 7, 11, 8, 2}, {12, 17, 7}, {7, 17, 21, 11}, {20, 32, 44, 40, 28}, {17, 29, 41, 33, 21}}]], "\"MetabigyrateRhombicosidodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "MetabigyrateRhombicosidodecahedron", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwN0/k71AkcwPHv5Eh2W1RKki1dUqJEzj7TUINqK0kYoclaJaTaipC2FNVu eCweOhyhRYejIuUzrnlqWc8Y9yRqHGMY54wxJ+uH13/wfq+nh7n9uoggiD0L VBYc3+rX2kcmMcyWXBlb8aoPuvwPKB8asrBqy66QQCHB2FmXza782IErlpvt onGGUSsijXfqC8HQOrBhJvPuI9y99fzLjG39EHH13M2BPwnGNeINPNMXYLbF ok471TIwqjNSA74Ss2pZ+W5e30CTOFEa6y1EfZcnkup2OcYum/Oq+X0UKY11 tjddJ4Hbu1qndZ8cD7UMDLJkM9AXGmY7M1uJ5xs29nhIpegs8F1/gvsNIreM UHSCRKDpHaZpUizFxG4ber7zKC7Lq6ZoZc7ibXJk+4szEhRQ3e5ITeXoF9RV O7KnEj2OxIS5/SPGgNcTynI7Mbz1LVT3mZ7EdTb96p/lM+jszPCkHBaD4rTX 8aiZEWD9Z2r56OUMcsumIw5y70PMGgWNHj+HAQYpat56IqxZJSjx9W3FHb1X NzcYyEHxutfCtFGIbUHUUN0xGQaOm/vRhiaxPsOxMXetEHtYV5bHf5FhPeVQ TvTSUVizf1jC6RzD4rJLc0rDeTA26w72j+1C6rG+Ps5rPpon6yl4oVyg3zBi 828rAV0fi0nMQfTOn/nNKojEMDeT2PGZteC4tb7bjdePovfxfptmxSCOiUsI z5XhU2nkAPNgPz43ORIeFj4P9hXv611F30FupL0vpISLzx+q+fW/48K2iryk 6NskRoG1jyW++Y7Wa9Yy7y+fhRGNwYrUNDE0q+a8KPflYLqusUBXNIyF5zbK 1i2Zh9CTTYEkk25kW03S6qkkxoc6jVXzQj4yZ22i+NOd2KNcnb9XV4YeEb7+ abli2A7YvKG0Bq2rf/QP5cyDQVeOHS1nAn9yj6GOLc6DD467qT8crQRpHI+d U0GQA6os7jpO1ECvPbVER43EqK8KDQkeHYJxy8ueETpd4E9Jz00YnIU7d69R teZl6Pu3umOSczdoeL3i8M0Isn1Bm7OWw3dgU3oSnKI5kPhkI68oZQCC7Z9e OFRKYtxb5ZSddbkHnuds15wkSSCUmJZJFrootesU9Bj3gudUe6/RTiGqG7jw 9ErkkKeXzv6J1g/6l4ZtklkEo7xtPNm2aASrzr4fcGkfhJRP5UO0owQ5/WiA rXsLB1tP1SldFHwwP6yaQbs4CPrvbvQWTyogIq48m5oyBqcTbFt84tvwl4/C ZIfVc+AYoMYz4o1B6rvIWK8CgnGaU+eg4voBCuJPrCxPmIDdIa6ZizfLMYPI cdhzaxIoJm611E1CcNKd0W4tksATM3KFFXcK/yKPmbSwhWD9oiHY/6MEfBim k0xdPgwV5SiUP4vA8Pi/R3ShATwESUsdrs1j6qcp5XkVMbSpUGizURLchUxt q44p1GfFNx0LloDTA9YtpzkJsOwDOj8DE7P40aTmMik4061O2fOHoCP1GS0N hDDubtEqI2QQdIa+GfcNYr6lqklCnQQvhBprXHWRw6cHgcNxJhJMrEzPrO9r wIvRV1qbbshBx6/DNTOjBZc91tM2Xvi6sKt4gv5VDp6ZMveTK3lA7/66Xpon woJY1lPUVwDrXtUfHNI0Rp3ME9irDcNenIp6m0SQ/RNKbG2reBDfYJw8vqMD OxiG/WZ9BNlpiG1ytrsKL+/PirrHHcWbYZVB1rMEeW+hZVKjshGaxLIzwRu+ gX74UHOJE4mceL36ushqAKMi105LRSn4P+iAzEA= "], Polygon3DBox[{{32, 22, 20, 30}, {30, 20, 27}, {20, 11, 17, 27}, {22, 13, 5, 11, 20}, {11, 7, 17}, {17, 7, 12, 21}, {5, 1, 7, 11}, {5, 2, 1}, {2, 4, 3, 1}, {1, 3, 8, 12, 7}, {4, 6, 3}, {3, 6, 14, 8}, {30, 27, 36, 41}, {41, 36, 45}, {36, 31, 42, 45}, {27, 17, 21, 31, 36}, { 31, 33, 42}, {42, 33, 37, 46}, {21, 23, 33, 31}, {21, 12, 23}, {12, 8, 18, 23}, {23, 18, 28, 37, 33}, {8, 14, 18}, {18, 14, 24, 28}, {41, 45, 52, 50}, {50, 52, 53}, {52, 54, 55, 53}, {45, 42, 46, 54, 52}, { 46, 49, 54}, {54, 49, 51, 55}, {37, 38, 49, 46}, {37, 28, 38}, {28, 24, 34, 38}, {38, 34, 40, 51, 49}, {24, 26, 34}, {34, 26, 29, 40}, { 50, 53, 47, 43}, {43, 47, 44, 35, 25, 15, 9, 13, 22, 32}, {53, 55, 48, 44, 47}, {48, 39, 35, 44}, {55, 51, 48}, {51, 40, 39, 48}, {39, 29, 19, 25, 35}, {40, 29, 39}, {29, 26, 16, 19}, {13, 9, 2, 5}, {25, 19, 10, 15}, {15, 10, 4, 2, 9}, {19, 16, 10}, {10, 16, 6, 4}, {32, 30, 41, 50, 43}, {16, 26, 24, 14, 6}}]], "\"MetagyrateDiminishedRhombicosidodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "MetagyrateDiminishedRhombicosidodecahedron", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwtlWlM1FcUxf/DDKPiBrKJS8MSS8WWUrcIEe4TIxbUQkzRkWKlCEFoVCzi QolFpRURFDFYpdUOKhoZCyiIQJX7LOggIBpZ6lABSUkdBGQXRsCpfdcP78v7 8JZ7zvkdh9Cd68NNJEnyebfk71a5WY6H69UJXHNN1nDp+COQ+fUtOPmkGK86 JscF/6jkG/riU8yW1wNbsthfdqALQjriqm/FK3lcmSX3S2hA/kXV7ut5XWhX YnH5VZ0pn5v7T9+D6f0gFU556T67HjKONpwtSZDzIYsgvwJNOYZEuv+tl4/C lcWeEXe+k3On+eElmzcOoPSt4fpyrwG0q65I979rwl1aDuVsCtJhtMq8dcee MQxZVVO4JF/G7SbsTQvLMEJCzPGsfKUWgpLDJj5INOLU4tb9Jvt7MEB1UjHw 3AiHni+6+HibEWPaEn0W+0ucjXhbhP/ZhUlHap3elo2j5bQ1GREnR1E9yTUi eN84OhY2xzkGj+E896mpzKEbk7539FutkvPBfxe1+jaN4ssl94PK9CUoPez4 PNZDzmxUDrpK7Sg2hiVVf6gtguhj9VccveW8eK3b3IxsA0Y66guWXpMzjr/s khU+wyL7DqiPNmCEdYBPTcE4Prcan3LizRswy61qS95iwGL70ppoCwWX1TkG ZFeU4Jb43l/7Ng+jLtu5+KGHgoUcaP9jvVcb6JqTv3lhO4yrz8VV6g7JuaTI rSrb0gVno0+/3pAwgIfLfraZ1d4NlR7jTR8EKrhxeoWmwrUfU70yGwfd5Mzc YcbB02uGcOuur6NL9X2oVUzMuZGi4NKdoAEe24MttobeF169mJ7zketCpQnn ne4qsydvccV123nqvB4sSszTa5TNsM+0qvu8nZJtz6zOzNP0oG7jiVAT83GQ ZgVbOU2W8R/u5/62V9aFpobLoVmKV3hmrfX+2BYlt5y2NLji6Uv8uHS3J1Pl QVKwtjGgUsl91f1padv16Gk9bPC+rGCPd6ZYLTAfBNjqPCu+7QU++0TzU5it nKct7JvdpjZAaIWc71vRgvM98Mwq7SAs25BVekFpyqK2rUz3MW/CPJuRxK98 x3BmYGRY704FL9rL5pgVPcXuhrsxynaJqVqtLx2Nklj2627T3sxa9K1dlDVn xIS5lQ+39G8cw+2yuy7no2pQv3tHa/I9BefG9L+Wa19jxqZtpYrCGLx/MMqq U2qB4nXrHjnHTmCdDmIfXA6LfXy/zwPpHHhI57AA6dT/58DKIXEveNK93J7u hZA94p0wRO/kEr2T10WIf0E2/Qvc6F9MWy7mABdpDjgSKObAp9PcQEdzY49p bphKc4YOKzFnzmjOeGSq0AW+vC10wTOkC7twT+gInaQjqElHNpl0h07SHSeS 7mx1vvAJVB0WPsEE8gmfNFP4CtzJV0zqEr6CzeRDSCUfMvVt4UNoIt/CHvIt f+9bCCefQyr5HJ+Sz1kt5QLcKRdMTbnAAsoR3KAccYlyhJaUO7hJuWPGRyJ3 kEI5hU2UU2DWIqd4g3IN3pRrzrjI9bv/Cw6AS7jgAKqJA6yOuAGnPxXcgGXE Dd5eIDgDo8sEZyCfOMNsiEvwGXEJOHEJwohjEEkcYxJxDJyIe1B3S3APOHEP zxIn2Sml4CRKxElUEFdZUbPgKvQSV+EccZjNJQ6DPXEYzhG3mWaG4Da4RQlu Ywpxng3/LjiP0k3BeYyhXmCN1AvA/EUvwDj1CEumHkG+VPQIOk8WvcOGNKJ3 0Ogtegf+A4ToVa8= "], Polygon3DBox[{{16, 29, 38, 46, 51, 44, 35, 24, 13, 9}, {5, 9, 13}, {6, 10, 17, 19, 16, 9, 5, 2, 1, 3}, {4, 1, 2}, {19, 29, 16}, {43, 53, 56, 50, 38, 29, 19, 17, 22, 34}, {10, 22, 17}, {50, 46, 38}, {70, 68, 64, 57, 51, 46, 50, 56, 63, 67}, {53, 63, 56}, {57, 44, 51}, {68, 70, 69, 66, 62, 55, 52, 54, 61, 65}, {65, 64, 68}, {30, 24, 35}, {8, 4, 2, 5, 13, 24, 30, 32, 28, 18}, {37, 28, 32}, {25, 33, 42, 55, 62, 58, 47, 36, 27, 20}, {14, 20, 27}, {4, 8, 15, 21, 25, 20, 14, 7, 3, 1}, {6, 3, 7}, {21, 33, 25}, {37, 49, 54, 52, 42, 33, 21, 15, 18, 28}, {8, 18, 15}, {52, 55, 42}, {61, 54, 49}, {66, 58, 62}, {53, 43, 39, 41, 47, 58, 66, 69, 67, 63}, {70, 67, 69}, {41, 36, 47}, {34, 39, 43}, {26, 31, 23, 11, 12}, {31, 26, 36, 41}, {31, 41, 39}, {23, 31, 39, 34}, {23, 34, 22}, {11, 23, 22, 10}, {11, 10, 6}, {12, 11, 6, 7}, {14, 12, 7}, {26, 12, 14, 27}, {26, 27, 36}, {45, 59, 60, 48, 40}, {59, 45, 44, 57}, {59, 57, 64}, {60, 59, 64, 65}, {60, 65, 61}, {48, 60, 61, 49}, {48, 49, 37}, {40, 48, 37, 32}, {30, 40, 32}, {45, 40, 30, 35}, {45, 35, 44}}]], "\"ParabiaugmentedTruncatedDodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "ParabiaugmentedTruncatedDodecahedron", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwtlGtQ1GUYxf8rkVPoZtZuEpiCxDpQjDmNDZY+/2BlnLgsKKZQmMIASyAJ zaprjHYjFJNxNAQCli7LLB/M0SUugnbWdposE7nuiqWQkIusOMRuurvpkvN/ +vB+eT687/uc8zsnLPu9DblzBEFY+fAEPDzCa/XlMQdkFrm+8ULbPhvGAuIP 0obLqH02aaJyULAkmUMevDNjhamnc7WzyEFVfWUdrZmCJffJs78enj9Kw0sC xg5ccWB1SFDO0zv90GUrEkdjJsn7lX9ZeNcknVq3y60ffgB7xK684RoXrWta mHPZ0YrISmfJePd9aK6kKz9qd6L3sT0FCcppqNtODt3Z5gNMH/cH51Xihdi+ W3GLPCjC1ug3nvDieLFju91og9pwuOW3AQ/F1Ydpp1T3kKxeODZy/g4pU2N0 ppK7KGvuO7fe9g/Ka7R184bHKK9ixWLtXh/9uMYwNZvohmbt16VzZny0abDb hQoHGnq/CNv4gQsd5lij7+g9km+xNxTumSG/b9bcOT4DTeTzf+U85afvplY1 377ZQ3Kf99FvlX9j94cDp2eDPLg//5IhTeVGquLUJnnVJDybDd3GLKBW82Jw eJVgKR6Mve595hZat7qzM4ecOGJ+WZtR6Cfxz+q9QaHjCPx0wmwlJy1q7zjX optFxC8VgjHiOmT5Lc2209NY2qP/5vsTfvwxUro9P/0ack0JKa11N6nOXf3S 0UOCmK7Zl+5uHwKWH+vcHy2IOx5fqmt6+za0n++fPjIxgKauFn+yy0MjZ/pv qBReSj02GrU5uR/KyYLy7kjBkuZK/OHgkimMxge+aw/uxc+hQyUrzsrE36OS 6FpkB631FFztev8MGoozjiv0F7E46zNvhlUmrlEXlu+0n0Bd/LItRSEeZJ0c WZmS6aP4OGlO9TwnLc9ReVe6h9R8Dz3H91hWqaV36Ty/a/kpWnoXC/ifpOB/ inr+J6l5LzLxXhjkvVDKOpCVdbAksg6UwrrRbtYNtaybZdsFSWdy5Ek6Uzjr TK+yL6RiXzCXfaEG9pEusY9Uxj5iHvtOy9+UfKca9l0MZE6okDkhmVzihEL/ lbii9cwVrMwVqplDamQOsYA5xA3mljYyt1Axt/QJc075zDmSmHOkcS5Iw7lA IOeC3uIc0VXOESVwjhDLuaPXOXf0f+5IwTmlHZxTsnFO6SLnmsC5RgjnmjTc A0TcA2jjHsCX3BviK9wb6OPeIAP3jGjkniEd9wzmci+JUdxL1PiI1Ev0HxNj hFg= "], Polygon3DBox[{{23, 20, 11, 13}, {13, 11, 5}, {11, 9, 3, 5}, {20, 26, 17, 9, 11}, {9, 7, 3}, {3, 7, 6, 1}, {17, 15, 7, 9}, {17, 27, 15}, { 27, 32, 18, 15}, {15, 18, 14, 6, 7}, {32, 30, 18}, {18, 30, 22, 14}, {13, 5, 4, 12}, {12, 4, 10}, {4, 2, 8, 10}, {5, 3, 1, 2, 4}, { 25, 16, 8, 2, 1, 6, 14, 22, 28, 31}, {12, 10, 19, 21}, {21, 19, 33}, {19, 24, 36, 33}, {10, 8, 16, 24, 19}, {24, 34, 36}, {36, 34, 42, 44}, {16, 25, 34, 24}, {25, 31, 40, 42, 34}, {31, 28, 38, 40}, { 21, 33, 37, 29}, {29, 37, 45, 50, 49, 43, 35, 26, 20, 23}, {33, 36, 44, 45, 37}, {44, 48, 50, 45}, {44, 42, 48}, {42, 40, 46, 48}, {48, 46, 47, 49, 50}, {40, 38, 46}, {46, 38, 39, 47}, {26, 35, 27, 17}, { 49, 47, 41, 43}, {43, 41, 32, 27, 35}, {47, 39, 41}, {41, 39, 30, 32}, {23, 13, 12, 21, 29}, {39, 38, 28, 22, 30}}]], "\"ParabidiminishedRhombicosidodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "ParabidiminishedRhombicosidodecahedron", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwNlGs0FGgYx4c6HMlSHdt2pt1tt7QSSevSSp6JpZLrLEltnK1D5Rpy3Vhp 3SuX0shlcolMq+xqp4PwzLbKxGpyia7INabcBoOZYZ8P75f3w3t5/r//75sT QWxvZQaDYUFrBa3JC6KKdRwlgd0WvZPMwTYY9TuZqOLWBrfshamaTCWBfz3f NTX/Me7JfG6w3DOAkYNvVMdfMARpQvOk3e+GkT1jfzrgrxaY+k050Sx3CTsS B7m9dtMwHjDP7wt6hCmCM/oXahVop8PWXeI9hztNX7t6eEnAQ3tmn2GxArUv qUivWAyDoxHLqT5rEosS4vtNdstRXVi2ZX/0CO5Ky/CyiZuGhcbsZh0jGb7h zLBS9nzCJyHMj5WyKeTN1DX2ly1izHzcDdERKXbvKCtcdaQdfygO9LRhz2Ee c/ej14mLwN+cfrXL+j28b8s+oiycRWaQ0VNRyxQsRdZczlGdg9GtmwL/rJzF lu2FtRycBybDYbu8U4zbysdrrSclqB+1FGGt9h826K0X6J9VwFRZrnxUKMHm DaWeRxd7oKw8dO7LGjmq+d+v4tpO40OHGLUN7D78fEhZbJSjwFFbZ87dzim0 0TIO6u2W4vSiozwTJXDw7b6fSt9OosI5Oyti5TKmHDfTtBa/gOKD+0UfFj6i w5ONQZKEOfS5tjP+Q6kUv+Vl/3tiSIzvQjafXmItY97RmPPhcYOofPWLy+dF Y2jTtxD4NIbBGl+xXM7vbMK1oSbPUmQjGGZgXujEGgTNwJdyk9UMFjv4sktX xQiu03/SNew1Cz7SV3U9WosYIjI4EZ8yiOIry3Gx0XKILTDfqbIwDcodkb3h Gwbw4ZyAIzSbwOjcFz9HVS7B7xmGEU02HThk+FjplLgfRBkqKUmfKQkOHNK5 aRzVjIfdtAMbml6hqqHjxTWxSgIhb/XWNZaNWKrZWLQ+UYZ2Z4tVD5bMgSZv lzpXVo2G5Vn97h5KgrAbVlzN+j7QnDpwtaiEj4obxx3zIpRYTyvsH2uFvAOL LsnwRCEXS0zFSV3PZuABY1f+KzUFNIY2NX8q5EL9uYEE2sfDGs0FtI9T7XtX 0zmwucbDgc4RdPdWtNA5GJz+3e8FsmrQSLk+QPeyZFUhRXQvVm9M6teybIRj bS0l9E5QiTFXo3fifMPNY/Qv8D1uHE7/glbd+Hj6F+tts78bzQGYFXyFj7gf L6SaJ9McWA1BnGc0N/COfp5HcwPL2wGeNDe09Ld3oTmDSas0luaMtnfajWjO 2KNRwaJcwM23oZNyQe7YvoeUC9zTcq2nHMGPp5dPOaL7uVsKylHQY2h2nnIH v+XZAMpdwOZa5lPuYGn7dxVxAveNt/sSJ6BgOUQRJ+A57N1AXMH3yVuCiSuo SsqJI64gXa/NjjgEydqCa8QhuGdwtIlDhOzeK8QtMNv3BBO3cE91REHcYlCt 1R3iHPhtlzSIc0h86TtKnAM4MtTHhBIwret2oV6gcqS66lc1cuDMxVRRj8A1 2SKZegSxZpX/UI/QPazSm3oHs2dyqql3WDC8UZd6B7c36ThTT8Hk7rYm6imW JbikU0+xd1LhRr2GVo+dAuo1Mvfideo1TljZ15EHILQ2OY88ADyZTS55APav 03lE3gA+c6UNeQNW+VwcI2+AtGPNa/IMDB16oEuegXGO7i/kGTy1GO5JXgL1 dIMJ8hLu+FXbj7wE0tI/LMhjYBrGZZPHcCnzkyd5DJ28f7xO3oPW3AgeeQ/X MlO9yHtwK61kBXmSFWZvl0aehHEPjTDyJFptkmWSV1mdkc6B5FUoNWQ4kVfh gGVWHXmYZVp0s4I8jGZ7vYTkYfwf+b4U6A== "], Polygon3DBox[{{25, 22, 34, 37}, {37, 34, 45}, {34, 33, 44, 45}, {22, 12, 20, 33, 34}, {20, 29, 33}, {33, 29, 42, 44}, {10, 23, 29, 20}, { 10, 11, 23}, {11, 21, 30, 23}, {23, 30, 43, 42, 29}, {21, 35, 30}, { 30, 35, 46, 43}, {37, 45, 54, 48}, {48, 54, 56}, {54, 58, 60, 56}, { 45, 44, 52, 58, 54}, {58, 59, 60}, {60, 59, 55, 57}, {52, 53, 59, 58}, {44, 42, 52}, {42, 43, 53, 52}, {53, 46, 47, 55, 59}, {43, 46, 53}, {46, 35, 36, 47}, {48, 56, 50, 40}, {50, 51, 38}, {51, 41, 32, 38}, {56, 60, 57, 51, 50}, {41, 28, 32}, {32, 28, 17, 19}, {57, 49, 41, 51}, {57, 55, 49}, {55, 47, 39, 49}, {49, 39, 27, 28, 41}, {47, 36, 39}, {39, 36, 24, 27}, {50, 38, 31, 40}, {40, 31, 26}, {31, 18, 15, 26}, {38, 32, 19, 18, 31}, {18, 8, 15}, {8, 9, 3, 2}, {19, 9, 8, 18}, {19, 17, 9}, {28, 27, 16, 17}, {17, 16, 7, 3, 9}, {27, 24, 16}, {16, 24, 13, 7}, {26, 15, 14, 25}, {25, 14, 22}, {14, 6, 12, 22}, {15, 8, 2, 6, 14}, {6, 4, 12}, {12, 4, 10, 20}, {2, 1, 4, 6}, { 2, 3, 1}, {3, 7, 5, 1}, {1, 5, 11, 10, 4}, {7, 13, 5}, {5, 13, 21, 11}, {25, 37, 48, 40, 26}, {13, 24, 36, 35, 21}}]], "\"ParabigyrateRhombicosidodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "ParabigyrateRhombicosidodecahedron", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwN0fk7lAkcAPB3zGY3NluSsNRDyLG5jUi+4yEVj7SO0LFC5CjkWlJCiaxQ yvLUttTmVlGR0HcURoMnSTmGXDFGOcZ4MWaM7YfPX/BR9Ql19pMgCMLsO+p3 hyYHnH+2oTDeyUOd/XIP3v66Muo70YePaDbhu84TjA2fBznO7DFIfljEaeb2 428nxlvoigRjjbFgspMzjoVufD2mygjkumTmxxavop/3rpfG96bhUEps14zD MLgWa8eVGaziulNvmasxr0D6jXD2Wi4PAqhH3LZ2ivD0gfC2YV02NnJVpRz9 STTwmNM/6CHCK+XRxklVfHzd3SwZxeGgcr7aLU8rIfrtaxpKsR4FQwXHvzSK SPxiTVGo+mEFXferbqcWL2N1f5n/xsJWUM5ITLxsuYwRin3+HCEJEkSOn9iC i8paUt2dLxbxSbLg+c0WPgZriWZ1SB64RqbtvT+3gDvYRKf74ArQAgaTHLe+ BgXCpKntywKScqVF8dQZwMXlkKBUEuTkAxtXqvn49x4pUX0FGx/T4w+8F6/A si3fYdqKh5d88r0pClNoaBlY0HNZjOV51zW3M+ew3SGoMo0vwA7LUqV9m0hU rQ9tYAVOowATr3ue5YL1jsJ3b76J0bDE+/yQ5BTaO4eod4kIRvQFdmzVBhaU WP/xetJzEvtM0G71FyHYMfTP1NrPgnburtxt/hx8+almb+cNAahIq/+pMkZi CXtCjvZpAj1vu48Qdb3gGxnHrJwRw0hUxLxy6BhOjj4bMlZYxWxlH6PtavNg 3jbwXldmBKvZjHr3F4/RW1ujItxYgrFpm8nTWtNBjHwROWHrS2EkxTtdEbpx MDFT6WpqdB86Kyadqq0j6LScp+m6MY1wY8mys+H0B1zqvVskkzOMBR16rJ6T BF3q41F1pYX/UP1p3H07N4IuG5MHJ+K4uLNJ8mjBfAKmmzUh8zAfEk8EyxQT a3is9MGvhNVzOOwS1Ru9RmJbcO36jP1CEJpnSdTmNcBP1t1698opDP9bpjTt 9aPwuc7NuyahGZzd+YZ+TwTQZrFE2RNAgnjL5XQteAuNsVU+1Te4oGtRndrR LwavMrf2Yv1eoNhEfTt57hNcbElpP7VXguFlY5wUYfUZaEX9cxs3SzCSb6r2 XczvQXZAoXuXeBgydJSPTksT9DLTHjKDOQTBGlwn1fAxuHOosrxZpg6TDdpL x48Q9Lp3l8JkP4yDIpPKvBK4Amdl5MzM2SQemzeXl2NxIWE+4MglughdFMPD qTrz4EsNWe4O+gaYqmtA2q/Bw+TnTtZf2Rghf2EPo2MWMpfGXtWwZjDbcIFV YiyElpbscUUBD6b1a3PZtktAdVjeouvBA/E5gdRk2DzwdKwMHrz8Aqfta+42 sFZAzyY0gZxcgMb2fXkEvxO8jQwcv9aI8UxBluiu2iIMLFZOSqavokYcrVtm rgeN3DZmt00twVTggX/GtvJAW+nRgu0jEml1KfT4EAGYmKZdyildxmhlo+Os 1hEQhfzYU04TQpZumKSrgISoZyp2YWZstO3QcnENE8HsBc1NE/c4GKp556r0 DA/skhdnbNJWgZHVrPSBygMaz3uVHjUMaQbH5WQlxEDpqwhQP9cJwqXQdcYV PAj5qG9R6COGna3V3UKPLmx4VrHw4HcSqxJue0V+/4xpZ5KtF3nYFTTIVnvF wfqIAE2rKoJ+9tpN6ttrwyBr7r5bmDmJVo4t73U2U+j/bqErVu7m4mI9ltRJ tcKo2Ktq/QCF7uxEPlGOYwHtoH/+ErUF/gf5tsLu "], Polygon3DBox[{{33, 23, 17, 28}, {28, 17, 20}, {17, 8, 10, 20}, {23, 15, 6, 8, 17}, {8, 2, 10}, {10, 2, 4, 12}, {6, 1, 2, 8}, {6, 7, 1}, {7, 9, 3, 1}, {1, 3, 5, 4, 2}, {9, 11, 3}, {3, 11, 14, 5}, {28, 20, 27, 37}, {37, 27, 39}, {27, 25, 35, 39}, {20, 10, 12, 25, 27}, {12, 19, 25}, {25, 19, 31, 35}, {4, 13, 19, 12}, {4, 5, 13}, {5, 14, 21, 13}, {13, 21, 32, 31, 19}, {14, 26, 21}, {21, 26, 36, 32}, {37, 39, 47, 45}, {45, 47, 53}, {47, 49, 55, 53}, {39, 35, 41, 49, 47}, {49, 50, 55}, {55, 50, 48, 54}, {41, 42, 50, 49}, {35, 31, 41}, {31, 32, 42, 41}, {42, 36, 40, 48, 50}, {32, 36, 42}, {36, 26, 29, 40}, {45, 53, 51, 43}, {43, 51, 52, 44, 34, 24, 16, 15, 23, 33}, {53, 55, 54, 52, 51}, {54, 46, 44, 52}, {54, 48, 46}, {48, 40, 38, 46}, {46, 38, 30, 34, 44}, {40, 29, 38}, {38, 29, 22, 30}, {15, 16, 7, 6}, {34, 30, 18, 24}, {24, 18, 9, 7, 16}, {30, 22, 18}, {18, 22, 11, 9}, {33, 28, 37, 45, 43}, {22, 29, 26, 14, 11}}]], "\"ParagyrateDiminishedRhombicosidodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "ParagyrateDiminishedRhombicosidodecahedron", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[ GraphicsComplex3DBox[{{-0.7074138486784932, -0.2998872468011181, \ -0.15479434163251038`}, {-0.6480925041002644, -0.10870506385028235`, 0.8249657598295737}, {-0.6183599657301097, 0.6430135066064443, 0.1661535905235797}, {-0.6112067488573701, -1.0525251057014975`, 0.4965734715657737}, {-0.16469460666749797`, 0.35720483837581274`, -0.6779442397963589}, {-0.0008162182475573551, \ -0.9938056576704114, -0.29334768055301486`}, {0.16671548432489697`, 0.46752042304967356`, 0.7601715537451216}, { 0.22643953922699017`, -0.5090576456960382, 0.5512671343665216}, { 0.2796776419676163, 1.0145836877807088`, -0.06935089575168729}, { 0.5419030237634378, -0.33671357249348055`, -0.8164975787168633}, { 0.7691587812379855, 0.14803443948089132`, 0.028117236202673368`}, { 0.781521476760963, 0.6337071540306473, -0.8459358279062124}}, Polygon3DBox[{{8, 6, 10, 11}, {7, 8, 11}, {4, 8, 2}, {4, 6, 8}, {11, 12, 9}, {11, 10, 12}, {2, 8, 7}, {7, 11, 9}, {5, 10, 6, 1}, {3, 5, 1}, {12, 5, 9}, {12, 10, 5}, {1, 4, 2}, {1, 6, 4}, {9, 3, 7}, {9, 5, 3}, {3, 2, 7}, {3, 1, 2}}]], "\"Sphenomegacorona\"", TooltipStyle->"TextStyling"], Annotation[#, "Sphenomegacorona", "Tooltip"]& ], Boxed->False, ImageSize->{180., 157.2151898734177}, Method->{"ShrinkWrap" -> True}, ViewPoint->{-0.7877228058842967, -3.22007818062047, -0.6786672909325538}, ViewVertical->{0.26734383920302285`, -0.7198310178644582, 0.6406017306879572}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwN0fk/1PkfAPA5zFGxjyySUo7a2r6EbJQc7w9KbouobGoRtpDKLRQdm6+j ktqkwy1slCv3602b6yubYwrJlWvGMTPEGGP49sPzL3iquPs7eFJIJJLVd9Tv OPOknVtq6DhFyVVh4+5WJHmKzfbn90Oxg3dAxyAN72LopKXXzqKJ6Ues3rJm FLVvaMw6g4aNYmhU34lJuOXb9m9v6Ai4d74Nco6XwIOBTD2ZKj7KibjX/5jO hkpth6mHblRcIKtm23xoHvk5STwy+x8fGW+3P3HFlYo/K19OdzZaRYEPaH5d uAfFMt/oSa1SsJToskZZixBShCdtSZr1oPbspQtpPQVvXKd1s82aRJjNBKbm do1A+W0Zg6R8Mh5ed/Pd5QsCMN3aVDwJfOiwac/W1iHh4mG5wq46Dno/XRh3 wnQNCU/Yz2R0rEHZ4NhHVS8hmrc68MBQSgA+R70m7TPXYHH7/WyZ7DVwKarr 8sgaR+wTqtwv61fga/2EZGq3CM3cHJL3XhEirqZySw5lBeje8q9kfanEYzX9 8vyGaSRjaTk/piKCn6/56RxjuaNg/mjpnDqVuMIw6OnPWYaBhJjdii0iSLij dbSWvoy6/mGGWM0uwflTu8tcTnPBmaJpxFGnENX6MmuNr5eg17FHsTJMCB6W p0wdbolh707Zz9IVAljtEoPyMRqx6/fDDtZVY3DpumHgEY0FKHmQdLXfRYAc DMeTus6RsbzxepnSoHmoqSJyPKvIxDztOe/OtSWwH2W3PqmegxhF+lVFEwYx YRiavqe6HZWUZdzwfjMHzj4NQdPf32rz7CKMr/NRU3T5ngFXLvQVGNen8ylE ZFtojWzsEvpUK7nZfmwW3KMv5r29tQKLs982uJZTCM2hSnI4axYqJpej8t7z 4ZDvTzoqTAlcdFFKSeAzDc3UU/7nnfohccu2qPAjdOLMWXPjtEgOzD1WDkF4 El1+5Rx6r4CGD/z2ztxn0zgcr+aZN7xthaTnktyUAjr2NpCzv3J4FAJVpwpe 7FiDPp58Y18ECTPObzzeHD4M+dLPaXYMOvELq+Givx0PCveXDrdJDgDNs1IX Yyreu8S0MWKvoO2s+y7Jz3vhgpvW3bwmOrEcIatmsTqFoiykk9zZnWDSXcLh Tc+DBuOr1Uw7nVh1+6Mi9PkHGO20MhzVpeMtO5e8apSmUXUuty+U0Q7qLrn/ WC4wCO2PCgeMCyuhe8D5kLzeBUi0Szu23EslvrD2x+qGiJDFC7PT9zeUIQPx wmvc04dMIrCiqScDW3QEpfo/LUfqE17d2T+yQEPpytm4GgbhmdrU62nTiJZ8 Z5d0VajY8S4Is5uXwX1+XE0804s+hCz88acBA3tvOyCfbdWAOqM/BVfGfkYX y8SPcrl0IucvKfPUBg5Eb8xIN9IbQv71LpnePRScQH6n8PunNbQnPDqec3gE LUdF7R//gY5v8fdI/pzOgdcPmGfd8r8iy8zGsKGHQjDTD8vVl6MR9cKj5ZPc cWSgOZMXZ0vDe7ceJJFWeai+zfpVaiUb1QTkvv7LkkTM3u+U2tFNIi5xVnLj 4qZQ1kUGZWV3F3I2adIdoTCIvG9X0/AcF92WPsnU/jIGGo7SuJdCJ2auqkIc j4cK44NyGqSGUX6Iu672LA2L34Rq2fw0h0xfntbVQvNo8YehiHNnJIgUZsjh q+fmkHHLHc+BgxRs+id1740+AdyLNCoVXFpAHJvAjqItEkSXR9/0q24ehK3L MTmstYj+25NomUEm40gr2WvKmkIkZ92byZoUoOAOjWYn9gIYDaX1ba0nE7HU Io3jviLkt9mgG00to5k7HZ0j+1fR0/isnM8vRMg/QCBdqsxH4WcCF9NZZHzA h0OLqHwNN3/dtFkiiQsmRYkV5iEMfOTfTww/NzFScRwfyDgkRiUW1W/UTwih VnpcNbhfjC6x73bj6HKUb/sfv3wWBaco122/8G4V1a1cd5L1WIYSwuf2Rxsh pI98+KXw2jh6YlZ30ov9EYrjTcb5WkycxSBL8jXIxPrLVzRs4khEzo7uUpOj Y9B6NzhRwYxM7Noao/TkmwCe3vt7Z3u1AGXte1IbnkQmiOO2qPHzBATk6q00 Ja9ClO+wYx+DSiS0T0YIB5eQq5uBSdiFOTSS137mWckHRPMQHSQriSFmf7QF ZZqK707fsHf6TYKg4Y9j+voiNKEm0XojsxElb1KmDtZJEJl2TQ+NW/iwY+Md ZrkiH15S/o40Vl9CzOSGCsNiNmR4rN92fjMNx5ffS3jGphEKr7Ki48154MKI EFV7cNBpuUJx8hqdKNzw/lJY6xSqWiyfXWZ9RWWwT6WqbR7pbDX68VdbEVhq 7fDgB1LwI12dOAVDBuEV6bcvuW8KFBpmTzoZvwXep3Z9dwUmMciNrCnVqYVv AXW7iwsG0f8BsTKi5Q== "], Polygon3DBox[{{69, 65, 60, 57, 59, 63, 68, 72, 75, 74}, {71, 74, 75}, { 41, 44, 52, 61, 69, 74, 71, 64, 54, 46}, {55, 54, 64}, {61, 65, 69}, {55, 64, 71, 75, 72, 66, 56, 51, 48, 49}, {44, 40, 52}, {50, 57, 60}, {21, 31, 42, 53, 59, 57, 50, 38, 28, 20}, {29, 28, 38}, {53, 63, 59}, {37, 47, 56, 66, 68, 63, 53, 42, 36, 33}, {31, 36, 42}, {66, 72, 68}, {51, 56, 47}, {3, 7, 12, 16, 17, 15, 10, 5, 2, 1}, {4, 1, 2}, {29, 26, 18, 9, 3, 1, 4, 11, 20, 28}, {21, 20, 11}, {9, 7, 3}, { 44, 41, 35, 23, 12, 7, 9, 18, 30, 40}, {26, 30, 18}, {23, 16, 12}, { 46, 35, 41}, {27, 15, 17}, {47, 37, 24, 13, 10, 15, 27, 39, 48, 51}, {49, 48, 39}, {13, 5, 10}, {33, 24, 37}, {6, 14, 22, 19, 8}, { 14, 6, 5, 13}, {14, 13, 24}, {22, 14, 24, 33}, {22, 33, 36}, {19, 22, 36, 31}, {19, 31, 21}, {8, 19, 21, 11}, {4, 8, 11}, {6, 8, 4, 2}, { 6, 2, 5}, {25, 32, 43, 45, 34}, {32, 25, 16, 23}, {32, 23, 35}, {43, 32, 35, 46}, {43, 46, 54}, {45, 43, 54, 55}, {45, 55, 49}, {34, 45, 49, 39}, {27, 34, 39}, {25, 34, 27, 17}, {25, 17, 16}, {73, 67, 58, 62, 70}, {67, 73, 52, 40}, {67, 40, 30}, {67, 30, 26, 58}, {58, 26, 29}, {58, 29, 38, 62}, {62, 38, 50}, {62, 50, 60, 70}, {70, 60, 65}, {70, 65, 61, 73}, {73, 61, 52}}]], "\"TriaugmentedTruncatedDodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "TriaugmentedTruncatedDodecahedron", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwBSQS2+yFib1JlAgAAAC0AAAADAAAAKM2zVC+8AMBvYtYRikHdP7NX/u6n hd0/5x6NixKMAMDPasgR1ljiP9xR/CtiA+G/TKLlbZRcAMBdk4LDaLTgv7Cw r6d9FuU/YGWJc7sOAMDJ+qPN3V/Vv7xECZfwUu6/hEMdpcLi/786Zs8Y2izw v4jF4BXbGsu/nFy3AqjY+b9Ym9hRdkP1P3w/ZsMhY+I/VNXBwPOd+b+bZ+RY J93kP1ype8qt9/Q/HABqcG54+b8uOEfWfh/3P2R8KsAoxtq/kH8l873e+L9p uRLnDPDUv8vrk6KCIfg/WDYYPCTo9r+V9ZWGQMTtvzjHDMQWHvi/DK8i+m+t 9r9aYrHoArf5vxZ7iLbzr+i/HVKRxgOH6b/K7AhN/yr8P9avcm3SlO4/d0Om QpsR6b9GhaKnHFbxP3nhgR+GEPs/VV4g3Z9P6L+qN2E7PC3/P15FRtGb1OS/ oU6sXtam5r+tLCL0UAbgv9P4YeltFwBAdwP3yy/54b/ti1H+eZrvvxKAmqXY 8/+//xBZVTc74b+PIuc07qkAwJr9iHfRzem/16ipF5Q10b9s6a6xtiUBQM6F xzCvX8k/Fk0vRaSdzb9/sUdNrb/XP669W1yB/wBAWOEkp2a/g7/eXnlTbjP7 vy/mZAxcBfm/yuPVEBz6qD/ChLwM2mP5P9ld6WbCV/c/1VjIeMY7vD98bIN/ H0L+P4jbMMoPQPK/Lvr/AEnjxT9F8lv2A0Dvv12wQ/Lsn/8/aTx5bxpQ0T/Z GTto/v3ev96BGS9O1gHAJT+LZNy20z+ZVg3VgA0CwLHjUS4+ZtO/x9vJe9t7 4j/OahEjSIT/P3rtkSyecuY/Uc5n8tM54z+X19dwUfvrP8H3HgA/Rv4/EJVk oE484z/TA8BTKLAAQJsg0+0vp9K/3HmgjT+45D/kZq/c4s66vxKdG+wJuABA 4zMOJR7y5T9qcKGv9rf0P2gAuUKuNPu/myc1lnfj5z9G9Q/LKir5v4SLu3lO q/Y/iBkdhXrn5z/f8FDNUM7YP/a8H7w67gDAfCmRA0SQ6T/vCA9BaH4AwMg0 T4ZoeeE/NQ4XaT9S6j9GX1/usCXzv+Fp/cQfvvy/7xwC7afH6j/+xsWTk/r9 v0XgNNwC+PC/fBRbDcJN9z8QiPShbuf3P9xqkWvAVOU/0ptQT3aI9z9DQRz5 FyXqP/U+kR59cPY/+XCon/ut9z/sJGMmd8P5P7El1G/r4tS/kPHsHKxH+D/S DEZNV8DEv0SBqfZRmvk/AHJW1mGE+D9sCFVv0fDxP4X6iBJVJ/O/l2T0TFpC +T/O9fVlbRzxv9IHI8GK8vI/4+RdBhB/+T8uoj6Yd2PLPwx0D0gcz/m/oWWi g8AY+j9aEgQdE+/4v5taPCrCD9Q/rDr600U++j+lG17mT3zov8Ax929Hpfa/ DcLvFfp4+j9ydZWYChP3v2ZQXQ5VvuW/YrNGqg== "], Polygon3DBox[{{36, 38, 28, 26}, {26, 28, 18}, {28, 22, 14, 18}, {38, 40, 30, 22, 28}, {2, 8, 14, 22, 30, 32, 24, 16, 10, 4}, {26, 18, 12, 21}, {21, 12, 13}, {12, 6, 7, 13}, {18, 14, 8, 6, 12}, {6, 1, 7}, {7, 1, 3, 9}, {8, 2, 1, 6}, {2, 4, 5, 3, 1}, {4, 10, 11, 5}, {21, 13, 19, 27}, {27, 19, 29}, {19, 15, 23, 29}, {13, 7, 9, 15, 19}, {33, 31, 23, 15, 9, 3, 5, 11, 17, 25}, {27, 29, 39, 37}, {37, 39, 41, 43, 45, 44, 42, 40, 38, 36}, {29, 23, 31, 41, 39}, {31, 33, 43, 41}, {33, 25, 35, 45, 43}, {25, 17, 20, 35}, {40, 42, 32, 30}, {45, 35, 34, 44}, {44, 34, 24, 32, 42}, {35, 20, 34}, {34, 20, 16, 24}, {36, 26, 21, 27, 37}, {20, 17, 11, 10, 16}}]], "\"TridiminishedRhombicosidodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "TridiminishedRhombicosidodecahedron", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}], ",", Graphics3DBox[ TagBox[ TooltipBox[GraphicsComplex3DBox[CompressedData[" 1:eJwNlHk8FHgYxmeSQlEqu6EVSo5oKmHleIePoxpUVtS2KdaRI1PakFXrWHSJ MCpR7JK7IlE53okU5YgkK9eQXBlmnDMY+/vj/ef9633e53m+Kq5Me/dlFArF mIwYmULfjcFOEVS21tmGl3yNTjwtd4t1r+4afhQdYmQNUtgBG/NZ1JhPIFqZ c178zFeUNaxWDi+lsL+PSe+sqH0D5h/iYz2uDkGTy43FZkUKW7HfKkYzhgsj M503lZSqoDJMcKNFbBHjA3dY+q2YRL4j/Vi/FAdyLxvfbGMvYJHN/eyfOiZx /psVS7WlC4MVDnao+84jq4zfq2vVh3XPErc/X5oCqy1M4fvN82jF2awrqp0E 068Rp3Yzh5C7S8dEvE6ILnIDqmJecZCQUDOunzGLB2Q2B8aw5nDmudHJmS3t wDs3JrNTXwCuq4ozRNmz6P6DycnTj7m4vehp8sD4NMr4hjDKU2fQsd/ABbcK wTtAvUhMug88nIRp4fJTONodWlxtNwbVVF0P20wB7nWR5kt94yFXYaV/md8U nEgxypTXmwV7u2jjr5E8TIqbq9HIEsGfYenVvh8/ob6Gy9BnSx4qjIdHynQv osIaH1bujT7YppYx/GUZD81f84cqCkWYF8DblNjYgTqmnSvPu41hzT2Wbmz5 KFI1KaFvAxbBUrAqwCFrFI+OOYnLBFVAQb22t4o/hV3wuwFFom0QXy6bZDrQ hKjoeH+BSpvGBrUQM9PSQWznfB4UdRYDyz+/8EEbha6WL29p7TmAemY5pY8i RnGy1PovHm0JU7Oz/qbe5GBARMraAbEl2L36fQmrmQs1VyaNqtp7MbnyWYLG IyG63/pPtsVgBoYpWsVNae3o7CJtWXhsBnwmzibq0ObxKkd7nf+TVvQpcgtS 9BwHXsDod438JZB0Cx3eat6CsSac+nAlCt20fk6r0WsMBQ9X25ZsaUYdBdW6 CyVU9sejvJYM/XJYJ3H8jdXFBoxQbbRQr6bStxWfY5cXFMB+5xdqIRmXcIBf 8G/a+n5MVy4NlTWg0ktvdQwHZVyC6xyLJLKHxWpGGNmzG3/2SvO93QRW6xme pfuEYCv4QOvomYUdXDElTmYTSFmIf5ZSWcAvx318DPOmMXoorpPcCbwwow/k TvY704ca5E5Q9zARJ7pgoLohkujCpxUbuEQXBkbuzSJ/AK2RVwzyB8zJsU4g fwDaj7VdHUc5MLDV5GT0KIX9np1wIorfhcxLA7Ebmf2gdMJnXOg5BZP2sN49 bx6duOmmxBfIo9FziS+gdk7pMvEFGNEeUn73v0FjxKDdQYYI3tCcjU1cuQin lxsRf0HDW/mXpc5i5MmZFRF/2bRUlaQdLkPQQ7WUtXlHodvMpTek2qZAglEi k+QHsgPTzpL84H7NO14kP/RTv+1J2jc0ATOLG4wSu+dBa/BiUgqMgR+TYUjy DPbyBfUkzxjpsVBJ8gybBoN13nbxYe+2IFMtfwFarw0taYicwO4qyevqclOg d+Wpw6+SI6jor2lYESXEuKDKVNIj0JsYfkV6hNJlku6kRzAn4f0l6sI0HD9s a/RMuR9WJWu4h40IMUQ7KJ30FEaXtx4mPYUzPtfukp6Co4rokJrkHJSsaEpW iRNA2ZFLS8ZDHUg3U3EgHIAH2q93EQ6g+MInAeEA2FjozhJuQJ9XqyHhBgod dzkTbsDEgb5Zk9J5qJrOtbEwn8ES3d7g6H/qsfEB5TrhEqx4PZxOuAR69elx hEvw5DZv35rHi9CaKVG+Yc8rZPQ2GS5VT2Ktb3Pmop0IthcNKoWFDoOzsqSx JH8U3bL6nAk/6SNJd6MIP/HlSA6L8BOq4qUOnNKl0t95tc/L+/fgny1qt1OP tKHrH/GRhMN0x8s9LwiH4Y5jTWpa3TX4HyWv/s4= "], Polygon3DBox[{{19, 13, 25, 31}, {31, 25, 38}, {25, 27, 40, 38}, {13, 8, 15, 27, 25}, {15, 29, 27}, {27, 29, 42, 40}, {12, 23, 29, 15}, {12, 14, 23}, {14, 26, 32, 23}, {23, 32, 44, 42, 29}, {26, 39, 32}, {32, 39, 50, 44}, {31, 38, 49, 41}, {49, 57, 56}, {57, 60, 59, 56}, {38, 40, 51, 57, 49}, {60, 58, 59}, {59, 58, 53, 54}, {51, 55, 60, 57}, { 40, 42, 51}, {42, 44, 55, 51}, {55, 50, 52, 58, 60}, {44, 50, 55}, { 50, 39, 43, 52}, {49, 56, 47, 41}, {41, 47, 35}, {47, 46, 33, 35}, { 56, 59, 54, 46, 47}, {46, 37, 33}, {37, 45, 34, 28}, {54, 45, 37, 46}, {54, 53, 45}, {58, 52, 48, 53}, {53, 48, 36, 34, 45}, {52, 43, 48}, {48, 43, 30, 36}, {35, 33, 20, 22}, {22, 20, 11}, {20, 17, 6, 11}, {33, 37, 28, 17, 20}, {28, 16, 17}, {17, 16, 5, 6}, {34, 24, 16, 28}, {34, 36, 24}, {36, 30, 18, 24}, {24, 18, 7, 5, 16}, {30, 21, 18}, {18, 21, 10, 7}, {22, 11, 9, 19}, {19, 9, 13}, {9, 2, 8, 13}, { 11, 6, 1, 2, 9}, {2, 4, 8}, {8, 4, 12, 15}, {1, 3, 4, 2}, {6, 5, 1}, {5, 7, 3, 1}, {3, 10, 14, 12, 4}, {7, 10, 3}, {10, 21, 26, 14}, { 19, 31, 41, 35, 22}, {21, 30, 43, 39, 26}}]], "\"TrigyrateRhombicosidodecahedron\"", TooltipStyle->"TextStyling"], Annotation[#, "TrigyrateRhombicosidodecahedron", "Tooltip"]& ], Boxed->False, Method->{"ShrinkWrap" -> True}]}], "}"}]], "Output", CellLabel-> "Out[282]=",ExpressionUUID->"20fdc361-d441-44f5-941a-9e56d9406a9f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Convexity check", "Section",ExpressionUUID->"ed7d572c-21e2-4fc5-89c8-6fc0725b86b6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"bad", "=", RowBox[{"DeleteCases", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{"ConvexPolyhedronQ", "[", RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"PolyhedronData", "[", "\"\\"", "]"}]}], ",", RowBox[{"{", RowBox[{"_", ",", "True"}], "}"}]}], "]"}]}]], "Input", CellLabel-> "In[285]:=",ExpressionUUID->"1602c045-b142-4409-b23b-7a1d9eb8209d"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"AugmentedSphenocorona\"\>", ",", "False"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Disphenocingulum\"\>", ",", "False"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"GyrateRhombicosidodecahedron\"\>", ",", "False"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"MetabigyrateRhombicosidodecahedron\"\>", ",", "False"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"ParabigyrateRhombicosidodecahedron\"\>", ",", "False"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"TrigyrateRhombicosidodecahedron\"\>", ",", "False"}], "}"}]}], "}"}]], "Output", CellLabel-> "Out[285]=",ExpressionUUID->"bd312744-b404-4d72-bac6-278564794700"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Complement", "[", RowBox[{ RowBox[{"bad", "[", RowBox[{"[", RowBox[{"All", ",", "1"}], "]"}], "]"}], ",", "todo"}], "]"}]], "Input", CellLabel-> "In[287]:=",ExpressionUUID->"60c522b6-f2b2-49e0-b34d-c29079fd8bed"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output", CellLabel-> "Out[287]=",ExpressionUUID->"3ba70d71-6058-480c-ae42-3e2a49660788"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Sorted", "Section",ExpressionUUID->"a0553b76-41f7-4bfa-8678-96a5cc233b95"], Cell[CellGroupData[{ Cell["By VertexCount", "Subsection",ExpressionUUID->"883b2f3f-f229-4253-afd6-616762931e51"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TextGrid", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"#", "[", RowBox[{"[", RowBox[{"1", ",", "1"}], "]"}], "]"}], ",", RowBox[{"#", "[", RowBox[{"[", RowBox[{"All", ",", "2"}], "]"}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"SplitBy", "[", RowBox[{ RowBox[{"SortBy", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\<#\>\""}], "}"}]}], "]"}], ",", "First"}], "]"}], ",", "First"}], "]"}]}], ",", RowBox[{"Dividers", "\[Rule]", "All"}], ",", RowBox[{"Alignment", "\[Rule]", "Left"}]}], "]"}]], "Input", CellLabel-> "In[296]:=",ExpressionUUID->"63a91e85-c8f5-4c19-83e7-0535a7819002"], Cell[BoxData[ TagBox[GridBox[{ {"5", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Dipyramid\"\>", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Pyramid\"\>", ",", "4"}], "}"}]}], "}"}]}, {"6", RowBox[{"{", RowBox[{"{", RowBox[{"\<\"Pyramid\"\>", ",", "5"}], "}"}], "}"}]}, {"7", RowBox[{"{", RowBox[{"\<\"AugmentedTriangularPrism\"\>", ",", "\<\"ElongatedTriangularPyramid\"\>", ",", RowBox[{"{", RowBox[{"\<\"Dipyramid\"\>", ",", "5"}], "}"}]}], "}"}]}, {"8", RowBox[{"{", RowBox[{"\<\"BiaugmentedTriangularPrism\"\>", ",", "\<\"ElongatedTriangularDipyramid\"\>", ",", "\<\"Gyrobifastigium\"\>", ",", "\<\"SnubDisphenoid\"\>"}], "}"}]}, {"9", RowBox[{"{", RowBox[{"\<\"ElongatedSquarePyramid\"\>", ",", "\<\"GyroelongatedSquarePyramid\"\>", ",", "\<\"TriangularCupola\"\>", ",", "\<\"TriaugmentedTriangularPrism\"\>", ",", "\<\"TridiminishedIcosahedron\"\>"}], "}"}]}, {"10", RowBox[{"{", RowBox[{"\<\"AugmentedTridiminishedIcosahedron\"\>", ",", "\<\"ElongatedSquareDipyramid\"\>", ",", "\<\"GyroelongatedSquareDipyramid\"\>", ",", "\<\"MetabidiminishedIcosahedron\"\>", ",", "\<\"Sphenocorona\"\>"}], "}"}]}, {"11", RowBox[{"{", RowBox[{"\<\"AugmentedPentagonalPrism\"\>", ",", "\<\"AugmentedSphenocorona\"\>", ",", "\<\"ElongatedPentagonalPyramid\"\>", ",", "\<\"GyroelongatedPentagonalPyramid\"\>"}], "}"}]}, {"12", RowBox[{"{", RowBox[{"\<\"BiaugmentedPentagonalPrism\"\>", ",", "\<\"ElongatedPentagonalDipyramid\"\>", ",", "\<\"Sphenomegacorona\"\>", ",", "\<\"SquareCupola\"\>", ",", "\<\"TriangularOrthobicupola\"\>"}], "}"}]}, {"13", RowBox[{"{", "\<\"AugmentedHexagonalPrism\"\>", "}"}]}, {"14", RowBox[{"{", RowBox[{"\<\"Bilunabirotunda\"\>", ",", "\<\"Hebesphenomegacorona\"\>", ",", "\<\"MetabiaugmentedHexagonalPrism\"\>", ",", "\<\"ParabiaugmentedHexagonalPrism\"\>"}], "}"}]}, {"15", RowBox[{"{", RowBox[{"\<\"AugmentedTruncatedTetrahedron\"\>", ",", "\<\"ElongatedTriangularCupola\"\>", ",", "\<\"GyroelongatedTriangularCupola\"\>", ",", "\<\"PentagonalCupola\"\>", ",", "\<\"TriaugmentedHexagonalPrism\"\>"}], "}"}]}, {"16", RowBox[{"{", RowBox[{"\<\"Disphenocingulum\"\>", ",", "\<\"SnubSquareAntiprism\"\>", ",", "\<\"SquareGyrobicupola\"\>", ",", "\<\"SquareOrthobicupola\"\>"}], "}"}]}, {"18", RowBox[{"{", RowBox[{"\<\"ElongatedTriangularGyrobicupola\"\>", ",", "\<\"ElongatedTriangularOrthobicupola\"\>", ",", "\<\"GyroelongatedTriangularBicupola\"\>", ",", "\<\"TriangularHebesphenorotunda\"\>"}], "}"}]}, {"20", RowBox[{"{", RowBox[{"\<\"ElongatedSquareCupola\"\>", ",", "\<\"GyroelongatedSquareCupola\"\>", ",", "\<\"PentagonalGyrobicupola\"\>", ",", "\<\"PentagonalOrthobicupola\"\>", ",", "\<\"PentagonalRotunda\"\>"}], "}"}]}, {"21", RowBox[{"{", "\<\"AugmentedDodecahedron\"\>", "}"}]}, {"22", RowBox[{"{", RowBox[{"\<\"MetabiaugmentedDodecahedron\"\>", ",", "\<\"ParabiaugmentedDodecahedron\"\>"}], "}"}]}, {"23", RowBox[{"{", "\<\"TriaugmentedDodecahedron\"\>", "}"}]}, {"24", RowBox[{"{", RowBox[{"\<\"ElongatedSquareGyrobicupola\"\>", ",", "\<\"GyroelongatedSquareBicupola\"\>"}], "}"}]}, {"25", RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalCupola\"\>", ",", "\<\"GyroelongatedPentagonalCupola\"\>", ",", "\<\"PentagonalGyrocupolarotunda\"\>", ",", "\<\"PentagonalOrthocupolarotunda\"\>"}], "}"}]}, {"28", RowBox[{"{", "\<\"AugmentedTruncatedCube\"\>", "}"}]}, {"30", RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalGyrobicupola\"\>", ",", "\<\"ElongatedPentagonalOrthobicupola\"\>", ",", "\<\"ElongatedPentagonalRotunda\"\>", ",", "\<\"GyroelongatedPentagonalBicupola\"\>", ",", "\<\"GyroelongatedPentagonalRotunda\"\>", ",", "\<\"PentagonalOrthobirotunda\"\>"}], "}"}]}, {"32", RowBox[{"{", "\<\"BiaugmentedTruncatedCube\"\>", "}"}]}, {"35", RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalGyrocupolarotunda\"\>", ",", "\<\"ElongatedPentagonalOrthocupolarotunda\"\>", ",", "\<\"GyroelongatedPentagonalCupolarotunda\"\>"}], "}"}]}, {"40", RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalGyrobirotunda\"\>", ",", "\<\"ElongatedPentagonalOrthobirotunda\"\>", ",", "\<\"GyroelongatedPentagonalBirotunda\"\>"}], "}"}]}, {"45", RowBox[{"{", "\<\"TridiminishedRhombicosidodecahedron\"\>", "}"}]}, {"50", RowBox[{"{", RowBox[{"\<\"GyrateBidiminishedRhombicosidodecahedron\"\>", ",", "\<\"MetabidiminishedRhombicosidodecahedron\"\>", ",", "\<\"ParabidiminishedRhombicosidodecahedron\"\>"}], "}"}]}, {"55", RowBox[{"{", RowBox[{"\<\"BigyrateDiminishedRhombicosidodecahedron\"\>", ",", "\<\"DiminishedRhombicosidodecahedron\"\>", ",", "\<\"MetagyrateDiminishedRhombicosidodecahedron\"\>", ",", "\<\"ParagyrateDiminishedRhombicosidodecahedron\"\>"}], "}"}]}, {"60", RowBox[{"{", RowBox[{"\<\"GyrateRhombicosidodecahedron\"\>", ",", "\<\"MetabigyrateRhombicosidodecahedron\"\>", ",", "\<\"ParabigyrateRhombicosidodecahedron\"\>", ",", "\<\"TrigyrateRhombicosidodecahedron\"\>"}], "}"}]}, {"65", RowBox[{"{", "\<\"AugmentedTruncatedDodecahedron\"\>", "}"}]}, {"70", RowBox[{"{", RowBox[{"\<\"MetabiaugmentedTruncatedDodecahedron\"\>", ",", "\<\"ParabiaugmentedTruncatedDodecahedron\"\>"}], "}"}]}, {"75", RowBox[{"{", "\<\"TriaugmentedTruncatedDodecahedron\"\>", "}"}]} }, AutoDelete->False, GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxDividers->{"Columns" -> {{True}}, "Rows" -> {{True}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "TextGrid"]], "Output", CellLabel-> "Out[296]=",ExpressionUUID->"21695243-6ce3-4265-902b-bd25fcd0b57e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["By Volume", "Subsection",ExpressionUUID->"6ffc0d5e-8189-4f23-aa0f-5b2e1429a326"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TextGrid", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"N", "[", "#", "]"}], ",", "#", ",", "#2"}], "}"}], "&"}], "@@@", RowBox[{"SortBy", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\<#\>\""}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"N", "[", RowBox[{"First", "[", "#", "]"}], "]"}], "&"}]}], "]"}]}], ",", RowBox[{"Dividers", "\[Rule]", "All"}], ",", RowBox[{"Alignment", "\[Rule]", "Left"}]}], "]"}]], "Input", CellLabel-> "In[305]:=",ExpressionUUID->"7a60b1b5-7f2e-440b-96d0-5d79004c3dcd"], Cell[BoxData[ TagBox[GridBox[{ {"0.2357022603955158`", FractionBox["1", RowBox[{"3", " ", SqrtBox["2"]}]], RowBox[{"{", RowBox[{"\<\"Dipyramid\"\>", ",", "3"}], "}"}]}, {"0.2357022603955158`", FractionBox["1", RowBox[{"3", " ", SqrtBox["2"]}]], RowBox[{"{", RowBox[{"\<\"Pyramid\"\>", ",", "4"}], "}"}]}, {"0.30150283239582454`", RowBox[{ FractionBox["1", "24"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}], RowBox[{"{", RowBox[{"\<\"Pyramid\"\>", ",", "5"}], "}"}]}, {"0.5508638320899772`", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ SqrtBox["2"], "+", RowBox[{"3", " ", SqrtBox["3"]}]}], ")"}]}], Cell[ "ElongatedTriangularPyramid",ExpressionUUID-> "df9fe725-e85a-4230-b1e4-abf1854a6912"]}, {"0.6030056647916491`", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}], RowBox[{"{", RowBox[{"\<\"Dipyramid\"\>", ",", "5"}], "}"}]}, {"0.6687149622877351`", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"]}], "+", RowBox[{"3", " ", SqrtBox["3"]}]}], ")"}]}], Cell[ "AugmentedTriangularPrism",ExpressionUUID-> "d3611dfd-59da-4ae7-a164-f79fff397c5f"]}, {"0.6687149622877351`", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"]}], "+", RowBox[{"3", " ", SqrtBox["3"]}]}], ")"}]}], Cell[ "ElongatedTriangularDipyramid",ExpressionUUID-> "10d9cbc7-3881-4f20-be07-88c5c7154397"]}, {"0.8594936461913005`", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "4"}], "-", RowBox[{"2160", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1377", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"5832", " ", SuperscriptBox["#1", "6"]}]}], "&"}], ",", "2"}], "]"}], Cell[ "SnubDisphenoid",ExpressionUUID->"9da28425-4834-4acb-b3e8-b6450d896dba"]}, {"0.8660254037844386`", FractionBox[ SqrtBox["3"], "2"], Cell[ "Gyrobifastigium",ExpressionUUID-> "961bb79c-91a3-4a2b-be91-04d10879e7f7"]}, {"0.904417222683251`", SqrtBox[ RowBox[{ FractionBox["59", "144"], "+", FractionBox["1", SqrtBox["6"]]}]], Cell[ "BiaugmentedTriangularPrism",ExpressionUUID-> "c1fba157-74f5-44a9-8f38-8e918c2ff036"]}, {"1.1401194830787666`", RowBox[{ FractionBox["1", SqrtBox["2"]], "+", FractionBox[ SqrtBox["3"], "4"]}], Cell[ "TriaugmentedTriangularPrism",ExpressionUUID-> "99c62709-cd46-4972-9dcd-21151b636d65"]}, {"1.1785113019775793`", FractionBox["5", RowBox[{"3", " ", SqrtBox["2"]}]], Cell[ "TriangularCupola",ExpressionUUID-> "793a295a-ec61-4344-bba3-1e7821797315"]}, {"1.1927022422322324`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{ SqrtBox["2"], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"4", "+", RowBox[{"3", " ", SqrtBox["2"]}]}]]}]}], ")"}]}], Cell[ "GyroelongatedSquarePyramid",ExpressionUUID-> "0b857b56-5550-4a27-9e55-e9619ceee982"]}, {"1.2357022603955157`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"6", "+", SqrtBox["2"]}], ")"}]}], Cell[ "ElongatedSquarePyramid",ExpressionUUID-> "bd2f43c3-3b07-4fab-ad94-f05065879072"]}, {"1.2771864934374388`", RowBox[{ FractionBox["5", "8"], "+", FractionBox[ RowBox[{"7", " ", SqrtBox["5"]}], "24"]}], Cell[ "TridiminishedIcosahedron",ExpressionUUID-> "6cb087d9-27d5-4866-97cf-12334a8cb807"]}, {"1.3950376236351965`", RowBox[{ FractionBox["1", "24"], " ", RowBox[{"(", RowBox[{"15", "+", RowBox[{"2", " ", SqrtBox["2"]}], "+", RowBox[{"7", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "AugmentedTridiminishedIcosahedron",ExpressionUUID-> "cf6b6a79-b9be-4ef5-8eae-2c64b1d4fd2e"]}, {"1.4284045026277483`", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{ SqrtBox["2"], "+", SqrtBox[ RowBox[{"4", "+", RowBox[{"3", " ", SqrtBox["2"]}]}]]}], ")"}]}], Cell[ "GyroelongatedSquareDipyramid",ExpressionUUID-> "6d9185b6-e7d3-48b8-8197-c7a22114c66f"]}, {"1.4714045207910316`", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["2"]}], ")"}]}], Cell[ "ElongatedSquareDipyramid",ExpressionUUID-> "04de1f13-8e57-463f-954d-2677ef60cb6b"]}, {"1.5153516399764064`", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{"1", "+", RowBox[{"3", " ", SqrtBox[ FractionBox["3", "2"]]}], "+", SqrtBox[ RowBox[{"13", "+", RowBox[{"3", " ", SqrtBox["6"]}]}]]}]]}], Cell[ "Sphenocorona",ExpressionUUID->"77f7d371-0571-4246-9d22-a3b0d00f17dd"]}, {"1.5786893258332633`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "MetabidiminishedIcosahedron",ExpressionUUID-> "902cf1d0-ec27-473d-81fe-5715c8739acd"]}, {"1.75105`", "1.75105`", Cell[ "AugmentedSphenocorona",ExpressionUUID-> "615e22d2-f5b2-40e9-aec1-5d47c8a325d9"]}, {"1.8801921582290877`", RowBox[{ FractionBox["1", "24"], " ", RowBox[{"(", RowBox[{"25", "+", RowBox[{"9", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "GyroelongatedPentagonalPyramid",ExpressionUUID-> "3f40a253-1e68-46b6-8314-073d942ead92"]}, {"1.9428090415820634`", RowBox[{"1", "+", FractionBox[ RowBox[{"2", " ", SqrtBox["2"]}], "3"]}], Cell[ "SquareCupola",ExpressionUUID->"e569c7fc-3ee1-4de1-aeb5-2869a9314d7b"]}, {"1.94833`", "1.94833`", Cell[ "Sphenomegacorona",ExpressionUUID-> "a88ec5d8-7200-4576-9e5a-1c851dd14132"]}, {"1.9561796609844828`", RowBox[{ FractionBox["1", "12"], " ", SqrtBox[ RowBox[{"233", "+", RowBox[{"90", " ", SqrtBox["5"]}], "+", RowBox[{"12", " ", SqrtBox[ RowBox[{"50", "+", RowBox[{"20", " ", SqrtBox["5"]}]}]]}]}]]}], Cell[ "AugmentedPentagonalPrism",ExpressionUUID-> "9952346c-6b44-4a27-abc8-42fe321b451c"]}, {"2.0219802329847916`", RowBox[{ FractionBox["1", "24"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"], "+", RowBox[{"6", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]]}]}], ")"}]}], Cell[ "ElongatedPentagonalPyramid",ExpressionUUID-> "0fe8daad-c816-4c40-9807-687422baf323"]}, {"2.1918819213799985`", RowBox[{ FractionBox["1", "12"], " ", SqrtBox[ RowBox[{"257", "+", RowBox[{"90", " ", SqrtBox["5"]}], "+", RowBox[{"24", " ", SqrtBox[ RowBox[{"50", "+", RowBox[{"20", " ", SqrtBox["5"]}]}]]}]}]]}], Cell[ "BiaugmentedPentagonalPrism",ExpressionUUID-> "dc54f4db-c629-42ec-ad6e-50350efeac9a"]}, {"2.323483065380616`", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"], "+", RowBox[{"3", " ", SqrtBox[ RowBox[{"5", " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}], ")"}]}]]}]}], ")"}]}], Cell[ "ElongatedPentagonalDipyramid",ExpressionUUID-> "77548b1a-aad6-4ae8-90d7-4c7230ba3cea"]}, {"2.324045318333193`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"4", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "PentagonalCupola",ExpressionUUID-> "c25e6572-7865-4259-b8dc-ac14a5229a96"]}, {"2.3570226039551585`", FractionBox[ RowBox[{"5", " ", SqrtBox["2"]}], "3"], Cell[ "TriangularOrthobicupola",ExpressionUUID-> "8bf228f2-62ec-4ec4-9932-a2601374e952"]}, {"2.8337784717488312`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{ SqrtBox["2"], "+", RowBox[{"9", " ", SqrtBox["3"]}]}], ")"}]}], Cell[ "AugmentedHexagonalPrism",ExpressionUUID-> "8a35fcdc-e14b-4a1c-a8e5-825be85ce1de"]}, {"2.9129`", "2.9129`", Cell[ "Hebesphenomegacorona",ExpressionUUID-> "17ad8eef-0181-4427-bf21-9a713fe836fb"]}, {"3.0694807321443474`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"]}], "+", RowBox[{"9", " ", SqrtBox["3"]}]}], ")"}]}], Cell[ "MetabiaugmentedHexagonalPrism",ExpressionUUID-> "a8d6d5ac-3561-45ba-8969-c81aef3eeeee"]}, {"3.0694807321443474`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SqrtBox["2"]}], "+", RowBox[{"9", " ", SqrtBox["3"]}]}], ")"}]}], Cell[ "ParabiaugmentedHexagonalPrism",ExpressionUUID-> "339bae4f-9a42-4ca9-b9a1-5da3175463fe"]}, {"3.0937176497915084`", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{"17", "+", RowBox[{"9", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "Bilunabirotunda",ExpressionUUID-> "7f299a00-0261-49c0-8d8e-501a32136f87"]}, {"3.3051829925398635`", RowBox[{ FractionBox["1", SqrtBox["2"]], "+", FractionBox[ RowBox[{"3", " ", SqrtBox["3"]}], "2"]}], Cell[ "TriaugmentedHexagonalPrism",ExpressionUUID-> "182f5e52-83d8-4804-ada3-fb513d1673ce"]}, {"3.5160530909383145`", RowBox[{ FractionBox["1", "3"], " ", SqrtBox[ RowBox[{ FractionBox["61", "2"], "+", RowBox[{"18", " ", SqrtBox["3"]}], "+", RowBox[{"30", " ", SqrtBox[ RowBox[{"1", "+", SqrtBox["3"]}]]}]}]]}], Cell[ "GyroelongatedTriangularCupola",ExpressionUUID-> "8b0b0233-c13a-4130-8e00-dac115912628"]}, {"3.6012220097339305`", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "892448"}], "+", RowBox[{"4759488", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"11588832", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"48347280", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"85726026", " ", SuperscriptBox["#1", "8"]}], "+", RowBox[{"531441", " ", SuperscriptBox["#1", "12"]}]}], "&"}], ",", "6"}], "]"}], Cell[ "SnubSquareAntiprism",ExpressionUUID-> "a6e2e6e8-1d94-4cbd-ba58-0e44e97a30b8"]}, {"3.7765875133308953`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{ RowBox[{"5", " ", SqrtBox["2"]}], "+", RowBox[{"9", " ", SqrtBox["3"]}]}], ")"}]}], Cell[ "ElongatedTriangularCupola",ExpressionUUID-> "38274a82-5d88-4b4a-805f-eeec539cd1f3"]}, {"3.77763`", "3.77763`", Cell[ "Disphenocingulum",ExpressionUUID-> "9eff5d19-e99b-4704-b71a-1aa4c5dd06db"]}, {"3.8856180831641267`", RowBox[{"2", "+", FractionBox[ RowBox[{"4", " ", SqrtBox["2"]}], "3"]}], Cell[ "SquareGyrobicupola",ExpressionUUID-> "74a5187c-9912-4ff0-b658-6085c971a007"]}, {"3.8856180831641267`", RowBox[{"2", "+", FractionBox[ RowBox[{"4", " ", SqrtBox["2"]}], "3"]}], Cell[ "SquareOrthobicupola",ExpressionUUID-> "ea0a9755-fcfc-4db1-9f5a-2c8ee2b6a495"]}, {"3.889087296526011`", FractionBox["11", RowBox[{"2", " ", SqrtBox["2"]}]], Cell[ "AugmentedTruncatedTetrahedron",ExpressionUUID-> "812476dc-7161-40d5-8eab-74213bbb63a6"]}, {"4.648090636666386`", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"4", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "PentagonalGyrobicupola",ExpressionUUID-> "d084082b-d470-4f01-81e7-b9e4127901af"]}, {"4.648090636666386`", RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"4", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "PentagonalOrthobicupola",ExpressionUUID-> "9e17d0be-3e02-43b6-ab9b-68fc39563ed0"]}, {"4.694564392915893`", RowBox[{ FractionBox["1", "3"], " ", SqrtBox[ RowBox[{"68", "+", RowBox[{"18", " ", SqrtBox["3"]}], "+", RowBox[{"60", " ", SqrtBox[ RowBox[{"1", "+", SqrtBox["3"]}]]}]}]]}], Cell[ "GyroelongatedTriangularBicupola",ExpressionUUID-> "803e6cf1-2f14-4038-959c-ffb6f6208d2b"]}, {"4.9550988153084745`", RowBox[{ FractionBox[ RowBox[{"5", " ", SqrtBox["2"]}], "3"], "+", FractionBox[ RowBox[{"3", " ", SqrtBox["3"]}], "2"]}], Cell[ "ElongatedTriangularGyrobicupola",ExpressionUUID-> "cdca26d4-b2fb-4a67-a8bb-d18912e92c37"]}, {"4.9550988153084745`", RowBox[{ FractionBox[ RowBox[{"5", " ", SqrtBox["2"]}], "3"], "+", FractionBox[ RowBox[{"3", " ", SqrtBox["3"]}], "2"]}], Cell[ "ElongatedTriangularOrthobicupola",ExpressionUUID-> "77ca65d4-5008-48aa-95de-c4bd7859b317"]}, {"5.108745973749755`", RowBox[{ FractionBox["5", "2"], "+", FractionBox[ RowBox[{"7", " ", SqrtBox["5"]}], "6"]}], Cell[ "TriangularHebesphenorotunda",ExpressionUUID-> "3498266b-d781-437d-83d7-a234baef9d8f"]}, {"6.2107657920392`", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "3391"}], "-", RowBox[{"178632", " ", "#1"}], "+", RowBox[{"1537020", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"396360", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"1616922", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"9720", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"113724", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"52488", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"6561", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Cell[ "GyroelongatedSquareCupola",ExpressionUUID-> "d67d8bd8-7206-4bef-8887-bd8c79bc7453"]}, {"6.771236166328253`", RowBox[{"3", "+", FractionBox[ RowBox[{"8", " ", SqrtBox["2"]}], "3"]}], Cell[ "ElongatedSquareCupola",ExpressionUUID-> "bff00acb-094e-46d7-93b7-16626eff93db"]}, {"6.917762968124702`", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "PentagonalRotunda",ExpressionUUID-> "7af3a58d-6a0b-4332-b65c-315980b718b4"]}, {"7.964621793020457`", RowBox[{ FractionBox["1", "24"], " ", RowBox[{"(", RowBox[{"95", "+", RowBox[{"43", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "AugmentedDodecahedron",ExpressionUUID-> "ecd1f245-5cc2-489b-952c-ced29424da9b"]}, {"8.153574833621274`", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"4352", "-", RowBox[{"119808", " ", "#1"}], "+", RowBox[{"246528", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"1569024", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"552096", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"1384128", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"594864", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"104976", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"6561", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Cell[ "GyroelongatedSquareBicupola",ExpressionUUID-> "37335f82-5203-437f-8127-4aec038c4bec"]}, {"8.266124625416282`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"25", "+", RowBox[{"11", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "MetabiaugmentedDodecahedron",ExpressionUUID-> "1d0fa60e-3528-407e-a687-37dba8f7b58d"]}, {"8.266124625416282`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"25", "+", RowBox[{"11", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "ParabiaugmentedDodecahedron",ExpressionUUID-> "65e4c990-2962-4fe8-b5e8-3620bb0e6a7a"]}, {"8.567627457812106`", RowBox[{ FractionBox["5", "8"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"3", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "TriaugmentedDodecahedron",ExpressionUUID-> "85c91b22-3120-4b75-870c-db0847903f13"]}, {"8.714045207910317`", RowBox[{"4", "+", FractionBox[ RowBox[{"10", " ", SqrtBox["2"]}], "3"]}], Cell[ "ElongatedSquareGyrobicupola",ExpressionUUID-> "f4e907a2-5539-4619-890e-cd6e33e56e70"]}, {"9.073333193880188`", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"5340175625", "+", RowBox[{"13859430000", " ", "#1"}], "+", RowBox[{"3828402000", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"10714248000", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"4456749600", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"35769600", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"27060480", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"11197440", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"1679616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Cell[ "GyroelongatedPentagonalCupola",ExpressionUUID-> "5046870b-16f5-4ee2-bfe8-1f62e8b074aa"]}, {"9.241808286457896`", RowBox[{ FractionBox["5", "12"], " ", RowBox[{"(", RowBox[{"11", "+", RowBox[{"5", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "PentagonalGyrocupolarotunda",ExpressionUUID-> "a8b3a1e6-744f-4e8c-bbee-8a647f7eb6d6"]}, {"9.241808286457896`", RowBox[{ FractionBox["5", "12"], " ", RowBox[{"(", RowBox[{"11", "+", RowBox[{"5", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "PentagonalOrthocupolarotunda",ExpressionUUID-> "f744323a-98f7-4597-91cb-8657c8e9d9aa"]}, {"10.018254161271326`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"5", "+", RowBox[{"4", " ", SqrtBox["5"]}], "+", RowBox[{"15", " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[ "ElongatedPentagonalCupola",ExpressionUUID-> "a27eda73-e9f6-48c0-8b4b-6803ae0b8d11"]}, {"11.39737851221338`", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"35547500", "+", RowBox[{"8715000", " ", "#1"}], "-", RowBox[{"85909500", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"84591000", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"22424850", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"753300", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"313470", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"87480", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"6561", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Cell[ "GyroelongatedPentagonalBicupola",ExpressionUUID-> "c38474f3-1ddd-4302-9299-31a4e74b753c"]}, {"12.34229947960452`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"10", "+", RowBox[{"8", " ", SqrtBox["5"]}], "+", RowBox[{"15", " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[ "ElongatedPentagonalGyrobicupola",ExpressionUUID-> "161a7c6c-aff3-434e-80db-6bc2231f674b"]}, {"12.34229947960452`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"10", "+", RowBox[{"8", " ", SqrtBox["5"]}], "+", RowBox[{"15", " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[ "ElongatedPentagonalOrthobicupola",ExpressionUUID-> "59519d8a-b18d-4e57-bb24-dba523709534"]}, {"13.66705084367169`", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "424924375"}], "+", RowBox[{"3881385000", " ", "#1"}], "-", RowBox[{"8894943000", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"4128624000", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"5215460400", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"3520972800", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"603262080", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"50388480", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"1679616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Cell[ "GyroelongatedPentagonalRotunda",ExpressionUUID-> "1f2c7386-f139-405f-89e4-c325646db93e"]}, {"13.835525936249404`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}]}], ")"}]}], Cell[ "PentagonalOrthobirotunda",ExpressionUUID-> "53c6c0c3-aac4-4d9b-b321-d93052961596"]}, {"14.611971811062833`", RowBox[{ FractionBox["1", "12"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}], "+", RowBox[{"30", " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[ "ElongatedPentagonalRotunda",ExpressionUUID-> "a8ec20ea-539c-446a-a95b-b7a817091b5d"]}, {"15.542472332656507`", RowBox[{"8", "+", FractionBox[ RowBox[{"16", " ", SqrtBox["2"]}], "3"]}], Cell[ "AugmentedTruncatedCube",ExpressionUUID-> "6ab95f87-5718-4150-9389-869ab3776347"]}, {"15.991096162004869`", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "405859375"}], "-", RowBox[{"4576875000", " ", "#1"}], "-", RowBox[{"29019375000", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"21346200000", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"4745790000", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"5108832000", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"851472000", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"61585920", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"1679616", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Cell[ "GyroelongatedPentagonalCupolarotunda",ExpressionUUID-> "67dfdcf8-d447-4db0-a7cd-8505181474eb"]}, {"16.93601712939603`", RowBox[{ FractionBox["5", "12"], " ", RowBox[{"(", RowBox[{"11", "+", RowBox[{"5", " ", SqrtBox["5"]}], "+", RowBox[{"6", " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[ "ElongatedPentagonalGyrocupolarotunda",ExpressionUUID-> "ccbd3720-b234-466b-8a76-79ee2a5df16b"]}, {"16.93601712939603`", RowBox[{ FractionBox["5", "12"], " ", RowBox[{"(", RowBox[{"11", "+", RowBox[{"5", " ", SqrtBox["5"]}], "+", RowBox[{"6", " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[ "ElongatedPentagonalOrthocupolarotunda",ExpressionUUID-> "d7871508-22a2-4dae-97ce-fc2033a1085a"]}, {"17.48528137423857`", RowBox[{"9", "+", RowBox[{"6", " ", SqrtBox["2"]}]}], Cell[ "BiaugmentedTruncatedCube",ExpressionUUID-> "a1e80380-4de0-4986-8ac2-9673397aeadf"]}, {"20.58481381179634`", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "668786875"}], "+", RowBox[{"597667500", " ", "#1"}], "+", RowBox[{"965841750", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1417189500", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"601832025", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"108207900", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"9316620", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"393660", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"6561", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Cell[ "GyroelongatedPentagonalBirotunda",ExpressionUUID-> "3c84f4d7-2f35-4773-91b5-8acbe039b4ae"]}, {"21.52973477918754`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}], "+", RowBox[{"15", " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[ "ElongatedPentagonalGyrobirotunda",ExpressionUUID-> "bc05ea02-9c16-4245-9504-cb8a313dd4e5"]}, {"21.52973477918754`", RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"45", "+", RowBox[{"17", " ", SqrtBox["5"]}], "+", RowBox[{"15", " ", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[ "ElongatedPentagonalOrthobirotunda",ExpressionUUID-> "1f3905f3-bfa6-4eab-92ab-7eca7bfaa8dc"]}, {"34.6432`", "34.6432`", Cell[ "TridiminishedRhombicosidodecahedron",ExpressionUUID-> "fb12f7b5-c466-40c9-9706-50cb362a563f"]}, {"36.9672`", "36.9672`", Cell[ "GyrateBidiminishedRhombicosidodecahedron",ExpressionUUID-> "041ea118-019f-41dc-8083-ab04adad9015"]}, {"36.9672`", "36.9672`", Cell[ "MetabidiminishedRhombicosidodecahedron",ExpressionUUID-> "e73fe2cb-9367-45dc-b8b2-71fe945ac93e"]}, {"36.9672`", "36.9672`", Cell[ "ParabidiminishedRhombicosidodecahedron",ExpressionUUID-> "182e07fc-2cd3-48c1-9282-c0d4a7d9d60b"]}, {"39.2913`", "39.2913`", Cell[ "BigyrateDiminishedRhombicosidodecahedron",ExpressionUUID-> "75cba786-2ea0-415d-91d0-b19ee0d8950d"]}, {"39.2913`", "39.2913`", Cell[ "DiminishedRhombicosidodecahedron",ExpressionUUID-> "066516da-5061-4bd6-8a5b-4383ee81d95b"]}, {"39.2913`", "39.2913`", Cell[ "MetagyrateDiminishedRhombicosidodecahedron",ExpressionUUID-> "49719526-e046-4c1e-a340-527b1b61744a"]}, {"39.2913`", "39.2913`", Cell[ "ParagyrateDiminishedRhombicosidodecahedron",ExpressionUUID-> "3942d72c-e5eb-4c0b-905f-e6cddf40c1cd"]}, {"41.6153`", "41.6153`", Cell[ "GyrateRhombicosidodecahedron",ExpressionUUID-> "6c884ab9-60aa-4e47-975a-4fe62d7ba7b2"]}, {"41.6153`", "41.6153`", Cell[ "MetabigyrateRhombicosidodecahedron",ExpressionUUID-> "5420e927-3d26-4958-91cd-7506dc951f7f"]}, {"41.6153`", "41.6153`", Cell[ "ParabigyrateRhombicosidodecahedron",ExpressionUUID-> "bf6d5f6d-6e4e-4b20-a30e-53cf5c0535cf"]}, {"41.6153`", "41.6153`", Cell[ "TrigyrateRhombicosidodecahedron",ExpressionUUID-> "16aebb4a-fc2b-48ce-bb85-33229e6e133e"]}, {"87.3637`", "87.3637`", Cell[ "AugmentedTruncatedDodecahedron",ExpressionUUID-> "fdc151a8-902f-47c5-a92e-a4fa1adbfa1e"]}, {"89.6878`", "89.6878`", Cell[ "MetabiaugmentedTruncatedDodecahedron",ExpressionUUID-> "bbb6a1aa-8e87-42d9-8409-8d6a6c77276a"]}, {"89.6878`", "89.6878`", Cell[ "ParabiaugmentedTruncatedDodecahedron",ExpressionUUID-> "3d1d5770-99fc-4d08-b9db-5995f2f8b63c"]}, {"92.0118`", "92.0118`", Cell[ "TriaugmentedTruncatedDodecahedron",ExpressionUUID-> "cb7d994b-9ee2-462b-9fb6-d06b7307d722"]} }, AutoDelete->False, GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxDividers->{"Columns" -> {{True}}, "Rows" -> {{True}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "TextGrid"]], "Output", CellLabel-> "Out[305]=",ExpressionUUID->"a36b1cb9-61de-4cc6-8d0b-b8e75c4078d1"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["By Diameter", "Subsection",ExpressionUUID->"e4cb8a8f-1810-473f-a291-e2e346c53152"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"TextGrid", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"N", "[", "#", "]"}], ",", "#", ",", "#2"}], "}"}], "&"}], "@@@", RowBox[{"SortBy", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\<#\>\""}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"N", "[", RowBox[{"First", "[", "#", "]"}], "]"}], "&"}]}], "]"}]}], ",", RowBox[{"Dividers", "\[Rule]", "All"}], ",", RowBox[{"Alignment", "\[Rule]", "Left"}]}], "]"}]], "Input",ExpressionUUID->\ "31fc57d4-b971-44a2-bb97-51baaf79a87e"], Cell[BoxData[ TagBox[GridBox[{ {"1.4142135623730951`", SqrtBox["2"], RowBox[{"{", RowBox[{"\<\"Pyramid\"\>", ",", "4"}], "}"}]}, {"1.618033988749895`", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], RowBox[{"{", RowBox[{"\<\"Dipyramid\"\>", ",", "5"}], "}"}]}, {"1.618033988749895`", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["5"]}], ")"}]}], RowBox[{"{", RowBox[{"\<\"Pyramid\"\>", ",", "5"}], "}"}]}, {"1.632993161855452`", RowBox[{"2", " ", SqrtBox[ FractionBox["2", "3"]]}], RowBox[{"{", RowBox[{"\<\"Dipyramid\"\>", ",", "3"}], "}"}]}, {"1.6506801238857844`", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["6"]}], ")"}]}]], Cell[ "AugmentedTriangularPrism",ExpressionUUID-> "58b269ae-4e95-441b-a293-eac707d6398c"]}, {"1.7018560151168103`", SqrtBox[ RowBox[{"1", "+", FractionBox["1", SqrtBox["2"]], "+", SuperscriptBox["2", RowBox[{"1", "/", "4"}]]}]], Cell[ "GyroelongatedSquarePyramid",ExpressionUUID-> "37baf139-3728-49f5-8dc3-795dd144535b"]}, {"1.7199391779573154`", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "-", RowBox[{"11", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"8", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "6"]}]}], "&"}], ",", "2"}], "]"}], Cell[ "SnubDisphenoid",ExpressionUUID->"aca7279b-a8e1-4e26-ad8a-11f4286dd5f2"]}, {"1.724744871391589`", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["6"]}], ")"}]}], Cell[ "BiaugmentedTriangularPrism",ExpressionUUID-> "97d17a03-74e9-495d-b26d-8f954018d723"]}, {"1.724744871391589`", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", SqrtBox["6"]}], ")"}]}], Cell[ "TriaugmentedTriangularPrism",ExpressionUUID-> "3da6e7b4-5050-4211-9159-14403f2eddb3"]}, {"1.8477590650225735`", SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]], Cell[ "ElongatedSquarePyramid",ExpressionUUID-> "d3cd0315-2f2b-48f7-943e-d995b438e940"]}, {"1.8708286933869707`", SqrtBox[ FractionBox["7", "2"]], Cell[ "Gyrobifastigium",ExpressionUUID-> "815c1651-e4f5-47eb-b059-4a982bf4ad79"]}, {"1.902113032590307`", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], Cell[ "ElongatedPentagonalPyramid",ExpressionUUID-> "557aef3d-7546-4751-86b1-ab1d8c321cb9"]}, {"1.902113032590307`", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], Cell[ "GyroelongatedPentagonalPyramid",ExpressionUUID-> "0f57573a-8fec-484e-bf92-f5bfef4d2b2f"]}, {"1.902113032590307`", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], Cell[ "MetabidiminishedIcosahedron",ExpressionUUID-> "bc22ae7b-dc70-4f2b-8f66-57429f8aaf0d"]}, {"1.902113032590307`", SqrtBox[ RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]], Cell[ "TridiminishedIcosahedron",ExpressionUUID-> "d3183436-2dcf-4fba-8a63-21bcbf130d7b"]}, {"1.906041227742845`", SqrtBox[ RowBox[{ FractionBox["2", "3"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["6"]}], ")"}]}]], Cell[ "ElongatedTriangularPyramid",ExpressionUUID-> "8765f822-6102-4b56-9cba-b5cf4c3ae2c4"]}, {"1.9770111168692972`", SqrtBox[ RowBox[{"1", "+", RowBox[{ FractionBox["1", "225"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"6", "+", SqrtBox["6"], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"213", "-", RowBox[{"57", " ", SqrtBox["6"]}]}]]}]}], ")"}], "2"]}]}]], Cell[ "Sphenocorona",ExpressionUUID->"2faee446-6363-442e-8c60-3afb03ddba79"]}, {"2.`", "2", Cell[ "TriangularCupola",ExpressionUUID-> "146c31b5-6ab0-4b34-b032-e1026739093a"]}, {"2.`", "2", Cell[ "TriangularOrthobicupola",ExpressionUUID-> "cc0bcd3d-9eba-4bb6-aaa9-8980ee1900b9"]}, {"2.051462224238267`", RowBox[{"1", "+", SqrtBox[ RowBox[{"2", "-", FractionBox["2", SqrtBox["5"]]}]]}], Cell[ "ElongatedPentagonalDipyramid",ExpressionUUID-> "7e05b650-1760-48ef-9e66-ae1eba7053f9"]}, {"2.10196`", "2.10196`", Cell[ "AugmentedSphenocorona",ExpressionUUID-> "7d4f4429-fd1c-441d-93c9-ce18dbcbbb51"]}, {"2.20259`", "2.20259`", Cell[ "Hebesphenomegacorona",ExpressionUUID-> "ca62d2dd-2e9d-4fc0-8345-7e8e2a36f63a"]}, {"2.2551099776268098`", RowBox[{ FractionBox["1", SuperscriptBox["2", RowBox[{"1", "/", "4"}]]], "+", SqrtBox["2"]}], Cell[ "GyroelongatedSquareDipyramid",ExpressionUUID-> "e770c640-2441-4013-8522-c80b916c1a92"]}, {"2.298682180739249`", SqrtBox[ RowBox[{"1", "+", FractionBox["5", SqrtBox["3"]], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{ FractionBox["2", "3"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["3"]}], ")"}]}]]}]}]], Cell[ "GyroelongatedTriangularCupola",ExpressionUUID-> "3503a5f7-46f9-437a-a899-65c3d5bc458d"]}, {"2.3009313088905365`", SqrtBox[ RowBox[{"2", "+", FractionBox[ SqrtBox["5"], "2"], "+", SqrtBox[ RowBox[{ FractionBox["5", "2"], "+", SqrtBox["5"]}]]}]], Cell[ "AugmentedPentagonalPrism",ExpressionUUID-> "06a51517-5904-4117-951a-616d388f4db7"]}, {"2.3193`", "2.3193`", Cell[ "Disphenocingulum",ExpressionUUID-> "7c20af9a-a546-4ce2-9782-5c1654b0c8bf"]}, {"2.3733927533923778`", SqrtBox[ RowBox[{ FractionBox["2", "3"], " ", RowBox[{"(", RowBox[{"6", "+", SqrtBox["6"]}], ")"}]}]], Cell[ "ElongatedTriangularCupola",ExpressionUUID-> "948e31dd-b762-4c8d-908f-0761a2908783"]}, {"2.398542634847068`", SqrtBox[ RowBox[{ FractionBox["1", "6"], " ", RowBox[{"(", RowBox[{"13", "+", RowBox[{"6", " ", SqrtBox["2"]}], "+", RowBox[{"3", " ", SqrtBox["5"]}], "+", RowBox[{"2", " ", SqrtBox["10"]}]}], ")"}]}]], Cell[ "AugmentedTridiminishedIcosahedron",ExpressionUUID-> "a6faf069-bcd0-4f9c-9621-22a12fbb0c87"]}, {"2.414213562373095`", RowBox[{"1", "+", SqrtBox["2"]}], Cell[ "ElongatedSquareDipyramid",ExpressionUUID-> "50fb36b0-3e13-4ce4-a026-59630f66820c"]}, {"2.4264110917326267`", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"32", "+", RowBox[{"128", " ", "#1"}], "+", RowBox[{"96", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"48", " ", SuperscriptBox["#1", "3"]}], "-", RowBox[{"22", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"4", " ", SuperscriptBox["#1", "5"]}], "+", SuperscriptBox["#1", "6"]}], "&"}], ",", "5"}], "]"}], Cell[ "SnubSquareAntiprism",ExpressionUUID-> "3cea50d6-3e1f-4809-a621-3b3caf0d509c"]}, {"2.5395845610617456`", SqrtBox[ RowBox[{"4", "+", SqrtBox["6"]}]], Cell[ "AugmentedHexagonalPrism",ExpressionUUID-> "ab481414-b9ec-4d72-b7e6-2aff9db62d4d"]}, {"2.5662`", "2.5662`", Cell[ "Sphenomegacorona",ExpressionUUID-> "4361a44a-5181-44aa-a7c3-4c332e575650"]}, {"2.613125929752753`", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]], Cell[ "SquareCupola",ExpressionUUID->"a898669a-cfaa-4339-afb8-ecb193f677df"]}, {"2.613125929752753`", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]], Cell[ "SquareGyrobicupola",ExpressionUUID-> "e577b666-3c1c-4cb8-8bee-1389850b6c99"]}, {"2.613125929752753`", SqrtBox[ RowBox[{"2", " ", RowBox[{"(", RowBox[{"2", "+", SqrtBox["2"]}], ")"}]}]], Cell[ "SquareOrthobicupola",ExpressionUUID-> "7e47d0b9-6e50-4aa0-9451-cfa4b28de217"]}, {"2.632993161855452`", RowBox[{"1", "+", RowBox[{"2", " ", SqrtBox[ FractionBox["2", "3"]]}]}], Cell[ "ElongatedTriangularDipyramid",ExpressionUUID-> "c29af46b-27f6-4f43-ba7e-9fc9bad957bb"]}, {"2.6540140183028624`", RowBox[{ FractionBox["1", "4"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"], "+", RowBox[{"2", " ", SqrtBox[ RowBox[{"5", "+", SqrtBox["5"]}]]}]}], ")"}]}], Cell[ "BiaugmentedPentagonalPrism",ExpressionUUID-> "62f8a57b-833c-4bd3-a88c-698db6d494ec"]}, {"2.7034503989897614`", SqrtBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{"20", "+", RowBox[{"14", " ", SqrtBox["2"]}]}]]}]], Cell[ "GyroelongatedSquareBicupola",ExpressionUUID-> "134a82fb-cde4-4431-a90d-fd1d60ef73da"]}, {"2.7034503989897614`", SqrtBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{"20", "+", RowBox[{"14", " ", SqrtBox["2"]}]}]]}]], Cell[ "GyroelongatedSquareCupola",ExpressionUUID-> "121b1b0d-3538-4cd3-9da8-65209386964c"]}, {"2.70801280154532`", SqrtBox[ FractionBox["22", "3"]], Cell[ "AugmentedTruncatedTetrahedron",ExpressionUUID-> "d677b4c6-baa9-4d1f-993f-dd4127888934"]}, {"2.724744871391589`", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["6"]}], ")"}]}], Cell[ "MetabiaugmentedHexagonalPrism",ExpressionUUID-> "1e80c983-cf1b-4323-b6c9-826a54027644"]}, {"2.724744871391589`", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["6"]}], ")"}]}], Cell[ "TriaugmentedHexagonalPrism",ExpressionUUID-> "fcab2dfe-6330-494a-9c74-5e729fa6eb60"]}, {"2.727106755206307`", SqrtBox[ RowBox[{ FractionBox["1", "3"], " ", RowBox[{"(", RowBox[{"7", "+", RowBox[{"4", " ", SqrtBox["3"]}], "+", RowBox[{"4", " ", SqrtBox[ RowBox[{"6", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SqrtBox["3"]}], ")"}]}]]}]}], ")"}]}]], Cell[ "GyroelongatedTriangularBicupola",ExpressionUUID-> "4b5f9840-0f54-4cce-b932-cd0bcb1ded09"]}, {"2.7979326519318133`", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["2"]}]}]], Cell[ "ElongatedSquareCupola",ExpressionUUID-> "5fa697ab-e3b4-4ac0-8a70-6e8e6eef6745"]}, {"2.7979326519318133`", SqrtBox[ RowBox[{"5", "+", RowBox[{"2", " ", SqrtBox["2"]}]}]], Cell[ "ElongatedSquareGyrobicupola",ExpressionUUID-> "37f71df7-a423-4043-a2e3-b0d28fe90609"]}, {"2.8025170768881473`", SqrtBox[ RowBox[{ FractionBox["3", "2"], " ", RowBox[{"(", RowBox[{"3", "+", SqrtBox["5"]}], ")"}]}]], Cell[ "TriangularHebesphenorotunda",ExpressionUUID-> "ff11edc3-e1a6-42c5-9bcb-655c4387ad6a"]}, {"2.8025170768881473`", SqrtBox[ RowBox[{"1", "+", SuperscriptBox["GoldenRatio", "4"]}]], Cell[ "Bilunabirotunda",ExpressionUUID-> "658b6884-00a8-4b39-8465-d2c1268f5b8a"]}, {"2.8164965809277263`", RowBox[{"2", "+", SqrtBox[ FractionBox["2", "3"]]}], Cell[ "ElongatedTriangularOrthobicupola",ExpressionUUID-> "000e688c-5f12-4d64-8735-c83b6a046beb"]}, {"2.8750628382195242`", SqrtBox[ RowBox[{"5", "+", RowBox[{"4", " ", SqrtBox[ FractionBox["2", "3"]]}]}]], Cell[ "ElongatedTriangularGyrobicupola",ExpressionUUID-> "8788d904-a308-4940-b706-1f014457d86f"]}, {"2.8812003682058704`", SqrtBox[ RowBox[{ FractionBox["9", "2"], "+", FractionBox["17", RowBox[{"2", " ", SqrtBox["5"]}]]}]], Cell[ "AugmentedDodecahedron",ExpressionUUID-> "c1397adf-034e-432a-b3f8-d799bcc2351b"]}, {"2.8812003682058704`", SqrtBox[ RowBox[{ FractionBox["9", "2"], "+", FractionBox["17", RowBox[{"2", " ", SqrtBox["5"]}]]}]], Cell[ "MetabiaugmentedDodecahedron",ExpressionUUID-> "3b4a7615-761d-4e36-b974-f6135388dd2d"]}, {"2.8812003682058704`", SqrtBox[ RowBox[{ FractionBox["9", "2"], "+", FractionBox["17", RowBox[{"2", " ", SqrtBox["5"]}]]}]], Cell[ "TriaugmentedDodecahedron",ExpressionUUID-> "f9612bc6-25e2-42bc-8202-198bcf155ba5"]}, {"3.1462643699419726`", RowBox[{ SqrtBox["2"], "+", SqrtBox["3"]}], Cell[ "ParabiaugmentedHexagonalPrism",ExpressionUUID-> "6f0b133b-e3ec-4cc5-97d3-2adf86e13e0b"]}, {"3.23606797749979`", RowBox[{"1", "+", SqrtBox["5"]}], Cell[ "PentagonalCupola",ExpressionUUID-> "56e87e9c-1a3f-4e40-85bc-4c38ed6a0ef1"]}, {"3.23606797749979`", RowBox[{"1", "+", SqrtBox["5"]}], Cell[ "PentagonalGyrobicupola",ExpressionUUID-> "36fff974-ff40-4e82-86fb-61255721cc01"]}, {"3.23606797749979`", RowBox[{"1", "+", SqrtBox["5"]}], Cell[ "PentagonalGyrocupolarotunda",ExpressionUUID-> "dd746158-fcc6-4985-9dd8-07e7ac833fc2"]}, {"3.23606797749979`", RowBox[{"1", "+", SqrtBox["5"]}], Cell[ "PentagonalOrthobicupola",ExpressionUUID-> "a216e711-6eda-4f32-ad51-6f0f198bf873"]}, {"3.23606797749979`", RowBox[{"1", "+", SqrtBox["5"]}], Cell[ "PentagonalOrthobirotunda",ExpressionUUID-> "c8bf0dd4-b4c9-435c-a70a-491a5b698a3e"]}, {"3.23606797749979`", RowBox[{"1", "+", SqrtBox["5"]}], Cell[ "PentagonalOrthocupolarotunda",ExpressionUUID-> "1f092616-71c0-494b-b3a5-d41ce411ff26"]}, {"3.23606797749979`", RowBox[{"1", "+", SqrtBox["5"]}], Cell[ "PentagonalRotunda",ExpressionUUID-> "b6b14769-adf9-4b5a-85ba-0f93ada51fa6"]}, {"3.2784949530614806`", SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"65", "+", RowBox[{"19", " ", SqrtBox["5"]}]}], ")"}]}]], Cell[ "ParabiaugmentedDodecahedron",ExpressionUUID-> "46215aa3-0576-4493-94ae-5fc17239012c"]}, {"3.310527622529545`", SqrtBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{"50", "+", RowBox[{"22", " ", SqrtBox["5"]}]}]]}]], Cell[ "GyroelongatedPentagonalBicupola",ExpressionUUID-> "c07b7398-59a6-4292-aa58-aee30f1c06c6"]}, {"3.310527622529545`", SqrtBox[ RowBox[{"1", "+", SqrtBox[ RowBox[{"50", "+", RowBox[{"22", " ", SqrtBox["5"]}]}]]}]], Cell[ "GyroelongatedPentagonalCupola",ExpressionUUID-> "3bb56b84-f0a0-4803-82f0-ed672cd129d5"]}, {"3.387054170662108`", SqrtBox[ RowBox[{"7", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]], Cell[ "ElongatedPentagonalCupola",ExpressionUUID-> "d12c84d7-2546-4484-89b2-00e160faf35b"]}, {"3.387054170662108`", SqrtBox[ RowBox[{"7", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]], Cell[ "ElongatedPentagonalGyrobicupola",ExpressionUUID-> "9a9dd548-f720-4a1b-8d68-18fd4f56a087"]}, {"3.387054170662108`", SqrtBox[ RowBox[{"7", "+", RowBox[{"2", " ", SqrtBox["5"]}]}]], Cell[ "ElongatedPentagonalOrthobicupola",ExpressionUUID-> "6fd8648d-7edb-4ecb-8e27-aa01732eaaf7"]}, {"3.449791217496914`", SqrtBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"101281", "-", RowBox[{"795860", " ", "#1"}], "+", RowBox[{"1445070", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1065500", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"265155", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"8100", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3150", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"200", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"25", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}]], Cell[ "GyroelongatedPentagonalCupolarotunda",ExpressionUUID-> "2bbbf786-27dc-40db-a48b-69078b5bd2df"]}, {"3.449791217496914`", SqrtBox[ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"101281", "-", RowBox[{"795860", " ", "#1"}], "+", RowBox[{"1445070", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"1065500", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"265155", " ", SuperscriptBox["#1", "4"]}], "+", RowBox[{"8100", " ", SuperscriptBox["#1", "5"]}], "-", RowBox[{"3150", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"200", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"25", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}]], Cell[ "GyroelongatedPentagonalRotunda",ExpressionUUID-> "18c1a107-d06f-46ce-8aac-68382a770a6e"]}, {"3.4890453668164962`", SqrtBox[ RowBox[{"6", "+", RowBox[{"2", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"2", "+", FractionBox["2", SqrtBox["5"]]}]]}]], Cell[ "ElongatedPentagonalGyrocupolarotunda",ExpressionUUID-> "d2ab17db-717a-4bf9-bb65-4dc084577629"]}, {"3.4890453668164962`", SqrtBox[ RowBox[{"6", "+", RowBox[{"2", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"2", "+", FractionBox["2", SqrtBox["5"]]}]]}]], Cell[ "ElongatedPentagonalOrthocupolarotunda",ExpressionUUID-> "cbd53ee2-b21e-4e54-ab29-e2c441762ab7"]}, {"3.4890453668164962`", SqrtBox[ RowBox[{"6", "+", RowBox[{"2", " ", SqrtBox["5"]}], "+", SqrtBox[ RowBox[{"2", "+", FractionBox["2", SqrtBox["5"]]}]]}]], Cell[ "ElongatedPentagonalRotunda",ExpressionUUID-> "2fe4041a-b5b1-4919-befd-d5324883e1db"]}, {"3.695518130045147`", RowBox[{"2", " ", SqrtBox[ RowBox[{"2", "+", SqrtBox["2"]}]]}], Cell[ "AugmentedTruncatedCube",ExpressionUUID-> "41fdcf1e-777f-43a6-bfc7-172ae9a7cd44"]}, {"3.986600487854186`", RowBox[{"\[Sqrt]", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"27454841", "-", RowBox[{"88454860", " ", "#1"}], "+", RowBox[{"139385430", " ", SuperscriptBox["#1", "2"]}], "-", RowBox[{"113034500", " ", SuperscriptBox["#1", "3"]}], "+", RowBox[{"37350275", " ", SuperscriptBox["#1", "4"]}], "-", RowBox[{"4760500", " ", SuperscriptBox["#1", "5"]}], "+", RowBox[{"258250", " ", SuperscriptBox["#1", "6"]}], "-", RowBox[{"15000", " ", SuperscriptBox["#1", "7"]}], "+", RowBox[{"625", " ", SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}]}], Cell[ "GyroelongatedPentagonalBirotunda",ExpressionUUID-> "6db5bf13-b0ae-44c7-990f-153ef05d009d"]}, {"4.081280956941384`", SqrtBox[ RowBox[{"11", "+", RowBox[{"4", " ", SqrtBox["2"]}]}]], Cell[ "BiaugmentedTruncatedCube",ExpressionUUID-> "461adf37-ac25-495d-a7f2-3a07ba64b206"]}, {"4.08671878585183`", RowBox[{"1", "+", SqrtBox["5"], "+", SqrtBox[ RowBox[{ FractionBox["1", "10"], " ", RowBox[{"(", RowBox[{"5", "+", SqrtBox["5"]}], ")"}]}]]}], Cell[ "ElongatedPentagonalOrthobirotunda",ExpressionUUID-> "3df7e278-9704-48de-b93f-7194e93ce453"]}, {"4.120396053401211`", SqrtBox[ RowBox[{"7", "+", RowBox[{"2", " ", SqrtBox["5"]}], "+", RowBox[{"4", " ", SqrtBox[ RowBox[{"1", "+", FractionBox["2", SqrtBox["5"]]}]]}]}]], Cell[ "ElongatedPentagonalGyrobirotunda",ExpressionUUID-> "c6bf8453-ab5f-41c4-89e9-1dfa7dac5b17"]}, {"4.4659`", "4.4659`", Cell[ "BigyrateDiminishedRhombicosidodecahedron",ExpressionUUID-> "14127038-721a-443c-9c8e-3e64799522da"]}, {"4.4659`", "4.4659`", Cell[ "DiminishedRhombicosidodecahedron",ExpressionUUID-> "052ddb75-97f2-428c-9ecb-889304bf3c9b"]}, {"4.4659`", "4.4659`", Cell[ "GyrateBidiminishedRhombicosidodecahedron",ExpressionUUID-> "25a4fe67-379e-41fa-95c9-d39974dc0d82"]}, {"4.4659`", "4.4659`", Cell[ "GyrateRhombicosidodecahedron",ExpressionUUID-> "3829678c-b5a7-42f3-9a8a-ff65a7af89d7"]}, {"4.4659`", "4.4659`", Cell[ "MetabidiminishedRhombicosidodecahedron",ExpressionUUID-> "2399ddee-dfbd-4320-8fb6-17eef46344e4"]}, {"4.4659`", "4.4659`", Cell[ "MetabigyrateRhombicosidodecahedron",ExpressionUUID-> "10c213b7-16a9-480d-a244-97d94b312e6d"]}, {"4.4659`", "4.4659`", Cell[ "MetagyrateDiminishedRhombicosidodecahedron",ExpressionUUID-> "a8049d5f-971f-4d4b-84ab-61124abc7125"]}, {"4.4659`", "4.4659`", Cell[ "ParabidiminishedRhombicosidodecahedron",ExpressionUUID-> "f63d0402-be27-4ff9-a23b-4ceab4ff3ee3"]}, {"4.4659`", "4.4659`", Cell[ "ParabigyrateRhombicosidodecahedron",ExpressionUUID-> "9cddf6ab-19ba-4d80-a6b4-6636ab37e2d2"]}, {"4.4659`", "4.4659`", Cell[ "ParagyrateDiminishedRhombicosidodecahedron",ExpressionUUID-> "b0306121-842b-4cd5-9080-9a55f5df9e64"]}, {"4.4659`", "4.4659`", Cell[ "TridiminishedRhombicosidodecahedron",ExpressionUUID-> "cd83c10b-02ed-44aa-8f11-483fb95f85c2"]}, {"4.4659`", "4.4659`", Cell[ "TrigyrateRhombicosidodecahedron",ExpressionUUID-> "51d1cdc9-8eb3-460a-83fc-5a8bea616ebd"]}, {"6.0225`", "6.0225`", Cell[ "AugmentedTruncatedDodecahedron",ExpressionUUID-> "8b5c88dd-6104-4234-ba2c-2261c1325750"]}, {"6.02492`", "6.02492`", Cell[ "MetabiaugmentedTruncatedDodecahedron",ExpressionUUID-> "51b1ae3f-1a89-47a0-8ba1-11f7a3476f92"]}, {"6.02492`", "6.02492`", Cell[ "TriaugmentedTruncatedDodecahedron",ExpressionUUID-> "1b9f8b14-3e29-4d0e-9bdd-706ac0bc9c80"]}, {"6.26662`", "6.26662`", Cell[ "ParabiaugmentedTruncatedDodecahedron",ExpressionUUID-> "40f35256-fd5f-4972-bc5e-40f986f95283"]} }, AutoDelete->False, GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxDividers->{"Columns" -> {{True}}, "Rows" -> {{True}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "TextGrid"]], "Output", CellLabel-> "Out[293]=",ExpressionUUID->"8fbdeaac-6543-4d6d-a2f2-fdc1f1d6038b"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Sorted by Number of Vertices", "Section",ExpressionUUID->"c1b8cdcd-7e7e-45e2-b8e6-1335e6f1a091"], Cell[BoxData[ RowBox[{ RowBox[{"v", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"JohnsonSolidVertices", "[", "n", "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "92"}], "}"}]}], "]"}]}], ";"}]], "Input",ExpressionUU\ ID->"38d844c2-f79f-400e-8a62-a98e575bdc41"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"Union", "[", RowBox[{"l", "=", RowBox[{"Length", "/@", "v"}]}], "]"}], ",", RowBox[{"Distribution", "[", "l", "]"}]}], "}"}], "]"}]], "Input",Expressi\ onUUID->"eec634c5-b23e-404f-abc7-f693873f3c46"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"5", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"7", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"8", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"9", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"10", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"11", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"12", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"13", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"14", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"15", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"16", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"18", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"20", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"21", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"22", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"23", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"24", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"25", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"28", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"30", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"32", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"35", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"40", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"45", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"50", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"55", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"60", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"65", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"70", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"75", ",", "1"}], "}"}]}], "}"}]], "Output",ExpressionUUID->\ "6b7ab6ba-e47e-4269-af41-534b92f7f6c3"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ColumnForm", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{ RowBox[{"Position", "[", RowBox[{"l", ",", "#"}], "]"}], "//", "Flatten"}]}], "}"}], "&"}], "/@", RowBox[{"Union", "[", "l", "]"}]}], "]"}]], "Input",ExpressionUUID->\ "3783e242-b7cd-4dd7-a338-f8fb9ea22db4"], Cell[BoxData[ InterpretationBox[GridBox[{ { RowBox[{"{", RowBox[{"5", ",", RowBox[{"{", RowBox[{"1", ",", "12"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"6", ",", RowBox[{"{", "2", "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"7", ",", RowBox[{"{", RowBox[{"7", ",", "13", ",", "49"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"8", ",", RowBox[{"{", RowBox[{"14", ",", "26", ",", "50", ",", "84"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"9", ",", RowBox[{"{", RowBox[{"3", ",", "8", ",", "10", ",", "51", ",", "63"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"10", ",", RowBox[{"{", RowBox[{"15", ",", "17", ",", "62", ",", "64", ",", "86"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"11", ",", RowBox[{"{", RowBox[{"9", ",", "11", ",", "52", ",", "87"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"12", ",", RowBox[{"{", RowBox[{"4", ",", "16", ",", "27", ",", "53", ",", "88"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"13", ",", RowBox[{"{", "54", "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"14", ",", RowBox[{"{", RowBox[{"55", ",", "56", ",", "89", ",", "91"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"15", ",", RowBox[{"{", RowBox[{"5", ",", "18", ",", "22", ",", "57", ",", "65"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"16", ",", RowBox[{"{", RowBox[{"28", ",", "29", ",", "85", ",", "90"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"18", ",", RowBox[{"{", RowBox[{"35", ",", "36", ",", "44", ",", "92"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"20", ",", RowBox[{"{", RowBox[{"6", ",", "19", ",", "23", ",", "30", ",", "31"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"21", ",", RowBox[{"{", "58", "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"22", ",", RowBox[{"{", RowBox[{"59", ",", "60"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"23", ",", RowBox[{"{", "61", "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"24", ",", RowBox[{"{", RowBox[{"37", ",", "45"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"25", ",", RowBox[{"{", RowBox[{"20", ",", "24", ",", "32", ",", "33"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"28", ",", RowBox[{"{", "66", "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"30", ",", RowBox[{"{", RowBox[{"21", ",", "25", ",", "34", ",", "38", ",", "39", ",", "46"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"32", ",", RowBox[{"{", "67", "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"35", ",", RowBox[{"{", RowBox[{"40", ",", "41", ",", "47"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"40", ",", RowBox[{"{", RowBox[{"42", ",", "43", ",", "48"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"45", ",", RowBox[{"{", "83", "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"50", ",", RowBox[{"{", RowBox[{"80", ",", "81", ",", "82"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"55", ",", RowBox[{"{", RowBox[{"76", ",", "77", ",", "78", ",", "79"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"60", ",", RowBox[{"{", RowBox[{"72", ",", "73", ",", "74", ",", "75"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"65", ",", RowBox[{"{", "68", "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"70", ",", RowBox[{"{", RowBox[{"69", ",", "70"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"75", ",", RowBox[{"{", "71", "}"}]}], "}"}]} }, BaselinePosition->{Baseline, {1, 1}}, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}], ColumnForm[{{5, {1, 12}}, {6, {2}}, {7, {7, 13, 49}}, { 8, {14, 26, 50, 84}}, {9, {3, 8, 10, 51, 63}}, { 10, {15, 17, 62, 64, 86}}, {11, {9, 11, 52, 87}}, { 12, {4, 16, 27, 53, 88}}, {13, {54}}, {14, {55, 56, 89, 91}}, { 15, {5, 18, 22, 57, 65}}, {16, {28, 29, 85, 90}}, { 18, {35, 36, 44, 92}}, {20, {6, 19, 23, 30, 31}}, {21, {58}}, { 22, {59, 60}}, {23, {61}}, {24, {37, 45}}, {25, {20, 24, 32, 33}}, { 28, {66}}, {30, {21, 25, 34, 38, 39, 46}}, {32, {67}}, { 35, {40, 41, 47}}, {40, {42, 43, 48}}, {45, {83}}, {50, {80, 81, 82}}, { 55, {76, 77, 78, 79}}, {60, {72, 73, 74, 75}}, {65, {68}}, { 70, {69, 70}}, {75, {71}}}], Editable->False]], "Output",ExpressionUUID->"621157f0-5843-4f51-97f4-\ 906b65767014"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"JohnsonSolid", "[", "71", "]"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input",ExpressionUUID->\ "c505f89c-c8df-47e4-ba62-3bd5652c0899"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.09752 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0617588 1.17581 0 1.17581 [ [ 0 0 0 0 ] [ 1 1.09752 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.09752 L 0 1.09752 L closepath clip newpath .5 Mabswid [ ] 0 setdash .51557 .61494 m .42098 .61168 L .41871 .70832 L p .744 .596 .692 r F P 0 g s .41871 .70832 m .51364 .71077 L .51557 .61494 L p .744 .596 .692 r F P 0 g s .51364 .71077 m .59703 .66374 L .51557 .61494 L closepath p .677 .54 .691 r F P 0 g s .51557 .61494 m .47176 .53008 L .42098 .61168 L closepath p .744 .611 .71 r F P 0 g s .48161 .43879 m .47176 .53008 L .51557 .61494 L p .624 .561 .763 r F P 0 g s .54365 .37455 m .48161 .43879 L p .51557 .61494 L .624 .561 .763 r F P 0 g s .63653 .36387 m .54365 .37455 L p .51557 .61494 L .624 .561 .763 r F P 0 g s .7238 .4136 m .63653 .36387 L p .51557 .61494 L .624 .561 .763 r F P 0 g s .76907 .50432 m .7238 .4136 L p .51557 .61494 L .624 .561 .763 r F P 0 g s .75433 .59829 m .76907 .50432 L p .51557 .61494 L .624 .561 .763 r F P 0 g s .68779 .65834 m .75433 .59829 L p .51557 .61494 L .624 .561 .763 r F P 0 g s .51557 .61494 m .59703 .66374 L .68779 .65834 L p .624 .561 .763 r F P 0 g s .63681 .74204 m .59703 .66374 L .51364 .71077 L p .634 .452 .62 r F P 0 g s .51364 .71077 m .55153 .78974 L .63681 .74204 L p .634 .452 .62 r F P 0 g s .51364 .71077 m .41871 .70832 L .39439 .78677 L p .735 .494 .564 r F P 0 g s .55153 .78974 m .51364 .71077 L p .39439 .78677 L .735 .494 .564 r F P 0 g s .47176 .53008 m .48161 .43879 L .44541 .36905 L p .851 .766 .768 r F P 0 g s .42098 .61168 m .47176 .53008 L p .44541 .36905 L .851 .766 .768 r F P 0 g s .59703 .66374 m .63681 .74204 L .68779 .65834 L closepath p .615 .444 .628 r F P 0 g s .34589 .65612 m .41871 .70832 L .42098 .61168 L closepath p .812 .653 .685 r F P 0 g s .34589 .65612 m .42098 .61168 L p .44541 .36905 L .851 .766 .768 r F P 0 g s .39439 .78677 m .41871 .70832 L .34589 .65612 L p .848 .62 .593 r F P 0 g s .44541 .36905 m .48161 .43879 L .54365 .37455 L closepath p .717 .718 .85 r F P 0 g s .55153 .78974 m .61795 .82272 L .63681 .74204 L closepath p .565 .325 .511 r F P 0 g s .54368 .87409 m .61795 .82272 L .55153 .78974 L p .596 .27 .388 r F P 0 g s .55153 .78974 m .47809 .8388 L .54368 .87409 L p .596 .27 .388 r F P 0 g s .39439 .78677 m .47809 .8388 L .55153 .78974 L p .735 .494 .564 r F P 0 g s .68779 .65834 m .63681 .74204 L p .64012 .87214 L .321 .103 .418 r F P 0 g s .75433 .59829 m .68779 .65834 L p .64012 .87214 L .321 .103 .418 r F P 0 g s .63681 .74204 m .61795 .82272 L .64012 .87214 L p .321 .103 .418 r F P 0 g s .34589 .65612 m .31915 .73462 L .39439 .78677 L p .848 .62 .593 r F P 0 g s .27181 .64542 m .34589 .65612 L p .44541 .36905 L .851 .766 .768 r F P 0 g s .34589 .65612 m .27181 .64542 L .31915 .73462 L closepath p .869 .645 .597 r F P 0 g s .39439 .78677 m .31915 .73462 L .35487 .8185 L closepath p .873 .543 .423 r F P 0 g s .47809 .8388 m .39439 .78677 L .35487 .8185 L p .773 .381 .312 r F P 0 g s .5623 .2998 m .54365 .37455 L .63653 .36387 L closepath p .622 .647 .854 r F P 0 g s .54365 .37455 m .5623 .2998 L .46102 .29344 L p .707 .734 .872 r F P 0 g s .46102 .29344 m .44541 .36905 L .54365 .37455 L p .707 .734 .872 r F P 0 g s .81486 .58346 m .75433 .59829 L p .64012 .87214 L .321 .103 .418 r F P 0 g s .75433 .59829 m .81486 .58346 L .76907 .50432 L closepath p .404 .354 .689 r F P 0 g s .47809 .8388 m .4417 .87293 L .54368 .87409 L closepath p .619 .178 .179 r F P 0 g s .35487 .8185 m .4417 .87293 L .47809 .8388 L p .773 .381 .312 r F P 0 g s .46102 .29344 m .37313 .34874 L .44541 .36905 L closepath p .794 .819 .871 r F P 0 g s .22762 .57895 m .27181 .64542 L p .44541 .36905 L .851 .766 .768 r F P 0 g s .2343 .48007 m .22762 .57895 L p .44541 .36905 L .851 .766 .768 r F P 0 g s .29114 .3905 m .2343 .48007 L p .44541 .36905 L .851 .766 .768 r F P 0 g s .44541 .36905 m .37313 .34874 L .29114 .3905 L p .851 .766 .768 r F P 0 g s .61795 .82272 m .54368 .87409 L .64012 .87214 L closepath p .55 .205 .335 r F P 0 g s .31915 .73462 m .27181 .64542 L .22762 .57895 L p .867 .469 .003 r F P 0 g s .35487 .8185 m .31915 .73462 L p .22762 .57895 L .867 .469 .003 r F P 0 g s .5623 .2998 m .63653 .36387 L .69331 .33974 L p .473 .611 .907 r F P 0 g s .63653 .36387 m .7238 .4136 L .69331 .33974 L closepath p .464 .578 .884 r F P 0 g s .76907 .50432 m .81486 .58346 L p .71682 .34044 L 0 0 .528 r F P 0 g s .7238 .4136 m .76907 .50432 L p .71682 .34044 L 0 0 .528 r F P 0 g s .69331 .33974 m .7238 .4136 L p .71682 .34044 L 0 0 .528 r F P 0 g s .69331 .33974 m .61701 .27278 L .5623 .2998 L p .473 .611 .907 r F P 0 g s .5623 .2998 m .61701 .27278 L .54594 .24777 L p .514 .816 1 r F P 0 g s .46102 .29344 m .5623 .2998 L p .54594 .24777 L .514 .816 1 r F P 0 g s .84604 .62414 m .81486 .58346 L p .64012 .87214 L .321 .103 .418 r F P 0 g s .83145 .70966 m .84604 .62414 L p .64012 .87214 L .321 .103 .418 r F P 0 g s .77405 .80514 m .83145 .70966 L p .64012 .87214 L .321 .103 .418 r F P 0 g s .64012 .87214 m .69931 .86757 L .77405 .80514 L p .321 .103 .418 r F P 0 g s .54368 .87409 m .4417 .87293 L p .69931 .86757 L .12 .667 .818 r F P 0 g s .69931 .86757 m .64012 .87214 L .54368 .87409 L p .12 .667 .818 r F P 0 g s .4417 .87293 m .35487 .8185 L .36645 .86896 L closepath p .769 .334 .219 r F P 0 g s .36645 .86896 m .35487 .8185 L p .22762 .57895 L .867 .469 .003 r F P 0 g s .37313 .34874 m .46102 .29344 L .44645 .26159 L p .781 .957 .926 r F P 0 g s .44645 .26159 m .35452 .31943 L .37313 .34874 L p .781 .957 .926 r F P 0 g s .37313 .34874 m .35452 .31943 L .29114 .3905 L closepath p .819 .967 .9 r F P 0 g s .54594 .24777 m .44645 .26159 L .46102 .29344 L p .514 .816 1 r F P 0 g s .81486 .58346 m .84604 .62414 L p .71682 .34044 L 0 0 .528 r F P 0 g s .4417 .87293 m .36645 .86896 L p .69931 .86757 L .12 .667 .818 r F P 0 g s .2343 .48007 m .20206 .56 L .22762 .57895 L closepath p .992 .882 .569 r F P 0 g s .34676 .8633 m .36645 .86896 L p .22762 .57895 L .867 .469 .003 r F P 0 g s .30007 .79666 m .34676 .8633 L p .22762 .57895 L .867 .469 .003 r F P 0 g s .24528 .69398 m .30007 .79666 L p .22762 .57895 L .867 .469 .003 r F P 0 g s .20749 .60202 m .24528 .69398 L p .22762 .57895 L .867 .469 .003 r F P 0 g s .22762 .57895 m .20206 .56 L .20749 .60202 L p .867 .469 .003 r F P 0 g s .61701 .27278 m .69331 .33974 L .68934 .30956 L closepath p .054 .42 .866 r F P 0 g s .71682 .34044 m .68934 .30956 L .69331 .33974 L p 0 0 .528 r F P 0 g s .29114 .3905 m .35452 .31943 L p .41869 .32255 L .034 0 .179 r F P 0 g s .2343 .48007 m .29114 .3905 L p .41869 .32255 L .034 0 .179 r F P 0 g s .20206 .56 m .2343 .48007 L p .41869 .32255 L .034 0 .179 r F P 0 g s .61859 .28507 m .54594 .24777 L .61701 .27278 L p .435 0 0 r F P 0 g s .61701 .27278 m .68934 .30956 L .61859 .28507 L p .435 0 0 r F P 0 g s .36645 .86896 m .34676 .8633 L p .69931 .86757 L .12 .667 .818 r F P 0 g s .83145 .70966 m .84928 .60671 L .84604 .62414 L closepath p 0 0 0 r F P 0 g s .84604 .62414 m .84928 .60671 L p .71682 .34044 L 0 0 .528 r F P 0 g s .44645 .26159 m .40372 .29166 L .35452 .31943 L closepath p 0 0 0 r F P 0 g s .35452 .31943 m .40372 .29166 L .41869 .32255 L p .034 0 .179 r F P 0 g s .50659 .27785 m .40372 .29166 L .44645 .26159 L p .269 0 0 r F P 0 g s .44645 .26159 m .54594 .24777 L .50659 .27785 L p .269 0 0 r F P 0 g s .62187 .85695 m .69546 .86176 L .69931 .86757 L p .12 .667 .818 r F P 0 g s .50499 .85543 m .62187 .85695 L p .69931 .86757 L .12 .667 .818 r F P 0 g s .39774 .858 m .50499 .85543 L p .69931 .86757 L .12 .667 .818 r F P 0 g s .34676 .8633 m .39774 .858 L p .69931 .86757 L .12 .667 .818 r F P 0 g s .69546 .86176 m .77405 .80514 L .69931 .86757 L closepath p .569 .911 .69 r F P 0 g s .20749 .60202 m .20206 .56 L p .41869 .32255 L .034 0 .179 r F P 0 g s .61859 .28507 m .68934 .30956 L .71682 .34044 L closepath p .596 .023 0 r F P 0 g s .54594 .24777 m .61859 .28507 L .50659 .27785 L closepath p .606 .128 .092 r F P 0 g s .83145 .70966 m .77405 .80514 L p .59733 .6737 L .891 .825 .776 r F P 0 g s .84928 .60671 m .83145 .70966 L p .59733 .6737 L .891 .825 .776 r F P 0 g s .77405 .80514 m .69546 .86176 L p .59733 .6737 L .891 .825 .776 r F P 0 g s .39774 .858 m .34676 .8633 L .30007 .79666 L closepath p .246 .515 .909 r F P 0 g s .41869 .32255 m .40372 .29166 L .50659 .27785 L closepath p .371 0 .03 r F P 0 g s .84928 .60671 m .81958 .53097 L p .71682 .34044 L 0 0 .528 r F P 0 g s .81958 .53097 m .84928 .60671 L p .59733 .6737 L .891 .825 .776 r F P 0 g s .61859 .28507 m .71682 .34044 L p .3888 .40641 L .738 .458 .505 r F P 0 g s .50659 .27785 m .61859 .28507 L p .3888 .40641 L .738 .458 .505 r F P 0 g s .25311 .58509 m .24528 .69398 L .20749 .60202 L closepath p .194 .196 .633 r F P 0 g s .25311 .58509 m .20749 .60202 L p .41869 .32255 L .034 0 .179 r F P 0 g s .69546 .86176 m .62187 .85695 L p .59733 .6737 L .891 .825 .776 r F P 0 g s .81958 .53097 m .76755 .42628 L .71682 .34044 L p 0 0 .528 r F P 0 g s .71682 .34044 m .76755 .42628 L p .3888 .40641 L .738 .458 .505 r F P 0 g s .3888 .40641 m .41869 .32255 L .50659 .27785 L p .738 .458 .505 r F P 0 g s .30706 .74117 m .30007 .79666 L .24528 .69398 L closepath p .091 .275 .758 r F P 0 g s .39774 .858 m .30007 .79666 L .30706 .74117 L p .351 .542 .901 r F P 0 g s .74905 .51334 m .81958 .53097 L p .59733 .6737 L .891 .825 .776 r F P 0 g s .74905 .51334 m .76755 .42628 L .81958 .53097 L closepath p .922 .658 .521 r F P 0 g s .24528 .69398 m .25311 .58509 L .3164 .62897 L p .297 .288 .68 r F P 0 g s .3164 .62897 m .30706 .74117 L .24528 .69398 L p .297 .288 .68 r F P 0 g s .30706 .74117 m .40914 .80471 L .39774 .858 L p .351 .542 .901 r F P 0 g s .39774 .858 m .40914 .80471 L .50499 .85543 L closepath p .526 .721 .963 r F P 0 g s .76755 .42628 m .74905 .51334 L p .3888 .40641 L .738 .458 .505 r F P 0 g s .32383 .5096 m .25311 .58509 L p .41869 .32255 L .034 0 .179 r F P 0 g s .41869 .32255 m .3888 .40641 L .32383 .5096 L p .034 0 .179 r F P 0 g s .58246 .78633 m .62187 .85695 L .50499 .85543 L closepath p .709 .768 .898 r F P 0 g s .62187 .85695 m .58246 .78633 L .59733 .6737 L p .891 .825 .776 r F P 0 g s .3164 .62897 m .25311 .58509 L .32383 .5096 L closepath p .403 .27 .584 r F P 0 g s .58246 .78633 m .50499 .85543 L .40914 .80471 L p .692 .732 .881 r F P 0 g s .59733 .6737 m .66263 .56711 L .74905 .51334 L p .891 .825 .776 r F P 0 g s .74905 .51334 m .66263 .56711 L p .3888 .40641 L .738 .458 .505 r F P 0 g s .48597 .73267 m .40914 .80471 L .30706 .74117 L p .593 .553 .779 r F P 0 g s .42786 .6212 m .48597 .73267 L p .30706 .74117 L .593 .553 .779 r F P 0 g s .30706 .74117 m .3164 .62897 L .42786 .6212 L p .593 .553 .779 r F P 0 g s .43395 .49933 m .32383 .5096 L .3888 .40641 L closepath p .576 .392 .595 r F P 0 g s .54014 .5623 m .43395 .49933 L .3888 .40641 L p .738 .458 .505 r F P 0 g s .66263 .56711 m .54014 .5623 L p .3888 .40641 L .738 .458 .505 r F P 0 g s .32383 .5096 m .43395 .49933 L .42786 .6212 L p .582 .42 .628 r F P 0 g s .42786 .6212 m .3164 .62897 L .32383 .5096 L p .582 .42 .628 r F P 0 g s .40914 .80471 m .48597 .73267 L .58246 .78633 L p .692 .732 .881 r F P 0 g s .48597 .73267 m .59733 .6737 L .58246 .78633 L closepath p .77 .714 .8 r F P 0 g s .59733 .6737 m .54014 .5623 L .66263 .56711 L closepath p .755 .621 .711 r F P 0 g s .42786 .6212 m .43395 .49933 L .54014 .5623 L closepath p .69 .512 .641 r F P 0 g s .54014 .5623 m .59733 .6737 L .48597 .73267 L p .735 .613 .723 r F P 0 g s .48597 .73267 m .42786 .6212 L .54014 .5623 L p .735 .613 .723 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{185.375, 186.938}, ImageMargins->{{49, 0}, {0, 0}}, ImageRegion->{{-0.242751, 1.17262}, {-0.278168, 1.26212}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNnMuPHEcdxzsz/Zie93tmH96dfa/3YccbZ7HjOGDiODiJg40TOwnCYAVE IoSMQvgDUAQHJA4IEJFACEUcEAcUDkQYcgHxuHBB/AVIgEDizHWo+lX1b6pn vrVTnVkjDl092131/Xx/v6rpru6e3mt333ztc1+8++brr94dPP3G3S+99vqr Xx5cufeG2JR/yPO8+2L51cCTn4fioy7ue8PhUO48xtUduQqk/i214bZcRQTM Dy8r9PD7g56Xk2Ve/nlT1bwhV6HcEMmKXj6pStV9Wfpy03VV/RkWLoPqkSzJ xzVV/YpcUfuGrJ5TDUWlnPZ2T3uTfz2r2jxFKyV8WS1eE8CqVKpt99Si/vqY 0nlSrojTBq3r7IJM0E5F9i7JVd7WsMUNfdmQPj2pGn6EieS3pOKerH5JVX+C OZTLWH6Kh+9/5as1VX2y4YdVw4vMoT6j7giGd7yIts1LiZgjo20XVcMLTDSG hUetRVFkiXUpQd2W4+Q8piTO83ipcfVtWV2n6e1AKea4NX06p1qfMw0UvH1q ImREZyZiu1JMtxZiSWVzoBwqsUMW86WWNiB0SLFEpdomFMniPmvnpTZFfVaJ Pco5DYFYzPYOWMKXEpSkAyXxCEvEQCJkicOxdIlFidHeM0rsDAdXBGI+i51n PwEJqXxJCbmcVmIPs7MKifmmGEtdTIc2JnVKSZ02vp2yA6XcuKjup0sgzhxQ 3rcrV43Yk078aLoTx8T2lNgpIFYDYpfTo21MbFeJ7TuKPS1L2qRD2gMN66Dh VXah7e+Chg3Q8BluqK3uODa8Nuobjnb72CROAokmkHgeSGwpiW1HiY/bJbaA RAtIXAcSm0piE0i0gcQNILGhJDYcJT5hl1gHEh0gcRNIrNslkIsX7BJrji5e BBKqrbcKJLpA4haQUG29FUeJ23aJAZDoAYmXgITCe8tAoj+7BHLxCpBQEXhL ji4+CSQU3jsBJOZml0AuPgUkVATeos3FZ+xtFqY4//Zn36bGnwYSJ+wSfeNc JiXkIj4jI8q1N281EqRUtBI0pKXmHGISizhXyTKd3jtAdiGbbB7Iol7Tsn1H Wd8mSycuHXrPUSwEYsbgHP77J18jr8cm67OsltbRdx2VC0D5lczKfaAcW5WD lHKSEjVQvY6j8SKQf3m6fNtRvgTkXxrrSLGIv1RpDsCeHYUSVQGo29lQLceo XFE+QKl+95qOqBpA3frfoV4EqBCg1HDzGo6oBkC9kA1Vd0Q1HVERQLWzoVoA dROgCgClhp5Xc0S1HwwKfa+6AHUDoIoApYaeV3WM6gGhUFTUV3QRiwAlAGhk A9Bxuyg3BcPvfOFHeu+7b/2YRK9ng1Yc5zBioXtCtTGkWNR9h+cBtwy4dTuX pq90cuhDiigJ9SxAVeyo8pS8ChTh5gHUpzI9bugynbJTBdCaHUrxqUkLQAUc 3xUjvr/95Q9yEdGLknIT26GlKdcEn3/qu9QM4SPGj26QFBkaAGjVDu0aI0hC NRhxY5Dh0Z2khnRAtwvrdlrHmC0ntKNCLXKoj4NMd2VJe3VWi1Zk3kSKLpJl ekzNAXyF8ec4znlCp/NbsePbAJ93xNdAws+CPCwAS2pUe7GjJd/RUp0zMro9 upQN33LEoy95k/GnQR6OMFJwNBI4GmmDrtnhjKwCIyW7kSYwEjoa6XBGthm/ ng3fAPjIEd9j/AbokCOMRI5GCo5G5kCHDDgj28BI0W6kDozEWYw06TgIMpLR SA0YKWbuGrHj/R/cp52/+eF7QlSUdfnnbjY3VeCmlHmc+tKM3iuMkKVFKtOp 2gHmYvsoLgNzZUdzLTYXAnMLwBzK3BHmSsBcxdFcg83FwNwcMLeXzRw9w6JN NUdLNbZUcrS0DywV7JZCtiSGy5mDd2jnc1d/JtdVR5Ojk3cVmOwBk6eymfR5 kkge9SRKutROXXu4xE7rsztVHe2bTtlnCHyKRfek2wxgNCVrAbMdYPZhYDYy zJKfAlnLm9bEX6qcdj5ANgtsswNstoHNM1Ns6upyNEqrMTDsA8OuJ/KQDfeB 4daDMRxw97va9NnmPLDZBDYfATbDyQlzYhMNhAjkFU2ikeHRxegJYLgxu+EI GI6BYXTRgQ2Lv5aB1zrwenZ2r0UeA1aHtGkVWKoCS4/aLZWApRBYKo+lz6Ov sTBSkB83gJGKLTcUWCEbvmJ8KwSUfqQTDb/3zT8m80sxmZIW1oCRsi0jppEy MBIAI1VZ0g2qniO+dOx4vU3gycKCo5EiMHI4bqQCjPiORhYdjRSAkQ/9XxnB h/BZLJ1wtBQCS+fslqrAUt7R0hKwhI4oyNKou+IHYwTlxrflxjRSA0ZyjkaW HTOSB0bOf1AjFWBk4JiRnM0InojOYmnFmpvAtESLRD9ut6HuRgamjeSKQlzH uKFVNvwU2oXqp6ienN9PAlcdxoEkXLTTGmOp9rKi9K8Ck0FVzCa7BmSXWVbs +P17f0pGjUqaSaGHNjlbdtaB9iJrk/TYkLxgv/rNjppnVHCcqA2A6jEqyoZq MQqNZ4TqMKoAUGhYmyhdvXflt1QFHds2AbTJ0GI2aBtA0UEDQesMLTsmtYih YvH0dfIkeQuQzZsOcvxLekYPHePQpT1wAoqONsqcgNoHgY8nQJbpw3cEjGwD IzEbaWQz0rUZ0TP0SfwOwIeMbwH8Y/Yb1QjvgzzkHY34bKTtaEQ/wug5GskB I7tU+qYRttGd3UbA3eECl2tP3uaY5KLphH641gfccCx82Wxf0mjT3OyAiAPb M4L4+a//miy0rwdAaBqtH8PO2UBjeTtpjB6NEwZkmT6qoHGELixqU/C54cvf +McRx9TEQ8iBZyTPT+lCgScL+nnSJDlmMjqGILJ+Fr1gG7QT5MkUrAAjZTaC jqrHYCQvSwIMAL7G+ArAHwK8/g3JIsDnAT4EeVgERppgOKKzO7on1MxmKeKM LAAjbc5IRvwJgM8BfAwy0pVlTh1qEjyaUKGbdK1s+CJH3wHRLzA+zIZfOmKG UWVkEyCXGInm4AjZno6sgyRXAXxFHwuNYSc/o27WvxRcNq7HDGKDY6wAzJos 807K6dlpG8QRA8Cm8fVJUncAUPpHnAOe6HfYdwHIbhiyv/jd30kK9ciEbA/4 9q2AgAHJIsWRf/3T2pU0SI+e6f7FIr4Uskyn6jRA9Q2Urv7EW/+kKv2x6OS2 LYDyAQo9cNOoVWNoadR4Lo8KLAC0Pb5G1j8UXxtjaE6XGGrz13/5nwS9yt/N GIij5+pHYMSiz/Vpll7004rJuBB6m+PSr3asj3WTWERPJ8iGkUKNEwYS6CKA lgB0k6H6NZYNAM3r0jzmVgE+ZPwcwJcBfoPxA4XftOH1s+pJaIGhXQCtAugq Q1ft0ADEXAL4IuNbAF8H+AHj9etgWza8vqSehJapTH99qjyuWwBKv/6iTfo1 tm0ADUHMEcBXOeYKiLkN8IuM37DjI44ZQesMLQJoB0AXONH6TciTAFpgaACg TYZGANoD0D5HCt4jTaAxSHQO4NuM9wG+D/C90fFr+K1/vUvHMRV26mXatJHA NEKLOiMkcNFIjjLNFnmd5LZlSce/HTutpMPWhNFQXlZjaVK2BcLR7wbv2b41 bXXQXfrpn+fUUX5SQr+XTCt6gvicrB7rWJNaso75UjZp3JY1x04QutKB4UhU oopXZUkI/YI9/QsC+tV7Xe7akp8uqF0z/vcL76H/Aosm7Ms=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{-45., 216.375}, {237.938, \ -48.9375}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"ab093aa8-70ed-41eb-a565-c2af31a42f0f"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"f05e0876-5aab-445d-82d4-\ bdc92c05d985"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Solids", "Section",ExpressionUUID->"bd25b5ce-6186-4ea6-a480-96438a937a3e"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "::", "ID"}], "=", "\"\<`1`. `2`\>\""}], ";"}], "\n", RowBox[{ RowBox[{"On", "[", RowBox[{"JohnsonSolid", "::", "ID"}], "]"}], ";"}], "\n", RowBox[{ RowBox[{"Off", "[", RowBox[{"General", "::", "stop"}], "]"}], ";"}], "\n", RowBox[{"Do", "[", "\n", "\t", RowBox[{ RowBox[{ RowBox[{"Message", "[", RowBox[{ RowBox[{"JohnsonSolid", "::", "ID"}], ",", "i", ",", RowBox[{"JohnsonSolidName", "[", "i", "]"}]}], "]"}], ";", "\n", "\t", RowBox[{"WriteLiveForm", "[", RowBox[{ RowBox[{"\"\\"", "<>", RowBox[{"If", "[", RowBox[{ RowBox[{"i", "<", "10"}], ",", "\"\<0\>\"", ",", "\"\<\>\""}], "]"}], "<>", RowBox[{"ToString", "[", "i", "]"}], "<>", "\"\<.m\>\""}], ",", "\n", "\t", RowBox[{"Show", "[", RowBox[{ RowBox[{"JohnsonSolid", "[", "i", "]"}], ",", RowBox[{"Boxed", "->", "False"}]}], "]"}]}], "]"}]}], ",", "\n", "\t", RowBox[{"{", RowBox[{"i", ",", "92"}], "}"}]}], "]"}]}], "Input",ExpressionUUID->\ "f6f851b6-e72e-474c-87ce-afbfd5612dc6"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(1\\). \\!\\(\\\"square pyramid (J1)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"f3e3007c-af73-47cc-bb54-7af6b703b705"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.02334 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0305098 1.09572 0 1.09572 [ [ 0 0 0 0 ] [ 1 1.02334 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.02334 L 0 1.02334 L closepath clip newpath .5 Mabswid [ ] 0 setdash .36799 .9185 m .9276 .82313 L .74478 .16002 L p .593 .517 .739 r F P 0 g s .74478 .16002 m .19995 .33729 L .36799 .9185 L p .593 .517 .739 r F P 0 g s .9276 .82313 m .36799 .9185 L .29976 .66653 L closepath p .548 .792 .989 r F P 0 g s .36799 .9185 m .19995 .33729 L .29976 .66653 L closepath p 0 0 .214 r F P 0 g s .19995 .33729 m .74478 .16002 L .29976 .66653 L closepath p .427 .125 .348 r F P 0 g s .74478 .16002 m .9276 .82313 L .29976 .66653 L closepath p .809 .645 .68 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{281.375, 288}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2olPFFccB/AVEPFWEBFUDhFQERAsqFxyLoIgiIIIiq6AHJZK8Ui96lFL tUXbYqxWo6mpSdOmTZs0adKkSZMmTZo09l+iO+8NX4c3319mVmLSNJrArrzv 5/vesrDMzpuW0NmhgdHQ2eG+UHrDeGhsaLjvTHrw9Hj4S9HzAoF5yeGP9PSA dX86EJj5pP6lWJ/s/7y5/+a+ff8f6yba+jnZo7/wN74QNT2ypjug7k7b/wJB HfoLoRgrFOXwf2IoVvkY5V88/159hO836NwfyMWp3PxZOTs7E/4d4UWORdnB 8EKtz7MXWq/hb4BLCIwhsE7DXwGXEThfhr8AriAwVoY/AyZEBn8CTCQwjsBa DX8ATCJwoQy/A0wmcJEMvwFcS+BiGT4HXE/gUgJrNHwGmEbgMhk+BcwgcLkM HwNuJHAFgdUaPgTMJnClDO8DbiIwXoZTgFsITJDhp4BbCUwksErDScB8AlfL 8DbgNgKTZDgBWERgMoG7Nbxh3ahXr+LI4FXMuJPAFBleBiwlcK0MLwCWE7ie wEoNzwNWEpgqwzOAVQSmyXAMsIbADAIrNBwFrCNwgwxHABsig4OAjQRmyrAf cC+BWQSWaxgCbCEwW4a9gK0E5siwB3A/gZtk2AV4gMAtBJZp2AHYGRlsB+wi MFeGrYDdBOYRWKphM+ARAvNl2AjYS2CBDIOAxwncJsNawBMEFhG4S8MqwH4C t8uwAnAwMlgKOExgMYE7NVQ36lDzFIElHtAeCkOF2dw7IqsYIhU75YpdpOIk qSglFTvkigFSURZZBXvmy+WKUlLRRyoqSEWJXMF+cCsjqwiRit0eFeoHisEq GZaRudlveg2pKJYrjpKKWo8KtXwG62RYTuZmL431c68Ikoq35IrDpKLBo0J9 BxjcI8MKMjf7c9REKrbLFR2kYq9HhVo+g80yrCRzt5OKlsgq2CFAK6koclSo 5bO5fUE2Y5sMd5NF7yMV7aSiUK5gB1sHPCrU8hk8KMMqMncTqeiIrIIdnR4i FdscFWr5DHbJsJrMzQ6pI6wIkopuUlHgqFDLZ7DHD6wn8IgMa8ii2ZuXox4V am4GjxGYb8JqAo/LsJYsmr3HC73+CrV8BvsIzDNhBYH9Mqwji2bvpgc8KtTc DA4SuNWEuwgckmE9WXQJqRj2qFBzMzjyqvAUgbkmZOdH3pZhkDxadm5m1KNC zc3gaQK3mLCQwDEZNpBFs1NY73pUqLkZHPcD8wg8S+DmOcI9gLkEnvMD2RnF 837gZgLfI3CTho2AOQRe8APZ6daLfmAWgZcJzJkjbALMJPCKH7iBwPf9QHb2 +xqB2RruBWTn26/7gakE3vAD2dbATQKzHNAesl4Pwrd0W+JDuaIZc78yTCFw wg9kWy+3CNyoYQsg2+y57QeuJvBjP5DtS00SmOmAxhPD9sTuyBX7MHc8gXdf FzQWzXYAPyMVG3RFK+ZeTuDnfiDbrJzygMai2UbpPbmiDXMvJvA+gRkmZHu6 X/iBCwl84AGNRxtHKh6SinRdsR9zLyDwSz8wlsBHHtBYdAypeCxXtGPuaAKf EJhmwigCn3pAe+vfXrT18cxLzH6YUZJJ1eaAY3mfvNB7dezRuOKxiLNnzBk3 VrQQkP1g2/Ag5lmKOPsdXG/GVyLOXmdc8UTE2YuwM248ijWAHxG4TsMOzLMO 8Q/8xNMRv+oRN5aVCXhJhp2YJwdxdnS41oznIs6Oe13xAsTZmwJn3HgURYDs LZAND2GeEsTZm7sUM16KOHsD64pXIs7epNvxLsSrEe8l8WQzXo84O1/jijci 3ukn3oI4O51nxw8j3oY4O/O4xowfRJydoHXFuxBnp6PteDfiPYiz0/BJZvwY 4mzTwRXvQ5zt0rjig4iz3Sk73oP4COJsL261GX8H8UI/8XHE2carHT+ibvRQ OG59hH9rZyDbI050QDXPBcTZtrkrfgVxdkGAK34dcXaNhB0/ivhNxNlFHKvM +C3E2XUtrvgk4uyKHTveS76ldwHZ5UxOqOa5h/gSEk8w4w8QZ5egueKPEWdX 5dnxY+RRPAEMD1jHJrabZdQUXyG5yhx6ZA3FTqs/jmroOJlpCqFUOXTH+qwu ZtzoCL18XpW3T3qEiL+GUIEcuohQsSOkJjmHoTJzaAxLsy/jOkGqh+CDcugE Qs2OkL0XOTOkD+nCr1Zu34FQlxxqRahXDjXhMfU7Qi//PCk/rIf6ia9A6LQc 2oHQOTlUiNAlHRogoVws97ocykLThBxKQ2jSEbJPKcwMTemhk8THI/RQDi3F cp/KoQVo+lqHBklIjX/rGFfDP+ovqN/x/9BF0f+n+4F5/wLLnN2N\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {287., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"8fdef724-6578-4367-817a-ff6bbf287e01"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(2\\). \\!\\(\\\"pentagonal pyramid (J2)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"d20ba33f-4a00-4d5a-ad5d-c7551cd7b7e1"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .93438 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -3.33067e-16 1.05877 -0.0125591 1.05877 [ [ 0 0 0 0 ] [ 1 .93438 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .93438 L 0 .93438 L closepath clip newpath .5 Mabswid [ ] 0 setdash .23803 .75397 m .59346 .77766 L .4527 .3936 L closepath p .837 .678 .685 r F P 0 g s .59346 .77766 m .87384 .47266 L .4527 .3936 L closepath p .7 .612 .755 r F P 0 g s .87384 .47266 m .59346 .77766 L .23803 .75397 L p .803 .795 .844 r F P 0 g s .87384 .47266 m .73151 .19197 L .4527 .3936 L closepath p .615 .709 .912 r F P 0 g s .73151 .19197 m .87384 .47266 L p .23803 .75397 L .803 .795 .844 r F P 0 g s .73151 .19197 m .28745 .37186 L .4527 .3936 L closepath p .642 .959 .924 r F P 0 g s .28745 .37186 m .23803 .75397 L .4527 .3936 L closepath p .96 .929 .718 r F P 0 g s .23803 .75397 m .28745 .37186 L .73151 .19197 L p .803 .795 .844 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{294.438, 275.062}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2elLVFEYBvCxISQiCoIiCJLKJXfNtEzTMmdcxjVNs6ymcZtMHZdWbTfb y/Yyy1bbI4IIIoggggghgr72r0zeeaeXPjxP3JH7wQ8Kzj3O+flcGc+955z3 lrh7Whrb3D1ejzvC2eX2tXg93RGOjq7xt+xhNltY1Pj33Aib0fbbbH9fAl/R xkvwh6n2VHuStn8Zh2nGuC2TN34aB3tgINv9Y2O//cERbSuV/h/6C9ONbpvd r0N+vNslaExDwjn6rkkzASoW9E3RLI6+6unmAFQk6IsmzeXosybNA6hQ0CdN WsDRR01aCFCBoA+atIij95q0GCCnoHeaFMnRW02KAcgh6I0mxXH0WlEiQPmC Xujpkjl6pklpAK0XNKpJ6Rw90qRMgPIE3dekbIDWCRrRpFyOhjUpD6C1goY0 ycHRDU0qBChX0DVNcnF0RVEZQDmCBvV0FRxd0KRqgNYIOqtJNRyd1qTNAGUL GtCkeo76NckNUJago5rk4eiwJjUDtFpQnyZ5OTqgSW0AZQrap6iDo916ui6A Vgnq1qTdHPk0aR9AKwW1a1IvR62adAigDEFeTTrKUZMm9QOULqhBk05y5Nak MwCtELRNk85zVK9oEKA0QXV6ussc1WrSdYCWC6rWpJscVQUO0mXMvgYcAjzV Mn4b8BTL+DDgycI3AH4nNH4X8CTL+AjgiZzfAzzBMn4f8HjhlYA/CI0/BDzO Mv4I8FjL+GPAl1nGRwGPEV4B+JPQ+FPAoy3jzwCPsow/BzxyQrwc8JeAL7WM vwJ8iWU8xD/mRWifDPogozhH/9XgmCkzyWM4RyNyGefo8ojlHF18cZyjSzue c3SfSZgQLzXJEzlHt9QkztH9PZlzNHukcI7mplTO0US5nHM0DadxjtYEwRVc iUmezjlaoGRwjpY/Ky3jaOm2ivNbgGdyjpadwW2MyyTP4vwG4Nmco4XyGs6v AZ7D+VXAczm/AvhaztFOIFgVKDaZ/h+O0vM4vwT4es7RVief84uAOzi/ALiT c7Q5K+D8HODBcluRSV7E+VnAizlHu0+XZfw04CWcnwK8lHO0vQ7WfwtN8nLO BwCv4PwE4JWco/rBBs6PA17F+THAqzlHFY+NE+IFJnkN50cAr+X8MOCbOEcV oDrODwK+mfM+wLdwjmpW9cKdJvlWzg8Avo3z/YBv5xwV5dyW8b2A7+B8D+Ae zlHVsUG4wyRv5LwH8CbOuwFv5hyVVVs47wTcy7kP8J2co0Jwq/B8k+n/4Sh9 F+ftgLf9w2cYPahS3i4oMNPMNnrQc4AOQfWKnAD5BO1SlAFQp6BeRdEAdQk6 o2g+QN2CbilCzyl7BD01DuFGz155I9A7iZ7hTrUnT9sW9geVkdgA\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 293.438}, {274.062, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"365200d6-5711-4603-be0d-da2cfeee07ad"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(3\\). \\!\\(\\\"triangular cupola (J3)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"36266263-87e7-4df3-a101-c192b326cf56"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.1739 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0951554 1.20352 0 1.20352 [ [ 0 0 0 0 ] [ 1 1.1739 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.1739 L 0 1.1739 L closepath clip newpath .5 Mabswid [ ] 0 setdash .19479 .60376 m .31323 .86567 L .32072 .52296 L closepath p .986 .774 .533 r F P 0 g s .32072 .52296 m .56526 .28961 L .46565 .34334 L p .636 .933 .683 r F P 0 g s .46565 .34334 m .19479 .60376 L .32072 .52296 L p .636 .933 .683 r F P 0 g s .56526 .28961 m .32072 .52296 L .31323 .86567 L p .537 .39 .628 r F P 0 g s .84461 .39039 m .56526 .28961 L p .31323 .86567 L .537 .39 .628 r F P 0 g s .85822 .77585 m .84461 .39039 L p .31323 .86567 L .537 .39 .628 r F P 0 g s .31323 .86567 m .56867 1.01612 L .85822 .77585 L p .537 .39 .628 r F P 0 g s .56867 1.01612 m .31323 .86567 L .19479 .60376 L p .235 .43 .849 r F P 0 g s .46565 .34334 m .56526 .28961 L .84461 .39039 L closepath p .504 0 0 r F P 0 g s .19479 .60376 m .46312 .7434 L .56867 1.01612 L p .235 .43 .849 r F P 0 g s .19479 .60376 m .46565 .34334 L .46312 .7434 L closepath p .509 .359 .613 r F P 0 g s .46312 .7434 m .85822 .77585 L .56867 1.01612 L closepath p .733 .748 .864 r F P 0 g s .84461 .39039 m .85822 .77585 L .46312 .7434 L p .775 .576 .631 r F P 0 g s .46312 .7434 m .46565 .34334 L .84461 .39039 L p .775 .576 .631 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{262.688, 308.312}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2ulTFEcYx/Ex3AKKKIp4sCincgisXHIjqBER4xkVEVGDGm+NSSplkrLM ac7yZV7m3/Bl/g3/FbLTT+/DLnx3sk9IKnkBVTs7TPfv0z3DzjDb0yfmnizc uDv35Nb8XOzIo7kHC7fmH8cm7j9KbMpZFwTr8hOveCwI1xeDILlwPwXhwv+y tr62vrb+n63/Gr7lhOfmQ9nwc/j2TrghZ/FFuEis3ZOiH7WoUIvuSNErLSrV ogUp+t69uS1hUfgKyrTSDan0rea3atE1Kfpai3Zo0awUvdSiWFjk1mak6IUW 1WrqohR9qUVNWnReij7XolYtOiNFz2E32rXSKan0mea7tWhKij7Von7t66QU fRy+5WuRSx2TomeprV78zV1Dcxf/eP17UbjapdUnpPpH7i1Xq/tIaZgoXEzr 8Zgknrq3vLREsqEKjTVrbFhiT5b1K/FK7FK4lG2JYPhK/MmSfa1XYkCIx0Dk AFGrvahRok+IR0DkAtGsxE499j1CPAQiD4i47kiF9uKgEA+AyAdiQHux9PHv EOI+EAVAjCtRrESbEPeAKATihO5InhLNQtwFogiIc+GyWE4gF/wQgusheCVc uk9nowTvQLAYgnNuKdv8T+ID5YjbQJTYiFtAlNqIBSA22IgPgNhoI24CUWYj bgCxyUZcB6LcRswDsdlGXANii424Gr65i8U2W3AW2jYSV4CotBEzQGy3EZeB qLIRl4DYYSMuArHTRrwPxC4grgFRJ8QFIHbbiPNAVNuIc0DEbMRZIGpsxBkg 9tiI00DstRHvAVFrI04BUWcjpoGotxEngWiwEVNANNqIE0A02YhJIPbZiONA 7LcR7t45eRdvCR6Fto3EESDabMQEEAdsxDgQ7TbiMBAdNmIMiE4bMQpE3EaM AHHQRgwD0WUjhoDothGDQPTYiAEgem1EPxB9NuIQEIdsRB8Q/TaiF4gBG9ED xKCN6AZiCIh5IGqF6AJi2EYcBGLERsSBGLURnUCM2Qj3fdpd+sf/VrD39luX Njbrep6jaeOhS93vBBG+gqWuGD8NccCWekYfcCOWpxids0aswPfvr65pWX52 01g/zLNqrEgxuuZneWImsfWK0b8xI1aiGP1njsC6AStVjG42jNhGxej+KQLr AaxMsebVY+WK0Y1pBNYL2GbF6F7biFUoRl8fjNg2xegbUQTWB1ilYvQlz4hV wSlPX4Ij2EOZWNfHfwDbqRgNEkRg/YDtUozGPYxYtWI0lBOBDQAWU4xGp4zY HsUqVo/VKkbDfhHYIGB1itFIphFrUIwGZyOwIcAaFaPx5uuA7c2M7VOMhtAj sGHA9sNZSo8TjGyz9tGIjQDWohg9bjFibYrRE6QIbBSwA4rRQzEj1hEu3aab tmA8XBaEm65mDo5BsDPlj//mzdvwlTgqiWVpuOm0DYsDVqbYRGbscJY926VY 7+qxfYo1Z8bGs8S6FKtePTamWHlmbAKwDsCmFcuzYdSzy+HSPb+GEayo4Kxb prcN42hRxAwQ9TbiMhANQhwFgg7nJSAaMxPUiwvh0l0y9kvwWJZtn4e2Iwhq +ywQ/pnwu1n24gwQLTbiNBCtmQnakWk9iO0SPJ5l2yehbSMxBYR/vD+ZJTEJ RKeNOA6EfPFOG9+PIo7qQey2BY9A256YAqIdiAkgejIT1IvDQMg3pLTnLFG9 GNUj0G8LjkDbEQR1fwgIP2NmOsteDAIxmJmgXvQDMSSEe2TmBx1WBvv00Mkd iTzn88MKK6v3Qjs+eBa62gpENxB+ctM5bZuCXRCU2wR51uuCLRCMQ1D+i6c9 qk67L19GdOhhkv8P8pjcD0usrN4OLfrgjAabINgGQT+1bFaDDRBshaBchYM5 2MdaIFqAkIupTM5wbddlugdzpX7u3HWtvheqN0E7PngTuloDRAMQcsLKtBzX NgXrISjnmMwq8gMSK4N1EPSTCO9ocDcE9+jB8RMTU2dtJfdxBwRroEVP3NMW KRiDoJycMvXNBasguBuCMn9BZu65YGWmO/plQT9DM3XiYXJvtwJRpYfJz/p8 qi1S9e3Qog8+0+AWCFZCUKa8BJ9AV8uB2AqETLxJmTRKwS26j7NSfWn6aRlU 3wzt+OBzDW6E4CYIXpXgF7CPJUCUASHXkZTpuKUQ3ABBPzF4aYpvMQRL9OD4 KcYvoauFECyGFj3xlbZYBMEiCMoFKPhGgwUQLISgzAYMvtNgPgTzIehnXb+C vc0BIlcPk5/J/YO2SNVzoEUf/EmD7tmVn1Psg+6V+D05lfyXZd0LXGylLRc3 maXubOlBso6fOBu8TuGSUV/kfvkfTbhfW//31oN1fwKCXSrY\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 261.688}, {307.312, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"4a24d2a6-0dd2-4e44-930c-318d6d31ea25"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(4\\). \\!\\(\\\"square cupola (J4)\\\"\\)\"\>"}]], "Message",\ GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"036a08f2-6280-4884-9cd9-9c192268303a"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.09778 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0600102 1.19387 -4.44089e-16 1.19387 [ [ 0 0 0 0 ] [ 1 1.09778 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.09778 L 0 1.09778 L closepath clip newpath .5 Mabswid [ ] 0 setdash .35176 .74554 m .57404 .68555 L .35508 .51091 L closepath p .801 .544 .55 r F P 0 g s .76774 .80073 m .57404 .68555 L .35176 .74554 L p .653 .245 .259 r F P 0 g s .20427 .35095 m .35508 .51091 L .57404 .68555 L p 0 .363 .828 r F P 0 g s .21244 .29141 m .20427 .35095 L p .57404 .68555 L 0 .363 .828 r F P 0 g s .41701 .39942 m .21244 .29141 L p .57404 .68555 L 0 .363 .828 r F P 0 g s .69458 .62149 m .41701 .39942 L p .57404 .68555 L 0 .363 .828 r F P 0 g s .83384 .78805 m .69458 .62149 L p .57404 .68555 L 0 .363 .828 r F P 0 g s .57404 .68555 m .76774 .80073 L .83384 .78805 L p 0 .363 .828 r F P 0 g s .35508 .51091 m .20427 .35095 L .19174 .59324 L p .955 .686 .486 r F P 0 g s .19174 .59324 m .35176 .74554 L .35508 .51091 L p .955 .686 .486 r F P 0 g s .35176 .74554 m .54264 .872 L .76774 .80073 L p .653 .245 .259 r F P 0 g s .38596 .71856 m .54264 .872 L .35176 .74554 L p 0 .265 .742 r F P 0 g s .35176 .74554 m .19174 .59324 L .38596 .71856 L p 0 .265 .742 r F P 0 g s .54264 .872 m .83384 .78805 L .76774 .80073 L closepath p 0 0 0 r F P 0 g s .19174 .59324 m .20427 .35095 L .21244 .29141 L closepath p 0 0 0 r F P 0 g s .69458 .62149 m .83384 .78805 L .54264 .872 L p .648 .776 .941 r F P 0 g s .54264 .872 m .38596 .71856 L .69458 .62149 L p .648 .776 .941 r F P 0 g s .38596 .71856 m .19174 .59324 L .21244 .29141 L p .372 .359 .715 r F P 0 g s .21244 .29141 m .41701 .39942 L .38596 .71856 L p .372 .359 .715 r F P 0 g s .38596 .71856 m .41701 .39942 L .69458 .62149 L closepath p .633 .594 .793 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{271.688, 298.25}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmvtPHFUUxwd2l8fyliL2Ad1WLEUK4kJZWkp5tTwLaKuiiNotRaC1lrbY aq1p66Ox1lifidEaY9TEGGOMaUyMIcaYxpioMca/xV/rzD1nzs7Ofi/MFX/o D5Ds7Oyc8/18z9y5M3PvDCPJhdnpY8mFualkrP9kcn52bupUrO/4SXtTKMuy skrsz90xy1m/aVnuQv2VOgv+sbq+ur66fkuv73C+sp3z9++0DRMT19XWvzxb rbCzxQm5H5Xypzcl5E2xf7lJf+iTIpL0GyW1SU35TJGrix3+1Z8UFX1GqFBC v3hCPv8iSbqhTyqRpJ/1SWWS9JM+qVySftQnVUjSIiUlZJ/WSugHf2i9hL73 h6pAS37nT6oWfUYoJqHr/tBmCX3rD9VI6Bt/aIuEvvaEfM1QK0lf6ZPqJOlL fVK9JH2hT2oAjfQ5pbdK4U1CygjFJfSpP9QioU/8oVYJfewPtUnoIxjiWj+7 9rvzbV3DSWFJ4sQPcV4kLc+FfrCcs/2xsp2lir4fJD2slukN/Z5H6DsurQCR AxDvmiFyAeIdM0Se7LehMAq83zRDFADEVTNEIUC8YYYokhZg4fYlj3wJcLwS RFgKhK8FEZYB4eUgwttkzzLSEyC9AvhcCiK8HQhfCSKsBMKXPcIAR+8O2UdD 4TrgfdEMsR4gLpghNgDEeTNElbSAoXAj8D5nhogBxPNmiE0AcVaP2A4Qd0oL sLBlyV53F3A8E0S4BQhPBxHWAuEzQYRbgXDBIwzQvnXSOIbCeuB9wgyxDSDm zRANAHHcDNEoLWAobALeT+kRqGvGAeKoGaIZII6YIVqkBQyFrcB7xgyRAIgn zRBtADFthtghLcDC5iXPu3bgeMgjDNB5dgFE0gzRARAHzRC7Zb+XEKIG6wbe j5khegBi0gzRCxCP+g8g2u89st+cju4lzUDYBxwfJkRqRoCE/UA4TsLUnDEO hANA+BAJ1cRaRZqAcFD2kdO9zzis7kX6tuzrX6Z2GJgeIMpOP4VIDYCyD1D2 E6Xd095MsVSt9YAzAjj3E2eX+oqkV0MV0bwZodQmLqQD7U73oqqlFgCGBGBP CW/846vqPoLuxntnL9N7WI2uo6hNOcBgjAw6dQappxKox6tNUYAdJWwXwIZA 3ZuAQZezVO1YDAxGyKBbZ6DqRtgOqbscYPcRtkfOoIjANgLYToFVAtgwwfaA GsOgETbo7mZq0zq9wV6dgaobYVsEWw2wQ4TtA9gIqHutbiijDt5mYDBIBv06 g9RjOzQ6C9GplIkdIOwAwOaAuit0g9AQXTcyDahgLh8YqLoRdqtgG/XYIYDN FWw5wNZIK8cBlo4fd5J0bB5ojlLdZEltSgAD6nd8zgADVTfCVgu2HWDpfOEz PB2bD+ou0s2U1aZOYNBLBqM6A1U3wlZKe/cCbA9hxwA2CuqOAoM1Une/3kDd E1SNBVItgpUJbBjA6MrJd63lq80FBsViMAYM6NrPd3lgoOpG2ALBHgDYTsI+ ALCp5ggDbJ4cvHGApTus9SDAFroXplRzqI+l6ndrnQRQGgvwcAlAVa1WyKXx qMQlPqEnjgNiER+1dJi9NgU4NMzhkSbgqMpmgJDGWdYjQFjs6Ta2UImnAYIG fNbEChA08uSx9vKIw3rE5AoQ9B6Kpyn/DUEvVazHV4Cg5852b7nJV4WSgEKa ovAkEfel5RA0HaapqvJGRaP+x8LDujMjAILmdDS/5it2MGGchDPAuyAg4l5C zIp30KKbSHgEeEcB4pAecVS8UdFIeA8JjwHv/ICIRkI8Ld5Bi24g4TzwzguI 2EaIE+KNij7oLNUmdjwFHHOBcFKE3L4L4oMKVLcQdTPhbnga+OQA4X4R8ql/ RnxQWaNSFl94nwM+ESAcFB++s50VH1TWXvHhQcY54BMGwi7x4dHgC+KDymqX dJ4DnAc+ISBMSIE887sgPqisuPjwDPpF4JMNhI3iQyMM6yXxQWXViQ8/e6H3 UPj5Qa2w+SHRJWGjUmLCptuD9ar6ynhSUiV5/MjwsmCpZpfqvLziAviJ6BV/ q9h/awQ3R0mvO18qp1T0dBGhN5h8EXJV/MD9qqe/uSF+I/CWx9XdWfXrWYq/ LVJ+t6MuALfQ/wCtrq+u/1/rVta/qKZfqQ==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 270.688}, {297.25, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"db32bf6d-ff9f-42e9-9ded-5bf593df87f7"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(5\\). \\!\\(\\\"pentagonal cupola (J5)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"0c659af1-2465-4162-80ae-234c7f90d85c"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .8708 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 1.66533e-16 1.05452 -0.0412103 1.05452 [ [ 0 0 0 0 ] [ 1 .8708 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .8708 L 0 .8708 L closepath clip newpath .5 Mabswid [ ] 0 setdash .3904 .59344 m .44068 .5652 L .2829 .46638 L closepath p .811 .343 .106 r F P 0 g s .62498 .63025 m .44068 .5652 L .3904 .59344 L p .603 .059 0 r F P 0 g s .19964 .35919 m .2829 .46638 L .44068 .5652 L p .414 .649 .954 r F P 0 g s .23567 .28028 m .19964 .35919 L p .44068 .5652 L .414 .649 .954 r F P 0 g s .40359 .27181 m .23567 .28028 L p .44068 .5652 L .414 .649 .954 r F P 0 g s .64005 .35067 m .40359 .27181 L p .44068 .5652 L .414 .649 .954 r F P 0 g s .8232 .47889 m .64005 .35067 L p .44068 .5652 L .414 .649 .954 r F P 0 g s .87031 .5902 m .8232 .47889 L p .44068 .5652 L .414 .649 .954 r F P 0 g s .78676 .64269 m .87031 .5902 L p .44068 .5652 L .414 .649 .954 r F P 0 g s .44068 .5652 m .62498 .63025 L .78676 .64269 L p .414 .649 .954 r F P 0 g s .3904 .59344 m .58942 .66432 L .62498 .63025 L p .603 .059 0 r F P 0 g s .58942 .66432 m .78676 .64269 L .62498 .63025 L closepath p .321 0 0 r F P 0 g s .2829 .46638 m .19964 .35919 L .31085 .49019 L p 0 0 .501 r F P 0 g s .31085 .49019 m .3904 .59344 L .2829 .46638 L p 0 0 .501 r F P 0 g s .87031 .5902 m .78676 .64269 L .58942 .66432 L p .485 .873 .97 r F P 0 g s .65848 .61217 m .58942 .66432 L .3904 .59344 L p .373 .642 .96 r F P 0 g s .47792 .49555 m .65848 .61217 L p .3904 .59344 L .373 .642 .96 r F P 0 g s .3904 .59344 m .31085 .49019 L .47792 .49555 L p .373 .642 .96 r F P 0 g s .58942 .66432 m .65848 .61217 L .87031 .5902 L p .485 .873 .97 r F P 0 g s .31085 .49019 m .19964 .35919 L .23567 .28028 L closepath p .093 .251 .736 r F P 0 g s .65848 .61217 m .8232 .47889 L .87031 .5902 L closepath p .728 .841 .935 r F P 0 g s .47792 .49555 m .31085 .49019 L .23567 .28028 L p .463 .5 .812 r F P 0 g s .64005 .35067 m .8232 .47889 L .65848 .61217 L p .674 .705 .871 r F P 0 g s .65848 .61217 m .47792 .49555 L .64005 .35067 L p .674 .705 .871 r F P 0 g s .23567 .28028 m .40359 .27181 L .47792 .49555 L p .463 .5 .812 r F P 0 g s .47792 .49555 m .40359 .27181 L .64005 .35067 L closepath p .615 .595 .807 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{305, 265.562}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmttPVFcUxo/ODMxQgYFWdFCuVUBEboOIgheu3qDetd6qSFWwUi1Q05am TSVtYmJi2rRp05KYmJqY3tKmvvon+NhX/4Q+9pWevdfm48zw7WFPSZOmwWTO 2XNmrd/3rXUu+5yDQ8NTo1fHh6fGRoYr908M3x4dG5msHLg14W8KrfK8VS3+ J1bpqfGc580v9L9WtTBfVsYr45Xx/2o8rlZxdb4/lQ0n1SqhNuTPTU4/90Jq ODc7+1x95NtvErlfrfLVhloSuVot9aZfAuEmyA/XKS0kMYLEHyVxIJAY736m r02tJDGKxCf2xCRJzEPiY0ns16swEk0yy81H7qNgbiQlN5PrOAAPBdCX5tr/ +M1Uy6V7V6yW2vd3y4eVwNk3dliIwJoJLAHYVwLrJbCwo7MNgH2xfFg5YA8E 1kNgOY5lVgF2PzsYc/YqYPcE1k1guY6wGhwan9phUccy6+HsrsD2EVjM0VkD YB/bYXmOzpoA+1BgewnsJUdYK2DvZwdjZbYBdscOW+PobAdgkwLbQ2D5jrBd gN3ODsbK7AJsXGC7CazQ0VmnmRHUtp+evsBHXUxvLh+/a2FOm0f73/zlarXp hgh0EYG4YzM6iECOkcEdtk+/bpcqyuaISJOKEqlr9raxqphUO5HKQ9uu2Y8h V4E2IpBPahmxn0iuh0CSSBWilhH7Bakgm2tImkAxqeVyQEpruzZLX/F0Rgl8 Xw5c4vUG13Y0ErfriduL9tnN9ULRQKRKUcFF+8TuelnbSgTKSC3nAlJa23XX 1hOBCiJwVgT6IODaojoiUIUWGWx/RizzXUuwm4jv0yIwAAHX2amGCNTAt8EG nwcyzfKsMZuIwBZSwYmAVFYVVOOk2gbfBnYAMNfbiCritom4PSoCB7MWqCAC LUTgiAgcgoDrXVU5EUiiMQZ7GFh258ewZQTbTnwPBgTMT543o9bOUhuIVAcq MAKDWVdQSrCdpIKDIjAEAdc77QQR2A3fBvta1tgSHN89xK08OMt+1UHsIYNh 1xK3vUSgPyCQtkNdn7ReIVL9aIwROLoMgWIicIDUInOgd4xIRRyliojUIdRi BI5jb7AKmgg2TrBDpIK9AYF/WEEBkTqCCozACSLAntKZQD4ROE5qkVtoeYvl IMXatoZInUQtRuAUEXB9FxLDyXeWVLBTBE4TAfbmhglESQXniFSHXYrVwpqV S6QuoFlG4MwyaokQgUuklu0i9bpeRYJSGV+/hQn+Mvy3C/RsBii7PQnZoGbb sz/+1LkGLzeg4RQ87EaCZP1RmVc0LQLa/Ef9ZjpxnjRdkOEUJGihIM3fP2qZ 2uOkjTzjz6/+t3VpvfAs7JCdfYG4Lp079/1fpWq4sGdyCcK80r5IEEmFYIdp mrMM2DdsWO3nPIHFCKxFYJcIrI14PEOweXasfu7TfrbD2Sn0rIAkNkviMBLb iYtjxMVSsLTi2uHnKIEV2mFXCGwH8ThIsEUE2yTYERtWezxMYMV22Jvo3k4g 9qPtJSSxURKvInEXKamXuMgAu5YKW3R3N49YtwQirSudxNkegk0Q7DbBXoez LjjrQn822hNHkbibuOggLsoIrEFgY6kwPdpBEOV2xA0g9hA/SQKrsMPeSoWt lmv+YkQVQWxNR+wjfhYeXTfZETdTEXrUQFxsJoh6QYwD0U1c1BFYjR32dipM j2oJoo4gtgjiVuAo9hHaE3NWjf5stcNu22A6sYo4ywB7h8B6iLMygt1GsHUB rPbTB2cbCaLRjpgAop/4WU9gzQRWK7BJUuaCs4XXlEk7Yoog+oF4mfjJAHuX wAZImYW2MnPUJtOpOzaYmWMth2pMbQrNTb+Y4zvgPbXSvzBnMfSsGrA8BTOH r0ZMA7HQ7CjxkwCimPgxsI8A6yV+wrbZVmMTcGbmlU9wdPXAWch2x6QRlUCY +4AZ+Ek/lT0Nm0+sIyUZxGdA6Auu3qlN0DE3oPcQFJyS/SDNbSV0k3gfie0k sQU65qb/AVrSipYkCd2Efw56Y0a6eXr8EuH1JLwZ4Z0S/jXCNwemosVmTPi3 8F6dkS5/A/JmQS+3hafpmMSHSCwliQ1qGZEjQoc/QvhaVFGjgmJyWumgxwgq IsxytYyqTeal5hOUWkDCS0CXR1zvB9BjsBBHkPmzzM8IihBmFBbGJPxXhPuR 6opjouVqkqu+yrzi/a5XYeA8eZD8QH7Vrf0P/dejlfHK+N8Ye6v+BjbRtNU= \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 304.}, {264.562, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"8f0ed33a-b3a6-45e3-a9e4-5d030a825022"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(6\\). \\!\\(\\\"pentagonal rotunda (J6)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"c662ed4f-d8f6-4b3c-9827-fa2dfec20521"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.02199 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0297343 1.10197 0 1.10197 [ [ 0 0 0 0 ] [ 1 1.02199 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.02199 L 0 1.02199 L closepath clip newpath .5 Mabswid [ ] 0 setdash .45463 .64215 m .53826 .47644 L .35242 .48085 L closepath p .747 .592 .684 r F P 0 g s .53826 .47644 m .45463 .64215 L .58082 .75762 L p .624 .444 .619 r F P 0 g s .71709 .4779 m .53826 .47644 L p .58082 .75762 L .624 .444 .619 r F P 0 g s .38443 .76767 m .45463 .64215 L .35242 .48085 L p .855 .609 .566 r F P 0 g s .35242 .48085 m .2082 .49025 L p .38443 .76767 L .855 .609 .566 r F P 0 g s .2082 .49025 m .22314 .67543 L .38443 .76767 L p .855 .609 .566 r F P 0 g s .22314 .67543 m .2082 .49025 L .15983 .50254 L closepath p .984 .717 .34 r F P 0 g s .53826 .47644 m .71709 .4779 L p .15983 .50254 L .124 0 0 r F P 0 g s .35242 .48085 m .53826 .47644 L p .15983 .50254 L .124 0 0 r F P 0 g s .58082 .75762 m .45463 .64215 L .38443 .76767 L closepath p .712 .424 .487 r F P 0 g s .15983 .50254 m .2082 .49025 L .35242 .48085 L p .124 0 0 r F P 0 g s .58082 .75762 m .75035 .65345 L .71709 .4779 L p .624 .444 .619 r F P 0 g s .75035 .65345 m .83905 .48536 L .71709 .4779 L closepath p .408 .3 .619 r F P 0 g s .71709 .4779 m .83905 .48536 L p .15983 .50254 L .124 0 0 r F P 0 g s .69586 .78687 m .75035 .65345 L .58082 .75762 L closepath p .423 .116 .337 r F P 0 g s .58082 .75762 m .38443 .76767 L p .55783 .81977 L .364 0 0 r F P 0 g s .55783 .81977 m .69586 .78687 L .58082 .75762 L p .364 0 0 r F P 0 g s .83905 .48536 m .75035 .65345 L .69586 .78687 L p 0 0 0 r F P 0 g s .38443 .76767 m .22314 .67543 L .35255 .80561 L closepath p .775 .274 .007 r F P 0 g s .38443 .76767 m .35255 .80561 L .55783 .81977 L p .364 0 0 r F P 0 g s .84957 .4975 m .83905 .48536 L p .69586 .78687 L 0 0 0 r F P 0 g s .83905 .48536 m .84957 .4975 L p .15983 .50254 L .124 0 0 r F P 0 g s .35255 .80561 m .22314 .67543 L .15983 .50254 L p .146 .324 .786 r F P 0 g s .69586 .78687 m .75376 .69992 L .84957 .4975 L p 0 0 0 r F P 0 g s .55783 .81977 m .75376 .69992 L .69586 .78687 L closepath p .714 .976 .92 r F P 0 g s .35255 .80561 m .38232 .71712 L .55783 .81977 L closepath p .481 .706 .968 r F P 0 g s .25292 .51334 m .38232 .71712 L .35255 .80561 L p .146 .324 .786 r F P 0 g s .15983 .50254 m .25292 .51334 L p .35255 .80561 L .146 .324 .786 r F P 0 g s .47345 .51676 m .25292 .51334 L .15983 .50254 L p .124 0 0 r F P 0 g s .71397 .51016 m .47345 .51676 L p .15983 .50254 L .124 0 0 r F P 0 g s .84957 .4975 m .71397 .51016 L p .15983 .50254 L .124 0 0 r F P 0 g s .75376 .69992 m .71397 .51016 L .84957 .4975 L closepath p .924 .825 .73 r F P 0 g s .71397 .51016 m .75376 .69992 L .55783 .81977 L p .748 .728 .834 r F P 0 g s .47345 .51676 m .71397 .51016 L p .55783 .81977 L .748 .728 .834 r F P 0 g s .55783 .81977 m .38232 .71712 L .47345 .51676 L p .748 .728 .834 r F P 0 g s .38232 .71712 m .25292 .51334 L .47345 .51676 L closepath p .593 .542 .767 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{281.375, 288}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmstPG0ccxxfbizE2No4fGBuMIY+aR+wADRBCXjxMyKNJSdOStmlwkkqk VUWVIFVV/oCqao9t/4NKvfVCjxx77DH/Ro69uvOb3zLY3u8441g4PRhpZ8bz +HzmNzvr3RW+Xd7b+fKb8t6zJ+Xc+vPytzvPnrzIlXafiypvl2V1DYojl7Oo XLGsw0T+pSlxPnTKnXKn3Cl3yp1yE+UfKcuLgrXDFbvcKCrylZRljVGpxE1b lA1QxVNqilLpPDetUhanip+pqYdKZ7lpgbIQVfxBTZa3ou5fonmCO0mMbPkL dBrnTtOU+ahlnzp1U8kZX1Dj/6SmAJXsyutXB3WkPHefosymlt+pey+V+kD3 8Zruuc1//NT8q1IM6MfI6PtojOy5R2OSVBoBYyaqxjhNYiAdVozSk1RVVOcj Wjk4eOX0EzAJHG0Om5Qp1/3y0990WMOUFqlqFghyQDBZtfoGgkWZcp0QSMky UKElaqAaAKoFoFoBqixQTbVdVTRUzQHVKlANA9VZvSoFVOdbV50zjAqp1oBq qDkVimoWqEpAlQGqgl41CFQzraumDaOaBqp1oEoDVVGvQlGda5+qCFQbQJUC Kj5J4hyYqQrHo0oD1RRQ3QAqdGvhlROb2CyqY1KhqCYNVUmgmtGrMkA1DlS3 gCqhV71vGJWpKg5Us3oViuo9oLrdumoIqM4YqmJAxQ7nqe/NUZ0Gqg9aV6Go TgHVHaCKApXzEDtnqBoDqrvvVtUPVHN61TBQjbaumjdUjQDVJlBF2qcKA9W8 XpXVPT7Xqe41p1owVA0ZqtA7zUJzqgxQfdSc6oKhKg1U94EqCFQXmlMNAtXH ratGgCplqOoFqkVWLRqqkkD1ybtVBYDqol6VA6oEUG0BVY9eddFQFQOqB0Dl B6qltquWDFVRoPoUqLqB6pJeNQpU/e1TRYDqc6DyAdVlVl0yVIWPRzUGVCGg eghUXqC60nbVZUNV8HhUJ4EqAFSPZGpXq+QhPlvLjL9iGMlb4q8a4v0Avy1T Xw1elFeYfM1wDzdPXjYk24Bcrju5tBSrjF0xxPoA9jGlnsoRbNXwK9DbELbG sDVDmOcNAe9XXsuAHWxJi7WrsfKgYWU1LzHIYUmEw1sHPL5F+2p4orytUB4i 1V1ZDu+6lncUNk3mUV2IBGyA3dBh5Xweqpn5AML5h8MNgMhWRfpy/1+Zi+OB 4tmAx0tm3QS86rcu4olDREWp/kH0MPoGqltAlQEqL6Vy3vdUBH6A5ZMk3tPd 2DTA2gp7F8y7Gwj4dIm3c7cgBQQ9YIluqggCesEdIBgAgoCKYENhewGW94gI 041NAmxQYUtgYdC8edNYHwJBHAjCYGGuqQhCesEmEMSAIKIiuAoiCAIB70Wx wdyCE0AQVYIlNe8+gOW9KF4G3dh+gI2DhZlXgohecB8IIkCQUPOeAwsTBgLe 7OJtzC3oA4KUEsyoefcDLG9x8TrkxoYANq2wBYU9ocduAWwQYIfAek+AhYkC FV9N4kvVrQoAVVZFkFcRxACWryHxQuDG9gBsTmFPg3k3EHwGBH4gGANLlFMR JICAL1Lx8O8W2EBwSkWQVdg4YWU33tjiVuiG+QDsjIJlwHLIjShvi7xBrC8A 1guwebAIydrrUmI5ZvEUQJldjZUHPSFMqRkmdF9NErXNKJmhKR1xorXf/XL0 Ux5dpswDRhdAQKHaW5NsdH7w8Jgy+YOFSaUN6m72cgJf88CvKIvwyT0c6K99 rJHdd7n795SF+eJ2T9BT+6QmB77ggT8oj095xGgaafHDD7O+4+6/qXhecoXc uf+jn5x0yp1yddnq+g+yLsKg\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {287., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"d277d9f4-59e5-4f9d-8a96-5a623efe97f6"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(7\\). \\!\\(\\\"elongated triangular pyramid \ (J7)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"61db45a2-0743-4189-96d1-909c93783e34"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.13596 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0777715 1.22529 1.11022e-16 1.22529 [ [ 0 0 0 0 ] [ 1 1.13596 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.13596 L 0 1.13596 L closepath clip newpath .5 Mabswid [ ] 0 setdash .87259 1.01675 m .79519 .69808 L .68065 .63469 L closepath p 0 .036 .602 r F P 0 g s .3978 .31497 m .68065 .63469 L .79519 .69808 L p 0 .137 .665 r F P 0 g s .87259 1.01675 m .68065 .63469 L .43983 .93524 L closepath p .76 .533 .589 r F P 0 g s .12348 .59762 m .43983 .93524 L .68065 .63469 L p .82 .623 .637 r F P 0 g s .68065 .63469 m .3978 .31497 L .12348 .59762 L p .82 .623 .637 r F P 0 g s .79519 .69808 m .46713 .32477 L .3978 .31497 L p 0 .137 .665 r F P 0 g s .12348 .59762 m .3978 .31497 L .46713 .32477 L closepath p 0 0 0 r F P 0 g s .87259 1.01675 m .43983 .93524 L .79519 .69808 L closepath p .684 .72 .877 r F P 0 g s .46713 .32477 m .79519 .69808 L .43983 .93524 L p .642 .616 .809 r F P 0 g s .43983 .93524 m .12348 .59762 L .46713 .32477 L p .642 .616 .809 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{267.062, 303.312}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2stXVXUcBfCroqao+c50WUSoqIAoIspDEBDkJW8EUeTykqsiiuQrM9PM 1NJltdLWqgatBg1q0qSRkyZNatCoSZMm/hvG7+yfe3Fsf4/HWatsLfnd7u+z 9/fCvR7OPdem5OTo8FhyMjWYzKidSJ4aTQ2eyagZn5i6a9aMRGJG+tSfLRkJ d/txIvHkS/DfAvfF/8+L2y9uv7j9n72dckua+7v/9bQ70t0d93HHqFuWujvu 4Y6jblnp7riDO0bcsiI4fsx6/O2Xvz32B5LEx9gf5n6wPfWVR5qp7dtAQ0Sz BboFNEg0V6CbQANuWe525gv0IVCSaIFAN4D6iRYJ9AHQEbcscztLBLoO1Ee0 1EaHiZYL9D7QIaKVAl0D6uVz9qpAV4EOEq0R6D2gHqK1Al0B6nbLEreTIdC7 QAeIMgW6DNRFlCXQO0CdROts1OGWxW4nW6BLQO1EmwR6G6iNKEegi0CtRHkC XQBqccvLbmerQOeBmokKBDoHtJ+oUKCzQE1uWeR2imzUSLRLoLeAGohKBJoE qicqE+gMUJ1bFrqdCoEmgPYRVQp0GqiWqFqgU0A1blngdmoFGgfaS7TPRtVE 9QKdnIaCg2ejQGNAVW6Z73aaBToBVEnUKtBxoD1E7QIdA6og6hQoBVTulnlu p1ugUaDdRD02KiPqFegoUKlbXnI7fQKNAJUQ9Qs0DFRMNCDQENAuoiGBBoF2 umWu2zkq0ABQEVFKoCTQDqLjAvUDFbpljtsZs9F2onGBjgAVEJ0WqA9oG9EZ gQ4DbXXLbLdzVqBDQPlE5wXqBdpCdFGgg0B5RJcE6gHKdUtwgnLZRjlEVwTq BtpMdFWgA0Cb3BLsXBeoC2gj0Q2BOoGyiW4K1AG0gei2QO1A690y0+3cEagN aB3RXRtlEd0TqBXozWDBljubc/ATwVvAMwX/TPBm8DcE/1zw/eAZgj8QvMnm XwjeaD8YxRvsb1U9mAb7B6l4/bQnJwavm/aEx+D7wNfH5LXgG2LyGvDsmHwv +MaYvBp8U0xeBb5Z8Ps2z4nJK8FzY/I94HkxeQX4lpi8HDw/Jt8NvjUmL7O5 +rmXgm+L2e55QUxeAr49Ji8GL4zJd4HviMl3ghfF5HA+9WyOR+EfkzhGBodu 31ks0PTj7vcPH7n1CS8R/B47Zzr+1IPBT9A/W+Hg3afmIPzPCjxn/uUUrviI s+fYwd0ieEvMjqgoFxU3OHueHawQweti9nxRgZe2PwSEK65y9kI7WCmCV8Ts 56y4zNmL7WCVCF4Ss5eIChwB/GE7XHGBs5fbwb0ieE7MjqioERWTnP2KHawV wQkxe5WowIHS/6oNV4xz9ho7WCeCY2J2REW9qDjG2a/ZwQYRHBWzXxcV+PXj z6bCFcOcnWkHm0RwUMyOqNgvKvo5e50dbBbBPjF7vajAb2l/Bhyu6OXsjXaw VQR7xOyIijZR0cXZOXawXQQ7xOxcUZFnV7Rxdr4d7BDBFjE7oqJTVDRxdoEd 7BLBBjF7u6jAOZ9/jxiuqBMVhXZFt6io4cPfaQd7RLBazI6oOCgq9nB2qQji 1Ni/qQ8Hy8XsiIpDoqKUs8vt4GERLBazIyr6REURZ1eJIN5B+Ass4WChmB1R 0S8qtnF2jR1MimC+mB1RMSAqcjm7XgTxRstfEQsHN4vZERVDoiKbs5ueL7hB zI6oGBYVWZzdYgdHRDBTzG4VFXhL6y9white5+wOOzgqgmvF7IiKlKhYzdkH 7OAxEVwlZneLCrzz91ekwxUrOLvXDp4QwWVidkTFmKhYzNl9dvCkCC4Ss4+I Clwg8Z8OhCvSOXvADp4SwXlidkTFaVExh7OH7eCECKaJ2SOiAteR/Mc5adMr ODllxyafmjy1Tr10TB58/JT2jM7gw7XZ1reMy2T4fDFA/Ta6RqRebR4FHyAH V9I7bXSHTepYgSt9iU+JGm30gKjWRl8RVdroGz7wMoFwsTLxHZvUiYRHPxCp 8y2PfiTKs9FPfEzqVBfXWxMP2ZRlo5+J1BsVj34hWm2jX4lWCoRLxonf+cDV W2mP/mBTuo3+JFJXMTz6i0hdqcFV78QjtwQ7/jsJdv9F/9jk/3A7MeNvCuf+ OA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 266.062}, {302.312, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"35fb5435-3ee8-4e35-87a9-b2cd8b702859"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(8\\). \\!\\(\\\"elongated square pyramid \ (J8)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"f5ecdc6a-508d-4fc9-9733-47563f14a059"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.02671 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.032194 1.09031 0 1.09031 [ [ 0 0 0 0 ] [ 1 1.02671 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.02671 L 0 1.02671 L closepath clip newpath .5 Mabswid [ ] 0 setdash .38526 .42989 m .70689 .43899 L .54238 .32802 L p .371 .743 .99 r F P 0 g s .54238 .32802 m .18878 .32593 L .38526 .42989 L p .371 .743 .99 r F P 0 g s .70689 .43899 m .38526 .42989 L .33058 .77676 L p .6 .451 .65 r F P 0 g s .33058 .77676 m .38526 .42989 L .18878 .32593 L p .933 .774 .661 r F P 0 g s .33058 .77676 m .65689 .81108 L .70689 .43899 L p .6 .451 .65 r F P 0 g s .18878 .32593 m .12077 .71891 L .33058 .77676 L p .933 .774 .661 r F P 0 g s .65689 .81108 m .33058 .77676 L .12077 .71891 L p .093 .625 .865 r F P 0 g s .87579 .59915 m .70689 .43899 L .65689 .81108 L closepath p .32 .201 .557 r F P 0 g s .87579 .59915 m .54238 .32802 L .70689 .43899 L closepath p .56 .016 0 r F P 0 g s .87579 .59915 m .65689 .81108 L .47963 .75368 L closepath p .735 .939 .952 r F P 0 g s .12077 .71891 m .47963 .75368 L .65689 .81108 L p .093 .625 .865 r F P 0 g s .18878 .32593 m .54238 .32802 L .47963 .75368 L p .578 .425 .637 r F P 0 g s .47963 .75368 m .12077 .71891 L .18878 .32593 L p .578 .425 .637 r F P 0 g s .87579 .59915 m .47963 .75368 L .54238 .32802 L closepath p .739 .574 .669 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{281.375, 288}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2ltTE2cYB/CFQFAsUCmlBYsGwskAwSQYjglHoSCgqCiKthxqB5w6WrWn aaedXnNr7zrTm151etlbv0o/hrc27yH/LOG/2/exN70IM3vI5nl/+7zPbvbI 2u6Lg4ePd18c7u/Glp7tPj043H8eW3zyrLAoUuV5VW2FIRbz1PwbzyuO9F+7 GtkPlfnKfGW+Mv+W85fV5KE6tvzkW+BF1JI3Lx/9rgZvR4/Nslcv/9RHoh/d wwuDV60+/fBvbWr8bdSgm31vmo04riqixnrRd7KGtVjjt7KGUazxa1nDOpuw WnZkD/FfyYhTelzjJ9TwXKacRtcLXxQZ1fRL42SIs0ucMzybp8EKy6ahTLHS E5nSWFbcwmB2w8cypwm1qdZGpFgc3f6RDDsblJR10o6FbrZ7rL9ExT3oUEa9 F0IdyKgWsuGObAc/D6ZYoVpR9Qip+r4M+zAkLyHVRjfgyQx3DJtyrFx7EKtz FGLnULsaktkDGdYRmlkIxqp3gWBs+96TsbEgVucoxDoJxup4x7CXHOvYhY1S i8yERLdjZrdkbE8Qq3MUYr0EqyU5bgSzbKP0o3pRZCYkEo6ZrRt22LHDA47s mowddGRXZeyQI3tVxiaPb54ybCUYYxsq5bibLxs26Zhj2pH9WMZmHNklGTty /HBRhi3KsKzjYfeKjB11ZBdk7JgjO2/YIUd2wpGdk7GToSfbWRmWc7y6mJGx eUd2WsZOO7J5GTsTeumXM9ggwfYINhdydZsPplheCyFUSFaMuhJCTcmoxZBr 2wkZtRRa+FGDDTgWfjmki2MyaiWECsmKdXE1hMrKqDVUi+3zGRl2jWxFr3j/ 7qxc54rNJeFY7g2upGXKDa6kZMpNFNk7/mBiONhhlblddqhSoJC4Q4ikjNgi hDkqehcdC3JXjfWiQVnDbVRyQNbwPhomghuy3n6ChhdlDT9Fw35Zwx007DMN +x37uOfbMMVfcLeM2CdEXEZ8RoiutyB0BULWzUq3h/2qxzTsc1xjqeaFL169 fo1fqNB5gASqFVNWBiF2D1gNwXpl2BZ6GCVYnwzbRGZ1BOuXYaWj42mC2V9d ryO2gczqCZaQYevA3iHYgAxbRTcbCTYow5aRWRPBhmRY6YrpLMGSMmwBmTUT zJ6tehyxeWTWQrBLMmwGmb1PsJQMywH7gGBpGVa6+2ojWEaGjSGzdoKNyLAs MvuIYOYdmD3HHMf2CZZBZh0EywZjLLMUsAsEG5Vhw+hmJ8HGZNggMusi2LgM SyCzboLZW6O44wbo850eT2KTMqzHd5lyEpsKxlg348isn2A5GRYDliBYXoad 911xFjA9Nysjzvmudk/mY7Eux7K3IZ8kweZkWCsyGybYvA+Lqm/Yc84W5JMi hH1o5j/cvPvr32oonJ8LnzaJ2Iyk0kS0T/f0NYa+L4sqTWNXCdYEbIRg9gmk PvnqbxqAzRKsAX3NEsw+Gx0G1gJslGD1yGyUYPb5bRrdbAc2RLBTyGycYPYZ cxaZdQKLE6wWmU0QzD4HH0dmfcDaCFYNbIpg9gl9DpklgTVqjP8zRZ5Q9h3C DKjLoGoUpaVp0tC+05hHhyZVw7qgcPtmZQnrmVbhEdPwZPg1E74CPY9wtt2v m/B16KXwDAm3b482SDj7Rd8w4beQTA7hAyT8pgnfgl4KZ8d8+5JtW03qzL5Y DI+T8E0Tvqcm9ebnXgjXaZ0n4bdN+BdqcsZkXNTZhY59K/kN9G6Et5LwLRP+ M8I7EM6uY++a8COEtyKcXd3bl7e/ILwJ4ew2ZduE/4au1iGc3bzdN+F/qEnU 7O/FcHYXat92/6UmxVtedVBWMZ6H9/Q6+H/0T16V+cr8f5n3qv4B4RpfoA== \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {287., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"84551563-1857-40a8-acf1-c724ca74c1c6"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(9\\). \\!\\(\\\"elongated pentagonal pyramid \ (J9)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"3ac8ab82-6f16-43ca-9e04-4a42d0a91314"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.07362 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.051891 1.15034 0 1.15034 [ [ 0 0 0 0 ] [ 1 1.07362 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.07362 L 0 1.07362 L closepath clip newpath .5 Mabswid [ ] 0 setdash .74835 .64526 m .51998 .42018 L .42891 .72949 L closepath p .681 .526 .669 r F P 0 g s .17162 .63579 m .42891 .72949 L .51998 .42018 L p .853 .713 .708 r F P 0 g s .51998 .42018 m .27782 .29701 L .17162 .63579 L p .853 .713 .708 r F P 0 g s .74835 .64526 m .77855 .32916 L .51998 .42018 L closepath p .556 .516 .766 r F P 0 g s .27782 .29701 m .51998 .42018 L .77855 .32916 L p .594 .771 .964 r F P 0 g s .74835 .64526 m .42891 .72949 L .62373 .88481 L closepath p .595 .305 .446 r F P 0 g s .35576 .7972 m .62373 .88481 L .42891 .72949 L p .654 .1 0 r F P 0 g s .42891 .72949 m .17162 .63579 L .35576 .7972 L p .654 .1 0 r F P 0 g s .74835 .64526 m .86959 .62279 L .77855 .32916 L closepath p .093 .098 .571 r F P 0 g s .74835 .64526 m .62373 .88481 L .86959 .62279 L closepath p .007 0 .094 r F P 0 g s .77855 .32916 m .53903 .1821 L .27782 .29701 L p .594 .771 .964 r F P 0 g s .53903 .1821 m .77855 .32916 L .86959 .62279 L p .911 .562 .366 r F P 0 g s .27782 .29701 m .53903 .1821 L .61684 .49734 L p .428 .266 .557 r F P 0 g s .17162 .63579 m .27782 .29701 L p .61684 .49734 L .428 .266 .557 r F P 0 g s .61684 .49734 m .35576 .7972 L .17162 .63579 L p .428 .266 .557 r F P 0 g s .61684 .49734 m .86959 .62279 L .62373 .88481 L p .793 .822 .875 r F P 0 g s .62373 .88481 m .35576 .7972 L .61684 .49734 L p .793 .822 .875 r F P 0 g s .86959 .62279 m .61684 .49734 L .53903 .1821 L p .911 .562 .366 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{274.688, 294.875}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmntPFUcYxlcRpVK0SsWCIqJwykWQ+00R8YJY5KZgAbl45I61paC9xbam iWkb0qZtmjRp0qRJkyb9MP2z//Yj9CvYs/O+PoI8s323QEMaSc7ucvb3/GZm z9k9uzPTnbw/N30veX9+Mnn8ylJycW5+cvl4xztLqbfSdgTBjoOpV+J4EG4/ CYKnC/eXHS70nxfbL7b/5fZ34Sot/F59LG98E652ui/aricL7Svh1pO/VkbC 9UNBvkImLSSCNDCpV+CyHwm5AtkeR+5aTYYvt+8Dgb8E/BLRpukSJ0Aq8kCC nyOYSYK7UI7ij4FnEXw3KWdJgp+h3a/4gk6r+COUk03wDOCLgn8C/BDB95Jq 3ZPgQwQPk2AmylH8Q7Qij+AvA78r+Puw5xN8H6nWnAQfIFhAgvtRjuLLwAsJ foCUMy3BdxEs8gXdXsXfRvMTBM8GPin4W7CXEvwQqdZtCS4gWE6COShH8Tng FQR/jZQzJsEZBKt8QbdX8Uk0v4bgecBvCZ6EvZ7gR0m1hiQ4gWAjCeajHMXH gLcQ/BgpZ1CCI2jPWRIsQDmKD6GcNoIXAr8h+E3g7QQ/SarVJ8EBBC/5gm6v 4teBdxC8mJTTLcFeNL+TBBMoR/FulNNF8BLgXYJfcyuBwp+CMHKNBEtJBTvj KcpQdszgKQQ7JNhFgt0kWEkqfdGv6PEpXNkxg1Wk7POieIMoeomiGmXHDNYi eM4f7CPBOlLpM6K4ShT9RFFPFC3bSdFJFDeMiubtpLhCFANE0UAUTVuqGDQ2 RBUdRHHTWIvG7aS4TBRDxmMRU8Fq0bBpiktEMbxxxYhRUb9piotEcWtrFI1E UedXjBproYoLRDG2bRXsWNT6FePGWqiinSgmtkbBGlKzaYrzRJE0NiSmgtWi etMUbURxZ+OKSeOxiKlgtagSxTmimNq2iiaiOC2KVqKYMdbiv1ewhlSK4ixR zG5cMWdsyOYpzhDFvLEhFVuqWDA2RBUtRHE3XLonjmYSPPUPQe00/P2PP906 CGjxEZbVLQgtqVewM1xqv4ZX1myUpUPGHpHK/bJ5IsuArCaebI7IMiFjT5wq azLK9kHGHp0jZLNEdgCyCiIriyfLhqw8nmyGyHIgY90aKms0ynIhKyGyUr9s msiOQpaIJ5sisgLIivyyBqPsBGSsT6zEL5sksmLICuPJ7hBZCWQFflm9sWZl kOXHk7GaVYRL99YRInvdL0sSWTVqluuX1RlldZAdjie7TWSNkOUQWcIvmyCy Fshe9ctqjbJWyA5uXNYGGRuqKPbLxonsAmT7/bIao+wyZFnxZGNE1glZZjzZ KJF1QcZGt4pEVm2U9UCWEU92i8j6IWPDgRGyESIbgCydyE6KrMpYs5uQsQHR CBmr2TBkYnvqetpC5hkmnlFcyjR42hiccMu1bTjhVwwRxe14ijeNCj2SlRtQ FK1S6FiX7QgU+4/+gFGR8H9FrxsVep1nJ3OfUaG/iOyy12NU6I0I+4G4ZlTo LVs9PocuY1Bvadkd1RWjQp8k2L1nB1GME4U+WLFb/ktGhT5ksoejC0aFPrOz J8TzxmOhCva0fM6o0C6QVnyUrcZgRCdQs1ER0afWZDyIEf2LDUZFRF9rnVER 0XVdY1Ss7sZ3n0O1MRgxnFJhVEQMLZUbFRHDbKVGRcSQYwlRjBGFjp2y4deE USHnkgw7u8+h2BiUvjedFrC27ELjEVBFD1EUGBU6AN1LFPlGRZso+ojiiFGh 4+f9RJFnPJxyRq+axpFrDMp5LNNFniv7kFGhUw8GiSLbqJCxNJnt8pzigFEh 44qpe6P1iv1Ghc7fGCKKLKNCLgqpW831ikyjQqefjOCjZMFREpRLQWrX+rL3 GBVyKdCpWmsV6cbqq2KcKNKMCp38M+FW6asV7pX6n/4+yoQdnc/2rGQfrjOS 3AQzt4dVRS4uwRSgYQLJ5SOYBTRIIJ1otQCon0ByCZCJkm5PN4GuC7QI6CqB dP7YMqDLBJKzPngPUDuBdOLas1mbrQSSM1dmgro9zQSSczP4FFA9gXQ+3rOp rjV+6DGgSgLJSRh8AaiMQCMCrQBKEEjnIn4N6ASB5LwLvgV0jEA6CfJ7QHkE knMn+AFQDoEmBPoR0EECybkQ/ARoH4GSAv0MaC+B7gj0C6DdBNIpq78C2kmg KYF+C1fu+jYrb7i922hi+ovt/992sONvlgZJLw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 273.688}, {293.875, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"e41a7c44-08ab-4260-b577-379056168241"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(10\\). \\!\\(\\\"gyroelongated square pyramid \ (J10)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"24cc7f6d-0fab-4369-90a6-f6c64df232bc"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.18126 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0974735 1.24374 0 1.24374 [ [ 0 0 0 0 ] [ 1 1.18126 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.18126 L 0 1.18126 L closepath clip newpath .5 Mabswid [ ] 0 setdash .52616 .2255 m .13351 .43044 L .34618 .50775 L p .706 .904 .966 r F P 0 g s .34618 .50775 m .69391 .33584 L .52616 .2255 L p .706 .904 .966 r F P 0 g s .2798 .83669 m .34618 .50775 L .13351 .43044 L closepath p .955 .729 .555 r F P 0 g s .65945 .74537 m .34618 .50775 L .2798 .83669 L closepath p .747 .499 .556 r F P 0 g s .65945 .74537 m .69391 .33584 L .34618 .50775 L closepath p .642 .539 .722 r F P 0 g s .65945 .74537 m .2798 .83669 L .65133 1.02118 L closepath p .684 .354 .41 r F P 0 g s .83162 .58808 m .65945 .74537 L .65133 1.02118 L closepath p 0 0 .281 r F P 0 g s .83162 .58808 m .69391 .33584 L .65945 .74537 L closepath p .2 .152 .576 r F P 0 g s .83162 .58808 m .52616 .2255 L .69391 .33584 L closepath p .815 .345 0 r F P 0 g s .2798 .83669 m .4022 .68225 L .65133 1.02118 L closepath p .355 .534 .893 r F P 0 g s .2798 .83669 m .13351 .43044 L .4022 .68225 L closepath p .213 .325 .762 r F P 0 g s .4022 .68225 m .13351 .43044 L .52616 .2255 L closepath p .553 .371 .589 r F P 0 g s .4022 .68225 m .83162 .58808 L .65133 1.02118 L closepath p .812 .71 .752 r F P 0 g s .4022 .68225 m .52616 .2255 L .83162 .58808 L closepath p .797 .621 .663 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{261.875, 309.312}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt3GlvVNcdx/GBmfG+4gUbjBnv+74b73gBg40xYMAJBLNEZE+AJE2rKm2S LhGKqqqtqqqtqqqqqkp9mLfAQx72LeRtOL7nnPnP2Pn+L+fKidRKIPl6bM/v 8zv3eub6rqztPHn44J2dJ2/c20mtPNp5/+Eb9x6nlt97tPet+JFY7Ehy72Mk FQse78Zi6Yn5lxNM3BcvH798/H/2+NfBp3jwev6x/cYvg09HzQs8sft0+/fB o93/bpuX/Cf2KV/IU+LBM+yT4+knma8+ts/8TJ5prL1p8ITnf/mP+dh7fDRI xUz/rvsXe2KzP5Nsjskm92Vd3gLmWS72qflkxWD4QdQC8WxgLxNMkzJ76Y8A fWypn8oI8gBIuOkBwDz/Awv8RIACFYhnA3YpHlge71rsE8GKAEtqmEk44mMh SoDIASIB43nLYh8KVgpYnoaZhCMeC1EORD4QSRjPQ4t9IFgFYAUaZhKOeE+I Kk8iF8bzwGLvCFYNWJGGmYQj3hKiBohiIPKEuGeJN+HtQFgJYPkwc3cs+1BG dgKwMg0zCUe8LkQdEOVAFMB4blnsvmD1nlihjMcRd4VIAXEMiCIYz7bF7gjW AFilhpmEI24L0QREFRDFMJ7rFntVsBbAqjXMJByxLUQrEDVAlMB4rlrshmDt nlipjMcRW0J0AlELRBmM57LFrsHbhNgTGmsG4rArMrJuIOqAKIeRrVvssmC9 gJ3yxNYsdkmwfsDqPZeZw9YEG/TEaGQXLXZBsCHAUp4jc9h5wUYAa/DELlhs RbAxwBq1lypjS4KNA9bsia1a7Kxgk4C1eL4jHTYv2JQnRiM7b7E5eDsR2+rJ nrPsjIxxBrB2zxl22JRgc4B1eGIrFpsUbAGwTs+VtcPGBTsLWLcntmyxUcGW Do8NC7YCWI8ntmSxQcHOA9br+QfXYf2CrQLW74ktWqxXsIuADWhbE4x1C7YO 2KAndtZiXfDG+h7YDhnjBmDDntiCxdoE2wRsxHPDzmEtgl0FbNQTm7dYk2DX ABv33AR2WKNgW54YjWwuC3M/Gth8FnzGMU54srNZM3yApeU46Tnr+9iEsI6m X/eUpzyTLSf3yemBXwZ+Gvg8nW8O4emVP+PJT2fz8Wx+b8MwmO5/x9JaZfbw VXGougBVc55VU1lvQY8qWvHOQxXtM4dUJaCK/mAseFad0auSUEV/6BahKkev avWsWoaqJc+qSb0qB6poW+B7qMoNpurGxrJnwYQtaIOCPJiXeag6B1V07Cik Kh+qaEvxvGfVuK1q96yahapVqKIjdCFVBVA1DVUXPavG9KpCqKKdAKqiBThq qzo8q85A1ZrnXIVUFUEV7X6te1aN6FXFUEW7jRtQRQeSXVWnZxXt7l72rBrW q0qgahSqNqGKTheEVJVCFR0RoCqaqyFb1eVZRUcyrnrOVUhVmaxkqeCaZ8Gg LeiGgnKYFzpetGWmfAplWOePAU/Htm6E8EM6XwF8D/A3zXT/+ZuM3OMp0xG+ myEDH9T5SuC7gN/mgYfIVSB3gPwqywNW7vWU6YjurQOvylg4Ww1sG7C3ge3X 2ePA0vHwO8D2WbbPk20+PFsDLJ0K2AG2V2drgW0E9m4wdQeed+UQC2HqeY77 QvToxEkYD53EeZA1m+mVmF09ulfSi9lT2hjNt7p1rA4wOmv1WjA1b/yju8+/ fnZgtJ16wSkooDNrr0hBDhS4xTHoWVALBdeDqVkDFEYrqIcCOtG4KXNQGq3g NBTQmdV1KaiAAvdLHvIsoPPAq7KIaqIVpKCgUtsRM3NwEgp69IIGKKCT4XNS kNILhj0L6NT9tCyiZijo1QsaoaAMCsZlDtqjFTTJCovYIWF7dHYE2GYYN12m 0S8LZgAK+vSCFigohIIumYMRvWDUs4CuWmmVggko6NcLWqEgHwoaZRHNRCto g4JcKKiXOVjQC8Y8C+jSolopWIaCAb2gHQqSUFAli+hCtIIOKEhAQZnMwToU uC3Ncc+Co1BQJAVXohV0mmkyu8B8BBs9BbJYrgM6pKNdZprYh8Zi9poqU/WK 7k1oXvqyuOf2SjX3VSy4NiQS1i3YfQgOvyCYXu5fPzPhezoxqS5t+73tp9+Y eSBiRCc6sn5hAZH+CKi7OnXmBe8/x+x9ZafZM/laNLYV2ASwt4EdjcYmgb2l s1PANgObCyy9ZMd0tgnYvMOzjcAWAHsTWHcUcxrYBmALgb0RjU0BWwwsrV5C 2NPAlgC7Baw7QD0D7Clgy4C9Fo2tA/YYsLTidqcGZoE9CWwFsJvR2BPAVh6e rQW2GtgNYN1ZnzlgjwNbA+ylw7O1wK4BO6Wz1cCeiMbOA1sJbB2wtG0zrbMV wNYDuxqNPQbs6WjsArDlwKaAPQfsjM6WAdsI7Eo0thTYZmCXgLVvL3elyX62 GNiWH4ZtBXZRZxeBLQS2HVjaq5jT2QJgO4Gdj8bmA9sF7Byw7gqXJWBzge0B dvbwbC+w08Au6GwOsH3R2GVgE8AOADsVjY0DOwTsJLBno7HDwNL+vGPthYl8 3cwYUONALWZT37l2aAKUsRcpmfkMBnIGiFGdMJeBugtevxschqC71HBVgpPR ghclSHM7CEF32eW6BMchSEeSXHBDgvRb6teDmxIcgWAfBN21q1clSC+xXj2Y uZyfXvLdEHTX8WZuJaC3YEgwc0NDPwQ7Ieiubs7cTEHrkg49mLmlg9ZtdCTT Be9IsBuCbRB0V3VnbmqhdX+rHszcUEN/i+iorrvCPXNbTwcEm/Rg5paitmjB NyVIf+QbIOhuE3hbgrTRQYfGXfBdCTZB8DQE3S0T70uQNsrq9eAjCTZAsA6C 7vaRJxKkrUs6v+CCH0mQNqJDgj8KPpmf0EZ9LQQv2WDmbsmTEKRzLS6YuU+T 9k6qIbhhg59KkHbCQoI/l+BxCFbpwc8lSHuTdMLK3VP0CwnS3m1I8FcSpL3t cghu2uCXEqS9/zI9+FSC5RAsgeAVG/xKgqXRgr+RIB1WKdaDv5UgHeahM6Du 5rPfSbAIggV68A8SpMNg+RC0t6bF/ijBfAjm6cE/SZCO5+XqwT9LkI4vJiG4 ZYN/lSAd7wwJ/k2CdPw1DkF3b+LfJUjHg+lcvAv+Q4I2mc5h5obN/DP4ZH4S 8qR/ZcPBQNxzYjftz/9tPu2Puh+ZL/6H/ouAl49/uMexI98Cc0MuiA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 260.875}, {308.312, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"b03641ec-d234-4759-9113-61494784b2dc"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(11\\). \\!\\(\\\"gyroelongated pentagonal pyramid (J11)\\\"\ \\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"33f2f8b8-0f28-4315-807f-e59b8b7b3ae1"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.19188 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.101999 1.25523 -2.22045e-16 1.25523 [ [ 0 0 0 0 ] [ 1 1.19188 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.19188 L 0 1.19188 L closepath clip newpath .5 Mabswid [ ] 0 setdash .39257 .97972 m .51092 .69162 L .38743 .37192 L p .919 .727 .627 r F P 0 g s .75658 .85243 m .51092 .69162 L .39257 .97972 L closepath p .612 .36 .511 r F P 0 g s .74585 .47185 m .51092 .69162 L .75658 .85243 L closepath p .518 .404 .663 r F P 0 g s .74585 .47185 m .38743 .37192 L .51092 .69162 L closepath p .642 .605 .797 r F P 0 g s .38743 .37192 m .15505 .42149 L p .39257 .97972 L .919 .727 .627 r F P 0 g s .55206 .27734 m .38743 .37192 L .74585 .47185 L closepath p .442 .68 .965 r F P 0 g s .55206 .27734 m .15505 .42149 L .38743 .37192 L closepath p .447 .882 .854 r F P 0 g s .74585 .47185 m .75658 .85243 L .81414 .60953 L closepath p 0 0 .369 r F P 0 g s .55206 .27734 m .74585 .47185 L .81414 .60953 L closepath p .731 .248 0 r F P 0 g s .15505 .42149 m .15318 .84369 L .39257 .97972 L p .919 .727 .627 r F P 0 g s .75658 .85243 m .39257 .97972 L .56432 .97088 L closepath p .074 0 0 r F P 0 g s .56432 .97088 m .39257 .97972 L .15318 .84369 L closepath p .158 .602 .934 r F P 0 g s .75658 .85243 m .56432 .97088 L .81414 .60953 L closepath p .911 .981 .765 r F P 0 g s .41177 .58523 m .15318 .84369 L .15505 .42149 L closepath p .441 .335 .638 r F P 0 g s .41177 .58523 m .15505 .42149 L .55206 .27734 L closepath p .565 .271 .428 r F P 0 g s .41177 .58523 m .55206 .27734 L .81414 .60953 L closepath p .8 .538 .541 r F P 0 g s .56432 .97088 m .15318 .84369 L .41177 .58523 L closepath p .618 .611 .821 r F P 0 g s .56432 .97088 m .41177 .58523 L .81414 .60953 L closepath p .804 .705 .755 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{260.75, 310.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm8luFFkWQJOcnHZ6nhNsY4ON0/OcHvGE8YAHwDYYG4oq4xqghqYaaLXU UkmtllpqCalXtWRZn1DbXrKsZf9G/YI7472X1+nkvPALKEu9MFKEg8i459x7 I2PMiM3DN8+/+uHwzYujw9aVV4c/Pn9x9Lp1+eWr7KzIpVDoUjQ7ZFpD3vRx KJQbqX8xb2T+czF9MX0x/YdN/9v7E/a2tTd6xlvvT0RtfJHjnxe+Pc5tiq/1 5/+Sz9XHoaha4Le3b3MLvtLL/VOWi6vlIrJcdggp45/1kv+QJRO4ZHasFv9R L/53yTgJi0dk8Zd68Z+EXgqLR02QN+8/k7rQP+nAv0lgBQTGIPAHHfhXCayG wDgEfq8D/yKV1UJgAgK/04GvxFgPgcUQ+K0OfCmBjRBYYlqUCzTBL3Ts9xJ7 BWKTHPtcx76Q2GaILePYb3TsN9KlVogt59ivdeyX4m2D2AqzZvNjcw37SgMO BdAOgEofwJca8FQANwBQ7QM40oDHAugCQI0P4JkG7Ev/egBQ5wM41ICHkkGf FRDJB2S3YW+s55l/uhGh0I7ABgFW7wj7TMPuCWwYYI2OsCcatiV9GgNYyhH2 WMPWJbMMwK44wg40bFVgk46wCMD2Ney2wKYB1uwIe6RhiwKbBViLI2xPw+Zl BcwDrNUR9lDDbkpmiwBrc4Q90LApgS0B7BrAogDb1bBxga0A7LojbEfDxqRn awDrcIRta9iwZLYOsBuOsPsaNiCwLUdYDGD3NKxXYPcAlnaE3dWwLoHtAKzL EbalYWlZAbsA63GEbebBzEevt39RO2HKsdcRu8HY7KBPyKiZfcCOA3vdj+2N 9TzvjNKTbIKq31F1x66KeGNVywYIBh0Fa3ZBDGqhTW3IUbVqV8WlllUQjDgK VuyChAiWHQVFIFi2C0qgWbT7HXNU3barklILCTKOgiW7oAxqoYPchKPqll1V LrWQYNJRsGgXVEItdPQnVQJUC3ZVldQyBYJpR8G8XVADtYyDasaxbT6qWqmF TuJmHQVzdkE91DICqjnHbd9H1SC10KnyvGMts3ZBCmoZANWCYy0+qstSSz8I bjkKbtoFTVALXTwtOR6HfVTNUks3CG471jJjF1wVQRoEy44V+AjaoFl0sbzq qJq2q65JLSRYczxB9RG0Qy105+COo2rKruqQWui2xvqnCzqhFrr7suGomrSr 0lJLEwi2HC+2fATdUEsKVHcdVRN2VY/UQrfI7oOArtx9BH1QS52jimoZt6v6 pRa6wbjjWIuPYBBqqQLVrqMqY1cNSS2VIHioxnwby2ddjED+ZYDf88H7tGdU cqZ70Y8+DpoRaAlA932gPt2dgEYUAf5AjT+43epDnpR06XeBJ8wbs/OmIdPI H0KekUzDwHvKvFE7b7YgU28VHBZsCCF/xJw3LvFmHUDgyBluVUvx8W+/vq/y ptRBS83zCbypxrrMd+/+q4bsdMqjVB+rrenDRIbPaKr5PuZ4hundHTGppSU1 H1T+mjeY7JryxmZN/freG7LHxFyuDYIdsmOnABsF7LpkW5TXgtyea+CMLaBA EAPBE29c7M0adNtQc7AigB2p8ekc++3YccAmAPvMG4fPyDEDsGKAHQrMZ/WM ASwJsC9cYKMAKwXY53nd+/34vfq2+mBHAFsO2M/UOCpYgzbkTkdyhZV8OuFh O3YYsJW2r+SHCfuQh4BcDeQDNY6dIjskPgj4GsDvF/QjO2T3Fd749CYxaFcN gKoOVI98Khmx4/sBXw/4PcdKfL5EfaBqANVDUEWCqXpBlQLVg09X9YDqMqh2 QRUNpuoGVROoth1VPl/wLlA1n48qDaoWUN0HVSyYqhNUraC6C6p4MNUNULU5 qqgqn024A1TXQbXpWJWPqh1U7aDaAFVRMNV1UHXYzocKVIlgqmug6gTVHceq Ru2qNlClQbXmWJWPqhVU3aBaAVVxMNVVUPWcj6oFVL2gWnZUjdlVzaDqB9US qEqCqZpANXA+qiugGgLVIqiSwVSXQTUMqgVHVcauSoFq5HxUjaAaA9UcqEqD qRpAlQHVLKjKgqnqQTUBqhlQlQdT1YFq0lFFVY3bVbWgmgLVtGNVPqoaUM2A ahJUFcFU1aC6eT6qKlDNgWrcUTVhV1WCah5UGVBVBlNVgGrhfFTloLoFqlFQ VQVTlYFqCVQjjqpJu6oUVMugGv50VRJUK6AaAlV1MFUJqFZBNQiqmmCqYlDd AVW/o2rKrkqAav18VEWg2gRVL6hqg6nioNoCVQ+o6oKpYqC666iiqqbtqiio 7oOqy7EqH1UEVNugSoOqPpgqDKpdUHV+jCqWr1JD9v+hPcDfAHzDWfjoKXx2 +hGQOxzJM9wjL+EDwLZ/BFbden4MsOsAazwDFrHB2gCWssPUo65RW/daHWHm 8ZWevO51vftddU9V/cCRrapWEXOa2CuNC3tEtfQOwFocW2iw/YKNeFhVP+03 mm2r2TxXqGCDAotJjrRrbbLtGVSsedBwWGBxgdHR54rjbsZgRwvWTHbIE9BB +7JtlxnWEQp78nB5sfSRzmtSjgcwgx0XbFJypJPARtuJRVi3TcEmBVYqMDpP rredEJmHhxVsGvp4gqWLCsLSiaoRzEi2FdJRutirs53Vh/V3WcFmBVYlOdJF ao3tGkvFmsf1T16+qBYYXcdXO16wGewidPREQLc/qmxX7+Yhe4W9JdnWSR/7 AFZpgxVka7C3BdsgOdKduwrAJiVH8zrLisAaBUZ3HMsBViww89bOmsBSAqOb smU2WEHBBrsOq+dEQPeykyBISLbmVaoNybZJVs9VRxjd1/3gDa0WyZF+hikB bFxy/FzD7gnsqsDo56MEwGICM6/IbUMfT7D0Wxth6fcbI9iRbK9JR2sBGwds RLI17yQ+EFi75FgFsBjAwgIzr1juCaxDYPTbd9QGKyjYYPehoycC+s0+goKQ vL96IImmpYX0iEPYpJvH8abNq7dPhNIt2cQVJZZPyUXrDMz7vk8ltkdiI5hB SN5K/kJieiVrXWqua7kXn59Bx9SXpdSbZd69PhKcOvY2eFM/6Y/UG69Jb8bP eoZaH/9Hr65fTF9Mhy79D3hSano=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 259.75}, {309.75, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"ef60b419-7a4d-4f01-b04d-389b77e191c9"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(12\\). \\!\\(\\\"triangular dipyramid (J12)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"4d59aca1-65f1-4a9b-ad6b-7325fdc20fca"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.07987 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0526216 1.17311 1.11022e-16 1.17311 [ [ 0 0 0 0 ] [ 1 1.07987 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.07987 L 0 1.07987 L closepath clip newpath .5 Mabswid [ ] 0 setdash .61011 .60441 m .84428 .6016 L .34079 .30098 L closepath p .187 .502 .908 r F P 0 g s .33084 .89077 m .84428 .6016 L .61011 .60441 L closepath p .167 0 .002 r F P 0 g s .33084 .89077 m .61011 .60441 L .34079 .30098 L closepath p .915 .748 .66 r F P 0 g s .34644 .58753 m .34079 .30098 L .84428 .6016 L closepath p .752 .313 .21 r F P 0 g s .34079 .30098 m .34644 .58753 L .33084 .89077 L closepath p 0 0 .029 r F P 0 g s .34644 .58753 m .84428 .6016 L .33084 .89077 L closepath p .748 .9 .946 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{273.938, 295.812}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2GlLVGEYxvGjMyYtVGMmLYgmbWa5MEyJZWaaWplmQ2Yu6Wgu45L7jplo IYJIIW20IIUIIq1ve9lX6SP01jxnZi4P13M/53WFguNxfv/7fo7oDNGNwEBb c1dgINgUSC7uC/S0BZv6k4u6+zaeckUZRpRn4/NEsmFerxtG5MH6iDMfwt9s XW9db13/89d15pdo8zX+1faE4TafWf95K2s9/A7w2a4x0Min+R7xyZ647IkR bT5ap6zpIzeiVX20zXoMPRf+MFb0eSx2OkTbES3ro53CwR/0+S7sdIh2I1rS R3uFg9/pcw92OkT7EL3RR/uFg1/p8wTsdIgOIHqhjw4JBy/q88PY6RAlInqm j5KEgxf0eTJ2OkQpiOb10VHh4Dl9fgw7HaITiGb1Uapw8GN9fgo7w1Gt+cV6 Ih00zZQpHPKIoyzMK+QFPWTyCavHOTqLeYWyQaNMOcLqIY7OY16hXNAAU56w upejS5i3kzWUD+pmKhBWd3JUiHmFikDtTCXC6laOrmJeoeugZqYbwupGjsow r9BNUAPTLWF1HUd+zCt0G1TDdEdYXcVRFeYVqgZVMtUKq/0c1WFeoXpQBVNA WF3GUSPmFboPKmVqEVZf5agV8woFQcVMHcLqQo46Ma/QA9Blph5hdR5HvZhX qB+UyzQorM7haAjzCo2AspnGhNU+jsYxr9AEyMs0KazOtEXxoXeeyHwmz3vW f/z6nWJelSNK58iLKEM4Li2UWy85d+hlGMk3/9GkRMNm5DGvTjHNmGRNnWaa NonOV6IpzGcwTYKymCZAXqZxkM9GLpD8q92MRjGfzTQMymEaBF1gGhBOVaI+ zOcx9YDymR6ACpi6hFOVqAPzRUxBUAlTK+gaUzOolOm+cENK1Ij5cqYGUAXT PZCfqU44VYlqMF/JdBdUxXQHVG2j8JoI1TLdFm5IifyYr2eqAAWYykFNTGXC qUpUivkWpmugNqYSUDtTsXCqEl3BfBdTAaibKR/Uy5QH6me6KNyQEl3A/BBT DmiEKRs0xnROOFWJfJifYPKCJm0UXrhB1vpMRFP6KEO4E4f8DHbO6KM0RE9C UTVufJNmmVJBc0wnhZtUouOYn2c6ClpgSgE9ZToinKpESZhfZEoEPWc6DHrJ dBD0mumAcENKlID5t0zxoPdMcaAlJo9wqhLtwfxHG9HfxS5Ey/poB6IVfbRd uCeHPBY7V/VRDKI1feRC9Mkeue0Rki/6ZOP6m02tQ76rx0Z+tjBZ3/xF/6O5 df3/XRtRfwBMyL7X\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.938}, {294.812, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"88cfbe3b-8f86-4114-8e4f-5bad17a067c9"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(13\\). \\!\\(\\\"pentagonal dipyramid (J13)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"09df9431-76ca-4f3c-a3df-db200a2574e4"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .90836 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0 1.03706 -0.021386 1.03706 [ [ 0 0 0 0 ] [ 1 .90836 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .90836 L 0 .90836 L closepath clip newpath .5 Mabswid [ ] 0 setdash .63003 .46403 m .60278 .69058 L .83805 .31123 L closepath p .063 0 .224 r F P 0 g s .39971 .27778 m .63003 .46403 L .83805 .31123 L closepath p .573 .74 .955 r F P 0 g s .27863 .62412 m .60278 .69058 L .63003 .46403 L closepath p .552 .213 .348 r F P 0 g s .63003 .46403 m .39971 .27778 L .27863 .62412 L closepath p .799 .777 .833 r F P 0 g s .27863 .62412 m .1757 .6086 L .60278 .69058 L closepath p .162 0 0 r F P 0 g s .39971 .27778 m .1757 .6086 L .27863 .62412 L closepath p .934 .964 .677 r F P 0 g s .56858 .38316 m .39971 .27778 L .83805 .31123 L closepath p .44 0 0 r F P 0 g s .39971 .27778 m .56858 .38316 L .1757 .6086 L closepath p .307 0 .267 r F P 0 g s .60278 .69058 m .56858 .38316 L .83805 .31123 L closepath p .918 .909 .796 r F P 0 g s .60278 .69058 m .1757 .6086 L .56858 .38316 L closepath p .699 .774 .91 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{298.625, 271.25}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2ktTHFUUB/ALzAwQ3oGEBEJ4CIHwSnjJmwAhECIYEYxBJICIAfIgAlrR jRtduHGhGzeWVW6yySZVfgWXfhW+Ak7fc/k33fxPW11YlmVB1cw0Pef85vSd 4c59MLu2v7nxbG1/a32tZmp37cXm1vpezeTObvpUVoYxGc3pW1GN8Y4PjTm6 sz8t3p375ez47Pjs+H91/KX3kOP9vb8+dsJkeWcO75kx2xMkD/eMKfAOf5Wg L+xDAkHulumdKEbwjxK8HxLTt3TqUXglwr/Tw1P2Xs7tyc00IPGlJO6RxBy8 TifCn0j4LgnPQ/gwwh/p4QWkrCkkzkni5ySxCK+zgPAJCX9Bws8jfAXhvXp4 GSlry7vP9k7dlMQdkngRr2PD7fubeXhw8KeLcz+mXYjnhLgMYh1EkhA3dKKS lL/s3dtTOQRzl/SMYFWoZxH15OnEU0LUgJgHUUiIDp2oI5c0A+y8jj0hWD3q uQviAiE6hdgmRCOpZxxNfIlgXTrWhHpGUE+lTmwRogVEH4irhOgWYpMQ7eSS OoDVEqxHx26gnjYQDTrxmBCdIJrQsE2EeFuIzwjRQy6pFvW06NgGwXpRTxWI dkL06kQ/iHIQHYToE+JTQgyRSyoG1qNj6wQbQT0FaOI+QvTrxCiIbFQxqBOf EOI2uaSE/DWcdAbEWSPOhHdvT42RxEE9cRzXkH7i9z8O7JOeEOGsak66s/bO eczRzSglDQm1Qih/NJDwCPdsmrAMa5hhHbsFLBUPexT5mckh2DDBRgRb1jB3 zrWWySXsUDx2CDXmE4x9PG8J9jHBBoEVEmyAYKOCLRFs4Ngo79RYP2k9xvYT dkzYjwjbhxpLCcb6h3HBFgnm95oXTo/1HOs/T2K9BLst2EMNC7VeTPZDwnaj xkqCsQ56Qsf878AqgnUT7I5gDwjWAaw6HvaBhoVaj7FdhJ3UWX/cUBcPWyBY O7B6gnUSbEqweYK1AbtGMPYtflfHWknrxWTfJ6w/CrxOsJsEmxZsjmDNwFoJ xkY+93TMH+K2x8Pe07BQ6zG2jbDvCHufsI2oseP0WAOwLoK1EmxGsHcJ5k9Y egjGxrGzgs1qWKj1/gG27tgM5CTWTDC5UnfdQawW2ADBrhNM3gP3jgQxf/o5 TDA2pYjAqknrMbaRsPJZdp/sIHsVNY7Gw6YJ5k/Zxwl2jWBzOnaFXDBj2exO +ijXYwXZStR4Jx42RbAKYFMEqyfYvI5dAjYdD5vUsFDrMfYtwspXmvsSDrLl qHGWYGyuLl+2bqwRxPxFq/unx8qAzRGshmAyVHFDKoKFWo+x1YSV4ZQbTQbZ UtS4cHqsBNgDgrE1GBmMuhF4ECsG9jAeNqphodZjbBVhF3W2EDUuEewKwWSS 4eZYQawA2HI8bIRg+cBWCVZBsCUdyyOtx9jLhJVppJtFB9lzqHE9HjZEsFxg GwRjq5DLOpYN7HE8bFDDQq3H2HLCuv2CAcKmUOM2wS4SbEXH/C2Up/GwfoJl AXtOMLa6LCtIbnmOYKHW2yFs2d+xfINpl1ClhJK1MregGazQOvvEYUvxsujn 1lb9krxH4+2XxVfsy78kiSUkUZYtZanZJn5FEotJoqy/ypp5QnvFiET7Htjl wD2SWEQSZdFYOo6k9mGKSBxHIvv7KCCJsmwuA6Gk1pPkk0RZspfRe1LrcyMS 55DIvkbYDpPsM8h4Ial94Z4jibJhIp29TWRjiIjEVSTOkMRckii7PPKu2EQ2 Lo1I3EYiG2qzHTy3J2s3JVPeM2xSkiKJstsmG9L2Fdn0LSLxaySyiS7buZRd RvMNEtncPSLxWySyVY4ESZRNUvM9Etl6UBZJlD1e8wMS2RJXROJPSKwgiWxn WLajzc9IlGXT5PFEezPmaMPe/ILgEhucCAT7cb8hLrwsbszRvw2YVwjK1oNe IyjTC7K9qvxLg3njPWRJx25P2Ov6D/3Dxtnx2fG/eWwy/gJtdnNC\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 297.625}, {270.25, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"05264cb8-b7f2-4f20-8101-b88be429b331"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(14\\). \\!\\(\\\"elongated triangular dipyramid \ (J14)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"f9cbfeca-72cb-48c3-83ae-ea271874f5f0"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .99568 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0100379 1.09851 1.11022e-16 1.09851 [ [ 0 0 0 0 ] [ 1 .99568 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .99568 L 0 .99568 L closepath clip newpath .5 Mabswid [ ] 0 setdash .57149 .52762 m .38129 .81863 L .62153 .86685 L closepath p .886 .747 .703 r F P 0 g s .76836 .78222 m .57149 .52762 L .62153 .86685 L closepath p .282 .316 .719 r F P 0 g s .38129 .81863 m .76836 .78222 L .62153 .86685 L closepath p .477 .838 .993 r F P 0 g s .38129 .81863 m .57149 .52762 L .50401 .28981 L p .949 .879 .731 r F P 0 g s .57149 .52762 m .76836 .78222 L .71525 .55225 L p 0 .151 .69 r F P 0 g s .71525 .55225 m .50401 .28981 L .57149 .52762 L p 0 .151 .69 r F P 0 g s .50401 .28981 m .29199 .59603 L .38129 .81863 L p .949 .879 .731 r F P 0 g s .76836 .78222 m .38129 .81863 L .29199 .59603 L p .647 .761 .932 r F P 0 g s .29199 .59603 m .71525 .55225 L .76836 .78222 L p .647 .761 .932 r F P 0 g s .29199 .59603 m .50401 .28981 L .43466 .25229 L closepath p .886 .971 .657 r F P 0 g s .50401 .28981 m .71525 .55225 L .43466 .25229 L closepath p .659 .163 0 r F P 0 g s .71525 .55225 m .29199 .59603 L .43466 .25229 L closepath p .675 .675 .843 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{285.25, 284}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmmlTU2cYhl8gwYqtdrWOFsSO2lq70bF2pSooQQFFgUDCEkJYktAAhoCg rXXp4jJ2dDqt47TT8UP7peNMf0V/gn+jf4HmXfIk0Ps5eZKRtB9gJieH817X dd4sJ/Ec7Ipm4hOpaCYRizYG0tG5eCI239g2m85uqqlSqqo+e3ulUen1FaVy C/PToBful431jfWN9Se2fknfVetj7WHBBuXTW1YeHTBHob79akcvmrsaO/ro sTlGqzVnEr8UQj6CHFijOee6H/Wg0PCvMnL5Gso7eHnNHLI3DZllbtZ6T/l5 3edFHxDze/zRiktArAWij8QfeHETEP3gqbnLJ57iEmbfTrwAxDog1pL4PS9u AeImMOnbNrEIEs9w+5YntgoTt2xiASSeFSZu8onnhIkbfOJ5YeI7m8iAxIvC t1GJCTSLb21iHiS2CxPf8ImXhYmv+cQOYeK6TaRBYqcwcY1P7BK+Ii5xHiTq hYmrfKJBmLjCJ3YLE1/ZxBxI7BEmLvOJV7kPWJyYBYm9wsSXfGKfMPEFn9gv TNhvXjUDEq8LExf5xAHuiw4nUiBxUJhYLi2BHsgSn3hTmLBfY+pzkHhbmFjk E+8InwuXmAaJJmFigU+8J0zYT3+VBIlDwsQ8n3hfmEjzicPChP24UgmQ+JD7 J6A88ZEwYT+uVBwkPhEmZvnEp8LEDJ9oFibs8aWmQOKIWfoLE+aW/T03eaQd 9dDchCeB1uKhpYppxR9nkk+0ChP2/aImQOKEx+Snea3NQ3MTHgdau4eW4LWT Hlqc1055aPb1VzGgdXpok7zWZZa+VVreGAPGGWxM8EY3NuyDV1FgnMNGjDd6 sDHGG71r3oYqj48CPAjwKI/3A9xyKgLwEMAjxfB/PdoR3giDHTh8BOBDAB/m 8WGAD1l8GOARgA/y+CjAwzwe1Utzeu2gIQDFCArx0DhBAxYaBNAkQf08NEVQ kIfiBPVZKAygZMGTkfuk7OHxaYCfs3gI4CmAn+XxGYB387iZe63e5JoDABrT y816k3/lt7/+XlM/w4shErfyYj8Qz5K4A4ineTGgl3V60x5eDALxCO3xYGni YRIPlSa+RWIzL/YBcR+JASB28eIuenK6ebEXiC/QHsOliXUkxoqJqy+V5rQU 0DqtZg4x8+26WARyQ1nIgEs83gvwC6XhqN5RFt4nnEx5eBDg6In0wFH9VFl4 v3Ay5eEDQvxkJfAQwBeeGB4W4u2VwAcBnikNR/WAxYeE9Yrgw0K8rSx8BODz /xUeEeInysJHAZ5eVxxN5rjFo8J6RfAxgJ8vDUf1VovHhPWK4ONCvKUsfALg c+uKo8kcs/iksF4ePgXw2XXF0WSOWjwO8KRemvOPFh6K6OUWval65dJj+5d6 9y5PALyH8Kc1jg8PJLaT+BLtJ8DjzYQ3EO6+hpMAbyL8NcI7eHw/4U3gUThx Gog7SfyY9nOax7cR3kp4N4/7CO8k3J29mj8RmNcyCGbsIHPZ1G+tnO/OrTM0 1EFD7gR+mYaO05C7SnCZhj4De3XQdYI+IN9dDblBQ+/SkLsMc0ffmfOSN2jI XTG6R9ZesFcH/URQPfnugtnPNLSdhtz1uoc0tI2G3FXG32loM9irg/4gKH+0 uEupf+o7s8H+Oce6/6P/ibOx7r2uqv4BwAdJCg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 284.25}, {283., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"8375da9b-cd0e-42b8-a17e-da7899aa335f"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(15\\). \\!\\(\\\"elongated square dipyramid \ (J15)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"a0dcebca-7cc8-4f40-9ce6-a3785bcc15ca"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.03125 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0279888 1.13234 3.33067e-16 1.13234 [ [ 0 0 0 0 ] [ 1 1.03125 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.03125 L 0 1.03125 L closepath clip newpath .5 Mabswid [ ] 0 setdash .37402 .86806 m .77673 .83095 L .61576 .826 L closepath p .075 0 0 r F P 0 g s .38492 .54314 m .37402 .86806 L .61576 .826 L closepath p .873 .611 .539 r F P 0 g s .76063 .50333 m .38492 .54314 L .61576 .826 L closepath p .683 .611 .769 r F P 0 g s .77673 .83095 m .76063 .50333 L .61576 .826 L closepath p .225 .099 .491 r F P 0 g s .37402 .86806 m .38492 .54314 L .29778 .29933 L p .98 .751 .341 r F P 0 g s .38492 .54314 m .76063 .50333 L .70942 .25126 L p .664 .74 .907 r F P 0 g s .70942 .25126 m .29778 .29933 L .38492 .54314 L p .664 .74 .907 r F P 0 g s .76063 .50333 m .77673 .83095 L .72315 .59396 L p .863 .647 .113 r F P 0 g s .72315 .59396 m .70942 .25126 L .76063 .50333 L p .863 .647 .113 r F P 0 g s .29778 .29933 m .27887 .63942 L .37402 .86806 L p .98 .751 .341 r F P 0 g s .77673 .83095 m .37402 .86806 L .27887 .63942 L p .645 .763 .935 r F P 0 g s .27887 .63942 m .72315 .59396 L .77673 .83095 L p .645 .763 .935 r F P 0 g s .29778 .29933 m .70942 .25126 L .43988 .23692 L closepath p .313 .794 .906 r F P 0 g s .27887 .63942 m .29778 .29933 L .43988 .23692 L closepath p 0 0 .343 r F P 0 g s .70942 .25126 m .72315 .59396 L .43988 .23692 L closepath p .903 .606 .472 r F P 0 g s .72315 .59396 m .27887 .63942 L .43988 .23692 L closepath p .678 .617 .781 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{280.312, 289.062}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm9tTE1ccxxeSECIgAnK/CN7vQi1aUbkJolbuiAVBuQjCUKpErLV2On3t s310pi8+dfpv+G/0sY/9F+iec5YzSfwss7snyyQzMJOTTfL9fT6/k82GzWYz vLi9trK5uL2+vNg6lFx8tba+/Lr17sukfVekwLIK6uxLW6sllncsa3eQf/Vi cG4cLB8sHyynLb8TV6Vie/mg7ngrrgrlBhSxxwmxtPPvx/dWQoxV4uZvKrkt rkTGEvEJGbd2/v74WRY36fimiic1OCbjUR13Si7rillV8UpXxGVFLK1iV9Qr yhJicVyVbeq+ijP6si/2LTU605JTG5Sjus/5s0YVbEP3UGIOW9ewUoDFADYg RlkxphCrenKHAVEEiDuZiOe6iwpAxAHRn4lY0ohKQCQA0ZeJWNCIo0ER8/q5 qAZECSB6U9bNP5/q5OvHWTdPdD91ACsFWI87bEbDGgBWBrBud9i0nmYjwMoB dtsdNqU7azGHTcor9ZB6q5iwmgFbAdhbcoxqrIMe8UeuBPLNrJCrgNzlm9wE 5Gog3wiN3AWrbw8svcRqvTc87I9cB+RvskKuB/J132TaehuBfG1P8oTHnrND pp6bgdwpx1gaefcF8tAfvgXwX2cPfwzwV4Ph6wHfBvivchJP/5lOAL4jY5u3 L/Y+mhjTd0vu+1OdBFV7OKpToLpirqoF1RlQXc4rVQ2ozoHqEqgioLrnT3Ue VBfDUV0A1QVzFe0+XgLV+ZxVjXtUXQHVOVBFQTXkT9UOqrPhqDpAdcZcRR9M roLqdF6pqkDVCapToIqB6q4/1TVQnQxHdR1UJ8xV9JH3BqiO55WKjgXcNFAN +lPdAlVbOKrboGo1Vx0BVff+qXpAdcxcVQ6qPlC1gKoIVANKNeZxVv2gajZX 0awGQNWU96pBUDWaq+jg4xCoGkAVB9Udf6p7oKo3V5WB6gGo6vJe9S2oas1V dFh7GFQ1oCoGVb8/1Qioqs1VdOR/DFRH8141Dqoqc9UhUE2CqhJUCVD1KdWo x1lNgarCXEWzmgbVkbxXPQZVubkqAaoZUB0ORzULqjJzFX3pOAeq0rxXzYOq xFwVB9UzUB0KR7UAqoS5qghUSx5V9Habu6plUBV7fAJ73VUxUK2AKh6OahVU Rf5UIx5Va6CK5b1qHVRRc1UUVBugioSj+h5UheaqCKh+kGMsVSUv9m37bTfX 8S/lGE3D+ydnnmkkmFsZqyBAw4RNirHQU4+xVJhzsVRfRQYAuXHKM5tiO58+ /+f3FcXQpwIqdvLs3aoA0GgGVO2GyibrgUf/TvbmPdT9HQ/CS12vljrQIpu7 6A82zM116eY6s8Jr17yeILz0yZ7Vk30AMPokvwesRXc2GQAmN5sa3c+8x8n1 ZCJKdRerQRER3cWWx4mkIuQ29HOAQuchu1AW/+IPMQKI9zmBoInQsUMHMeqx i3ARY4CgleoTQV3Q4XUHMe6xi5xHTADinTmCuqDvNh3EpMcuwkVMAeIncwR1 QV//Zw/xyONEsoCg56JbIaYNusgpxGNAvN13xHceEXTCUfYQM4D4MScQaiJ8 Hp6zPzPrag6j7AmUvQmtbM617IsTTvexYh4qtn1XvMl4daRM+6mrIBvxZxB/ HST+xWx73CuoHye+4LGfYPFFiCf9xSW9cMdnaMlN7Du0DKEtL6HUee6+2dxW 8ecQ3xBjPIVJoQUxii+xds/VodAjHXJ+8rQCofs6NOce6tahFyq0CqEOMcrf iCXdQ6c16VcVegGhBh363T1UrkN/uIeiOvSnCq2JK3m05S91h1wfOfRLu4Pl 3Fm2Cv4H3nd+Cw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 279.312}, {288.062, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"8bd7f692-1750-420a-9864-20fb93fabd31"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(16\\). \\!\\(\\\"elongated pentagonal dipyramid \ (J16)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"0a1ddfac-16fa-4657-a4ec-483ac2de27e1"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.01598 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0262928 1.10716 -3.33067e-16 1.10716 [ [ 0 0 0 0 ] [ 1 1.01598 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.01598 L 0 1.01598 L closepath clip newpath .5 Mabswid [ ] 0 setdash .55406 .45204 m .30183 .62588 L .58281 .75995 L closepath p .747 .593 .686 r F P 0 g s .30183 .62588 m .55406 .45204 L .49747 .24073 L p .836 .828 .84 r F P 0 g s .81666 .57369 m .55406 .45204 L .58281 .75995 L closepath p .597 .482 .693 r F P 0 g s .55406 .45204 m .81666 .57369 L .7881 .36227 L p .4 .545 .885 r F P 0 g s .7881 .36227 m .49747 .24073 L .55406 .45204 L p .4 .545 .885 r F P 0 g s .38723 .8862 m .7315 .85686 L .58281 .75995 L closepath p .516 .089 .168 r F P 0 g s .30183 .62588 m .38723 .8862 L .58281 .75995 L closepath p .791 .494 .487 r F P 0 g s .7315 .85686 m .81666 .57369 L .58281 .75995 L closepath p .4 .174 .452 r F P 0 g s .38723 .8862 m .30183 .62588 L .21354 .42772 L p .779 .439 0 r F P 0 g s .49747 .24073 m .21354 .42772 L .30183 .62588 L p .836 .828 .84 r F P 0 g s .81666 .57369 m .7315 .85686 L .68918 .66467 L p .984 .877 .517 r F P 0 g s .68918 .66467 m .7881 .36227 L .81666 .57369 L p .984 .877 .517 r F P 0 g s .21354 .42772 m .49747 .24073 L .45681 .34345 L closepath p .072 0 0 r F P 0 g s .49747 .24073 m .7881 .36227 L .45681 .34345 L closepath p .621 .115 .026 r F P 0 g s .21354 .42772 m .30129 .70221 L .38723 .8862 L p .779 .439 0 r F P 0 g s .7315 .85686 m .38723 .8862 L .30129 .70221 L p .633 .774 .948 r F P 0 g s .30129 .70221 m .68918 .66467 L .7315 .85686 L p .633 .774 .948 r F P 0 g s .30129 .70221 m .21354 .42772 L .45681 .34345 L closepath p .402 .255 .564 r F P 0 g s .7881 .36227 m .68918 .66467 L .45681 .34345 L closepath p .812 .576 .581 r F P 0 g s .68918 .66467 m .30129 .70221 L .45681 .34345 L closepath p .673 .555 .713 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{281.375, 286.875}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt21lXE2ccx/FIEsIiENkXxaggKi4oIMgi+74IqOCCYlgEUY4etJ56bO1i W0+Xqx4v27te9KKXfQu97NvoS+gtnXme8Z8QvoMzDEm5gHPyZEj+z+/zPJNJ SCYPY9EXK0tr0RePFqKRgfXos5VHC88j/U/XjZv8B3y+A2XGpTLiM7c3fL4P jfopNxvrl/3t/e39bdvtH8wrv/nc+Unf8L26Cpi3bIT1s2rjl1KfKtH3+d6Z V2nq+eaPrzF6Ga26452u/E5dBSUsHAv1haT4W138jcQGzCJNmkUqOySj+FqX v1VX/vhsPZyEjtnifKk7fiVOOpTnSPkbXf6FlIegPCzDeq3L38CwqGOBOK90 x8/EyYLyInFe6vLX4GRCxzJxXuiOr8Q5COUVUr6uyz8FJxs6VsoAn+qOL8XJ hfJj4qzp8k/AoY4nxFnVHZ+LE4byGnFWdPk6ONTxtHR8qDs+E6cAymtlWAu6 /Ck4+dDxgjhR3XFNnCIovyjlc7r8sZQXQ3mDDGtWl6/CsKhjkzh3dMcVccqg /Io4M7p8GZxS6Nguzk3dcUmcCijvkPLrunwRnHLo2C0DnNAd58U5AuV94ozr 8ig41HFAnBHdcU6cSrM8y9yKpQ/povuQrqbvt15l57veqzv/fv/eeDUx2jzz 12bJGdA5s5t3nuqtOlvZf/z4pwoslojYcdurI+7aPXB+/YpphgUkzAqsMvPC epIfhtSt827LkGIpGQlDMi5GH7P1f5ilmulFGeYhie3UsTMSWyKx2Q5jOyU2 ILNv17HTMPtCAXIB8AMwbrYZ5k1tOvaGjDYWFoawIITdUK2+zfrxtejY63av MdbLlGdgUsadL+MuhNgQxE6ZbVrcTpiA0eZJbAnEZkDsZGLsuIwxFlYGYVkQ NhE/9X/equdGq44dg9EeFOCwQ+CaagMCWIhljMjQY8lHITnb7hizTR6G0WeK cQyMHDDGtjUGZfSx5CqHyaOqDW5KTngABmAKITm4TwKUB9DIx6E+mUdI5nEK 4sMQP/zx+B6JT5f4MxCfD/GDCcencTF+023807VZU92wy/yCnksO2inzi1F1 QBUANeCO6sD5Gc0l8IrA6wMvYO+pPwrqwW0EoBiAXneAeglT9zQBUOIdaI3b Y+Z7CBNpBqoUqG6ggu4omlU5UF1ApQPVlHKqDSg6GA4D1QFUyDt1BKiryaEq gWp3R7UDVQ/UUaDagMrwTkWAavVO0YvQcaBa3FFXgbrokLoCVBZQl+0peimv Aqo5OVQ1UE3uqA6gLgB1EqjL3qnzQNUA1QhUtnfqFFAN7qhOoM4CdQao+uRQ tXafFhOoHKAa7alaoM56p7qAoreA54Cq806dBuoCUOeByt0TVDdQ9Ba9Dqhz 3qkaoC4BVQtUnneqHqgz7qgeoKqBanBIhYFqcEc1AnUKqEPuKPoE2gRUjTuq F6gT/y/VDFQ1UPnuqONAtQBV5Y7qA4rOQ7QCdcI7FQGqDajjQBUCVe+Oagfq mDuqH6hKoDqAiiSH6gSqEqiiPUENAEXn8bqBOpIcqgeoCqCK3VEVQPU6pEqA uqSpQaDKgeoDqtw7RSd1B4AqSw41CFQJUKXuqFKghrxTQ0DRKfZhoIqTQ40A VeiQqrenioEa9U4NA1UE1BhQBd4p+pblGlCHHFIN7qgJoMLuqBGg8oGaTB01 BVQuUGXeqetA5TiclfWefRQo+tLwJlAHU0dlO9yB21B5QM0AleVwVtbJhDGg 6CvcW0BleqdygLoNVIbDHeiSugNUyOGsrFOP40DRl+yzQKUnh7oHVMDhDkw9 dQ2oTKDmgPI73IHN7qgHqg3GU+pi/G68H3QVT8s4ojuLn4D4EMTPqzawKd5n rvjZmnzFPjkdkhfN1lo64zlM7eT0j4RNQlgQwqbNVq0bCm789te/Do6+bYCA 3VsYBeQBQMdcizugR4ByAOi9uQVMAZBmd35CAVXJAeoEOA8AfTxrjQeC8YC6 mM8Hdb4809xsdheq1/0ENoUa2xEZZNeu5BVL3ijk0cffTXmxvWpONkfCpiGM TkZsWTvll4gHO4hQj8HqDjpadxkdVec1iKCTUdaKspsQ8STlEdMQ8Rgi6LTk 1V2LmHEYQWeXUx9Bp9M7dMQtiKBDy2UEjYK+qrAibjscBX1d1LlrEXcg4lHK I+46jKDvHrt2LWIWIlaSE0HfQltLbu85jMjc6xH3IWIZImj1RM+uRcw5jKBF MC4jaCGStS77AUQ8THlE1GEErRNzGUGr2vTXLXrtfkLEUsojFiBiESJoQWO/ fQSNIi2pEYu2E+GFrUOeui3Zdtuy0HjHPR5Cj4WEnWIOaXhH5ctQPu+ufFO6 9WhYY1+B8ntmqz5PjtgXTZlttnmT/lxm/PHaWtQvRbP2Ra1StGxfVCdF1n+K rUJRtdmqt+yf2xeVS5L1b4OPoShXin62L/JL0a+66Il5pQ7H3/UNalfvof+/ 3N/eftt34D8b8Tt0\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {285.875, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"af00b7ee-c6e2-48e9-964e-dc770781b36f"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(17\\). \\!\\(\\\"gyroelongated square dipyramid \ (J17)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"bedf9e42-4840-49e3-bb54-9937127fa0e3"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.15669 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0869991 1.24809 0 1.24809 [ [ 0 0 0 0 ] [ 1 1.15669 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.15669 L 0 1.15669 L closepath clip newpath .5 Mabswid [ ] 0 setdash .39105 .80346 m .70896 .89883 L .71596 .75306 L closepath p .599 .167 .191 r F P 0 g s .52112 .46578 m .39105 .80346 L .71596 .75306 L closepath p .79 .641 .697 r F P 0 g s .84021 .53695 m .52112 .46578 L .71596 .75306 L closepath p .524 .554 .828 r F P 0 g s .70896 .89883 m .84021 .53695 L .71596 .75306 L closepath p 0 0 .07 r F P 0 g s .52112 .46578 m .23685 .50534 L .39105 .80346 L closepath p .864 .731 .715 r F P 0 g s .52112 .46578 m .56646 .29751 L .23685 .50534 L closepath p .753 .934 .946 r F P 0 g s .84021 .53695 m .56646 .29751 L .52112 .46578 L closepath p .431 .613 .926 r F P 0 g s .39105 .80346 m .35903 .83425 L .70896 .89883 L closepath p .373 0 0 r F P 0 g s .39105 .80346 m .23685 .50534 L .35903 .83425 L closepath p .846 .47 0 r F P 0 g s .84021 .53695 m .71591 .62289 L .56646 .29751 L closepath p .896 .514 .298 r F P 0 g s .70896 .89883 m .71591 .62289 L .84021 .53695 L closepath p .97 .925 .612 r F P 0 g s .23685 .50534 m .56646 .29751 L .31827 .44959 L closepath p .398 .813 .621 r F P 0 g s .35903 .83425 m .23685 .50534 L .31827 .44959 L closepath p 0 0 .544 r F P 0 g s .70896 .89883 m .35903 .83425 L .71591 .62289 L closepath p .739 .787 .892 r F P 0 g s .56646 .29751 m .71591 .62289 L .31827 .44959 L closepath p .805 .494 .464 r F P 0 g s .71591 .62289 m .35903 .83425 L .31827 .44959 L closepath p .703 .67 .815 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{264.688, 306.125}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm8lTVFcUxp80DTTzGBVBCCLKJDaDCCIINJMNiAyiqBiCGqkENWiGimUl ZZLKYIbKsMgiWWWTRbJKFtnkT3CZf8Fl/gXT757bXz/b73XfK3aVC6jqfs/u 832/c+59r/u+89qZtbs3rm2u3d1YX6uf2Fq7fWNj/U79+K2t2EuBXY6zKy/2 6Kx33P0njhN/Un8h90n/Y2d/Z39n/6Xe/9HdBNzz92154Qe1CbqvPHl0747a Pv74tDrDb0vId+4my30l4IY4gaeCbknQtwgKqqBsBOnAmxL3jdoEwHNjc7hi UxRfwTmk4oJPxcXTeEuCv0RwQVKusYeTpZ7lNf3nbIjwC5JXoZ+FAmjhZyCW kPBsQrwuwk8hLDcUXhPhJyRVZhEkFlfF4gHYrxgK10X4EYR7iDCHCF8X4Yck 6b2GFmticR/sGiLMxcTo8HsIryPheYSzKsIPSKrMIkQsLovF+2A3EGE+EV4S 4bsQHjQUXhThOyRpZlFALFbE4g7YzYbCCyLcImxmUYgp0sLbILaT8CJCPCfC mxB2EGExES6JcJOketTQYlEs3gS7iwhLiHBBhBsQHjMUzovwBkmaWZQSi7Ni cR3sPiIsw8To8KsIHyDh5YQzK8J1kiqzqCAWM2KxBvYpQ+G0CK9AOEKElUQY FeEqSXrU0OK0WFwCe5wIq4hwSoQrEE75CfW7KvwCSZUJdxPiuFgsgzhjKBwT 4RKEZ4hwDxFGRLhIkmYWe4nFqFioM0G9M28oHBGhHNCytnCch2r71+//qjLm iFU1sRoWqzOo3316qE1jZvGHUs36mSqltpr1jIhk9VCbBrymMUQ812liW0Ny HRTADAEECCAHgKgh4KQAohiMHGKbh+GYJLa1xHZAbE+TvHMJIB95TxgCTghg EnnnE9tC2I4R2/3Etl9sJ0jeDFAMQMQQ0CeAcQIoIIBSjPwwAdThQNS2EQxH MTGrQLZDxOxVku0xsR0l2TJAFQCDhoAeAQwj7zJiuxuDcILYNhDbbrE9RfJm gGrk3W8I6BLAEAGUE0ANAMcJ4AABdApgkAAqCaAWgF5DQNgOUIc56CaARhyI Yf+BqSC2Dcibrb4OkryP2AEaAQgTQBMBtNsBmjAwbO3KAG3+Byc7dppRAVtV HyKAVjtAKwCtBHCYAFrsAO0AtBgCmj0fCwbnbwfm4JAfQON9bVneYeTdlG5q //vZ3cYBI4Z5dwHQmPKkir2hCd7hN6X0gHLA99MtiDLiD0cdD1agXkxDfbqP f4HEFknuM5179p1TSqD9qI5d1O/HGGYTVIsdagCo2nSrFF3fC4AOYlD3pVyK 5vqjIgRVQlDDqI+1cvaS+nIItNUOOgrobr/rF90t9EWNGaIiQLE2WRWpL49A 2+yg45i/Cr/rX93g3DZqCvWx/mEZqS8FlK1Q2ZovCmhpuh5GCmi7HXQGg1rs 12nSq+Bto+ZQH+sfF5L6UkDZdUURgc4DyvreIdRXSlBH7FCLQIXS9VV1fS8A eg7zl+vXsM6SU8YXNWmIOo/6gun68rq+cgLtsIOuAJp8j0Vwz0JZpRo6RaCF BHoJgxory3vzJz6aVYRx1I5xBYVJFfEaYp+o2/Z+Dd57/M1YR4FdOK96E/3n 0eOUiYbtvC+rZ1kyudbxh6O+xLZtfxGpZ7u2SQcKm0QNiBIA61pcACCHACoJ oNMfwCpYVs8B7wDZoqYNa1nyfHw9C2BnVZcdYMHzUZwRwFkAiuwArCkYIoA5 MhsMxT73uu1Qs57FQEYA054ljhWAtWjzCCBKBouhygiqxw6VWK5V2QHOEADr qk54ltbbBrAKxshgMRRbMRyzQyUuE6rtAHOGg5W4+KkhgBIC6LUDDAGwPzOA QTIbtYaDpVFnCYrdEEhcCdcb1nLcDpC4qm+wA8wTQJAA+shgZQjVi1oOEgC7 WujzB7DB6gbgkB1gwbCCTgCaCaCIAPrtAGEyGxlCdaCWNjvAIgFkE0Ci23mE AAoJ4IQdoI0MliVqiaACBNWCWsKZARwGoIsAWKdgwA7QBECPHeCcIaCRzEaG UImbJccJIJ8ATtoB6gHotwMsEwC7AV5HBouhWLNv0A6VuCN2MjOAfQAM2QHO q03QC9APx2M6TExZO3IovWk1GXVLe/mhSnaSfexCPZ5u5Hn8eLqJu8jjxJT1 uU+lN60kY2Bpv8LHoBzpThE/1iEfTulXCr/oC/ErIZVbOl985pRwL1bjac4S syAxG/E3K4DZnJ1Z4odaIVjMP69FHhkpZsbu6ox6zJKKCyKzJTuzy8gsAIvl 57XIIsUxswAxi3jM1PG1YidchfC8oVD/Rk392lid0At2wjfcjbtWdmbshJsg ThIhu1+pf4e3BeGonfA9pMq+qFII74MoywF+D1f/0vABKJ3pgz+Hc7sKzn4q 2Im3Mp2vEXc4Zdz3gDekjPsJfsnXrY4T7z46v8AsudXgCfoVTsnNG0/QbwhS 7TD9wzz11h+A5Ca/9SdUWclv/e1uAnLUqRfUfL1E/19kZ39n/2Xed3b9D5+N 1VA=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 263.688}, {305.125, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"7e1039fe-9993-4cea-b62c-5f4d00e2df71"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(18\\). \\!\\(\\\"elongated triangular cupola (J18)\\\"\\)\"\ \>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"9a151890-ff07-4d88-a828-0d9aa211b59c"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.06435 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0475221 1.14966 -1.11022e-16 1.14966 [ [ 0 0 0 0 ] [ 1 1.06435 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.06435 L 0 1.06435 L closepath clip newpath .5 Mabswid [ ] 0 setdash .32919 .51256 m .52766 .62485 L .70292 .44639 L p .743 .722 .832 r F P 0 g s .52766 .62485 m .32919 .51256 L .27829 .75996 L p .853 .639 .613 r F P 0 g s .27829 .75996 m .49117 .86289 L .52766 .62485 L p .853 .639 .613 r F P 0 g s .52766 .62485 m .49117 .86289 L p .87527 .48931 L .445 .26 .535 r F P 0 g s .87527 .48931 m .70292 .44639 L .52766 .62485 L p .445 .26 .535 r F P 0 g s .50776 .31751 m .70292 .44639 L .87527 .48931 L p .102 .519 .909 r F P 0 g s .70292 .44639 m .50776 .31751 L .32919 .51256 L p .743 .722 .832 r F P 0 g s .49117 .86289 m .27829 .75996 L .41822 .84295 L p .411 0 0 r F P 0 g s .41822 .84295 m .64401 .95105 L .49117 .86289 L p .411 0 0 r F P 0 g s .49117 .86289 m .64401 .95105 L p .87527 .48931 L .445 .26 .535 r F P 0 g s .24697 .35232 m .32919 .51256 L .50776 .31751 L closepath p .795 .824 .874 r F P 0 g s .27829 .75996 m .32919 .51256 L .24697 .35232 L p .994 .818 .557 r F P 0 g s .87527 .48931 m .67088 .34907 L .50776 .31751 L p .102 .519 .909 r F P 0 g s .50776 .31751 m .67088 .34907 L .39028 .39035 L p .302 0 0 r F P 0 g s .39028 .39035 m .24697 .35232 L .50776 .31751 L p .302 0 0 r F P 0 g s .24697 .35232 m .18464 .61764 L .27829 .75996 L p .994 .818 .557 r F P 0 g s .18464 .61764 m .41822 .84295 L .27829 .75996 L closepath p 0 .266 .767 r F P 0 g s .64401 .95105 m .8557 .75615 L .87527 .48931 L p .445 .26 .535 r F P 0 g s .67088 .34907 m .87527 .48931 L .8557 .75615 L p .891 .651 .569 r F P 0 g s .64401 .95105 m .41822 .84295 L .63536 .62719 L p .747 .762 .865 r F P 0 g s .63536 .62719 m .8557 .75615 L .64401 .95105 L p .747 .762 .865 r F P 0 g s .24697 .35232 m .39028 .39035 L .18464 .61764 L closepath p .298 .096 .428 r F P 0 g s .8557 .75615 m .63536 .62719 L .67088 .34907 L p .891 .651 .569 r F P 0 g s .39028 .39035 m .67088 .34907 L .63536 .62719 L closepath p .801 .561 .576 r F P 0 g s .63536 .62719 m .41822 .84295 L .18464 .61764 L p .643 .577 .765 r F P 0 g s .18464 .61764 m .39028 .39035 L .63536 .62719 L p .643 .577 .765 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{275.875, 293.625}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm+lPHGUYwKfdXe6zQKGcy7Ec5YZy39BCoRQKbRFaWkvv07aUHmqMGjUa NcbEGmOMiTHEGBNj/AP82I/+C37036g78748XZbfTN/ppolJSzLvzO77zO/3 PHMscx5d27h66dbaxrULa+Gp9bU7V69duBeevL0e/Sqwy7J25UWHSNiyp59a 1lbj/OXbjf7wevr19OvpV3r6U3uUYv8+fKy++MAeJdtfpDydsayQPfW+6npb uvKl6x3VtS5dYem6r7puSFeTdN1RXRdE3itdN1TXqsx1SLouq66T0rUgXWuq a066zkjXquqakq4r0rWiuibsUVC6nKDA07+/eBxt7d/NfzcfOz+gyzHhumum 6Lo9WEFxOnOnxc0dHazd9qclL0S0dTiLwslFjt2q7/SfdVxhxwGbKtgpwRYB NmC3To4esEyBDQqsHGBJkOMxd2yuYNsFGwFssuToASsQWK3AmgCWCjkeVdgx wBYLtkSwnYBNkxw9YOUCyxFYP8AyIMcZd2yVYEOCHQNsJmCn3bG1duvsMIcB liUFeyDqnFZ9t/n4ibM7ESwXMptU2FFXbEiwW4PlbO478XskVw9obVyu0SH6 SbX2d1Gsgz4IgnzIf8JdFQFVCFQToCqQWjwENSBIBsE4CAqhFuWwRgxVqaCi DbJIavEQVIMgHQSjICiGWobcVVWgygTVCKhKpBYPQSUIskEwBIJyqKVfqYYN VbmgGgRVhdTiIQiDIA8EAyCohFp6/KnyQUW/pVVSi4egAgR7QdAHghqo5YC7 qhxURaDqBVVEatGCIUNBMQh6QFAHtbS7q8pAVQqqblDVSy0eglIQlIPgAAga oZYWd1UJqMKgon/+TaBqVqpBQ1UVqDpA1SyLzUNQDIIaELSDoBVq2e+u2geq WlC1gapNavEpqANBKwg6oJY6pRowVDWAqgVUnVKLh6AIBI0goOPWbqilxl1V CKpmUDWCqkdq8RDsBUErCPaDoA9qqVSqfkNVO6gaQNUPqrC7qgBUnaCqT1yV D6ouUNUlrsoDVQ+oahNX7QFVH6joPM9D1WeoGrBbvenuFAwkLhiCWioTV+WC agRU4cRVOaAaA1WF4RrSO26voWoCVHQtwacqG1SHQFWWuCoLVFOgKk1clQmq aVAVG24WWtVjqDoCqn2JqzJAdRRUdL3KpyodVPOgKnw5qmOg2pu4Kg1Ui6Aq 8KfqNlSdAFV+4qpUUC2BKi9xVQqolkFFF2IH/amSQXUKVDn+VF2GqlVQZSeu SgLVWVBlGa6rKndVCFTnQJWZuCoIqvOgyvCnOmCougiq9JejugQqunvhUxUA 1RVQpRhugR6q3aC6BqrkF1GFYlXOEP1s3QJ8kj98pwf+NuBDL4IPbsNHp+8C Ofgi5GerwE74HmDjb6CZYJ3j9fsA2+0P1iGwhw4sGAuzp0eeM2/c5vQwLiXL HGGNqbsRj+R8xGPGTs8Zh2DG6p37xdaMD2KS/uvJP/ag7kHSrryNE3zGUawN QAV0G7tKet3JXUxeB3LIbp1MPXjdzLsDvBTh0aWTbbzQdp5ekm8BNB3K73TH 93jgbwI+U3L2gPZ6QK8DNEeg7c+DBmKh9mYz9iRun7gMgjxYKC3uqj5D1UVQ FUgtHoJ+Q8F5EBSJgC7qeggCIDgHghJYWA3uqgFD1VlQlUktHoJBQ8EqCMIi oBsHHoIgCE6BoFoEEXfBkKFgGQS1sDbo5pS+EDpsqFoCVb3U4lMQAsEJEDSK oMJdMGIoWARBCyysUnfVqKHqGKjapBafgiQQzIGgUwR0j1gLxgwFsyDohoVF t9a1atxQNQOqXqnFpyAZBIdBMCCCAnfBhKFgEgTDIshzFxw0FBwEwRisjRx/ qhRQjYNqQmrxEBwyFIyCYFIEWe6CSUPBMAimYWGl+1Ol2q0+fN0pOCIVeGCn AJsGFfSBYE4EKSCIKMFhQ0EPCBZgEYX8qdJB1QWq41KLh2DaUNAJgiURBNwF M4aCdhCsOG0wdmGpYwZXcgaQW4F82m4DMbAjhrBmgJ2JOZpxYLP2yPkiExCN boi4Bahhc4YLsMEQW6+w85IjlVlnCGtQsAWBUWYRQ5i+mX/c7WchDlttiG1U 2BOSI+2rlYawJgVbEhhlVmEI009iLEPB9P+pzBCrH1ZZkRzp97vEENaqYKcF RpntM4S1KdgZKJgO8AoBuxpzpuvAzkpmdNhT4IaIy0zDzgmM8skzhOmHrM5D mQHA5hpi1TUR9RS8kyOdQWQbwtQFDOuSwCizTEOYfkLuijPiCwymKHU9wboq edEJeKohTF0xsK4LTFW5xYruGGYc/TTjzfgV6uwOZgh1Pm7dskcBtYG5/Fty ElXnc9btmNXjEh7n0TPejUl1Uz/hTHvkiApfFw/lrh+y3ZCgFQhS5zzWAwla giB1MmE9kqWwCEH6+eR3hTQPQepI23pPgmYhSB0tq/dR9CPnO4P0o90fStAk BKmDSusjCRqXVaUfsP9EahqG+XXQZzL/AASpgxDrcwnqhaBZFfSlBHVBkH6X 4CsJ6oAgdWRhfS2Jt0DQvAr6RkiNEKRfr/hWguohaEEFfSdBEQhaVEHfS1Cl LOeTqusH6SqH+XXQj1JTMQTpt2p+ElIhBL2hgn6WoHwI0q/4bEpQLgTp14Z+ kaAsCDqlgn6VoHQIOq2CfpPqkiFIv8D0u5CCEKT+BVt/SJDlXKDfirHeVP1/ OqPts+ou58P/6M20V2Ha2vUf6b0itg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 274.875}, {292.625, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"40a55fb0-09f7-4b9b-ba0f-a1ea5bd16b4c"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(19\\). \\!\\(\\\"elongated square cupola \ (J19)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"0a954db8-4d12-4718-9a5b-a163410b7598"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.09179 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0596985 1.16118 0 1.16118 [ [ 0 0 0 0 ] [ 1 1.09179 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.09179 L 0 1.09179 L closepath clip newpath .5 Mabswid [ ] 0 setdash .24974 .59777 m .43194 .55497 L .45126 .35224 L p .839 .765 .781 r F P 0 g s .43194 .55497 m .24974 .59777 L .33012 .80975 L p .809 .594 .611 r F P 0 g s .33012 .80975 m .51091 .75448 L .43194 .55497 L p .809 .594 .611 r F P 0 g s .43194 .55497 m .51091 .75448 L p .73482 .32362 L .43 .399 .723 r F P 0 g s .45126 .35224 m .43194 .55497 L p .73482 .32362 L .43 .399 .723 r F P 0 g s .51091 .75448 m .33012 .80975 L .47094 .9232 L p .671 .296 .328 r F P 0 g s .47094 .9232 m .65552 .8575 L .51091 .75448 L p .671 .296 .328 r F P 0 g s .51091 .75448 m .65552 .8575 L p .73482 .32362 L .43 .399 .723 r F P 0 g s .26246 .38466 m .45126 .35224 L .56955 .24688 L p .694 .936 .964 r F P 0 g s .45126 .35224 m .26246 .38466 L .24974 .59777 L p .839 .765 .781 r F P 0 g s .73482 .32362 m .56955 .24688 L .45126 .35224 L p .43 .399 .723 r F P 0 g s .24974 .59777 m .26246 .38466 L .20794 .47323 L p .967 .858 .455 r F P 0 g s .20794 .47323 m .19644 .70269 L .24974 .59777 L p .967 .858 .455 r F P 0 g s .19644 .70269 m .33012 .80975 L .24974 .59777 L closepath p .944 .634 .421 r F P 0 g s .47094 .9232 m .33012 .80975 L .19644 .70269 L p .447 0 0 r F P 0 g s .65552 .8575 m .47094 .9232 L .60498 .85634 L p .391 .846 .776 r F P 0 g s .65552 .8575 m .79638 .78945 L p .73482 .32362 L .43 .399 .723 r F P 0 g s .60498 .85634 m .79638 .78945 L .65552 .8575 L p .391 .846 .776 r F P 0 g s .56955 .24688 m .37241 .27519 L .26246 .38466 L p .694 .936 .964 r F P 0 g s .20794 .47323 m .26246 .38466 L .37241 .27519 L closepath p 0 0 0 r F P 0 g s .37241 .27519 m .56955 .24688 L .73482 .32362 L p .58 .091 .059 r F P 0 g s .19644 .70269 m .33853 .8172 L .47094 .9232 L p .447 0 0 r F P 0 g s .33853 .8172 m .60498 .85634 L .47094 .9232 L closepath p .506 .743 .98 r F P 0 g s .33853 .8172 m .19644 .70269 L .20794 .47323 L p .326 .329 .709 r F P 0 g s .79638 .78945 m .60498 .85634 L .63832 .61442 L p .877 .828 .796 r F P 0 g s .79638 .78945 m .83659 .5606 L .73482 .32362 L p .43 .399 .723 r F P 0 g s .63832 .61442 m .83659 .5606 L .79638 .78945 L p .877 .828 .796 r F P 0 g s .37241 .27519 m .53359 .3596 L .35815 .57494 L p .512 .283 .504 r F P 0 g s .35815 .57494 m .20794 .47323 L .37241 .27519 L p .512 .283 .504 r F P 0 g s .73482 .32362 m .53359 .3596 L .37241 .27519 L p .58 .091 .059 r F P 0 g s .53359 .3596 m .73482 .32362 L .83659 .5606 L p .838 .594 .57 r F P 0 g s .20794 .47323 m .35815 .57494 L .33853 .8172 L p .326 .329 .709 r F P 0 g s .83659 .5606 m .63832 .61442 L .53359 .3596 L p .838 .594 .57 r F P 0 g s .63832 .61442 m .60498 .85634 L .33853 .8172 L p .669 .636 .808 r F P 0 g s .33853 .8172 m .35815 .57494 L .63832 .61442 L p .669 .636 .808 r F P 0 g s .35815 .57494 m .53359 .3596 L .63832 .61442 L closepath p .698 .534 .661 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{272.438, 297.438}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm8tzU1Ucx0NefUXSlrapLYGUPlL6TEvf79KWPqCA5aEgAqUgrYogVBEH ZcaO46ij44IZNy5dsmTr0iVLti79N2LOI9/chu+9c9JTZ+pMO5OTm3u+v8/3 9zvn5qa5OXd5dXP9zr3VzY211cT8w9UH6xtrjxKn7j/M7Aoc8PkOlGcexxM+ sZ32+bKN/KsQjX6xv72/vb+9bfs38RQS75dNteNX8VQkdoTSz8uL/WLroer6 AV0H0fVAdW2Jp7DYERNdAbF1T3U9RVQCUR+rri8QdRxdG6rrPqJ60HVXda2j awRdd1SXfJLmM+haU123xZPc4Qukt5a20tnTxCyUq0q5BmVQCOXWLKq6rkS3 ICqCaA6ka0q0ClGpEPkkQIjEw2F8VclvQh4B8xRE7ynRDYiiRHRZia5jHCqI 6KISfQBRFRGtKNE1iGLbRXLfOSV6H6I6iOZBWlaiqxDFiei0El2BKEFGLJfd opLLMQmKHQ3bZ0HuW1CidyFqgmhCiORhH0i//v259tF/GR8ZeBmBSQQOiEB5 yJaQwDkVeAmBbQjshmPUPfAiAjsRmIRjNQmcVYEXEJhCYAKO9e6BcpqlqJcM eAzeCXfEO0D0wbsS3kkSOKMCzyNwEIGlcOxwDzyHwBEEBuB4ggSeVIFnETgu AqVmyF2+DPmEY3AychkyTAKnVeAZ8RSGjxa9/OmFPOOMuAeezgsMIlAHe8Qu 5cWGtsVmzUcJYEoBFl2zzjwyr1TrHAI2dhq2ANiEIYyN56SCzXvCQoaZvQFj ZYYNM5tQsFOesGLDzDRszhNWYpjZuAMWcoOVFgabpe+ELKzMsEwnLOgGixhm NqZgM55lHjTMTMNOesKihpmNOmBBN1iFYWYaNu05ZgzGMhtRsClPWOUOYAE3 WJVhmRo26Tlm1YaZDTtgATdYzDAzDZvwLJPBWGZDCjbuCavdAczvBqszhA0q 2JgnrL4w2KjnBMQNYQMOmGtmBcJGPGFHDQ8NJ0x3iW8WAjhGsAnDHPsVdtgQ 21AYdgils0lpNIT1bYOtrLzMS3SYsJt2wNZdGQNpIvNm7GZD9gkv9ptl9BOr FnurgGhlLX3EoNXw8PMwCJFaUsTquGEtve5WYdTSTQza7A2KSS0dxKrd0KrH 3aoEtbQTgw57gzJSS5JYdRlapdytIqilhRh0F2YwSAyipJZjxCpFrNjXmG53 q3LUwgx6DGvxMKiEwVFi0GtvUEUGq55Y9RladblbVaOWOmLQb28QI7XUEKtB Q6tOd6ta1PIfGdSRWiqJ1ZDhQdzhblWPWiqIwYhhLR4GcVLLW8Rq1N7qCGqJ EINxQ4N2d4MEqaWYWE3YWzWgFlMD+WEsd3kMUSOpIEgMpohBHwz86X9ev8qr pc3dtAm1BIjVNLFKiVZ+4woVZtWSV1/m2TdHDNphUFKYQVK0MnCGYFsxRBGC 9ZhuidUX1l788Sr7kD8osAO3EflHd2IUcBpljrCs1QCxSqCmQ/ZWUVixz/rD qKrG3qoGVuz/yRis6tytBohVK7GKw+oYsarCAMaJVYe7FauqGVaHiVUUVSXs rTpgxS5xRFBVk73VCVixy1lFqCppbzUCK3YdNACrdnuraVhl3tkv1aXurFNA vQesPRZEKxPuIbDOwmBLslX7MjAJTO1jdwW7SLAFTlmLRbZd+9i9jGVngu7C sOwAY9n+L7H9Fu+yvYG1ORJSewJrOgj72N3BsinrcWD1QgxrmOtXNjssu/zX aI8dJthjbv8YGUyUxuZ+e2mwyFFfMB4jOR6xx44TbNweO0Gwh+2xkwRbb4+d wkTtAuwkybHW8GBiWP3jxwzBxuyxswRbY4+dw4juAmye5HjIHrtAsBUW86+x iwRbbojtIlj9I+ESwUYtBkFjT2OidgG2THKM2GPPEmyZPfYcwZYaYtlE6Z+d z2NEdwG2QnIsMsR2ilYmolcpXCCwsCGsTbRyl14mcpHAQgQ2T2CtopUXGPSi n0sEFjDMrFm0eimThF3GBJgiGjFSmY5bf/8lO8WrSUVUK5KDzvTENvufOIFx ykPptYtX8ir1uXDi4PgFRianF4Ve1Qgd7noyqQMiAIRefivXMct62PTUYjiC CFTnYLWUWsu3/kzL9OU6vknCqdmegNzS65mv53Eyj8zRk2nlpa0hAjsEWC6p Mwp2g8DKRCsz6yWwClQYAkydZRxr0yuQTztBHEQ+OcR5hbhF8qkGrInAygAL A6bXpa8RWD2KO0JgxYAVAaZXwt8msAQyixFYGCNVDJhee38HI5VEPuUEEUQ+ OYRe43+X5NOGfEokLOiEAVUClL6nYJ2gUkD5BSqoTsrZQH3vwgYJHBCt3BUR 8rxzsw78CPX3C7kfdKm+qUSfuKXlRxWyU9+8cY/IOyEvhvxDJf/Ubfz8mH7Z 6bzXJE+e3C6XWyppdcuL3NEMURhM5a1vmSGHVO7tJTs/U/JHRB6HPAi5vkln k8jfxuTkzgSPlfxzZBwjzCdK9JgwKyHPnaqeKvmXRB6F3A/5MyV/QuQRyFU2 af2hIB7fqrCvkHlpTrz9E+Q7pXzqduqUn4HfK9HXROQXrXwP/KhE35CTuTT+ WfU/c/Rnj/1fVJd8sYfu7trf3jvbvgP/AvBg1uM=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 271.438}, {296.438, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"180c002d-6a91-420d-94af-6da012b451f0"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(20\\). \\!\\(\\\"elongated pentagonal cupola (J20)\\\"\\)\"\ \>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"e6bf8e41-696d-4663-a582-70cfe14d5095"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.03331 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0341349 1.12202 3.33067e-16 1.12202 [ [ 0 0 0 0 ] [ 1 1.03331 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.03331 L 0 1.03331 L closepath clip newpath .5 Mabswid [ ] 0 setdash .30287 .6395 m .42879 .54412 L .37192 .39286 L p .85 .726 .726 r F P 0 g s .42879 .54412 m .30287 .6395 L .41833 .77981 L p .778 .573 .623 r F P 0 g s .41833 .77981 m .54019 .67872 L .42879 .54412 L p .778 .573 .623 r F P 0 g s .42879 .54412 m .54019 .67872 L p .65613 .30046 L .416 .487 .824 r F P 0 g s .37192 .39286 m .42879 .54412 L p .65613 .30046 L .416 .487 .824 r F P 0 g s .54019 .67872 m .41833 .77981 L .55372 .86742 L p .664 .388 .494 r F P 0 g s .55372 .86742 m .6752 .75861 L .54019 .67872 L p .664 .388 .494 r F P 0 g s .54019 .67872 m .6752 .75861 L p .65613 .30046 L .416 .487 .824 r F P 0 g s .23892 .48553 m .37192 .39286 L .39273 .27029 L p .885 .928 .844 r F P 0 g s .37192 .39286 m .23892 .48553 L .30287 .6395 L p .85 .726 .726 r F P 0 g s .39273 .27029 m .37192 .39286 L p .65613 .30046 L .416 .487 .824 r F P 0 g s .27761 .64071 m .30287 .6395 L .23892 .48553 L closepath p .903 .568 .086 r F P 0 g s .41833 .77981 m .30287 .6395 L .27761 .64071 L p .76 .275 0 r F P 0 g s .27761 .64071 m .40266 .7928 L .41833 .77981 L p .76 .275 0 r F P 0 g s .40266 .7928 m .55372 .86742 L .41833 .77981 L closepath p .564 0 0 r F P 0 g s .6752 .75861 m .55372 .86742 L .66862 .86821 L p .323 0 .162 r F P 0 g s .66862 .86821 m .79348 .75192 L .6752 .75861 L p .323 0 .162 r F P 0 g s .6752 .75861 m .79348 .75192 L p .65613 .30046 L .416 .487 .824 r F P 0 g s .39273 .27029 m .25155 .36386 L .23892 .48553 L p .885 .928 .844 r F P 0 g s .23892 .48553 m .25155 .36386 L .29361 .52437 L p 0 0 .452 r F P 0 g s .29361 .52437 m .27761 .64071 L .23892 .48553 L p 0 0 .452 r F P 0 g s .66862 .86821 m .55372 .86742 L .40266 .7928 L p .252 .634 .961 r F P 0 g s .65613 .30046 m .49768 .22776 L .39273 .27029 L p .416 .487 .824 r F P 0 g s .25155 .36386 m .39273 .27029 L .49768 .22776 L p 0 0 0 r F P 0 g s .79348 .75192 m .66862 .86821 L .71431 .7644 L p .829 .996 .764 r F P 0 g s .79348 .75192 m .84593 .64464 L p .65613 .30046 L .416 .487 .824 r F P 0 g s .71431 .7644 m .84593 .64464 L .79348 .75192 L p .829 .996 .764 r F P 0 g s .40266 .7928 m .27761 .64071 L .29361 .52437 L p .33 .45 .831 r F P 0 g s .40266 .7928 m .51111 .78806 L .66862 .86821 L p .252 .634 .961 r F P 0 g s .51111 .78806 m .40266 .7928 L p .29361 .52437 L .33 .45 .831 r F P 0 g s .29361 .52437 m .25155 .36386 L .35078 .32642 L closepath p .268 .188 .577 r F P 0 g s .49768 .22776 m .35078 .32642 L .25155 .36386 L p 0 0 0 r F P 0 g s .51111 .78806 m .71431 .7644 L .66862 .86821 L closepath p .598 .741 .944 r F P 0 g s .35078 .32642 m .49768 .22776 L .65613 .30046 L p .629 .295 .387 r F P 0 g s .84593 .64464 m .71431 .7644 L .65538 .58313 L p .895 .775 .721 r F P 0 g s .84593 .64464 m .79553 .46687 L .65613 .30046 L p .416 .487 .824 r F P 0 g s .65538 .58313 m .79553 .46687 L .84593 .64464 L p .895 .775 .721 r F P 0 g s .44509 .61358 m .29361 .52437 L .35078 .32642 L p .505 .427 .701 r F P 0 g s .29361 .52437 m .44509 .61358 L .51111 .78806 L p .33 .45 .831 r F P 0 g s .65538 .58313 m .71431 .7644 L .51111 .78806 L p .627 .636 .84 r F P 0 g s .51111 .78806 m .44509 .61358 L .65538 .58313 L p .627 .636 .84 r F P 0 g s .35078 .32642 m .50955 .40789 L .44509 .61358 L p .505 .427 .701 r F P 0 g s .65613 .30046 m .50955 .40789 L .35078 .32642 L p .629 .295 .387 r F P 0 g s .50955 .40789 m .65613 .30046 L .79553 .46687 L p .798 .569 .59 r F P 0 g s .79553 .46687 m .65538 .58313 L .50955 .40789 L p .798 .569 .59 r F P 0 g s .44509 .61358 m .50955 .40789 L .65538 .58313 L closepath p .624 .551 .752 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{280, 289.312}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm9tyE1cWhoVbLcmSbCHZxmdZtuzYlmx84BAgCQ4hYxMTCKdAIMmA8UAM ISdMUhSVySSQZGYYampqipqaSuWSR8htLnM5l7zCPEJuHa29lxZt6W+x2m2n UhWo6t6iV+//+9fq3a12q/expVsrVz5YunVteamwcHPp45Vry6uF+Y9uVjY5 2yKRbV2VZbAQoc9rkUh1Zf5104r/8+zzs8+/o89/p8ahc+GB3fCtbHDWHi1e bqJP923oa2qitCFGIbPTX23oroRS0usbG/oLNTHa0Cqhezb0ZwnlJPSVDd2h JkEbOoT1hQ3dllCP9Prchj6lJkkb+iV0x4ZWJTQoods29Ak1KdowLKxPbehD atK0YVx6rdrQDWpaaMOEhD6xofel17SEPrKhaxLaLawbNrQioX3S67oNXZXQ ixJasaErEpqT0FUbWpbQYWEt29BlCS1IryUbuiShRQldsqGL60MRo7j2v4cP qa3u9K7sdNTs5MpO1YV2vmh3fgfAXNqJtfmf3S8SuVCj7Xi1K6OyvuPbtuN5 wEmC3S/Y3c815KRAx/O241kZFLUVoi5p/45nhFiJH5p5uHbv+g+0RIzVeTG9 HUi8ZSVOywiPkkLEnI5VHVqaZCjU+MoC0XNW9KSIukbU8YpWEFXZl4FsG5A9 a2VPUGPO4QSQjYnsk+HeCcTetGLHRSwJxBIith947AKyZ6zsMWrM1SkNZFMi uxfIdvvLHhXZViDbIrKzkno/EDttxRapce3AqBfLiNgU8JgHsqes7BFqzPhp A7JZkS2LxyEgdtKKLVBjIu1ArF3ExoDHIpA9YWXnTWNDdMKQdAcA7BDACAAM hwd0mbXdVgEYSEEKMwYAb/gDUIl6JIMBkME4ABz3AExH5LtPZPuAbBnIHtPI 5kW2S4owBcRet2J/8BSBvlsjPuNkUGQ7gNtpADgaDFAUQA4AZp4GiHoAq35n zogwntwL7QHKi4GVR0U5BdzvBYzXGjJygFESRlzcHwDKRwIrT4hyFLh/ATAW vAy3hmEPchaAdgrI3t5WOZGDgDH/dAa66s54rgfVFLZYfg7IW93Iq3XDf9Xc U6zWXHjQl9GMVOsQALzqD3AAoAUApvkugrZ9/4+fzOJDOxyMhr6ybeXcdTQm QuQrm4V0vMhK9Wn99AN4KDx+GuCd8PgowKNbL5R9VIl/eWvwrhI/Fx6Pih9X 4g9a/GGAd0PgE0r8S/74GMCje3hU/GaAR1fGTcCj7JPK7F/cGnxKiX8hGD6u LH5aiT/gj48DfEyZfasSv39r8Bm/ocd3Mb8a9CVPzv//6Udqg+LRX+IInwV4 ey8VFTxbYAevAAfNwEFU6SAHHOyvKUBlqXwl0nr9QHh+ayy1AUvPA0tOeEuO 8sxsB5Z2y9iMbY0RVJsdwMgsqE0cWNrrbykJLDWFsDQDLCU2Ysn1WjILnY27 gI1OYGMK2Gj2t4HO7uYGNmaBjW5gYxLYSAEbezbPRg+wUQY20sFs2IMSXWfD x0EvcDAmp0xmI9wn49Mv7T4AHQVpN8Cj+8naM9YP3w/wIwCfBfjd4fF5gC8C fC4Y3lv8RheCAsAPAnzbBvBm0KAr8yCA5mWYdQLULouqf+jEhW5aO7X6mJ+J 1fOGAK8PJLkRMp/fFbwsdKgngY0isNELbHRtxIbjtRF5Uo8yMDIMjHQDIz3A yGwwI1ExMg6MjAAjncBIr7+ReWAkDozEzXr9CTECLI0CSx3AUl94SwmpDTIy Bozk5CQZCI9PCr6oxGdBHQrAyEwwI2kxMgiMjAMjGWBk0N/IAjASA0ZawRjp B5bKwFILsDQU3lJGaoOMTAAjKWBkGBiZDmYkK0Z6gZFJYCQhg3XUH38E4F2A bxN8F8BPAXwM1CGgkSgwsgOMkQ6lJRdYGgeWpoJZ6pTaICPTwIgDjJTCG+kW IzlgZJafFHqMmMV+XfrCXwNwB8B7wYHJABu7aupB+J3h8X2SO4Kag2BSnwao ncFQeUGlAapEa7rM0o8+jx7XHGWUaUB8QfBJv5ucuDVXj0fHmfGLAN8E8EPg OMf9/qwwRtqUdZgMZqQodYgBfAetq69TBcfjH67GBBn1exZoMi4qS69Alkyu rrfcZqFYswBLyhwnLND+xFv3G2a55tASwxHGzKYwJolhtu5XFkmhxz0qekbz wKYo7wTKyDOqQdkqv143lLGs1vCvINtkL5IbT72kEdM6Y7FjnoSrp3+YhBvI ToVIfTyYrNYtyx4PUYSyR/bxmv1tmI/6G0pZVIQSkOWT6gSQ1Z6rY2YdFVmW ZuWTSmVkeBQr83X4FFCeUCo/Z9buOuVqSQLKo5IMN5DnL/DTIdwXaw5kZal8 59IaXjHPAFRZiTJ/J/J3aD2AS/UmAJSUpRoAuTRAnVWiUC55JYqP0DmAGlei +gHKDYbSZtWrRPEd+lshsuoBqJg/6jxAjSlR3UoU/z16IQSqE6Di/qi3AWpU ieqQs6kZAPhhxzsA8JwS0A5yCYjS5pJTovg527shssoCVNIf9UeAGlGititR /IT5YghUK0Cl/FGXAGpYiWpRovg3iiUlah9ApQEqHR6FskoqUfyz12WAKipR CTlxM/6AZSUAlS0OcmkFKP4d908ANaTMxQUolBWjrgDUoBIVVaL4VYKrShQq oANQ28OjbFauF2UWupPLAfl9Vv69QJnUvQmTBcr8dswKUC4oahTxkeUXva4B 2QEgu4fWrp9HfmntulJsgtbmqU907fsff1YMf34p730AyAPAsABSSsDBYIBe WtMvefRKTx2gBQDmLOCGEpCTDHqVAH5n9QMA6AeApACKAIAup/xO7ocA0AcA TQIoAwD6FuJXns1kxe2k2EbhWWVvfkf7Y2oydqAeevRzk5+EuWXh+W2m401P XpWOtFQKV5WY8pOoccFit6gxHfMiMQkkEkCCZxd8BiRKSgmeBHEbSIwBCXTX yzM07gCJEaUETyT5HEigMYdu83mWyxdAoqCU4Kk+XwKJPJBAf0Lx1KO7QKIP SKC/LXlS1NdAohtIODI6eR7bt6BjJ+iIHgewxN+ARLtSgqfm3QcSOSOBn3nw HMkHoFumQTeep/lP0K3FdKt7NMQTRv8FeiRxD563+m/QI1FTFLLEM2Ufgt1j tLv5xBN4/wN2cmQnnhT8X7CT3ata+Oqe31EzwHG6MlXjPC/ZHKHf0Kz+Z59/ m58j234B1YT2qw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 279.}, {288.312, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"2971b9db-d863-4a48-a62e-474b5673aa8d"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(21\\). \\!\\(\\\"elongated pentagonal rotunds \ (J21)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"5b05c2df-4fc2-4a5d-9441-ba59cc7013e5"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.02667 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0318959 1.10151 0 1.10151 [ [ 0 0 0 0 ] [ 1 1.02667 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.02667 L 0 1.02667 L closepath clip newpath .5 Mabswid [ ] 0 setdash .58663 .40489 m .54545 .55566 L .69083 .59987 L p .641 .524 .705 r F P 0 g s .4398 .36633 m .39869 .52038 L .54545 .55566 L p .758 .646 .737 r F P 0 g s .54545 .55566 m .58663 .40489 L .4398 .36633 L p .758 .646 .737 r F P 0 g s .54545 .55566 m .39869 .52038 L p .44326 .77212 L .776 .586 .642 r F P 0 g s .44326 .77212 m .5744 .70719 L .54545 .55566 L p .776 .586 .642 r F P 0 g s .5744 .70719 m .69083 .59987 L .54545 .55566 L closepath p .652 .504 .67 r F P 0 g s .69083 .59987 m .73375 .44629 L .58663 .40489 L p .641 .524 .705 r F P 0 g s .58663 .40489 m .73375 .44629 L p .58838 .42321 L .256 0 0 r F P 0 g s .4398 .36633 m .58663 .40489 L p .58838 .42321 L .256 0 0 r F P 0 g s .59327 .82303 m .5744 .70719 L .44326 .77212 L closepath p .682 .395 .48 r F P 0 g s .69083 .59987 m .5744 .70719 L .59327 .82303 L p .493 .267 .499 r F P 0 g s .33592 .34194 m .29317 .5048 L .39869 .52038 L p .887 .786 .744 r F P 0 g s .39869 .52038 m .4398 .36633 L .33592 .34194 L p .887 .786 .744 r F P 0 g s .33114 .65358 m .39869 .52038 L .29317 .5048 L closepath p .897 .751 .692 r F P 0 g s .39869 .52038 m .33114 .65358 L .44326 .77212 L p .776 .586 .642 r F P 0 g s .73375 .44629 m .69083 .59987 L .79243 .64066 L p .447 .329 .625 r F P 0 g s .79243 .64066 m .69083 .59987 L p .59327 .82303 L .493 .267 .499 r F P 0 g s .33592 .34194 m .4398 .36633 L p .58838 .42321 L .256 0 0 r F P 0 g s .79243 .64066 m .83842 .47864 L .73375 .44629 L p .447 .329 .625 r F P 0 g s .73375 .44629 m .83842 .47864 L p .58838 .42321 L .256 0 0 r F P 0 g s .44326 .77212 m .33114 .65358 L .3375 .77063 L closepath p .867 .538 .426 r F P 0 g s .44326 .77212 m .3375 .77063 L .42652 .82551 L p .553 0 0 r F P 0 g s .59327 .82303 m .44326 .77212 L p .42652 .82551 L .553 0 0 r F P 0 g s .3375 .77063 m .33114 .65358 L .29317 .5048 L p .925 .653 .17 r F P 0 g s .59327 .82303 m .73282 .78522 L .79243 .64066 L p .493 .267 .499 r F P 0 g s .59425 .85904 m .73282 .78522 L .59327 .82303 L closepath p .171 0 0 r F P 0 g s .42652 .82551 m .59425 .85904 L .59327 .82303 L p .553 0 0 r F P 0 g s .31759 .3424 m .27177 .5174 L .29317 .5048 L p .873 .857 .403 r F P 0 g s .29317 .5048 m .33592 .34194 L .31759 .3424 L p .873 .857 .403 r F P 0 g s .29317 .5048 m .27177 .5174 L p .3375 .77063 L .925 .653 .17 r F P 0 g s .83842 .47864 m .79243 .64066 L .80828 .6634 L p 0 0 .1 r F P 0 g s .73282 .78522 m .80828 .6634 L .79243 .64066 L closepath p 0 0 .023 r F P 0 g s .31759 .3424 m .33592 .34194 L p .58838 .42321 L .256 0 0 r F P 0 g s .80828 .6634 m .85784 .48937 L .83842 .47864 L p 0 0 .1 r F P 0 g s .83842 .47864 m .85784 .48937 L p .58838 .42321 L .256 0 0 r F P 0 g s .27177 .5174 m .30058 .69261 L .3375 .77063 L p .925 .653 .17 r F P 0 g s .3375 .77063 m .30058 .69261 L .42652 .82551 L closepath p 0 .286 .786 r F P 0 g s .80828 .6634 m .73282 .78522 L .59425 .85904 L p .842 .939 .888 r F P 0 g s .71387 .65476 m .80828 .6634 L p .59425 .85904 L .842 .939 .888 r F P 0 g s .59425 .85904 m .57324 .78391 L .71387 .65476 L p .842 .939 .888 r F P 0 g s .42652 .82551 m .57324 .78391 L .59425 .85904 L closepath p .57 .785 .98 r F P 0 g s .41044 .3727 m .36099 .55873 L .27177 .5174 L p .326 .216 .572 r F P 0 g s .27177 .5174 m .31759 .3424 L .41044 .3727 L p .326 .216 .572 r F P 0 g s .30058 .69261 m .27177 .5174 L .36099 .55873 L closepath p .288 .243 .632 r F P 0 g s .85784 .48937 m .80828 .6634 L .71387 .65476 L p .934 .849 .734 r F P 0 g s .58838 .42321 m .41044 .3727 L .31759 .3424 L p .256 0 0 r F P 0 g s .71387 .65476 m .76594 .46941 L .85784 .48937 L p .934 .849 .734 r F P 0 g s .85784 .48937 m .76594 .46941 L .58838 .42321 L p .256 0 0 r F P 0 g s .53635 .61356 m .57324 .78391 L .42652 .82551 L p .57 .567 .81 r F P 0 g s .36099 .55873 m .53635 .61356 L p .42652 .82551 L .57 .567 .81 r F P 0 g s .42652 .82551 m .30058 .69261 L .36099 .55873 L p .57 .567 .81 r F P 0 g s .57324 .78391 m .53635 .61356 L .71387 .65476 L closepath p .756 .69 .788 r F P 0 g s .58838 .42321 m .53635 .61356 L .36099 .55873 L p .623 .509 .703 r F P 0 g s .36099 .55873 m .41044 .3727 L .58838 .42321 L p .623 .509 .703 r F P 0 g s .76594 .46941 m .71387 .65476 L .53635 .61356 L p .771 .663 .744 r F P 0 g s .53635 .61356 m .58838 .42321 L .76594 .46941 L p .771 .663 .744 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{281.375, 288}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm0tsG0UYx7fx+hUncRKnTmzaxEmbNG4b8uwjfbeUFgrpI31DKYSoaguU llIVCQkhBEg9gFShSD0UCSRAHODAoQcuPfaYI1eOHDlyNTvfjD+v3f9sZju2 1UMi7Xiz+fb3++bb13h3M7dw59qVGwt3ri8uFI7eXrh17frix4UjN297iyJr HGdNzpsKBUfMlxyn3NBPXjTql9X51fnV+dX5Js1fFB8JcS7607fAiYglpfnJ JTpLtYg2UjroOK6Ye4QjvcmL9Fpa5HL4HzL8AgiPcXhUhEfF3G/68CSHx5n+ qz68jcMTHP6TPjzN4UkO/0GGnwfhGQ5v5fCH+vAsh6c4/IE+PMfhbSKc5pZk +DkQnqdWLvv+y0diciprk+x+2LW91q1GfKNH5AAiIVpa1M6Ie+EQKc6incvw tUScNexIGmTxRThEd3UWNPeZHoE60stZdHBHPg2HyIMs7krEGcOO9FdnQYjb egTKYoizqCA+DIcY4SzSXIv3wyGKIIurEnHasBZj1VkQYlGPQFlMchYVxNvh EFOVQ7X05PfHYnLc6tJcksR5w35hotfWlOtCOOwkwCZFW1PCM3qsaf/bONtK EU7ZYztBEeYk9pRFbXsA9lU91jTbXDWW/njEHruesZUT6kv22EHGVi5XByT2 pMUONsI7WOUitEePNc22CLKdtceOMTbF2O322EnR0tAoydhpiT1hUdvpyrmm 9O/fj8sTieIsmtCLTPOXoohf5A38yqooq8bsVVNA1cYqGsHSWHZLY1Rdoo2L RUUpOG69faoFWdHSolG9wKYHOWrlMvXjHYTNVs1ZnI6Rqg+oNulVNjt2g1Sm BWyQCvVK7YGvN2Fb+VV0/NoIUNmq+iJPicdmf6ZPb+prjk1N1MFsnStYfHpj KZ33W1naY3FmCpDOAanL0q46FzdAGmNpus7l3ayXJkSrhjBNk6a4p8k6lzdA 2s7SePOkaZZG61xeNUY4DqSdLI00T9rNO9KMRSkDBD0ssOnB1hUEatnS0rKY 5G/jjfFlgM8VLS3aqhtqG1QxpDTO0lGLTaekJ4C0C0hToqWry0aL8oJBeZA0 zT0dtChvgLQTSDMs7W+eNMvlzVmU98Vw0jz3NNsYaRpI+1masSivkp4E0g4g HWRp2uKQCZC2A+kwb9OURXnHw0mL3NOERXkDpG1AOsbSaPOkEyx16OlC2Wk8 oJzQ+1LAN8Ob03TThRRsq1zCSk8eLYtJjufHDAuofKeALwl826HPa0labIx0 B5DGWTpsWNlJvTQBpDuBNMXSgmFP6yBNs3Rd86QZ0dItq17D8k7ppXEgnQXS Pu5pJpx0HkhjQLoLSF9gaYdheQOkUSDdDaQDLG1tnnQDS2OG5Z3WS10g3QOk m1jq/UGc3ZXTG0g0xLdFtEmxqCecIAIE+4CgSK1c9td//4jJ28G9tl1W9mnp jJSeBtIWQ+kokK4VLd3q3e4XRP2C8j0k56Bu09RA11EbkL85fsQQv+3Z8MOG +KriVN/qcsSDJ81xUkNeXxfykCF5hyTTg0z6kn8YwAYBrP9ZYQVD2E4frGa/ RR0eMMTO6rEo2/UAO6DHnjXMli4FVKJBANvlg2nrmAeZBcDOMQzlkzOE7fbB 1J+cY8t05CBsryFWPeY8D7CHADYLsEMrYd0KVqLRob7WkLzXT45Wk1XiBwC+ xxC/T+IvBOD364ZSNfgNK+Ejfrx4YnhsuWYH3gtUXYaq/VJ10VCFrrOdQLUx nCoCVGjckjZUqaf9bxiq0GCww1B1UK9ygQoNdtv4ZLNJL3jTQtAK+jICVIf0 qihQoW8LSUOVes3jkqEKfe9LABUqYIAqBlToe23cUHVYr4oDFfrKHgOqUb3q LYteuYaql/Uq015FDFXqpaLL4oOOiAQQzABBCxAU9YJ3WIB6ME1t1C+gSZzX twDoUQl913BnnqLWrcI74hmAlrzI6aJtS7wWHeIVibjCCJTSON8No/5R3Gty xaugV+gkuplvcLWUvEXoaCGsesvtGueDzmIjnE8MwIYZJm8bO+8xDGU2yJm1 AtgQw9RrfR/QB76q9zOqA6DQ0ElBb3CG6LLay9hugB3gDNX7jDcZJvtbZnnj l3LZegFnHXPk+ND5qHbTej+dnEoeIPKMUG9s0gu7FFN5xNMPVuzjFeWV0rnj OwLLSQ+BFbO8onr19K4v6XL9SDsC1s7w2pfl2p9wvkUQ3g02oFqR3o+mnWIj WLGTPQsy/HMOL4Dwdg5XL/l+JT7Unb2nw1McfkWG32M62s5JDldvIX/L4Wj3 inP4dRn+HYejndzlcPWa9APOHR1eEVBSteJD9kRpRde/IlvU+9w/crB4bLpc 4ljv85YM+YV3KfUaOdmeo/9vWZ1/PuedNf8D9cj5Rw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {287., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"f210e8a3-5fce-4021-8a02-be08e000dc1c"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(22\\). \\!\\(\\\"gyroelongated triangular cupola \ (J22)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"2d36bad9-04a1-4e8b-ad3a-acfc74de7a56"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.09693 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0614776 1.17632 0 1.17632 [ [ 0 0 0 0 ] [ 1 1.09693 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.09693 L 0 1.09693 L closepath clip newpath .5 Mabswid [ ] 0 setdash .28018 .79669 m .52286 .92903 L .41552 .70805 L closepath p .836 .512 .44 r F P 0 g s .28988 .51233 m .41552 .70805 L .52387 .4604 L closepath p .827 .728 .756 r F P 0 g s .28018 .79669 m .41552 .70805 L .28988 .51233 L closepath p .934 .725 .597 r F P 0 g s .41552 .70805 m .52286 .92903 L p .75598 .39961 L .548 .402 .634 r F P 0 g s .75598 .39961 m .52387 .4604 L .41552 .70805 L p .548 .402 .634 r F P 0 g s .48913 .31771 m .52387 .4604 L .75598 .39961 L closepath p .598 .747 .948 r F P 0 g s .28988 .51233 m .52387 .4604 L .48913 .31771 L closepath p .802 .874 .9 r F P 0 g s .48485 .92216 m .52286 .92903 L .28018 .79669 L closepath p .445 0 0 r F P 0 g s .52286 .92903 m .771 .90017 L p .75598 .39961 L .548 .402 .634 r F P 0 g s .48485 .92216 m .771 .90017 L .52286 .92903 L closepath p .148 .692 .782 r F P 0 g s .17289 .578 m .28018 .79669 L .28988 .51233 L closepath p .982 .772 .545 r F P 0 g s .28988 .51233 m .48913 .31771 L .39399 .3595 L p .684 .962 .73 r F P 0 g s .39399 .3595 m .17289 .578 L .28988 .51233 L p .684 .962 .73 r F P 0 g s .771 .90017 m .8971 .61588 L .75598 .39961 L p .548 .402 .634 r F P 0 g s .71458 .39976 m .75598 .39961 L .8971 .61588 L closepath p .777 .309 0 r F P 0 g s .48913 .31771 m .75598 .39961 L .71458 .39976 L closepath p .316 0 0 r F P 0 g s .48485 .92216 m .28018 .79669 L .17289 .578 L p .178 .403 .843 r F P 0 g s .39399 .3595 m .48913 .31771 L .71458 .39976 L closepath p .489 0 0 r F P 0 g s .72238 .72138 m .771 .90017 L .48485 .92216 L closepath p .761 .826 .903 r F P 0 g s .72238 .72138 m .8971 .61588 L .771 .90017 L closepath p .943 .9 .754 r F P 0 g s .71458 .39976 m .8971 .61588 L .72238 .72138 L closepath p .899 .675 .59 r F P 0 g s .17289 .578 m .3872 .69393 L .48485 .92216 L p .178 .403 .843 r F P 0 g s .17289 .578 m .39399 .3595 L .3872 .69393 L closepath p .489 .337 .602 r F P 0 g s .3872 .69393 m .72238 .72138 L .48485 .92216 L closepath p .733 .754 .87 r F P 0 g s .71458 .39976 m .72238 .72138 L .3872 .69393 L p .777 .576 .627 r F P 0 g s .3872 .69393 m .39399 .3595 L .71458 .39976 L p .777 .576 .627 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{271.75, 298.062}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt28lzFOcZx/FGM6MZ7YM2tGu0Lwi0r4AEMiBLNhiEWUxMbIEXSExIgLjs 4NhZKpUccvQxxxxzzDVHjjn6miN/Qq5yv8s8o+X7yk9DqcpVRlXT0+q3+/d5 n3d6tu6eS1tP73/8cOvpg3tbhbXHW7++/+Dek8LFR4/jRakjUXSkLr6NFiIz vx1FxYn9y5uJ/+f1/Ov51/M/ufk/m7u0eU34m1vwR3NXZhaktp9FkW36i2v6 Rppy0vQn1/SVuUuZBTXS9I1r+p1sVW+aMmbuK9f0hTQdk6YvXdPn0tQhTZ+7 pqfSVDBN5WbuiWt6LE0Dpilr5h65pkfSw1HTZFcq2940ZcZzn7mVHsr242al 1O6VHriVfikrzcBKn7iV7Lq2a7PCpWSle26l+/bOLtl+tvkPcx8P3fNv/5nb 3YXShh+6DT+1d2nZ0G9cLduWakzLtnfctq6DmV3bFvFGCegX3AZY6j0X8PGe Xse3mDJTtyyOMLeoTcK6JSwjvbnhwj6CsBSE9UpYm5RWLmHXXNg9CEtD2KiZ 2p2jSXpWCrviwu5CWAbCJqVneQi75MK2IKwcwhYlrErKzErYhgv7EMKyEHZO wjLSs1LYmgv7AMJyELZuplW7I867iJ9DRAVEXDXTOrNo1W14BzashA3ftVO/ bMPe4j6aqVvm/6KzLvZ9iK0KxdohroSwFRf2Mwir/oE+vvjXt/bpRLHLLvY2 xNYEY9MS66MrwsnvQXJtMDmzK7nYcYo/4+JvQXydYjziW7w7m+nuxzEL1GlH 3QQqfzjUDaCOKqmUkjrlqOtA1SuptJJactS7QDUoqQxQ5WHqGlCNSqpcSS06 alNJXQcqq6QWHHUVqCYllQMqE6auANX8ChRVNe+od4A6pqQqlNScoy4D1aKk KpUD6KlLQLUqqSolNeuot4FqU1LVQKXD1FtAtSupGiU146gNoDpegaIBnHbU OlCdSqpWWZWn3gSqS0nVKakpR60B1Q3UjVegJh11EaiCksoDlQpTF4DqUVJH ldSEo84D1auk6pXUuKPeAKrvcKhVoPqVVIOSOumoc0ANKKlGJXXCUWeBGlRS TUCVhakVoIaUVLOSGnPUMlDDSuqYkjruqDNAjRwOdRqoUSXVoqRGHXUKqONK qlVJjThqCagxJdXmP+PuoOwt/r84aIsQf0IZ335AvB+oBYg/qYzvOCDeD848 xI8r4zv9d42d8aXkOUieSJTMHR928bMQP6mM7zogfsjFz0D8lDK+m8fFJ09D 8rQyucDJgy55CpJnlMk9nDzgkicheVaZ3Lvn2RqVYicgdi5R7L4O97vkcUie Vyb3QYd9rH37tEeCFpVh/RDWtyts5O53NlHbvQFI7N1RdUoStY/QoJnaLXr3 j14cZm5RqaPanXVIYnv2P9zF2JSfvsyrxLAAhTCQln6/dOwkxGYkVvtiPCKx 3eHYrMRq36FGJbZr/6tAMTYnsdq38+M79rLi+2lHGKgUgD5w3QRgDID2/a+Q RaBKAPqcGgT8maFgbI3E0od6it05MP9/8dw+/Tr2v2cUgVrYv+kLGFGlPSZu 8NbOB4K8OilIq5Sephbhh2QWqLxQ9D2ZqME9Y2e4MkA7wmi9oHTIgdB+qS8T puaAahCKjtkQ1StUNhnVJBQd9CKqB4ayHNBOh84D2iwoHT+8FfrcZLeoSEa1 wLOADjAT2gmV5oD3L38LId72W4u2S6VVyag2oei0AFGtQlUD1e2oRaDahaLz KkS1wFAmRDsFpbNQhDZLfbVA+bfYJaC6hKKTckQ1CpVPRhWEovORRDXAUB6A ngK0R1A6KUvoUamvHqieMNUHzz864U1oHio9gD8d4v1VBjq0ViptBKo3TA0I RZcaEFUtVHOYOgPUoJnaRbchtgqGrQmAvjAwbKb28gM6G1Yh/W55iVi/7D/P /2du8eMST+1Z+3WgclDLAeiyEq0VdBnQcqmvDaj+ZFSrmVabRVNApXd8VAxS K0qqX6oaAioFQ9kO6EAydFzqa7fo7gsBSt8QgtBZgIYAOiXV5fdA5j4yX272 G4Nhg4q5IEbGGP4rZDD2nLLrV8y0PBQ2FA6jPm7aqX91+e6FuT8odlXZx6v+ 2ViM9dEJk6nD7+zpcHwzB03j6e6dsRMof8jtDWURl4FKHQ71tpn6i7z2A/Rs 9kcnzyuBDajlkKh1oHJA0cuhP1h8QUmtAVVxONRFoCqBagXKH2G/qKTOA1UN FL11JaRWZb+rSwasATAIwDmohahjQI2FKaplBah8MupNZVXLQNUDRR+UToQp quo0UA3JqHVlVUuyMzQDQB9gT4YBqmUBaklIbShrmQeqBSj6BjAepqiqWaBa k1H2qhd/2HE/MANAWzLgEtTSD9Q0UB1A0VdEf1HDZallAIAJ2ce6k8Vekdg+ iB2HfhNQB4C/7mMThqgHqBNAFZJR16QWAsYA6AWgBgB/Zc51AQoAjALQlwy4 CYPVCdSwPNyDANAxG38Z0y2pgGKHoIKEwG0BOgAYAGAYADqq5oH3YYhaQ9+z 9lAjQFUC5a9kuyO1tAHQC8BoMuADAVoAKMiDfBJi6Rinv9hvC4aoGYAuqCAh dVcqIKATgHEA6HC4vxzzIwGaAGgHYCIZ8AkMVj1QbUBNAUVH2T31qdRCQCsA 0wDQaQp/Re4DqCUPVLPsWXPJgF9IBRTbBBUQkAbAX778mQB1ADQAsAAAnany wK9giKqBqgdqESg6P+UvMH8ktdQAkAdgKRnwGwGqQofPbOuyjU3vjDXz/jcL T2BEcpBXAx0+OLn0C7sKyKuCvJUD80o/5stCXiXknd0zoPF98QcoX0DZGYjN QeyqmdqO+LAvpWcUkYWIM2aadY+OjXgmEenQAVh/eUW8of31kzsIEv3e3mV2 FmJvke1N4A29wSxy159HX4scpYpb+u0CH5Brtu26hX//1/4szP0+JPrDnhE1 gWUQUSsRWRNRYebcu7r/GWip9MgOR3H1ahHdbwfdr07tIbuj0vTQNf3V3GXc I1JEfuua/i5NX7sF9kn1I/ox7ev5H898dOR7W1sXEQ==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 270.75}, {297.062, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"e675d00e-25bb-4f55-bc7c-498e707e612b"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(23\\). \\!\\(\\\"gyroelongated square cupola (J23)\\\"\\)\"\ \>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"a0e562ae-fde4-4907-a94d-4a90ed28e499"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.04933 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0415833 1.12677 0 1.12677 [ [ 0 0 0 0 ] [ 1 1.04933 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.04933 L 0 1.04933 L closepath clip newpath .5 Mabswid [ ] 0 setdash .25402 .78492 m .42994 .80053 L .28203 .62101 L closepath p .856 .555 .479 r F P 0 g s .16854 .54838 m .28203 .62101 L .28574 .39189 L closepath p .943 .81 .683 r F P 0 g s .25402 .78492 m .28203 .62101 L .16854 .54838 L closepath p .967 .691 .46 r F P 0 g s .28203 .62101 m .42994 .80053 L p .44853 .23575 L .631 .554 .749 r F P 0 g s .44853 .23575 m .28574 .39189 L .28203 .62101 L p .631 .554 .749 r F P 0 g s .46826 .91272 m .42994 .80053 L .25402 .78492 L closepath p .753 .299 .174 r F P 0 g s .46826 .91272 m .65416 .83647 L .42994 .80053 L closepath p .615 .215 .262 r F P 0 g s .42994 .80053 m .65416 .83647 L p .44853 .23575 L .631 .554 .749 r F P 0 g s .26021 .32326 m .28574 .39189 L .44853 .23575 L closepath p .799 .982 .897 r F P 0 g s .16854 .54838 m .28574 .39189 L .26021 .32326 L closepath p .928 .967 .68 r F P 0 g s .7036 .8578 m .65416 .83647 L .46826 .91272 L closepath p .115 0 0 r F P 0 g s .7036 .8578 m .83422 .69712 L .65416 .83647 L closepath p 0 0 0 r F P 0 g s .65416 .83647 m .83422 .69712 L p .44853 .23575 L .631 .554 .749 r F P 0 g s .85309 .45135 m .68787 .25501 L .44853 .23575 L p .631 .554 .749 r F P 0 g s .49355 .2404 m .44853 .23575 L .68787 .25501 L closepath p .066 0 0 r F P 0 g s .83422 .69712 m .85309 .45135 L p .44853 .23575 L .631 .554 .749 r F P 0 g s .26021 .32326 m .44853 .23575 L .49355 .2404 L closepath p 0 0 0 r F P 0 g s .82217 .63302 m .83422 .69712 L .7036 .8578 L closepath p .873 .976 .673 r F P 0 g s .85309 .45135 m .83422 .69712 L .82217 .63302 L closepath p .847 .744 .226 r F P 0 g s .25402 .78492 m .16854 .54838 L .24126 .53837 L p 0 .155 .672 r F P 0 g s .24126 .53837 m .33509 .80076 L .25402 .78492 L p 0 .155 .672 r F P 0 g s .33509 .80076 m .46826 .91272 L .25402 .78492 L closepath p 0 .382 .817 r F P 0 g s .24126 .53837 m .16854 .54838 L .26021 .32326 L closepath p 0 0 .311 r F P 0 g s .73472 .36848 m .68787 .25501 L .85309 .45135 L closepath p .806 .327 0 r F P 0 g s .49355 .2404 m .68787 .25501 L .73472 .36848 L closepath p .723 .25 .123 r F P 0 g s .7036 .8578 m .46826 .91272 L .33509 .80076 L p .62 .782 .959 r F P 0 g s .73472 .36848 m .85309 .45135 L .82217 .63302 L closepath p .974 .703 .454 r F P 0 g s .26021 .32326 m .49355 .2404 L .49047 .45981 L p .517 .285 .501 r F P 0 g s .49047 .45981 m .24126 .53837 L .26021 .32326 L p .517 .285 .501 r F P 0 g s .33509 .80076 m .58536 .73561 L .7036 .8578 L p .62 .782 .959 r F P 0 g s .58536 .73561 m .82217 .63302 L .7036 .8578 L closepath p .839 .834 .842 r F P 0 g s .49047 .45981 m .49355 .2404 L .73472 .36848 L closepath p .726 .454 .516 r F P 0 g s .73472 .36848 m .82217 .63302 L .58536 .73561 L p .803 .649 .692 r F P 0 g s .58536 .73561 m .33509 .80076 L .24126 .53837 L p .614 .548 .757 r F P 0 g s .58536 .73561 m .49047 .45981 L .73472 .36848 L p .803 .649 .692 r F P 0 g s .24126 .53837 m .49047 .45981 L .58536 .73561 L p .614 .548 .757 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{277.875, 291.562}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnMlvG/cVx8fcSZESKcm0LVnWZkuy9sVaKJqiLMubVKeO3aRpAqOVXTdx kK220aJNEbQ10AIt0EPPOfboY64+9uijrv0zclX5e+83T0PyO/QbjegGqAVw fqPf8v28937LLOTM7b1nnzz6fO/Z44d7Qzee7H31yeOHT4euf/mklhU94Tgn TtY+o0OO2T9wHHdDf0Wzsf+83X+7/3+6/7VJUmZe/JMzfmeSkybjr5zxW5OM mIw/cMYzk/TQVIoePN95bvYOXj597kTMXuzgZel0r9n7NVd/YpJuLqrVrm1t ffdDzbpMM6r1K272lUkKJiNJzaLeZrX/3Ib9pmGX2fuIG35hkrzJyICGcWk4 Zhomzd773PAzk5BSDjRMSsNJ09CW2j/nJyzxqUk6TUkeSKSt6ZRXOk0yE0Ds Hot9LGI9QCwj9pAE7VkrHpkkZzKKoGG2PgK29NVdXhwt+6FJsibnDJDoFIkL QOIuS+yZpMPknAUSeZEYJYmYSFiZd1nl5ybJmIxBoNItKiNY5Q6r3BeVYaDS KypDLVU+FJXzQKUoKoNY5ces8oFJ0iZjHKicFpUBUonXqbghfoel3pfJOwmk +urniKeXap/aZDXb+oG3y7I0jGhmzADZsyLbp5TdYVkaFwlTMg9kz4nsaSAb BbK3WJY6h8K0BGSHwJwrKgE3GXBbACsAMCx2B5SlYNMgKQHZUZE9qZS9wbIU FSq5DGQviGwPkI0B2essy0ZzkVnzjXQFAMYFUACAOABcCwa4KIC8ErDNAIoP NawC2SmR7QSyCSB7VSM7I7I5pbUq2TmR7VBau8Wy1z1RdmoT0/EBLAggDQBJ ALjiAVDDTSC7JLIppewmy14DdiPAMpjucYBKAVQ1GGpFfEkoARsM4PEY8wB2 /Pq5JIwYYKQBoxKYURZGVOlHcEZFGAxxEbWzmGb5yyzPEyHeIO8/ZKvCyALR 8tFEN802yhOtWXSdRbeaRswOnQvvKJazigDM6vuv71j/u6d+yFJ45LogiegC aszah0/iUbeseck4gmiarAotRbS4l+Z6CoGrDLyidHXDbzmw6yRy1WxfvwYd gyGLEoUcMCRqtnZZbMavMH4T4KNK/JzgCwAfA3FAx5Dl8IYcHg97gSFxiQPq hkvh8ZMShyLAJ0Ec0CF6iQ2pAkNiSkPGxZA+P0PsoaUZvxgef17wAwCfBnFA p4YLbMgGMCSuNGTEc+nVbEhG4tAm/KDEYRTgO0Ac0PXNPBtSURqCjjNnxZAx YEhWachceEMOLxovAkNy0iHoCmQ2PP6UxGEa4DvtKuGJg1wSW98vA3hCCe8V +ByAd4nvKPTT4fEFwS8CfKFhDBifbcDLAJpUQrukv1f8oJQ1Ex6VFf/WAKpH wjsdHpUWVBmgegU1xah1gEopUYf3BastUZPhUTHx6gpAFT0DxB2V4wwtKaGb +AYtVdoGyFMAOXYEJBFvKn0KCKBln7J2gwHWACANAGUBRA6+/fu/3SlaO5U3 uFvtga4JNKGEHo7ECUatAlQGoJYFlW43alFQ2aOiVgCqA6DmBJVXonr855cW Oi3QnjcHnZAZVlRCuyWoFxm1rESNiX/9SlThqKhRQZ07KuoSQGUBakhQw+1G DQjqghKVPyqqT1ATR0UtAVQOoE4JakqJ6vIM+/+8LJk0KLRXoHNKaKc/dBFA OwE0L3Nt8c1Bc+LpShCo96xEi8oIal2JyjWiFpSolKAqSlQWhDIgNC7QzfDQ eQDtAtCIQLeV0I5wUFOduuRGeN6c33Skq7RdAEDneQEBdEVFX1DW8ode2NIa inA7Sq8yQaAOQc2hqIl3S8nj2yox4VmmRdK1HDXoVvqEAqlguG4NvSCOloY8 SrWkzSlp2vilQH9NBUNpw9gmFPIq6Y+aP+YAJnB3BaRpY9g+GvIt3pK2cMyR PB6aNpKtaYuAVggRyahlemkNAxMhw4TzGJHamCqQS8fsZeT4kFovI3jkTP8v aJdChzPmpR3Q0b+GcI3gP/fgo6X5+/bDpS2HjuRhvznHg9IMkdegVgBKu44R yn5RFAhwlLDZoV0b7qFRyJcbGl9WQwTrmgBqBfv7+65TrToH8bSx2zJbyooY XMRvdE8FQyHXquJaXINaC+FVRVAJg3KXvYMX9CFn28ItCzcVmFsCXO2oWZVe TBM3Xse17KBwrdPL4nT2zcOXBJ4jeNQLN9DatumgZ78vWw8R8XnhdgJuNDBX 6++M9HQecGOW7nKd4FDk7KQ42w2gcX9oOUSEJwTaGx6qDe+YQE8CaMJsqRR9 uRswqCPSk6c0qMshQjkkXp0BqKQGpQ3gOUH1A1TK02vuImDPQCsh/OsX6FkA TbcHekag58JDteEtyqAZBNCMP3QjhKc94umI0tMZf6jW04JAR5XQ2fDQLoFe UI5e+8uWaojwdkifjimh8/5Qradp8XRCCbW/6NpUeoqgSYFOtgeKwhsT6JQS uugP9Q9vzAuVHp3xW28bkPZXi1cCBfcQSfXN7U8d7VIw2k2zpawFvyNVA2DZ H4AieNVsyZvIwbevvrel5urH4GaVXlnoltKrqkCTAIo6Dnm6EgxaFmgWQNEA RdBVfygK74pACwCKpmIcQO1PzK8qPV2SQVMEULToIGjJH4o8nRVP+wB0/DVn zC7UPjmwrfR0UqCDAIoOJMjTgNAxgZ4H0PNKT8v+UBTeYYFeBFB0coCg9hGS a0pPBwQ6C6DDvldf9dBKMOgZgS4BKDr3QtANfygKb69A1wB0QBleC6VnvaI8 6ZtReUFVAAqdRSP/qoyipwMTvKg1o3KyEGwBVJ8SxQdjfoDS3jlyHuyTB2kA TYl/1wEUXQVFANQ+Nrcr0LhA4wAaE+gugKKrPAS1DwPe9g6aB/vmY77lfrCf sMdJi7oDUMUW92HsE53viE8dRpTavwek0LU3sto+GXlHZLNksQ3Qq+9J+h4A 9LSw1T7eeheEIqOUL7SQtw/l3qsPhUI0j2/u2WeH3xM9rZGdWM8+Q/1T4H7K bO1rBZr1ci31Pmhp312g14H17KPjH/rZp1DONAwvx3HcB90/EjPTSrEUEPsR i90XMa1lCSDGc5Jfe4CmJgFQBx/e8LYvB/hFS3veBRJRYI8VeyBiSaXY4b1+ +96DXwKX4moxR97C8EhMSShaGx/sqyQ+rl9jac/bLe46YzmPgb0xQLxltjFe 3Kjhp/WchurbUv1nXP0zqY7Uq1L9Plf/ApgVAQ3XpeEeN/yy/rjWUH1Zqj/i 6vz2lpiXI1FbkMocJH7Hi6/2pFT/nKs/k+rIcjrbpOXUvkHmN8gU+jWuleUK /KYa94stW4kU+6Xm77kmveTG/U20LfqGi75ujK9jr2mo0p+5Er0Jh+pkpegv XPSNZ6a4RX/joj96pF1nqfwfXP4naWrfxUPj8Qf0sqC3+/p958R/AQPHQwk= \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 276.875}, {290.562, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"9e3a4e61-1555-4ae7-ba75-e8c943ba14ee"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(24\\). \\!\\(\\\"gyroelongated pentagonal cupola \ (J24)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"b9cf5a69-4e72-4972-b466-a5a06f1295a5"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .95522 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0 1.05199 -0.00046359 1.05199 [ [ 0 0 0 0 ] [ 1 .95522 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .95522 L 0 .95522 L closepath clip newpath .5 Mabswid [ ] 0 setdash .31329 .74085 m .43599 .69399 L .29428 .58121 L closepath p .836 .564 .527 r F P 0 g s .49051 .81993 m .43599 .69399 L .31329 .74085 L closepath p .77 .426 .403 r F P 0 g s .49051 .81993 m .61559 .7254 L .43599 .69399 L closepath p .687 .39 .466 r F P 0 g s .43599 .69399 m .61559 .7254 L p .66885 .20756 L .647 .629 .818 r F P 0 g s .29428 .58121 m .43599 .69399 L p .66885 .20756 L .647 .629 .818 r F P 0 g s .67812 .80616 m .61559 .7254 L .49051 .81993 L closepath p .55 .194 .316 r F P 0 g s .67812 .80616 m .77673 .66301 L .61559 .7254 L closepath p .459 .178 .399 r F P 0 g s .61559 .7254 m .77673 .66301 L p .66885 .20756 L .647 .629 .818 r F P 0 g s .20156 .59273 m .29428 .58121 L .23819 .42009 L closepath p .957 .764 .602 r F P 0 g s .31329 .74085 m .29428 .58121 L .20156 .59273 L closepath p .929 .634 .463 r F P 0 g s .23819 .42009 m .29428 .58121 L p .66885 .20756 L .647 .629 .818 r F P 0 g s .81473 .69772 m .77673 .66301 L .67812 .80616 L closepath p .084 0 .119 r F P 0 g s .81473 .69772 m .86067 .51991 L .77673 .66301 L closepath p 0 0 .258 r F P 0 g s .77673 .66301 m .86067 .51991 L p .66885 .20756 L .647 .629 .818 r F P 0 g s .19867 .42001 m .23819 .42009 L .29718 .26399 L closepath p .903 .964 .641 r F P 0 g s .20156 .59273 m .23819 .42009 L .19867 .42001 L closepath p .977 .852 .459 r F P 0 g s .29718 .26399 m .23819 .42009 L p .66885 .20756 L .647 .629 .818 r F P 0 g s .49051 .81993 m .31329 .74085 L .33803 .6824 L p .357 .635 .959 r F P 0 g s .33803 .6824 m .52951 .76806 L .49051 .81993 L p .357 .635 .959 r F P 0 g s .52951 .76806 m .67812 .80616 L .49051 .81993 L closepath p .487 .811 1 r F P 0 g s .33803 .6824 m .31329 .74085 L .20156 .59273 L closepath p .172 .412 .851 r F P 0 g s .81473 .69772 m .67812 .80616 L .52951 .76806 L p .724 .828 .93 r F P 0 g s .8425 .5235 m .86067 .51991 L .81473 .69772 L closepath p .854 .815 .332 r F P 0 g s .86067 .51991 m .82374 .34315 L .66885 .20756 L p .647 .629 .818 r F P 0 g s .8425 .5235 m .82374 .34315 L .86067 .51991 L closepath p .872 .624 .096 r F P 0 g s .20156 .59273 m .19867 .42001 L .34193 .5053 L p .405 .436 .779 r F P 0 g s .34193 .5053 m .33803 .6824 L .20156 .59273 L p .405 .436 .779 r F P 0 g s .66885 .20756 m .46192 .17782 L .29718 .26399 L p .647 .629 .818 r F P 0 g s .32016 .28637 m .29718 .26399 L .46192 .17782 L closepath p 0 0 0 r F P 0 g s .19867 .42001 m .29718 .26399 L .32016 .28637 L closepath p 0 0 0 r F P 0 g s .52951 .76806 m .66671 .65159 L .81473 .69772 L p .724 .828 .93 r F P 0 g s .66671 .65159 m .8425 .5235 L .81473 .69772 L closepath p .811 .793 .835 r F P 0 g s .73474 .34917 m .82374 .34315 L .8425 .5235 L closepath p .956 .662 .436 r F P 0 g s .73474 .34917 m .66885 .20756 L .82374 .34315 L closepath p .865 .441 .209 r F P 0 g s .52951 .76806 m .33803 .6824 L .34193 .5053 L p .636 .635 .832 r F P 0 g s .66671 .65159 m .52951 .76806 L p .34193 .5053 L .636 .635 .832 r F P 0 g s .52913 .25538 m .46192 .17782 L .66885 .20756 L closepath p .591 .123 .112 r F P 0 g s .32016 .28637 m .46192 .17782 L .52913 .25538 L closepath p .492 .118 .259 r F P 0 g s .34193 .5053 m .19867 .42001 L .32016 .28637 L closepath p .499 .416 .694 r F P 0 g s .52913 .25538 m .66885 .20756 L .73474 .34917 L closepath p .772 .413 .376 r F P 0 g s .73474 .34917 m .8425 .5235 L .66671 .65159 L p .766 .677 .764 r F P 0 g s .66671 .65159 m .55218 .48052 L .73474 .34917 L p .766 .677 .764 r F P 0 g s .34193 .5053 m .55218 .48052 L .66671 .65159 L p .636 .635 .832 r F P 0 g s .32016 .28637 m .52913 .25538 L .55218 .48052 L p .63 .515 .703 r F P 0 g s .55218 .48052 m .34193 .5053 L .32016 .28637 L p .63 .515 .703 r F P 0 g s .55218 .48052 m .52913 .25538 L .73474 .34917 L closepath p .72 .581 .698 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{291.25, 278.188}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnMlz29Ydx2kS3EmRIkWJ2ilqsyRLlXfHlmVLXmTLu7zFTtKO7SZ1NGnr 2m7TibtlMp5Mp50cOrlkJkcfc8w1Rx991DV/Qo65qngLvgLB7yMfZHkmB2sG DxTw8P18f7/3ADyABC7de/rww9/fe/rxg3u1lcf3Hj38+MGT2tk/PnYXxXZF IrtG3am7FhGfNyMRr5B/Y6LQ/7z9/PbzG/z8XMziou99oxZ8IWZR2Rljm8+q S+LT5tfVaiQqyqT493+q5udiFtv0KkZiXlVZPYnq/1HV/ylmjlgQJ9XzokyI Rc9V9b+jeopUL0H9H6r6M8SRIdWrqP6pqv4ZqudI9SGY+ZOq/ldUL5Dqo1Bf V9X/ImZy+yKpPo3qD1T1p6heJtXnRSkT8RtV/bGYye0rpPoeUcpF0c2X6/f1 2h+f7JVN+msl8UjMUmJJD5HYDYkEkfhASfwBEn1EYgwSaSnhQELLvK9UPhGz tFgwQFRqUMlzlfeUikx7RiwYIioDUClKlXiDihfWXSX1EFIjRKoHbdFFDLmT 3HHeVVIfiVlWLKgTqS64qgaS7E7uf6rEKcEVvKlkfytmObFmjMgWIdtPZB0i e0PJ3ofsJJHNQXbYUva6kr0H2Skim4JsncjGieyakpW7Ql6smSGyDmQnLGWv KdkPIDtHZGMqjGbFBFG8qhRlD+0Qa2aFYlx9MkjI3qM3vCNmBbRHUh1nX3zx ve50P3z9/aYeNcwQvRSxdEkp34ZyHcqZgLKepKFpS/mLSv4W5Acg3ynlY355 9z+3jKkAmwFpArjgA+Rx8EqqfagZkEAErBcwwKoC3ASgJAAJ1e2bASkAxggg QwDnFeAGADlEMEEAaQBGTQC51i8rDzhJyM4S2SxkR4hsjvg+qwDXAfCNDcR/ slsfIKg8UDVL1BmFWkOKjhHZAmSHiGyeyJ72ycoIjhPZTnRJdvDsILKnlKw8 fORMsl1w22cpu+yTzXj5Xlc7vNBfIJRuUNgJpUAoS4pyFZSogOhKLkBCWPqr QPWYUHKtBlwBIGYJ6AOgQgCdJJZFH0qOJ+KWqH6guixRxxXqMlAJS9QgUCWC KhHUgkJdAippiRpGTy5aoo75UHJYl7JE1RFVB0GVCeqoQl0EKm2JGgMqb0LJ tRpwAWmzBUwAkCWAConlsA8lY8lYonYDlbFEHVKoVaCylqhpoFIE1U1QBxXq PFA5S9QeoIKXDgLSQ1AHfKik6kXNqKMENYcu7lii9ivUOaAKllHNI6rgNZWA VAlqn0KtAFW0RO0Dyl3hsjyS6t1Sar9PW45NOi21D0A7KcTyqpl+/m49YH6v ApwFoGQJOChK2V/KbWTjqlII33rZy+9eyuT0mgFn4NsWsF+WcQC8KSJPpi5I Jk236WnId1nK70Xe40JWr3VlZQwVCoirk1+I/ulLkIAwVDdJ2ryCngK0J8z+ F1VHV0NUHLUMVDXMUSUQ33ag8vqm1xI6Q6BZAu1C++n+twRUnyVqCqksEEA5 CDgJQH+Yk00gFnuUrDMQ+hRaJoBSEHACsdgCxkksXQTVGUQtAjUYZrwRQFVM KO+s8G1VHjfmfVC5Zij0eKqXoIpm1HGgapa78AiJbztQfS1pF98Q4hs0oeRa DVgAoB5mmB2IaoigCkHUMaBGLVEDBDVsQgUS+CsfVK8Sl3gCbBvp1mXSKIF2 mKFHCdQ25l4Sc0j8O0j0uCW0B5FOElS+DUrf2Lq/Lk/pYRq4mwS7mzjItXMQ hwNvioTo0hViY8pow4ENbWXO7yTmd+IOaN3SuP+yg0YZTTFLHGRDO3DgYNjS QYlkY454yYT2kpBl435he17auie115iXxg7SwkgSSbHFd5Ck7DMmxdpIGkZs BzN5YmS/fevMmr1kSeuw0SpztXXP8zDxkg7tJYe82DrIkLwcIV5Sob10wIvt BcPWnetjO+KgSFrG9qIxSfKyQFwlQ7vqRF7YhSA7siSIl0XiRV01xxu8eDvT HrOhMgyxS3ZmyEFDLe2cjQppLXbXhbVWlGRomViLb89aNzJkbygiLvlNyWnq Ly3gVcBtbneJSM4ZIw/D7SPtYbxjKf2tEq7TIuMzZng/gmbIw6KUmhd2DjkI JLudPSdKedfW2XzxYiPQ11jkse3ZGCZpd4ihcRjqIIbO75yhGvLCvrzoh42q pY3o9mzUYYN9XVMWpbzHN2JsnrjfhpwisjlduK6v/9yxtNHGmB4d+ppH7Zpe GqaNadgR/rgoYyoNHvKAEek0IMPTJkUpRY5b9Po24RwlgAlRLtv7j21D3usq LzYk56RFPzVFMvmLRS2ZUPoLAhcgV06Fk2VNI08vjpbdWHs93wyw4kvRq1cb XopeF3WKoM74uplAaVyM0EJ2s9OEtowGiQmSdxDcWMMUkUeQ1wYtBTIoYFFZ xvxI2oAh4zxD8IuIM/5moGcJdIHEHG+R5pnXRx4jyMTOIVcI8ghSm9450DkC OkRie8PIgwSZkaXTgIxg3GpLO09o+5DJXIuwQoJWCWiehLWDyAsEOYvYCm8W tIfEVuBNNhuOdpHQpgmtuCO0S4Q2iSSW3xhjgkRUatFkIZGXCXIUYVV4WHPh GFcIY4SEZUHTt9LtGDXC6LaOaGr9R5nQcUK7RmiDyFpvS4b64sTxM8Q0SjBr BNNPguoNnEOFbX0XfyFA08S6Ja3PSGsKTwOPB1LoThH9Q8pm5HWC7EEeB7YB EmVjjxwk3BuEWyGhtnawaHKgvyW045YR7zBpRv0V3wmCigHVT1A3CaqThNgC epJAHZLhKsHfIvgCwdfC4eOI2RaaR3pHzaglgkqQSCsEeptAsyTSOsHrb/iX TXh9EG6GvkugaQJlMWvoKQJNkphLlvgkEj0RDppCpAx1h6DiJNIW0NMEmiaR Fgj+LsFHEemUgPp/A3XGhNJDLROA/4ZrJih/lshnSCQ5AnovEAkAgaS1QGUR iREgj5XTZtkVIpsjEaTbtMUPGz+JSdzX3/hJLppEsvy/l2QofXHUuq95gAQA Y0HAeQLIA5Bss994gAwAIzaAAkmW0+aw5KE6gBoKolZNKFmJAW4RQAmAPgD0 D2UvEEBRH9N9schJ9Bcpr4/0nmiPjWgnXLsrtFrTydcz3A/trqD2RaJdgjYT G4ZYZ1DsUkuxNSI2CrEO396k/7xWu2yKX49Z7r74Wc4jkYYBsseYBCMbjlH0 dULBcCd3T3RLuWgVTTcLQMoMuNKml3uAuCil7AqJZR4oB8nXPwe/atpPA4AU AKcJ4AAAkZh3F1AKa8q1Nkc2j5IBZYlQjohSrj1kls0S2TxkF02ygfRrwFqb c4oHKKB9j1oC9DMG103n/ACgjAgOoQO9g3ToZyNutBm1eGIViO23dBsS0APA vCVAP6lykwDiBNAHwKwlQD91c4sAHAIYQINOEcBhZP6Ekr1NZKNEtgbfEybZ gO+QgDoA9cZ+EpBV1w/6qeamK+BJqAy3jF4/KXcnYC4i0+ZJDFhGqsXkM9ty wxm0QdVSQj8Q+D4k9sBFxVJCP6oon6mPwYX+fYeX0a0DkRpHqSeio43VOyyJ WuIBkchaSuhnRT8kqUsSiUOwrx/v/R2J1jFtGGBrifVGtu5TejyEnAW21Q8v fxLYdgsakQe85g3VeVe9r0BfbGxt+OzVppiUhXnEqh8Hf4RYx8k2cVE6ykoz Vks8AbZOJDKQmCAS+ln3P0NimEgUIFGDff2mgE9hf4BsWMaG/YStJT4Du5dI VEWpR5TNEur4GfkbJLqJxABclIiEOpSpd3zo+8PNEiOQyCED+m0O/0IGimTD cWyYJGwtsfU+lDyRmIZElEjo11M8h0SGSEyJUv6gQr+c40tUT5kSJh/d+khV /zdidEzdQ75/4Imq/l852xrW6qFtHLKfq3pfiZl83uwrtUCG9At6c83bz6// ObLr/3YrQ7s=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 290.25}, {277.188, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"dd31e3ed-1595-4d1f-9b7f-60b3e5211aa7"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(25\\). \\!\\(\\\"gyroelongated pentagonal rotunda (J25)\\\"\ \\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"ededfee4-df21-44d7-ae1d-b1a180166e7d"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.08419 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0561405 1.16543 -1.11022e-16 1.16543 [ [ 0 0 0 0 ] [ 1 1.08419 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.08419 L 0 1.08419 L closepath clip newpath .5 Mabswid [ ] 0 setdash .54713 .58368 m .45893 .43795 L .37903 .58889 L closepath p .748 .608 .703 r F P 0 g s .54713 .58368 m .6303 .43606 L .45893 .43795 L closepath p .69 .59 .738 r F P 0 g s .70895 .58717 m .6303 .43606 L .54713 .58368 L closepath p .626 .509 .7 r F P 0 g s .4715 .73475 m .54713 .58368 L .37903 .58889 L closepath p .747 .592 .684 r F P 0 g s .54713 .58368 m .4715 .73475 L .58578 .84157 L p .624 .445 .62 r F P 0 g s .70895 .58717 m .54713 .58368 L p .58578 .84157 L .624 .445 .62 r F P 0 g s .37903 .58889 m .45893 .43795 L .30354 .4414 L closepath p .806 .684 .73 r F P 0 g s .70895 .58717 m .77265 .43627 L .6303 .43606 L closepath p .539 .47 .727 r F P 0 g s .81826 .59912 m .77265 .43627 L .70895 .58717 L closepath p .404 .32 .647 r F P 0 g s .81826 .59912 m .83748 .43881 L .77265 .43627 L closepath p .101 .128 .602 r F P 0 g s .45893 .43795 m .6303 .43606 L p .78078 .44323 L .036 0 0 r F P 0 g s .30354 .4414 m .45893 .43795 L p .78078 .44323 L .036 0 0 r F P 0 g s .6303 .43606 m .77265 .43627 L p .78078 .44323 L .036 0 0 r F P 0 g s .40876 .85169 m .4715 .73475 L .37903 .58889 L p .854 .609 .567 r F P 0 g s .58578 .84157 m .4715 .73475 L .40876 .85169 L closepath p .713 .428 .492 r F P 0 g s .37903 .58889 m .30354 .4414 L .24995 .60181 L closepath p .871 .701 .669 r F P 0 g s .37903 .58889 m .24995 .60181 L p .40876 .85169 L .854 .609 .567 r F P 0 g s .58578 .84157 m .73873 .74815 L .70895 .58717 L p .624 .445 .62 r F P 0 g s .73873 .74815 m .81826 .59912 L .70895 .58717 L closepath p .407 .299 .619 r F P 0 g s .24995 .60181 m .30354 .4414 L .21148 .44558 L closepath p .952 .809 .666 r F P 0 g s .21148 .44558 m .30354 .4414 L p .78078 .44323 L .036 0 0 r F P 0 g s .68925 .87213 m .73873 .74815 L .58578 .84157 L closepath p .434 .132 .352 r F P 0 g s .58578 .84157 m .40876 .85169 L p .56549 .90574 L .402 0 0 r F P 0 g s .56549 .90574 m .68925 .87213 L .58578 .84157 L p .402 0 0 r F P 0 g s .81826 .59912 m .73873 .74815 L .68925 .87213 L p 0 0 0 r F P 0 g s .77265 .43627 m .83748 .43881 L .78078 .44323 L p .036 0 0 r F P 0 g s .40876 .85169 m .2643 .77116 L .38139 .89088 L closepath p .784 .292 .039 r F P 0 g s .24995 .60181 m .2643 .77116 L .40876 .85169 L p .854 .609 .567 r F P 0 g s .40876 .85169 m .38139 .89088 L .56549 .90574 L p .402 0 0 r F P 0 g s .24995 .60181 m .21148 .44558 L .20878 .61953 L closepath p .99 .764 .379 r F P 0 g s .2643 .77116 m .24995 .60181 L .20878 .61953 L closepath p .983 .716 .334 r F P 0 g s .82638 .61702 m .81826 .59912 L p .68925 .87213 L 0 0 0 r F P 0 g s .82638 .61702 m .83748 .43881 L .81826 .59912 L closepath p 0 0 .057 r F P 0 g s .38139 .89088 m .2643 .77116 L .20878 .61953 L p .136 .319 .784 r F P 0 g s .20878 .61953 m .21148 .44558 L .23062 .4491 L closepath p 0 0 .178 r F P 0 g s .23062 .4491 m .21148 .44558 L p .78078 .44323 L .036 0 0 r F P 0 g s .68925 .87213 m .74051 .79938 L .82638 .61702 L p 0 0 0 r F P 0 g s .56549 .90574 m .74051 .79938 L .68925 .87213 L closepath p .697 .977 .911 r F P 0 g s .82638 .61702 m .78078 .44323 L .83748 .43881 L closepath p .998 .783 .454 r F P 0 g s .38139 .89088 m .40932 .81718 L .56549 .90574 L closepath p .467 .706 .972 r F P 0 g s .29413 .63585 m .40932 .81718 L .38139 .89088 L p .136 .319 .784 r F P 0 g s .20878 .61953 m .29413 .63585 L p .38139 .89088 L .136 .319 .784 r F P 0 g s .20878 .61953 m .23062 .4491 L .29413 .63585 L closepath p .191 .21 .65 r F P 0 g s .74051 .79938 m .70459 .63445 L .82638 .61702 L closepath p .924 .825 .73 r F P 0 g s .70459 .63445 m .78078 .44323 L .82638 .61702 L closepath p .926 .797 .698 r F P 0 g s .70459 .63445 m .74051 .79938 L .56549 .90574 L p .748 .73 .835 r F P 0 g s .49089 .64229 m .70459 .63445 L p .56549 .90574 L .748 .73 .835 r F P 0 g s .56549 .90574 m .40932 .81718 L .49089 .64229 L p .748 .73 .835 r F P 0 g s .29413 .63585 m .23062 .4491 L .37956 .45018 L closepath p .466 .375 .668 r F P 0 g s .37956 .45018 m .23062 .4491 L p .78078 .44323 L .036 0 0 r F P 0 g s .70459 .63445 m .60153 .44783 L .78078 .44323 L closepath p .836 .676 .684 r F P 0 g s .78078 .44323 m .60153 .44783 L .37956 .45018 L p .036 0 0 r F P 0 g s .40932 .81718 m .29413 .63585 L .49089 .64229 L closepath p .593 .542 .767 r F P 0 g s .29413 .63585 m .37956 .45018 L .49089 .64229 L closepath p .596 .523 .743 r F P 0 g s .49089 .64229 m .60153 .44783 L .70459 .63445 L closepath p .76 .654 .745 r F P 0 g s .49089 .64229 m .37956 .45018 L .60153 .44783 L closepath p .686 .558 .704 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{273.375, 296.375}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm0lzE0ccRxtptFu7ZEuWZMs2xhsYmx0CGBICJCELZN/jkARIVRIKk1OO uaQq1+SWY44cffUxR458Db6CMt09ao/EG9yykIAqU9U9zWjm995/lh55DG+v 37/9/U/r9+/cXG9eubd+9/admxvNy7/cc1eF9wmxL++2+aaQ45YQ7U79KcjO +8veeG+8N94b742f2/i2XNyX8/NxveKaXNTlivutuBAJOTqoP1qTi7RccVd+ 1JSjeKv1cEOEW2Z+dzdc1Jufloua/GRVbn5SjiqtRw8etDd/uKF2Tu8Q4X0k xIJsIqR6vW7jsweyiaLsV+WqidaDPze9T12Uwh2SvdxNZHeBUjvOKYz+1AUo yCkf6r9/t+RSLPvqe/xwU63L7BZ6wAf953cNOP08oLrSiIG2m1DXhoQ7Bu4J 7MiP+PleE67H6uq/XSd3WvURY9RucvsTXYfDbW6G7DsvgUXVRzos24dqx+uv V9WwX9XdTvadl85R0A6D9nzXmXWbmyf7zlso9exKmIISwlDCESghAiXMWZaQ hBKWdi4hDCU0oQQHSlh9+UtYgRJiUMIslOBACYlnV8IklBCFEg6/GCU4UMKE ZQnLUEICSpiBEiKDLaEBJcShhINQQnKQJThdJbgpdvYJsF8C+xTYT4N9FOzp W83T7aNgXwP7JNgvgv0I2E+BfWyo9imwXwD7NNg3h2o/DvYjYD8P9lmwnwD7 BNjHeraPgX0V7NNgP/dC2lfAPgv2s2CfB/vGwOzjYD/2jO3rYJ8cmP0o2OfB fgbsi2BfA/sU2Ed3svf/vCF/rNy9+jSol0B9HNRH+ldPgnoZ1AugPgXqZVCv Dk+9BOpFUG+C+qilehrUHVD33jOc4svd1r4E9pNgPwb2Y2CfeSb2KbAvgP0o 2DfAvvJS21fBvgz22YHZ58G+AvY1sK+BfQnsc2Af3sm+85ZNg3rOUn0c1Oug XgT1/GDUs6A+DupVUG+AeuHFU6+A+sTw1DOgngb1OqiPgfokqOdAvQjqocGo N0C9DOrNl1d9CtQzoF7qXz0L6ilQnwT1IqhPW6qXvXcHPnXVpNPyYHQLoLsf dNN96KqX6HmQTIDkFEjmLSVHQHJ0WJI5kDwAkqlBSMZBcgYksyA5B5IJkKx4 7xf9kuRXAL8Y+O0HvzT4zffkt33jy4N32EYuCnKzlnILIBcftNwBkEuB3CLI xUCuaiNXBDkH5OYs5ZZALgpy47JXBrtWmgelBCgdBKUIKNVQydvIVVJadDLD ILcIcjGQWwY5Z7dydORCQ5Cr+68070F8qH/NJdCMgOYKaIaCrjmn+xg62/do xK+kmp6q7TRWvd+r+TRUkxnqoRqTw3Dr8aOtpxwrp9W88TAqP9bfzZ0OJ+X+ pE4YdI6o3unQUV8r2iYJMPGmffVOJWFMut99yopWLDWOdp0cuW/cOOR2cPA+ ckVkc78KtJX074D8RqtKKOIXUk1ufKLrWHhXhVIYBYXDwQoF2efkqu75WoLU 3JyXw0Zw7BmILaper/vrz/9kc+dXt1f/rqT71xFCXR4uqiGHmdbW1qP2tf5o S4HrgF8JxpcAP2vwS/0DygBYUb1e5wIU5BSgxgG1qlGvWNZyGFCn+0dRVcuW qCqgjvSGOgSoM72hzlqiDlqiKoA6GowaBdQioM4CaiwYdc6yqgGhqKoFSxRN R8eCUWOAmgPUud5Q5y2rItR5QJUAdTwYRVXNAmrt+aKKgDqhUWuWqBlAXegf VQHUtCWqAKiTGnXBsqopQL0KqHxvKKqqaYmibxqnekNNAuq13lAXLVETlqgs oE4Ho6qAagDqEqAy/aPqgHodUGlA6S8V7qm1Q9UGgxoHVBVQlwE1AqhXho56 zRI1BqirgEoC6uzQUZcsUWVAvQEo+tnoXDCqBqjS8FBFQL0FqBig9DPRvTfs UIXBoOqAygHqGqCigFobOuqyJSo7PFQGUO8AygHUhWBUA1Dp/lFXLFEpQL0L KHrRcnHoqKuWqASgrqs+4kep5v7dmxrcCcXuUthl/JuW8TGIv6F6pyNetG9J d86wS472nHzNciaLQPL7XSdXHgp9C4i3LWMdiP1A9urlrRf2jmVYOMhRhenL 2L0inwyjZ19oh4I3W49VwV7se4GxEX+sanK3bS93Jy9LRXh51yFPf3NzOvLc 8Q0TFZJJXXeWl3cjMG+7bClzvatEGfiU2PeDYpXPu8bMgQh9s7un+8mIiq/S jc2WWgqhH50qLwJ5+u4WH0Ke/4dxmec2+Q59s9V1gq9A9aSu73TxEaDKgArL PqTvunYFseDYjyG2BLERE/sqeEcBoOcR8QkACgCIG8B54x2HWD2JiE8hNg+x SRN7xsQmg2M/g9gsxKbhhJ6AA5MAlJ6vxOeAygAqYyo4ZipIQayeucQXEJuG 2JyJXTGx6eDYLyE2BbFFE3sIDscIAPQkKb4CQBIAZQNYMN4ZiNWTpPgaYuMQ W4ETOgsV0CHS86f4BlAxQFVNBTOmglxw7DrERiG2ZmInTWweYvXsLL6FWAdi J0xsHQ6HOvJqlZ4KxU2IDUNs08RWOi8/NRHrSUN8pxYRf5hq8uExCyesBIZJ Y6jvDPG9XJDSfqNUMEoJo6QvJPGDXIRg7wNm70znvKv21odF3JIL9butWbN5 Kug5oFbd0jv+LBfq/z2Pmx1jhhM2nB/15r+ZzbNwmEL0fUCoZ7rwUEL8YSK2 nyjuUGZ0bH5Pb/63qexXvUJdbC/Q/zLfG79cY7Hvfx4vhSE=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.375}, {295.375, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"ac8246c8-f1c1-4790-a482-a84a2af3e9df"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(26\\). \\!\\(\\\"gyrobifastigium (J26)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"fd0ce266-2ebc-4ab9-89da-91ab8f35d3cc"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.22148 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.116274 1.30993 0 1.30993 [ [ 0 0 0 0 ] [ 1 1.22148 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.22148 L 0 1.22148 L closepath clip newpath .5 Mabswid [ ] 0 setdash .52762 1.19624 m .41539 .73102 L .8482 .59464 L p .614 .493 .692 r F P 0 g s .26849 .97959 m .41539 .73102 L .52762 1.19624 L closepath p .951 .687 .501 r F P 0 g s .8482 .59464 m .44809 .29034 L .41539 .73102 L closepath p .645 .607 .796 r F P 0 g s .26849 .97959 m .41539 .73102 L .44809 .29034 L p .982 .887 .537 r F P 0 g s .8482 .59464 m .97819 1.08498 L .52762 1.19624 L p .614 .493 .692 r F P 0 g s .52762 1.19624 m .97819 1.08498 L .75868 .83912 L p .635 .772 .946 r F P 0 g s .75868 .83912 m .26849 .97959 L .52762 1.19624 L p .635 .772 .946 r F P 0 g s .75868 .83912 m .97819 1.08498 L .8482 .59464 L closepath p .976 .679 .382 r F P 0 g s .44809 .29034 m .2938 .49037 L .26849 .97959 L p .982 .887 .537 r F P 0 g s .8482 .59464 m .75868 .83912 L .2938 .49037 L p .838 .46 .335 r F P 0 g s .2938 .49037 m .44809 .29034 L .8482 .59464 L p .838 .46 .335 r F P 0 g s .2938 .49037 m .75868 .83912 L .26849 .97959 L closepath p .631 .611 .812 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{257.562, 314.562}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm1lTFFcYhls2AdlEREB2EYIGCLjgAhEVWcUFRECQbVgVZTWiKUxMIqnE pJLKnpSXXuZveJnL/BVvyUyf45cBn9M5XT2VK62anmb6+Z7zft09zkwvPRNr c9P3JtbmQxOl7SsTS3PzodXStsWV8EvxuxxnV+RxptSJzG85zpuJ+y8uMtF/ vJt/N/9u/n+dX1Hz4bfjt1EvOPGRV7b+Xu1136nfqEXL7lOiLHrziCDPFbK0 ozr8CP8VnrpDfKWgRYCSNCr/L4SJTTO+G/BnCr8PeIpE0NA9gNLA+ZnCFwDP APypwu8CniURPKBscD5R+B3AcwDfUPg84LkSQUNzAOWD87EZLwD8kcJnAS8E fF3hM4AXS2INTQNUBs4HZrwc8DWFTwFeIRE0FAKoCpzq3eJMAl4N+JIZPyIR NDQBUA041V7ujANeB7jay50xwOslgoZGAToOznkzfgJwtYs5twFvlAgaGgHo DDjVTuAMA94E+JQZb5YIGroFUAs41QZzhgC/ALjaYM4g4K0SwQNqA6dapc4A 4B2Aq5Xr3AS8SyJoqB+gHnAOmfErgKvOnBuAXwNcdeb0Ad4riTXUC1A/ONXY znXABwDvM+ODEkFD1wAaBqfinKuA3wZcceH1+TY+JhE8oAlwXlZ4D+AhwLsV fhnwaYmgIffJfWEeTB1RkF708sVfkWfE26PxBMF1ybyM7cGFH8Y0rZwm/Aj/ pabRvc6C4qJZkWBSuHk8ChM9Q7eYC3dbhj5nViR7hvYoTPEM3aQKu6AwzTL0 WbMi3TO0R2GGZ+hT5sIsy9CNZsVeS8VJsyJb4s9Jtx54juWIx8yK/ZaKBrMi F0J74HmWI9aZFfmWilqzogBCe+CFliMeNSuKLBVHzIpiCO2Bl1qOWGVWlFkq Ks2K8u2hdxQeVoWdUHgYxp72p6gERUhWXZW5sEpCb/v4/HPS/WSrNBdWw4jj /hRHQDHqThNEoTUelqPSgf/aGkigvvgkbrO8acZjC9SCamjH+gg/nDh3un3D HjJr66S7GMjqIWM/aBNAW27WNoD2RnDtMWk9BrITkPEaaBP9aU+C9ipok0Bb ZtY2SusxkJ2GjN2g3e1Pe0YyxkDWBBk7QJsM2lKl7QDth6BtA22KP+05aT0G svOQ8QJoU/1pL4D2PGj3gLbErL0orcdAdgkyNoM2zZ+2DbRNwbXt0jrJ0kFW bJZ1QsZToM3wp+0CbWNwbbe0fhJkWSArMst6IOOx4NoroG0Irr0qrdeDbK8/ 2XXIWAvabNAWmrW9oK0Jru2T1t8H2T6zrB1kNyFjdXDtAGirQLsftAfN2kFp PQayW5CxIrh2GLTloM31px2R1kl2AGQFZtkoZCwJrh0DbRFo8/xpx6X1GMgm IWM+aAtAm2/WhkCbF1w7Ja3HQDYDGXNAWwjaPLN2FrT7gmvnpPUYyO5AxkzQ FvnT3gVtBmiLQXvArF2Q1n3K2kC2CBlTQVviT7sE2pTg2mVpPRlkZSDLNctW IWNicO0aaBOCax9I6/EgK/cne+hOE6IzRuYPg2W/2bK+o1PHv8IN4r5U6a9w TQrjtl6+er1jdVCKnP/YW921kQSyCn+ye5JsD8gO+ZPNS7JMkNFW95DNSLIc S9k+s2xSkuWBjHZuD9mYJCsCWak/2bAkKwNZiT/ZYNQOaifLVrJLIOuXZNXB Zb2SrBZk9DHgIbsiyRpARp97HrJuSdZoKdtrlrVLsrMgow96D1mrJGsB2UF/ shZJ1goy+vblIWuWZJ2Wsiyz7LQk6wFZvj/ZSUl2PbisQZL1W8oyzbI6SXYL ZPTN30N2VJKNgox+6njI3pNkIZDRbzsPWYUkm7WUZZhlZZJsAWT0Y9ZDViTJ lkCW409WIMkegIyOMGhZK8gOSLJ1y2TpZlmOJNuwTOYhy5JkT0FGB3s8ZOmS bBNkdJzLQ5Yiyb62lKWZZUmS7DuQ0eE8D1mcJPsRZJn2svCz436H/g08dHg1 2uMWvrAs3KMKt32lePXaLf7dn6LdUkHHsrWiI4AiVSk6LRV0eF4rumQl/gGF dBZCF16GsWkD0skWregJoEhRiiuWCjqTpBVXLRV0wkwrrslK9FnYC2P/YqlI Voo+SwWdRtSKG5YKOluqFf2WCjoprBU3ZSX+alm4WxUOwtg/g4LOc2vFkKUi 3qy4ZamgCw20YhgUP1mmSFKKEVmJtmPrwlEYW/2/ztdv6I025rNMdzpuLHvr mhNdMWGs+LfFqAEmZT24KzAuyjQFph8E0qtjGqDvI9P4KGgGoOeRqduEfovP ArQpkP7knwPoqUD6F8q89LQhi/TBmLtQ/5FA+vjyAkDLAulzbfcAWhBIX3dw H6BZgfSlPYsSNySLqtWiZagfEahGQSsADQhUr6BVgHoFOqGgNYB6BDqtoAcS t1MWNatFD6H+ouwM5xW0DtCHYtJXGT8C6LRA+sLoxwAdF0hftv2xxP1AFumL yjegvlogffH7E4AqBNIX6X8CUIlA+j6BTwEqEEi909XdUW7cXFmk77b4HOoz BdJ3hXwBUKpA+u6VZwAlCqTvstkEyF2ubwT6UpLqm5O21AuB551d/wCPM0yF \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 256.562}, {313.562, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"e2d4cf20-6d77-4886-8481-14c79448ba80"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(27\\). \\!\\(\\\"triangular orthobicupola \ (J27)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"951468e3-1c8c-4c82-98a3-f22a97c74896"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.04632 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0401125 1.1306 4.44089e-16 1.1306 [ [ 0 0 0 0 ] [ 1 1.04632 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.04632 L 0 1.04632 L closepath clip newpath .5 Mabswid [ ] 0 setdash .69065 .8599 m .82587 .58614 L .58569 .71723 L closepath p .424 .188 .451 r F P 0 g s .58569 .71723 m .29486 .70497 L .36562 .85325 L p .664 .233 .213 r F P 0 g s .36562 .85325 m .69065 .8599 L .58569 .71723 L p .664 .233 .213 r F P 0 g s .60644 .41931 m .58569 .71723 L .82587 .58614 L closepath p .568 .459 .689 r F P 0 g s .29486 .70497 m .58569 .71723 L .60644 .41931 L p .77 .634 .711 r F P 0 g s .54837 .23212 m .60644 .41931 L .82587 .58614 L p .189 .413 .848 r F P 0 g s .60644 .41931 m .31607 .39365 L .29486 .70497 L p .77 .634 .711 r F P 0 g s .31607 .39365 m .60644 .41931 L .54837 .23212 L closepath p .701 .776 .91 r F P 0 g s .36562 .85325 m .29486 .70497 L .19408 .54522 L closepath p .699 .291 0 r F P 0 g s .31607 .39365 m .19408 .54522 L .29486 .70497 L closepath p .986 .83 .603 r F P 0 g s .44791 .37432 m .19408 .54522 L .31607 .39365 L p 0 0 0 r F P 0 g s .31607 .39365 m .54837 .23212 L .44791 .37432 L p 0 0 0 r F P 0 g s .82587 .58614 m .79216 .40636 L .54837 .23212 L p .189 .413 .848 r F P 0 g s .79216 .40636 m .82587 .58614 L .69065 .8599 L p .973 .924 .673 r F P 0 g s .54837 .23212 m .79216 .40636 L .44791 .37432 L closepath p .719 .316 .284 r F P 0 g s .69065 .8599 m .63591 .70707 L .79216 .40636 L p .973 .924 .673 r F P 0 g s .69065 .8599 m .36562 .85325 L .63591 .70707 L closepath p .664 .836 .966 r F P 0 g s .19408 .54522 m .44791 .37432 L .63591 .70707 L p .569 .512 .752 r F P 0 g s .63591 .70707 m .36562 .85325 L .19408 .54522 L p .569 .512 .752 r F P 0 g s .63591 .70707 m .44791 .37432 L .79216 .40636 L closepath p .787 .592 .637 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{278.25, 291.125}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2llTHFUUB/AJzLAPWwj7NiFIFgkhwADDvg4T1rCEYCAJxmiixsQsbqWl ZSwtLS21TOkX8MnKV/DRRx/9Gj76inPOuRxnJv8LtzNMytKkir6TPuf87mW6 h77Tfee379+4fmv7/s1r283Ru9t3bty8dq95+vbd+K7sQz7focr4T0uzj17v +Hy7G/5XRRvzn+evn7/+n77+iZps+lx8KDt+1B2+7J1fl8/tmE+M7wOJP6LG v7Mb9mXv6EcqHn5Pkn7QpAAlZdErE/qemgDtyAP1DyTpO2pyKJKv9Sb0rYaK QP1dSfqGmlyKFIOktyXpa2ryKFKinZjQV9Tk045yUP+WJH2pSRVab0JfUFNA O6pA/RuS9Dk1hRSpBkmvS9Jn1BRRpFY7MaGHGmoA9a9J0qfUBCnSqPUm9Ak1 xbQjBOpfkaSPNakFJF2TpI+oKaFIq3ZiQnxWldKONlB/VZL41CqjyAmtN6H3 NfQiqN+SpHepOUyRdpC0KUnvaFKHdmJCDzR0FtRvSNI9aioo0q31JsRn3RHa EQb1FyTpDjWVFOkDSWuSdFuTItqJCd2ippp2DIL6ZUl6U5OGtd6E+KypoR1j oH5Rkm5q0gRIWpCkG9TUUmRSOzGhV6mpox1RUD8rSdc1Kab1JsRnTYPseLJ+ RpJe1qR5kBSVJD5/GimyqJ2Y0BVqWmz1k5K0pfXx+KOHv3HO749+9vlpW6hv UZa8D1yzqTVcYuB4OhcGact/FAZAt2NCXNLfLQCIKu27ExCjQmzoKHIBEVKi TYdvCi9q3wWg8JQOvwn0PSTEuhKFgOjRvo9o34mFfE4Ug8IR7TsI+o4IcUGJ EkDEtG903eoXYk3P7HJArNA2IB9OTl/V9MMgfZ23yf30SeEKNfwxqwSFa7TN SuiH0/lTXQ3SV1PTlzW9xvZb+PwyrD8f80/8tXkHzlNTRTvqQe3ynrVLWtsA as/zNpBUa+p3Af4jxH/9mgGwtD+woEAIAIuJB0SKfVm8TT5IvQkY/8E/BrAF gGUDLCzYvGKtAJsHmN+OzVHD16vjAJvzhs0qdhJg5wAWsGPnqCnf4cv1wWB8 7T8NsBmA5dixGDU8ETkDsCjA8gDWI9iMYmcBNu0N46sSz566ATYFsHw7Nq1Y GGCTT4EF5RP+JDYOsAI7NqVYxBErBFi3YHzBLZLrx5PYKMCK7NiEYsPpY+PU 8HVmDGDDAAvug/F1bzx9jGcY/H1lCmCDACu2Y6OKRQE2ALASgHUJNkINfxOL ASwCsFI7NqzYLMD6vWFDis0BrA9gZftg/NV1EWC93rBBxZYAFgZYuR0boIav rCu2aVsKdhhgZwWLKLYKsG6AVdgxvrDzhGMdYF1PgXFkA2CdADtix3gqx9Ou S+ljvYptAawDYFUA6xRMrngSom8uBB4A2wPYK4BtB2z1M2fRm4DYU4Ct8cZe BewJwNba2V7H0SK2DrBnEs5RB7YNsPXPnO13ZFsB2/DM2Ygj2wLYJsB22Fl0 gh31xg44jjYE2GZvLBptszd20HG0TY6sOWRDjmxjZtgGR9b8TRh2ZOszw9Y5 suYKNuLI1qbPohOs2pE1E55Rx9F6ZMcc2UpHtjuj7LgjW+HI9mSUnXBkyx3Z sJ1FJ1iZN3bScbSljqy5JzXlyJZkhi12ZM1tzmlHNpgZtgiwITsbdWQLHNl+ O4tOsHxv7IzjaPMc2YidRaPN9cbGHEeb48jKvEPuEDqwgcywfkdWpjPmGdf+ bHZm2CxH1jyRmbOygUSWf+L/j89zPVGpJ5WNkOmK3D/f55fch1gAxGXa8vdu VDhiL9zUwnjg8R9/7b6r8Xm51VkEzoY6fmJSDk8TwEbt2MWEN4TGRKBHdgmw azrGXIA1AmzMjq0oVgAw9H3LYOcBtqRYEcDQV02ZnJhn4snYvGLF6WOzipUB DN0JkImIPOtLwWLguB4AG9UxVgAM3QQxz7lXATapWBXA0I2aPbBxxWoAhu5R yQzGrJVIxkYUq0sfG1KsEWDoDp/MVswqkGRsABxXj+w6YPt0jCGAofujUTsW VuwYwNBtYINdBFiXYi8ADN2gnrFjnYod94ZtAOy0YqcAhp4QxOxYOziuHtmX AHtSx9gBMPSwRiYysqgkBWtTrDN9rFWxLoChZ1Jmvc8mwI4qFgYYevS2BxYC h8IjuwXYRh1jP8DQg8s5O1av2CDA0CNVg10GWI1iwwBDD3tlaiWrolKwSsVG 08cqFJsAWC7AzKKyqwArB8f1ANhSHeM0wNDyArNwbhtgQcViAEMLH/bAChWb BRha3yGzL1ktl4LlKTafPpaj2BLA0AIbmcqZJaLJmB8cV4+srFz1J7I6whWm 8BqiVVxOrY+u3zKbTqz8p4iXNPKSq7GUwZJsVnDyMtl22pM630pI+oWaSumR d/Dv9i9aMf789X/vte/Q3yeR0as=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 277.25}, {290.125, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"44346f9f-bd1d-49bd-81d0-9e04e8028ffb"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(28\\). \\!\\(\\\"square orthobicupola (J28)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"eb19734c-4c35-4c74-ba6f-cfbf2c4fdb36"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .85913 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0 1.03893 -0.0445304 1.03893 [ [ 0 0 0 0 ] [ 1 .85913 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .85913 L 0 .85913 L closepath clip newpath .5 Mabswid [ ] 0 setdash .49274 .70814 m .56618 .64306 L .34436 .6018 L closepath p .682 .222 .153 r F P 0 g s .78179 .58726 m .56618 .64306 L .49274 .70814 L p .186 0 0 r F P 0 g s .56618 .64306 m .78179 .58726 L .70992 .36106 L p .64 .555 .743 r F P 0 g s .70992 .36106 m .49477 .42486 L .56618 .64306 L p .64 .555 .743 r F P 0 g s .49477 .42486 m .34436 .6018 L .56618 .64306 L closepath p .758 .62 .707 r F P 0 g s .22047 .47656 m .34436 .6018 L .49477 .42486 L p .849 .779 .782 r F P 0 g s .49477 .42486 m .38399 .2888 L .22047 .47656 L p .849 .779 .782 r F P 0 g s .38399 .2888 m .49477 .42486 L .70992 .36106 L p .666 .739 .905 r F P 0 g s .34436 .6018 m .22047 .47656 L .37161 .58221 L p 0 .238 .727 r F P 0 g s .37161 .58221 m .49274 .70814 L .34436 .6018 L p 0 .238 .727 r F P 0 g s .49274 .70814 m .72685 .64927 L .78179 .58726 L p .186 0 0 r F P 0 g s .70992 .36106 m .78179 .58726 L .88651 .45275 L closepath p .436 .43 .754 r F P 0 g s .72685 .64927 m .88651 .45275 L .78179 .58726 L closepath p .589 .843 .483 r F P 0 g s .61139 .21514 m .70992 .36106 L .88651 .45275 L p .141 .44 .876 r F P 0 g s .70992 .36106 m .61139 .21514 L .38399 .2888 L p .666 .739 .905 r F P 0 g s .38399 .2888 m .28495 .32311 L .22047 .47656 L closepath p .864 .996 .779 r F P 0 g s .53284 .2429 m .28495 .32311 L .38399 .2888 L p 0 0 0 r F P 0 g s .38399 .2888 m .61139 .21514 L .53284 .2429 L p 0 0 0 r F P 0 g s .62029 .51335 m .72685 .64927 L .49274 .70814 L p .642 .766 .938 r F P 0 g s .49274 .70814 m .37161 .58221 L .62029 .51335 L p .642 .766 .938 r F P 0 g s .37161 .58221 m .22047 .47656 L .28495 .32311 L closepath p .317 .359 .748 r F P 0 g s .88651 .45275 m .79499 .30336 L .61139 .21514 L p .141 .44 .876 r F P 0 g s .79499 .30336 m .88651 .45275 L .72685 .64927 L p .877 .825 .792 r F P 0 g s .61139 .21514 m .79499 .30336 L .53284 .2429 L closepath p .534 0 0 r F P 0 g s .72685 .64927 m .62029 .51335 L .79499 .30336 L p .877 .825 .792 r F P 0 g s .62029 .51335 m .37161 .58221 L .28495 .32311 L p .625 .55 .749 r F P 0 g s .28495 .32311 m .53284 .2429 L .62029 .51335 L p .625 .55 .749 r F P 0 g s .62029 .51335 m .53284 .2429 L .79499 .30336 L closepath p .769 .63 .707 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{307.062, 263.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmutPFFcYxkd2l4vLVRBEbgsIi4uAuCB3AaV4QZRLvVK1lHprrVqkNa21 1dhbalvb2tqkl6RJTZN+aNKkTZN+8KMf+9F/oX9Cv9I95z37MMgzy1k3Ej9A MrPDvOd5fud9Z3Zm58wZnZ47d/q16bnzM9Oh3bPTl8+dn7kSGr40G9vlW+M4 a6KxJSPkqO15x4mv9F+bWpl/VrdXt1e3nb/Vh199R96UHX9hh2/+tuOkqa05 Cf2BUCZCsxL6HaEchC5L6DeE1iF0UUK/qo+A2lGC0AUJ/YJQOUKvSOhnhKpV yKe2zkroJ/WRrnbUQ3VaQj+iG2nzP9x+ILL5h/f/VIujA5ugmRHNd9AEqCa2 XuiHFk6L8B66mEWEmWqtbasgPCXCuxBmE2E2hBUQnhDhFxDmEWE+hGUQTonw MwgLibAQwlIIj4nwEwiLibAExSmG8IgIP8RBKiXCchCLIDwkwlsQVhBhFYQL 59mkCG9AGCLCWgjzIRwX4XUIa4kwDGEuhAdF+DaEYSKMoDhBnMH7RXgVwggR toC4FsR9IpyDsIkIoxAufHX3iPB1CFuJcDuE6RAOi/AihG1E2A2hH8IhEb4K YQcR7kBx5Ao0H7+H7xT1eZx33US9C+oBaX4GzXeQ5sNqrfvWL81n0HyQNN+t 17LP/Dl9IpzGtWLIi2P2/fvoH53PDhGehHAPEQ7pdQDC+KIMDHkKBiNeBXGR Y0vsYKj14jR6xOwozA4Qs53EzE/MusVMf+F1dSeI2QAxCyxjZkIxM204bmmb Tmy7xPYw+jhJzPqJWSYx63SZmdDE8Qf6KDHbPmKb5W0r1z8/bI01c+4lzkHi 3JG0cw9xziHO293OgUXOiUrSRexzve2ff6zSsSV2Wqv18mdIJ0HlE1T7iqMm CcpPUGME1UFQ6wiqLTkUy6qdoIoIKiqoCYIKWKLaCGp9cqh0ywJGCaqEoLYl h2JZtRJUKUG1CmqcoDJWDpVpWcCtBFVGUFsFNUZQWZZZNRNU+dNBNRFUJUG1 COogQQUtC7iFoEIE1ZwcimUVIajqp4PaTFC1BNUkqAMElWNZwKeEYlmFCaqO oLYIapSgci1R9QQVJqhGb1SeZQHrCKrBG7WfoPIts6olqAhBRVJH1RDUFoLa LKgRglpnWcAVRFUTVDNBNSSHYgWsIqgWb9Q+giqyzKqSoFoJKpw6qoKgogRV L6i9BLXesoBlBNWWHKrYMiuGaieoOkHtIagSS9RGguogqE3JoVgBNxBUZ3Ko DZZZlRBUN0HVCmo3QZVaoooJqid1FCtgEUH1EVSNoIYJqswyq0KC6ieo6hVH PUdQ5ZYFLLBE1XijKiyzyrdE1aaOyrNEme/VEEFVWqJyLVF13qgqS1Q2QQ14 o3apDz0GVJ0CgOVS7wKYkNMlgyAhS1TQEhVeWrZkUVmWqAb3eed3o9Riez5k etH0kYi4Lw4uhnBsT++MhIzGpZdVw5DxanZpYJSA5elmcpKbU2BxTuZQ2V74 /JZIk+LeBMiNKSDZ2WGeePaxI9f1QBfW9v6YlvDwmWdT9w9b1+Hripst/wMq 4IbqRdVlECDzaL/fC6Qbedv7F9k76k2G54P2KGH4SDKev3HTvAAmiQOWgEIC 0K8EfABolBk3OuhlqxsxsxGYpc3ff/if51E2w21jBOAn/S4gqGG1Ni+xlqL6 gDKDiONeKN2IAXYCECSAHgDM2OsEAQRILmyAoB9lyyco9jvVZDWZArQb+RUR aCfyIyPmi1C6EQNsB2ADAXQAsOjlwmJAOsmFDVFFUcAKgmoHyrwhOeyF0o2y CaAZuVQTQBQA83LnCAFkkFzYeGUjcqknqG2Po45aotiAbxhZRQhqK1Dmtdox L5RuxHKpAaCZAFoAMK8DjxNAJsmFDclXoWxRgmoCyrwTnfJCpcklZSmgDLl0 EEAjAL0CeIEAskgu7P1MCXLpJajNruvB14+u6fuagZ6whPoItBD5DRBoA/Iz b6hPeqF0IwbIA2CIAMIAmHfopwhgbfyys5CLXlQJclC0vcS+Dvb9Yv+il71u JAnEux87M+JdHyXeteSAGMo0oQRBCcB2gthWE1szAeKlhLaxc0rV3HEwz+II sQ+hIoNiOpPQdIpYVMLCzON42fOYyb6YhbY5TswqYCZPVmaS15OZlZHaGdsz KdiWElszAeZsCrYlxFYexJxzKdgWo6Jmdo+eZqN3BInFMWKxHhbyQCXzfBJc YRKZFcLMTFO6gP6wlJhFASzk6cfMOvS+ZSQyy4OZmW91KQUzNq/B9PEy0mSV OkrM2BwM08fZZe73iWyDSNjMTLuCnrE0mUUWLOSpxnljmZ9ticwyYCZPMGa+ 6pOZBWBm5utdRXKsPuySyGYqmZ69RXoWsLT1EVv3nELzk8PLjE8Uk+cN5x3S L79Fv5SFmUl53dLikFrrXfIs4LyLzrNKjKm1X+4+uvkNwvER4QiEZjrrTXBY t4bR/JQ0v0U4aUQ4CKGZGvy+pbAXQjNF+QN0kOXTgeZy8XQ+0h984KYNjeVi 5HwMb9aVJjS/Is31DN6lY2sRtLsq7W7zdnVod03afQq85Banx35vx1u+Jy0/ f7x6jhr5ijeSg+LcUR+6TTFCUg7nS5AKEJJeOl8hlI3QHQnddX3J46G7EvrG 1aF4vXT8W4nfg/R72aG/mc/QPP7V7Wdz21nzP25hbBw=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 306.062}, {262.75, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"1830e412-8534-4112-b1c6-7729b52a5521"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(29\\). \\!\\(\\\"square gyrobicupola (J29)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"dc2ae264-7c46-4757-8ead-367fa61d3b3e"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .92068 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0 1.04492 -0.0158744 1.04492 [ [ 0 0 0 0 ] [ 1 .92068 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .92068 L 0 .92068 L closepath clip newpath .5 Mabswid [ ] 0 setdash .4939 .75154 m .64755 .71753 L .42295 .67572 L closepath p .58 .08 .031 r F P 0 g s .42295 .67572 m .25519 .53799 L .31243 .60331 L p .58 .043 0 r F P 0 g s .31243 .60331 m .4939 .75154 L .42295 .67572 L p .58 .043 0 r F P 0 g s .42295 .67572 m .64755 .71753 L .68638 .48821 L p .674 .552 .708 r F P 0 g s .68638 .48821 m .46035 .4498 L .42295 .67572 L p .674 .552 .708 r F P 0 g s .46035 .4498 m .25519 .53799 L .42295 .67572 L closepath p .79 .663 .723 r F P 0 g s .23426 .36356 m .25519 .53799 L .46035 .4498 L p .819 .816 .847 r F P 0 g s .46035 .4498 m .4555 .27526 L .23426 .36356 L p .819 .816 .847 r F P 0 g s .4555 .27526 m .46035 .4498 L .68638 .48821 L p .615 .657 .868 r F P 0 g s .68638 .48821 m .64755 .71753 L .82574 .63991 L closepath p .513 .401 .663 r F P 0 g s .82574 .63991 m .64755 .71753 L .4939 .75154 L p .453 .885 .865 r F P 0 g s .69858 .31363 m .68638 .48821 L .82574 .63991 L p .268 .341 .753 r F P 0 g s .68638 .48821 m .69858 .31363 L .4555 .27526 L p .615 .657 .868 r F P 0 g s .31243 .60331 m .25519 .53799 L .23426 .36356 L closepath p 0 0 .512 r F P 0 g s .4555 .27526 m .4024 .25197 L .23426 .36356 L closepath p .608 .953 .902 r F P 0 g s .67248 .29432 m .4024 .25197 L .4555 .27526 L p .011 .57 .812 r F P 0 g s .4555 .27526 m .69858 .31363 L .67248 .29432 L p .011 .57 .812 r F P 0 g s .4939 .75154 m .67639 .66973 L .82574 .63991 L p .453 .885 .865 r F P 0 g s .82574 .63991 m .85001 .46612 L .69858 .31363 L p .268 .341 .753 r F P 0 g s .67639 .66973 m .85001 .46612 L .82574 .63991 L closepath p .888 .917 .838 r F P 0 g s .49011 .50681 m .67639 .66973 L .4939 .75154 L p .587 .668 .895 r F P 0 g s .4939 .75154 m .31243 .60331 L .49011 .50681 L p .587 .668 .895 r F P 0 g s .69858 .31363 m .85001 .46612 L .67248 .29432 L closepath p .534 .025 0 r F P 0 g s .23426 .36356 m .4024 .25197 L .49011 .50681 L p .483 .411 .7 r F P 0 g s .49011 .50681 m .31243 .60331 L .23426 .36356 L p .483 .411 .7 r F P 0 g s .67248 .29432 m .85001 .46612 L .67639 .66973 L p .781 .686 .76 r F P 0 g s .67639 .66973 m .49011 .50681 L .67248 .29432 L p .781 .686 .76 r F P 0 g s .49011 .50681 m .4024 .25197 L .67248 .29432 L closepath p .673 .519 .668 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{296.625, 273.062}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmllXU1cYho8kJ2HGMAQZIgmIghBDNCKTDKLECFEEiuAEFLWi1gGxtrWr tqXzsDp51ave9YbVq/4Ff0Jve+ll/wLN2d/Ox0nybtgh2NWuhWvl5HB89/N8 e599TqYdX1i5ffPthZWlxQV/dHnh4e2lxcf+kQfLiUOOPYaxpyXx8PgNa3/d MJIb8a/V2sg/dvd393f3/9X9J9aTaV2Pv9OBFfHksI6sP7vzh7hSHetrq2tu a/c3Ci1bT3nr4r8SIRlPhKyH4eb4rxR/lMakJpkNS62tyzr0CzV8wB4XiFey 52eK3wceN2hYyw2/pYb32FMI4gEu63OK3wUe1PAQe55TwyX2lIJ4kOPvUvw2 8KCGES5wmRreYo8HxHvYQx0xbgJPOWg4yA1vUMNF9lSBeNTaOq1D8xR/E3hQ w5jY0rGXay/FHJwjxDwba1RGw+SGyYcFuE6AOVADQo2k1ZB4JP5KbIX8KsGu cTX1AHEGIExGXCHEVVCPD8CGAczNsMsEuwJg+wHsFIAVMGyWYLPcuQBADAFE ESNmCDED6mlUTaw0WDHDLhFsmutpBogBgChlxDQh3gD1IFg/gO1lGFGMSa6n FSD6AKKcEVOEmAD1IFgvgFUybJJg41xPu+qiT0N4GUGFGBdAPUEA6wKwfQy7 SLA419OhiahhxDghxkA9YQDrBLA6hlGvjHNcTwQgjgOEjxHnCRED9SBYBMAa GBYnWJTr6QKIowARYAQNTOImlVkPgoUBrIlhowQ7A2DdANYBYM0MO6eG9QBY CMAOMiyWHewIgLUw7KwNJg70ql6D0xCHGRFNR/QBRBtAtDNiRH3mUJcOA1hI vhgZ8q2cRRq2YZWdawWwMICdSoehbh4CsGMANrRdWATABjNHzzBWrWfY4YMA 2wmwA2osqvYAwHYBbH922CaA7QHYk3as04ZdVZ34RkDuA+S+TcmoZj8g9wNy r+2epzEUDQA7CLA9dqzWUCDyECB3b0pGNfsAeRiQu7Im1wPyGUA+YSebaWT1 YNcCfBTgO7eHrwH4GMAf3x5+H8CPAnxENQNXjTyx3fpm7AWqOFAdI9XZLHuC 8OcB/uj28FUAPw7wYTt+ewNVAVQTQNWRu6ocqKaAKpS7ygNU00B1RK1yaKrK gGoGqIK5q0qB6jJQtb8e1RWgalOrnJqqYqC6BlSHSRXLoVdFQHX99agKVSr5 sU8p0B22/C368urvP8X9ZQdUbqXKySqp2wGbS98WVNtMTZupnH1mii05nDug dG4x4aUucbOztvB6y0Xv0NQ71PpzmqeX3tWZdr14WAM5n7tS3WNnilJhc+6U bWN8VR0zd0glDs1pCtrVAhcQnLC28peCF2uvNrn5J6Wu3KWdtgFMSIXYCfSz QO/OXR/hPucD6SUgzc9O6gbSMEuLgHT69UhDLC0F0ikgLVBLRzWHN8hSD5BO AGlhdlLU0zYwpcqtrfzGM1NalLu0lXtaDXoa15QGs5MeYmktkI4CaXF20nwg PcBSH5DGgLRELR3T7GkjS/1AGgXSUrU0rjl7A2AiBYB+JDv9eU39fu5zM5Ce BtIytfQCkKJXmXqWtvAlMwxUe9WqcaBCbw5qWdUO+jegKZWf4C5qSqtZGgLS k0DqyV3qBROpA+h7gb5crZ8AegfQV3KfI0DaDaQVaumkptTD0hNA2pWddApI 0VcBZSztAdJOIK1US+m3Q/ylzYboJF8mxwG+So2f3gRfAibMAOhRWFMZ2lpZ xD0aBqIQEHnVIvoZOOML0wJ2jABHEDiq1Y4Z7HCxIwYcbcCxT+2YzZh3RsKY FIwBQSsQ1KgFYjFAxuqc5CmP89zKEisWF4ihmQA1NgNYrRp2lWucArAmAKtT w67bRjTZTVRjQBMrv5ac08Q2AGy9GjuvifUBrE+NXeARnQSwOgDbr4Ytghov 8sTJEnZDs8PVANugxt7UxFYBrF+NvaWJrdDEyq/T39r09HgALKCGLalOTxq2 DGAb1dg7mtgSVdfF3UH++nFXBRODUKy6ZsQLSd7641d/yd+D7m06cAWq1xCx HM5pceTvbfc1O+dWvV0TRLdFTBs9KXigKTBVn2ZE1wstgfydXGAfamIdqo/4 LhrvJHaAsI+UWLx8zmRUmYUSDeVP+xurQSfkVy1JgKxFECu4gtPUbAVUcMHa ivZejssVE09AfIznUzUXJZd5vAPisdS4ffHLU+5DlENeZsoVO+8B5pC1daRW LFcvvQ/i/YAuF189A/He1Lh9+dkHXHE3CMk1cx8CZoTjVVyCXPL3HMTDqXH7 8sePQPwIxyuZLpdefgzibalxsbdA8U+4gy08xhsheoUyPgXMJlACvVgYn4G4 n+MVHKeVt3K9b2rcx3GPFReTVa6j/YIrruNQGYfo/mB8BZhejpdw/DHFvwbx Co4Xcfwpxb8B8b0cz7fi4mqkySbXP6fGSzjuYjqdaeM77mAhnxInh+hcGN8D pslMB8e/pPgPIJ7H8Tw+JXKp9o/iyeS4Id5FG+K2LFoQz/iJS31BB8S9+j+0 8n53//+7b+z5Bxi3pKc=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 295.625}, {272.062, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"338442b5-8155-4cb1-97d2-5fa11d2169cd"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(30\\). \\!\\(\\\"pentagonal orthobicupola \ (J30)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"bcc66488-49d3-4391-a8a2-f4c52d927d53"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .77897 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0 1.04749 -0.0836331 1.04749 [ [ 0 0 0 0 ] [ 1 .77897 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .77897 L 0 .77897 L closepath clip newpath .5 Mabswid [ ] 0 setdash .5494 .61558 m .36144 .59437 L .38955 .59851 L p .092 0 0 r F P 0 g s .38955 .59851 m .59267 .62141 L .5494 .61558 L p .092 0 0 r F P 0 g s .59267 .62141 m .73017 .57551 L .5494 .61558 L closepath p .04 0 0 r F P 0 g s .58749 .44306 m .5494 .61558 L .73017 .57551 L closepath p .655 .591 .772 r F P 0 g s .36144 .59437 m .5494 .61558 L .58749 .44306 L p .728 .665 .787 r F P 0 g s .58749 .44306 m .39429 .41847 L .36144 .59437 L p .728 .665 .787 r F P 0 g s .39429 .41847 m .21997 .51541 L .36144 .59437 L closepath p .802 .737 .792 r F P 0 g s .38955 .59851 m .36144 .59437 L .21997 .51541 L closepath p 0 .341 .736 r F P 0 g s .73017 .57551 m .84977 .48177 L .69922 .34086 L p .569 .58 .824 r F P 0 g s .69922 .34086 m .58749 .44306 L .73017 .57551 L p .569 .58 .824 r F P 0 g s .84977 .48177 m .73017 .57551 L .59267 .62141 L p .669 .971 .909 r F P 0 g s .58749 .44306 m .69922 .34086 L p .36718 .2954 L .661 .751 .917 r F P 0 g s .36718 .2954 m .39429 .41847 L .58749 .44306 L p .661 .751 .917 r F P 0 g s .17944 .39675 m .21997 .51541 L .39429 .41847 L p .823 .85 .868 r F P 0 g s .39429 .41847 m .36718 .2954 L .17944 .39675 L p .823 .85 .868 r F P 0 g s .21997 .51541 m .17944 .39675 L .36057 .48227 L p .349 .553 .91 r F P 0 g s .36057 .48227 m .38955 .59851 L .21997 .51541 L p .349 .553 .91 r F P 0 g s .59267 .62141 m .71077 .52493 L .84977 .48177 L p .669 .971 .909 r F P 0 g s .71077 .52493 m .59267 .62141 L .38955 .59851 L p .645 .769 .939 r F P 0 g s .69922 .34086 m .84977 .48177 L .85567 .35848 L closepath p .401 .534 .876 r F P 0 g s .71077 .52493 m .85567 .35848 L .84977 .48177 L closepath p .863 .923 .866 r F P 0 g s .56552 .24124 m .69922 .34086 L .85567 .35848 L p .284 .615 .957 r F P 0 g s .69922 .34086 m .56552 .24124 L .36718 .2954 L p .661 .751 .917 r F P 0 g s .57009 .4306 m .71077 .52493 L p .38955 .59851 L .645 .769 .939 r F P 0 g s .38955 .59851 m .36057 .48227 L .57009 .4306 L p .645 .769 .939 r F P 0 g s .36718 .2954 m .27727 .27911 L .17944 .39675 L closepath p .761 .976 .919 r F P 0 g s .49137 .21938 m .27727 .27911 L .36718 .2954 L p .465 .877 .942 r F P 0 g s .36718 .2954 m .56552 .24124 L .49137 .21938 L p .465 .877 .942 r F P 0 g s .36057 .48227 m .17944 .39675 L .27727 .27911 L closepath p .511 .54 .822 r F P 0 g s .85567 .35848 m .72169 .25265 L .56552 .24124 L p .284 .615 .957 r F P 0 g s .72169 .25265 m .85567 .35848 L .71077 .52493 L p .8 .771 .827 r F P 0 g s .71077 .52493 m .57009 .4306 L .72169 .25265 L p .8 .771 .827 r F P 0 g s .56552 .24124 m .72169 .25265 L .49137 .21938 L closepath p .027 .586 .81 r F P 0 g s .57009 .4306 m .36057 .48227 L .27727 .27911 L p .648 .616 .804 r F P 0 g s .57009 .4306 m .49137 .21938 L .72169 .25265 L closepath p .737 .664 .778 r F P 0 g s .27727 .27911 m .49137 .21938 L .57009 .4306 L p .648 .616 .804 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{322.5, 251.188}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmstPVFccx0dmBoaB4f0GYXgL8lAQRQTk/RAUQVGL1goWxVqrtSQmtU2b NmnS2iZt0iZt2qRduOjCTbdNXLJ02a1/gks3XdB7zu/MFxi+B84NXTQNJPfc O4fffD+/7znnnnvn3nN2cXVl+d7i6p2bi/Hxh4sPVu7c/CA+dv+hVxU8EAgc GAoEAn/HA+p43Ts0hf4bVoX5sH+8f7x/vKfjn9UuTZ1fv0nFj2oXVBUp609/ eRHQh+vPn62pzavzSh3+k4R/r3YhVZFKwiOqjKiq7yT8W4RHSXgO1L+S8G+Q TBYJL0b45xL+JdTzSPhBJPNYwr+AehEJr4f6qoR/BvVSEt4C9Xcl/BOoV5Lw TqgvS/hjqFeT8B6EX5fwRwhvIOEDqgyrqjckfBXJNJPwYV1K3Yu1v/Rse0W+ +ACcVvLFIV2G8cXEpgQui8A9kDtsiW4ie5v3SUpM+Z7MRRG7g2y6iNhpIhZW ZYqqMhK3kE8PkegjEhGSz6yILSGfPiLWS8SiROy8iF2H2KCjWAYRmxGxq7A5 ZhtOSWIxtJSR0ENHV0wSiZNEIofkM71JzPzLE9OCE0S2m8jmEdkpkb2ySfbz JzLwzhDZ40S2AIaNmIzYEMSMINPrInrFJM0JUb6kd+Etyol0p4j8MSJfQuTH RX4+qRW8zfsk5W4N3klQZQQ1JqiLBBVyRHUQVAU6YQdA2BFwhACqiBdz7btA UKmOqHaCqiaoIUHNEVQaQbEzrY2gaghqUFCzBJXu6KqVoOrQQwZwngCijoAW AmgkXvoFNUNQmY6oZoJqIqg+QZ0jqJgjqomgDhNU795RhwiqFT1kAGcJINsR 0EgA7cTLSUFNE1SOI6qBoI4SVLegpggqzxFVR1CdaDYDOEMA+Y6AWgI4Trx0 CWqSoAocUTUE1U1Qx+yoQkdUnKB6CKpTUBMEVbQH1Cn0kAGME0AJAYwTQBUB 9BMvRwQ1RlCljl4OEtQAQbULapSgyhxRFQQ1RFBtghohqApHVBlBjRBU695R pQQ1akcNE1Sl47BgqBGMO9NDQwRQ5eileJdme/nqpdonUIMEFXdEFVlRIaAM ztAGCK3GkVZgpYW30JIMnibIWkdkvkNbelsgRZd0rPQTfL3jWMlzxAf3jmfu c/eO7yP4Bkd8jiM+ZMf3Evwhx8bPdsSH7fhTBN/k6D7miE+143sI/rCj+0xH fJodr+/Y9KzW6ug5g0CHCTSyC9RMPwtPXum9tzHbLIOoYwbpbq2uMvC2gG6F ZsemT3dset85eKWuanRsjDTHRKL+EgmrUrcImwlYi6Q6JpLhdiomEklFInWO LRJyTCTTXyIRJOJ6LWSJsHEa85dIFIlUO3ZN0DGRLLdJOpFIBhKx3/aENyei N3XVH3NshTY7PAa4/aYutAVu4TLTO3CzcYaWO7S+zWy2HdpHoLkwy35t6Ie5 2usoQeX4Q+UDxX5DDQIVWn+69jppTA0SfK4/fCHw7Ddiryr1kEpXeB03QKB5 dmg/gRYByn4Dn4DnHOK5l+Dz/eFLgGcPFjqBL4TnfwFaBmgugbYDWk48dxN8 gR1/muDLcRqxZ1BN6Oc4PJ8g0EJ/0Ep4Zk/W6uG5kXjuJPgif/g48OxxZRz4 FnjuINBiO3SAQKsBZY9jKwDtIJ7bCL7EH74W+AjBF6OfT8BzK4GW+oPWA8oe p+fBcz/x3OwPP0jwDcCzdxRZwA/DcxOBlvmDHsIJxV7ypAM6STzXE3y5P/xh eBZ+gu41QaKLz8FuHeFV2HlDhNcCXgqszRNrcYI66A/VBtQCHFTZHOiqI7uI JTpn7bXO+CrJu9w2IoKmjZ+tv0LyhjdMeK2Edw02GKUYlBQFSWqno3YUs/Ym sVZsm8jN6PWgOrlj/lDX4arIdnUMyjm53ZVBjTg24A3iKo9A9a1XSOah7dAu f9BF+Mu13cUGZZrfjjpuR7GmXCL+YrZfULoqA71mXgGNOrq6CVcMkA5AjLjy iVomrtJtD2t0r2UTaI8dyppyGf4iBBWCv1w0oHn1qF816Aome5t4Cdmeeeqq fOLFoCaAaiGoFTgIEoD+VEi0zcvaM9BuJtrvJNmQqU2fwonmMO+Xp6HTZNMx P1q2p2Ik9AtQ/Z9Gm01Tp+ZWJcPEzLv7GYjV79I9O4mZNQezEKslYreIWDHa x6yQuACJmh3PslKShZGYh0R8lzlhJ0tm9clliFXa5jKrJXnlKst49HlYscsc vEUiKR8jtgCxctu1w0HMrAm6BrHSHS+vJbAkb/dlNVdYBvjO9wE7ZWHEbuCU UP+fe65j1KcCor3gqG2WeS3ZtPOJ9hVHbbOk7W29k39p6bnnAXNd2659iTSm LNGRNZLmFtDTSJEZe7vEvGN6RvY2kc0ishccZTevUkySzSSyc0R2YzY06yfv ErEoEZslYgWq1FVmGeg9IhYhYjPoig2JayJxX+9Cm7sUUmlE6izJKxeib4no A+QVhFiYiE0TsWyILYnYQyIWJGJTRCwGMbMsd2Ph7EaLiVpCS60PxH1N4tsr 8m29Slcv250ksCjC70r4R5tPRZVm4lTUdcNEIgKJ90RCr4ROVxUnSXgqwt+X 8K8R3k7CQwg3S6B/ULvour56JUxvBD2SoF+hWao1Q5s1EfyhBP+O4GySgAZ8 LJF/IDKcFKla6FMJ+hOzrlkSrk/M/9B6+/3j/8dx4MA/jlsfjw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 321.5}, {250.188, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"86927334-f359-4bb4-8c54-252ac6be4338"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(31\\). \\!\\(\\\"pentagonal gyrobicupola \ (J31)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"c7fc833e-9099-4ca1-ab14-c38216be07e9"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .7687 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0 1.03609 -0.088159 1.03609 [ [ 0 0 0 0 ] [ 1 .7687 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .7687 L 0 .7687 L closepath clip newpath .5 Mabswid [ ] 0 setdash .36637 .5317 m .5291 .59376 L .60669 .44111 L p .727 .658 .781 r F P 0 g s .4872 .57775 m .5291 .59376 L .36637 .5317 L closepath p 0 .334 .661 r F P 0 g s .60669 .44111 m .5291 .59376 L .70577 .59185 L closepath p .661 .576 .748 r F P 0 g s .70577 .59185 m .5291 .59376 L .4872 .57775 L p .205 .719 .886 r F P 0 g s .4872 .57775 m .67625 .57543 L .70577 .59185 L p .205 .719 .886 r F P 0 g s .70577 .59185 m .84315 .52377 L .74016 .3657 L p .575 .544 .783 r F P 0 g s .74016 .3657 m .60669 .44111 L .70577 .59185 L p .575 .544 .783 r F P 0 g s .67625 .57543 m .84315 .52377 L .70577 .59185 L closepath p .535 .922 .908 r F P 0 g s .44197 .37487 m .26824 .42149 L .36637 .5317 L closepath p .795 .744 .806 r F P 0 g s .36637 .5317 m .26824 .42149 L .38967 .46368 L p .17 .482 .898 r F P 0 g s .60669 .44111 m .44197 .37487 L .36637 .5317 L p .727 .658 .781 r F P 0 g s .38967 .46368 m .4872 .57775 L .36637 .5317 L p .17 .482 .898 r F P 0 g s .60669 .44111 m .74016 .3657 L p .4619 .24962 L .633 .7 .894 r F P 0 g s .4619 .24962 m .44197 .37487 L .60669 .44111 L p .633 .7 .894 r F P 0 g s .27798 .29565 m .26824 .42149 L .44197 .37487 L p .785 .841 .894 r F P 0 g s .44197 .37487 m .4619 .24962 L .27798 .29565 L p .785 .841 .894 r F P 0 g s .74016 .3657 m .84315 .52377 L .88825 .40479 L closepath p .427 .48 .812 r F P 0 g s .88825 .40479 m .84315 .52377 L .67625 .57543 L p .785 .883 .917 r F P 0 g s .38967 .46368 m .26824 .42149 L .27798 .29565 L closepath p .338 .44 .819 r F P 0 g s .65583 .24147 m .74016 .3657 L .88825 .40479 L p .321 .538 .907 r F P 0 g s .74016 .3657 m .65583 .24147 L .4619 .24962 L p .633 .7 .894 r F P 0 g s .71206 .45633 m .67625 .57543 L .4872 .57775 L p .619 .71 .911 r F P 0 g s .5266 .38116 m .71206 .45633 L p .4872 .57775 L .619 .71 .911 r F P 0 g s .4872 .57775 m .38967 .46368 L .5266 .38116 L p .619 .71 .911 r F P 0 g s .67625 .57543 m .71206 .45633 L .88825 .40479 L p .785 .883 .917 r F P 0 g s .4619 .24962 m .40991 .20397 L .27798 .29565 L closepath p .673 .934 .969 r F P 0 g s .61885 .19428 m .40991 .20397 L .4619 .24962 L p .415 .803 .989 r F P 0 g s .4619 .24962 m .65583 .24147 L .61885 .19428 L p .415 .803 .989 r F P 0 g s .65583 .24147 m .80682 .27529 L .61885 .19428 L closepath p .082 .553 .903 r F P 0 g s .88825 .40479 m .80682 .27529 L .65583 .24147 L p .321 .538 .907 r F P 0 g s .5266 .38116 m .38967 .46368 L .27798 .29565 L p .551 .537 .793 r F P 0 g s .71206 .45633 m .80682 .27529 L .88825 .40479 L closepath p .808 .773 .821 r F P 0 g s .27798 .29565 m .40991 .20397 L .5266 .38116 L p .551 .537 .793 r F P 0 g s .61885 .19428 m .80682 .27529 L .71206 .45633 L p .729 .668 .79 r F P 0 g s .71206 .45633 m .5266 .38116 L .61885 .19428 L p .729 .668 .79 r F P 0 g s .5266 .38116 m .40991 .20397 L .61885 .19428 L closepath p .653 .575 .755 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{324.625, 249.5}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmtlPXFUcx6fMwDDAsA172fcdCrYUaIu0FFpr9w1KW/a2dKVArdpGGxsT E2I0RhNjNCZGjYk++trHPvbRf6GPvPuEc5b5Oh2+h/6uSGIMJHPu5c6Zz+f3 +907dzlzjk8t35i7M7U8PzNVObI4tXBjfmapcvjeYnSTf4fPt2PI5/P9WelT 62vRVdvov8Oqsf9sr2+v/8/Xn6lFWB3/75sNP6tFodqQvvbjl899frW69uy3 F/o7kqTah6bnZ+hZldAz+or+F2119wem+1O1yFAb9pLuyei+ZLp/pBem08qK sQ+SD6aqVm9aMB98ohaa5FcftN2jH9QfPkAQ6XDfNYgPE9wKEyCwfQSWCdht A/uAwJKFsGwkN29gj5FciCD6CCIP8Vw3iEcknjQC6yWwAsDmDOw9xBMmCLaj i5HStEG8S+LJJLAeAitFPJMG9pDAsglsN4FVAHbVwB4guYgQUYXkxg1imcST R2DdBFaHeMYMbBHxFBFEF0E0AHHRIO6TeBhsF4E1I7lzBrZAYCUE1klgbYjs jIHdRXLlBNFOEJ1AnDKIOyQeKawLyR03sFuIp5ogWgliD+I5ZhA3STw1BNZC YHsBO2pg8wRWS2DNBNaP5IYN7DqSaySIJoI4gHiGDOIaiaeJwBoIbBCwgwY2 i3hahYhDSGnAIGZIPG0EVkdgI/aKhZvAKGmfwU4TbAfB1nrDTiLhLgKreQ3s xfM/9PVwv4FNkBi7CbbaiQ0Aa9E2zCsIs4fwKp285Fd4sXAt9DIJ1xveH4+P 3pOo9tUy9xrVOFH1ElW5UOV3qy4RVT9RlQlVAaLa601VKlSlEFVPnEofAPuJ YOe/JLBvnVmKHdbrVcVCVSpR7dm8apio0ohqd7wqAJXVMVuhMLENbGMJiUVf 0S+Fal9/jBQIk80g+jc2r88XZu9R7xfq84TZZxJ9t1sfEOpzhdlnEX3X1uhZ 9tne9MlCfbYw+xyi3+XWpwj1WcLsc7dGnynMPkL0nW59UKgPC7PPJ/oOtz5V qE8cW3Blv4F+lOhDm9Cz7AuJvt2tTxPqQ8Lsi4i+za1PF+pThdkXb40+KMy+ hOhb3foMoT5FmP1Ob/qwUB8QZl9K9C1bo2fZlxN9s1ufKdQnCfUV3vRZTn1y vF6/1G3fEaKsJMqmf6IMvKJ02KqJrdHYLhJbjqC+rsQ8qnKJqk+1ehM7VGuJ oMGboDeuct/+vhp76U5Dm1dGiHKPavWjTVCp9NogUdUTVb1blUdU3VClQzVA VA1EVedNFT+cYIsYPTfEStlPpI3epPlE2oH8Isivl6iaiKrWrSogqlaoCpHV bqJq3ryqhZSyBPl1E2kLkda4pYVE2oj8KqDqdKn0JpvVBSIoJoJ6klUVStnm OkD0pqS1Fy9XE/Kr9qavRX4NyK/Z9a3TmwJEWuOWlhBpFaQtyLTBdaYMmFOC J+lOIq0ghW5HzrWuK5DfnCY21mtEKZGWIdNuqKqJqgyqMFGRQ6rp0Ut9gdFE VuMSmHtQ43LXXZ2ucbbbbL4tAZjtS/ctIvIiUus+FKDUdWfvN6es9WHY899o QgGir+h/sUDYmbAAVRhAFYqIPg9VKHDrx4g+GXp2TYtAP4Ts813PtH6zK536 S0QfhJ7dkeSQ3TCMQCKukQ2/2UnrA7GX2XESSAiBsFvPLNThGHZDlmtYKWDO tk79ZaJPV6393XO9PkzqcAJ1CJNAQqhDNQnE3tlcIYFkoA7s8SsNdTiLOoSI Pgh9nVt/legzoWdP/qnQjyL7oGtYXe+GRm/6HOjZsEsK2Q2XEEiA/PIRq0IL CcPeMk+QMCIIgw29+VGFCewEn54eobvhrNrulk4SaT6kPn9sgFn7kuCbjbuF WM+2DzdThF0Yz14xsy90+eZ0a/fey1VN7XCzpwm72J5G4/eKR+wMwRYR7KwQ a58sZ4XYGW/YOSF22hv2mhA7KcS2uLFsl014w14XYq8SLPti2JGYG8IiXBFG a7HzQuxlb9ibQuy4sAh2MO6WEDsmjNZibwuxo8Jo7cDpHSH2ojfsXYItJNgL wiJsgGXRnhdGawev7wmx57xhF4TYM0Ks/aHhvhB72ht2UYg95Q27JMSeJFh9 4deb7M97ywTGDqsTBNakWn2DYX+ofSCEHSewetXq0Uz7y/k7amFng61HvE0Q NUhOXdVXV9ditx92CoOeiaffLyDEtwixCsQkBdTR9BvYI8DyCOwogZUD5gfM znD5ALlGCOwIgZWg9gHABgzsCSLLJrARAitCZCmADRrYU0SWRWDDBJYPWBCw Qwb2MSILE9hhAssFLBUwO7P3E8DSCewQgWUDFgJsxMBWkGYagR0ksAzsgDTA 7FS2TxFZKoENElgIkWUAZifZfY7IUgjsTQILAhYGzE76+wKRBQhsgMACgGUC dtLAvgIsicAO6DYQDwMqC6jTBvU1kvT5Y0Mx+vP7E0Ly+ezDRDYQZw3iG0Sj BxYr1VoOOp03nb5Tiwq1oXJt17PYA26sk51D+j1I+9Dp7wPGzlX9AZ360SkZ nezs2J/QqQ+dEk5N5pnX9wt6lqmeeebgia4lXAJs91/Voky989hs0O/+h6bd b69vr8ev+3b8BfeaYWE=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 323.625}, {248.5, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"524624fe-b163-45a6-84cc-4a785d1f4fb9"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(32\\). \\!\\(\\\"pentagonal orthocupolarontunda \ (J32)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"026ca5a0-c4da-44c4-bc72-a9eb821b80c6"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.1069 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.06633 1.16449 -2.22045e-16 1.16449 [ [ 0 0 0 0 ] [ 1 1.1069 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.1069 L 0 1.1069 L closepath clip newpath .5 Mabswid [ ] 0 setdash .61241 .74697 m .55824 .56541 L .35382 .5441 L p .72 .502 .594 r F P 0 g s .55824 .56541 m .47531 .37747 L .35382 .5441 L closepath p .714 .604 .732 r F P 0 g s .74007 .57607 m .55824 .56541 L .61241 .74697 L closepath p .581 .422 .631 r F P 0 g s .47531 .37747 m .55824 .56541 L .74007 .57607 L p .57 .532 .774 r F P 0 g s .35382 .5441 m .26813 .71237 L p .61241 .74697 L .72 .502 .594 r F P 0 g s .35382 .5441 m .47531 .37747 L .41497 .34143 L p .901 .962 .82 r F P 0 g s .41497 .34143 m .28343 .52277 L .35382 .5441 L p .901 .962 .82 r F P 0 g s .28343 .52277 m .26813 .71237 L .35382 .5441 L closepath p .975 .894 .679 r F P 0 g s .60208 .25536 m .47531 .37747 L p .74007 .57607 L .57 .532 .774 r F P 0 g s .41497 .34143 m .47531 .37747 L .60208 .25536 L closepath p .765 .963 .93 r F P 0 g s .61241 .74697 m .43077 .84513 L .61948 .87061 L closepath p .561 .227 .359 r F P 0 g s .26813 .71237 m .43077 .84513 L .61241 .74697 L p .72 .502 .594 r F P 0 g s .61241 .74697 m .61948 .87061 L .77 .76467 L p .232 0 .336 r F P 0 g s .74007 .57607 m .61241 .74697 L p .77 .76467 L .232 0 .336 r F P 0 g s .43077 .84513 m .26813 .71237 L .24711 .83415 L closepath p .794 .431 .369 r F P 0 g s .24711 .83415 m .26813 .71237 L .28343 .52277 L p .799 .712 .176 r F P 0 g s .74007 .57607 m .77554 .38061 L .60208 .25536 L p .57 .532 .774 r F P 0 g s .84415 .5716 m .77554 .38061 L .74007 .57607 L closepath p .26 .236 .641 r F P 0 g s .77 .76467 m .84415 .5716 L .74007 .57607 L p .232 0 .336 r F P 0 g s .77554 .38061 m .69611 .22221 L .60208 .25536 L closepath p .301 .497 .882 r F P 0 g s .60208 .25536 m .69611 .22221 L .49488 .31511 L p 0 0 0 r F P 0 g s .49488 .31511 m .41497 .34143 L .60208 .25536 L p 0 0 0 r F P 0 g s .61948 .87061 m .43077 .84513 L .24711 .83415 L p .196 0 0 r F P 0 g s .28343 .52277 m .26275 .63398 L .24711 .83415 L p .799 .712 .176 r F P 0 g s .26275 .63398 m .28343 .52277 L .41497 .34143 L p 0 0 .106 r F P 0 g s .69611 .22221 m .77554 .38061 L .84415 .5716 L p .825 .463 0 r F P 0 g s .41497 .34143 m .49488 .31511 L p .26275 .63398 L 0 0 .106 r F P 0 g s .31364 .8538 m .56593 .87844 L .61948 .87061 L p .196 0 0 r F P 0 g s .24711 .83415 m .31364 .8538 L p .61948 .87061 L .196 0 0 r F P 0 g s .61948 .87061 m .56593 .87844 L .77 .76467 L closepath p .547 .922 .779 r F P 0 g s .26275 .63398 m .31364 .8538 L .24711 .83415 L closepath p 0 0 .519 r F P 0 g s .71177 .31383 m .69611 .22221 L p .84415 .5716 L .825 .463 0 r F P 0 g s .84415 .5716 m .81211 .54987 L .71177 .31383 L p .825 .463 0 r F P 0 g s .77 .76467 m .81211 .54987 L .84415 .5716 L closepath p .923 .897 .49 r F P 0 g s .49488 .31511 m .69611 .22221 L .71177 .31383 L closepath p .445 .028 .153 r F P 0 g s .45984 .73497 m .31364 .8538 L .26275 .63398 L p .366 .265 .606 r F P 0 g s .26275 .63398 m .3987 .5064 L .45984 .73497 L p .366 .265 .606 r F P 0 g s .49488 .31511 m .3987 .5064 L .26275 .63398 L p 0 0 .106 r F P 0 g s .62149 .51649 m .81211 .54987 L .77 .76467 L p .841 .812 .822 r F P 0 g s .45984 .73497 m .62149 .51649 L p .77 .76467 L .841 .812 .822 r F P 0 g s .77 .76467 m .56593 .87844 L .45984 .73497 L p .841 .812 .822 r F P 0 g s .3987 .5064 m .49488 .31511 L .71177 .31383 L p .524 .258 .454 r F P 0 g s .56593 .87844 m .31364 .8538 L .45984 .73497 L closepath p .631 .747 .931 r F P 0 g s .81211 .54987 m .62149 .51649 L .71177 .31383 L closepath p .883 .676 .618 r F P 0 g s .3987 .5064 m .62149 .51649 L .45984 .73497 L closepath p .537 .37 .602 r F P 0 g s .71177 .31383 m .62149 .51649 L .3987 .5064 L p .524 .258 .454 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{270.562, 299.438}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt3PlrXFUUB/DXmXmzNMlM0smeJpksTdJM1jZ7uqXZ2yzd1brGWm3V2pJU RERQIyIWEUFEpCCiCEIRBEEQ/NEf+2P/hf7YfyHOPfe965vJ9705d940rZDC Wzrv3vM5575l1pfltdvXrt5Yu339ylpqfn3t1rXrVzZSczfXMw8F9xjGnnhm SqcMsb5lGPaM/iXEzPrP7vru+v94/S+xCIhj+5x84E+xCNLBHtzaMFJb1lFv nJXb/xCL0Ja9mbpam34XC1M8YOZu+k1tiqlNZ+Sme2pTSe6mX8UiLB4oE5sM SmvrwYY8F1dlo1/EIiIeSbg3+kksouKRCmoUUo2shiuy3Y+qXdKz3Q8KrcHt lmW7uypenWe771W7BmpnZrWzi1mSjb9TjRvzN/5WNW7OGZ7MZARoHrR3MnVZ lB2/UR1b9Dp+LRYxsaUNdAyCjguy41dK7GSKVscvVceDTHFedryjOqb1On6u auwFHUOg45zs+Jnq2K/X8VPVcRB0NEHHWdnxE1XjMLPjjOz4keo4qtfxQ7GY FluioNG0bPSBii7O+Fqr0ebUhpgyophni2H3YO+LBZ2OoTzBHt67S2cHyuyk DPaeWNBVJ+I/2LtiYV343IKZKpg9uQWdkkHXVdDS4gW9JRZ0fYqDoGMeQWMg 6AkZ9KZYBOR1N/9YZqbM/+Q83553AvtcE84fOwJiH5ex36GF3JQBCClnlmEy y7CoG0wKVYUoVNUxSb0NKO7OiTCr8qC4VSEKVXVUUm/5qCqqR73JpFBVMSZ1 ZMep6z6oEiY1KalrgOKewprUGz6oMiY1sePU6z6oOKDQs8K4pK4CKsmkEsyq PChuVeV61Gs+qqpgUmOSusKkxv1TrwKqkllVknll96C4VSEKVTUqqTUfVVXq Ua8wKVRVFXMANSlUVTWzqhFJveyjqhpmVRb1EqCqmFXV6lEvMilUVR2TGt5x 6gUfVL0e9TygqplUA5Macqe4Ve3Xoy77qKqRSR2W1HM+qCY96llA1TCpZkCh N+8eFLeqFLOqQ5J6xkdVmtQlJjUBqBbmAGpSqKpWZlWDkrroo6o2ZlUWdQFQ tcyq2vWo80wKVXWASQ3oUaiqDj3qnI+qNKmzgKpjVtXFpPrdKW5VmtQZZlWI Oggo9FmrRa26VSXeEBu9AOhm1tIngZU8w3Z5Sn6ylti6c/lu0xatbUfTzKo8 UHm1CCnUgnuFK957QQMV1iuN5TxXJMswAjSXj2UoMWVeFIq59Q3J/Qf2RJ/E cs9rK40lZhpBkMYozYPONMQb5PsP6MNP9GSAxtwjkWqQSAgkMgISiasRQS/B 0Ij0uCdSBRIxQSLDIJEqlQh6N4JGxErkNDORCEhkCCTSoHYNeresmUglSCQK EjkMEmlRI1LKTCTtnkgSJBIDiRwCiXSpRML+E9kHEtkLEhkEifSrXWPQJ+92 HvA49ciBPjKmLxHiQB4A8pCY05UEUd2SOuVG5ZSL0H6AjtJcPvbo4QdUNxpt Dz4B+ATg+wA/lsNnJvpqDX5x6pFDHORQAXLoATmMwxzEfNsX32n3DMpABvuY GaBRCIl5MA9aCtAkQNPMssM0zx71g5JfZPKVgO8G/ATgI4DvcudLAF8N+C7A T/rn9wK+xgevOfgxwNcCvtNH9R58FPB1gO8A/BE9foHJNwC+HfBHmYPf7c6H 1dW9aedQE9SM+DbAHwO8Cfi0Ox8CfDPgW5k8qt6DDwK+BfApwB/X4+eZfKsP Hg1+jzsfAHwb4JsBf6IQ3nTy1mRkzubtZBMgpwohQzlk5sq5XdvvQ+t1G1/x G6zHQs0BqhtQDYA66faqIIfqc1B0SeoBQB0ApgsAcg7B9JOlagE1A6ggoPr1 qBomhapyUrSHegFQBYBZZi0DTwVQCYC5YgJJAMy7vnrPBgbRCblJJySiKpgU qsWiZrMuaps29+S1cqAtMIfxkLaWANpiUbQ+oJUB7RTNTaem3usOOwUzR3A/ PBDDLepwYWSpa2WPjSwB5GmPwRzJz6B9FgPMEpdxnsqb9DJpk3E1dydDWaRh 2L998KNFgbZcFA091YddNTycRSBNQK7gAsfctSBzOPW1GaCFmFoIaKtF0dBI BoB2JucsFzttvBDKdFI0iVDncDEeguk6dF5CdgEThYQPZYU3xHehviPT0NBL jgtFSpOCXRTBaG3SPUQYhHC+E/n570eUBcpMM2yXY/+IsPZk2KNIuR7RC9qZ k2tmyvxPzrcdwYUAHQAwAbBaKNCudljULWzOc6nHuEcA0AoqiAFqWVVwVA9o AUAJAJZygWkARAGQAkAZAE4p4Jge0KT2QTkIu6DCnnAPGwNh94O8KwAwp4Ap PaABAEkATCtgWg+oB0AVAOgDHnpoRg+oA0A1AOjjO7r4zroDewFQrXZtPQg7 qQYms+HOo3/s88y+fYyrVIEyGoA37nimsznD/rSRrVUCrRFoI27VLep5SeA1 AW9IeQHB5Vy2PNASgJarHdcKqMFsitaW9IAEqKoNUP2OV65iEO1JDOuKHhkH 5AFA9oDqrFtyTwKqFFBlgOoAVLeigmCfeaBlAC0BaBdAO7NR543UXCqmDo8e ALQrIASq0qSioCqEtjmeq62DBA7qeT0+Avg+wKeya6a1S3pUGFADgGpUlAnq c6K0JQ6ooNp/QwCozwZoTf5wWF7/qTU6wwKgAgTUgX2FDhULpQs0XbblCyDT idIkrgZjAKpWlYRBePm7a3nlsv46gP0GKuuXZRMgcjI7Mq3J39zLH/1RaxnQ 2vHiten2OOUqTgRkaEWkY5ZuFUZFJsBo/rfj5E0bslbx9JK5om4PUeqZhRWC bkCiu7k7QYiYChEFIeQNMfKWUcoCPYOFs0PQmrzrSd7fTB0rQceQ6hgDthXi Y5V+KQgRcBtEOhrkfXLGFyqLoPVWxA5h7WLqRjtK3tvp+IME6/IBSukp+lsa u+u768VaN/b8C3B6w1w=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 269.562}, {298.438, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"663b04af-6ad0-4136-b78c-e8453c74e0d0"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(33\\). \\!\\(\\\"pentagonal gyrocupolarotunda \ (J33)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"009b5d61-c8d9-4c3d-a1ed-e05f2b891dd2"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.188 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.100141 1.25904 4.44089e-16 1.25904 [ [ 0 0 0 0 ] [ 1 1.188 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.188 L 0 1.188 L closepath clip newpath .5 Mabswid [ ] 0 setdash .51741 .6459 m .46028 .84229 L p .77103 .77304 L .575 .398 .604 r F P 0 g s .77103 .77304 m .70264 .59767 L .51741 .6459 L p .575 .398 .604 r F P 0 g s .70264 .59767 m .5519 .4475 L .51741 .6459 L closepath p .618 .544 .749 r F P 0 g s .38847 .56126 m .51741 .6459 L .5519 .4475 L closepath p .839 .757 .772 r F P 0 g s .46028 .84229 m .51741 .6459 L .38847 .56126 L p .882 .726 .684 r F P 0 g s .61247 .93082 m .46028 .84229 L .39434 .98399 L closepath p .64 .334 .436 r F P 0 g s .46028 .84229 m .61247 .93082 L .77103 .77304 L p .575 .398 .604 r F P 0 g s .32464 .76775 m .39434 .98399 L .46028 .84229 L closepath p .908 .663 .557 r F P 0 g s .38847 .56126 m .32464 .76775 L .46028 .84229 L p .882 .726 .684 r F P 0 g s .5519 .4475 m .70264 .59767 L .81606 .56021 L p .395 .492 .84 r F P 0 g s .55271 .30065 m .5519 .4475 L p .81606 .56021 L .395 .492 .84 r F P 0 g s .5519 .4475 m .55271 .30065 L .37728 .4176 L p .867 .88 .844 r F P 0 g s .37728 .4176 m .38847 .56126 L .5519 .4475 L p .867 .88 .844 r F P 0 g s .81606 .56021 m .70264 .59767 L .77103 .77304 L closepath p .327 .265 .634 r F P 0 g s .32464 .76775 m .38847 .56126 L .37728 .4176 L p .982 .903 .581 r F P 0 g s .72324 .91944 m .61247 .93082 L .39434 .98399 L p .007 0 0 r F P 0 g s .77103 .77304 m .61247 .93082 L .72324 .91944 L closepath p .223 0 .244 r F P 0 g s .33972 1.01331 m .39434 .98399 L .32464 .76775 L p .97 .653 .302 r F P 0 g s .32464 .76775 m .26387 .77668 L .33972 1.01331 L p .97 .653 .302 r F P 0 g s .29696 .54397 m .26387 .77668 L .32464 .76775 L p .982 .903 .581 r F P 0 g s .37728 .4176 m .29696 .54397 L p .32464 .76775 L .982 .903 .581 r F P 0 g s .77103 .77304 m .72324 .91944 L .73818 .78925 L p .836 .811 .325 r F P 0 g s .81606 .56021 m .77103 .77304 L p .73818 .78925 L .836 .811 .325 r F P 0 g s .39434 .98399 m .33972 1.01331 L p .72324 .91944 L .007 0 0 r F P 0 g s .81606 .56021 m .72239 .36441 L .55271 .30065 L p .395 .492 .84 r F P 0 g s .72239 .36441 m .51271 .26549 L .55271 .30065 L closepath p 0 .419 .791 r F P 0 g s .37728 .4176 m .55271 .30065 L .51271 .26549 L closepath p .782 .996 .865 r F P 0 g s .80067 .5494 m .72239 .36441 L .81606 .56021 L closepath p .73 .358 0 r F P 0 g s .73818 .78925 m .80067 .5494 L .81606 .56021 L p .836 .811 .325 r F P 0 g s .29696 .54397 m .37728 .4176 L .51271 .26549 L p 0 0 0 r F P 0 g s .51271 .26549 m .72239 .36441 L .80067 .5494 L p .83 .492 .414 r F P 0 g s .33972 1.01331 m .55476 .97195 L .72324 .91944 L p .007 0 0 r F P 0 g s .72324 .91944 m .55476 .97195 L .73818 .78925 L closepath p .851 .948 .88 r F P 0 g s .26387 .77668 m .32289 .88767 L .33972 1.01331 L closepath p 0 0 .418 r F P 0 g s .36116 .63693 m .32289 .88767 L .26387 .77668 L p 0 0 .447 r F P 0 g s .26387 .77668 m .29696 .54397 L .36116 .63693 L p 0 0 .447 r F P 0 g s .55476 .97195 m .33972 1.01331 L .32289 .88767 L closepath p .581 .748 .956 r F P 0 g s .43844 .3873 m .51271 .26549 L p .80067 .5494 L .83 .492 .414 r F P 0 g s .51271 .26549 m .43844 .3873 L .29696 .54397 L p 0 0 0 r F P 0 g s .29696 .54397 m .43844 .3873 L .36116 .63693 L closepath p .156 0 .373 r F P 0 g s .80067 .5494 m .62856 .57743 L .43844 .3873 L p .83 .492 .414 r F P 0 g s .73818 .78925 m .62856 .57743 L .80067 .5494 L closepath p .901 .732 .664 r F P 0 g s .73818 .78925 m .55476 .97195 L .32289 .88767 L p .756 .693 .791 r F P 0 g s .36116 .63693 m .62856 .57743 L .73818 .78925 L p .756 .693 .791 r F P 0 g s .32289 .88767 m .36116 .63693 L p .73818 .78925 L .756 .693 .791 r F P 0 g s .62856 .57743 m .36116 .63693 L .43844 .3873 L closepath p .726 .539 .637 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{261.125, 310.188}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm8tTFEccx8fdnX3A8hQEBBV8gIpBAQFFfICwCAgioiAPEVEjGKMRY0zU PExSOSSXVKVyySWH5JLKMVeOOXrMNUf/BK9k+9fNr3qHb8/2urrBKqna3qG/ 3Z/vt7tnZme2ZofnH9y6cWf+weLCfG3//fl7txYXlmsTd+8nq4KbHGeTm3y1 1zpie9Vx1gr6C4tC/fNu+932u22r7W/FW0AcR59rFU5I1Kz+83hpVR1lT6T6 Db0FWU2+nIAoCfGZbPQ1M8MsPZLSM5ZiLD2U0lcsxVl6IKUvxRuZFgqJtj6S 0hcslXKvu1KiAdFAyli6o0nUq4Kl21J6ytJWlhal9ISBNSy9L6XHLO1g6YaU aFJcUVHH0oKUPmVpN0vzUnrEUgNLc1L6RC5fsmIfS7OaRL0OsDQtpYfcq4ml y1L6mKVmnt5LUnrAUhv3GpfSsniLiIoOlsakdJ+lTpZGpUTLFhUVXSyNSOke SydZOqtJBOxhaVBKd7lXL+2Nct9Uf06/bPQhN+ozN6J9IyaUBGiUkI0+4Eb9 5ka3udEAaNQnGy2Jt7w0jRa50SAPPOGVhkD/XtnolniLp/ZXaNpz80VFYHXl +988B/UZwDwtO95k46Re60xRG0FAnH62VYlucO+A6KyaJzv6IzxReiTsui8s BGAJzqNGs8CIIEC4ANHnRVxjRAggwr6IHg0RMyGiANHrRcwzwgWImC+iWyKu 8kAQIg8gTkOEMUXcF3FKIuYYEQaIAoDo8SKuMCICEIW+iJMaImpCFANEtxcx y4goQJQAxCltV1+Zkpe3JzQYnQJjAFZqglEehZjxRZQBxEmQ57iETTMsD8DK TTDKoyPowyUfILYAxAmQp0vCpnxhlSYY5VGIyzwkhKgCiOMQQSniALEVILrA kI5J2KQvrMYEozwKMcGIAoDYBhDHQJ5ODUZXF4UAtt0EozwKcckXUQsQnSDP UQ1GF11FAFZnglEehbjIiGKA2AkQR0GeIxI27gvbbYJRHh1BbUoAYg9AHAF5 OiTsAudBsHoA6zDDxnxhey1h7RpMXbWvh+0DsHYz7DzDNgPYfktYm4SNMqwM wBoBrC0NLGCCvWcJOyxh5xhWDmBNAHY4DUxJ4hJOAFHGgwDbSmWIsQrdKskj luRmIzk1sMIOAyyahxaAbcGBWzIjtwLyQVGGvTDjIrUBBN3D0RkxuPpi5c+1 O+/nY/TuiHuydTHFzZdj2KvagcdOjhn1eCgf5SHvtkKax7Jp5+0ANtVsU0A2 Qd1GfE2QLFMv45t0X9fjK8eIThBHgXk5z+PmVzHXJ3bZCVCZuk+gz5hOEKSQ Z6Eyd0GOgSARDrKdgrgpq65WPnXpU82DwBxdRhynMqSb82LsspyDg+YYIRAD XRB1iZJM9+bOtINNA6t///VcqUl7ipBhkCEQJAyCoCvuVg4SBUEasg8SAUHQ fQR9ZITkWWB9kHrLIIeyD7KfZ6QUBNmTfZAoCIJuFus5SMWbCRIDQdC9805e mm0gyO7cBdnGM1IHgtieM5rNQfJAEPTNShUHaQBBdmYWZBAEiYMg6Iumcl6a A/9vkGKekWYQpC77IAVUunqQtW8R5TczJHUA8x3APJiZeSGf3B3dOI9nv8vS Fw26JWNfl8fbDXy3Z+9bJEq6Hk0KYoml6MhmiexNB4BpCZueBQY1lquYzkDV JQ3IZCh3VmhU1ZbT1rohrIqB1QiwqrKcwI1rdQ5Y2V6Xq3vlM5ZrlUOrUWC1 xXICN67VeWBVnr0V2i3GgFWZpVVbZlYXgBW6RX0NVuPAqjQzq37Ltcqh1UVg VWxp1b4hrNBaTQCrorfeahJYoS+DQmarhOVa2VqhUXVkZnUZWMXfeqspYJVn uVY+Vmi3mM6d1QywillO4JGcW/VZrtUssIpYTuDGtboCrMKWE3jUbIXWai53 VleBVchyAjO0mgdWwQ1r1Wu5W1wDVgHLtep8FStXt6JX8n/x8GK2+AUqQyn4 zMloOa6/GpnuylHSG545FxPgAtgx815TZMIGTMl0GDVCI72pJfPbyaxg1zXY vy9fGIepHudIMAwNTl9dAVNAK16hkeem8GxD8lrQE7vqSzbzYaXQycNKlKmT i+5P1RM7/ZwfGcxbGqDjVjfwjCUOrK4Cq+CbsZoDViHLaVMPXp0BVvnA6gqw ct+M1SywCr+KVUizIruYpVskM7cB7BYFbjPALaomU3Ojl5if7owdpoFDzNbB 9TjIRYoAmylgk5feZhAPBDlcztChR3fAAwkDm0lgk5+djWtpE09vM+RjEwI2 E8CmQJ0XdBuHnxDO1OEScCi0cNCP+yV6eGDJ8FgFGkORr8NZnzEEwRjGgUOx 55gXfXt1PBrAuudRLgJyyWsho8wleFYUfNgED5h4pVnwLgDeZjDyPjMsyCX+ jncNW2bGjhgnVNb9tPKSmlPkYcAuz46dfCXrkiVVDQCDLaLUfyxhi3UZ2wew FTbYIMBGRKke1l+PrfRiz1mmjXHaEwBbpc3y2odpX2YGcTboNBlQ7v7MsEWM bQfYrV7sqM+Zp4xRLQBVDaYgkR5awct10JSPqs6kR1VxvkbTylOVPH/LZ1kN qGpGNZh2eaoaSY/azqhdpjMKnaDOp0fV8VzVmk6eVHVRosbwtckuDlRj+uij PpO+lHqmVJquBKhqxpeyjyllpqsjqpqTlAuY0siUYtPFL/W55ktp4tktABSX s9z0pRziLDHTLRr1Ub9zHF93GIvHcNcQLrz1cvi3lah3O/dOCuJTR4rqI+Je mo604y3LRrQbUa9mlh5pkqd/Izd6am5Uz42eyUaX2KSOpe+8Ug1LP3ilCpZ+ lNKE5rp2EizmRj+bG+Vzo1+0RmQSYelXKU2C/qT/rukk/yEr6Hy4gX6L/G57 42w7m/4D9chjTA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 260.125}, {309.188, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"c071e81d-07ff-49b0-8f8c-5d2d8a3f2025"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(34\\). \\!\\(\\\"pentagonal orthobirotunda \ (J34)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"59eebc4a-0ae4-4697-9933-4b51f9c4e831"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.08694 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0572707 1.16812 -1.11022e-16 1.16812 [ [ 0 0 0 0 ] [ 1 1.08694 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.08694 L 0 1.08694 L closepath clip newpath .5 Mabswid [ ] 0 setdash .40932 .76516 m .46072 .60391 L .35944 .4665 L p .864 .678 .649 r F P 0 g s .46072 .60391 m .5371 .44055 L .35944 .4665 L closepath p .762 .67 .761 r F P 0 g s .58631 .73283 m .46072 .60391 L .40932 .76516 L closepath p .738 .536 .619 r F P 0 g s .5371 .44055 m .46072 .60391 L .58631 .73283 L p .651 .537 .711 r F P 0 g s .71514 .46522 m .5371 .44055 L p .58631 .73283 L .651 .537 .711 r F P 0 g s .5371 .44055 m .71514 .46522 L p .59081 .25818 L .575 .669 .903 r F P 0 g s .59081 .25818 m .45449 .31867 L .5371 .44055 L p .575 .669 .903 r F P 0 g s .45449 .31867 m .35944 .4665 L .5371 .44055 L closepath p .76 .741 .835 r F P 0 g s .58631 .73283 m .74645 .64975 L .71514 .46522 L p .651 .537 .711 r F P 0 g s .70386 .81873 m .74645 .64975 L .58631 .73283 L closepath p .566 .361 .562 r F P 0 g s .58631 .73283 m .40932 .76516 L .40004 .87827 L p .651 .31 .381 r F P 0 g s .70386 .81873 m .58631 .73283 L p .40004 .87827 L .651 .31 .381 r F P 0 g s .35944 .4665 m .23253 .53875 L p .40932 .76516 L .864 .678 .649 r F P 0 g s .35944 .4665 m .45449 .31867 L .39196 .28299 L p .882 .96 .846 r F P 0 g s .23253 .53875 m .35944 .4665 L p .39196 .28299 L .882 .96 .846 r F P 0 g s .74645 .64975 m .84302 .53662 L .71514 .46522 L closepath p .456 .4 .706 r F P 0 g s .76089 .35687 m .71514 .46522 L .84302 .53662 L closepath p .362 .421 .788 r F P 0 g s .71514 .46522 m .76089 .35687 L .59081 .25818 L p .575 .669 .903 r F P 0 g s .84302 .53662 m .74645 .64975 L .70386 .81873 L p .127 0 .363 r F P 0 g s .40932 .76516 m .26501 .73446 L .40004 .87827 L closepath p .841 .487 .384 r F P 0 g s .23253 .53875 m .26501 .73446 L .40932 .76516 L p .864 .678 .649 r F P 0 g s .39196 .28299 m .45449 .31867 L .59081 .25818 L closepath p .558 .89 .986 r F P 0 g s .86837 .63841 m .84302 .53662 L p .70386 .81873 L .127 0 .363 r F P 0 g s .70386 .81873 m .77438 .82681 L .86837 .63841 L p .127 0 .363 r F P 0 g s .59333 .91624 m .77438 .82681 L .70386 .81873 L closepath p .139 0 0 r F P 0 g s .40004 .87827 m .59333 .91624 L .70386 .81873 L p .651 .31 .381 r F P 0 g s .26501 .73446 m .23253 .53875 L .20833 .64061 L closepath p .984 .727 .339 r F P 0 g s .39196 .28299 m .24286 .42925 L .23253 .53875 L p .882 .96 .846 r F P 0 g s .24286 .42925 m .20833 .64061 L .23253 .53875 L closepath p .791 .737 .212 r F P 0 g s .59081 .25818 m .76089 .35687 L .72387 .3232 L closepath p 0 .322 .735 r F P 0 g s .84302 .53662 m .86837 .63841 L p .72387 .3232 L .838 .464 0 r F P 0 g s .72387 .3232 m .76089 .35687 L .84302 .53662 L p .838 .464 0 r F P 0 g s .40004 .87827 m .26501 .73446 L .20833 .64061 L p 0 .174 .701 r F P 0 g s .40004 .87827 m .44542 .89218 L .59333 .91624 L closepath p .191 0 0 r F P 0 g s .32047 .73552 m .44542 .89218 L .40004 .87827 L p 0 .174 .701 r F P 0 g s .20833 .64061 m .32047 .73552 L p .40004 .87827 L 0 .174 .701 r F P 0 g s .59081 .25818 m .72387 .3232 L p .37993 .36959 L .579 .143 .178 r F P 0 g s .37993 .36959 m .39196 .28299 L .59081 .25818 L p .579 .143 .178 r F P 0 g s .75707 .73414 m .77438 .82681 L .59333 .91624 L p .72 .881 .956 r F P 0 g s .53891 .77487 m .75707 .73414 L p .59333 .91624 L .72 .881 .956 r F P 0 g s .59333 .91624 m .44542 .89218 L .53891 .77487 L p .72 .881 .956 r F P 0 g s .37993 .36959 m .24286 .42925 L .39196 .28299 L closepath p .145 0 .102 r F P 0 g s .77438 .82681 m .75707 .73414 L .86837 .63841 L closepath p .937 .963 .746 r F P 0 g s .20833 .64061 m .24286 .42925 L .37993 .36959 L p .404 .294 .614 r F P 0 g s .32047 .73552 m .20833 .64061 L p .37993 .36959 L .404 .294 .614 r F P 0 g s .79319 .5076 m .86837 .63841 L .75707 .73414 L closepath p .949 .814 .676 r F P 0 g s .86837 .63841 m .79319 .5076 L .72387 .3232 L p .838 .464 0 r F P 0 g s .72387 .3232 m .79319 .5076 L .59945 .39863 L closepath p .831 .533 .484 r F P 0 g s .72387 .3232 m .59945 .39863 L .37993 .36959 L p .579 .143 .178 r F P 0 g s .44542 .89218 m .32047 .73552 L .53891 .77487 L closepath p .565 .633 .877 r F P 0 g s .59945 .39863 m .43636 .5644 L .37993 .36959 L closepath p .644 .436 .586 r F P 0 g s .37993 .36959 m .43636 .5644 L .32047 .73552 L p .404 .294 .614 r F P 0 g s .59945 .39863 m .79319 .5076 L .75707 .73414 L p .772 .636 .711 r F P 0 g s .43636 .5644 m .53891 .77487 L .32047 .73552 L closepath p .616 .568 .777 r F P 0 g s .75707 .73414 m .53891 .77487 L p .59945 .39863 L .772 .636 .711 r F P 0 g s .53891 .77487 m .43636 .5644 L .59945 .39863 L p .772 .636 .711 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{273, 296.688}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnMlTHEcWxlu9Nw1Ns4MQu1gaiU0gZEmITSwChAABQrIsyxjLI3nGownZ MzERE3ObOTnmMBEcfFCELzr66KuP/hP8L/g4R101lZmvHt3VX1a/HEa2DiKi sprKyu/3vcyqrKx18/Drp0++PPz62dFh9+qLwz89fXb0VffK8xfeotiZSORM nTcNdUfU7zeRiJ/ov3qV0D/vf7///f638++XapZU+9Rzs+BYzdJqQfLNcXch qn59abL+pWYptSDPWb83Wf/kUm2c9cxk/Z2z+jjrdybrLyw4wllPTNYfudQ0 Zx2ZrC/ULK4WzHPWocnSSL1gmbMem6ynehZTS950R1p1L7LKKz0yKxlfcV6J Vlzj9R6a9T7Xs0TJer7oBq/8wKz8JGTlO7zygVn5s4BNb4pEdWqWeaurqajg vil4BArGQMFtLrhrCn4KCsZBwbtccMcUPAQFE6DgHhfcMgU/AQWToOA9Lrhp Cj4GBVOg4IFK9aINU/Bjl4LUVD9/8zcz/8occtaN1CMglQZS+2w+pqQo1xdb M2IfAbEMENtlsYQWi7MYCd4yeg+BXpWtLX1LXpxKM0FpsbJvd9XIfwjks6Hb WCZEdMWIPgCi1aFbfDZQod7k7SMqNcvoL3LTAO4DQA0AbIJKQagYQC0a1AFA 5QDqpI+oFQIWDOCeELDOgDoAiAPAvAHsA0AtAKyByqoXxkKoPYDKA9RJL90k jGXOAHZtAH28u8myLW6yd21VpMW8jE/XX+rMV18ce/95qT7EXQc11iokzxry jq31qZ/xwJTrQTU+o1J9GJ3gcNvdoNu2/VMvSgJonmMeYminEHrDQLdsPQ31 KuXQFo60C1S0I/6OrR+l/qcc38UxN3PMPQCaANAZA90E0AxDcwDazzFXM/S8 MFKC3gbQNEPzADrCkcZBRTviNwA+yRtXPcBPqVQfUAaE1XvdoNYBKsGRNgHU NO3BatlPr35QU0Sv3C8MkshrgBxncqstyAA5RmlxbfcKq+CaMXILGImxkbPA yCQwklCpLtEnrAfCrwJ8lPHnAP4SwKcZL92/rhq8GW+UDu59eBeAjwN4luFd bvDlQOzqSEFBlJPHADkHmr9D6OED42FJzWKmkyiHjgJonsN1ROmhV9TspZYu JIBqYBQ6PiUB6opBLRbVrDryKtwggF4A0GZQqW3CSB3xwwDfyjEjKIp52g1a ANB2hqLRB4o0BDoEoIMA2snQZmGklw10AUALADoAoD2gdRveDr4f4Ps45kYh dMoNeh5ABxiKRuOO0GEA7QXQAkPzbwfaA6AXQevmhPhJN3w3wI9yzI7QeQC9 CKCdADrB0Boh9JIbtANApxiKzob/D9BzAHoFtG4a4FMAP+GGbwf4qxxzRhhz CHQEQNsAdIahKWGk4wY6B6CjANoKoHOgohPCmB3xLQC/wDEjKIp5zA3aDKBL DA1em/sfoGMA2gigqwyNCqGjbtAGAF0PtG7EbNGnRdUD1G2OrwoARgxgFgAm bJcQAoCt4lhCqs0RVQtQ228HlQOoneKepgxw0Q1QAwB3i2J5/fP3ehNIu6Eu AVTWioozinAosAtutCpA26Wz0WJaWICEvAGQk7ZLZwHkXggSRTlsR04BZAog 9wPN501eB6LSyv2zIz4J8PcAPibEF9zwCYA/+PXwcSE+AfDorInwMwA/DfBR gL8vxKPohyrhE8V4Pamt+CFAJoURV0TGS5ARdf+rnJYCNHRRKYR2RaV0X/ft AQKNhWJJC1GDbijUSBk31PUKqJfHP+ntAUVVBVDoPk8Iqnh7UCjCIVoW0NDd voq0RAnNDxDVJUKiAAfsyMuBuvQmz7VKS5vyAcBXCyMOwU8BfBzgUQ/zG+Nr hPh+g78mxCcBHh3caqmXLcLrSW0rg3bkJECmfn1kGiDRCCKv07LHCEJolwAt 40TDAQ7YkRMAmQXIPYCswwES7aowQCmtPrDNRsJRKLAagAoO3RWkwQ01DlA5 IaoRoPrfCdQYQOUBagegmlRKt/GsgFEAqBMCmoti8TurPoP6QBhLPUBt21B0 29cKQLE0AMAWALRAgF6AZJuA7J0KVfSf1z/q5g4ACj8EwrhwCl4T4BW3PuIV AK8F8Datm3OcecQsPmQh5CBAtgqRDRhZ0r2aXI9rpkjJ7Rsf2AaAt619XqIE 6NctGBoQ1b+BXs49C7gbjlwwBiziltV3L7DRDmysAxt53jPiCo8HJzNCI93A yDmhkdrAtm3MlFuiNrkhtNQJLHUCS2vAUg5YQrUUYikGLHWcwlKN0BJtQbM2 S2WPKvhGuoGRWxVG176RhJuRBKibVmCpB1haPYUlOiGeE1pqAZZ6gaUV2ymm ruu03ci80EgTMNInNJIBdZMClgp2S0lgqQFY6geWlitcVPAtoVoiSwtCS/Wn sJQSWqILkos2S/TEarmRQWBkqcKlKt9Ixs1IGtRNDbA0JLSUEFqiy9M3hZaq gaUCsLQotFTlZikDLFUBS8NCSzHe4auBEbo3sSQ0kgZGLgIjC8BIFNRNiKVl myXqvFyM4PsKOQAfscOzoD7iwMYosDGv07L7N7V2BytCB1HgYMzq4KRFIhb8 qB1f7R8HTvB6UlITADkHkHk7ctWKPIlYSUwC1KxK6TmZcgDdY75lA+h2QRFc V2ncdJ3ustTex69+8SdddyMAdFmlOjf25sdfXgf2ErSh0hMCaxUqjcBeq/l4 1LuOMz7thl8X4jMq1S8HoOGBfspJ5+YAHvUR9EzIhhCf4+jRqPY8R9/ohr8t xNdz9OgUsIOjbwP4LMDTU0CbAJ8F+FaOvhHgWzn6Ljf8HSH+HOPRhaR6xp8H eHTspKe9toT4bq78KoCv5sofBng0miD8thDfz9Gj6+RJjn4c4NFAj57v2xHi C4z3Ml6aOzOaHGXyZTfyXUCuAuRRJl8DADTSpydDd4WAMZ2aZR5AQxxRe0LU CEDNABQ6t5u2o1CDXQCoG26ofWFUwwA1C1DobJ6e0b4nRA0B1Jwb6kCIGhSi 0JUcesb+vhDVD1ALABW1ox4IUX0AtahTfL2OXpD5EMhngHwvkL9ZWf6hUL7H Kl92WZVeX/pIqNwFlJdClR8JlTuA8opK9TCTXmf7WCjWDsRWg2KPgVgaiJ0N FaOXCz8RirUBsWUWm7eLoTBbbK2hxehV3kOhWJNto9Fi5oy15B37MLEG2/6j xeiF6SNhnSGxeRajN8Y/E4rV2forLUbvxj8RitXaunQtZsar9I2FymI1tkOR FjPDP/qwQ6lYCohV2w6hWsyMpsynJFD3l7Ud63VpMyQx36hApTOg9FUubY7M 5uMXqHQKlL6iUr3IHAHN1zpQ6QQoPc1s+pDFH9RMr5MUSkyxBH044zlLxIFE DEhMsgR9o+MFS0SLzvSLTl91139CNv1V5M9qpntbg/Eh3nmCvyZ9ROSvaqZV xziLPj2iv2Wi330d4Cz6YMk/OKuDs+gzJ9+omR69N3EWfRzl31yqmrPokyrf cla86GDtH5hppe+4MujzLTr3Hfq+zPvf7+bvyJn/AlY+fjc=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.}, {295.688, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"4ac6a88b-b98c-4f50-826f-ea48156ed2a3"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(35\\). \\!\\(\\\"elongated triangular orthobicupola (J35)\\\ \"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"d4fcb7bd-df66-4535-a450-bc58552b737b"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.22836 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.118205 1.26638 0 1.26638 [ [ 0 0 0 0 ] [ 1 1.22836 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.22836 L 0 1.22836 L closepath clip newpath .5 Mabswid [ ] 0 setdash .69548 .90162 m .78263 .63867 L .53808 .60005 L p .602 .413 .599 r F P 0 g s .53808 .60005 m .44808 .8496 L .69548 .90162 L p .602 .413 .599 r F P 0 g s .44808 .8496 m .53808 .60005 L .31856 .47541 L p .817 .651 .677 r F P 0 g s .54724 .32905 m .31856 .47541 L .53808 .60005 L closepath p .784 .677 .746 r F P 0 g s .53808 .60005 m .78263 .63867 L .79754 .35532 L p .583 .507 .735 r F P 0 g s .79754 .35532 m .54724 .32905 L .53808 .60005 L p .583 .507 .735 r F P 0 g s .32305 .36822 m .31856 .47541 L .54724 .32905 L p .798 .978 .903 r F P 0 g s .54724 .32905 m .57388 .21016 L .32305 .36822 L p .798 .978 .903 r F P 0 g s .54724 .32905 m .79754 .35532 L .57388 .21016 L closepath p .461 .673 .956 r F P 0 g s .31856 .47541 m .21806 .73237 L .44808 .8496 L p .817 .651 .677 r F P 0 g s .29396 1.01172 m .44808 .8496 L .21806 .73237 L closepath p .84 .606 .585 r F P 0 g s .69548 .90162 m .44808 .8496 L .29396 1.01172 L p .602 .264 .369 r F P 0 g s .21806 .73237 m .31856 .47541 L .32305 .36822 L p .875 .894 .471 r F P 0 g s .73913 .83448 m .83362 .54733 L .78263 .63867 L p 0 0 0 r F P 0 g s .78263 .63867 m .69548 .90162 L .73913 .83448 L p 0 0 0 r F P 0 g s .79754 .35532 m .78263 .63867 L .83362 .54733 L closepath p 0 0 .353 r F P 0 g s .57388 .21016 m .79754 .35532 L .83362 .54733 L p .872 .504 .346 r F P 0 g s .32305 .36822 m .21235 .64813 L .21806 .73237 L p .875 .894 .471 r F P 0 g s .21806 .73237 m .21235 .64813 L .29613 .95461 L p 0 0 .296 r F P 0 g s .29613 .95461 m .29396 1.01172 L .21806 .73237 L p 0 0 .296 r F P 0 g s .29396 1.01172 m .55196 1.07624 L .69548 .90162 L p .602 .264 .369 r F P 0 g s .55196 1.07624 m .73913 .83448 L .69548 .90162 L closepath p .611 .854 .491 r F P 0 g s .55196 1.07624 m .29396 1.01172 L .29613 .95461 L closepath p .151 .591 .931 \ r F P 0 g s .57388 .21016 m .59373 .40008 L .32305 .36822 L closepath p .565 .266 .42 r F P 0 g s .83362 .54733 m .59373 .40008 L .57388 .21016 L p .872 .504 .346 r F P 0 g s .21235 .64813 m .32305 .36822 L .59373 .40008 L p .574 .373 .57 r F P 0 g s .48607 .69703 m .59373 .40008 L .83362 .54733 L p .838 .665 .667 r F P 0 g s .83362 .54733 m .73913 .83448 L .48607 .69703 L p .838 .665 .667 r F P 0 g s .48607 .69703 m .73913 .83448 L .55196 1.07624 L p .762 .721 .814 r F P 0 g s .55196 1.07624 m .29613 .95461 L .48607 .69703 L p .762 .721 .814 r F P 0 g s .59373 .40008 m .48607 .69703 L .21235 .64813 L p .574 .373 .57 r F P 0 g s .29613 .95461 m .21235 .64813 L .48607 .69703 L closepath p .563 .438 .668 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{256.812, 315.438}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm9lSFGccxQeGYRXZkU0YRBEGhn0dEIYdQRCXIKBRETfcI1aWMpUyFStl KqlUUsVlHsFXyKWP4K2PkFcg8y2caeD01930mHihlemZ9JzzO+ffPfSsvbD+ 4v6dx+svNjfWwzPP15/d39zYCk8/fZ5YFUwLBBL/BdKGwgFxeydxWy/kvzSx 0P/z+fbn2//D7T/FVVA8Jh+pFX/Iq5BYs7M99kBef/hpTT5qHyrJ7+IqXaxJ F5JAEKLEJSDv2FTK36DMoEqxVOv0v8BdZfxVXgXRQpgZIiiWMkAbf0FiFpGH IL+t5G9ITjYxZpKq6wrxMxLziDELiVr+GvJ8Is8hOdeV8SdSlSFykaiNPyKx kMiPkMSryviKJDJEPhK18QcklhB5AeSrSv495GVEXkQKLivjS1KQIYqRqI3f IbGCyEtJ4iVl/JYkVtohZIA2fo3EGiIvJ4lLyvgCxlpiPIYcLd8iBZmxEsZF ZfwKOfVEXk0KzivjM5LIEDVI1MYnSDxJ5LUkcVYZH8HYSIx1yNHyh6QgM9aT xCmF2ERixM4o79Xy+ySRGRtgnFDGu8iJEvkpUjCujLdhbCfGRuRo+QYpyIxN JPGMQqwjsYsYm5Go5TdJIjO2kMSYQlxHYi8xtiJRy69B3k/kbZAPKPlVUpAZ O0jBXoVYReKQnVHXl/IVksiMXSSxSyGWkThCjN3E2KmMl2GMezNeIqU9Ii6K K/kCY/QQxt3stW1xEa9A1raz7fZyD4F1KNgFAssTyyyxqsM/rBjNmvzDqgAL e4MtEVgDxqxyuQMMsAiaFbts1q5g5wmsG7Bc/7AhjBn0DxsXy5D667U1LhLj tFxmyHXv376V14kL28oGypRcBkFJXBIPfbF0Pjp5xAbFUh4aOgmsTcEWbCfd CwsB1u4Nxpplk4Fb7bHnXHbMQccUwPIAi3iDsYGPkoHZU3JUYedddixAxxTA igBrtIfNuYSVkoEb/GPL0NEjjO2UCsBOEFirgp112ayKDFznH1uNjgbYrEtY LWDH/cPCZOAq/9h6dDTAZlzCTgJWSWAt3mCNZGD2ds8j9jQ6GmDTLmERwNhb X4+wVjIwew+vsVMEO0OwUXQsJrCIPYx17ACs0D+siwycb4+ddIntQccUwPoA y7OHTbjcFQNk4GxvWNYxho7sU7Bmb7BhwLLsYeMuBx4hA2d4w7KOcXQ0wMZc dhwHjH2s6hE2KZcZ1oF35EsaWwqbb1osgxZj3GX8rGV7707QZI9g2Wc/KmLU xyDN9gi3LTRixGWLFCDYIBF7hNtBNOKMj0E8Itgg+plo2EeL/x7BBtGvc4Z8 tEgdIuYDEf2UEIM+EG2fEmLAB6I9ZYh+gpj1j3DboiNliD5xJZ8j2eFuzsGo n123t97uXjLFirjLDp1WVNCKEl98aljsEDD5EuKoQMhPu3pcjnYAUYIWbS5b dO1HVALRdFhEHRD1LgexIvRd4rOBxLX4mkrDql326baHRQAr8w/rwP4qcDnm HliGBTan97oul+OyXI+RFwMv6I3XT4aNC5iMmPdmHJd/Hqrcu7/f6/uc4w+M IxtohwAlLolX3YllujoaHOT1GnmjhBeSy70basIzeYSQs9A0Nbwc8OKE12fl hfbx1H4ZJtAjgI4cDjpEoAWADh8OGiPQYrKjBgi+3+6BOSd/MjO37yjeT6JK 0D8FAX0koBwBff4DeklAJQK6ScCAt4AeElCDgE77gAGXAd0koJbs7jb/UV0k KoxZoiRg0FtAJwloQECLfcCg4e+BtW4EtNkJ6ty6nQQ0IaCRBMS8BbSRgBay ixv8R0VJVBSzGAJihj3ANlA7oGECHbJCnVu3kIAuBNT6D4iQgF4E1NgHDBk2 C2s9QHZrBcEPW/HO/ZtI1CD6pyDgNAkYRkC5/4BGEjCKgBISoH/UM2zYA6z1 OKBFTlDn1idJwCTZxUf9RzWQqGnMkk8CRrwFnCABZxGQZx9wxrAHWOtzgOY4 QZ1bh0nAIgIyScCot4A6EnCB7OKgfdSIYQOx/pfQ3xHq3L+GBCyLpVw17h+2 YtkYux3j3rDVBLtqjx01bE/WkKHGrCjnhhUuseP+sSvY++qLNT01H7fSCJhy BrgdbE8X58FKXWKn/GOT46rvrfWu5eOWGQGzzgC3g+3p4jxYoR1W9lI/udAP Lt6r2DjYnDOgyAiYtwKcx8k3ws59BNiEYbSjRsCCM8DcYNEKcB4nx+EY+teH lzJUYycNvfII6gpBnXdG5RpHXHIG2I4lAResAOdtFDLC1G9w9bGDt8my2zLW 8yFMgExjgz0A53HSjbDLCjZtaBM0Ar44HCC5PZadAWyEJOCKFUC2hxSt7Zer Y+T+z/eUOHnwW7GKM1m5nfD2P3qOXdOq1WS3SXZtyddba862EGxLsOlTjmbp PInHYsIhN8oCeaJYM3pzkTaHtGtGxxE4ZuD4Ujmsv9xLHht35ZOQX7eXF0I+ BvkNe3kx5KNkdENOKYzJd5k3lVw+l+m3nbui5Hvd9f2iCmz95Bv6W/tF1SB1 k56aaf01akIuLhZjBzHeshjlPcchjxK5OiNGHfgz9taKoPsdJboIUSVEpyHS JyIuQ3QMolMkWDPlQ1E+6kux0eqJXNNvgF4Cei2R31PyDciLIK9GY32y5j2I CiCqgOiBEj2EKB+ichKsmU8hz4O8hMg1fQvyHMgLiVyfiPoN5FmQ5xO5PrX1 JbZxBrZxrr38FejJw1UWkT9W8teQK73+mxJhBz1PlOcNGiXuf6e/khL3qJPq LOfPPlcrpPsTOn34823/twNp/wJmkXZI\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 255.812}, {314.438, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"4b8ce098-2ed8-4ecc-b283-7b6551e448b5"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(36\\). \\!\\(\\\"elongated triangular gyrobicupola \ (J36)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"b2acea89-6914-44f7-8644-6504680fa82e"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.27328 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.13764 1.31423 1.11022e-16 1.31423 [ [ 0 0 0 0 ] [ 1 1.27328 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.27328 L 0 1.27328 L closepath clip newpath .5 Mabswid [ ] 0 setdash .37632 .47182 m .2159 .60642 L .42378 .74734 L closepath p .868 .659 .617 r F P 0 g s .29255 .38487 m .2159 .60642 L .37632 .47182 L p .913 .976 .781 r F P 0 g s .37632 .47182 m .45816 .25692 L .29255 .38487 L p .913 .976 .781 r F P 0 g s .65262 .41545 m .37632 .47182 L .42378 .74734 L p .68 .534 .681 r F P 0 g s .37632 .47182 m .65262 .41545 L .45816 .25692 L closepath p .7 .715 .86 r F P 0 g s .45816 .25692 m .65262 .41545 L .81074 .48733 L p 0 .371 .821 r F P 0 g s .65262 .41545 m .70458 .69303 L .81074 .48733 L closepath p .356 .312 .671 r F P 0 g s .42378 .74734 m .70458 .69303 L .65262 .41545 L p .68 .534 .681 r F P 0 g s .73659 .9176 m .70458 .69303 L .42378 .74734 L p .631 .377 .516 r F P 0 g s .42378 .74734 m .4361 .97316 L .73659 .9176 L p .631 .377 .516 r F P 0 g s .4361 .97316 m .42378 .74734 L .2159 .60642 L p .892 .587 .462 r F P 0 g s .85299 .71281 m .81074 .48733 L .70458 .69303 L p .107 .023 .469 r F P 0 g s .70458 .69303 m .73659 .9176 L .85299 .71281 L p .107 .023 .469 r F P 0 g s .81074 .48733 m .60863 .31915 L .45816 .25692 L p 0 .371 .821 r F P 0 g s .45816 .25692 m .60863 .31915 L .29255 .38487 L closepath p .45 .023 .136 r F P 0 g s .2159 .60642 m .21379 .8353 L .4361 .97316 L p .892 .587 .462 r F P 0 g s .21379 .8353 m .2159 .60642 L .29255 .38487 L p 0 0 .257 r F P 0 g s .4361 .97316 m .21379 .8353 L .35372 .95795 L p .557 0 0 r F P 0 g s .35372 .95795 m .58743 1.10069 L .4361 .97316 L p .557 0 0 r F P 0 g s .58743 1.10069 m .73659 .9176 L .4361 .97316 L closepath p .559 .21 .334 r F P 0 g s .63754 .54579 m .60863 .31915 L .81074 .48733 L p .916 .558 .34 r F P 0 g s .81074 .48733 m .85299 .71281 L .63754 .54579 L p .916 .558 .34 r F P 0 g s .85299 .71281 m .73659 .9176 L .58743 1.10069 L p .761 .933 .581 r F P 0 g s .2963 .61381 m .29255 .38487 L .60863 .31915 L p .603 .319 .458 r F P 0 g s .29255 .38487 m .2963 .61381 L .21379 .8353 L p 0 0 .257 r F P 0 g s .35372 .95795 m .21379 .8353 L .2963 .61381 L closepath p .18 .177 .618 r F P 0 g s .60863 .31915 m .63754 .54579 L .2963 .61381 L p .603 .319 .458 r F P 0 g s .70185 .89317 m .63754 .54579 L .85299 .71281 L closepath p .906 .674 .576 r F P 0 g s .58743 1.10069 m .70185 .89317 L .85299 .71281 L p .761 .933 .581 r F P 0 g s .70185 .89317 m .58743 1.10069 L .35372 .95795 L closepath p .682 .762 .912 r F P 0 g s .2963 .61381 m .63754 .54579 L .70185 .89317 L p .673 .524 .675 r F P 0 g s .70185 .89317 m .35372 .95795 L .2963 .61381 L p .673 .524 .675 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{252.25, 321.125}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnOlyE0cQxwedliz5vi/k2/KFMRhjbMAy4AsDxoQrCQFzBEgggKFCpUhR 5E6KSiqV8JFH4DV4lXzkCahydqdHjST/te71ShSuhCrtmp3p/6+7Z3a0mt3Z E6uPbt24u/ro9rXVxNza6v1bt689TMzeW7MO+Xcopd4qtSOVUPbf69Z/zebt uvXPKvx/t613a/bObzfpL3Tggd4F7CPrD1Ui/fHZB36iKvf1zp9ZxTKwtvrQ 91TpK3unraJs/4yK7gL7GFd6SpXugErlDHlClb5gSC3bf0NFt4F9PVd6TJVu gUpNDHlElW6CSm2stEaVbrAnnVxEeVLXgX03QygZ6hqolGSlL6nSKkOGuYji VFeA/QhDPqdKl0GlvaxEfqpLDBm3i3RPuEpFnwL7UXsbtA/51l+uPDSlb56v 6GFilQw/AYbDbBjWhgE2NMYUkrrI/gyyRUxbBLMs0kgKUl0AyF4WqMzx1fpY /ttbOmb+mYjVeSDWyWL1+cS010biLIfRzoYtwDAAvLhIEh8BL1pYrB2IBYEY JUadAWINLNYDxEJAjBKjVoBYDYsNALEw58dILHN+qthwBBhGgBeUGHUKeBFn sTEgFgVilBh1EohFWGxSKEaJUUscXJglpoFEKZA4TRLHgT8+FjsGxGKcYiOx aO9C9oFFUL0MsCkJaoHdPwUMy4HhiQxDU2QZauOTQKICSCyRxDyzl4FhJTA8 nmt4Op+hLhVVrwaceTKcy4hRqZQeg5BEDZCYcydRCyRm3UnUcdzGkHaBDMNU viQ0APwR1yqNQGXGUWVFqJIilWN6F8xRoZQgqSYgNb01qWbO7hYFWoEvB0nq 6IYWTimf3mafX+g0aQOyU95ldwLZSe+yCSB7gGSPAFk/kEUdL8GNUwCxDuDj uHfZTiC7j2RngGxAKNsFZMe8y3ZzRgsg1gt8HCXZFJANCmX7gOxud7LoREWy I95lk0B2F8lOA9mQULYfyA5vR9nDQDZcHNkSYQcbALJD7mSl3hrZQ0A28l+T PQhko0JZ1GSD21F2CsiWAtkzwtx+uLIoCQMkOwlkY0BWX2roS7FB72LHWcy/ /uqHV6b0n1cv7H0hvJ1lQIkGBBhgICjRhnEAMOKAkWJGHDCsj/5uR191LkFT DKrOyZb1sa4L7W12e/cAaL876DhDGwDUD6Dd+aETAFoGoKMMbQXQAICiazOX 0CGGdgBokFuyAKg+RvUCVBjE154fuh9AywG0k6FDHqBJd9A2ho4CaAkntQCo RkaNA1QUxId+0BnoOIBWAGgNQ6cAtBRA0Y9Tl9ByhqYANAagLd6hUYbOAmic WxLF10eofQBVCVBBRi0BVBmID80+uIYqe6plI68c8NDEyWY8fegcAFRw7rYi a45ZsloaAapABHXuULpHaB8vAEA1AKBpNhHgogdA7yYAcyyZfGnvYSw13Bou ATQmBRhgIIhRB8KpKhqtHtDQlG9haA2cP5cM+qIMZjHSDYX6RCMIC82i9xQO 2QSQaMbfAZl5jWVw1v9ou9l53Azw8feHb+GWfY/QNhAzukfkgI8BfECI3ynE d3vHn8+HN/f/XUFLATQohLaDmMPe8SFhyjsAHt01LRK+E+DRHWAHfBTgw0J8 F7c4irnLOxS1eDeI2f/+8D0Aj54jcMBHAL5EiO/llBcAGhG2czInZvsrx2EM KwGoqBDVD1AOvdcLaoBTWQAAaquBjFjSLdSZHxUGqFLvqDFhVFJUP0B15Ueh qGJCVJJbqMcdIC7sAn0M6PUO2Gy0eP3mhVZ3QIUAqmwL46KNss+cviKidNqS xQF0gVgcUEGAKheiOgGq3x2qwtXFQoBRBudACwBapTCwBKYNFIe2E9MGi0Oj C+1gFi3deA5IP0BWuUJuCHCoOLRWhwBdIquFyGYH5HB+pA8ga4TIppxzz/pY evY2++vFoUm94BuF+KyE4yd76oXIBiFyeFsj64XIXZnIDQ+BNQpptYDmLxqt RkgbyddnldXtZahqgAoUB1UlRO32jqoUokYzUPpaoxkA0KRexVYBLcIIyoWA PbnJSqWHKRgLQpUBVHATlKtY4kLAXgJk3oBJD7fSMycGUKH8qP0A1SDsAlEh yjzENgFQaKwrAOqAEIUSGBGizOODkwBVJ0SVCFHmAcgpgKoVosIAFc6POghQ 0i/8kBBFXY+eY9JnEwKgzhAAgJL8gGkQC7oERii/EEV9O+sRRbdX2y5RMwCF fiIhlE+IAs/zbv7DL5iJ0h/7eysK5MEjzU4/YXPbx5YtzS97DMiiCQUtq/sf EjNPc89yJ0USZ+2tvtaJ5ZeYB/6gOa5le5t+Aur1m5xmigCAeZB9QQhYsLd6 uUoYAFBDGcAiAKDJzaMcQVwYAT3LmLUWJw1AU7aHOIJKIeAwAZYAAE1JT3AE dcIUGcAJAEC3GfZwBM3CCMzCh5MAgO7iDHMECWEEBnCKezryu5f97hb6bRaP nAZ+oxt+Hex3vxBg1risAIAPAFo4gl0AgEZBsxSH1q/hO8ON7PVeoSgNemaF 3Ya76NXs5ATQQ1+mNNrRasiMLNjOlbFzh4TOGbFzQCzMns0Ixcx6qPPcr3zs z7wwOLOcS6+w1CVLQkOzlOzjjEAsQ228CCTQtReNqrTSVru/IDSk0TJj2e+c O8PLwOkjQgmz9u4Ks5Eh+gFiFgdeZcNpoaFZmHgdOD0llDCLIt+t+HZpeJMN 0UmDDGlha9aS9rTT+4AE+vW5TBLvFsyPCQ3N2tE7gD0KJNDkh1kEe5fZu4WG ZinuPTZEQ6GD4QPg9IBQwqwpXmM2GueRIQ1t9PIA8/z0RkM0/0XDmPoaON0l lDBrqR8zmwzxNC6NNvS+BPMkq4xiVpA/AY62OfDoJQDqW+a1OlQ2q+afcmW6 /tgw436J6j0DvtRji8/I4jtWrsP1LlO9H4BytaPFj6xchetdoXo/c72KnMTb CTBvTvgV4GOgunlDw2+sqSvpv+jVEuo5F0WAvan0O8CFWMm8IeIPVgpy0Q0q +pOLfFxkXj7xV460TaVXa6i/M4rSncxYfRAvSdkuO7XjX00bX5Y=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 251.25}, {320.125, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"68c7cdf6-853a-49a4-9a2d-754287b3d359"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(37\\). \\!\\(\\\"elongated square gyrobicupola (J37)\\\"\\)\ \"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"3885f185-09e3-40d8-8235-f2afeced0814"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.0855 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0567234 1.16608 -1.11022e-16 1.16608 [ [ 0 0 0 0 ] [ 1 1.0855 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.0855 L 0 1.0855 L closepath clip newpath .5 Mabswid [ ] 0 setdash .78397 .80903 m .55926 .86827 L .55729 .66657 L p .573 .367 .563 r F P 0 g s .55729 .66657 m .768 .60288 L .78397 .80903 L p .573 .367 .563 r F P 0 g s .33333 .62907 m .55729 .66657 L .55926 .86827 L p .757 .514 .566 r F P 0 g s .6892 .37767 m .768 .60288 L .55729 .66657 L p .637 .552 .743 r F P 0 g s .55729 .66657 m .47978 .4507 L .6892 .37767 L p .637 .552 .743 r F P 0 g s .33333 .62907 m .47978 .4507 L .55729 .66657 L closepath p .749 .612 .706 r F P 0 g s .57867 .22598 m .6892 .37767 L .47978 .4507 L p .672 .728 .891 r F P 0 g s .47978 .4507 m .35763 .31107 L .57867 .22598 L p .672 .728 .891 r F P 0 g s .35763 .31107 m .47978 .4507 L .33333 .62907 L p .836 .757 .775 r F P 0 g s .17447 .71388 m .19762 .50125 L .33333 .62907 L p .938 .685 .528 r F P 0 g s .33333 .62907 m .32079 .83343 L .17447 .71388 L p .938 .685 .528 r F P 0 g s .55926 .86827 m .32079 .83343 L .33333 .62907 L p .757 .514 .566 r F P 0 g s .33333 .62907 m .19762 .50125 L .35763 .31107 L p .836 .757 .775 r F P 0 g s .88755 .67292 m .78397 .80903 L .768 .60288 L p .132 .046 .484 r F P 0 g s .768 .60288 m .86319 .45776 L .88755 .67292 L p .132 .046 .484 r F P 0 g s .768 .60288 m .6892 .37767 L .86319 .45776 L closepath p .437 .434 .758 r F P 0 g s .75852 .30014 m .86319 .45776 L .6892 .37767 L p .178 .466 .888 r F P 0 g s .6892 .37767 m .57867 .22598 L .75852 .30014 L p .178 .466 .888 r F P 0 g s .32079 .83343 m .55926 .86827 L .61778 .94726 L p .584 .061 0 r F P 0 g s .78397 .80903 m .61778 .94726 L .55926 .86827 L closepath p .399 .01 .181 r F P 0 g s .48704 .24293 m .57867 .22598 L .35763 .31107 L p .369 .835 .788 r F P 0 g s .35763 .31107 m .24553 .33676 L .48704 .24293 L p .369 .835 .788 r F P 0 g s .19762 .50125 m .24553 .33676 L .35763 .31107 L closepath p .898 .978 .808 r F P 0 g s .3527 .91052 m .17447 .71388 L .32079 .83343 L closepath p .738 .231 0 r F P 0 g s .61778 .94726 m .3527 .91052 L .32079 .83343 L p .584 .061 0 r F P 0 g s .22375 .5582 m .24553 .33676 L .19762 .50125 L p 0 0 .092 r F P 0 g s .19762 .50125 m .17447 .71388 L .22375 .5582 L p 0 0 .092 r F P 0 g s .61778 .94726 m .78397 .80903 L .88755 .67292 L p .723 .973 .731 r F P 0 g s .77691 .52327 m .88755 .67292 L .86319 .45776 L p .973 .663 .31 r F P 0 g s .86319 .45776 m .75852 .30014 L .77691 .52327 L p .973 .663 .31 r F P 0 g s .57867 .22598 m .48704 .24293 L .75852 .30014 L closepath p .47 0 0 r F P 0 g s .17447 .71388 m .3527 .91052 L .4224 .77009 L p .338 .429 .808 r F P 0 g s .4224 .77009 m .22375 .5582 L .17447 .71388 L p .338 .429 .808 r F P 0 g s .3527 .91052 m .61778 .94726 L .71236 .81483 L p .625 .78 .956 r F P 0 g s .88755 .67292 m .71236 .81483 L .61778 .94726 L p .723 .973 .731 r F P 0 g s .48383 .46847 m .48704 .24293 L .24553 .33676 L p .5 .261 .485 r F P 0 g s .24553 .33676 m .22375 .5582 L .48383 .46847 L p .5 .261 .485 r F P 0 g s .88755 .67292 m .77691 .52327 L .71236 .81483 L closepath p .918 .822 .736 r F P 0 g s .71236 .81483 m .4224 .77009 L .3527 .91052 L p .625 .78 .956 r F P 0 g s .77691 .52327 m .75852 .30014 L .48704 .24293 L p .768 .481 .498 r F P 0 g s .48704 .24293 m .48383 .46847 L .77691 .52327 L p .768 .481 .498 r F P 0 g s .48383 .46847 m .22375 .5582 L .4224 .77009 L closepath p .595 .495 .71 r F P 0 g s .4224 .77009 m .71236 .81483 L .77691 .52327 L p .755 .651 .747 r F P 0 g s .77691 .52327 m .48383 .46847 L .4224 .77009 L p .755 .651 .747 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{273.188, 296.5}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnMlvHEUUxjszPZs9Hu/7NrbHdrwkjtd4S7wRx1mcxRACISzOAkmUEEgi JLCEQBwQByQOSEgIcQo3jlx9zJEj/wbHXM1UvZpHd/vrmdcZT+JAYk11p6fe 9/uqq7qml+pa33x06+a9zUe3r2+mTz7Y/OTW7esP06v3H2Q3hQ9Y1oHq7Odg 2lLrO5aVS/S/GpWY/7xaf7X+H1z/WS0iqs0/oA0/qkVUbYjsbFlWWK3dp6++ V4uY2pBSX4XU2j366luOauSoO/TVN2phqw1pjrpFX32lFjqvZe9sLW2ptZ0n W1vqoz21c8SHFPGlWugNOoBAuZCs41xgC7u4ToFbjIqCwDKVao/NTNykwM+Z mACBKSY2MPE9CvyMieUgsJaJ9Uy8SoEPOTAFAhuZWMPEtynwU7ZaDQLbOLCK iZcp8GMm1oLALraaYuIbFHiXiQ0gsJeJSSZuUOBtJjaBwEEOTDDxPAV+xMRW EDjCVuNMXKfAG0xsB4HjTIxw4BkKvMbENAicZmKYra5R4PtM7AaB80ykyJ3c T88qRb/L2F4QvaRSfbytUPYrDOsH2VdVqsWWKftbrD4Isp/UKW0z/6xFCrzE nGG/QC27RNk3OPtIIc7vp3XxDecCGxwLFrjOxAnfQJsDTfACxZ5h6FHf2Igr Ngc/TgJrDJ8BAmsYbmJXGT7vG4vhx0hgheHHfQXCToFsM1epu55nSYzaCX2l emYluPBiZcNAdqaksktcJUtCMRuITT+rWASIHS2B2GJesVNALArEpp5VLAbE JksgtuBoJOpH0PKRPS2UnSheNg5kx/etbALIjpEs9WG2Q7bKr9aQchlQHt3n yuVA+QgpH8PKy0LlJFAe2efKFUD58J4op4DyIVKe14uIR5ka9QuQPyOUH947 +UogP0Tyc7uO9Cp9Xlvl+Z1c3H+oKoAafO6oWSEKdRgIVQ1QA6VB1QDUwZce VQtQ/YSaAahwEag6gOp76VH1ANVLqGmAsoWos0JU5v+G8q0r3elLa8gAjgrL oi/+9KbsF79s/UGFerydPfSyqb5ncKI05Dkm2wqc25+PtzU+plJd8EWAbwD4 nmD4acZHAb6CSz8bDD8F8BGAn2R8AuBrGT9RGvwY45MA38w7f6Q0+BHGVwJ8 B5d+IBh+EuCjAD/M+BqAzzC+pzT4AcbXAfwQ49tLg+9jfCPAj3LdNwuP+zx4 VPcZxrcA/BSXvlZY+u5g+C7GtwP8POMrSoPvYHwa4Jd558dLg29lfDfAr3Hp Q8HwE8Km18T4XoA/p1K9qal4VD2jDgLUBZ3ueflqGDrkBw3RgVc0qpJRhwHq vE7pKvrvv7b1x7L2oohJ5h7x3a8RF9ewYd8REJ5g+HhAOCp5lz8cHTsxhk8V aFEGnD2KVOpuZeiyJKARm43MCI2EgRF0KVbQiO00wjbmfVug24YdzMa4X6vQ Lo4Lyx4BUHRxXQhqtqlzZAVeEOKjAI9uI5QIHwN4dG+mEF53W4vCeo4XD3U2 t407f+qPZcFiIwcJoYN0IQcRlwPjwjom3PtlwAa6x1fQRthpI9uvqNTdIGaF lsqBJXQ7No8lG1iygSVp71QiSxFgaVrYfiqAJXQ7PKClKLAk/TFJAUvoqYKx NCa0FAeWJoWWKoEl9AgloKUEsDTxYi2VAUvoFAS1pWqhpU5/S2FgKQksjQkt 1QBL6HldQEsVwJL/WeJzsZQClkaElmqBJfSwNKClSmDJ/xzebakeWEJPm/NY CgFLVUVYagCW0BP/gJaqgaVDL9ZSDbDke53nsdQILKFBFsbSqNBSHbA0KLTU BCyhESkBLdUDSwPCimsRWuoIZqkBWEJ3BfbMEn5M2wJs9AtttAIbaCySwEYr sIFux6A20wZsoAFcAhttwEZGuDc6zJWdw4b+KN20E71rHEEHoPaUnNoJqOgG HKJ2mktnJ7UgMA2AXUJg2lPHjuIdwbRuQOsUtqg0Ll5nXmAPAHYIi9cNilc6 Wo9KQ4VLlAEMdIM6AMPZL1pWHwC0CuvIucu2d7Z37zI3qh+g0L3+QrWzTX/u xudGHQSoZiGqC6C6HCgz4Hk3oCnIkatVQkq826s9BLTRI5lCfdG248/Sh6MH NAxA9cK6b88DMk9+Rhh0GIDQMy5UonygjBc0AkC1QlBbHlCvF3QEgNBDQ99T B/P6iWpc7p9I587znK8gaLUQ2gxadRjgM/74UYBHz2mLwff648cAPiXENwnx fbu7lHz4iiAXHrrGo/7QUeEul0LrQZkjAG8GP40J8WhgAMLXCfFmmNe4EF+2 x3gzdm5CiEejMnzvpOgaj/tDJ4XQ+DPcUcqVOQbwZmjilBAfE+KrhHgz3vOo EI/G4ZwrAm8Gzk4L8WgUEip9pRBvhgXPCPFhIb6CG1xZMCjq10JCaBKUOQHw Zgz3rC8+4sTrj/rVRecdUqQZkD7ni7RdSB9auZBmhuzP+9F0xVwEgARXW9Jf 9pifrC4DOhbiwHc5ALheYkCN0eylJ09zH/3m7kmAjAmR5l2PBYB0nb0RTnW4 T57qsSeLRUDNeyuLAHoYQCu5pDMAGuE6S/mjlgBqGKAaGTUGUDYoXwWAmreI lgF0CEA7eKcOA2hYCDVvRK0A6ACA9nJJM0VAp4JBh7mkHQAaAlBUpwb6GoD2 A+g4l7QRQi11mbqbYl6kOwEofYAyy5QqD0X1ndUAYN4hXAWADAAs874rU4B/ fes16lmzXcFusR4gtsZuQ24xj0cjuwZku4HseZWG/cSoP7ZOAbE0ENvQaeE2 aF6VPQ1kO4HsRaGseYX3DJBtF8omuXrMq9NngVibUAx1pHlkW4uQNS+UrwPZ FiB7QShrXms/B2SbipClfsBMJuCWbRTKopM0OvDppXWPbL1QNsH1b6YPuAjE 6vyOI8GJjpHdALI1Qo/ogoiOUOt1IFstdItk6Qg180y4ZSuLkDVzOlwCsimh bJQrihqn9SYQSwYR83gMKHtOKGsm0LgMZMuEbtFVOLV5mlDCI5sQukWy1PrN zCZu2TiQXRfKmulHrgDZqFDW5vqnVmS9A8QiQjF0J8vIXgWy4SJkqT3RvCIe 2RCQPSuUNVPI0KQ3u0b3oVYUAirUfGjKFIc5Sx9lSsJ2SnAN0K63PnCEKf+W ZaZwOa1j8Y1h2hHWTbXQZzcrAGTxdD53Od8czkfeafYenW8c5yOz1hecb9iz j5Q5M/nQ12oRV1t6QKZrlOk7Vmr1ZFJfm/mPfuBMtSDTDcr0E2dKOjLl6shk +pUz2SDTTcr0m1roopupnvS3+2jeq1fr8nXrwD8Mj8+e\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.188}, {295.5, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"d4032b2c-45e6-440a-8fe9-a75bac9bffe7"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(38\\). \\!\\(\\\"elongated pentagonal orthobicupola (J38)\\\ \"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"1f5b3f35-b17a-43c9-9735-aa3c03693293"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .93619 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0 1.0359 -0.00853748 1.0359 [ [ 0 0 0 0 ] [ 1 .93619 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .93619 L 0 .93619 L closepath clip newpath .5 Mabswid [ ] 0 setdash .45204 .75461 m .5333 .63564 L .39648 .54939 L p .746 .518 .585 r F P 0 g s .39648 .54939 m .31053 .66431 L .45204 .75461 L p .746 .518 .585 r F P 0 g s .31053 .66431 m .39648 .54939 L .30205 .42893 L p .85 .673 .662 r F P 0 g s .46815 .41838 m .30205 .42893 L .39648 .54939 L closepath p .706 .658 .799 r F P 0 g s .39648 .54939 m .5333 .63564 L .60923 .5062 L p .642 .575 .764 r F P 0 g s .60923 .5062 m .46815 .41838 L .39648 .54939 L p .642 .575 .764 r F P 0 g s .59349 .78617 m .67246 .66141 L .5333 .63564 L p .589 .318 .475 r F P 0 g s .5333 .63564 m .45204 .75461 L .59349 .78617 L p .589 .318 .475 r F P 0 g s .60923 .5062 m .5333 .63564 L .67246 .66141 L closepath p .566 .479 .716 r F P 0 g s .28322 .30989 m .30205 .42893 L .46815 .41838 L p .691 .728 .879 r F P 0 g s .46815 .41838 m .45825 .29878 L .28322 .30989 L p .691 .728 .879 r F P 0 g s .60533 .31259 m .45825 .29878 L .46815 .41838 L p .509 .586 .868 r F P 0 g s .69978 .44787 m .60533 .31259 L p .46815 .41838 L .509 .586 .868 r F P 0 g s .46815 .41838 m .60923 .5062 L .69978 .44787 L p .509 .586 .868 r F P 0 g s .30205 .42893 m .20994 .54244 L .31053 .66431 L p .85 .673 .662 r F P 0 g s .20994 .54244 m .30205 .42893 L .28322 .30989 L p .943 .876 .74 r F P 0 g s .69978 .44787 m .60923 .5062 L .67246 .66141 L p .419 .398 .73 r F P 0 g s .28499 .66035 m .31053 .66431 L .20994 .54244 L closepath p .775 .307 0 r F P 0 g s .45204 .75461 m .31053 .66431 L .28499 .66035 L p .514 0 0 r F P 0 g s .4367 .75725 m .59349 .78617 L .45204 .75461 L closepath p .218 0 0 r F P 0 g s .28499 .66035 m .4367 .75725 L .45204 .75461 L p .514 0 0 r F P 0 g s .68794 .74198 m .76775 .61163 L .67246 .66141 L p .099 0 .135 r F P 0 g s .67246 .66141 m .59349 .78617 L .68794 .74198 L p .099 0 .135 r F P 0 g s .67246 .66141 m .76775 .61163 L .69978 .44787 L p .419 .398 .73 r F P 0 g s .28322 .30989 m .18517 .42483 L .20994 .54244 L p .943 .876 .74 r F P 0 g s .20994 .54244 m .18517 .42483 L .26349 .54431 L p 0 .081 .635 r F P 0 g s .26349 .54431 m .28499 .66035 L .20994 .54244 L p 0 .081 .635 r F P 0 g s .45825 .29878 m .35825 .23658 L .28322 .30989 L closepath p .622 .815 .974 r F P 0 g s .51035 .24852 m .35825 .23658 L .45825 .29878 L p .308 .685 .977 r F P 0 g s .45825 .29878 m .60533 .31259 L .51035 .24852 L p .308 .685 .977 r F P 0 g s .18517 .42483 m .28322 .30989 L .35825 .23658 L p 0 0 0 r F P 0 g s .68794 .74198 m .59349 .78617 L .4367 .75725 L p .505 .804 .999 r F P 0 g s .60533 .31259 m .69978 .44787 L .77447 .49351 L p 0 .221 .743 r F P 0 g s .69978 .44787 m .76775 .61163 L .77447 .49351 L closepath p .08 .196 .685 r F P 0 g s .6901 .62648 m .77447 .49351 L .76775 .61163 L p .962 .943 .662 r F P 0 g s .76775 .61163 m .68794 .74198 L .6901 .62648 L p .962 .943 .662 r F P 0 g s .4367 .75725 m .28499 .66035 L .26349 .54431 L p .44 .574 .892 r F P 0 g s .4367 .75725 m .52437 .70971 L .68794 .74198 L p .505 .804 .999 r F P 0 g s .41535 .57055 m .52437 .70971 L .4367 .75725 L p .44 .574 .892 r F P 0 g s .26349 .54431 m .41535 .57055 L p .4367 .75725 L .44 .574 .892 r F P 0 g s .35825 .23658 m .25721 .35568 L .18517 .42483 L p 0 0 0 r F P 0 g s .26349 .54431 m .18517 .42483 L .25721 .35568 L closepath p .269 .266 .671 r F P 0 g s .60533 .31259 m .67563 .34994 L .51035 .24852 L closepath p 0 .243 .668 r F P 0 g s .77447 .49351 m .67563 .34994 L .60533 .31259 L p 0 .221 .743 r F P 0 g s .25721 .35568 m .35825 .23658 L .51035 .24852 L p .524 .203 .366 r F P 0 g s .52437 .70971 m .6901 .62648 L .68794 .74198 L closepath p .707 .788 .915 r F P 0 g s .58381 .48078 m .67563 .34994 L .77447 .49351 L p .889 .698 .638 r F P 0 g s .77447 .49351 m .6901 .62648 L .58381 .48078 L p .889 .698 .638 r F P 0 g s .41535 .57055 m .26349 .54431 L .25721 .35568 L p .519 .469 .74 r F P 0 g s .58381 .48078 m .6901 .62648 L .52437 .70971 L p .679 .668 .832 r F P 0 g s .52437 .70971 m .41535 .57055 L .58381 .48078 L p .679 .668 .832 r F P 0 g s .51035 .24852 m .41163 .37368 L .25721 .35568 L p .524 .203 .366 r F P 0 g s .25721 .35568 m .41163 .37368 L .41535 .57055 L p .519 .469 .74 r F P 0 g s .41163 .37368 m .51035 .24852 L .67563 .34994 L p .754 .497 .544 r F P 0 g s .67563 .34994 m .58381 .48078 L .41163 .37368 L p .754 .497 .544 r F P 0 g s .41535 .57055 m .41163 .37368 L .58381 .48078 L closepath p .643 .569 .757 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{294.188, 275.375}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm8lv1FYcx4fMPtkmTIasZM8kmZAEUraQAFnIwr7vSwmUrQhBWVoEqlqV VlUX0UOp1EulqkLqoTmi3nrkyLH/AsceuaZ+y3zHyXyf89wJqIdEssfxb/l8 38/2s/1s75+9f/3Krdn7Ny7Ptkzfnb1z/cbley1Tt+86q4KrAoFVGWdKtQTE 8nwgkJvJvy4x0/+sLK8sryxbLd8QP1FxHP2pVlwXPyViRWT+yYYzpWLpD2W6 BtNqmH5VpqswNcH0kzJdgSkrTBGx9IMyfQDTgDAFgmJx/uXj7+Rx/VQ5XV7k FIKTnqTte+V8yZjRmZzQnPu3yn1W/EiffuIelXO1Tv8FvlaBFz0D4+Bo9/fh zmSVwv0r5X7B072CyPpCBZ73DEyCo93Pebqn4P65cj8L9/XEPU1kfaoCz4if kIlTA452P+3pXk84j1TgKc/ARnC0+0lP92a4P1TuJ+DOmt9KZD1Qgcc9A9vB 0e7HPN0zcL+n3I+Kn7CpFT1E1h1XoLH5veBo9yOesvoI55YKPOwZOACOdj/k 6T4I95vK/aCn+yYi67oKPIDADSRwMzjafT/KzDhDcL/qcjfKGiGyLqvAfZ6B O8DR7ns93cfgPqvc93g2eoLIuqACd3sGTpLA8ypwRvzEhKWPBE6ZA6dBDM8/ efyXPEd1LpHi9Yvn8tRxwZVCWhz72Nic9HFyBRJiLkWtNbYmjIy5SeTR4qaQ uUQk1gmcpDJ9FQSnjYI9008ifZCkr4X6Mot6OJPzn5q7y3xGoXYBFSKoFrQk ZIkKE9RphZoAKkxQXWIuqzJN0kbMaceRNkLSZuVcrXv+7KWsMtMdJYBTLoA8 iqIWAGcKSOcJQokTyklFGQMlZk1x5jJilKBKCeqEQo0CFbdEheR84dbf7g+6 E9CEJTSM9o0QVDlBHVeoHUCVWqKiQA0RVCVBHVOo7UCVWaLipJSbCDRpho4A Wm4JTaB9DFVFUEddKG0SPajAMWgPgZYBOkigKQI9oqDDBFphCa0g5e0n+Goz fhvBV1riK9FmBk0T6GEFHSLQpCW0CtBeAq0h0EMKupVAqyyhKVLoLoKvNeO3 EPxqS3w12pwh0HoCPaigmwk0ZQldA2gHgTYQ6IHiobWk0C0Ev5bg97vwUne1 JbQOLW0mqCYzagtQtu1rIO1rJNBmAt33X6GNaF8DQbUS1N7CfTaQVFdttvts E6C1BNq2FDSUhyqw7aHaQipcTRR0EAV7lkVBK1rOuJ2Eu9vdQxVwbXvGdnCr CDezFDe8kKs3t+25oJOUvZzI6CYyZpZPRgY1YPAeAp92w4NuuLiyTebccx0Z u/JhQrohJEGEZP0JCRIh7GqPCcmSDRMhktYRSVNK0pBlbWwl9aI2YSKknwiZ NAthtbG96F4HIUEiZIAI2WUWEiJCbG85+hdtJLHLD75jvKzDRgKdMEPDBGp7 R5cvvmOYm/s7V3uqYVxp2GapwfbeNQsNISFh0Q7AtsBbEpLvLqKWQsbMQiJE iM1wwcIONGEpZPTtCOmAkLLihUQthbDeqg1CKomQ9WIurXrPGLbEs2Eh49WE XieOEiEhSYS4u803b+Tw39uS1IyKpIoXEiNC2OgcE7IWQtYQIeqMFoIQLcZD S5xoYYOSxit7qaWOaMnq8UK3FoviFCMof1fTSAT1LC1oxFIQGxVmgmogqIkI 6l602ziTk1nM6VHOxCVy3XBeXG4k3LnmKBSUhqBWIqjLo0ITyyci5brNLhTR aVmVMbOg0tzlgUuQQUt+bCVDtHQQLUF/WsoW7T6mouRHlnqIkHZ/QrYbi7K0 kHIIWUeEtBIhIX9CZEVKTBukFPgBgm8m+LA/fLmYy32j2zR8K/EbisfvMLU+ NH/v2Wv5qkQb0RAj579BomYtURMxq9m5xE7hSBKTc5505vKhUAMRF0GBNhNJ DURStHhJFahX2vT0Qo/uF0qq9ydp1FJSCpIqiaT8s5thIqmOSIoVL6kOGy5G JQXEHlmopoaoiZvVjBnPAAvVtKBAJUKNNI4R/Bp/+HGCjxN8RszlqgkCTRNo onhot5wvPHLHCb7aH35imfGrCb7UjN9F8DGC77HEJwm+rHh8luDZDsfwrPX6 mnCS4KME32uJr7Bs/TLgWfHLCL7cjJ8i+AjBr7NsvU/89DLjEwRfUTy+zxIf I/hKM36G4MOWeLbto/7wuwk+RPD9lq2PEHyyePyAJT7sD7+H4IMEv94SHyT4 KjN+bxH4UYIvscRPFI9XredvQK0mSD3Eu48gSwhyg0XBBSpVPGrQVFw9FFQI 0MP26mkpf7CziSTdjqSO4cWrf3KbidZLMw54MDYSxjAYEmFxJEwtDWKN2QpQ mIBYh6MfBKlH+AVPAzcTxiYwov4YhxZv+oB4+lkIGAQgTgDsnDFjBmwlgAEA Sv0B5BslMpCl7UPacpKWnWp3u9Ja6M4CUEkA7EpGP2M+At1DJG0X0lb5S3vU M22H62gtTMsu+/Qz+eOucuS6A7YjtgGQJgB2Ua9fajgB3Wz3k+OFclWNv7Sn kJapbYDaepKW3Xbp9z7OkHKwTqYWgEZ/gLPQzbqUNNI2kbTs3lm/mXOe6Ga9 egqAFgJg4wX6faML0P0eSZtE2jZ/aS8iLVNbjrTtlmn1K1mXSDnYKTwBQKc/ QP5zHpY2hrRdJC0bu9Kvz10hutllZxiAHgJgQ3X6pcD8F07scrIEaXv9pc1/ bqXUhpBWdrPirfnCfGw8Vb+v+SGpg7zzC5mSsVFi/Z7pTYiTd+76ofCTV+o7 iG5/yW4hWcZVQCeZmJwDP5eW7bBseF+/63ubNLgVaquQlnULHmnvQG0zktUi WZ1Mxp+D6JfG7xJd9UjVLFKF8ieFgidy+t32e5BRi9hOyEh6xj5AbJoUPIss i68uRCP0xwGfkEYkIWQQKSLmFA+hogKBQwh0XcyK/86qmEcEG0f0qIiWS+eU +2MgosRJfwvyKckZJHXZgcCLKvAzlT2XWNpliOoq9cdxC5OMIInqlwJfih/Z 4o0wXVOmb2Dqg+mGMj2FKQOT/uzpR5iaYdIfUP0MUy1M6igJ/AJTEs34SJl+ gymOqPvK9DtMJTB9rExzKL3+SE4eRP+j71tXlt/9cmDVv/yuzXw=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 293.188}, {274.375, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"c9840c43-de3e-4c7b-a9a6-9ed9564cb533"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(39\\). \\!\\(\\\"elongated pentagonal gyrobicupola \ (J39)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"005efdd9-f2a5-4756-9d61-6ee4ef938772"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .89836 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0 1.04131 -0.026141 1.04131 [ [ 0 0 0 0 ] [ 1 .89836 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .89836 L 0 .89836 L closepath clip newpath .5 Mabswid [ ] 0 setdash .60937 .73428 m .60129 .58557 L .42936 .59727 L p .676 .445 .563 r F P 0 g s .42936 .59727 m .42981 .74592 L .60937 .73428 L p .676 .445 .563 r F P 0 g s .42981 .74592 m .42936 .59727 L .27461 .54843 L p .812 .557 .553 r F P 0 g s .50269 .44733 m .42936 .59727 L .60129 .58557 L closepath p .699 .615 .759 r F P 0 g s .27461 .54843 m .42936 .59727 L .50269 .44733 L p .762 .693 .786 r F P 0 g s .75496 .66755 m .74016 .51617 L .60129 .58557 L p .498 .309 .555 r F P 0 g s .60129 .58557 m .60937 .73428 L .75496 .66755 L p .498 .309 .555 r F P 0 g s .60129 .58557 m .74016 .51617 L .63997 .37154 L p .625 .592 .796 r F P 0 g s .63997 .37154 m .50269 .44733 L .60129 .58557 L p .625 .592 .796 r F P 0 g s .50269 .44733 m .34726 .39278 L .27461 .54843 L p .762 .693 .786 r F P 0 g s .34726 .39278 m .50269 .44733 L .63997 .37154 L p .675 .741 .9 r F P 0 g s .27461 .54843 m .26802 .69971 L .42981 .74592 L p .812 .557 .553 r F P 0 g s .26802 .69971 m .27461 .54843 L .18774 .44937 L p .965 .705 .491 r F P 0 g s .34726 .39278 m .18774 .44937 L .27461 .54843 L closepath p .83 .781 .805 r F P 0 g s .81552 .56137 m .79698 .40576 L .74016 .51617 L p .038 0 .459 r F P 0 g s .74016 .51617 m .75496 .66755 L .81552 .56137 L p .038 0 .459 r F P 0 g s .63997 .37154 m .74016 .51617 L .79698 .40576 L closepath p .507 .545 .83 r F P 0 g s .41138 .74945 m .42981 .74592 L .26802 .69971 L closepath p .322 0 0 r F P 0 g s .60937 .73428 m .42981 .74592 L .41138 .74945 L p 0 0 0 r F P 0 g s .60516 .7369 m .75496 .66755 L .60937 .73428 L closepath p 0 0 0 r F P 0 g s .41138 .74945 m .60516 .7369 L .60937 .73428 L p 0 0 0 r F P 0 g s .21219 .3292 m .18774 .44937 L .34726 .39278 L p .818 .888 .894 r F P 0 g s .34726 .39278 m .38056 .27371 L .21219 .3292 L p .818 .888 .894 r F P 0 g s .57228 .25932 m .38056 .27371 L .34726 .39278 L p .675 .741 .9 r F P 0 g s .63997 .37154 m .57228 .25932 L p .34726 .39278 L .675 .741 .9 r F P 0 g s .57228 .25932 m .63997 .37154 L .79698 .40576 L p .416 .604 .925 r F P 0 g s .18774 .44937 m .17655 .60497 L .26802 .69971 L p .965 .705 .491 r F P 0 g s .26802 .69971 m .17655 .60497 L .32457 .65329 L p .211 .546 .929 r F P 0 g s .32457 .65329 m .41138 .74945 L .26802 .69971 L p .211 .546 .929 r F P 0 g s .81552 .56137 m .75496 .66755 L .60516 .7369 L p .804 .964 .911 r F P 0 g s .17655 .60497 m .18774 .44937 L .21219 .3292 L p 0 0 .072 r F P 0 g s .79698 .40576 m .73581 .29038 L .57228 .25932 L p .416 .604 .925 r F P 0 g s .75236 .45008 m .73581 .29038 L .79698 .40576 L p .959 .657 .236 r F P 0 g s .79698 .40576 m .81552 .56137 L .75236 .45008 L p .959 .657 .236 r F P 0 g s .38056 .27371 m .35656 .23726 L .21219 .3292 L closepath p .651 .959 .933 r F P 0 g s .56458 .22148 m .35656 .23726 L .38056 .27371 L p .414 .827 .973 r F P 0 g s .38056 .27371 m .57228 .25932 L .56458 .22148 L p .414 .827 .973 r F P 0 g s .57228 .25932 m .73581 .29038 L .56458 .22148 L closepath p .16 .613 .934 r F P 0 g s .60516 .7369 m .41138 .74945 L .32457 .65329 L p .652 .773 .937 r F P 0 g s .60516 .7369 m .65828 .63094 L .81552 .56137 L p .804 .964 .911 r F P 0 g s .47901 .57291 m .65828 .63094 L .60516 .7369 L p .652 .773 .937 r F P 0 g s .32457 .65329 m .47901 .57291 L p .60516 .7369 L .652 .773 .937 r F P 0 g s .21219 .3292 m .20151 .48902 L .17655 .60497 L p 0 0 .072 r F P 0 g s .32457 .65329 m .17655 .60497 L .20151 .48902 L closepath p .413 .516 .854 r F P 0 g s .65828 .63094 m .75236 .45008 L .81552 .56137 L closepath p .858 .838 .825 r F P 0 g s .20151 .48902 m .21219 .3292 L .35656 .23726 L p .388 .178 .47 r F P 0 g s .57248 .38364 m .56458 .22148 L .73581 .29038 L p .839 .538 .48 r F P 0 g s .73581 .29038 m .75236 .45008 L .57248 .38364 L p .839 .538 .48 r F P 0 g s .47901 .57291 m .32457 .65329 L .20151 .48902 L p .601 .593 .815 r F P 0 g s .57248 .38364 m .75236 .45008 L .65828 .63094 L p .772 .719 .803 r F P 0 g s .65828 .63094 m .47901 .57291 L .57248 .38364 L p .772 .719 .803 r F P 0 g s .35656 .23726 m .35319 .39952 L .20151 .48902 L p .388 .178 .47 r F P 0 g s .35319 .39952 m .35656 .23726 L .56458 .22148 L p .66 .395 .508 r F P 0 g s .56458 .22148 m .57248 .38364 L .35319 .39952 L p .66 .395 .508 r F P 0 g s .20151 .48902 m .35319 .39952 L .47901 .57291 L p .601 .593 .815 r F P 0 g s .47901 .57291 m .35319 .39952 L .57248 .38364 L closepath p .696 .623 .771 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{300.312, 269.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnMlzE0cYxQdrs2RZli3bsuVFxsYGm9XExvvGYhYDgbDvmCXgbFAsVVQo kqpwSlG5JadwSuWU4phrjhw5cuVP4MjVmV70PJbeoE9GZqnCVdMz6ul579df 9/S0RjM+NH/v5vXv5+8tXJ3v2Htn/vbNhat3O2Zv3XGzAmscZ80md6nucNT2 ouPkEv23WSX2w+ftz9uft52/1KpSnSO/mIw/1KpaZYQXn1157ATU5uLLJw/1 eVSh0p9NyV/VKq4yUnkl3cUt6aa6+CNT/BGKZ0nxoEp11o+m+G1wbCTFI1B/ YIovqFVEZQyT4lGo3zfFb+qVKXSl19RtghwYh89dc+DXaqUzKtSBtrh7oD54 jEgk4H3bSFyDRFAoUQuKH4zE1Tx8JcPExolYHXi+NWLz4IkIJRrAs2AkLhMe qVgaYjeM2EXwxIQSzajSNSNxHhJxoUQrKK4YiXOkSlKxdvBcMmJnwFMjlFgL ngtG4jThkYp1geesETsJnjqhRA94DIhzHBL1QokNoDhhJI6RKknFNoLHqDhH wZMWSmwGzxEjcYTwSMW26dTk2T/nkJE9DLLMu4sdIowlyWqQw0ZsDmRtK5XY D4kskWBD6lZP5d48G9FDr63cPlK5MsjOgrFTKLaNiB00YnsIYxlkd4GxuySx IMSs4JzRm4FeD9Gb9NULLdPLQR4wotOk7mWUnyLy60uSD3jl3Su0SpefRns/ easAsZp971aT6F+9QoN+ocGe92mgdyVzAXMvUSu3ChKr3Z+8VYhY7TJWE2ih vg9hMCXsxGFisPOTMogQgxmPQV5zs/OFWbHWYHWxVuOewcXaiWvFrFitplfH qpJYTX20VkMqjams7cQgSgwmSzPoUWmtyqpc/Pfpc7v3+X8v9BG6u+bPpoo4 j+lV0OOc9Ov0jSrVe5vyzN3F/eSmOmsTIYgRgomSCUKo/gZCEAZBb1kI9NkY VVvDxC0Gtx7iVkXcxt/qpq/2ugXdw57+/lLvV7aTxLwa5l1lMfdOBZW3u7i9 SaWBHIemGCMstSq1c3QZi4FwRvUqlMdiOv86RCNMMEYJRgohya4EoyAkXSCI EgLWI9IgaC0LQSdpFClLBizNZWHpQDSqCcEOQtAOgsayELSDIEkIBgnBWhCk CEGcEBhrZ+QtHbONNAoDGiBA3QBKlg+oBXGpJxhfEIwNOGET5cNoBkaaYPQT jI2IRlX5MJpI8zQRoG0EaAuAosIeKwBqRFxaCMZWgrEdGOHSMIb1yjuJSOop QdLm5b5X1gGpnSBtIUiDQAqsDlItabYsgdtE4EZUGjRD0zuD1CA2XcR+I7Ef t7OfYp13pDSQaoB0E5A+AjKxOiBx0jQ9BKm3SGxevdRTGtpIJSLFEJs+ArK+ SGzKCFIJkM0EpMc3IiGA5BYFVLSx+AgTIw3EcLoFcXEXt6IqLf4FQoC2FJ9+ ArRO0GMMSklAQ8LGCwJugMB1CqMVJHDsm2SJcAHSqFJMFsOQMIbDxTCDXkxE cJigdQgjGBZGsAQ0s8+dUBZSZYUBi5SJSodnkoC0CcNTSUDYDZii4VnemSaE SCw20dVBYlFqEUYpRpDYHTFRc00TkIwwNnECwm6ULgPho2fF4jePXwlixO7G MLRqYYyGiqMFCBrrUVK0hDBqK0RjUWsUotWUDy0oRGsQoiUJGvuBwaLtKHIe unAWUNa49ULM2pVg8ghGhGgpIVodQWM/PK0QjTVurRAtVT60SiFaUohWT9DY z6gCtKiwQWuEaI1CtB1etIJ7TVVCqsQHp2LNGBdSNdmZoYdKL6pdht9KEheS VK06SbWwpWJCkoyd1HtJ8iG8I6h6LExGEH2vBKw1IkKC1rze6mmFQd4KSSFB eNUIaoWtEBIStBOCobcS1AkJgkKCrEr1dHSZ7/KmTwkDXyE07ZCY1gtrWlbT Bl/ToNdUbU/6tafOcne8ePM6N+zmhlxm2Siop+Pj14o6aTs+zmtTXajJz0pn saC1wCBIDAoCaZ4xUCZpYjWqUiv29/PXeueI3zits8KlmbL6DcE0CtNBYppG TSuJ6bC/aTMxHYBpAqbbiWkDTGMS06XJc4aY9sM0BdMtflM+nVVFTO0dpAF0 mlZitRVWTbDq85v42t/zCq1G863aiJX3HqNrpRa3V7qpPiF7/L6v2GepBabt xLQP9etE/Tr9vlDqrCSxGvNY5XUaZroeputhmvX77m/bWWC61GmYaTdMN8G0 hZhWwbSemI57TC13oVUnrPph1eR3K0pnNRCricKTov+JHmgd3z6UhfMO9JyU 39042619nb1TROVsFxu5QvNWmI+j2km/e6e6XDMxt8/RDOVV213cTzl7Nv5l YD8D+7jf7W+dlSH2U8Z+mNiHYM+uZGnYz8I+qu2DXnvUvc3ffISYR1Rq27PQ vB7mczAP0d8i9DhQ6GwfNxslzjFUm00Ka+F8BM4V+Hmzw99qjFjFYZUgVjWw OqGs7KhVaECe0ssZJGDAvnJ5H8XIjcAndWry1DxH2WWJqfcxxzzTJJqOfTuP oVaniRULoLWaJFYp1I/dPonA6qywVvbx0yli1QArdhsuBKtzwlpZq2lilYYV u4VbAasLwlrZB4RniFUz2spZempMfboo1LaPVO8k2i0q1aCXSxPb5SeW11el 9bcPru8Wyp4vTXaPUFbaB+3LA7NC2TNEVo+1OvL2/Yq9QrFTRKwVYvaFlX1C MTaUZCDmfYtIIHaciDVDzL7GdUAodoyIpSH2lRGbE4odJWJ6fqOzjhuxg0Kx I0QsBbJTRuwQEcsQsS+JWB3Ezhixw0Kxw0QsCTHzzqTrKBM7SMRqIGbfe9SN ah99KpSYIxLVkLhkJHRT6jLNRGI/kYhDYt5InIBEmkjsIxIxSJiXdc17k3be WygxSySikLhuJM5BIkUk9hCJCCS8L9faeU2hxC4iEYaEfdl3HhIJoUQAJ4J9 5fgaJOJEYoZIVIDCvgJ9A/2iikhMUwkH72AvACBKjp7UaRBH28vhHXPsdzg2 Qo6dwCztnil+C8VDpPiASsOL5tKrMu1FIPei+h0cHSBHr1Npjcr6yRS/j+Km fK60O3l304T6+Jsp+cBTi5zIn2bXQ7XS79L/YzL0Jekj+qcFn7c/7Laz5n+8 Bxpv\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 299.312}, {268.75, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"81031feb-765b-408d-98be-db64b5cd1f6c"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(40\\). \\!\\(\\\"elongated pentagonal orthocupolarotunda \ (J40)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"ddd64bc3-e08e-486c-9dc0-f0e99686b432"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.09429 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0605207 1.16984 1.11022e-16 1.16984 [ [ 0 0 0 0 ] [ 1 1.09429 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.09429 L 0 1.09429 L closepath clip newpath .5 Mabswid [ ] 0 setdash .38288 .60719 m .50339 .48877 L .40146 .36553 L p .788 .681 .746 r F P 0 g s .50339 .48877 m .57401 .34017 L .40146 .36553 L closepath p .73 .673 .794 r F P 0 g s .73032 .418 m .57401 .34017 L .50339 .48877 L p .666 .595 .766 r F P 0 g s .50339 .48877 m .65539 .56482 L .73032 .418 L p .666 .595 .766 r F P 0 g s .65539 .56482 m .50339 .48877 L .38288 .60719 L p .717 .558 .673 r F P 0 g s .65539 .56482 m .81369 .57139 L .73032 .418 L closepath p .596 .509 .727 r F P 0 g s .79123 .74527 m .81369 .57139 L .65539 .56482 L p .598 .449 .65 r F P 0 g s .65539 .56482 m .63166 .73227 L .79123 .74527 L p .598 .449 .65 r F P 0 g s .63166 .73227 m .65539 .56482 L p .38288 .60719 L .717 .558 .673 r F P 0 g s .38288 .60719 m .27558 .48648 L .24555 .66037 L closepath p .84 .678 .681 r F P 0 g s .40146 .36553 m .27558 .48648 L .38288 .60719 L p .788 .681 .746 r F P 0 g s .4615 .75973 m .38288 .60719 L .24555 .66037 L p .81 .589 .603 r F P 0 g s .38288 .60719 m .4615 .75973 L .63166 .73227 L p .717 .558 .673 r F P 0 g s .63166 .73227 m .66777 .87335 L .79123 .74527 L closepath p .597 .379 .556 r F P 0 g s .48913 .90312 m .66777 .87335 L .63166 .73227 L p .681 .43 .536 r F P 0 g s .63166 .73227 m .4615 .75973 L .48913 .90312 L p .681 .43 .536 r F P 0 g s .4615 .75973 m .32664 .82089 L .48913 .90312 L closepath p .761 .484 .513 r F P 0 g s .24555 .66037 m .32664 .82089 L .4615 .75973 L p .81 .589 .603 r F P 0 g s .4021 .31535 m .40146 .36553 L .57401 .34017 L p .576 .88 .993 r F P 0 g s .57401 .34017 m .58837 .28831 L .4021 .31535 L p .576 .88 .993 r F P 0 g s .58837 .28831 m .57401 .34017 L .73032 .418 L p .289 .592 .947 r F P 0 g s .75718 .37221 m .73032 .418 L .81369 .57139 L p 0 .189 .706 r F P 0 g s .73032 .418 m .75718 .37221 L .58837 .28831 L p .289 .592 .947 r F P 0 g s .26603 .44544 m .27558 .48648 L .40146 .36553 L p .815 1 .806 r F P 0 g s .40146 .36553 m .4021 .31535 L .26603 .44544 L p .815 1 .806 r F P 0 g s .81369 .57139 m .84753 .53748 L .75718 .37221 L p 0 .189 .706 r F P 0 g s .84753 .53748 m .81369 .57139 L .79123 .74527 L p 0 0 .241 r F P 0 g s .23338 .63303 m .24555 .66037 L .27558 .48648 L p .873 .798 .309 r F P 0 g s .27558 .48648 m .26603 .44544 L .23338 .63303 L p .873 .798 .309 r F P 0 g s .79123 .74527 m .82375 .72507 L .84753 .53748 L p 0 0 .241 r F P 0 g s .82375 .72507 m .79123 .74527 L .66777 .87335 L p 0 0 0 r F P 0 g s .32108 .80662 m .32664 .82089 L .24555 .66037 L p 0 0 .337 r F P 0 g s .24555 .66037 m .23338 .63303 L .32108 .80662 L p 0 0 .337 r F P 0 g s .66777 .87335 m .6905 .86348 L .82375 .72507 L p 0 0 0 r F P 0 g s .6905 .86348 m .66777 .87335 L .48913 .90312 L p .194 .724 .769 r F P 0 g s .49712 .89567 m .48913 .90312 L .32664 .82089 L p 0 .354 .749 r F P 0 g s .32664 .82089 m .32108 .80662 L .49712 .89567 L p 0 .354 .749 r F P 0 g s .48913 .90312 m .49712 .89567 L .6905 .86348 L p .194 .724 .769 r F P 0 g s .67871 .31024 m .58837 .28831 L .75718 .37221 L closepath p 0 .452 .849 r F P 0 g s .58837 .28831 m .67871 .31024 L .53229 .35643 L p .302 0 0 r F P 0 g s .4021 .31535 m .58837 .28831 L p .53229 .35643 L .302 0 0 r F P 0 g s .75718 .37221 m .84753 .53748 L p .72441 .45217 L .909 .506 .123 r F P 0 g s .72441 .45217 m .67871 .31024 L .75718 .37221 L p .909 .506 .123 r F P 0 g s .35368 .35784 m .26603 .44544 L .4021 .31535 L closepath p .526 .845 .545 r F P 0 g s .53229 .35643 m .35368 .35784 L .4021 .31535 L p .302 0 0 r F P 0 g s .83553 .59857 m .84753 .53748 L .82375 .72507 L closepath p .755 .686 .141 r F P 0 g s .84753 .53748 m .83553 .59857 L .72441 .45217 L p .909 .506 .123 r F P 0 g s .26603 .44544 m .35368 .35784 L .38008 .50444 L p .157 .044 .464 r F P 0 g s .23338 .63303 m .26603 .44544 L p .38008 .50444 L .157 .044 .464 r F P 0 g s .82375 .72507 m .6905 .86348 L p .69548 .66258 L .89 .929 .838 r F P 0 g s .69548 .66258 m .83553 .59857 L .82375 .72507 L p .89 .929 .838 r F P 0 g s .38008 .50444 m .29895 .6832 L .23338 .63303 L p .157 .044 .464 r F P 0 g s .29895 .6832 m .32108 .80662 L .23338 .63303 L closepath p 0 .093 .645 r F P 0 g s .60356 .83684 m .6905 .86348 L .49712 .89567 L closepath p .532 .886 .982 r F P 0 g s .6905 .86348 m .60356 .83684 L .69548 .66258 L p .89 .929 .838 r F P 0 g s .32108 .80662 m .29895 .6832 L .47988 .69691 L p .488 .624 .911 r F P 0 g s .49712 .89567 m .32108 .80662 L p .47988 .69691 L .488 .624 .911 r F P 0 g s .47988 .69691 m .60356 .83684 L .49712 .89567 L p .488 .624 .911 r F P 0 g s .53229 .35643 m .67871 .31024 L .72441 .45217 L closepath p .768 .429 .412 r F P 0 g s .38008 .50444 m .35368 .35784 L .53229 .35643 L closepath p .541 .29 .484 r F P 0 g s .72441 .45217 m .83553 .59857 L .69548 .66258 L closepath p .883 .71 .662 r F P 0 g s .47988 .69691 m .29895 .6832 L .38008 .50444 L closepath p .553 .482 .73 r F P 0 g s .69548 .66258 m .60356 .83684 L .47988 .69691 L closepath p .735 .703 .821 r F P 0 g s .53229 .35643 m .72441 .45217 L p .47988 .69691 L .719 .553 .664 r F P 0 g s .47988 .69691 m .38008 .50444 L .53229 .35643 L p .719 .553 .664 r F P 0 g s .72441 .45217 m .69548 .66258 L .47988 .69691 L p .719 .553 .664 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{272.125, 297.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt20lzE+kdx3EhqbV4k7zIli3vxiu2MTsMGC+ADcZmX4bJhMQhkwGSySxM apKQPalUTVFzyy05znGOXH2clzBvgSNvwdGz6O9W69vy0zZTmUpBVbcbtZ7f 5/n3Lql7Y/Pzxx98tPn5k0ebg6ufbX7y+MmjZ4MrH39WfilxIBY7kC8Pk4Mx Nb0di1VG+l+rGtn/vJ1+O/12+gc3/W/1J6322V+bF/4lL6S312KxpJp6amZ9 JbPaZNYvzKx/yqw+NctTU5tm1p9l1qS0+rGZ9VuZdVxmPTCzPpVZ52XWPTPr V+qPFpbVrISaim9/+/Spmdx+/feiPgbdNW//pf5jZq2ZwdfQ0w2T0tA2vmPa PoW2C9KfLLe9bdo+gbbz4jZD2/IQVy/cNAGPIeCsBOQDFZeH8v/MWA7A5fbX TNiHEHZaKulwDNswYR+oP7qrp6U/RYhIQsS6ifg59OeEhJUgzJPlYyMeQcRR KWkAIlLQnysm7GcQNif9GYGwNIRdNmGbEDYrYWMQloGwVRP2UwgrqHGPemnK MWzFhP1E/elWc7q2X6w9t2/aevGNGmJ66U5AYlaWvT/Hvqmco7OmITGhxvGw qhuhoxcM8FA2sRmITUnsqGPssok1Bx6z201mnumhPH0IjKwYtPabwFgyxvv6 j1dlWKe8umqhJoGGAGoGaNFAP/KtBIuUV6EaV6+YcUBzgg46VmfR9wBNADoG aJug/Y6VLhj0AaBJQEcBLQjaGw19F9AUoCOAFgXtAbQF0PMGvQ9oGtBhQEuC djtWatF7gGYAHQK0X9Aux0rnDXoX0Cygg4AOCVqIht4BtAHQAUAPCkqnS0LP GfQ2oE2A9gE6LmgboDlAzxr0FqDNgPYCOiUoXWXUQW8C2gJoCdAZQXOO6DsG vQFoDtAeQOcEbY6GXgc0D2g3oMcEbQQ0D+gZg14DtA1QOrefFLTBsVKLbgDa DmgnoGcEzThWetqg64B2AFoA9JygqWjoVUALgHYAuiCo54ieMugaoJ2AtgO6 LGgiGnoF0CKgrYBeEtSoFbO8JdZ6J413Gbxu8PLgXVbjhDkC7hvIAXDVXqn6 l10rUCeiUS1ArX8/VDNQG7Ka2gE4boBVAEoANAJwzVfLq5ff6A2CqGPRqAag rutxUijL0fYQUcuGal6VVq/Ao9HIDJA3AsuyPJSv5NV49106Ip8G/ibwCUf+ iOFXgO8D3gP+FvBJ4OkkFZFPAn/bkafq56LxCeDvAO85Vh+RjwN/F/iUI394 N97z83pQO9F9IDNA0iV1HbI/ULGi3nWkqLpZQ10CakCN9cH1AQBZx1p2AwJr imppcKRm9k81AkWfKetQVWvo+ZZeQ7QAiaKqpvdPNTlShwx1MZTyhKoMYZt6 i+OCfINkzpGcCif7Agu0PKjDmR7vdjj7H/N5R34yGp8Ens4lrcDTF2x1+F7g PUe+zZGfMPwFx+pTwNOJ/A3wVH0aeLqM6QCevh+OyGeAp4u4AvAN0fgS8FlH vhN4/euAPndNRUMbAL0eBeXtnfge4JuAD34GUXAX8PRbjeWXHat35YvA0+9O dXiqvgX4DeC7gfe+H34d+B7gk7LBHYqG5gC9CmgJ0IQL2g1o3hHtBTQeRJcc K20FdA3QPvvhxIe6kFRnWyTSC5L6UmM6GtkO5BUg+wNVqr/1tSJoHY7agBon 9gAUAFgFYNAF6AKg0xHQy6vyjdyr199VFljFW3QsqAu8lbD9Tb+kufh2fYpK KzpS3VJaaq9UN1CXws4b9rtqB6oTqB5HqiBUw16pElAXwy6/9EtNigqcBewx Y8FxURJ6IeyKV1fVIvXNhFNUXx9Qy2EfLexPVUTZXyb3DjQL0Favllj+a73L FYAaAGop7GOv/YExQC0C1bEPKiObReeuVP5rc2NIK3hD4C2GfaNkf5omz/6I oazqbaNlH2hS0FIQXeIia/gm4EeAPx/2DapG+2DX858L9JuSwDcCfxD4eeRj 6i4oB9lTsj0c1XqjYZ5+aTgcWBYgBaWlgRoDSv+EqK8FDu5C6Vm3KqsU0ZQj qn+hTZltcutlBVWnVtWFIdma7Dd4F8J4u3hr0QlApwXNADrsgmag5rgjr+80 8MxB24G/GMrX3F01DdqgFNsG2oiLlg0UGwuheoQqhlGBrarmK8wAqu9LpWXY LlQfULQB+ym7C+5U9fw/r9VQXqLlcZN6qRfQZkFHoqErUF8G+LwaN2/rc2wt n5btZgL40V14XXMW0D6pOWm/bfOhUvFMNHLVseIJNc6ol44CMLYLEFrTjB7b xffyOx0dEbgMFaSBmgVqLozSHT7sA+xlcG3sYYidhdjxYOwV6HcKgDkAaCWP wyKa9VGhFRBwCICJcGDNsZYjQE3tlYpVOKSOAkW742Q4dRWq8oA6BtT4Xqmd qlypMUfKbnfrsjEQcByAUcc1NOcDHGohio7XRNkfuTfq1nICgGHHPcfeQ7Bz f9nOJpAA6iRQg47UMR9Vc91bAU4BMOB4oLS3tlyHWuJAnQaKTt5EnfBRkWoh gE5b9u6mG/uopeRInfJRNZ/GKsAZAHocLzrsTXbmFlHPX4t8oj0H8XTNRvFn fPG6/7SAzgLQ5XhRaG/8NPfVJqv7r55Sqk0uOCb779gN7Totm46wC/UA4L8P ufI9oe23TqXO02U5Zc+/oewhyLa3p+ubtvWcRQjLO4YtBMOWICwHYYMQZh+G uFs3rNmxZzVhyxDW6BhmH0K5VzeswbHMZV+YrNz3tuzJjqumD6+UbR/0uS/7 U8xEm0FrC47x9C3HRV985dhsY2mTTDnGms+EVc+G2B4bwGGv9YDqB8o+aqUf uElJ5+chkb6koET7RNn71YnUxzgk0rdY9oG3h9WJZ+2nVl+imqblaR+/8z/k VlmeCcl7J9BDtelRfeZquepZvtowfZLUfeuFCHNpWvV4Ym2EvpazG9WLV2Y3 K0KYfVBx53FJTyLmJCKrInR/2iHCPnH5IUT4P02WI9Sg7gS2/clBmH0W9El1 WGCTnZCetUtYI4SZCyzzeG1gBxuTiKIUl4IIc10T+wgihiWiX3oRhwj7rOzH ENEvEUPSC/tc76fw9hIszpIap+yB78jWtxW68mzxM8jpqi4+ZeaWG+vXzIEj 9hto2C4NO6RhSjXUPTfP3cW+gIY5aZivbqinHpqGvwvbogOrv0HC9LbkVYeZ /SL2e+hFFpZfWvrjSYR9mPwPEOFV71c7hehefGIa/gkallnV/8ppSTdMq4a6 O1+Yhn+pbqhnZWTF/NG86W/yJt+prvweU0Bg4/urafMP36JVG4l645dmln7f D+hx/7fT/3/TsQP/BWxMlIs=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 271.125}, {296.75, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"4f61d2ce-f17a-4ce7-8171-3c953807dc05"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(41\\). \\!\\(\\\"elongated pentagonal gyrocupolarotunda \ (J41)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"c0a8468a-263e-48e4-91c4-19555235edf7"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.08349 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0559158 1.16333 0 1.16333 [ [ 0 0 0 0 ] [ 1 1.08349 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.08349 L 0 1.08349 L closepath clip newpath .5 Mabswid [ ] 0 setdash .44 .67205 m .5514 .54684 L .43057 .43048 L p .756 .618 .707 r F P 0 g s .5514 .54684 m .59602 .38606 L .43057 .43048 L closepath p .708 .62 .757 r F P 0 g s .75661 .4388 m .59602 .38606 L .5514 .54684 L p .638 .547 .736 r F P 0 g s .5514 .54684 m .70799 .6018 L .75661 .4388 L p .638 .547 .736 r F P 0 g s .70799 .6018 m .5514 .54684 L .44 .67205 L p .674 .493 .633 r F P 0 g s .44 .67205 m .31589 .55604 L .29371 .7219 L closepath p .8 .609 .643 r F P 0 g s .43057 .43048 m .31589 .55604 L .44 .67205 L p .756 .618 .707 r F P 0 g s .52593 .81144 m .44 .67205 L .29371 .7219 L p .765 .516 .558 r F P 0 g s .69629 .76751 m .70799 .6018 L p .44 .67205 L .674 .493 .633 r F P 0 g s .44 .67205 m .52593 .81144 L .69629 .76751 L p .674 .493 .633 r F P 0 g s .2725 .48878 m .31589 .55604 L .43057 .43048 L p .894 .916 .83 r F P 0 g s .43057 .43048 m .39634 .35481 L .2725 .48878 L p .894 .916 .83 r F P 0 g s .39634 .35481 m .43057 .43048 L .59602 .38606 L p .698 .842 .952 r F P 0 g s .59602 .38606 m .57402 .30671 L .39634 .35481 L p .698 .842 .952 r F P 0 g s .57402 .30671 m .59602 .38606 L .75661 .4388 L p .406 .639 .951 r F P 0 g s .70799 .6018 m .85432 .57513 L .75661 .4388 L closepath p .55 .456 .701 r F P 0 g s .84607 .74861 m .85432 .57513 L .70799 .6018 L p .528 .368 .608 r F P 0 g s .70799 .6018 m .69629 .76751 L .84607 .74861 L p .528 .368 .608 r F P 0 g s .24735 .66562 m .29371 .7219 L .31589 .55604 L p 1 .831 .515 r F P 0 g s .31589 .55604 m .2725 .48878 L .24735 .66562 L p 1 .831 .515 r F P 0 g s .74641 .36173 m .75661 .4388 L .85432 .57513 L p 0 .159 .698 r F P 0 g s .75661 .4388 m .74641 .36173 L .57402 .30671 L p .406 .639 .951 r F P 0 g s .69629 .76751 m .52593 .81144 L .54573 .93578 L p .606 .321 .459 r F P 0 g s .52593 .81144 m .37894 .86883 L .54573 .93578 L closepath p .703 .388 .442 r F P 0 g s .29371 .7219 m .37894 .86883 L .52593 .81144 L p .765 .516 .558 r F P 0 g s .69629 .76751 m .72752 .88952 L .84607 .74861 L closepath p .497 .256 .479 r F P 0 g s .54573 .93578 m .72752 .88952 L .69629 .76751 L p .606 .321 .459 r F P 0 g s .33792 .82252 m .37894 .86883 L .29371 .7219 L p .734 .305 0 r F P 0 g s .29371 .7219 m .24735 .66562 L .33792 .82252 L p .734 .305 0 r F P 0 g s .85432 .57513 m .85152 .50636 L .74641 .36173 L p 0 .159 .698 r F P 0 g s .85152 .50636 m .85432 .57513 L .84607 .74861 L p .777 .656 .1 r F P 0 g s .51745 .89387 m .54573 .93578 L .37894 .86883 L p .052 .515 .891 r F P 0 g s .37894 .86883 m .33792 .82252 L .51745 .89387 L p .052 .515 .891 r F P 0 g s .46405 .28239 m .39634 .35481 L .57402 .30671 L closepath p .637 .899 .985 r F P 0 g s .39634 .35481 m .46405 .28239 L .37307 .38142 L p 0 0 0 r F P 0 g s .2725 .48878 m .39634 .35481 L p .37307 .38142 L 0 0 0 r F P 0 g s .57402 .30671 m .74641 .36173 L p .57693 .32634 L .33 0 0 r F P 0 g s .57693 .32634 m .46405 .28239 L .57402 .30671 L p .33 0 0 r F P 0 g s .84607 .74861 m .84251 .6919 L .85152 .50636 L p .777 .656 .1 r F P 0 g s .84251 .6919 m .84607 .74861 L .72752 .88952 L p .863 .995 .763 r F P 0 g s .24784 .51632 m .24735 .66562 L .2725 .48878 L closepath p .907 .796 .316 r F P 0 g s .37307 .38142 m .24784 .51632 L .2725 .48878 L p 0 0 0 r F P 0 g s .7141 .84357 m .72752 .88952 L .54573 .93578 L p .588 .904 .983 r F P 0 g s .54573 .93578 m .51745 .89387 L .7141 .84357 L p .588 .904 .983 r F P 0 g s .72752 .88952 m .7141 .84357 L .84251 .6919 L p .863 .995 .763 r F P 0 g s .76345 .37837 m .74641 .36173 L .85152 .50636 L closepath p 0 0 .46 r F P 0 g s .74641 .36173 m .76345 .37837 L .57693 .32634 L p .33 0 0 r F P 0 g s .24735 .66562 m .24784 .51632 L .34778 .57872 L p .175 .263 .716 r F P 0 g s .33792 .82252 m .24735 .66562 L p .34778 .57872 L .175 .263 .716 r F P 0 g s .85152 .50636 m .84251 .6919 L p .68933 .48814 L .958 .74 .565 r F P 0 g s .68933 .48814 m .76345 .37837 L .85152 .50636 L p .958 .74 .565 r F P 0 g s .37307 .38142 m .46405 .28239 L .57693 .32634 L closepath p .472 .076 .207 r F P 0 g s .40648 .78257 m .51745 .89387 L .33792 .82252 L closepath p .323 .598 .945 r F P 0 g s .34778 .57872 m .40648 .78257 L .33792 .82252 L p .175 .263 .716 r F P 0 g s .74315 .69523 m .84251 .6919 L .7141 .84357 L closepath p .909 .935 .816 r F P 0 g s .84251 .6919 m .74315 .69523 L .68933 .48814 L p .958 .74 .565 r F P 0 g s .51745 .89387 m .40648 .78257 L .54591 .65097 L p .715 .754 .883 r F P 0 g s .7141 .84357 m .51745 .89387 L p .54591 .65097 L .715 .754 .883 r F P 0 g s .34778 .57872 m .24784 .51632 L .37307 .38142 L closepath p .373 .212 .53 r F P 0 g s .54591 .65097 m .74315 .69523 L .7141 .84357 L p .715 .754 .883 r F P 0 g s .57693 .32634 m .76345 .37837 L .68933 .48814 L closepath p .801 .484 .453 r F P 0 g s .34778 .57872 m .37307 .38142 L .57693 .32634 L p .662 .466 .609 r F P 0 g s .57693 .32634 m .68933 .48814 L p .34778 .57872 L .662 .466 .609 r F P 0 g s .54591 .65097 m .40648 .78257 L .34778 .57872 L closepath p .601 .547 .766 r F P 0 g s .68933 .48814 m .74315 .69523 L .54591 .65097 L closepath p .788 .659 .721 r F P 0 g s .68933 .48814 m .54591 .65097 L .34778 .57872 L p .662 .466 .609 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{273.438, 296.25}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt3ElwFNcdx/Fm9kUzI2m07wtCEgjM5nghMWGRBEISQgJhsBNbxtiQYGMD cZyQrUKlUmWnKkkVR445+uirjxx9zDVHjj76qvRb5q+Znu/T9NCSyweo6qdh 5s3v0//eu2d6ljYe3Lr50caD2zc2RubvbXxy6/aN+yNzd+/5T8X3eN6eNn+Y GvHU403PqzT6X7tq7H9ePH7x+MXjH8XjP6k/cbWe/qvqCU8/s/mw9YhegxOq /Yd5/Y+B1/3B/5/fptVTfzed/gCdUqrVT8U2V23mI9P9IXTPSfe4dP+z6f57 6F5UbUw9lVTdk+qR6ef9Drq3SXpa0j8z3T+H7p2SnpXu90z330L3HknPqe76 0V3T/TPoPgDd75juv4HuIzIyeel+23R/AN3HJX2r+wem+33oPqHaZG33G6b7 Peg+ptqEmatf3X9iX/324X01eAH2XZPzqasoO0Pqc2KqTcgU0o/eNmGfqD96 agzJqOQhIlkboV+8ZiLuSkS/RJQgIqvawHxaNxEfS0SPRHRARF7GIisRaybi I4nokmnRCxFFGYutiBUTcUciyjIWAxDRJmORkYglE/FriWiViFGI6JCx2IpY qIoIzN4WKWkfhHXJ+KQlbN6E/QrCsjJm0xDWJ2EpFaZrmTVht12bJd39EIQN Spl6s2Jftf+80yb2lmuTqGOPQeywjGMMYk+Z2A/1n0R1rEzFVyF0TELteOm1 XK/KJ6D7hGr11LHeTZn1P3d1D4zoSfPG9+WNp+GN41Vv/P6bx+qvD+g36u1K 3PXGMbveVt5YGVSAld8T2X/v9SOPdF+VRHmjjfM2JC+m4myAH+UMHQ5U5w/+ /0xbPal+aoB3twXOADAEQBKAE1WALVJNkMqgipxzLeDh49+pWtRtNFYyC1Q/ UGmgXjfUL4GKh6T6gMoC9ZqhfgFUAiiagL1A5YB61VBvA5UEah6obqDybuot oFIhqS6gCkC9YqjrQKWBOgdUJ1BFoH5iqGuyBmUAWACgDEDJDbwpQDYk0A5A GwAvG+CqADkALrj21wGgHYDjBlgXIA/AIgAlAMpu4IoALSGBIgCdAByrAgLL E9WyBFQBqC6gjhrqMlBU1bLraC5AdbuptZDUiuvYM0D1AnXEUKtAFSJQfUAd NtQloIpAXQIqDVS/m1oBqgTUquv4P0ANAvWSoS4C1RqBGgLqkKGWgWoDag1P sOqpYTe1JCtuGYDLuk1WA3pQxw7jEHrQhC5KaEeToXshdMaEXtg2dD0wKVTY Pgg7YMIWJKwTwq5WhVWm4USDsMDsonGkWBrH/Sb2PMTS2OrSdS3TEDZtws5B WBeEXdGtOcX49qtv9OA/nnInz0Nyd6PZbpNtOo74lImfg/ieRuuCiVYXCfy2 doJTJZOGmgWqt9Eabql4c9TZCFQSqEk3dUYW9f5G22ALpJ4DsC9Nn/paz9C+ H4byB89eY2mwJ7NeBjxaBbf1/NZelalHLwKajY4mdFu7vNAGexn4XHQ+KTUT ugRoPjqahppp3058AXjagm/DZ6RmQhcBLbrQmNmEOqmcUHREtqNUC0zUhicd Fi09L1qQ+ohaAKoNqL1hqBLUR+ed5wFtB7T6KOfpf3r0xm0bvlUqbXiya9Fy dLQdaqaLFfPAd0Tny1IzXYwhtAvQsebQTkG92ut85HVH97rFo5m4A0CPAHMA 9OwQYJ978uVT3b3+Eq31+sAbjeb5g+/5rX7qDUD7o6O9gCZUqys9AejA7qAp qfQVQIcAHYmOZgU9BuhwdLQP0Lygh384tCjz9CCgI7uDtkql04COATocHS0L OgHoeHS0H9BOmbxjgO7dHbRbKh0CdGJ30D5B+wCdBHRIDkOm3dQAUAMyUbuB mtpJakiq6thtalSoVqCmn5caBGpcqBagDgA1+LzUPplXWaBmdpKakqqSQB3c SeqAUP4L6gDNSt5LoAzAyrWNNwTejGoTZtdQD/RHB3RB9rmvnz5Tg3+M4bf6 MhMtETuA7gc0o1pdKW0ymkSHXUtJAC1IpbQb6IuOTgJalkpp174D6D5Ae6RS OjDdBj0bcp5OADokldL5SpMoVToO6LhUSmejvW50NmSlY4BOS6V0XWEbdA5Q 2vCMAnpIKqXrY02iVOkwoMelUrqKug06H7LSIUBfk0o9fZm4Yvq7Mb8t2hcs qJ2p5tCtI4tTiiqpR4XN7777L9dyDmJp194PtZzWrXnOBzTSrdqYu4zzIb1e 8M6A16Vb80nC/zafUolhyZ6myLiQ/mBOnu1nNQvgOY9xA95Z8Dp1m6j21NCI pBI7gZwFsgNLDKAXQtbZAegcoGVA40F0sZlTpQA6HxJNWNouutWLb1i+PQKf dPNLIflW4M8B3w58KjpfAv488G3Ap938MvB06aMgm8BFQFsBzbjRiyHRPNRM fAn4bHQ+F4HPufkV4OliXhb4pd3hqfo08MvAF4HPu/lLIatPAX8R+EJI3u64 VoHvBj4J/ArwLSH5/c3xiR3m7Tcp1kLyMeAvAZ8Pyc804pPVvB7UwcZlIHMh SftVmctAduk2UUN66itwkbUrLk1vOdcByIYEDrmBzh0B7Lew1gEoVy0hq0++ 17OGqExI6rCbapNa4ooKLIJrgKZDovZrelcBLQqaAnQV0BSgLW70TUBbAhNV wWngabUjnmo+6ua3PhLPA0ob2rCo/ULpNUDTghYBpZ1LMiR63I2mYEKXgKdd ayIkb79nfB34uNRcBpQOJ+IhUfvt6bcAtV+fqfcugBcLuTA7PLU16AWKDk7D UvZL7vqr+7qWPgDo4JsAmnZwb0Dm0TNdi/2+U71nzjWS1Z4e1JsKYNTc6pAQ ww72g4p6xpzGJWoYhwD3bdh0v4qKQYtB8PzU06ukE3gHgLhq9VMdAATP8V1A zT00tUBSKqAVR18nsZuS+lh7788GxKZkvNsg9qRq467Yn5nY9yA2I2PbCrGv y2Wx2ObjZ5shFtA33FROKNqMvSxUCig6LzhpqBtA5WViFYA6LFQeKDoBs9T7 QBWkqhagZmS+lICiU017w9tNoIpSVQ6oSamqHSg6lbZ3830AVKtUlQVqTKhu oOiahb3P8EOg2oTKADUoVD9QdHXGfJ5g7uCMmclRmWx0mNQjwHBzwJ1aoHJH eR2w9cHIXgBiAJjPCcydwnaNr1RAR5dFAaY0kKwG9KC2YvYu2U9hrGMQmpMF d0aH1l5y9CoXi82N4VsjWbnaaw+3dVRKxu+witJdzHVYc497rLbEmHQ/qrrr 5+z9wp8Dpjvp7va+5IeSWbIbfDUifiddx0Hpbk7oza8U2E1FffdJ1eoJas5g vL9Iegt0H5N0c0jl/VXSc9B9ULqbXaH3N0nPQPde6W42r+Y3FOySXd+9Q7rb m/i/kPQkdC9Jd3MntfkZBztL6rvnZMp8bLr/U9LNPrbS22zPdbD5FQHv3xIc lzlsfhzBeywh5pcefhS/fPHi8e499vb8Hy1utd0=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.438}, {295.25, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"4d4a3995-937a-4eaa-9361-cc160ef301b5"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(42\\). \\!\\(\\\"elongated pentagonal orthobirotunda \ (J42)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"6e21bb3b-f642-41ce-b058-7839b090bfb5"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.04938 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0420089 1.11185 0 1.11185 [ [ 0 0 0 0 ] [ 1 1.04938 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.04938 L 0 1.04938 L closepath clip newpath .5 Mabswid [ ] 0 setdash .38094 .4194 m .49869 .51438 L .62811 .46497 L p .638 .637 .833 r F P 0 g s .49869 .51438 m .60095 .61893 L .62811 .46497 L closepath p .594 .491 .707 r F P 0 g s .35626 .5716 m .49869 .51438 L .38094 .4194 L closepath p .743 .633 .737 r F P 0 g s .60095 .61893 m .49869 .51438 L .35626 .5716 L p .692 .495 .616 r F P 0 g s .52017 .74652 m .60095 .61893 L p .35626 .5716 L .692 .495 .616 r F P 0 g s .35626 .5716 m .36556 .71535 L .52017 .74652 L p .692 .495 .616 r F P 0 g s .24139 .62038 m .36556 .71535 L .35626 .5716 L closepath p .822 .595 .595 r F P 0 g s .24139 .62038 m .35626 .5716 L .38094 .4194 L p .872 .758 .734 r F P 0 g s .38094 .4194 m .43312 .30344 L .28167 .36236 L closepath p .773 .8 .875 r F P 0 g s .59199 .33158 m .43312 .30344 L .38094 .4194 L p .638 .637 .833 r F P 0 g s .62811 .46497 m .59199 .33158 L p .38094 .4194 L .638 .637 .833 r F P 0 g s .38094 .4194 m .28167 .36236 L p .24139 .62038 L .872 .758 .734 r F P 0 g s .75546 .49667 m .62811 .46497 L .60095 .61893 L p .538 .439 .69 r F P 0 g s .60095 .61893 m .72602 .65677 L .75546 .49667 L p .538 .439 .69 r F P 0 g s .72602 .65677 m .60095 .61893 L .52017 .74652 L p .577 .352 .539 r F P 0 g s .72266 .35868 m .59199 .33158 L .62811 .46497 L p .471 .525 .832 r F P 0 g s .62811 .46497 m .75546 .49667 L .72266 .35868 L p .471 .525 .832 r F P 0 g s .36556 .71535 m .40849 .80521 L .52017 .74652 L closepath p .679 .323 .364 r F P 0 g s .40849 .80521 m .36556 .71535 L .24139 .62038 L p .836 .383 .142 r F P 0 g s .52017 .74652 m .64463 .79066 L .72602 .65677 L p .577 .352 .539 r F P 0 g s .64463 .79066 m .52017 .74652 L .40849 .80521 L p .595 .196 .256 r F P 0 g s .18991 .48996 m .19512 .64369 L .24139 .62038 L closepath p .992 .74 .43 r F P 0 g s .30289 .76474 m .40849 .80521 L p .24139 .62038 L .836 .383 .142 r F P 0 g s .24139 .62038 m .19512 .64369 L .30289 .76474 L p .836 .383 .142 r F P 0 g s .28167 .36236 m .18991 .48996 L .24139 .62038 L p .872 .758 .734 r F P 0 g s .28167 .36236 m .43312 .30344 L .49858 .26675 L p .413 .86 .798 r F P 0 g s .43312 .30344 m .59199 .33158 L .49858 .26675 L closepath p .434 .723 .986 r F P 0 g s .72602 .65677 m .64463 .79066 L p .83526 .72117 L .322 .066 .361 r F P 0 g s .83526 .72117 m .84152 .6094 L .72602 .65677 L p .322 .066 .361 r F P 0 g s .84152 .6094 m .75546 .49667 L .72602 .65677 L closepath p .467 .371 .663 r F P 0 g s .28167 .36236 m .23747 .36817 L .18991 .48996 L closepath p .902 .982 .714 r F P 0 g s .37665 .30633 m .23747 .36817 L .28167 .36236 L p .413 .86 .798 r F P 0 g s .49858 .26675 m .37665 .30633 L p .28167 .36236 L .413 .86 .798 r F P 0 g s .63223 .29237 m .49858 .26675 L .59199 .33158 L p .208 .606 .949 r F P 0 g s .59199 .33158 m .72266 .35868 L .63223 .29237 L p .208 .606 .949 r F P 0 g s .75546 .49667 m .84152 .6094 L .86911 .54374 L p .076 .229 .72 r F P 0 g s .72266 .35868 m .75546 .49667 L p .86911 .54374 L .076 .229 .72 r F P 0 g s .40849 .80521 m .53396 .8541 L .64463 .79066 L p .595 .196 .256 r F P 0 g s .70547 .8388 m .64463 .79066 L .53396 .8541 L closepath p .466 .023 .11 r F P 0 g s .64463 .79066 m .70547 .8388 L .83526 .72117 L p .322 .066 .361 r F P 0 g s .24888 .62744 m .19512 .64369 L .18991 .48996 L p .03 0 .46 r F P 0 g s .27722 .44651 m .24888 .62744 L p .18991 .48996 L .03 0 .46 r F P 0 g s .18991 .48996 m .23747 .36817 L .27722 .44651 L p .03 0 .46 r F P 0 g s .53396 .8541 m .40849 .80521 L .30289 .76474 L p .262 0 0 r F P 0 g s .86911 .54374 m .79051 .37816 L .72266 .35868 L p .076 .229 .72 r F P 0 g s .79051 .37816 m .63223 .29237 L .72266 .35868 L closepath p 0 .388 .805 r F P 0 g s .86911 .54374 m .84152 .6094 L .83526 .72117 L closepath p 0 0 .097 r F P 0 g s .19512 .64369 m .24888 .62744 L .30289 .76474 L closepath p .129 .327 .793 r F P 0 g s .51138 .33521 m .37665 .30633 L .49858 .26675 L p .461 0 0 r F P 0 g s .49858 .26675 m .63223 .29237 L .51138 .33521 L p .461 0 0 r F P 0 g s .30289 .76474 m .43054 .81451 L .53396 .8541 L p .262 0 0 r F P 0 g s .53396 .8541 m .43054 .81451 L p .72452 .78673 L .497 .821 1 r F P 0 g s .72452 .78673 m .70547 .8388 L .53396 .8541 L p .497 .821 1 r F P 0 g s .23747 .36817 m .37665 .30633 L .27722 .44651 L closepath p .396 .122 .376 r F P 0 g s .43054 .81451 m .30289 .76474 L .24888 .62744 L p .348 .481 .852 r F P 0 g s .83526 .72117 m .70547 .8388 L .72452 .78673 L closepath p .728 .988 .806 r F P 0 g s .63223 .29237 m .79051 .37816 L .78066 .48355 L p .752 .386 .36 r F P 0 g s .51138 .33521 m .63223 .29237 L p .78066 .48355 L .752 .386 .36 r F P 0 g s .41056 .48315 m .27722 .44651 L .37665 .30633 L p .523 .27 .472 r F P 0 g s .37665 .30633 m .51138 .33521 L .41056 .48315 L p .523 .27 .472 r F P 0 g s .86911 .54374 m .83526 .72117 L .72452 .78673 L p .925 .822 .725 r F P 0 g s .78066 .48355 m .79051 .37816 L .86911 .54374 L closepath p .951 .611 .331 r F P 0 g s .78066 .48355 m .86911 .54374 L p .72452 .78673 L .925 .822 .725 r F P 0 g s .24888 .62744 m .37942 .6726 L .43054 .81451 L p .348 .481 .852 r F P 0 g s .37942 .6726 m .24888 .62744 L .27722 .44651 L p .48 .391 .677 r F P 0 g s .54528 .76956 m .43054 .81451 L .37942 .6726 L closepath p .48 .57 .868 r F P 0 g s .43054 .81451 m .54528 .76956 L .72452 .78673 L p .497 .821 1 r F P 0 g s .27722 .44651 m .41056 .48315 L .37942 .6726 L p .48 .391 .677 r F P 0 g s .78066 .48355 m .59966 .4584 L .51138 .33521 L p .752 .386 .36 r F P 0 g s .59966 .4584 m .41056 .48315 L .51138 .33521 L closepath p .603 .366 .531 r F P 0 g s .72452 .78673 m .54528 .76956 L .68489 .63883 L closepath p .75 .736 .84 r F P 0 g s .72452 .78673 m .68489 .63883 L .78066 .48355 L p .925 .822 .725 r F P 0 g s .37942 .6726 m .41056 .48315 L p .68489 .63883 L .644 .544 .727 r F P 0 g s .68489 .63883 m .54528 .76956 L .37942 .6726 L p .644 .544 .727 r F P 0 g s .68489 .63883 m .59966 .4584 L .78066 .48355 L closepath p .787 .604 .653 r F P 0 g s .41056 .48315 m .59966 .4584 L .68489 .63883 L p .644 .544 .727 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{277.875, 291.562}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnNtvG8cVh9fkLu/iTRSpK0WJulCSFSe2bF0tS7JiWfEliZpe4qBtLNeo 08KoYaU3KEWLGEUDBAEKtI9+zGP/BT320Y9+zZ/Qx76yO2dmj5bkb8hZ0LQC 1AJ2uNrZPd83Z2ZvJJd37n/+6OHj+59/9uB+Ze/p/SePPntwVLnxm6fuovA5 yzo34E7ViiXm65blFfRXFIX65838m/k38z2f/0q8RMQ++De54K/iJSwWROpH luWIuS9l1ZdcleaqP8mqP3NVUVRRwN/Lqi+4apy3eiqr/shVs1z1WFb9jqsu cNUjWXXEVcuiyhZzv5BVT7hqRVTRXLj+78N7ITF3KFd6DFaKiZXkbF39WT+X q/8KrJ7imGqlX4oXm51opRyv9FO50kPxQgtc6cPBw/qz7WNvcripKovetp/I bQ/ZIiQ2VapqYzffXoiaCEEbjnCIj2WITxlvgxApUVILJthiHGTlRzLYzziY A4Ll2GeIg1XZR4X4hJsUBSGK7JPnEDUO8ZEM8TFbxEGIEbZIcIhFDnEgQ/yY QyRAiAkOEeIQFznEBzLER9yQFAgxI8qQHBqt6bwjQxywRRqEqFEpl7khKMwV tlAhPuAQmQ4hnt97RoNwlUPckiHucoisNoTDIbxJhFrjUPsy1C3OSd7Axp3c BIuysZGnhnsy7D4bFgzDhkHYddARuxKwx4ABQ4CjA1AUFXaX01EyDBsBYTc4 7I4Mu8O2Q4ZhYyDsVQ67JcNu04tcSRynROhBQ0AcAK4xYFMPQImZA4AEAGyB Dl2XqC0fSpw7xGg1bUtKh6K2tAGYdnIfAOyAtqz4UbYPdRRkpGYAbVtPu0Yv ThNNNtAUmW2bwVU/yJ/BIzqFHTWNkJwhNN92CAaE6o+EjdB+HVQt++/zA8qc Su4mwNsAj04HaK8oAPxmb/Co9UXdYUWNVoFXCsvS4CowiAADdEpFBoO642XX BknDLkAG601d4E7uKBNl4y63pFeKAiV0qYKSMgyU1oIpbQClGFBCF2BIaVR3 mm9SCgOlS3qlOFBCl5Wo48aA0kowpXWglABKEUOlsqGSDZQu6pWSQAldv6OO qwCl5d4oofsTlKUJoHQFKDlA6R2ptAaU+oASuutCSpNnq4Q6bgooXQZKEaD0 tl4pzScNVhLzC8BgGhgsBTNYBQaZpqRYGvwswF8C+CjAX9Djs6KkRWgg1LqH rgBoTkKPD/9FmZ8C5HlAvgjIMUB+qwNZLXPxYnJ73y1p0QQQWQAi7/RGJMoZ GQUic6IUZwg3bCs+DvCLEr9siE8xvgTwVVGK07ibr2+/PlG1L55/KyZ3N3ZL qp0Bconu5bLcSQUgNyJKcUJ3G9EqF2O58WByV4BcHsj1c+YyuqvamFRvlcuw 3CCQSwK588HkSiyXAHJp7tYxIDfAcrneyI1wt0Z1bx/E5CGiVW6U5RJALgXk FqTcZSDXD+TKnLkQkCPyIvCaZK9w914oaVVR0i3tEsDPiZJq0wA1Hww1RaVc 5qIIdxlAz1Mpl/3n5Yl4dU/3WvySYQ8g/BWAn6fSZryaQvKI0Kox59ModsGd a2q2O7kWoux8dJ4LlooqUFoBSjWg5HAy0MGu1huRWSASA7lB1w6vQGkVKM0A pTjnBp3BZ/UiprsLEpkGIimQG3SB/QqU1oBSFSilOTfoonbm9YlkQW7Qjewr UFoHShNAKc+5QfeK08FE0ADeACIVIDKgdnFfbviNsoBjBWlcBRrjQKPI+UDv w0zpTztZw45BImUgMtQ0VkQeZl4ffliUtGi6e+im7rKnCTrma7OX8mpv8CMA Pw7wk8HwaOhtAfzw2eKHAL4SDJ8xTP42wJcAfuJs8aj1bYaeKX5Hdzdi0Poe 4QsAP9kb/HWA7+8NHo38XYDPA3w1GD5t2HpTPGp9mxONKf5dgM8atr5H+AzA T/UGfwPg02eL7wP46e7xaOTfBPgkwM+cLR61vs3lRp9h8vcBPm7Y+u8HHr3v lDLEvwfwUYCffX34CMDXeoO/BfCOYetnguHRyL8N8LZh69vgk4atR/gwwM/1 Bn9H95Z6d3j6PJnuDPVQxw+lyf3fOh8MRN84oEWheuXghaq9d/ydmOR/E8Dg LpV2g0FwOH3hhYJEADwkSlpU1hqcJl7X9lkdXn1PNQHIDpOHAfl9UdK2ix14 tFIfAMQYUOrQtJOTl+TaCaWqXBThEDTB0IJ2TNkMVeA23GXATQFuH3NzHfZf xXU7RpSNO9C8XmTFUCTDIukOh1FPJBxMZBWIJIFInkWSHU4nnogNRNAhRb39 ugZE0EAfYJFYh7O6J+IEE1k3FCmxiG0oEgUi6BSjRDaASByIDLOIRR9zex7Q Ida9A0rGKDvcBNB4MOhVw4aPUSn3/+N/fqcOlA33NJ5BEhigKzv1OckmMIgB g3KTgbK4DgxSwQyuGRo050BNdBi/xkf9TDD4FoBHtfCwHy6GoMJvgCwEFNnu QsRWOv69cgUo5YASuuVRSjtACV0KICWHc7MMRPKvTyTKIktApB+IoDtw9fnq 9S5EYqCT3gZKhWBKu0DJMVSKc24uAJEiEEHvzSiRd4GIbSiSZJHzQKQUTORG FyIp0Ek1oDQYTGkPKIUNlfo4N7NAZBiIoPduF/QiKDejQCTDIlNAZCSYyM0u MpIFnVQBSqNAid5WV7cHJLIPRNDNFhLJcUbKfP4ZB9AyQ9WX997rAppn6Aho cwXgRxmvvi8pn+hy/HiaLPJvRRZAwksAPgHgp5/bqW+w3m4DLwP4ALe3CJCT ADnI7XUrTuovvPHnGchn4uwGA03LiwzvB/AqgJeoVHdqLlvxLwVGD4KkZ4DE NJAocAZCQqBpF1RfuL6LXVAfDHEa0sBgBhicfowfBgYqG+837Qa68TfM+CTA zwJ8thFPc/JOXD2X2QhFbR4F+Y8CfA3gM74DnxoEsCeU0ofiJaRL/hi3PgLw 8wCf4tbbAKqecDnw5aHd8abM+DDALwB8gvEOwKuHjH7AbUbQSlPyRSe9BVAx RkUASj3N9UPxEpZHzFbUuCjpa4WoLRHQk6hV8p7e+gmjBnVDiha5V6Uv6+IZ EHjMtLlVUYBSjxaePiE90HaXKTAKXUeFGBUDKHlPrB5RD9e3LbrrpN4o6I6W tKjC0D71xoQPSpPlIdX9G4E+5TblQPh+Dr/I4emtl7DOX4V9wGHTbc/iayIs qcZBMPX860N12PQlQ0wp3aUbLdoSkZuGERqx8i5Q/ZhBCyPe9tJ5x5ChHg/+ NejUqO6+hRbtAgDaF+RdkvqxhpZGOLobWFq0BxjoIKYenX6CGSHACHGi9g0Z 8o5G/qSEq93EOD1C3QLxQjy05ZWu9Vt5vNu2LM/rZZ22u02l49/au2hQ14nW H3Ar99tsqR7aPwadLFPccoUir8vUb3a0sJr7XgRSvy3wF8DYBqvL6w3rGe+M m2IlypG8EJA/L9LKXvcF8/pGBfsKsC+K1emA/qFc6WsmVkWV+OhMHqgt6xuw /QCvpH445O+8fYSr5MCz/iFe6AdNvpALyO579BMub+b/P+etc/8DZIrhEA== \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 276.875}, {290.562, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"dd8e6767-b13d-48de-93c5-7a7d8e1fc804"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(43\\). \\!\\(\\\"elongated pentagonal gyrobirotunda (J43)\\\ \"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"f4e83a1f-d253-45da-aab9-141bd8477c75"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.02393 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0308504 1.09297 3.33067e-16 1.09297 [ [ 0 0 0 0 ] [ 1 1.02393 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.02393 L 0 1.02393 L closepath clip newpath .5 Mabswid [ ] 0 setdash .31439 .40745 m .41849 .50318 L .55916 .45598 L p .693 .678 .831 r F P 0 g s .41849 .50318 m .52834 .60578 L .55916 .45598 L closepath p .661 .545 .712 r F P 0 g s .28442 .55964 m .41849 .50318 L .31439 .40745 L closepath p .795 .677 .735 r F P 0 g s .52834 .60578 m .41849 .50318 L .28442 .55964 L p .744 .536 .613 r F P 0 g s .70073 .48786 m .55916 .45598 L .52834 .60578 L p .619 .505 .701 r F P 0 g s .52834 .60578 m .66837 .6413 L .70073 .48786 L p .619 .505 .701 r F P 0 g s .66837 .6413 m .52834 .60578 L .46541 .73151 L p .644 .418 .561 r F P 0 g s .46541 .73151 m .52834 .60578 L p .28442 .55964 L .744 .536 .613 r F P 0 g s .69535 .35544 m .54836 .32574 L .55916 .45598 L p .569 .583 .827 r F P 0 g s .55916 .45598 m .70073 .48786 L .69535 .35544 L p .569 .583 .827 r F P 0 g s .55916 .45598 m .54836 .32574 L p .31439 .40745 L .693 .678 .831 r F P 0 g s .28442 .55964 m .31038 .70343 L .46541 .73151 L p .744 .536 .613 r F P 0 g s .19772 .609 m .31038 .70343 L .28442 .55964 L closepath p .881 .626 .548 r F P 0 g s .19772 .609 m .28442 .55964 L .31439 .40745 L p .942 .832 .706 r F P 0 g s .31439 .40745 m .39186 .29354 L .24833 .34842 L closepath p .812 .862 .885 r F P 0 g s .54836 .32574 m .39186 .29354 L .31439 .40745 L p .693 .678 .831 r F P 0 g s .31439 .40745 m .24833 .34842 L p .19772 .609 L .942 .832 .706 r F P 0 g s .46541 .73151 m .6081 .77142 L .66837 .6413 L p .644 .418 .561 r F P 0 g s .76126 .7252 m .66837 .6413 L .6081 .77142 L closepath p .59 .358 .532 r F P 0 g s .66837 .6413 m .76126 .7252 L .85894 .61642 L p .473 .364 .649 r F P 0 g s .70073 .48786 m .66837 .6413 L p .85894 .61642 L .473 .364 .649 r F P 0 g s .6081 .77142 m .46541 .73151 L .38759 .79146 L p .634 .226 .252 r F P 0 g s .31038 .70343 m .38759 .79146 L .46541 .73151 L closepath p .714 .336 .332 r F P 0 g s .85894 .61642 m .81712 .4651 L .70073 .48786 L p .473 .364 .649 r F P 0 g s .81712 .4651 m .69535 .35544 L .70073 .48786 L closepath p .502 .528 .816 r F P 0 g s .38759 .79146 m .31038 .70343 L .19772 .609 L p .696 .171 0 r F P 0 g s .64976 .28987 m .49498 .26015 L .54836 .32574 L p .36 .667 .974 r F P 0 g s .54836 .32574 m .69535 .35544 L .64976 .28987 L p .36 .667 .974 r F P 0 g s .39186 .29354 m .54836 .32574 L .49498 .26015 L closepath p .506 .752 .984 r F P 0 g s .24833 .34842 m .39186 .29354 L .49498 .26015 L p 0 0 0 r F P 0 g s .38759 .79146 m .53647 .83537 L .6081 .77142 L p .634 .226 .252 r F P 0 g s .6081 .77142 m .53647 .83537 L p .79979 .75704 L .282 0 0 r F P 0 g s .79979 .75704 m .76126 .7252 L .6081 .77142 L p .282 0 0 r F P 0 g s .17106 .47629 m .19661 .63261 L .19772 .609 L closepath p .767 .526 0 r F P 0 g s .32149 .75288 m .38759 .79146 L p .19772 .609 L .696 .171 0 r F P 0 g s .19772 .609 m .19661 .63261 L .32149 .75288 L p .696 .171 0 r F P 0 g s .24833 .34842 m .17106 .47629 L .19772 .609 L p .942 .832 .706 r F P 0 g s .69535 .35544 m .81712 .4651 L .86 .47877 L p 0 .233 .736 r F P 0 g s .64976 .28987 m .69535 .35544 L p .86 .47877 L 0 .233 .736 r F P 0 g s .85894 .61642 m .76126 .7252 L .79979 .75704 L closepath p .078 0 .236 r F P 0 g s .24833 .34842 m .25079 .35379 L .17106 .47629 L closepath p 0 0 0 r F P 0 g s .41265 .29597 m .25079 .35379 L .24833 .34842 L p 0 0 0 r F P 0 g s .49498 .26015 m .41265 .29597 L p .24833 .34842 L 0 0 0 r F P 0 g s .86 .47877 m .81712 .4651 L .85894 .61642 L closepath p 0 0 .536 r F P 0 g s .53647 .83537 m .38759 .79146 L .32149 .75288 L p .005 .523 .858 r F P 0 g s .57476 .32865 m .41265 .29597 L .49498 .26015 L p .516 0 0 r F P 0 g s .49498 .26015 m .64976 .28987 L .57476 .32865 L p .516 0 0 r F P 0 g s .86 .47877 m .85894 .61642 L .79979 .75704 L p .986 .902 .618 r F P 0 g s .29817 .61536 m .19661 .63261 L .17106 .47629 L p .371 .273 .612 r F P 0 g s .33408 .43378 m .29817 .61536 L p .17106 .47629 L .371 .273 .612 r F P 0 g s .17106 .47629 m .25079 .35379 L .33408 .43378 L p .371 .273 .612 r F P 0 g s .32149 .75288 m .47826 .79855 L .53647 .83537 L p .005 .523 .858 r F P 0 g s .53647 .83537 m .65425 .82976 L .79979 .75704 L p .282 0 0 r F P 0 g s .65425 .82976 m .53647 .83537 L .47826 .79855 L closepath p .26 .707 .958 r F P 0 g s .86 .47877 m .75262 .36527 L .64976 .28987 L p 0 .233 .736 r F P 0 g s .75262 .36527 m .57476 .32865 L .64976 .28987 L closepath p .658 .18 .105 r F P 0 g s .19661 .63261 m .29817 .61536 L .32149 .75288 L closepath p .404 .493 .836 r F P 0 g s .79979 .75704 m .65425 .82976 L .75784 .71382 L closepath p .801 .962 .914 r F P 0 g s .79719 .53046 m .86 .47877 L p .79979 .75704 L .986 .902 .618 r F P 0 g s .79979 .75704 m .75784 .71382 L .79719 .53046 L p .986 .902 .618 r F P 0 g s .25079 .35379 m .41265 .29597 L .33408 .43378 L closepath p .54 .274 .462 r F P 0 g s .47826 .79855 m .32149 .75288 L .29817 .61536 L p .513 .575 .855 r F P 0 g s .79719 .53046 m .75262 .36527 L .86 .47877 L closepath p .93 .619 .43 r F P 0 g s .49967 .47195 m .33408 .43378 L .41265 .29597 L p .62 .366 .512 r F P 0 g s .41265 .29597 m .57476 .32865 L .49967 .47195 L p .62 .366 .512 r F P 0 g s .75784 .71382 m .65425 .82976 L .47826 .79855 L p .683 .704 .863 r F P 0 g s .29817 .61536 m .46157 .65891 L .47826 .79855 L p .513 .575 .855 r F P 0 g s .47826 .79855 m .46157 .65891 L p .75784 .71382 L .683 .704 .863 r F P 0 g s .57476 .32865 m .75262 .36527 L .79719 .53046 L p .751 .522 .584 r F P 0 g s .46157 .65891 m .29817 .61536 L .33408 .43378 L p .595 .484 .698 r F P 0 g s .49967 .47195 m .57476 .32865 L p .79719 .53046 L .751 .522 .584 r F P 0 g s .33408 .43378 m .49967 .47195 L .46157 .65891 L p .595 .484 .698 r F P 0 g s .75784 .71382 m .64033 .60207 L .79719 .53046 L closepath p .821 .709 .741 r F P 0 g s .46157 .65891 m .64033 .60207 L .75784 .71382 L p .683 .704 .863 r F P 0 g s .79719 .53046 m .64033 .60207 L .49967 .47195 L p .751 .522 .584 r F P 0 g s .64033 .60207 m .46157 .65891 L .49967 .47195 L closepath p .648 .536 .713 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{281.375, 288}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnEtwHEcdxse7s++HVitrJa1eK+stLFt+yZZkWW/Jlh/gEAIxwSCcQOyC BGxTUBgKClV4VFJFFZXcfMwxR105cuSYq48cc8x1mf53z5fR7jdST+RVUZRd Nb3j7pnv9/W/e6Z7Xrq98/Tdd36+8/Thg53a1uOdX7z78MGT2ub7j72s+AnH OdHjLbWao9brjuMn8q+qEvOfV+uv1l+tt2T9b+rHVcfdRzrjz+onrjLc+q7j JNTaX3TRLrbNoehPuuiPKOpA0e91kfxIRhVFv9FFv1U/SZUxhKInuujXKJpE 0Xu66Kn6SamMGRQ91EW/VD9plXEZRW/rovdQtKSKpIY7uuhn6ierMhZVUUyt xeufTXbrrermn3Nfby6sjJyq3PqHK0/qz+/t+osQZ6GSJCo/0Co/gUpciZiN jIy3oy92FmIZJSZrRuJtVClJJHIqdRFB2bFA/NzTYjvwkyJiJfg5BbESEXtT i92HWIaIVeCsX4mZUk9MBNtRTSP2FqqZJ2JVOKvAWYU4e0OLvQlnBSJWg1gb xHqI2He02BsQKxGxUVQzA7E+VM5IvI7KlYnEFPzEIFEjfl7TYnfh5yQROws/ Q0Tirpa4A4kKkTgnqc771+7HatEHWT/qZXRuQaeb6MwQnaRKzXmi2d4dLXsD slVLeznIsl5xW8tuQrbPUrYdsmVU3YhtoEkHLMUqEGsjHrcDsgndA+xk+yCb I7I3tOy6+nH1kW0nOwTZFKpuxNYg5u1zb+W57KdUBy21x6HtEsubAUq87kPM RupMrCD9lqjTKpURZkvLrkI2QWR7LWXPq1RistkomySyPZayFyXdH451DVgB IE0A7PALBYjvDS27DNkskbU9O8xCdr1RNkdkO6PImrwvnj+SHremAUsAFAig wxJwWVIXAANZDTBi+oBtZrAzOWNc4YwVzbiGepQIgw04jDH31TkaDD9gyxq0 CFCZgIoEdD4UFA+CvPFKpfs77WIAGtNDVTOUjc2sdvMEGifQqxp6FTXtJNCc ZU0XLKELAajUtItAs5Y1vUqgLoHOa+gCoD0EmrasKYMmCHROQ+cR3iqBsmkl q+k1S+iVANTMrZqhCcuaMmiSQC9r6BygAwTqWtZ0iUBTBDqroVcArRFozLKm DJom0EuN0CGBukGoWr9IGCuWjIuacRmM4YaKOREAGQK4EACYIjUrURBBSRaL 0ioBZAngvAbMogajWvb5sz2J1BmivWapfU5rX4L2WCA6HkAtXnt4qZzeJwhq naByBDUTQDXEaZRAM6jfMIFuEGieQM9q6MUD61cEatASVSCoMwGURf3KCGoP gW5ZQqc19AKBspp2oaadltAigZ7W0PMI6gRB9QJVIqjrBNVGUN8IoBrqN06g g4DmLaElAp3S0HOW0BG0ZJJAty2hk9Ggk6hpzBLaTqATGjpDoKxNp1UqWbcI oEwA4xpwlgAmCeCMpDrv0w/35NxsixoLoE6HarvQNvo3w+SlZx/gnwWo0b+3 eO2j0sN74r72+Y9c1r4MfJzg2YFeMtM9H28sjIf3ENYtmQPX0kEBUY8rekPz jh7dSIIY2TxsINGhaJWlJLHEBpwcseRGs8TGA2YpbWkpQywlWmMpQyyxaUcK PSgdboSdYdkAzYxkiRE21UqS2LTIUo5YYjPLBLGUaY2lvEqlGVhsYmikfDT8 iCW+jURk+YBbFMXW2CgRG0v8bkxbaxy0hzkwj1ZCoWy6NWwJLRPoIqDtrYF2 EOg8oF7B53v/9Ht+1IqfsvTQSTzILcR43bfQcPgd0OxHMVIhRi4gGAlipEUR 6SJGZmAkFc0Iu8QZsjTSTYxMw0imNUamiZEqMTIFIznLPjIWbqRmGZFeYmQM nbVwfEb6MFaMIA5tlg3yEvADJA6DgbPVsRkZJEb6YKQjmhF2D2LQsosOESM9 MNJ5dCMDlhE5RYx0oot2HZ+RYWKkjIj0ECNslHsJRkaIkTYY6T0+I6PESB5G +qMZYTcE+y076zgxkoGRwaMb6bOMyAQxkkBnHTo+I5PESAwRGSZGyq0xMmWu /X0j6tdR965b4oB1DnEgBsaODyo9UrLc+md7L0ypmn4qCxHjP0uMVKOcLCQr TYywHtnRGiNDMJInRmpHNyKPPOUli9ARXrJKBM9OERHx8kBbrizj9R8/+9yU 7n78Qi2OeTkuZOIjWSeJr4Gj+8ojLGnqy0tdfUQ2m+uBuW5ijp3gWS829w7Z k7EEzBWJubRKJetU2PWNZPURc2wYZJE70JzMdJp9ZRG0gbArXymtEV/Vr+FL SqrESBFGqmE3QOK6bZuNsAkLaz3zbGAuECDPiJjpJpbKsNRJLBVgaZJY6o5m aZ5Y6iKWKrDUHnYvT7KmiSU2v2RDtnlss0AsVYilKiwViKUULJ0jltjcm0XJ WLpqaakfB1s27Oa9ZF0ilk5Gs7RILLHjrIYoJclDG9/QHDHELpRYs5lHfNeI oZPE0AgMOfLc3fejN1skRsrRjCwRIx3EyAQaa4VAS5ZQ81R1mUDLBDopqc7z oAJmeHbdfgB+heDbLfGrBF+Mhl+1xE8Q/BrBs5sm7IrUPD1fI/iSJX6d4PPR 8OsE32YZfIbPWuLNCwsbBM9mAgy/QfC29/AMfpPgC5b4TYJPR8NvWeJZ228R PLuVyu7XmVdUrhN83hJ/neCT0fA3CD5nib9B8K4l3rwLtE3wWUv8NsHb3tk3 +JsEn7HE3yT4WDT8LYJn1wes52t8Ioj3H6zQ3m7e+LptiWQ1viWpuw95MO0O oaUsabdVGvpwzLwr900CSFoC7gQa0G8s9vjRoL5FUIkoKHM7PRRwlwDcKMEy TfPvL7+QxVHz2maaeYPxNUJj18zhHSEepHldX6X7o5kNx3/7CPhtgncJnj3k Ny+Ivk7wsa9x2vPxSYJPheP1t2CJIF4WdfBOHXKi95FpgkyGI/XncO4+ZAht i9CyhMbeeTFv+H63Ib5hFdskqDxBsTd+DOp7BHXYTMVHFSVNBFGyKA3z5rd8 PyiH7mGzL1+0ZDpkUPQrPfn6UnYYP2Qu6+uVG+IRMPeWX/fdF1Ksiszzu4On 6fu0ZQ/zdv39QDRFddfsMnTIdYev2A5F82XCjwIdzyiqxf8ctEl0OSykImo+ 7NhBqyQg1kPElohYG8T0FafzAGIpJSZbV4jYtbAeJPvqCzjnHYil4axMxBaJ WAFi5rOjn0IsC7EiEbsadhgFP8R6SJo2hwrniOwCkc1B1nzu9ggei/CYJmJz RCwLMT0N1l9mx/VA6Yu5ROwKEctAzHxA+T7ESqimt486txstakrO5ZKl52fO 4/06/mssyot/0M0SnQT86FmK86v9Ombzlb0vRULqOhM2tAU/tZWP6c19K9+P q3TM5/PNEnFI6HHX+R2s5BuseIt3GHipnBWHw0b64CfNf4BYFn7y8NNHpia+ gB4m9N8UEIEMcdMGNxXqxsGH4x9AJ0V0OqBTarBkWvH7WuWvUEmgOt2oTkbt K6Xmo/yP0P9dAu0FNI454A/1jn/nJ0bZpKp2k++TzZ8s+AfbWB1o3nbtau2R 3u4T9SM7PtMZMlb+D/39iVfr/9/rzon/ApoK8vM=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {287., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"61916195-ed8c-4d1d-963c-67d4df100dab"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(44\\). \\!\\(\\\"gyroelongated triangular bicupola \ (J44)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"ee12c7aa-d691-4e9d-b3dc-14bed982ff48"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.11693 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0694759 1.20506 -1.11022e-16 1.20506 [ [ 0 0 0 0 ] [ 1 1.11693 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.11693 L 0 1.11693 L closepath clip newpath .5 Mabswid [ ] 0 setdash .71619 .71261 m .54672 .5381 L .35467 .65971 L p .735 .499 .571 r F P 0 g s .54672 .5381 m .39578 .40175 L .35467 .65971 L closepath p .841 .733 .745 r F P 0 g s .61854 .31098 m .39578 .40175 L .54672 .5381 L p .649 .724 .903 r F P 0 g s .54672 .5381 m .76262 .45951 L .61854 .31098 L p .649 .724 .903 r F P 0 g s .71619 .71261 m .76262 .45951 L .54672 .5381 L closepath p .596 .498 .714 r F P 0 g s .71619 .71261 m .52611 .84646 L .75908 .77714 L closepath p .294 0 .071 r F P 0 g s .35467 .65971 m .52611 .84646 L .71619 .71261 L p .735 .499 .571 r F P 0 g s .76262 .45951 m .71619 .71261 L .75908 .77714 L p 0 0 .322 r F P 0 g s .35467 .65971 m .28897 .80674 L .52611 .84646 L closepath p .806 .477 .432 r F P 0 g s .35467 .65971 m .21127 .53466 L .28897 .80674 L closepath p .952 .683 .491 r F P 0 g s .39578 .40175 m .21127 .53466 L .35467 .65971 L closepath p .885 .776 .737 r F P 0 g s .76262 .45951 m .81111 .49898 L .61854 .31098 L closepath p 0 .049 .557 r F P 0 g s .75908 .77714 m .81111 .49898 L .76262 .45951 L p 0 0 .322 r F P 0 g s .39578 .40175 m .36556 .31771 L .21127 .53466 L closepath p .869 .985 .839 r F P 0 g s .61854 .31098 m .36556 .31771 L .39578 .40175 L closepath p .626 .886 .988 r F P 0 g s .52611 .84646 m .53198 .88592 L .75908 .77714 L closepath p .071 0 0 r F P 0 g s .52611 .84646 m .28897 .80674 L .53198 .88592 L closepath p .442 0 0 r F P 0 g s .61854 .31098 m .62087 .37336 L .36556 .31771 L closepath p .468 0 0 r F P 0 g s .81111 .49898 m .62087 .37336 L .61854 .31098 L closepath p .744 .225 0 r F P 0 g s .21127 .53466 m .36556 .31771 L .3385 .43414 L p 0 0 0 r F P 0 g s .1697 .66804 m .28897 .80674 L .21127 .53466 L closepath p .977 .675 .346 r F P 0 g s .3385 .43414 m .1697 .66804 L .21127 .53466 L p 0 0 0 r F P 0 g s .75908 .77714 m .7103 .67055 L .81111 .49898 L closepath p .984 .902 .589 r F P 0 g s .75908 .77714 m .53198 .88592 L .7103 .67055 L closepath p .838 .943 .892 r F P 0 g s .53198 .88592 m .28897 .80674 L .1697 .66804 L p .254 .581 .944 r F P 0 g s .81111 .49898 m .7103 .67055 L .62087 .37336 L closepath p .912 .664 .551 r F P 0 g s .3385 .43414 m .36556 .31771 L .62087 .37336 L closepath p .559 .108 .137 r F P 0 g s .1697 .66804 m .42949 .74701 L .53198 .88592 L p .254 .581 .944 r F P 0 g s .42949 .74701 m .7103 .67055 L .53198 .88592 L closepath p .809 .865 .89 r F P 0 g s .62087 .37336 m .7103 .67055 L .42949 .74701 L p .796 .609 .649 r F P 0 g s .42949 .74701 m .3385 .43414 L .62087 .37336 L p .796 .609 .649 r F P 0 g s .3385 .43414 m .42949 .74701 L .1697 .66804 L closepath p .555 .468 .712 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{269.312, 300.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm8lvFEcUhxvPZnvGMx7vGC9jsFmN8YJ3gw1e2QkECCQEDCEBIUSCSRQl UaRIkSIF5cYxxxxzzDV/AsdcOXLMkasz9V71z037156ynVGkyEi9uJfve6+6 u7q6priw/PzhgyfLzx/dXy4sPlv+/OGj+yuFhafPiptiuzxvV01x6i14Zn3V 8/yZ/Muamf1jZ31nfWf9f7X+0izqzfP+qW5YMYsusyG/ulKcx8zq6p/jWic8 0IPumUXebBmUg+I4yB74SeA4i3jRUjCTlzB/TcppiXdO8x339dxls6gwW1Lm PFGMhkIqTl6FzHWb/efdVcRdIDIGkVgL+F1EjCDuKEIWMS0OP4o+gogTxMdh RCOiOEQQCYK4rQghibsVUfQQRJIgPlLEbSA6EUWXI+LDMKIbiDaCSBHELUVI MLYE/ERaCKKSIG4qQoJJmj1HEUU9QVQRxAeKuAXEEKLIEUQ1QdwII0YRRTVB pAniuiIkn5TZM4UokgSRIYhripB8Ks2eGURRPHJF3+ByXpac/b6efQNnzweK Yf3hV8OHr8kqVl/9+ps9/O/fX4ifIa4oQjKv0grAR6RCiOLkyTPLIn9POdfA WSv9GuEkghyExFCXw6i1e6GOhlScV6hoPeySwqRgq7WO8ONqIrC4zEvfKRcV KxcgjafGPngRWFvfrYddUNgVwHoCFcF6WJLEyB6I82FsF8pxP8GmECNL+JzC 5DJnNE0/xiMEVkliZM/9WcXKJa8xe5qB7SfYKsTIEj4TgGW09vFhwwSWJjGy 6m1JsZcQYw7lOEGwGcTIEl5UmNw/WU3Ej3GawGpIjKwWX1Cs3Ek5sycB7BzB ZhEjS3g+AMvamss0EjytvfToMwRbS6Jlr605FcgNWmv2XIqC2WbGesSsIs4B cZkg6kg87GV+WmFyM+ajYPWIh6V0KoDIaQX8YuUPe1ARJsCLBNtAYmRtlhkV nIEg5ihoRNws9WnFLqEcXbHNJG7WXDsZEPh35jrBBSJoQdysOE4odhHYpGPc u0ncrKU6pYIFFIyroBVxs+KYVOw8sJWOxdEmc94wnwpAc1rzuMXahlhZEYwr dg7Yakdsh33pBWOV2lJ4s8jdldeJMLVM/Si9MSWeBjHjSCyE7gKDDsIk3RpH WJeZy6ZRRZxCPK6IfchwRBEzQOQcb5BuIIYDCEmk1jGKnkCp+DfBoMKmAcs7 wvYT2IDCTiK5OsfkNoCdAKzeMbK1khoKICS5hq0iphCFK2Ltkh9XxCQQTZu5 8fxSefNS7uIgTFJq3j5sArCWTT1fccAs0PLGkelux+u/MW8MvNYt1FAB3nCA J/nuceS1B2pnn+cXYjmho4C2O0L3hC5zcSpW/mb+7tM1FBBII7CjjAJpVndu 5gXrILA3xwgyKDgKWoggVkIgGXSVUSAfNHu30DjzBfFowTAy2Of4PG5FIBl0 b6bV6iAYDgj8b+dyCI5DsH8LDXtfkHARHHAU1BFBsoRAukAOllEgHTaHHAV5 IkhFC4aQwWFHQa1jBiMBgWRwxFGQc8wgKJCeul5HQZYIKqMFgxD0OT7J/6qA ZZAhgqoSAul8PbYNAcvANs4HIOh3FKQdM1gnGHAUVG9BIF3cg46CKiKoLiGQ dseQo6CSCNLRgn4Ihh0FKccMxrYqSDpmEBRI+3GkPIJjEIw5PskJIshsVcAy iBFBTQmB7Bkvj6APgglHQYWjYDwgkE+0qUgB/10jtz1o/B2oZ77gI3lHwTvh UAomuHwJWGxDmKhKIeyuUy/fmsmLvEjnzTwWRZwIlFiIWGHmsmmUYJfMXAqx YvXV6zehK84uzkTgng2p4mYej6oN55FBIqD66+0bKWp23SYCNUhIlUJW7NUx g6xSoopDZXUb2AaIrQo29i6fgq06lFhxKparmZd+kqx+kOjTKFfWnBuDvobo Y0TP6jrb3TpE9Flkz9rDx3FZa4k+QfSsLt9An4eefbH0I/v67euPE309Cp99 tPZC30T0yc3ph4m+Cdmzr/4D0O8m+kqiZ00Bqx8h+hbo24i+G9e+jeiriJ41 1myn/CjRt6LwWX9aAdl3EH2a6Flr1+rHiL4d2TcSfRv0XUSf2Zx+nOg7oWcd ts3QdxN9lujZ95bVTxB9Fwqf9aw34NofLI++B9mz3ypqkf1hoq8levY5a/WT RH8AevbjSxr6o0SfJ3rWo2F/m5si+kMofPZzWgr6fqKvJ3rWY2P1J4i+F9mz nznjuPZDRN+wOf1Jou+DXv2+Xd/kw0TaRKSsp9BKp4m0H9Lx7QtmogR+Ub5+ I5JRomqx766ASiZTHDPR+AGCZ0W1uzT+lCOeXf7W0vjTjvgBgm+T+bofJCx5 1rHY2WPTviF5zpF8jJA7zFw+B+zoh3lHGKtcOsOwBQI7RmC9BFYIwxYdYazW XYtsNhrG0mRvkLUys6Nslhxh+6MurcDssKIzjmn2RN2BArPjqM46wth7Wh5G 2WQHjp1zhO2NqjgkMjvs7rwjrEBgzYDZcYYyzEmO6SOIzqg6UxB29ORlIHoJ op0gGoGwQz6vAnGYIPZEvY8EYYetXgfiIEG0EkQdEHb87U0gegiCNcbzQAQH Essx+wiiOapVIwg7IvoOEF0E0RjVLpNNdmj3PSA6CKKBIGoQxbIiHgDRRhB1 UW1jQdiR8g+BaCWIPEFUA2EH9D82C6m8mwkiF/V9IojPFPEUUTQQRDbqC0sQ jxTxDIg6gsgQRAqIx4r4EohagmBdDEkgnijiayCyBFEZ9aEsiKeK+BaINEGk CCIOxBeK+B6IKoJIkp4Z/95cUcAPAKQIIE47W4p/faVn/4iz4+TsWEhvlp4t Oc/7CedW2J6twLlmkn3f6ME/m4U/6MrUsvZYjeY7PegXHPS9bjDz//q/zuys 76yXe93b9Q/ymxaN\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 268.312}, {299.75, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"c0fe18c7-8c89-4e25-969c-23fae12f546d"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(45\\). \\!\\(\\\"gyroelongated square bicupola (J45)\\\"\\)\ \"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"5e52e4b9-22ad-4d16-bcac-9032d743a5c0"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.07202 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0510866 1.15306 3.33067e-16 1.15306 [ [ 0 0 0 0 ] [ 1 1.07202 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.07202 L 0 1.07202 L closepath clip newpath .5 Mabswid [ ] 0 setdash .51004 .38261 m .63648 .55068 L .79827 .48211 L p .574 .585 .827 r F P 0 g s .63648 .55068 m .7619 .70207 L .79827 .48211 L closepath p .519 .429 .693 r F P 0 g s .58493 .83976 m .7619 .70207 L .63648 .55068 L p .637 .452 .616 r F P 0 g s .63648 .55068 m .46764 .6818 L .58493 .83976 L p .637 .452 .616 r F P 0 g s .46764 .6818 m .63648 .55068 L .51004 .38261 L p .737 .633 .744 r F P 0 g s .46764 .6818 m .36298 .82029 L .58493 .83976 L closepath p .737 .467 .52 r F P 0 g s .22018 .64732 m .36298 .82029 L .46764 .6818 L p .853 .636 .608 r F P 0 g s .46764 .6818 m .33688 .51682 L .22018 .64732 L p .853 .636 .608 r F P 0 g s .51004 .38261 m .33688 .51682 L .46764 .6818 L p .737 .633 .744 r F P 0 g s .33688 .51682 m .51004 .38261 L .43725 .26957 L p .82 .844 .866 r F P 0 g s .51004 .38261 m .66739 .30063 L .43725 .26957 L closepath p .627 .769 .948 r F P 0 g s .79827 .48211 m .66739 .30063 L .51004 .38261 L p .574 .585 .827 r F P 0 g s .33688 .51682 m .24836 .41578 L .22018 .64732 L closepath p .944 .828 .701 r F P 0 g s .43725 .26957 m .24836 .41578 L .33688 .51682 L p .82 .844 .866 r F P 0 g s .7619 .70207 m .86128 .63911 L .79827 .48211 L closepath p .21 .144 .56 r F P 0 g s .7619 .70207 m .7354 .84763 L .86128 .63911 L closepath p .021 0 .216 r F P 0 g s .58493 .83976 m .7354 .84763 L .7619 .70207 L closepath p .414 .119 .353 r F P 0 g s .58493 .83976 m .50254 .91825 L .7354 .84763 L closepath p .328 0 0 r F P 0 g s .36298 .82029 m .50254 .91825 L .58493 .83976 L closepath p .652 .214 .197 r F P 0 g s .79827 .48211 m .80877 .40348 L .66739 .30063 L closepath p .048 .318 .803 r F P 0 g s .79827 .48211 m .86128 .63911 L .80877 .40348 L closepath p 0 0 .447 r F P 0 g s .36298 .82029 m .28762 .80814 L .50254 .91825 L closepath p .568 0 0 r F P 0 g s .22018 .64732 m .28762 .80814 L .36298 .82029 L closepath p .887 .457 .111 r F P 0 g s .66739 .30063 m .59704 .27648 L .43725 .26957 L closepath p .068 .615 .837 r F P 0 g s .66739 .30063 m .80877 .40348 L .59704 .27648 L closepath p .53 0 0 r F P 0 g s .24836 .41578 m .21822 .56999 L .22018 .64732 L closepath p .81 .735 .21 r F P 0 g s .22018 .64732 m .21822 .56999 L .28762 .80814 L closepath p 0 0 .412 r F P 0 g s .43725 .26957 m .59704 .27648 L .34727 .34458 L closepath p .304 0 0 r F P 0 g s .43725 .26957 m .34727 .34458 L .24836 .41578 L closepath p 0 0 0 r F P 0 g s .24836 .41578 m .34727 .34458 L .21822 .56999 L closepath p 0 0 .184 r F P 0 g s .6276 .82303 m .7354 .84763 L .50254 .91825 L closepath p .627 .931 .969 r F P 0 g s .86128 .63911 m .7354 .84763 L .6276 .82303 L p .915 .922 .805 r F P 0 g s .76506 .59319 m .80877 .40348 L .86128 .63911 L closepath p .989 .764 .506 r F P 0 g s .6276 .82303 m .76506 .59319 L .86128 .63911 L p .915 .922 .805 r F P 0 g s .50254 .91825 m .28762 .80814 L .39705 .70025 L p .55 .682 .926 r F P 0 g s .39705 .70025 m .6276 .82303 L .50254 .91825 L p .55 .682 .926 r F P 0 g s .59704 .27648 m .80877 .40348 L .76506 .59319 L p .826 .553 .525 r F P 0 g s .39705 .70025 m .28762 .80814 L .21822 .56999 L closepath p .395 .425 .774 r F P 0 g s .76506 .59319 m .53607 .46225 L .59704 .27648 L p .826 .553 .525 r F P 0 g s .53607 .46225 m .34727 .34458 L .59704 .27648 L closepath p .642 .353 .465 r F P 0 g s .21822 .56999 m .34727 .34458 L .53607 .46225 L p .558 .412 .638 r F P 0 g s .53607 .46225 m .39705 .70025 L .21822 .56999 L p .558 .412 .638 r F P 0 g s .76506 .59319 m .6276 .82303 L .39705 .70025 L p .745 .649 .753 r F P 0 g s .39705 .70025 m .53607 .46225 L .76506 .59319 L p .745 .649 .753 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{274.938, 294.688}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm1lTG2cWhmXUklgkEEJiBwkQi4AABoOxhdkxtkO8xIkn48okwc5iM0nZ EzuZykylplLMVCqVi/wJX85fmMtczuX8Df4C0bfoVXfrbelrtZyaC7uqP7Wl 089zzulF3aL7neOXTz776vjl08fHucOvj58/efr4Re76s69Lb4UvhEIXUqVp KhcS8+ehUHmQ/3rEoP/zZv7N/Jv51z7/rXhJiH3wF/XGN/IlLN45v6WmUIcY e8Vb36mglyRoXIyS9KUKekGCpsVoibdazl89fKE//d/Pp/IoIP/3VC39F/HS cl5eRn4UcS1TmkocMar3TvXRRC72ueI8BycPdyvhhMXYojI71b7HCvGMFJID LE5gEcDCgH2iYF8hnywQXQTR6qrr1AH7k4J9CdgwYD0E1oZ8okA8VIg/AzGI PvcRRAcQMZ0LDtslzB8U7ASwPuQzQGCdznxcsAcK9gSwDGAjBJYknbLEKJfV sC8ASwE2RmDdNTO7r2CfA5ZEz/IElgYsgnw04jMgEshnmiB6vYpzZXZXYeUW Kz9pB3aOYPucmblgdxTsEXJsBWyBwAYBq7RdI46BiACxTBDDXlu7K7Mjhf0Y ZYaxAtYIdoRkphEfiZeYeGOdLJhzLujK4qZCyJ1QlrRBEOPOY4ALcUMhPkR/ ZG8KMubnk1fitUigeTla9j6hMI18iN7IZYEsBZXGFq+Kp2qme6DYfwRbRBZ0 kMhXCMIQsHUx4zzAyjmN/QBdCBNsVMPFeyWsRK8Qwaw+9Lp6Izuxr0QPbNtN tagV+bNNdN6Zv6tBO0rwPgQWEbSTShaJagEqtTLkh+J/2vKeba+qtsRRBmMv Mbagbin2fbCjhN0J9jxhr7i2Tp32piLfQ28YuZv0pkAcl7zy31CWu8g/Riw9 yJ+x18QYVju0hN2xHQGrYRmS8iTBXgH2qsLeli9h3Z+CRLNs+5Atw14F9orC HiHbdgIbAGyCwDYAu6xgb9eEDZPSswS7hbW1prC3SOlMMIJsGXYb2FWFvYFs 4wSWI9kOE+yu7VuovGMvK8FhTcE4sh0i2D1v7HXSDibIkwr6/akODFVTqIUJ HC36VZ22ryjBPhEkiGAGgky9CuoLWAVzpFmp16OaRy0+BXuGgkVSS6enyoJK 62rYOojtIsrxdkQcjnJZy/5EKxCxy6cGRew4skb6xy7/9punvIzaGhTtGoqu ktrYJbJ7MyxNpXMYMToPFEve+jai30CdlmedTmmYSBf9STchdf+A0CQp+6Lf cTVarKvrr0e1i/oOiMDyFuwYCvbkqA4U/3n1q46n20iE2Bb82XZtnRO20lRa cWIkX+jB9OwEao/ow2KUHW6ClJ3JMmkU0mtEGvWWbhtWyhrdBmkxuNS00g6y dteJPkb0b/nTs5oTqLkJUnZ1xWrugnQtuJRdODJpCtIVIm31lm4FqDRN1u5S cL1pzb2omUnbiHTen5RtUgOQLgSXhg0rHYJ0jkjbg0tZpaNk7c74028GqDmL mpm0g0jnvKXsByomHYd06vVIWaMnIZ0g0ng9acQu1ZM4YagWTZM1mvOnvBag zgLqbEhqXuccRKNElCCi2fqifSJagGi4EZHlEtFilshK6ye2zno2+0rjqmWU 41OwwcthLVuFo5c4uoijYHfUL+IyBOngAlbBVbJCkkSVrKNq8VrjRVTQCNbg KLcJQac/QbFm3tvAxgm2m2Bn3FjW7z3S71YiSNUR6I8encjLHHqEOkAFDQks CLRkhzgO4Yg24NAXuyW+nNskglsQWI0KLCFwbUhFojqSY8S+auQk+pshomm3 KEJEV4jothjD6qhRG4sd+ERmEUGrGPYuWlUvWxc2RvJeJYJ7clTbxdnZfzUj 1OPP1ooiLnk6wnCUptIWUhr1L5HVqilvVTsp7KJX51zSCKTsEOKQWjapFDPv omGxMXjZV5T2bpBiO9BXpmIltkPFTldqqBKkvjnD+uKQslNth7Sqr8w7a1hs F7zssmayprcTrS0Y2lKwsUvk2rYkqXLSsLtpeNmvPQ5vxOVVq5bJ84ZF90HO fi00kHejzxOG9Q5AqZxlo3ND4rYeUmrOsNRhMcq3DERplJU1xGfl6Oxf3mt/ PJHXLCe2MwJRF6tuyLCrTdCniX4wQPWT/vQZtHwgQM1aes1Q2ktq7g1Q85Q/ fR/RpwPop/3p+9HyJkidPwY4d6dhUmcygHLGrqxf5yDRdwbYyLR+q0bFI2gt E5nWWagvypLa2gMoZ+3K+q2t1NkE6XaNOsdIndEAyrn6ynGijARX7tRT6kug xkXz9UV5WZtlr03Mv2to0L+eq78jVp0OTboaF2ouucVPpgt2Hu/FhL0X/z4r T/rOUV+aPZ62Y0tSdLGCtePI0LFY0zFGHDE4bho69F/d97kjSxztcBw2xTFK HAk49g0dF2s6RogjKUfnDrfjz+a8qYl89WlVCuVsGwocd01VlTNIHBk4rhk6 9N0510kRA0TQD0ExuKCfCIYgWDcUXLILqrrUSxyjcKz5cxySIjJEMAbBiqFg 1VuQJoI8BEuGAn3vY+UmxR6CnQZ2oQGsK+9uIpiFYM5QcNlbkCSCtyAo+BPc RGO6CHaJHCYmDQXrNoGrggRRLaOCvKFA33p7CxXECXYV2PFGsR0Euw5s1hCr 7z+u3NvbRrBFYEcaxbYS7Cawg4bYohsbI9gdYPsMsfre7iPbNlE+t7aIYB+C TAOC6h/XNfYQ2JQhVl1jht6RLxF73vgLxxGgyUagVX/NuANewpC3aePJT94l e2+bIWxLwW6jkfeRj0/EXYKIGiLUBUupkGqE5Q/xHkGE5P1oZUIoR5bWT308 wNKyp5ba8avD1Ym37aGaO7ZV8OrsXEzi7skz9ezSkDfiIRBHBBETY0TtGNUI dc5se8DpBkrugrvbe8GPsOABcfcAEScI/bTPJ0DsEkQ/0o8ShH4yqfIIXOXw lYO7xXvBT7FgkbgnxBhWXZHhlScK10n4GMLfVuGVRyNXSXgW4epBE9tjmRdR xSiquKeC1FO75BvdRR8C/X21YOWJ1nmvNkvPByr8GcJnkEw/mB+qoMrTv5OE mUH4xyr8BcLHSXgKKTxS4d8gfNR2FC4z9YPDf0XQEGF2IVw/r/wdwvtJeBwp 6Iej/47wNFKIg/lcBX2PoG7CbEO4etI69A+Ed5LwKFL4VoX/gPAOEm6B/jcV forwyjVuGMzvVdC/EGQRpvzfDyryR7K5SdI/1ec/gaQi1R72f/Tk/Jv532c+ dOE3L3gRTA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 273.938}, {293.688, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"3a1ab63d-9b10-403f-9f44-689801862140"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(46\\). \\!\\(\\\"gyroelongated pentagonal bicupola \ (J46)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"10ef30b3-68ca-4480-ae86-8868470c52c3"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.04192 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0374298 1.13136 -5.55112e-16 1.13136 [ [ 0 0 0 0 ] [ 1 1.04192 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.04192 L 0 1.04192 L closepath clip newpath .5 Mabswid [ ] 0 setdash .56858 .40392 m .54749 .58257 L .73375 .60657 L p .688 .618 .773 r F P 0 g s .54749 .58257 m .61975 .75577 L .73375 .60657 L closepath p .7 .57 .705 r F P 0 g s .45378 .82935 m .61975 .75577 L .54749 .58257 L p .763 .599 .675 r F P 0 g s .54749 .58257 m .37994 .6515 L .45378 .82935 L p .763 .599 .675 r F P 0 g s .37994 .6515 m .54749 .58257 L .56858 .40392 L p .798 .719 .777 r F P 0 g s .61975 .75577 m .77235 .75639 L .73375 .60657 L closepath p .524 .333 .564 r F P 0 g s .61975 .75577 m .61962 .88039 L .77235 .75639 L closepath p .503 .221 .419 r F P 0 g s .45378 .82935 m .61962 .88039 L .61975 .75577 L closepath p .628 .319 .428 r F P 0 g s .73375 .60657 m .85153 .57715 L .7601 .42808 L closepath p .416 .365 .693 r F P 0 g s .73375 .60657 m .77235 .75639 L .85153 .57715 L closepath p .38 .245 .569 r F P 0 g s .73375 .60657 m .7601 .42808 L .56858 .40392 L p .688 .618 .773 r F P 0 g s .37994 .6515 m .28773 .79727 L .45378 .82935 L closepath p .828 .626 .629 r F P 0 g s .18471 .65862 m .28773 .79727 L .37994 .6515 L p .894 .727 .668 r F P 0 g s .37994 .6515 m .28599 .5127 L .18471 .65862 L p .894 .727 .668 r F P 0 g s .40775 .35261 m .28599 .5127 L .37994 .6515 L p .798 .719 .777 r F P 0 g s .56858 .40392 m .40775 .35261 L p .37994 .6515 L .798 .719 .777 r F P 0 g s .40775 .35261 m .56858 .40392 L .68321 .27832 L p .723 .773 .892 r F P 0 g s .56858 .40392 m .7601 .42808 L .68321 .27832 L closepath p .663 .668 .845 r F P 0 g s .45378 .82935 m .43887 .90791 L .61962 .88039 L closepath p .609 .17 .181 r F P 0 g s .28773 .79727 m .43887 .90791 L .45378 .82935 L closepath p .753 .313 .207 r F P 0 g s .7601 .42808 m .82884 .39726 L .68321 .27832 L closepath p .234 .422 .843 r F P 0 g s .7601 .42808 m .85153 .57715 L .82884 .39726 L closepath p .172 .255 .708 r F P 0 g s .76387 .68292 m .85153 .57715 L .77235 .75639 L closepath p .931 .965 .671 r F P 0 g s .77235 .75639 m .61962 .88039 L .59879 .81577 L p .843 .974 .877 r F P 0 g s .59879 .81577 m .76387 .68292 L .77235 .75639 L p .843 .974 .877 r F P 0 g s .59879 .81577 m .61962 .88039 L .43887 .90791 L closepath p .694 .912 .97 r F P 0 g s .82884 .39726 m .85153 .57715 L .76387 .68292 L p .967 .83 .657 r F P 0 g s .28599 .5127 m .19716 .45912 L .18471 .65862 L closepath p .953 .853 .705 r F P 0 g s .32885 .28578 m .19716 .45912 L .28599 .5127 L p .89 .898 .828 r F P 0 g s .28599 .5127 m .40775 .35261 L .32885 .28578 L p .89 .898 .828 r F P 0 g s .40775 .35261 m .51955 .21841 L .32885 .28578 L closepath p .788 .898 .921 r F P 0 g s .68321 .27832 m .51955 .21841 L .40775 .35261 L p .723 .773 .892 r F P 0 g s .28773 .79727 m .29104 .8187 L .43887 .90791 L closepath p .56 0 0 r F P 0 g s .18471 .65862 m .29104 .8187 L .28773 .79727 L closepath p .68 .229 0 r F P 0 g s .68321 .27832 m .70089 .28098 L .51955 .21841 L closepath p 0 .382 .704 r F P 0 g s .68321 .27832 m .82884 .39726 L .70089 .28098 L closepath p 0 .151 .638 r F P 0 g s .43887 .90791 m .29104 .8187 L .45354 .71787 L p .686 .759 .906 r F P 0 g s .45354 .71787 m .59879 .81577 L .43887 .90791 L p .686 .759 .906 r F P 0 g s .76387 .68292 m .73589 .49597 L .82884 .39726 L p .967 .83 .657 r F P 0 g s .73589 .49597 m .70089 .28098 L .82884 .39726 L closepath p .912 .688 .586 r F P 0 g s .18471 .65862 m .24104 .63245 L .29104 .8187 L closepath p .041 .208 .71 r F P 0 g s .19716 .45912 m .24104 .63245 L .18471 .65862 L closepath p 0 0 .499 r F P 0 g s .51955 .21841 m .70089 .28098 L .50524 .28523 L closepath p .599 .104 .05 r F P 0 g s .51955 .21841 m .50524 .28523 L .32885 .28578 L closepath p .38 0 .006 r F P 0 g s .53935 .50973 m .73589 .49597 L .76387 .68292 L p .815 .747 .788 r F P 0 g s .45354 .71787 m .53935 .50973 L p .76387 .68292 L .815 .747 .788 r F P 0 g s .76387 .68292 m .59879 .81577 L .45354 .71787 L p .815 .747 .788 r F P 0 g s .19716 .45912 m .32325 .42201 L .24104 .63245 L closepath p .341 .219 .566 r F P 0 g s .32885 .28578 m .32325 .42201 L .19716 .45912 L closepath p .258 .013 .339 r F P 0 g s .32885 .28578 m .50524 .28523 L .32325 .42201 L closepath p .491 .19 .382 r F P 0 g s .45354 .71787 m .29104 .8187 L .24104 .63245 L closepath p .645 .64 .831 r F P 0 g s .50524 .28523 m .70089 .28098 L .73589 .49597 L p .813 .624 .647 r F P 0 g s .73589 .49597 m .53935 .50973 L .50524 .28523 L p .813 .624 .647 r F P 0 g s .53935 .50973 m .45354 .71787 L .24104 .63245 L p .696 .606 .751 r F P 0 g s .24104 .63245 m .32325 .42201 L .53935 .50973 L p .696 .606 .751 r F P 0 g s .53935 .50973 m .32325 .42201 L .50524 .28523 L closepath p .729 .567 .671 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{278.875, 290.562}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnMtzFNcVxpuZ7nm/Jc1o9EBCAiShN0jogQQCPXkJDHbsPBwMxA7kYRJM niQpp5JKVSqpSlXKm1SxZOklW5Zeeql/wUuWbJW+99w+mun5enRaSBROUNXc GXWfPr/vO/fenu6emb56+9G9j39++9H9u7d71x/e/sW9+3c/61178NBdFD1k WYfK7qOv11Kvty3La/RfRTXmn7ev377+H3n9L/UUVeP8r7Tgn7zAim7foSmw /aQ9Yellf6agv3OQrWJonYrSkRHV6kV/ovC/cXgMhMc4/DGF/4XDkyA8yeG/ pfDPOTwDwjMc/isK/yOH50F4nsMfUvjvObwEwksc/oDCf8PhrSC8zOE/o/BH HF4B4VUOv0/hv+TwDhDexeGfUPinHN4Nwns4/C6F/5TDe0B4P4d/ROH3OLwP hB/n8A8p/GMOPwbChzj8exR+h8MHQfgIh79P4bc4fBiEj3P4uxT+Aw4fBeHt qu1Wi25Q+PfV0xW1oHN768lTE/7i2Rd6nrxTE2RWPZ68ox6uTtXSsudffKnD p3UKm1OYNNcpi7YfIWVqW5u3NdvT5k7d5p6Sa5TjuzVKzrseLF0WN5vOG1WZ zFo3lU431STpJiX9QD/ZnNQkPuFzqHLbgHDKVzj34e4oVEvLzJ91uSltCNAc IS0KaJeIRoPIqaN5hRvgwiWEIBuALhLoO76ecR9uFVRbP26OAp9SvKNaLdhA 3wPQKID2A2hSCI0Dz2vh8Ee40JnAEbo7dJWg74aB+jxL8QmAXyH8TYC3Ab4X 4HPCkicBfpnwNwDeAfjDXPKiEJoC0AvhoN3AsxSfBvjzhH8H4GMA3wXwJSE+ A/BLhL8O8HGA7+CStwmHWYbns0FdA6gEQFWBUyk0B5wuhsO3A3xZiM8D/ALh NwE+CfBlLnSHsHcLAHqGoFcBNAWgbcCzFF8E+HnCXwH4NMC3sOduIbQEoHPh oCXgGeFRPyP8LOEvA3wG4IsAf1iIbwH4GcJfAvgswOe55EeE0FaezwZ1EaBy AJUDTqXQMnA6RfgNgM8DfBbg+4XDrALwp8Lh01zo40JoO4CeJOg6gBYANAU8 IzwqOcJPEn4N4IsAnwT4ASG+CvAThF8V4hNc8hNCaAeAjoeDxoFnKb4T4McI vwLwJYCPAfywEN8F8KOEXwb4FoC3ueTjwlHeBHoBQFsBNAo8I3xgjxvBoaAR AJ3Yw9h+uUWn1QZ/HuDbIN7971SoqWwzzzANcgkgyz6kUjgtpFV87tyHK1e1 9b08QvhzAF9RrbZ4eg9vEB40Gg6qy2yHgbYBqB0MPRs0ifSiyPaNOS/Zsydf 6ZLrEkzt4WjAU+MEq1kM2qHpRbZPjftw/3NbLenkHo6PPEmxYEkLQFKeJcWB JIclSedeEUiKh5OUYUkpICmuWr1oVCipACQlgiWdAZKSPHYzQFKaqyR9K8gD SclgSfNAUpyrVACSslylwT2c0nmS0kDSMEmaA5IcllQCkopcJXSINL3L+bQn KRNOUoQltQFJLSzpWJizbbmkWSBJ/9cO1LRxn/UJ1aSBmmywGn1CoUdxB8BX uRi9QnwK4HPB+NPqyZx+NuI72b307DAJ8Pld8GaVi9cSuoCQw1yHzj1c6fOE FMIJ6QRCjrCQqnDCxICQoqRDUB36uUPQZRmEdwC+JMEj9wPsXnpRygb4VoA/ IcEPsXt09Q/howDftlf8CLsvCPERgC/vgjer1Eerlh5mjULGWQi68Nzsg6Hq q8MnuRPSgiFo6R1bKCjaDU+zY/TphoaabgtETesnuwb1OGinP8MWY4A2ptoE zdBdaI6PRgYrADnPBtFnYz2qzalF8e2t51/7RlST+jaTUQYyFlkG+sixpNos Tf9GGaj2Q3uTcU61NnWA57xv/5DosGNZtXG1aFJY4jpQ7RB+rM9hHvveTdDh 17I5x9BFfv61Bk+/PvwFgD99MPii0P23Hx8F+LwQP/Pm4dEUG3x1PBp6c0L3 IfE5oft9wNsAn33z8Kj48weDR6fmyP1rxCP3Z14d7wA8ulaC3C8APDpUM/gp gI99O/Co+IvC4g+EwyeF7vcBHwf4hND92YPBoyuHyP3/Dx4Vfwng28ON/ATA O0L3CF9RrfkE75WhyPN5AC0zdDgcFF0zR04RtPZE/MVL+kjozcUnAT4qLPkF gG8F+JFweP/HJ0HulwGergHZjDcS9kEBKsAKUFDECkZfnwK6HujUKfC6oomM 1LZ3uMEy1OsVQF0NpDb4HjswYL6JzV2pO9VW4atCZK4JcjwcErlcA8isbz65 D3X97aV/V2469hTAZ1QbCSrtOoCmATQaDppWrV6Epu6GEIqcjgVDk+zUXZGY fKZXPn26RWFLQiEpofsmQuIsROswa10lWk1EtXrRolBSUihpPFiSzR0SA5Js 1WrB80DSRSApASTZ4SRFuEpJICnGVZoRSooLJU00l+SOxEY1SS7QFFBzGaiJ 7UGNXpMD+BQXY1KIdwDekRVDzRwlAQnJspAxoRBbKGQynJACd8gwEHIFCIkC IbFgIVNASBYIKXFFBoVCIkIh5iuC00IhrVyRY0DI1dcnpMwV6QsU4tQK0Q+1 104AuPl25mkAzwB4leE9AL7pq4Kldz6B0BkARXuHLi59F4BeU63ZzzWipoJR yF83+6sG+dOoVDBqVuiql12Vdynl1vY3upRNoHMAmgLQPvbXEjh4bIYaMKrr dDAXmT3K3ELgNHbquJ7pJvB5oekBrnQ2aK+q19oKKpiwNFnqvl/k4dFb7RB7 TwH8JV9HKwkHJGSE6xAXCokBIehd1nzDfUEoZJQrYu9y8OEJiYcTsgiEJICQ CRZi6S/teTroMNHM9EYyOjicDUc+yeQNYDck9CyAxgF0Urc0z7786ht+KP9r QEY6nIxzQhljPA4dhdevlgE+A/DonGUuHH5nGiQV3jf6znLP58PhlwAenQwM 75wzeR3g9nejkAVQEZKET5HN76bOC2UMchVy3AlnALKwf8jjjCwBvzMAXjS7 w1q45U2yuq+ge1wHcI+Birew6Wnu8DZfh1vhUf1ssR1YnAQWm0CXhdCdI4lO djUBUGXV6rW0w6j7sYQHsAGgBxSwG/gbAdDKXqHd7OoIQJ0AqPaaUnqT05Ry FUDRxYNOhh7lUg7yAOlQAPM71DVhxiqo3XFg6KjQ0FI4fIUNnWBD/UKUcboO UJGgExOf0xHgtEeIN7833hDiW9jpBDvt5q6r8jBcDZe2WHNpotFLVejFQOkn gE4t1LuSRme6vvJNA2RFiDQ/y6cfONp1SMuqOcGf42qVhZnXazNjM1lOvwgs FOtnlC899Yz5YWiD8Awo01m2UAiyoNeam07U/uLVE5xiwctAcEZYmSaABAPW WG1amJby1f062UsbA+XYAA5iTUtOmek31+ZUyFN7BSSzge4qSLvpTxvhtNe4 CNGmXWZuuqJ/jK5jbvr0WAGWzIbXmX2TiSjc3AGm9uYGXjk3eUN1kvBi21MK u4ruCEFPO/UzNXU3bvLu76Uw9655j1NcrLGs+CoNStbCVTN3y3kfuFlhPXGQ ogT0mGQfsJ4LnCIFUhRACrrNS81Nb3ZmbAakyIMUdLMbuqOPz9LOHiwHkuVA MnPzoQ9ZzywocR4kS3OJze2ObnGKKVZRAhumgAqT4jawNM7JWkGyJEj2Q0p2 h/WMcooKSBEHKW5Rih9xiiFOUQUpYiDFR5TiE2DpGCgxSmtzic39qn7Mevpr 3tgbN4wAPSbFfaDnMCfr0cnw5Sdzi62fsIYu3uyImYi1m1lGrrnz186ZgDmm dLfQr+5R0KdAVyuoU69qtUBzh7AHnL3E2btUkP42MqWl24j5TvEqHGTuk/YZ kJDk8KIK199b/wOFP+Kc8foprHOam8v9moNsYMbh8H9QON3gbeeyhHo2G+jP +qx/U9zv1JOu939oge7jN+gue29fy19bh/4L1GZfbA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 277.875}, {289.562, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"d9d5f6dc-5567-43c2-bb26-39527f43c9d4"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(47\\). \\!\\(\\\"gyroelongated pentagonal cupolarotunda \ (J47)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"67179187-720d-491f-8a89-7b21ce46075f"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.0977 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.061676 1.17959 1.11022e-16 1.17959 [ [ 0 0 0 0 ] [ 1 1.0977 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.0977 L 0 1.0977 L closepath clip newpath .5 Mabswid [ ] 0 setdash .57381 .4502 m .7104 .44001 L .5633 .33297 L closepath p .517 .609 .884 r F P 0 g s .68591 .58245 m .7104 .44001 L .57381 .4502 L closepath p .528 .526 .797 r F P 0 g s .57381 .4502 m .5633 .33297 L .41617 .38908 L closepath p .642 .708 .895 r F P 0 g s .44073 .56071 m .57381 .4502 L .41617 .38908 L closepath p .753 .644 .74 r F P 0 g s .68591 .58245 m .57381 .4502 L .44073 .56071 L p .711 .566 .689 r F P 0 g s .68591 .58245 m .79069 .60034 L .7104 .44001 L closepath p .373 .376 .734 r F P 0 g s .71657 .74488 m .79069 .60034 L .68591 .58245 L closepath p .399 .304 .631 r F P 0 g s .44073 .56071 m .55291 .69419 L .68591 .58245 L p .711 .566 .689 r F P 0 g s .55291 .69419 m .71657 .74488 L .68591 .58245 L closepath p .66 .48 .63 r F P 0 g s .29081 .60193 m .44073 .56071 L .41617 .38908 L p .823 .691 .719 r F P 0 g s .44073 .56071 m .29081 .60193 L .3106 .77219 L p .789 .568 .601 r F P 0 g s .55291 .69419 m .44073 .56071 L p .3106 .77219 L .789 .568 .601 r F P 0 g s .64865 .88412 m .71657 .74488 L .55291 .69419 L p .675 .426 .537 r F P 0 g s .55291 .69419 m .47935 .82781 L .64865 .88412 L p .675 .426 .537 r F P 0 g s .3106 .77219 m .47935 .82781 L .55291 .69419 L p .789 .568 .601 r F P 0 g s .41617 .38908 m .39403 .31444 L .26263 .42375 L closepath p .777 .907 .931 r F P 0 g s .41617 .38908 m .5633 .33297 L .39403 .31444 L closepath p .64 .829 .973 r F P 0 g s .41617 .38908 m .26263 .42375 L .29081 .60193 L p .823 .691 .719 r F P 0 g s .71657 .74488 m .77483 .76478 L .79069 .60034 L closepath p .112 0 .41 r F P 0 g s .64865 .88412 m .77483 .76478 L .71657 .74488 L closepath p .164 0 .24 r F P 0 g s .3106 .77219 m .29081 .60193 L .17115 .55233 L p .917 .66 .535 r F P 0 g s .29081 .60193 m .26263 .42375 L .17115 .55233 L closepath p .902 .741 .672 r F P 0 g s .80899 .45316 m .7104 .44001 L .79069 .60034 L closepath p .303 .339 .734 r F P 0 g s .7104 .44001 m .80899 .45316 L .71378 .34203 L p .188 .505 .91 r F P 0 g s .5633 .33297 m .7104 .44001 L p .71378 .34203 L .188 .505 .91 r F P 0 g s .47935 .82781 m .49631 .94304 L .64865 .88412 L closepath p .68 .337 .386 r F P 0 g s .31576 .88631 m .49631 .94304 L .47935 .82781 L p .783 .413 .355 r F P 0 g s .47935 .82781 m .3106 .77219 L .31576 .88631 L p .783 .413 .355 r F P 0 g s .71378 .34203 m .55335 .2661 L .5633 .33297 L p .188 .505 .91 r F P 0 g s .55335 .2661 m .39403 .31444 L .5633 .33297 L closepath p .581 .834 .993 r F P 0 g s .26263 .42375 m .25961 .39955 L .17115 .55233 L closepath p .765 .922 .553 r F P 0 g s .26263 .42375 m .39403 .31444 L .25961 .39955 L closepath p .649 .961 .779 r F P 0 g s .79069 .60034 m .77483 .76478 L p .80537 .52272 L 0 0 0 r F P 0 g s .80537 .52272 m .80899 .45316 L .79069 .60034 L p 0 0 0 r F P 0 g s .3106 .77219 m .18833 .73241 L .31576 .88631 L closepath p .885 .508 .32 r F P 0 g s .17115 .55233 m .18833 .73241 L .3106 .77219 L p .917 .66 .535 r F P 0 g s .64865 .88412 m .65761 .87389 L .77483 .76478 L closepath p .501 .829 .531 r F P 0 g s .49631 .94304 m .65761 .87389 L .64865 .88412 L closepath p .342 .81 .726 r F P 0 g s .39403 .31444 m .55335 .2661 L .52841 .32143 L p .159 0 0 r F P 0 g s .25961 .39955 m .39403 .31444 L p .52841 .32143 L .159 0 0 r F P 0 g s .17115 .55233 m .21858 .56835 L .18833 .73241 L closepath p 0 0 .448 r F P 0 g s .17115 .55233 m .25961 .39955 L .21858 .56835 L closepath p 0 0 .259 r F P 0 g s .77483 .76478 m .78247 .73128 L .80537 .52272 L p 0 0 0 r F P 0 g s .78247 .73128 m .77483 .76478 L .65761 .87389 L closepath p .692 .945 .664 r F P 0 g s .71378 .34203 m .80899 .45316 L .80537 .52272 L closepath p .901 .496 .094 r F P 0 g s .49631 .94304 m .47386 .8747 L .65761 .87389 L closepath p .648 .876 .983 r F P 0 g s .31576 .88631 m .47386 .8747 L .49631 .94304 L closepath p .438 .733 .989 r F P 0 g s .52841 .32143 m .55335 .2661 L .71378 .34203 L closepath p .637 .128 .022 r F P 0 g s .18833 .73241 m .30049 .75552 L .31576 .88631 L closepath p .276 .425 .831 r F P 0 g s .18833 .73241 m .21858 .56835 L .30049 .75552 L closepath p .339 .339 .713 r F P 0 g s .52841 .32143 m .33205 .4108 L .25961 .39955 L p .159 0 0 r F P 0 g s .33205 .4108 m .21858 .56835 L .25961 .39955 L closepath p .136 0 .339 r F P 0 g s .31576 .88631 m .30049 .75552 L .47386 .8747 L closepath p .513 .619 .895 r F P 0 g s .65761 .87389 m .47386 .8747 L p .67816 .62927 L .773 .801 .875 r F P 0 g s .67816 .62927 m .78247 .73128 L .65761 .87389 L p .773 .801 .875 r F P 0 g s .71378 .34203 m .80537 .52272 L .67816 .62927 L p .81 .561 .562 r F P 0 g s .52841 .32143 m .71378 .34203 L p .67816 .62927 L .81 .561 .562 r F P 0 g s .21858 .56835 m .33205 .4108 L .49712 .50012 L p .541 .447 .697 r F P 0 g s .30049 .75552 m .21858 .56835 L p .49712 .50012 L .541 .447 .697 r F P 0 g s .80537 .52272 m .78247 .73128 L .67816 .62927 L closepath p .914 .785 .704 r F P 0 g s .47526 .72301 m .47386 .8747 L .30049 .75552 L closepath p .56 .625 .874 r F P 0 g s .47386 .8747 m .47526 .72301 L .67816 .62927 L p .773 .801 .875 r F P 0 g s .49712 .50012 m .47526 .72301 L .30049 .75552 L p .541 .447 .697 r F P 0 g s .49712 .50012 m .33205 .4108 L .52841 .32143 L closepath p .626 .384 .531 r F P 0 g s .67816 .62927 m .49712 .50012 L .52841 .32143 L p .81 .561 .562 r F P 0 g s .67816 .62927 m .47526 .72301 L .49712 .50012 L closepath p .728 .614 .73 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{271.688, 298.188}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnEtsG9cVhmmSw4dIiaIoUW+JetZyrdjW+2G9n5Ys25VbN62bpKrjxE7j xrWMoEVapKiRoIVRoEC2XnqZpbdedullt1l62WW36tx7Ln8Oh//QM5JodGEB c0kNz/2//5y5czkz5HDv4PG9uw8OHt+/c1DYenTw8N79O4eFzS8e2asiZ0Kh Mxl7OVcIqedHoVCx0X+NqjH/vHv+7vm756f2/Dv1EFX72h9kxT/VQ0StCB+N 2K1+7eh5Qe+PavlS4v6BuKiOiyDOXuy+dhtWqx5L+N/BiZPwKMIfSfi3UE+R 8BjCH0r4E4TXk/CkavWqBxL+Ncw0kvA01H8r4X+Ceo6EZxB+X8L/iPA8Cc8i /FMJ/xLh7SQ8h/C7Ev4I3jtJeB7hdyT8C6j3kvA2hB9I+OcI7yPhnQj/SMLv I3yQhHcj/AMJv6cfJGhEltAQ6diLjrel4yfqQa8YVuEx9ayAoF9I0F2irm3p IPuF5795ol989fSp/Z/dJqXqxdFxS3TuADaE3rqz0bY7aomUahNqVTOs/FQk DiChDeh+FpHIQaIBEvsi8WuSTT/8xIlYF1KKQ+yGiH0IPwOQSBKJIfhRGZf2 +dA10fmAmOqDYooojqpWD9c9kbgNK6Vs6knHi2Yz4SDA7rwrEr8kLgoQyxCx S0RsR8Teh58CNlUjkRhTrY4zLm6VdwzL/FDZcRwdDfFnxH4PJFq8JMy611+1 6S1yRcRuwkUvJFqJxASR2BaJfeKnG2LtwcRuwE8ppU4iMUkktkTiOvHTBbEu Ijal2yjEjOCm6O3BUhe2cA9RmeYqG6KyW64SljnSS8UqUykmuC5SOyTBDogO ENGZKqJrIroNf52QGjqe1Bbx1w7RYSI6V0V0VUQ38VbRBqmznlIRp5QdrNry 3XfJIWteKthD2V7ERyO29TlCmfdJWRTKBoobVwRL5s9iGqM+ARECWHAAXGmk gAoDdYGgLvtEXRbUOnJpUoCIl+xCMNk1Rwah0Ire9Dmdh+xRTw9fFN9NWL0W fdLmvWk6HbNO0ezFLprd6mR/7BMaJdA5ga76hFqAjhDokk/orDc0S6AJ3Zrj KPtAR4HZrsrwFsHPCH5FP0QdeG2BOUgibcZd9smdrsptJNw0uGzqXPVZbsNd 9s/NgMveBxiX5TslXJnOLBdXNjeDZwHvJfA1n/DJN8MzBN4MeLdPeIzAJwS+ WDHAV/Rct+KaDtPESCuMsGOMdZ9GxoMZSREjHTDSRoxsECNxYmRMjCycoCJd ZBpgh5SbPmsT0BKrTQ9qcwpGLhMjEWKkjhjpgxF2nL7lc58xRuaJkahPIwMw kq2NEb8VGYYRdta07XPqNEbmfFYkSYyMwEiaGLlSGyMJYuQ8jNQRIzs+j1KM kVlixPJp5D0YSdTGiN+KXCIzCruWsevzkNpYmvFZmzixNI7anIKRaWIk5tPI JIyEiZG9KmdFE8HgMQKfUa1edf3NoKkTgOaR5XV+ihyQYRHGZccoe/nspbZ+ rSptktDix6TZi5xf7ZHLEgF5UcJboDzVVt+tHfiJE+AXCT7ihQ87ajxOoIkT QKOqNdfCjomK+ETFSX5bbugYgSYJNEygSwSaQH7Ow5r/vHrh3JLeUMsJ1Yvq tkpAdSS7VcfuopAGa6iXTpDqMnGQIg6WHfNQ0YEreW8bPPk1gk6jykuuKtuL nYBq6VR/kcDrjopvhiEneJ1wG0jKcxhSUcI1ZxYXCDfln5tBvrMk34Bcj3w3 CDdL8p0kDixvB++pB/1KyjXWQnonqYQ2Eeg4gcbeAEXah2qR//R8ogu5Rcg5 lHmM8OLBeYd6lQUoSzdP0h3FmKoLBo0BKmcA5kWebivSPU/SDUhWu/ChFtsm qHaS5FkCTQWD1pW2LKYqVuMOgh/2iZ94A95zNHWivIPYnA3egAsEkHDkt7// wnNLdpP8CiS/Y+GjwBsLrMI9SLaXcDM14xZI5p3EQWPNHPQRB+3EQfY4Dqwy B8UhwKbqfmyAVoy25mDIuGu02Yv9Xqra8j2MHY4MkSrkSBVOwVKEWFohloZR kSafRiZrY+QsqU0DsdRycktRYokdu40QS2liKf/2LJ3D5qrDAG4Pho8RvOUT f55UJEYqcgqWYsQSO5cYRUUsYqTD28hFYsQ6gZELurWctdGLmou6T24jTmyw E7qLrk2k8D1vGa9XsZynvKFRAk0SKLsmcQFjIHL0r1c/+BgDNTJyHtnHiBG2 V9TIiHOeqDTSdnIjdcTIvNe0br69VGmk9e0ZKb3RNRIjbAqvYiRCjKSJkTli ZBBGcsQIe3urkZE+DNY8McLe+gMaqSdGZomRXlSkgxhpIkama2OkG0a6iRF2 bFojI6WzogIxwg7TjRG5bmQ5jZhFfYhWCZ/2Og80XxSohLOzlFOEt2JQDhM4 OzXzAW8i8CkCb0Hm5wi8vrbw0nWVUQJPHw+eI/BJr2tYGn6RwNkZfxk86oLb s4c/buma3TjhJgl35lS4aQyzKcJNBOa2EO6E1wVpne8c4bKLZ6fDLV1xXyBc dpGwOjdPuOOEGwN3mXDZFdEyrnNGVefsldAxArUAXSNQdiG4CrSNQC8RaBgj apNAI95QfdHdfCfGLyqkPhmqpLBr+v4petWelq34dGTerdJOVEZVq7vecJkL uSRcb4vM0lnV6kktcvT0WVHMltXS11UbdjtzyTKP/ZBNEFmn72IBZx2AqFcB uyFbfwxZU++Vz/5dXCyvySyvWn1jR5Ofsjg/LjTS9u5RBGQIIItM2gjgGgDm +6wTBJAEgB2cpwHoJoA9R6le/Pd7PXIMapKg6oFip+kxoPoJ6qpjqCuUwRna FKFlQQtFitcZNSgM0I8IaFe3VhnIlds0obWAdp6I7rgKZS+2DdWWjzPzpdwZ AsjrVtY9efZa+/FGcf8L/uXtJWQOrioZV8jGsBfzlqUZs141qmCo1oyEZz9o GNss21XSWhLkHEE2E2REtWGv7b9VBSRfpC37dlo1UJTkNkiQm1WQ8p3hsq8I FpE5grSQGwNtVAGZWxoWCKiJgOIktz5PZMV+a+7KWCS0LKElCK1AaOucth6M lkQRGWONM8wtNUuE0UgYKZIRm2JXOc3cBrRMaBlCSyMjxljhDHPr0gphNBBG A8mog9CWOc3ca7VKaPWElkFGjLHEGeb+sjWfjEaSUasnrfxt0NwXt05QaYLK Ih0GWCSA3WCAHMmlmaAWCOqqoDYIKkVQzciFAS4TgLmNcpMA6gggT3LJEtQ8 QZmbPrcIKklQrciFAeYIQO70M8O5HJAggHaSS4MXynn76xUCiBNABzJgsrOQ /Ukw2S7iO0UAMwCYe4B3ggDMLbiVstOQvSmyu0Q2RmR7iG92cjEFgLn9+arX wbkL0EsAcQKYBEDunTU7QTkgSgAFFIbJTkDW3Pl9jchGiGw/8R31ArgOW00G 1wkqTFADyIABxgngVjDAkDkWcuSiF7V/Mv8/F3nZsyynvF5Ut7PwHIoUtbTS GNF7X/Rklyo/XQypI+qiFOtrbvzf53116ebUs19J3E1XSUJ62rWDMjJCDl8W X33++kgt9kmD3epV5hcM9ADXfmKqY4N6licdR9BRnVC9elm0XdTRo0B9Xm7X v7L3sGrN18rtzvrZR9JRl0tHD5OOg+ioPng3WLOYX3i4DYEBItDHfKv/Ppbe H6J3H+ndUwX/iQgcQKCHCHSpVg8q81saHyO8k4S3I/xzCf8U4e0kPI/w30n4 Zwhn27BZtXpU/V7CHyA8R8KzUD+U8IcIz5LwBqibH1Q5RHgDCU8j3PxOS+ln Q1IkPInwryS89KMkSRIeQ/ifJbz0kycxEh7FKPmLhH+N8IgOjzrDEfxEgv+K YInGGNMj5xsJ+gY72t9khd7j/49+OOfd89o9D535H9uuYnM=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 270.688}, {297.188, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"b6a4eb05-ee17-4eef-9162-18688bd7a65a"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(48\\). \\!\\(\\\"gyroelongated pentagonal birotunda (J48)\\\ \"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"6a8b8931-d203-4bbc-af54-a68ea4434c53"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.0261 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.031649 1.10097 0 1.10097 [ [ 0 0 0 0 ] [ 1 1.0261 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.0261 L 0 1.0261 L closepath clip newpath .5 Mabswid [ ] 0 setdash .54775 .59193 m .65654 .47604 L .49787 .43795 L closepath p .669 .577 .742 r F P 0 g s .54775 .59193 m .6928 .6363 L .65654 .47604 L closepath p .613 .49 .689 r F P 0 g s .56341 .74219 m .6928 .6363 L .54775 .59193 L closepath p .633 .448 .615 r F P 0 g s .54775 .59193 m .49787 .43795 L p .28465 .59679 L .738 .615 .722 r F P 0 g s .28465 .59679 m .41788 .68977 L .54775 .59193 L p .738 .615 .722 r F P 0 g s .41788 .68977 m .56341 .74219 L .54775 .59193 L closepath p .655 .464 .614 r F P 0 g s .2923 .75003 m .41788 .68977 L .28465 .59679 L closepath p .801 .575 .595 r F P 0 g s .56341 .74219 m .41788 .68977 L .2923 .75003 L p .679 .34 .395 r F P 0 g s .49787 .43795 m .59674 .33278 L .42709 .3239 L closepath p .696 .709 .858 r F P 0 g s .49787 .43795 m .65654 .47604 L .59674 .33278 L closepath p .642 .617 .81 r F P 0 g s .33438 .43922 m .49787 .43795 L .42709 .3239 L closepath p .72 .718 .848 r F P 0 g s .49787 .43795 m .33438 .43922 L .28465 .59679 L p .738 .615 .722 r F P 0 g s .28465 .59679 m .33438 .43922 L .20314 .4891 L closepath p .857 .749 .743 r F P 0 g s .2923 .75003 m .28465 .59679 L .20314 .4891 L p .958 .703 .506 r F P 0 g s .80233 .51682 m .65654 .47604 L .6928 .6363 L closepath p .589 .475 .691 r F P 0 g s .65654 .47604 m .80233 .51682 L .84179 .39353 L p .524 .551 .825 r F P 0 g s .59674 .33278 m .65654 .47604 L p .84179 .39353 L .524 .551 .825 r F P 0 g s .20314 .4891 m .33438 .43922 L .42709 .3239 L p .831 .935 .897 r F P 0 g s .56341 .74219 m .69448 .76865 L .6928 .6363 L closepath p .544 .311 .512 r F P 0 g s .6928 .6363 m .69448 .76865 L p .88378 .56779 L .38 .185 .486 r F P 0 g s .88378 .56779 m .80233 .51682 L .6928 .6363 L p .38 .185 .486 r F P 0 g s .53712 .84277 m .69448 .76865 L .56341 .74219 L closepath p .541 .208 .353 r F P 0 g s .53712 .84277 m .56341 .74219 L p .2923 .75003 L .679 .34 .395 r F P 0 g s .42709 .3239 m .59674 .33278 L .52937 .25078 L closepath p .633 .777 .95 r F P 0 g s .84179 .39353 m .70732 .27385 L .59674 .33278 L p .524 .551 .825 r F P 0 g s .70732 .27385 m .52937 .25078 L .59674 .33278 L closepath p .588 .758 .959 r F P 0 g s .21195 .74865 m .35987 .84912 L .2923 .75003 L closepath p .805 .335 .109 r F P 0 g s .2923 .75003 m .35987 .84912 L .53712 .84277 L p .679 .34 .395 r F P 0 g s .15246 .57688 m .21195 .74865 L .2923 .75003 L p .958 .703 .506 r F P 0 g s .20314 .4891 m .15246 .57688 L p .2923 .75003 L .958 .703 .506 r F P 0 g s .84179 .39353 m .80233 .51682 L .88378 .56779 L closepath p .229 .235 .658 r F P 0 g s .42709 .3239 m .52937 .25078 L .35584 .2923 L closepath p .661 .914 .978 r F P 0 g s .42709 .3239 m .35584 .2923 L p .20314 .4891 L .831 .935 .897 r F P 0 g s .20314 .4891 m .20765 .40108 L .15246 .57688 L closepath p .917 .906 .505 r F P 0 g s .35584 .2923 m .20765 .40108 L .20314 .4891 L p .831 .935 .897 r F P 0 g s .53712 .84277 m .6562 .82555 L .69448 .76865 L closepath p .202 0 0 r F P 0 g s .81452 .73342 m .69448 .76865 L .6562 .82555 L closepath p .099 0 0 r F P 0 g s .69448 .76865 m .81452 .73342 L .88378 .56779 L p .38 .185 .486 r F P 0 g s .35987 .84912 m .4711 .84817 L .53712 .84277 L closepath p .021 0 0 r F P 0 g s .4711 .84817 m .6562 .82555 L .53712 .84277 L closepath p .127 .676 .74 r F P 0 g s .78634 .31019 m .70732 .27385 L .84179 .39353 L closepath p 0 .303 .792 r F P 0 g s .52937 .25078 m .70732 .27385 L .78634 .31019 L p .404 0 0 r F P 0 g s .4711 .84817 m .35987 .84912 L .21195 .74865 L p .351 .588 .933 r F P 0 g s .78634 .31019 m .84179 .39353 L .88378 .56779 L p .959 .655 .235 r F P 0 g s .35584 .2923 m .52937 .25078 L .47739 .27038 L closepath p 0 0 0 r F P 0 g s .47739 .27038 m .52937 .25078 L p .78634 .31019 L .404 0 0 r F P 0 g s .38645 .7366 m .4711 .84817 L p .21195 .74865 L .351 .588 .933 r F P 0 g s .21195 .74865 m .21735 .67398 L .38645 .7366 L p .351 .588 .933 r F P 0 g s .15246 .57688 m .21735 .67398 L .21195 .74865 L closepath p 0 .013 .581 r F P 0 g s .88378 .56779 m .81452 .73342 L .85826 .61189 L closepath p .739 .82 .355 r F P 0 g s .79368 .44505 m .78634 .31019 L p .88378 .56779 L .959 .655 .235 r F P 0 g s .88378 .56779 m .85826 .61189 L .79368 .44505 L p .959 .655 .235 r F P 0 g s .35584 .2923 m .47739 .27038 L .31245 .37213 L closepath p .24 0 .049 r F P 0 g s .20765 .40108 m .35584 .2923 L .31245 .37213 L closepath p .131 0 0 r F P 0 g s .32264 .5467 m .21735 .67398 L .15246 .57688 L p .339 .205 .548 r F P 0 g s .31245 .37213 m .32264 .5467 L p .15246 .57688 L .339 .205 .548 r F P 0 g s .15246 .57688 m .20765 .40108 L .31245 .37213 L p .339 .205 .548 r F P 0 g s .85826 .61189 m .81452 .73342 L .6562 .82555 L p .817 .905 .901 r F P 0 g s .4711 .84817 m .58527 .76851 L .6562 .82555 L closepath p .651 .867 .981 r F P 0 g s .6562 .82555 m .58527 .76851 L p .85826 .61189 L .817 .905 .901 r F P 0 g s .38645 .7366 m .58527 .76851 L .4711 .84817 L closepath p .607 .717 .923 r F P 0 g s .78634 .31019 m .6423 .30986 L .47739 .27038 L p .404 0 0 r F P 0 g s .79368 .44505 m .6423 .30986 L .78634 .31019 L closepath p .827 .497 .431 r F P 0 g s .31245 .37213 m .47739 .27038 L .46683 .40423 L closepath p .549 .263 .434 r F P 0 g s .6423 .30986 m .46683 .40423 L .47739 .27038 L closepath p .589 .296 .44 r F P 0 g s .21735 .67398 m .32264 .5467 L .38645 .7366 L closepath p .572 .526 .765 r F P 0 g s .31245 .37213 m .46683 .40423 L .32264 .5467 L closepath p .542 .357 .58 r F P 0 g s .85826 .61189 m .71474 .62771 L .79368 .44505 L closepath p .876 .742 .71 r F P 0 g s .58527 .76851 m .71474 .62771 L .85826 .61189 L p .817 .905 .901 r F P 0 g s .38645 .7366 m .50936 .60323 L .58527 .76851 L closepath p .674 .655 .823 r F P 0 g s .32264 .5467 m .50936 .60323 L .38645 .7366 L closepath p .605 .545 .761 r F P 0 g s .71474 .62771 m .58527 .76851 L .50936 .60323 L closepath p .7 .667 .815 r F P 0 g s .46683 .40423 m .6423 .30986 L .79368 .44505 L p .728 .557 .66 r F P 0 g s .32264 .5467 m .46683 .40423 L .50936 .60323 L closepath p .637 .498 .677 r F P 0 g s .50936 .60323 m .46683 .40423 L p .79368 .44505 L .728 .557 .66 r F P 0 g s .79368 .44505 m .71474 .62771 L .50936 .60323 L p .728 .557 .66 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{281.375, 288}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt3MlvG/cVwHGGHO4iJUqkFkoUKVKkKFG7l9hJHNu1YzuOncRZnMZt2jhp 0CRomyIOUBS5FGiBojAKFIWPPfroo6855k/wtcccc+xVnd/Cp+HwO+SMFcct YAPzIz2jee8z7zc7ybl++6tPP/nt7a8++/h24/KXt3//6Wcf32lc+uJLd1Ti uVjsuQV3aDRi6v1BLNZv9L+qaux/nr1/9v7Z+yO9/6d6Savt609mxN/VS0qN SB18FItl1bs/mEl/k7+dVpMy6t0XZtJf1Iv+25pM+rWZpOPm1IiuBPyFmfS1 eimoEcdkrptmkk6Z19u9c3DaTDq4e/5z9Ro/uHf1jqPePa9mS6p3N8xsd8SR VHPFzZ+788USOoI7oxrcmP0Qp1QI/XdvmBC/kxAZCeFAiIxqde4TKoSeeM2E +FwKVVAh7IxKr8JQsIJ4jovnqgn2iXRISTxpCFGSEPsS4ooJ8ZF60ZMq4KFg FQm2K8EumWC39Yv584bdNVdEloVgVQm2LcEummAfBgXzGSnssnRATzrgvAmr 1y/b+W5YO+Np06OeOk5A2JZoN0R71oT9QL8kRdvwqKclaBGCrknQrgQ9Y4L+ 3FeCRoB6EspCqXqq7alRL5kEt6QYDoQtirsEwdZVq6cmDr65+8BOffT152qI rerWjLP/Yi+YpO/DUlF62kAIsiaQFEBaqtVTXzTpfxoy/YQsfRmSdnRrxrlJ deI0pG966vCf+6f1+mDrcFOKn4b0OUk/C+lXZZnzkHQlOOm7sPSpoPS+4hOk KZAiQBq6dQRiMaeN5R2wUCkOd7YLIGiIoASC+kjBW9IF2aC8vhqQYFkEZRAs 6zY5IOh3yinDuAGFyAAoLYVYAkYNVsmKavUcy751wh3cfYlqBzfSE4b0JpCo RofH0hqQlqQyVajMYjTS69JZ+SCIr7OIVBVS7Qik44Z0HapEuIRUqQGkeSE1 gFQFUgJIxwzpWhSSr16EmxVcC3AL0XCvAW7C7oE9OKlWC0BlAXUANA8gB0D7 BvSqrFNFzUj6GXozbQNjBra2NQDNRQNdgQoVfRWKmfOKTtCZnl6enmz5JEiC YM8ILgcJ9KguJJ2UpDtQgDKkT0H6XZP+FemRkmet7a+hlL4g6fch/Uy09BeD ll6vGeuQPi/pT0D6aUifhvQ7Jv2FoA1Ej4ofvLV3t1+RW/fUYFyr4MrBCnoS hCUQZkC4bYTnB/fCeq1MosttNa4edIWko7wApKlopHNQtLTgsoDLCa4KuJTg zgBuEnBZwG0Z3FnAJaVHC4CbFBydeCYFdw5wxWi4M9KZjtRrCkhl1dqpw6SE kC7ITocgOYBsGshLUCXHlGBYMy8FyoMmDuv9K1CqPAjzIOwZob560KR5INWE lEJSTB1qhg25aIYXpLsWwdAUg7mP0D9OqOEaJM8+RnI7yU2uAcToqNbeNRlO moGkE5B0I1rStm7NuPtfP9BFeBPSp6OlPw3plyD9qm4dSW8JN0IKqOoRBS1f AdzBXe1UO7glvCFb6BOCNAGSAAjVxgnZO+uGdApINSCtAMkB0ltASjwZUgNI SSC9DaT4kyHVgZQC0ju6TXpJeojpvX4g43lgLANjGRiZQIYzwHDfT4KgG01Q A0EWBO/6+ib2w6RfgvQ5SH9TtuQRSU9C0jokXYSkeUj6nmeZ++te4ejpq5C+ ELTMvvS0zq1FS78A6Ytjevy7bx4G9rhNfwLSN4LOZ3zpJ3+89HOQfmrMFqfS W0JEwQoIKiAojdn19AWjCtExjOPAaAad5foYM4E75SfGmAFGeczhyhLcY4Nq x2+fEUnTQKqEJCWARIcrSzoGpBaQSkCaHXOe0Sc5IavUjkaaAtJcSFIyZJUi kiaBtBB0WugjpaKR9oG0CqQikKpPl1QA0mJIUjokaTUaaQJIS0B6HUiZaKQ9 ILWBlAfSMpCuAykLJLrYiEjKAakOpGtAyj0ZUhZIjSOQqONahrQLpA6QMkBa AdJrQJoIWaWIpDSQmk+XlALSKpCuHp20A6QukBwgtYH0KpCKIUnNaKQEkDpP lxQH0hqQrgBpCkh0m9KStoG0rtukl6QHdTbYA8blJ8lwBhju+00QXAJBKWTf rIwTHPaNKsBWyPTTIQtg029B+g3V6uvh7R85qR5FS/oKJC1DUrpDPy6pHfev u9+qwfyPVreLIQ204A1j2BxjuPfnb3VnO0qiR3UBcgEglaNDvOu9glhMWiy0 wyTLbMiOGWHpenYFfUu/ODkF0kw69P4EQHPRQL0xu0uLcf9nWu/ak5dq0Qld WBz1XP3ouKLg6AT4PODmQ1ZuBG4NcA7gSoKjy6pzgFuIhtsIiUsBbkbWObpY J1wVcPRxdSMY1wFcGnBzUrlpwJ0F3OLRcW3AZQBXFRzdCXs5JE5/z0AfkprB a9oqkLJAWhIS3Rk9A6QakOiLHysenNYSKQekuqxfdH88LMmRKrX8kBZA8gBp SW3oEwuCLAMkLpBVzz4+bvbZw5ACQNoCoc+8XgJIPTTE/lEsZk6t6kAqAqkr JGPqi0Zo0l6NHvQ8j27pKAMmx2O6Zw4g4Vg91ervrp8CxwpWRR/Nh06L+gWp QeapoMx23MMHj9TgxnZb/c2q3UDN4Vc4vdUYAA1VYxFMJTBteEwP7j/SkfPK pH9t0AFT097J9Jr0n3o4SR/H1GkBTNNgWtetIybrKkuploO2q5Rd22yNtMXW aZvrNA+mMpjWfHVyB7fvVDvYnwuCnA06/9W/O0kePPruu/5Wanu045VyCWeB WwFuB7gJ4K5IV08ANy/cScv1FnaA690i7uktpn9l3D/czISkt4GeBPq6VNqB z4f68Hmos/2QaCckvATwuaBjgQ+eAviewJsKp/cu3WikKSDNA6kJpAyQjunW jHNJumYtqNwIZgKYRWAuAHMFmFlg7gNzNZi5G5I5AczFoLMOHzMPzF1gtqWr 158ubicI56uhZe6FZOaAuQTMZWAWgLkFzI7UcCMY5wAuA7jloDNdH64IuE3A rT0uLg24OuAWATcJuN5InP1O3X5IXBJwjaDLFh+uFLTT9uG6YXBJwDmAWwHc POCmAdcF3HoYXApwccA1g65Gfbgy4DojcfbbrMcCK5f04vSgNvI2gGYBVAFQ G0AbYUD+aplD8jCkDJA5gLQA0vPs0fpXm71gkrruMF8dPQqkGQTRke03n4+P qcite9/ritirsIB7Kz7NQtCp3Q+hcQdX47Z6FK3DJSBVgdQYSdqORkqq1v54 aZg0BaQlIC0DadNPOhG4WQ2S0lKlGpAmgVQDUg1IW7A+b0XD5aRedFwuAK4O uMUgnP0ZjiadBFICSAWpF50VTgCpAaQqkLYflzQlpNmg29U+UhNI80DagS7c joabkS6kC6cs4FqAmwvC6cj250jPAykOpIrUi67kM0BqA6kCpF2o10403LzU i27HhMWVAbd3dFxVKkd3qVKAWwPcdBBOL7b9ZZ35JjbfUagLg+5vJoHRBUYJ GPtQo93xoKZ0Gt2MdgC0AaBJAB17PNCqVIg+TYgDqBcSRBWyXWZ+9TB0u2pN ipPUlqTXooeY3ucN5y+ELMjo/OtSi7j9ZMqbX+8+hlNPQOrj41J7NyB1uuLm TZpVejhBPmjZdKXsT6YPf8O0K8GoUNmgjtLznsRg/XXi4fdqUOvEw+/1vWza VjIjN9lT/gR7kCAjCejokwq5w7KpXvTUu79zoqUqStJFSJoM2oV7H4Ghf/a3 D7HLEpsuNRIjj1j2mSUvS8V2IMGiJKAL+vjIU4izJsE5qNMWpFqRVOZWm+NN ZXz9yPbRMIc/bd2GeGsSzw1l74UPhPJ1qw16AbibEH5Ltdp4eB5nn4RzUVy0 nJu6NXug+/8+kEFBDy8E7RN6LoFmA4L2dJvwBnX/Z1pv7xzeT7PPE7ocMkFX tfZ3aMNhD+/I2icdXZES9CBYB7QZCNuAbrIJroJ7HVK1xD2hEvQfrWG15nkQ 5jEHcdlR+0I0QVsE7YKEtY+fug7GNUjQgARTkGBWEthHZB0+YaMLYWuy6GUI NiPB3jbB3gRtJ2iX4NNWIEEJOs+muiFuKse8uBcgbFHc9vFib4N7FcLOgbsq 68SEhDXPGzIPu7EfYQ4Hq0CwGmjTEvaWCXsTtC1IMC1FWIGwjoQ1j5yKvSda WvQp0DYhbBy6zCZ4H9wrQUc7+7QPlcDxJlDvf2ni3QoZbwLoLdXqHah5gFns Z7L0TQiRC+or/WHSJybEB+BpQLD04MqpQ/zGhDh8UhktSBIUJdXqjxHvmBAf gmIZgiVEUVAh9Ed2fzQhbouibu/3eGbUQ0wfYvuz2WcFfgyZa77Masa4zPhX M+Ov1EtbjfiHGaFXm/+hxyI+e///+z723H8BULn43A==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {287., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"b4724f68-8453-4ac4-81c3-cee0b1abb438"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(49\\). \\!\\(\\\"augmented triangular prism \ (J49)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"086bd1fc-c866-496b-a63a-672b570f9360"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.19346 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.102903 1.24733 3.33067e-16 1.24733 [ [ 0 0 0 0 ] [ 1 1.19346 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.19346 L 0 1.19346 L closepath clip newpath .5 Mabswid [ ] 0 setdash .58813 .69331 m .78318 .96461 L .8433 .49414 L closepath p .394 .294 .622 r F P 0 g s .47253 .29593 m .20904 .64988 L .58813 .69331 L closepath p .811 .691 .732 r F P 0 g s .8433 .49414 m .47253 .29593 L .58813 .69331 L closepath p .524 .519 .792 r F P 0 g s .37097 .94248 m .78318 .96461 L .58813 .69331 L p .76 .367 .309 r F P 0 g s .58813 .69331 m .20904 .64988 L .37097 .94248 L p .76 .367 .309 r F P 0 g s .8433 .49414 m .43724 .42461 L .47253 .29593 L closepath p .677 .168 .025 r F P 0 g s .20904 .64988 m .47253 .29593 L .43724 .42461 L closepath p 0 0 0 r F P 0 g s .37097 .94248 m .20904 .64988 L .43724 .42461 L closepath p .278 .191 .574 r F P 0 g s .43724 .42461 m .8433 .49414 L .78318 .96461 L p .831 .693 .711 r F P 0 g s .78318 .96461 m .37097 .94248 L .43724 .42461 L p .831 .693 .711 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{260.562, 310.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmltTFEcYhhdZWM4iQaMkBjQSWEFgo8HTgoAcRERAARFJcCUoaIwESYw5 VCpVqVSucpV7/4A3qfIf5Dfk95j9+uu8DJt3Nt2b2SQXSxXTQ7/f88xMDzs7 O73TmZ2N9ceZnc21TNvEdmZrY3Ptadv4k+1sV3lZLFYWz/72t8Vk/XUs9ufC /FTIwv5RWi+tl9b/s/WvpNknr82fAh2xuPS8fpk0r1r5/VHT5ygvl9Ss/aDR l4gqJcoW4PWejb/XomfSmCQB/i9RNaLvNPpCGrNLtYi+1ehzRA2IvtZoRw8z 29GI6Hlu1ITomUZPER0kh7GjRdvSVEpyCLyNPpMmIR2HEW3nRi2ItjTaQnQU 0acaPZGmSjpaEX2SGx0j+7qpRUZTLclx8DZ6jKgd0QONzBZqpKMD0XpulES0 ptEjaWqlowtRRqOHiHoQrWpk9qZOOvrIYazkFqXA22hDmnrpOI1oWaMHiPoR LWl0X5oG6TiHaDE3uoBoXqN1RANkX+e06GNp9ksyCN5GZqAapWMI0UxuNIJo WqN7iMYQTWlkhrdZOkYRTWp0F1R2N4dTv5hd/f3Vq2xRdlm5dycmAozZ9X2C 2OPLlhswATBNjn5UFatQlBNFvSwr9g67BT8CGCdgE7Z9BuBIAGwIA48A7AM4 pOCHACsI2AqwG+CggisAKwnYDrATYFrBOwATBOwCeIKM7/mAwvxPVxFFCuPb hm1bcBlgNQH7se23AZ5V8DbAGgKmAe5e8T5QcAlgLQFHADYDPB0A68LASYC7 V/aUgrcA1hFwBmAdwF4FFwHWE3ABo1pNTky3KhagaCCKZWw7jm0HQXNt3E/A u7I0V/mTWj6P8kZSfl+Wpiup5TdRfoCUb5jl3uPpUPAGwKYCwJowcDMcnAP4 hh84C7DZcVc7FZwBeLAA0Lx3HvIDrwN80w+cBni4AND8Ax3xA6/lBdnpsOAU wBY/8CrAtxx3NRkAE3r18gInAR71A68AfMcPnADYWgBYGQayUbXgOMA2P3AM 4DE/cBTgccdjPBkAzYX2XT/wMsATfuAIwHY/cBjgewWA8TCQjaoFhwB2+IGX AHb6gYMAk47H2BUAy/VNywscANjlB6YBdhcAmrfjU37gxbwgG1ULXgDY4wee B9hbAGgj+SQgsOe2zxEF2ws2YPY+5yxR9Pkp+oki9a8r2IG4npHoFOyMuJ7U 6BTsX8v1hXQq8HrIUbi+iKNTXCQK12tQHgW7/rHhtIo0UbBrb3EVA0Th+tbh qWDD2aOKQaJg73x5FJeIwvXtOjrFEFGw2xQ2nNEphomC3WUVVzFCFK43ib2R KS4TBbvHzaMYJQp2f+2pcL23t4oxomAfSIqrGCcK9nkqAgUbzj5VTBCF68fB 6BRXiML106xVTBKF60fw6BRXiYI9eiiuYoooXJ+cpCJTXCMK1wc/0SmmiYI9 8GLDGZ3iOlG4Pq+zihmicH1W6Klgw/m+KmaJwvUZaXSKOaJgz4HZWESnuEEU 7DF2cRU3iYI9j8+jmCcKNhcQgYKdVDuBsUAUbCrDU8HmX9iBWMUiUbC5n+Iq bhEFm7oqrmKJKNgcXB7FbaJg83/spJ6JTLFMFGzekx1IdIo7RMHme4urWCEK NnFdXIWZRo5VBBXmN/t37CHB7Oyomba2X7UJIH9L7O6rbOBRePmqNOZx4T8t Ml8LMNNk98KLzFc8miSZDS/6BkWD4UU/S3NAkm5SpA/wYi9gagkv+hVFVeFF v0ljZtb0eZgW/I++pVVaL637rsfK/gAKJ3F1\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 259.562}, {309.938, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"f9b8defb-fd27-44c2-a961-3b69fbe5b5d2"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(50\\). \\!\\(\\\"biaugmented triangular prism \ (J50)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"3b3c21bf-0303-4d3a-8f5a-dc91dc11e9ef"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .97864 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0107602 1.05405 -5.55112e-17 1.05405 [ [ 0 0 0 0 ] [ 1 .97864 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .97864 L 0 .97864 L closepath clip newpath .5 Mabswid [ ] 0 setdash .3559 .58007 m .70913 .565 L .42525 .29301 L closepath p .613 .626 .84 r F P 0 g s .3559 .58007 m .46272 .87864 L .70913 .565 L closepath p .605 .392 .566 r F P 0 g s .3559 .58007 m .15532 .61049 L .46272 .87864 L closepath p .88 .528 .376 r F P 0 g s .42525 .29301 m .15532 .61049 L .3559 .58007 L closepath p .912 .929 .81 r F P 0 g s .80758 .29713 m .42525 .29301 L .70913 .565 L closepath p .551 .612 .867 r F P 0 g s .74549 .74925 m .80758 .29713 L .70913 .565 L closepath p 0 0 .247 r F P 0 g s .46272 .87864 m .74549 .74925 L .70913 .565 L closepath p .247 0 .267 r F P 0 g s .74549 .74925 m .46272 .87864 L .15532 .61049 L p .549 .623 .878 r F P 0 g s .41117 .43709 m .42525 .29301 L .80758 .29713 L closepath p .435 0 .046 r F P 0 g s .41117 .43709 m .15532 .61049 L .42525 .29301 L closepath p 0 0 0 r F P 0 g s .15532 .61049 m .41117 .43709 L .74549 .74925 L p .549 .623 .878 r F P 0 g s .41117 .43709 m .80758 .29713 L .74549 .74925 L closepath p .804 .643 .682 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{287.75, 281.562}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmdlSVFcUhlsExRFRRHHsSDQxKgICzTzPiMggigjSICg4gIDilGiMlUqV lUqlUpXKRS5zmVfJa+Q1SK+9dv851f4L9kWuUlAF63DW9/3n9Bn6DLs/ufpg 9nFydX4mGe9aTi49mJ9ZiXcuLqdmbd8Wi207nfotisdkej0WS/9xP3H54//Z mt6a3pr+306/lFIt5/6TyIzYdpmzvhDLld9YpfxNyKyEQi+kZMmMeWk5OuX8 9cef6/5LJFal5JoU158DmS2gX4T/SS3C4c+lZEtnBvhOG38mJUc6U8B32/gq 8Engewnu131Fyg7pjAPPC8HHBHeb56CNL0vZKZ1RpBfY+FMpudIZBn7Expek 7JLOdeDHbHxRym7p9AM/aePuWNkjnV7gpwmeyMS7sWXO2PhjKXul04H0z238 EfA24F/Y+EMp+6TTDPwrG1+Qsl86DcAv2fi8lDzp1AIvtfEHUg7omZXGywle nYlXYkNW2vh9KfmamU5P2PiclIPSuQy81sZnpRySzkXgDTZ+T0qBdM4Db7bx GSmHpXMOeNsmeIEeKWm8g+A1ik8j/Qw2ZLeNJ6UU6lGeTu+18SkpR6RzAni/ jd+VclQ6RcCv2/iklCLpFAIftvEJKcekcwj4aAiejy1zi+C1it+Rclw6+5F+ 28bHpZyQzh7gEzZ+G/gu4FM2PiblpHR2AJ+x8VtSTq27S1can9sE/2zdXfRM 6KaUuHQe2tBoZMEff//bQ3L1FOU+EetUvAExh4hs3b04gi2TS8RZWxyGuJuI 92xxCLtuHxHZXomK7ojKI+K0LQ5CzCdi0havS3GHfAER7xKxXsUBiIVEnLTF a1KK9Iz/VGQnhBf7IR4n4p1NRPeVdIqI47Z4FWKciOxU92KfFPedWUzEMVvs hXhWRPMbqEHxHimH9bry6XJu2GI3xAtEHLHFLinuWlNCRPZVHBXdFbOUiEO2 2AmxnIiDttghxV3SK4nILjJebIeYIOI1Ijaq2CbF3XPUEpFdBb3YCrGeiFc3 Ed0tVxMR+2yxBWILEdn13YvNUtw9YTsRe2yxCWInEdkNiBddcTetPUTsssUG iH04mToJ3qS4OwXdvfQAWQ67/4qK7hZ/kIittlgHcZiILbborqXukWWUiOzO 0os1EG8RsckW3a2me6YaJ2KjLSYgThCxnojNEdE9I04Rsc4WqyBOE5Hd1HvR PSm7h9hZItbYYgXE+0SstsUrUtxD+QIR2eOKF8shPiJilS2WSXEvGRaJWEHE lojoOk9xMm2AlwJfJcsps8XLUlz6GhHZ46QXSyC+JOJlW7zkirZSopNfkYgS O+IiiXhDItjDc3T1MyJek4gLJKI1sukCItgTf2tktwVEnLcjygIjvrQjygMj 2JsOH3ElMOKcHVGBA4rtyrO2WBV4QBWTiDaNSARGsDdJPqLaijBfQXmxJnDT sZdePqI2MOKUHVEXGMHe1PmI+g134AlbbAzc+sftiKbAiCIS0a4RzYERR+2I lsAI9jLVR7QGRhTaEW2BEYftiHbsSnYMsFfHXuwky2bXh0N2RFdgRD6J6NCI 7sCIA3ZEjxXhtsoGYm/g1t9nR/QFRrDxBB9xdcMduMcWrwVuOjb04SMGAiNy SYQeP/qaJCCCjdf4iMHAiB12xFBgRI4dMRwYwcapfMQIdiU7Brbb4ihZ9gsS kWVH3DQjsqMRMq0njL653GShsX/xMQvPimTe3iQzvdL6zaEvfjPwVWTqyaUv k92MZbT6tTVJfHfb72bp0a0v0jOgeSTpkaMv5zOgOUAjCiUJNANId6IOImRA U4B0o+vARAZ0ByuuW1HHRrJ0Rtqf0NYc8W8A0k+sAz0Z0BAg/TA6eJQBDQDS 9dTxqwyoD6s7q9ACgbqRpMvRcbYMqAOQRujYnZvRhtYjbT0hfiMgP1q9SKBa rO6SQksESiBpRaGnBKoA9EyhZQKVAVpTaIVAJYB0fF2Hot2Mi2i91tZz4p/D Z/paoTUCFSPpnUIvCBQH9F6hlwQ6CeiDQq8IdAzQ9wq9JlAhVvwHhd7ggxfA /6itb4ifB+hHhd4SaC+gnxR6R6BdgH5W6FsC5WB1f1HoPYGykPSrQt+5kg1I aur3N+1+iET4n3TL/RPfmv6vpmPb/gHH+6p0\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 286.75}, {280.562, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"715928bb-7fbf-4c42-a130-e43189e8bf33"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(51\\). \\!\\(\\\"triaugmented triangular prism (J51)\\\"\\)\ \"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"4f2f8ea5-1caa-4cef-b2f2-540350bf2591"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.14944 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0835993 1.22428 -1.11022e-16 1.22428 [ [ 0 0 0 0 ] [ 1 1.14944 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.14944 L 0 1.14944 L closepath clip newpath .5 Mabswid [ ] 0 setdash .47767 .87923 m .78953 .8178 L .61867 .51568 L closepath p .51 .372 .628 r F P 0 g s .38211 .92439 m .78953 .8178 L .47767 .87923 L closepath p 0 0 0 r F P 0 g s .24165 .59483 m .38211 .92439 L .47767 .87923 L closepath p .908 .5 .17 r F P 0 g s .47767 .87923 m .61867 .51568 L .24165 .59483 L closepath p .779 .671 .744 r F P 0 g s .61867 .51568 m .78953 .8178 L .76907 .39966 L closepath p .206 .237 .673 r F P 0 g s .41252 .21397 m .24165 .59483 L .61867 .51568 L closepath p .783 .707 .78 r F P 0 g s .76907 .39966 m .41252 .21397 L .61867 .51568 L closepath p .363 .529 .887 r F P 0 g s .33228 .48574 m .38211 .92439 L .24165 .59483 L closepath p 0 .047 .579 r F P 0 g s .41252 .21397 m .33228 .48574 L .24165 .59483 L closepath p 0 0 0 r F P 0 g s .76907 .39966 m .33228 .48574 L .41252 .21397 L closepath p .692 .363 .416 r F P 0 g s .72292 .77615 m .78953 .8178 L .38211 .92439 L closepath p .459 .886 .892 r F P 0 g s .76907 .39966 m .78953 .8178 L .72292 .77615 L closepath p .936 .765 .294 r F P 0 g s .33228 .48574 m .72292 .77615 L .38211 .92439 L closepath p .522 .509 .782 r F P 0 g s .76907 .39966 m .72292 .77615 L .33228 .48574 L closepath p .729 .452 .507 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{265.5, 305.125}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm91TE2cUxiMJEAKhfCoq0qhFBsX6MYgKIhggQOQbDAgiBkQBxTrKdNpp O22HdpxOp9NO67QdL3rRv6G3vexl/w0v+y/Qfd9382R5eZLsm7DTXsBM2HWf c57fOSfLZrO7jia31lY3k1vrK8nI4Ivk87X1lZeR2AcvrE3+Qz7foTLrdSni E+s7Pl/ql/wJiV/2Pw7WD9b/p+ubYlEk9ts3jg2+gNiy88f8xo69V/+q1KcI 9wtVrv3skKzNqUTrZdmkgl6roCfID0L6UZdCkH5Q0gaksLRVEPvH950eVIn8 PVIVpG+VtA6pFtI3ulQP6ZWS1sRCVnEE0tcOSW44BmlbSY+R1QjpS11qgvS5 kh6JhXw/IpA+c0gy6zSkT5S0iqxmSB/rUguZ5oeOIKm0It+WHiL/HKQtXToP 6YWSViBdhPRcly5DeqakZbEoFhvaIT3VpQ5IG0pKQroOaU2XuiA9UtIDsSgR G7ohPXRIMqsX0rIuRSE9UNISDPvJoBcdQTI/hnxbuo/8IUgLuhSHdFdJi5BG Ic3q0jikO0q6JxalYsMkpGldmoY0qaQFSAlI47o0B2lUl+Yh3VbSPKRFSMO6 tESmGVNBcgZB9R6k8p2SzF+B1K+kOWStQorq0mNIvUqahbQB6aYurQspoHYq KSXEokztW5Yk33n/zp8vt7WGuvTwJYQHc4QH1Y6SCg9nDr8D9wTCa9yETyL8 sAgvcjQ4g6BRBB3PHDSEoIgeJPe/kNjQh6BmGiSdehB0Vg+aglMngi5kDrqC oHY9SO745TiM2QeZ9MT++Ssulr4bjnDp2YbwbhkeQLidsiejBRnRrBkTKOkU MgZzZ0hGEzJGsmaMg3EUGZMuM+qQkciaMYaMKmQsuMwoR8aDrBnyCFQhNpQg YzV3hmQUIWNdZhTvytDe+BGxqBRbnrkMllVZe9H29t8yVmRtmuQWiVR7N7TS ZOqT3Aa30aDIDb6WscJJ+sl9361LSJVhmdhliF5UUXtLW8ttGodpwKXpY5em 8oBRTEwDaNqF1TDqY1YlpL4V7VBhvayBid+7D7idDkCZ2l33AkoJYNkMMARA KQEEMYx8bOXHUJDYhkjdS2aAQQDKCKAcdTNbP7G97rCV5wghYhsmdd/LF1Du ErBgBogBUEEAlRhMPrbyzDFMbKtI3bMEEMgMGACgkgCqCSCRB0D+Nb9DADUY jKFtP+pmtnWk7uk8ALLuKgKoJ4ApM0AfANUEcBiDycdWfqjWENsGUve4GSAK QJ1LwFgeAKnUE8BRDGZfbY+TuuMEUJwZcAuAwwTQSADDeQBk60cI4AQGY2jb C9sGYvsuqTuWB8CW5ImOBWEdRAhqwAzVQ1Csq5MY1j4AjhLAKdJLtPCxsV5O oxePAM2kl5sEVZJj13WxC5whqG6CKiWoa2aoFozNI0Ar6aXTDBUlKHZwOUtQ +rfjfUKdw9gMAX0uAW2klw5vUOcJ6ooZqp+g2OfL+xhbOwEECwdcJL1c8gZ1 iaAumqEGCIqdTlzG2DwCtJNezpuhYgRVS1BXCKrNG1QHxmYIGHQJuEp6afUG dQ29GAKGCICdE3eSXpoJqqxwVBdBvecN6gbGZggYJgD2DeUm6eWkN6gegoqY oeIExb7Y9WJs+wBgvdwivZwwQ9122UuUoBoJKkRQV81QfRjbcQIoLxwwQHpp MEONEBS7eBAjqCPeoAYxNkPAKAGwCzjDpJc6b1Bxgqo1Q42ZoOyHBzwBjJBe qsxQ4wTFruGNElQlQVUUjhrD2DwCTJBeys1QEwTFrqhOohePANOkl6AZapKg 2OXnGYIqLRzFuprB2AwBUy57SZBeAt6gZgnK7w1qDmMrIoBwZsA0AbBbHPNa L9bS+sAo2HYBdWcxmyFm7O6ONPOrw0fBZndRmX/n5du3Lt6yDgW4QwDsZlcC 1ZYIgEQZ2rK6px3Hnb11s5M2Q0D6wFaJurPYJlyOYwzjqIEtu6xhaDviOIHZ Ow52Nd4GzBIAuxWa/qg/hrr3wXYQ42iSdfPbzfb59hwxZfeFB1DrKdTq86fc nH8lbh3Tp9Vn4GgXddelRQ86bREW/jwsundXIe/9dJlZdDm+jaYsepTFPLFg t/Wvw+I0Gukzs+jALE6iCvsptQViwR5+aHd8P0xZxM0s0te0mmChTkzVI3+a hZ9YXEAjjbCYymzBqmhDFY0YZ8LM4uzuv01ZhfNhSBeNtKCRBlgsmlk07z4E SYuksrhPLNhjMuk7KPWwWDWziKCRWlisK4sluSh2WqiX3InS32RS78Jm7rQm pFWDZj/Uq56BDexO86nbj/aZQCpjy5nBQQ1oK4y0j3Knpe9eVyDtU5WW5PXV ISOEjC+yZlSjtDKM7iuVsay/abLtFCAIwKvM4WGElyDcfnRdPjZtl5oqIYCg 7/Wg9MM8fgT95AjSwMWOU81UW7+o8IfwlI+IyadN3jgkueE3tWEVsb+rDeL3 f/2fHg7WD9YLWfcd+hc8b6zw\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 264.5}, {304.125, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"da5f8871-4b48-4838-a9fb-9299f2e696a8"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(52\\). \\!\\(\\\"augmented pentagonal prism \ (J52)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"2f92bc67-147f-4f4c-b109-dd0c1c3d2a64"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.30777 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.152781 1.34442 0 1.34442 [ [ 0 0 0 0 ] [ 1 1.30777 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.30777 L 0 1.30777 L closepath clip newpath .5 Mabswid [ ] 0 setdash .80846 .66097 m .59405 .35104 L .29011 .56612 L p .681 .557 .708 r F P 0 g s .29011 .56612 m .49913 .87369 L .80846 .66097 L p .681 .557 .708 r F P 0 g s .13718 .45026 m .29011 .56612 L .59405 .35104 L p .801 .896 .911 r F P 0 g s .51601 1.00934 m .49913 .87369 L .29011 .56612 L p .857 .414 .005 r F P 0 g s .27332 .73404 m .51601 1.00934 L p .29011 .56612 L .857 .414 .005 r F P 0 g s .29011 .56612 m .13718 .45026 L .27332 .73404 L p .857 .414 .005 r F P 0 g s .86545 .77127 m .80846 .66097 L .49913 .87369 L p .235 0 .134 r F P 0 g s .49913 .87369 m .51601 1.00934 L .86545 .77127 L p .235 0 .134 r F P 0 g s .59405 .35104 m .47564 .20737 L .13718 .45026 L p .801 .896 .911 r F P 0 g s .47564 .20737 m .59405 .35104 L .80846 .66097 L p .675 .225 0 r F P 0 g s .64515 .47348 m .47564 .20737 L p .80846 .66097 L .675 .225 0 r F P 0 g s .80846 .66097 m .86545 .77127 L .64515 .47348 L p .675 .225 0 r F P 0 g s .27332 .73404 m .13718 .45026 L .47564 .20737 L p .547 .328 .535 r F P 0 g s .47564 .20737 m .64515 .47348 L .27332 .73404 L p .547 .328 .535 r F P 0 g s .51601 1.00934 m .65835 .9265 L .86545 .77127 L closepath p 0 0 0 r F P 0 g s .27332 .73404 m .65835 .9265 L .51601 1.00934 L closepath p .254 .518 .91 r F P 0 g s .86545 .77127 m .65835 .9265 L .64515 .47348 L closepath p .941 .711 .561 r F P 0 g s .27332 .73404 m .64515 .47348 L .65835 .9265 L closepath p .621 .453 .634 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{248.875, 325.438}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm1lXFFcQgFs2wQ1UUBERFJFNFlGjGE0gigSRRSTuorgFjCgCavacJI/5 C3nMYx7zu/KYkzcz01Vdwwzf7SmPyUke4jkzkzBV31d1p6e77+2e8bnV+UeL c6sLD+aaR5bnluYXHqw0X3i+nPlT6YYoiv6Mog3DzVH2v99k/lef/nyT+Zd5 8/+Xf/5lNftSkh33H+QPK/FLafYvb36a/in+RPSt5fil3N5KHtmQ7yVkyXDl 2beUo/+ibyXoeYEiGxiHx4nfSdCikarsLc1/CvmbLOgbCfoMgjavqenXAdna vpbwBdNVG0nfmgdSNZC+kvDHRtoJQV9K0CNg1kL4FxL+EMLr4ucyC9eUzyXj vlVRz3GvJW4OyHs545Vk3IOMhtSMWaulieNeStwdIDdzxqpk3DJyi25Fa+OS QZRNOroJ+EMpabK5RzcgrbXgo8o8opL4OX+Dly09umZldjgTn0niVXB3ppS8 JGkz5ut2+hYl8Qr4epwI+VZG04DocyLkOxtNWfnHILEUEp9I4iS4jzsRC4KY AMR7ToTsKKJLVv7A2yWOgfu0E/GpIEbNfRYSyyDxsSR+DO4PnAjZmUUjgBh0 ImQHFw1b+ecgsRwSH0jieXCfdyLuC+IcIC44y1fEkJU/6nTL7jczTOvdF50I 2R9nPqzEPeEsWhPPgpsQ5L4riDOAmHIiZgVx2sq/8naJA+CecSLkgBOdNPd1 Z+JtSXwP3ISoAMQtQZwAxE1nFYo4ZuXPOhPlSBj1g5sQVL4cFaOjgLjnrEIR vVb+Q2fidUnsATchqPxrgjhi7nmnWxO7wE0IcstBPXMcX4944kR8Ioh2K/+Z s3xNbAM3Icg9I4hWcy87E+XkInPKtd694ixfES2AWHVWIecn0UFAvHIiLocR r52IqXAj3ipSEN4qJsOfCFWxERATYYS3iok1GxRVEW9klZA4Hk58ucb988ov 2dfMPHI94pIgDgNi2dwlWUSwihTEi4IqMg+B6d/++E0mz4QdC2OXAFsaP5cZ VtFEvihk2gcsWs8VfwvvKVQq5PI8ctpAjAq+HfALVm5VwahmHpmRzj4X3/4+ DgvmoX5SlTpVcoqcmQWuVz2yXrb8M4KH0AupypyqC6Kiw9ic9VINgnKnYDgs uAe9kKoCVHRcURUd1WdBVeNUUVfnw6rbNmw7QbDRKZB5jJzapJxYJr3UOlU0 bCmq69bLbhBUOgUfiaAbBFehF6+Khm0orJqxXvaCoMrZiwrorHUaeiHVJqdq MKy6DKoGUG12qj4MqyZt2Pa/u6AXBOPQC6m2OFUfhFVj1ssBEGx1CmSqHfWB YBR6IdU2p+pMWDVivRx6dwFNAIehF1JVO1Xvh1XnrJc2ENQ4BadFQPPhIeiF VNtBRYsuKapBULU7VdSVrIzI8kCB6qwNWxcIdjgFp8KCM9ALqXY6h01Vx0E1 YL30gKDWKTgZFpyCXrwqGjZZNcKVnxPWy1EQ1Dl7SREch15ItcupEgcuhPWD qh9Uu52q42FVnw3bCRDsAQEtoavgJAh6oBevino5FlYdsV5OgaDeKegPC7qg F1Ltdapkt6zf0HxVu/XyPgganJ9LiqANevGqqBc5XOKa8iHr5cN3EPSGBS3Q C6n2OYdNVadBdQBUg6BqdKp6wqomG7ZzTgENm5yV64lAvqAReiHVfmcvKaoG 6+UCCJqcApkt4TWTeuiFVM2gouupKard1suoU0C9yCwWLyHVQS+kOuDsJUVV C6qLoDroVMmKg04H8lXbbdjGQdCi6xtrBPEj8//JZ0HQGqg/jC9ev6z+6Mwp X7XV6p8CwaGU+rvC0C1QP+FbU/CdYXzu1p4rAD0cP6+7QUR5dGG1EsoNk7nc jjC+wsq9CtA2Lld5Q8Arg3KJ3M7k9jC5FMjXgNzBZFnw1TWafHLc/s13RmVH +jZQOpkia+WyKhVXQLldBV+iqCBRsUM//h6/Bvo4AhS5DpF3K0KWknlEenH5 rTjDBdXoI7hldQNKLsvoUm1hSQlsBmA92WddI4gRI4AoNcQ0IHoNIZeo8m4x SRBlhqAdxjrEKCDKDTGZipDLdXq1Ih9RYQja7fatGdhkF9sssDGAbTTYWAim C0lBRJUh6IjZC/Uo7BLANhlsJPRBF8B0pMYBttlgw6GtOX5Xt+EJQGwxBJ2m dUE9CpsE2FaDDQX3E/kw/a5PAWybwei8u92a0531ZUBUG+JscOePB+tpgNUY jOY0hwHWGYbtMNhA8NCMZ1xXALbTYCdD5ym6IhMjZgBRawiaSB+EehT2CcDq DHasyClmAtPZ0VWA7TIYrYw0WXM6x74GiN2G6C0yFUnqUdh1gO0xWHeRKVQC 0+WFGwCrNxgtxzVYc7qGdBMQew3RUWTZIKknBbbPYLSqWg8wXam7BbBGg7WG Fprid3UR9jYg9huipciyWFKPwu4ArMlgtJRfBzBd6p4FWLPBmoosPiYwXaK/ C7ADBmsMLQDrjjBG3APEQUPQ9aPtUI/C5gDWYrD6Iuv4CWwwDGs12J7QxRo9 /sSI+4A4bIhdRS4oJfUo7AHA2gxGF1s3A0wvEj8EWLvBdgCsyprTOwEeAaLD EHQhuxLqUdhjgHUabBvANgJM77f4FGBdBqM7E8qtOb05Zh4QRwyxCRBlUI/C FgDWbbBKgJUC7FIY1muwCoCVAExvcHoCsD6DlSEsSk5x8n4Ik2QftWy6HUlv kXsKif3Z53hOorfiLYaCdGoRBz1LHQ29H/I5BOU+TL3ncym0BRaMXEp47guk 98++SN2F6D3CyxCU2wPelaAVCModA/Re71UIaoQWNPwlhOeOwHrf/CsIyp2D 6C3+ryEodxamv0H4HIK2W9CTcFANtKDhX0B47sRdf3ryJQTlpi76Q5qvICg3 35IPUn+2lR+Um2fqj4G+gaASaEHD5Zdn65YG9AdO362BJYn61n/iR37/v/zL L9GGvwDqAvbl\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 247.875}, {324.438, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"bdad8d27-d5e0-45c5-af52-cedd7bcc7ee2"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(53\\). \\!\\(\\\"biaugmented pentagonal prism \ (J53)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"c45a5a3b-b14d-4cc0-a77a-1b72089ea111"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.17701 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0961296 1.26615 0 1.26615 [ [ 0 0 0 0 ] [ 1 1.17701 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.17701 L 0 1.17701 L closepath clip newpath .5 Mabswid [ ] 0 setdash .62921 .45954 m .61307 .69622 L .8049 .71318 L closepath p .424 .445 .778 r F P 0 g s .37537 .63515 m .61307 .69622 L .62921 .45954 L closepath p .778 .757 .834 r F P 0 g s .54553 .89082 m .8049 .71318 L .61307 .69622 L closepath p .439 .145 .367 r F P 0 g s .54553 .89082 m .61307 .69622 L .37537 .63515 L closepath p .838 .56 .519 r F P 0 g s .25708 .51089 m .37537 .63515 L .62921 .45954 L p .805 .864 .893 r F P 0 g s .37537 .63515 m .25708 .51089 L .36659 .71599 L p .777 .323 0 r F P 0 g s .54553 .89082 m .37537 .63515 L p .36659 .71599 L .777 .323 0 r F P 0 g s .62921 .45954 m .53511 .31749 L .25708 .51089 L p .805 .864 .893 r F P 0 g s .53511 .31749 m .62921 .45954 L .8049 .71318 L p 0 0 .429 r F P 0 g s .84856 .7698 m .8049 .71318 L .54553 .89082 L p .098 0 0 r F P 0 g s .54553 .89082 m .55962 .96724 L .84856 .7698 L p .098 0 0 r F P 0 g s .36659 .71599 m .55962 .96724 L .54553 .89082 L p .777 .323 0 r F P 0 g s .8049 .71318 m .84856 .7698 L p .53511 .31749 L 0 0 .429 r F P 0 g s .25708 .51089 m .53511 .31749 L .33349 .34867 L closepath p .774 .979 .912 r F P 0 g s .25708 .51089 m .33349 .34867 L .36659 .71599 L closepath p .014 .067 .573 r F P 0 g s .84856 .7698 m .66953 .50683 L .53511 .31749 L p 0 0 .429 r F P 0 g s .66953 .50683 m .33349 .34867 L .53511 .31749 L closepath p .763 .314 .187 r F P 0 g s .66953 .50683 m .84856 .7698 L .55962 .96724 L p .751 .691 .793 r F P 0 g s .55962 .96724 m .36659 .71599 L .66953 .50683 L p .751 .691 .793 r F P 0 g s .36659 .71599 m .33349 .34867 L .66953 .50683 L closepath p .717 .612 .74 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{262.375, 308.812}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2tlbE1cYx/FIWBQQUVARlaKIIosgIiIoqKwiiCAKWFQisomyu1S72dXu y+Nl/wxve+ll/yaamffwJk2+J+Y0vejTwvOQGTK/85mXyczkzJnpD63NTj0K rc1Nhkq7V0JLs3OTq6Vdiyvht4JbAoEtmeHfhtKAN78eCGy8+D9Z3ov5Y3N+ c35z/j81/8qbpHvH+3N546UsDL8RXH87dDz8qqeC8OJnEnrhTTK9JTkQeiqh NZV2QeiJhBZUKobQYwnNqFRqD4VUqoDQmoRuqVQLoVUJjXgTf0njO0IBf8ut v/nt93Vz1qQWK9LipjdJky0bbuHPnYb4cmw8Q+MNEF+S+A1/IosC+a/9M3iW 19B/66Rbw2xdYx00XJSGw1FbwG8ojXO1LW3ihei2GX9ta1a+XYEaO3A9tur8 14E0/zWoH0n4NwqrBuyRG7ZDsSrAHgo2BFgQsJ2KVQI274YVKEY7vyO2W3eb o4A9EGwQsHTAirSycsDm3LBixcrs2DXAMgA7oNhhwGbdsBLFDgE2I9gAYJmA lSpG57tpN+ywYiV27CpgWwErU+wgYFNuWLnuZ/sBuy9YP2DbAKvQyvaljlUq VgTYpGB9gGUDVq3YXsDuuWEnFNsDWEiwK4DlAFanWGHqWL1iBYBNCNYLWC5g DYpR3+GuG9aoWL4duwzYdsCadKfNA+yOG9ailW0H7LZgPYDtAOycYrmAjbth rYplp45dUGwbYO8L1g1YPmCXFNsK2C03rEOxTDvWBdhOwLoUywBszA3r0f2M +uGjgnUCtguwK1pZGmAjbli/Vmb+pQ5oWAANB7SKUbeG17ShKbUdGhba1mje e/vmD2+aiNgNRJ+uO+gRMZtu2P6PUD1XYurxwHRgr7uxvcBm2Fn6oGmz90Qf tnHYkBvWDTVmAztoP0xoZ+yMPoOminVAjXnAXrOfZOhQjpyxdgE24IZdhBoT sHSKphNhW3S/Ig676oa1Qo17gZXuGH5b0tfIeWD3AdtnZ6naZv3XD9gx6mtQ jWehxoPASq8KO1d5wJ6JvryIw3rdsEaoMQFLXVPqzET6bOWAXXbDTkGNR4GV XRI79tQVrAf2WOpspCNdBZgc2nhZRB3pWqixGtguN7ZGa6y1Y3RRab2miamx DthONzZy3dUAmHwd4iU5YRVQ4z/AHtUamwCTbgUOaNCFZjnUeBbYS27sEWCb 7SwNDNEFe2QooRWwi27YIaixDdgLwtIYXRaw72mNl1LHSqDGdmDbhB0GloZk IiNP3YC1umH7ocYeYM8LGzfcaxnQKgb2cupsZDiwH7Bzgt1MEtsDNV4FtsWN LdQaB+3YCGA0ZFkANQ4B2+zGRkaPbwJ2VrBRwIKA5UONCdgxYK3D5THsKLBN bmxkSH8csDOCyaU732DIg7r+JhW52TEBQKMAMsARd6MkB8oIgXI6obJNK7hv bzseu2kD3uhJ/OqngGiIJuJWH7k3NQdtT0nb27D6dFi9IxEEYh6IeiH8sbm0 SEuxwj+L0OZkVBt/ybI9dDeqto06KF5nj69AvFbiE0nqJh5KMn5C4veSjNfY 41R7tcQnk9RN/H6S8SqJTyUZr5T4NMSX3OKkH5f4TJLxConPJlmMic8lGT/2 jri5ReiHHkBowV7CPMTn1TQfyUMI0VFt4o8gPmPfPyg+pSWYA2ABQpP242UR 4hNqmlPHEoTu2M80FB9X05yTlyF0y34KX4H4iJrmK3QVQjfs37gUH7Z/769B fFBLMH23xxAasHf1nkC8T802CT2FUC+YCeI9apprnmcQ6gLTxD+AeLua5jL3 OYQugpkgfgHi5tr8BcTPawlmfOVDCLWAaeIfQbxJTTP29TGEGsFMEG9Q04xL fgKhejBN/FOI16pphqJfQqgGzARxGmcxo+afQfy4liDXFoHPIUTjSyb+BcSP qDlmD5WBaeJfQrxUTXPn7isIlYBp4l9DfL+adyX0CkI0PJsgXgRxc+f4G4jv 1hLMLflvIVQApol/B/F8NaftoR1gmvj3EM9V0zyi8gOE6GaIif8I8Sw1zXNH P0GIbgIliNOtKPOI1M/+JD06rgWYB8l+iRHD041H336NWrQBm8fc/D/+RQ9E bs7/P+cDW/4EPtFITA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 261.375}, {307.812, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"6c376b25-7afa-4e3a-b8d0-8a0031972f3b"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(54\\). \\!\\(\\\"augmented hexagonal prism \ (J54)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"04ee1de1-572a-4065-b9f7-90382fb31934"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.05729 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0439761 1.14593 0 1.14593 [ [ 0 0 0 0 ] [ 1 1.05729 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.05729 L 0 1.05729 L closepath clip newpath .5 Mabswid [ ] 0 setdash .71055 .66144 m .50117 .50868 L .33668 .69819 L p .718 .521 .623 r F P 0 g s .50117 .50868 m .40629 .32612 L .22416 .52362 L p .873 .782 .757 r F P 0 g s .22416 .52362 m .33668 .69819 L .50117 .50868 L p .873 .782 .757 r F P 0 g s .50117 .50868 m .71055 .66144 L .8648 .65567 L p .338 .518 .887 r F P 0 g s .40629 .32612 m .50117 .50868 L p .8648 .65567 L .338 .518 .887 r F P 0 g s .33668 .69819 m .55099 .86094 L .71055 .66144 L p .718 .521 .623 r F P 0 g s .8648 .65567 m .71055 .66144 L .55099 .86094 L p .313 .016 .29 r F P 0 g s .55099 .86094 m .69458 .87676 L .8648 .65567 L p .313 .016 .29 r F P 0 g s .69458 .87676 m .55099 .86094 L .33668 .69819 L p .209 .469 .885 r F P 0 g s .59969 .69382 m .69458 .87676 L p .33668 .69819 L .209 .469 .885 r F P 0 g s .33929 .50107 m .59969 .69382 L p .33668 .69819 L .209 .469 .885 r F P 0 g s .33668 .69819 m .22416 .52362 L .33929 .50107 L p .209 .469 .885 r F P 0 g s .53657 .28253 m .40629 .32612 L p .8648 .65567 L .338 .518 .887 r F P 0 g s .40629 .32612 m .53657 .28253 L .33929 .50107 L p .028 0 0 r F P 0 g s .33929 .50107 m .22416 .52362 L .40629 .32612 L p .028 0 0 r F P 0 g s .8648 .65567 m .78968 .46117 L .53657 .28253 L p .338 .518 .887 r F P 0 g s .78968 .46117 m .8648 .65567 L .69458 .87676 L p .913 .838 .758 r F P 0 g s .69458 .87676 m .59969 .69382 L .78968 .46117 L p .913 .838 .758 r F P 0 g s .78968 .46117 m .58944 .37391 L .53657 .28253 L closepath p .653 .097 0 r F P 0 g s .33929 .50107 m .53657 .28253 L .58944 .37391 L closepath p .185 0 .132 r F P 0 g s .59969 .69382 m .58944 .37391 L .78968 .46117 L closepath p .897 .801 .745 r F P 0 g s .33929 .50107 m .58944 .37391 L .59969 .69382 L closepath p .561 .539 .788 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{276.812, 292.625}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm0l3VEUUgB/d6czzQGbSkIRMJCEJIQwJCVOCKAqKouAUAQ0igojHAefp qDgc9agbly5dutSlS5f+BZf+BeyqW33tfvmuvD6y0HPgnH7Vea/u992q7q73 XtXj2Oq1tfOXVq9dOLuaXbm6emXtwtkXs8uXr+Z2pTdE0YbW3GsgG7n3N6Mo v/H/2twm/HHn/Z33d97/595/5Yq0+82+JTu+cEXG/4jTN3/o8D9nf+QNOf6p KyrC8ZEo64/n6kUp9+51qfSxK6pu5utEZflaeeJ1qfehK2rcjjJfL1NUL9SN XpPK77mizu0pB2ju5TN4RSq/7YoGt6PCV04XVpaWhX3hX/SSBPpmNrkjVVag 94TqPrcWt6MGqpeB56oEviwfQu5ILQRm1BOqX3NFu9tRD9XLwXNZAl9wRZcV WAGBz0vgFQ1stAJ9goXVO92OZqheCZ6LEnhZA1sgsEo9ofrzWr0NqleDZ00C L2ngRgisUU+o/pxW74DqteA5L4EXNbArYeA5CXxWA7shsE4TDNUvaPVeqF4P nlUJXNMPlgIb1BOqP6PV+6B6I3gel8CnNXCzFeg9ofp5rb4FqjeD54wEntPA fheYlq/S+uqnpfrZYk8qDGU3bvzma//x2y+SVrMmGAKfKm5P6mY+LoxEucj8 y4ubIIdTglpVVFZRGY9KF6Jy4Nw2Jb/BfDYB8WTxx5KSoW49orwYEcvnpMCe UNgmhVUBrFIbV6/5rEP0KKIGEDWaD31FTwjscYV1K6wOYHUKqwPYcYE9prAu hTUArEFhtdq4gHhUEZ2KaAJEk/ZPDeRzTGBnFNahsBaAtWo+1ZpPQJxWRLsi 2gCxsRgRy+eowB5R2EaFtQOsQxtXqfkExMOKaFNEJyC6NR86IawI7JTCWhXW DbBehdFZbFlgDymsRWG9AOvTxv196g2IB13RLR95HpEFxGbNJwP5HBTYSYU1 KmwLwPoVVqb5BMQDxYgQ6MYvhyHYYDEsltmSYO9XbINmNgiwIe2plGYWECcU Ua+IIUCMaj4pyGdBYMcVVqewEYBtU1jsgjVw7lNOrXLGgDPhtn4kn5fAezWw RgPHIXBKE9hbENglv7p84CQEzvhtceN3CeKYIqoUMVUa4h5Nv0IRM4CYLkD8 +fuvviN3C+JuRZQrYtbqgXAWdIiACZSjSskoZQ4o2/02U0SJJXSXosoUtRtQ k7E25V65v2Rb2FU7BXtEsWnF7v332BXFphS7YH3zYtgMYGcFu6zYgjsw99ci sMeBXW6zD7ui1x3Zb/3UYrAKG3bIFT0ycq2HjQGsCmA7BHZQYYesESUGq7Zh B1zRIV/Jqet/xIZQanqJgv2uaJWxY71gCQQjIKgFwYwI/IjbKCelnCCMwuux w4Cts7GLrvA35J2QN315h0DQAIJpEexzhZ8+6APBPAi2gqDRFvhRPy0nr3zH 3C5sOJTD+tyHoAU0Gg2CqhlUUwVdRCpzuBsAQYstWATBMLRlp3VdElO1gWq7 rRpJqNoMqo22aslS+W67DYL9IBiFttBJNguqDlBN2qoxUE1bV7IxVaetOmCp fLeRYBMIukEwYQvGoS10hdQLqh5bdTChagJUPaDqtVWHLJXvtqSCTSAYtwWT 0Ba6lO0GVZ+tOpxQNQqqLlBlbdWypfLdRoJOEGwBwTZbMAVtoduSDlD126oV S2Xe95BgAARjIjgCgmloywCo2kE1WJpqBlT91iRDTLXVVt1lqXy3kaANBMMg GBXBURDsgLbQPXwrqEZKU82Cqi+hahRUI6K621L5biNBCwjGbME9INgJbekB VTOotpWmmgMVzfo0gWoCVMOiOmapzGmlRhBMlibYDW3psGYcY6opUA2J6l5L 5dtyGwT3gWAPtIWmGutBNV2aai+oWq1Z35hqB6i2iuq4pfLdRoJaEMzaghMg mIe20IxxDah2lqZaAFVjQtUcqAZFdb+lMme/q0CwyxY8AIJ90JZ6ayEiptoD qgFbtQgqWmOoANVeW3XSUpmLGOUgmLcFD4JgCdpSnVC1AKp+W7UfVLRUlAHV Plv1kKUy16LKEgpCt50CwQFoSzmo0glVg7bqoLaFBKmEgjAKPAyCQ9AWWZ3M FKr8K/d3rnNLwh8GfOof8Ev20P+IhQ8rAjfWragavHAGPg28Zb/NaLp5mpXa iI1acdu0lUO4EDxjBcY+1EUb8ajZjFt/L8KltV82PQIxNJyEu5gnbvFd+qch L9zU+aVo/+EdhkAalkPgU7f4TeYRu+378LMJEXSiCzMg5zR9CqSTcZgQehrc S4CgS4eAeAYQi4Cgy5swm7eWEEEXY2Fy84L2AAXSBWOYLr4I7gVA0PVzmCl/ DhDzpSEuafrkHofAsEBxGdx7AEG3MmGN50pCBN3ZzQniBU2/xMAXwb0LEHSv HBYJrwFiDhBDgAhrci9p+uSmOYc9EvgyuGcBQTMkYaX1lYQImsUJiFc1fQqk maawPHwd3DOAoNmwsDT9OiCmAUFzd7JKEJ7KvDWCZhoD4k3tAUqfplsXJfBt cG8HBE0OhycG3kmIoAlsmSSP3tX0Swx8H9wTgGgHhExqRx8AYhwQtKoQnub4 UNMndysEysxw9BG4xwBBC0Ey4yuP6SZA0GJVQHyi6VNgEwSGp2o+BfcIIGgt MTwo9BkghgFRDwiZ8Iw+T4igJdOA+EJ7gAJpCVdmQKMvwb0VELTMHJ67+goQ g4CgdXWZUIy+1vTJXWkHfgPufkDQAwIyARh9mxBBD0OEJ+G+c4W/zs9CYBkE yixa9L0rKt2RTghMQaBMWUU/aGBTaYE/amC1D1z3vIzMuEQ/ab1UTJArw1RG 9LMrPCE8f+lV/6H/WHDn/f/3fbThL4tzIfo=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 275.812}, {291.625, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"95a8e9fb-08d8-4a28-901a-0d772ddd7e87"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(55\\). \\!\\(\\\"parabiaugmented hexagonal prism \ (J55)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"838e05d1-e3a8-4a49-a8a2-2b074720d236"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .90546 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -1.11022e-16 1.00652 -0.021834 1.00652 [ [ 0 0 0 0 ] [ 1 .90546 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .90546 L 0 .90546 L closepath clip newpath .5 Mabswid [ ] 0 setdash .41381 .67913 m .5403 .49843 L .36752 .35566 L p .777 .616 .68 r F P 0 g s .50356 .23 m .36752 .35566 L .5403 .49843 L p .613 .626 .841 r F P 0 g s .5403 .49843 m .68343 .38322 L .50356 .23 L p .613 .626 .841 r F P 0 g s .5403 .49843 m .41381 .67913 L .41636 .76989 L p .067 0 .138 r F P 0 g s .68343 .38322 m .5403 .49843 L p .41636 .76989 L .067 0 .138 r F P 0 g s .36752 .35566 m .23397 .53598 L .41381 .67913 L p .777 .616 .68 r F P 0 g s .41381 .67913 m .23397 .53598 L .21205 .77153 L closepath p .787 .611 .662 r F P 0 g s .22038 .61573 m .21205 .77153 L .23397 .53598 L closepath p .769 .678 .129 r F P 0 g s .22038 .61573 m .23397 .53598 L .36752 .35566 L p 0 0 0 r F P 0 g s .36419 .49092 m .22038 .61573 L p .36752 .35566 L 0 0 0 r F P 0 g s .51459 .2839 m .36419 .49092 L p .36752 .35566 L 0 0 0 r F P 0 g s .36752 .35566 m .50356 .23 L .51459 .2839 L p 0 0 0 r F P 0 g s .41381 .67913 m .21205 .77153 L .41636 .76989 L closepath p .462 .041 .155 r F P 0 g s .68343 .38322 m .72349 .20294 L .50356 .23 L closepath p .586 .622 .855 r F P 0 g s .7106 .44993 m .72349 .20294 L .68343 .38322 L closepath p 0 0 .243 r F P 0 g s .7106 .44993 m .68343 .38322 L p .41636 .76989 L .067 0 .138 r F P 0 g s .41636 .76989 m .21205 .77153 L .22038 .61573 L closepath p .546 .626 .882 r F P 0 g s .50356 .23 m .72349 .20294 L .51459 .2839 L closepath p .285 0 0 r F P 0 g s .41636 .76989 m .56944 .65753 L .7106 .44993 L p .067 0 .138 r F P 0 g s .56944 .65753 m .41636 .76989 L .22038 .61573 L p .585 .632 .864 r F P 0 g s .7106 .44993 m .51459 .2839 L .72349 .20294 L closepath p .802 .617 .652 r F P 0 g s .22038 .61573 m .36419 .49092 L .56944 .65753 L p .585 .632 .864 r F P 0 g s .36419 .49092 m .51459 .2839 L .7106 .44993 L p .789 .622 .674 r F P 0 g s .7106 .44993 m .56944 .65753 L .36419 .49092 L p .789 .622 .674 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{299.125, 270.812}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmtlzFUUUxi9JLmQhZCfbDVnMAiEEAiGYAgkxQAhLgJCEsBPCkrATwirI oqgIKCiWllKlpZRWUeiDrz76aPHku4/+G/Ge7pmPyb3f6Qnli1ZB1dwzmf5+ 3znd09OzFFuGJ0aPnBqeGBsZruoeHz47OjZyvmr9mfH4odQZkciMhfFtTlVE 9icjEf/H/GuSH++P1/uv9//H+39KiMrc3mEP/CEhy0z21MkXT55OerM+0mfb f5eQLkdnTm6MRFJkL02EcTkukLhwu5X/BnmWyFMtqMp/lZAhLbmQZ+jyZ3Av RjGzdfn3kMfgPkeXfw15DdzzdPkXGMoGuBfo8scSUqfK5+ryzyWkSUsdiikh cu80fYZiauBepssfSZglLZVwr9DlD8lAVuryT3FWy+Beo8s/kZCJs2o0tbr8 gQQzYwshb9Dl9yVk23PpF9Ooy+9JmGNniu/epMs/lpBj56HvvliX35WQa2e5 796iyz+UkI+Lz2hadfkHEgonzaXsF7NCl9+RUCIt7brofQnF0rJSF70HkVlE nhuNqB3Gt8EYxBPJCiSIo+xbAKMEbNPBmwBnEXC5Dt7AQKUTcBkBvcX1XYCZ ApoT4pBfhzyb5Fmig9cklPrLWyLI5qMHXpVQZtffZLBZB68AzCfgIh28DLCQ gOxK88BLEsqlpQhj6ZBfhLyE5FmggxcAlhFwvg5OAIwRkK1QHnheQsxfghPB eh0cB1hJwDodPAewmoBs7fXAsxIq/PXcngSH/AzkdSRPtQ6eBthAwCodPAVw AQHZPSsJbCQguzf2W/AkwCYCxnTwBMBmjKVDfhzyFpKndDrgUgKyZwoPHAPY SsBiHRwF2EZA9tDjgcckzPNvW4lgUQhY4d/K7Fg65EchX0Xy5OvgEYCrCcge Fj3wMHrWQcDcENBk7CRgjg6OAOwiIHsM9sBDKHUtxtIhH4a8m+TJCgFNgT0E zNTBgwA3EZC9PnjgAZS6mYDpOrgfYC8B2fvNQAA0pW4jYFQH9wHsw0lwyPei wH6SJ0UH9wAcNGA0CJot/ndkZ0Bsihoy4rQp4pe63TDdlVBNwGwXRHvQQ69p CE37AnxC5Tsh2j8dEXMatKJBp8iracCZzhP1O0VDiSKWbpcV7XA6eaI+p2i3 FZn3yUot3Z6ASHXyRNucor1WtNWZbp8V9UowEyl18vHTvzBBnhtkdwgYsxdD MjhEwP0W3AJwFgEHCXjAgpsBZhCwn4AHLbgJYJaAKYkXJ5OX27U2Oc82Ag5b cKME80CdR8BeAh6yYA/AAgJu0cENAIvQs81EPhKQm5eTEpJnAwEPW7AbYBkB u3VwPcAYAdcR8IgF10kwL2CVBOwi4NEAaF4tqzEkYfK50lJL8nQQ8FgALJKW egK+RcBRC64FOJ+Aq0JA802hET1bSeRjAbn5YtFM8qwg4PEAmCctSwjYFgKa TypLCdhKwBMB0Hy6aSXgUgKetGAXwDYMSZjcfFFqJ3maCXgqAGbbAU8Gmwh4 OgCaL2SrCbgwBDRf4tagZ41EfiYgz7BzPTlPPQHPWvBtgOsIWBcCmg+R3QR8 g4DnAqD54NlDwGoCjgfAqF3i/CEJk5vnoq0kTwUBzwdA07KdgOUEnLBgJ8Ad BCwl4IUAaPozgJ6Fyb2muNzkGiQZi4jFxWSLe0//lhh/ckq2KCAWl4IWabDw bJhLfphLdIqLq6BcYnWZ9ym+xZ+3479mPAcxsjnE4opukWZ+p472AKls9qvZ Rqdpm0lsr+q2M6d2OMEsnZi9o5ulkxr7MY6vaJYxzQ6nEdtrum3mNG1TiO11 3TYrYRyjQTOzyQy9oRtka2MXqEssblqLNcQiJ8TC78YN3SIX3egj4C0dzCe5 e4nFbd2igFhswuy5o4OFBOwhuR0WReh3NzJ+pMuLScYuktFhUUIsOonFXd2i FEV3oOj7urycZFxJMjosYsSinVg80C0qiMXLh7GHOjgPvV1OMjrAKpKxhVg8 0i2qiUUzin6sgzUoehHJ6ABrScb5yPilDtYRsJ7kdljUE4taYvGVbtGAfteg 6G90+QKScR7J6LBoJBYxYvFEt1iIostQ9LdW3kHkzSTjXJLRYbGYWBQSi+90 iyXEIg/l/6CDLehtLsnoAJeRjC8/lPyog60EzCC5HRbLUXQ6AX/SwRUkdyqK fqaDb3pPXwHQbHIvfq5j7Qn5RP6zLjcLa6Uc+iUgMgde2AOmh/+h/470ev/f 70dm/ANIOb8V\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 298.125}, {269.812, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"0baf8146-6a2d-4802-ae9f-d1e77b98753b"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(56\\). \\!\\(\\\"metabiaugmented hexagonal prism \ (J56)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"e0c8bc85-2746-47bf-85b7-a899d93df36a"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .97528 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.00894083 1.06455 0 1.06455 [ [ 0 0 0 0 ] [ 1 .97528 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .97528 L 0 .97528 L closepath clip newpath .5 Mabswid [ ] 0 setdash .31791 .44767 m .33142 .58651 L .51177 .43597 L closepath p .808 .859 .886 r F P 0 g s .54692 .67537 m .51177 .43597 L .33142 .58651 L closepath p .661 .536 .702 r F P 0 g s .54692 .67537 m .33142 .58651 L .35445 .70466 L closepath p .713 .311 .284 r F P 0 g s .35445 .70466 m .33142 .58651 L .31791 .44767 L closepath p 0 0 .172 r F P 0 g s .74506 .39407 m .51177 .43597 L .54692 .67537 L p .641 .523 .703 r F P 0 g s .51177 .43597 m .74506 .39407 L p .34877 .41346 L .339 .813 .899 r F P 0 g s .34877 .41346 m .31791 .44767 L .51177 .43597 L p .339 .813 .899 r F P 0 g s .54692 .67537 m .78276 .64124 L .74506 .39407 L p .641 .523 .703 r F P 0 g s .54692 .67537 m .35445 .70466 L p .86646 .63066 L 0 0 0 r F P 0 g s .86646 .63066 m .78276 .64124 L .54692 .67537 L p 0 0 0 r F P 0 g s .82387 .35509 m .74506 .39407 L .78276 .64124 L p .061 .101 .59 r F P 0 g s .74506 .39407 m .82387 .35509 L p .34877 .41346 L .339 .813 .899 r F P 0 g s .78276 .64124 m .86646 .63066 L .82387 .35509 L p .061 .101 .59 r F P 0 g s .35445 .70466 m .38994 .7013 L p .86646 .63066 L 0 0 0 r F P 0 g s .31791 .44767 m .34877 .41346 L .38994 .7013 L p 0 0 .37 r F P 0 g s .38994 .7013 m .35445 .70466 L .31791 .44767 L p 0 0 .37 r F P 0 g s .82387 .35509 m .62443 .36187 L .34877 .41346 L p .339 .813 .899 r F P 0 g s .62443 .36187 m .82387 .35509 L .86646 .63066 L p .881 .684 .632 r F P 0 g s .38994 .7013 m .66923 .66101 L .86646 .63066 L p 0 0 0 r F P 0 g s .86646 .63066 m .66923 .66101 L .62443 .36187 L p .881 .684 .632 r F P 0 g s .62443 .36187 m .43032 .53313 L .34877 .41346 L closepath p .468 .095 .247 r F P 0 g s .38994 .7013 m .34877 .41346 L .43032 .53313 L closepath p 0 0 .495 r F P 0 g s .38994 .7013 m .43032 .53313 L .66923 .66101 L closepath p .611 .75 .944 r F P 0 g s .66923 .66101 m .43032 .53313 L .62443 .36187 L closepath p .856 .668 .647 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{288.25, 281.062}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2ktPE1EYBuChd8pdwQKCFLTc7yBYRMWYgBt3rrxBuURINKgQN9WFiXHj io0x0cSYEDdq4salC/8IS3+CW+w5M/N5aN+h3zlMiSYlYWbozPc+c07PTDsz 3Mhsr689zGxvrGSSC08yj9Y3VraS85tPci8FKyyrIpn7bUlaYnnfstyJ/OkU E+eP8nJ5ubxcXv7PlvfErE6c0ybsF36KWbt4oXb/15ddK7hPp7vc6jF7o29i 1iDWDHhv9FnMwvJ0Gdrfak7Lbfa+7Ir5Be+yT1QWFlW5WrfOqU2D2lG79iPV Vsra8IFap/6wgHdiFhFramRAUA3I/bVHhbkIGTPlHfaG9uYECAvphe1Q2CkQ FtYLe03NbAVhEb2wV7RnZ0RYwO5+rYgXFNEF9geFTYOwETvsGYV1g7C4XthT 6ql+EFbNbKYT9pj2bASE1eiFPaCwCRBWqxd2n8KmQVidXtiqmMk1F0FYvUGY s0qcRETgDIhtYL6vw3bsCu1jmgZto17EspzZpxjLuuXMs/IUg3qxidlwJz4j ZyElXv7KPZ0C8af04peUfnWirYCcBg+0ZBJQCT1qEVBBOQ0plOTGgdasp90D WghrY0BrYQ6CIVu7C7QwTVXN7k504LfqkXcAGSl457Ly3czmHTkDgG9j9q/D 3wZ8lMn30bHWcXQ0xkR7QJtLxAcBnwJ88vj4c4DvLA0fAjz6PO9ijvdBhXe+ VRSiYYAmAXpWD0UHGRrliO8AfIrZ5Zp8BPDtgO8+Oo/eccS30jHed3xoC2hz ifgo4BOA7z8+Hl0RDDDH+4DCex5kMYA2AnSI2WYWWglQdCE1XGq0AaAjpmic idYBdFQPRd9N0JCKAx5d/o4dH19FJ5FJ5jju10OrAFoJ2mzCew6uaoBGATrF 7GhjNALQaT/RGoCGAHrBFEWHEUIDAE37j4ZV1L3ZZc36CdXmtU4Al5ijs48D iLuAWblWMxZdcaFjTgLOVdj7H7+ddexeUjXPgZdvOL9y+xk/IfXtcJAc61Lc cV1AFRvXLhUhinuyMKZiRKGToa9UXE6Lf+qgwdhrilZR+8aZ7WNR1YCqJYr7 Ua5SBPTJg7/Yyd5F6wnlflPyAT1B6KAeunhop1YBqpEo7lduFhUHVIKoXuao 7DGlWohC126+UqeJ4l6lGlPtRKHrcWOqElBJori3O1SKMewR2kUo9w7TIShq aQyg58BZk3tTz+GXDu1ehKaopYhC47PblOoh6jSzVSwqCqh+otB9YF+pQaK4 t9ONqWGiuM8gHCpDFDoAEDVK1ElTCrUqDKgJotCzH1+p80ShR2FosKdMqWmi uI/wjKk0Ueg55oSYyi/SPRwgBIBZAtBT10ExFWPIvWGwfOAcyLvP7FKXwTkw CtAUoeMK6jnEEXWFWoWAMwSk8wHUbUEAXCUAPdZPEDBnClwjAP1HQz0BCxwg AIB5AgIAiImpeGOtG6bAdTEN2i1ww27aYSvMUYRiF8RUht0+etgchS0XC8PP CmcpYEMJUPqp4IHmFFVsMitGqOKpXbHquZMFtb1U+7xYrdpb4rtfrlCOsJd6 hW1U+FqvsIl2dUevsI7Et0rh3x6VSzHa6IO90VqRdHeIyJpP3jXir1tyt78q G8l/R/luvyA/Av6h/ycrL5eXy8v2slXxB8XVEe4=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.25}, {280.062, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"ea58b5d2-46fb-41fb-b166-29c9002fcd61"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(57\\). \\!\\(\\\"triaugmented hexagonal prism \ (J57)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"dc1c2fa8-2f9a-4d31-b8a8-8e8018a79230"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.06823 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0496673 1.14358 0 1.14358 [ [ 0 0 0 0 ] [ 1 1.06823 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.06823 L 0 1.06823 L closepath clip newpath .5 Mabswid [ ] 0 setdash .47003 .32912 m .24878 .39364 L .44271 .54946 L closepath p .642 .612 .804 r F P 0 g s .23835 .61791 m .44271 .54946 L .24878 .39364 L closepath p .8 .576 .598 r F P 0 g s .56574 .75913 m .44271 .54946 L .23835 .61791 L p .791 .552 .575 r F P 0 g s .44271 .54946 m .56574 .75913 L .74064 .77406 L p .435 .421 .745 r F P 0 g s .47003 .32912 m .44271 .54946 L p .74064 .77406 L .435 .421 .745 r F P 0 g s .2547 .3862 m .24878 .39364 L .47003 .32912 L closepath p .245 .754 .732 r F P 0 g s .23835 .61791 m .24878 .39364 L .2547 .3862 L closepath p 0 0 .012 r F P 0 g s .56574 .75913 m .59079 .9906 L .74064 .77406 L closepath p .451 .288 .568 r F P 0 g s .3638 .84408 m .59079 .9906 L .56574 .75913 L closepath p .779 .526 .553 r F P 0 g s .23835 .61791 m .3638 .84408 L .56574 .75913 L p .791 .552 .575 r F P 0 g s .64156 .30323 m .47003 .32912 L p .74064 .77406 L .435 .421 .745 r F P 0 g s .47003 .32912 m .64156 .30323 L .41739 .36419 L p 0 0 0 r F P 0 g s .41739 .36419 m .2547 .3862 L .47003 .32912 L p 0 0 0 r F P 0 g s .53177 .86865 m .3638 .84408 L .23835 .61791 L p .372 .382 .741 r F P 0 g s .57164 .62207 m .53177 .86865 L p .23835 .61791 L .372 .382 .741 r F P 0 g s .41739 .36419 m .57164 .62207 L p .23835 .61791 L .372 .382 .741 r F P 0 g s .23835 .61791 m .2547 .3862 L .41739 .36419 L p .372 .382 .741 r F P 0 g s .53177 .86865 m .74064 .77406 L .59079 .9906 L closepath p .876 .899 .844 r F P 0 g s .53177 .86865 m .59079 .9906 L .3638 .84408 L closepath p .244 .537 .923 r F P 0 g s .74064 .77406 m .79146 .53972 L .64156 .30323 L p .435 .421 .745 r F P 0 g s .79146 .53972 m .74064 .77406 L .53177 .86865 L p .881 .865 .819 r F P 0 g s .79146 .53972 m .71288 .33282 L .64156 .30323 L closepath p 0 .067 .63 r F P 0 g s .41739 .36419 m .64156 .30323 L .71288 .33282 L closepath p .174 0 0 r F P 0 g s .57164 .62207 m .71288 .33282 L .79146 .53972 L closepath p .884 .836 .794 r F P 0 g s .53177 .86865 m .57164 .62207 L .79146 .53972 L p .881 .865 .819 r F P 0 g s .41739 .36419 m .71288 .33282 L .57164 .62207 L closepath p .606 .481 .684 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{275.375, 294.125}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt21lzFFUYxvEmmQnZ9zDZ94SEEAxLIPu+7xJCEBAMEQwii4CUW1laWFqK pYVluRUWpRde6UfwI3jJLZe59CvEOUveGib/Dt2ZmZRlkapMd/qc9/ecPumZ 7pl0Zlfurl2+vnL36upK9fjtlVtrV1fvVI/dvB3elLzHcfYUhL8bqx21vuE4 mw/6q1A92B9erL9Yf7H+v13/Uy2C6rm/Yjb8rhapakNgo9lxktXaBdP0WC0y 1IYM1ZSk1s6bph/VIlttyJOms6bpoVrkqQ0hAZdN05dqUaQ2VEjVkmm6rxbF akOdNC2apo/UokRtaBZwwTS9L00tqilFrc2bpnvS1KCa0tVacOPRB38YYMN+ ObOm+23pXiXdsyO6rz/5W79gzpnuN6R7iXQvdu/+pnTPV931nNbo7gHpbkts xRW1KJW51wEHdUXwmYrNILsbl6QsKGXtUeMKf4fnVz0+OxPThrioFrWqpR8K k6FwyhSeU4ty1TIBhQH3Qn10hMwhePbSX7ZTmNDMlD9s0Rzs4ZZMwGhkKYBN GkwfS7mqpTB2TM9vlmopB2wMsFTAJgw2rhZp5vDeio36w0bVImAOsa3YCGBp z8FsUxjT4CFgh4FNB3bcsCNqoV8W2gAbAizDC3YYsMGdYkcAoydRFmBjCcWO AtYLWA5gownFjgHWDVjuc7CoI47YLmDzgB3xx3YCm++PbQe2A9gCYIf9sSeA LXRnh+UX1QHY8Z1inYAdA2wfYEMJxboAOwJYMWCDCcW6AWsDrCSeWClgA9FY D2CHACvzgvUC1gpYOWD9XrCDgFV4wfoAa4kndgCwKsD6IrCopzyxzbGz/cDu B7YG2N5dZweAbUwM2wBsHbA97uwgsPWxs0PA1gJbnxi2Adhud3YY2GpgG93Z IXlujXrE9gPWFY2NAVYJWJMXbBywinhi5YAdAKwzGpsArCyeWClgBwHriMYm ASvZARZ1xBEbArY1gay9fHHFpgArAqxFPepN4Yb1p082B7vdQL3aTWIHFB01 EyfcA6YhoMDtWahnIgUCttkDrwH1sgep/gJmICAPAmolIMNfwCwE5EJAtUxR duwBORBQKXuQ6y9gDgKiPzeTSz+9KR8CtnkKUECW24WqnqIifwHzEJAJASHZ g5C/gAUISIeAIgkoTUxAgUxRhXuAfqdgP37dyqYCmyfjrgS2a6dsjoy25jls 1HRQQAoEZMm46/wFnIKAIASkS0Bj7AEBCEiTKWqCgG73gCUISIaAFNmDA7EH JEFAQAJa/QWc1o/ByAD97ZjzlJ2WNn/octSoFZYkIzwSD8xRn3htdXrcnTMR jjq1q+J2d4JeIJZ3naBL/NOxE0seCfsmjj4TO+WPoE+zF3edGAPiJBB0aPXF jRgHYsHjjsSPmABiPjEEzUW/ISaBmPNHTAExGzsx43EuLDENxLTHUQzEjZgB YmrXiVkgJhNDHAXCfkg7B8S4x1HEj5gHYswfsQDEaGIImk770f7LQIzETgx7 3BFLnARiKDEE7Yj9A8wiEIO7TpwCYiB2ot/jdFpiCYg+j6Owf8o7DUTvrhPL QPTsOnEGiC6PxKg/Ql+I209AdeErUNgJhW1SGG5YX3+6OYjNv5d7dfR7Fb0p STFRe2Oxs4B1ANYigwoAZvfwHGAnAGsWLMUfdhywJsH2AmZv9zgPWDtgDTJn qYBN+sPqZGTpgNk7gV4F7BhgNYJlxo5VCZYFmL3F6gJgRwGrECwbsBl/WKn8 AnLdsYuAHQasREaWD9isPywkWAFg9oa41wBrA6xIsCJ3bAWwlwDLlznbB9i8 PyxXRlYMmL2j8RJghwDLFqzUH9YKWJZgZYCZqx9nVS30TWItQKTLTJUDYS5d nMsR4+l88I9+Idb3bNaDmCqDqgTR3huqb5O0r3dhMcV034qlCFbtjq0Jlq6w vWotBFhAsBrAzKWJueUzYl/D3+Ff2iabC2ySsLXA2vtkr8kYi2SH0wBLNtPq 6lyH4RXL8JKiRPWLagTMXL2Yu2H1oKoUofvsh+72NuBbkF2pH21i+Mysihvc ibefTYwqrINCc3Hh3JHCCiikiTcXBc47MOgyIOj4sndG35Nsn4XvQnYJEPRE MSd75z3JpsIKKLR3en8A2SEg6GlviQ8lmwrpJcecbc2d30nm5XdrYQkU2jvX P4ZBF/gjPpHsQigMQeFFU3gfsvOAoDOKOck5n0p2PhTSec0WfgbZOUAUAmH/ H+Bzyc6FQjrbm7OM84UUUiJdc6yawgcw6Ex/xFeSnQWFdPH0uin8GrLTgaCL OXM2c76R7AwopEtKW/gQslOByADiiiG+lew0KEyDwjdM4XdSuNdf4fcw6CAQ 9I5hzRA/SDYV0vuWq6bwJ8hOBiLoTvws2VRIb8DMedx5pBfByGy5hKGya6bs F8kzgZtx+MbxLVPzWC10yzadfo2YC/tO1rlpmn6LaNqsumGa9A//of9G2s11 Z8+/STmFMQ==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 274.375}, {293.125, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"ba038c21-d62b-4679-93c0-798213e62771"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(58\\). \\!\\(\\\"augmented dodecahedron \ (J58)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"85049305-92f6-4614-98d6-2ce3bfe05fb8"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.08042 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0544785 1.16292 0 1.16292 [ [ 0 0 0 0 ] [ 1 1.08042 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.08042 L 0 1.08042 L closepath clip newpath .5 Mabswid [ ] 0 setdash .51177 .55456 m .4106 .73698 L .61622 .7311 L closepath p .664 .516 .673 r F P 0 g s .4106 .73698 m .51177 .55456 L .31387 .5634 L closepath p .783 .669 .738 r F P 0 g s .61438 .38537 m .51177 .55456 L .61622 .7311 L p .572 .481 .714 r F P 0 g s .31387 .5634 m .51177 .55456 L .61438 .38537 L p .772 .747 .831 r F P 0 g s .4106 .73698 m .31387 .5634 L .28686 .75735 L closepath p .913 .69 .587 r F P 0 g s .4106 .73698 m .48411 .86492 L .61622 .7311 L closepath p .629 .341 .462 r F P 0 g s .4106 .73698 m .28686 .75735 L .48411 .86492 L closepath p .792 .384 .277 r F P 0 g s .79673 .67984 m .61622 .7311 L .48411 .86492 L p .373 .02 .231 r F P 0 g s .79718 .45511 m .61438 .38537 L p .61622 .7311 L .572 .481 .714 r F P 0 g s .61622 .7311 m .79673 .67984 L .79718 .45511 L p .572 .481 .714 r F P 0 g s .28686 .75735 m .31387 .5634 L .28 .38967 L p .997 .816 .462 r F P 0 g s .47777 .27247 m .28 .38967 L .31387 .5634 L p .772 .747 .831 r F P 0 g s .61438 .38537 m .47777 .27247 L p .31387 .5634 L .772 .747 .831 r F P 0 g s .47777 .27247 m .61438 .38537 L .79718 .45511 L p .198 .549 .931 r F P 0 g s .22876 .72092 m .28686 .75735 L p .28 .38967 L .997 .816 .462 r F P 0 g s .48411 .86492 m .28686 .75735 L .22876 .72092 L p 0 .267 .664 r F P 0 g s .48411 .86492 m .57969 .91237 L p .79673 .67984 L .373 .02 .231 r F P 0 g s .57969 .91237 m .48411 .86492 L p .22876 .72092 L 0 .267 .664 r F P 0 g s .57969 .91237 m .79159 .78694 L .79673 .67984 L p .373 .02 .231 r F P 0 g s .79718 .45511 m .79673 .67984 L .79159 .78694 L p .758 .621 .056 r F P 0 g s .57525 .26234 m .47777 .27247 L p .79718 .45511 L .198 .549 .931 r F P 0 g s .79718 .45511 m .79232 .3871 L .57525 .26234 L p .198 .549 .931 r F P 0 g s .79232 .3871 m .79718 .45511 L p .79159 .78694 L .758 .621 .056 r F P 0 g s .28 .38967 m .22351 .47078 L .22876 .72092 L p .997 .816 .462 r F P 0 g s .22351 .47078 m .28 .38967 L .47777 .27247 L p .068 0 0 r F P 0 g s .47777 .27247 m .57525 .26234 L p .22351 .47078 L .068 0 0 r F P 0 g s .22876 .72092 m .41988 .82176 L .57969 .91237 L p 0 .267 .664 r F P 0 g s .57969 .91237 m .41988 .82176 L p .78832 .6036 L .784 .797 .863 r F P 0 g s .78832 .6036 m .79159 .78694 L .57969 .91237 L p .784 .797 .863 r F P 0 g s .79159 .78694 m .78832 .6036 L .79232 .3871 L p .758 .621 .056 r F P 0 g s .22876 .72092 m .22351 .47078 L .41417 .39228 L p .525 .448 .711 r F P 0 g s .41988 .82176 m .22876 .72092 L p .41417 .39228 L .525 .448 .711 r F P 0 g s .79232 .3871 m .78832 .6036 L .54727 .61734 L p .786 .535 .558 r F P 0 g s .57525 .26234 m .79232 .3871 L p .54727 .61734 L .786 .535 .558 r F P 0 g s .57525 .26234 m .41417 .39228 L .22351 .47078 L p .068 0 0 r F P 0 g s .54727 .61734 m .41417 .39228 L .57525 .26234 L p .786 .535 .558 r F P 0 g s .41417 .39228 m .54727 .61734 L .41988 .82176 L p .525 .448 .711 r F P 0 g s .41988 .82176 m .54727 .61734 L .78832 .6036 L p .784 .797 .863 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{273.812, 295.812}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmmtPG0cUhpcYKAXRGhoSIJSYpCJFEUrUKBAQN+M7vmAMjrmFxIEkkJRC gV7SW5S2qqomaquqqqIq6i/Ix/6FfuQv5K9Qz5zxYXd5x92FZpUPWPLOMPO+ zzkzuzsWu5Mu7qzeWS/urC0XA7Gt4ubq2vJ2ILqxVWryVRlGVVPpeyFgiPqe YZQP8tMsDuqP4/px/bh+pPozUdSK+2ubGn4RxZui4cSev3SsFtW93SdPyt8T ouFjEv/A4nop9pnFJas4Upv6GB+R8bEoakRPMzDWchwlfyQK2dAi5LLWwKIP SfSNLIjkp69xEtAb2XifjF8x/RSQ+8Eo7pHxCzaeBsZmjqPkD0GCKGILG++Q 8TNrHFlrZ9EyiT5hUStgdrC8SPIdkAwaxVkw/CVCbHHENmDs4ohKvmmVy1o3 ixZJtAHSQuN5n43zZFxnejuQXwSjKJDxARvPAGMvx1Hy+yBBFPEyG/NkXLXG kbWrLJom0V0WdQBmPxhFlowrbHwXGAc4jpIvg1GgiENszJCxaI0ja0EWpUh0 k0WdgBkCo0iQcQmkhcYT4YjKuMgRzwJ5nOUxks+zPADkSZZHSD4H0urk4WdZ HiJ5oSI9B4Y/RsY8G7uAcYbjKPkMSAtFLLBxhIw5axx1/5VFQyTKsugcYC6B UQyQcRKkhcZziyMqY5ojngfyZRCxj4wpEBElveIOEeDJuac3JnXXhmwqHb/b /rucROn21nImdJe+TKBGYJyPJgFgZzipOgCrMLsItr+CN7iDxQHsNGf2FoDd 1sNiAHaKM2s6OuwdzuwkgBX1sCiANXNmrQC2fzf0EyICEH7Op90JIgwQb3MW nQBx0wmikREBJ4gQQDTwQM4DxJIdMQ4Q9ZzFBYC4YUcEAaKOs+g5LKKWs+gF iEU7YgwgqjmLS04QowDh4yyuAMSCM0Tp0Afc83Y3/YhUs9ug74AT77AofPQr c1A+Z5cPmRIV66iwDB/WOAKMs06Mo8BYeKXGMWC8/kqNQWDMOzGOA+O0aWH8 53mdKF8xIgQQOXeIMEBMeY6IAETWc0QUICbdIWIAkfEcEQeItB4x7DALlwiU RcodIgEQSc8REwAx4TkiCRAJd4gUQMQ9R6QBIuY5IgMQUXeISYCIeI7IAkTY c8QUQITcIXIAMX50xKA4yqe1pQ7FkNY+PWcacOSztybRVLe3u/vSeVII1iqO ftHU5g42A2C1nFmPO1heHKVq8BDGcha7L6V59AgDUYixI0ysQgQ9R+QAYtxz xBRAhNwhsgAR9hwxCRARd4gMQET1iJH/+oE5HCIFEDHPEUmAiLtDTABEwnNE AiAm3CHiAJH0HBEDiJTniChApN0hIgCR+Z8Q8v/va3pjGBgnnRhDwJiFRtmA 4hyQj7E8CORTdrl8oCY1o07k/CAx+EIKxZQOAWPObozYjMIyAIzTdmOUE7zm RB5n+VUgn7HL6cE6PUgzjekD4M3bvUnsvezEm8beXuC9bvdm+AzbTsRFJ+6s PTIBeoC3YPfmcNbdwDtruvfUp3zvzWDKe+4oed0sdAHOnJ5TMN2Xaj7As3nF mddz5nScDnecBR2nDXAW9Jwb+Dy36rIxvwVc0uXQ4nAsinNLx2nWnSPz28/b Ore/4rWqXrCu6NyNOrdtDIpzVy0owRfSXV/xHqPXE2qziW3uFaCu4rKkXl+v yaLGDpDXd60OYMtfoR7o5qG64rJNb89oS8f+6A3Tu9Ty6msLq4wbVuM+WO0W 2KwwRfs/urTE0i4XzXSkQA7KtmPNIc5YtZHiU2t/mPvVDo3Prf1BEEkpH1ZI cISxaoPJl1bsIPerXSpfW/v7QVilfGRVXmHSLPU/5n7beb4EmMrzrZXZy0xa mIzvRYHW3R5W0tJDO9OQshtEV54fdZ5zTKdFxfgJKQW3k5W0gBhPRVFNS/HB wEr0M4ta2a+2fv1qv1QppRYAU47fZOEzO8RWNIVdJdHvaqLFK/dyl9oN9wd3 NYAgSvSMRW+wf526/izHN02Lj0W0v8t4bp5AcWGoGOrWNP4yDaIcWnXJP16j HZTH9denblT9CwKi7eg=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.812}, {294.812, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"35db5a0f-7545-4feb-9f36-f1ea19592025"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(59\\). \\!\\(\\\"parabiaugmented dodecahedron \ (J59)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"88163bfd-0ff3-4df2-970b-9f580e13406e"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.01648 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0271458 1.10449 -3.33067e-16 1.10449 [ [ 0 0 0 0 ] [ 1 1.01648 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.01648 L 0 1.01648 L closepath clip newpath .5 Mabswid [ ] 0 setdash .23618 .47139 m .35239 .64623 L .43445 .459 L closepath p .782 .632 .694 r F P 0 g s .23618 .47139 m .43445 .459 L .36691 .31384 L closepath p .772 .758 .841 r F P 0 g s .36691 .31384 m .43445 .459 L .64013 .4744 L p .657 .704 .881 r F P 0 g s .69164 .67224 m .64013 .4744 L .43445 .459 L p .705 .54 .662 r F P 0 g s .51189 .78201 m .69164 .67224 L p .43445 .459 L .705 .54 .662 r F P 0 g s .43445 .459 m .35239 .64623 L .51189 .78201 L p .705 .54 .662 r F P 0 g s .54974 .23033 m .36691 .31384 L p .64013 .4744 L .657 .704 .881 r F P 0 g s .64013 .4744 m .72291 .34001 L .54974 .23033 L p .657 .704 .881 r F P 0 g s .72291 .34001 m .64013 .4744 L .69164 .67224 L p .365 .325 .681 r F P 0 g s .35239 .64623 m .23618 .47139 L .22075 .63736 L closepath p .906 .63 .509 r F P 0 g s .51189 .78201 m .35239 .64623 L .22075 .63736 L p .823 .404 .245 r F P 0 g s .69164 .67224 m .8164 .68304 L p .72291 .34001 L .365 .325 .681 r F P 0 g s .8164 .68304 m .69164 .67224 L .51189 .78201 L p .351 0 .184 r F P 0 g s .50018 .87777 m .51189 .78201 L p .22075 .63736 L .823 .404 .245 r F P 0 g s .70085 .81712 m .8164 .68304 L p .51189 .78201 L .351 0 .184 r F P 0 g s .51189 .78201 m .50018 .87777 L .70085 .81712 L p .351 0 .184 r F P 0 g s .23618 .47139 m .22607 .41797 L .22075 .63736 L closepath p .831 .703 .168 r F P 0 g s .23618 .47139 m .36691 .31384 L .22607 .41797 L closepath p .827 1 .805 r F P 0 g s .36691 .31384 m .54974 .23033 L .5409 .2775 L p .022 0 0 r F P 0 g s .22607 .41797 m .36691 .31384 L p .5409 .2775 L .022 0 0 r F P 0 g s .8164 .68304 m .84112 .46385 L .72291 .34001 L p .365 .325 .681 r F P 0 g s .54974 .23033 m .72291 .34001 L .84112 .46385 L p .731 .204 0 r F P 0 g s .22075 .63736 m .30687 .78637 L .50018 .87777 L p .823 .404 .245 r F P 0 g s .30687 .78637 m .22075 .63736 L .22607 .41797 L p .174 .181 .626 r F P 0 g s .86748 .64805 m .84112 .46385 L .8164 .68304 L closepath p 0 0 .374 r F P 0 g s .86748 .64805 m .8164 .68304 L .70085 .81712 L closepath p 0 0 0 r F P 0 g s .5409 .2775 m .54974 .23033 L p .84112 .46385 L .731 .204 0 r F P 0 g s .50018 .87777 m .30687 .78637 L .37782 .65191 L p .623 .737 .928 r F P 0 g s .70085 .81712 m .50018 .87777 L p .37782 .65191 L .623 .737 .928 r F P 0 g s .5409 .2775 m .32126 .40537 L .22607 .41797 L p .022 0 0 r F P 0 g s .22607 .41797 m .32126 .40537 L p .30687 .78637 L .174 .181 .626 r F P 0 g s .86748 .64805 m .738 .43638 L .84112 .46385 L closepath p .947 .605 .336 r F P 0 g s .84112 .46385 m .738 .43638 L .5409 .2775 L p .731 .204 0 r F P 0 g s .32126 .40537 m .37782 .65191 L .30687 .78637 L p .174 .181 .626 r F P 0 g s .86748 .64805 m .70085 .81712 L .64166 .67215 L closepath p .784 .822 .882 r F P 0 g s .37782 .65191 m .64166 .67215 L .70085 .81712 L p .623 .737 .928 r F P 0 g s .738 .43638 m .86748 .64805 L .64166 .67215 L closepath p .805 .648 .688 r F P 0 g s .5409 .2775 m .738 .43638 L .64166 .67215 L p .704 .53 .65 r F P 0 g s .32126 .40537 m .5409 .2775 L p .64166 .67215 L .704 .53 .65 r F P 0 g s .64166 .67215 m .37782 .65191 L .32126 .40537 L p .704 .53 .65 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{281.375, 286.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm1tTU1cUxyMJBEm4EyDcjOGOIIKAohVQEJGbiCIookRAwQtSiq2to611 nNra6XQ6nel0xkc/gq9+BB/9Cj72sa80a6/NMoT/iftwFGUqMzk7OWut32/v c03IzlBkZX7uVmRlYSYSOrEcWZpfmPkq1Ht7ObrKvcPl2hGMPspCLnq+6nKt LdRfES30i8/PPz//nz7/mxo3nRf3ecVf1HjUieJefdmkThkVucfxP6nx0tok CifRs+849Ac1qbQiWUJ3OfQ7NWm0wkshl3tVTsRo+A4n/UaNnyKpUq9DT6nJ pBVpoH6Zk36mJosifqnXoZ+oyaEVGRJa4tBjavJoRRZA3+KkH6kpoEi21OvQ D9QEaUUuqL/OSQ94k0cjAanXIbVdy2hFvoTmOfQtNaWrale8ePRco2mnkCgA dHNc+I0UplgVKo9OvyNdSAXp+cBzhQvV1t1FER8VKmaB0HXSkiRlWtFV+jSn L1IT4k29Mb0AdGaKC29KYZ5VofLo9AVqdnOP1/oeBPQLnH6NmjBFihLSdfqc pJeC9EJJn+D0WelMCKSjbo1x4YwUhmUURULXSRFJqjKkj3LhtGzSWqtC5dHp l2VP14P0t90a4fQpoe+VvpeAzgxx+kWhN1vR4woHuXBSDu9Ww+HrwvNiPGBY OMCFE2I8tH6vxKX3c/o4Nep07bA6WOIKT3LhmHi6DAv7uPCsGLsNC09w4agU 9iY8a3o5/TQ1JRTpNzyZj3PhiBQOGhb2cOGwFJ4yLOzmQnWUFfPRvDYytCGO cfqgpI8ZXjOPcmG/FE4YFnZxodrn6h4yaVjYyYV9Uji1/iodl97B6b2SHjG8 6xzhQrXr1J1w1rDwCy7skcKrhoWHufCYFC7IyBKkqz0QoIhntbZ2zRMtVNYF 4Ea39EMMU3slnSLpAHbdENbOMLWnknnHbB52MAZWAjg3ZCPlgeoD76i+BXqR AzhtMRwdisIUMAiwi4bYVnvY24bYFmtskRVWrUKw/ZuA6XX/PhulB79C70Sb 7bFjN+ur5y+ojR71UYOHD9mNgqbNCDwi0BKvONA79X3WjmLLQ26Dw0cOlZkK HI32HDfjNlT0EX2XQsv1O8YnA0sG0r0fRpop0iQgbbAnvQGkHiDNEanNUSFB MhDk0VJdhxKMAF2CrhsKAm9PJdlYe+ypFoDKazUWrOoAqtKPq5oHqp2Gqjrn qjSgyrWnKgOqq0Dl2zqV3+ocev+qdKDKdq6aA6oM56pdQDULVJlAleVcNQNU WYajqnWuyjYc1XtQ5VjdOpyprgBVrnNVCKgiQJUHVBnOVdNAFdg6Vb6hqsa5 qgCo0u2pdgPVJaAq3DpVEKj8zlVTQFVs9T5wW6tKgCrNnioMVJNAVWo4qmrn qjLDUdlUXQCqEFDt3Faq80AVBqpUe6pyoJoAqnKg8m6dCo2qyp5qHKgqDUf1 aagqgGoMqKqBKsVadQSoKg1VNUCVvK1UZ4GqDqg8W6dCo6q0VlUB1ShQ1RuO 6j2oGoDKva1Up4GqEaiS7KmqgWoEqPbpf5TEqNQj+nrtEmuKPwXwTYYjqXCu ak4wkgTnz0fADwN8i1p61uETk2sAeQiQW+N2wTs6jLCDANv2YbAHaJm0iaEP ANhB0Ed9zqDbHtpXCNsufUwAQ33st9o9KTGwTqueqekzPQCxh5Y+WuVZffX6 DT61ut5xPXr28h96RI/w6FJNp2kFqpCoMoCq0lpVCVQBUVVafUJV84IKgUof HUeBqgKoKkSVD1R+GdVuoKq2VpUDVYuovEq1/iuKNdEeINIfqo4BURiIumnp 4z21Eab/HdENYCEA61dLvVlev1HANoCts4cdANgWgNX/q+4B2DKAHQTY/QBb 7xzbDLD6q4njAFsCsMMAuw9g9VcqvQBbbIhtBNhGa2wRwI4AbAPA6u/rTgBs 0BBbD7BN1thCgB0F2DqA1V+R9gFsgSG2FmD1t7onATYAsGcAtgZgW+xhzwJs FcDq78n7ATYXYMcAthJg2+xhzwFsOcDqSQcDAJsNsOMAGwZYPRNiEGCzDLHo LtFujc0E2PMAuwtg9YySIYDNMMSWAexha2w6wE4CbAnA6kk7wwDrN8QWA6ye RHQKYNMAdgpggwDb4RyL3pp0MnYEYFMB9hLAFgBslz3sZYANAKyeenYaYFMA dhpg8wBWT4UbBdhkgI0AbA7AdltjPQB7BWCzAVZPEDwDsG5DbBbAHrfGJgHs LMCit9l6AqWaqKk/kWqsekRfu64CVDpA6ambarIo6hLi+ACnL4YTM1LqyjxA pAGEnrd6jrtiUbgTFOqZshNSeA0UekGhnpF7QQrnQGEKKNRzgNWsYxWZAYXo s5iernxZjOi4d4NCvqLybG09I54/rMUUqgdtcT6Xef63SuZLjGddskumZs9J 3sW43hCMD16e466S1C1G5fAByLPl1YozEhrn0E2pGpaQngW/KKE+CqnO6en3 SxLqlqoIh5Yl1CGhWQ6tSKhdQtc49LWE9otL/8TirnS+QaoWOXRPqmok9CWH 7ksoLMAVDn0voVKp0r90eSihQgnpn848klCuhB5w6LH00C+uhxx6IlVeqXrM oV9U44k9mSXlCaf8KtVPeYU61D6hHyB9fu78uWvHf8tVbb0=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {285.938, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"346cee64-3424-45ea-b4b7-fa937fa80ee8"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(60\\). \\!\\(\\\"metabiaugmented dodecahedron \ (J60)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"0a736c39-22dc-4454-9498-2ed2fccbcdbd"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.1313 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0758719 1.21417 3.33067e-16 1.21417 [ [ 0 0 0 0 ] [ 1 1.1313 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.1313 L 0 1.1313 L closepath clip newpath .5 Mabswid [ ] 0 setdash .37831 .61943 m .569 .68327 L .54038 .48143 L closepath p .755 .651 .746 r F P 0 g s .569 .68327 m .37831 .61943 L .4548 .81199 L closepath p .792 .56 .586 r F P 0 g s .569 .68327 m .4548 .81199 L .67264 .7905 L closepath p .62 .319 .438 r F P 0 g s .569 .68327 m .7225 .58187 L .54038 .48143 L closepath p .602 .543 .76 r F P 0 g s .569 .68327 m .67264 .7905 L .7225 .58187 L closepath p .482 .319 .583 r F P 0 g s .50317 .30892 m .54038 .48143 L .7225 .58187 L p .503 .562 .849 r F P 0 g s .2245 .54441 m .37831 .61943 L .54038 .48143 L p .809 .766 .813 r F P 0 g s .2998 .34179 m .2245 .54441 L p .54038 .48143 L .809 .766 .813 r F P 0 g s .54038 .48143 m .50317 .30892 L .2998 .34179 L p .809 .766 .813 r F P 0 g s .4548 .81199 m .37831 .61943 L .2245 .54441 L p .894 .598 .477 r F P 0 g s .7225 .58187 m .67264 .7905 L p .83277 .63525 L .083 0 .387 r F P 0 g s .83277 .63525 m .81852 .47669 L .7225 .58187 L p .083 0 .387 r F P 0 g s .7225 .58187 m .81852 .47669 L p .50317 .30892 L .503 .562 .849 r F P 0 g s .67264 .7905 m .4548 .81199 L .35124 .87805 L p .403 0 0 r F P 0 g s .1966 .70255 m .35124 .87805 L .4548 .81199 L p .894 .598 .477 r F P 0 g s .2245 .54441 m .1966 .70255 L p .4548 .81199 L .894 .598 .477 r F P 0 g s .67264 .7905 m .73387 .84143 L .83277 .63525 L p .083 0 .387 r F P 0 g s .73387 .84143 m .67264 .7905 L p .35124 .87805 L .403 0 0 r F P 0 g s .81852 .47669 m .67649 .295 L .50317 .30892 L p .503 .562 .849 r F P 0 g s .2998 .34179 m .50317 .30892 L .67649 .295 L p .043 0 0 r F P 0 g s .26011 .5944 m .1966 .70255 L .2245 .54441 L p 0 0 .075 r F P 0 g s .3286 .35229 m .26011 .5944 L p .2245 .54441 L 0 0 .075 r F P 0 g s .2245 .54441 m .2998 .34179 L .3286 .35229 L p 0 0 .075 r F P 0 g s .81852 .47669 m .83277 .63525 L p .58279 .3209 L .923 .568 .339 r F P 0 g s .58279 .3209 m .67649 .295 L .81852 .47669 L p .923 .568 .339 r F P 0 g s .3286 .35229 m .2998 .34179 L p .67649 .295 L .043 0 0 r F P 0 g s .28078 .85308 m .35124 .87805 L .1966 .70255 L closepath p .813 .34 0 r F P 0 g s .35124 .87805 m .52471 .90152 L .73387 .84143 L p .403 0 0 r F P 0 g s .28078 .85308 m .52471 .90152 L .35124 .87805 L closepath p 0 .549 .798 r F P 0 g s .67649 .295 m .58279 .3209 L .3286 .35229 L p .043 0 0 r F P 0 g s .73387 .84143 m .52471 .90152 L .47878 .72276 L p .83 .816 .836 r F P 0 g s .83277 .63525 m .73387 .84143 L p .47878 .72276 L .83 .816 .836 r F P 0 g s .28078 .85308 m .1966 .70255 L .26011 .5944 L closepath p .071 .103 .588 r F P 0 g s .83277 .63525 m .68334 .54736 L .58279 .3209 L p .923 .568 .339 r F P 0 g s .47878 .72276 m .68334 .54736 L .83277 .63525 L p .83 .816 .836 r F P 0 g s .52471 .90152 m .28078 .85308 L .47878 .72276 L closepath p .698 .74 .883 r F P 0 g s .3286 .35229 m .58279 .3209 L .68334 .54736 L p .664 .486 .635 r F P 0 g s .26011 .5944 m .3286 .35229 L p .68334 .54736 L .664 .486 .635 r F P 0 g s .28078 .85308 m .26011 .5944 L .47878 .72276 L closepath p .602 .518 .732 r F P 0 g s .68334 .54736 m .47878 .72276 L .26011 .5944 L p .664 .486 .635 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{267.625, 302.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm1lPG1cUxx3GKzbEIYGYAsGsYTGBsO87mLAmZKOhSUpI01ApapJGiqqo laq8VGofI/Wlb+lj1ae+5iP0ka/Qx34F13fx8Rj/xz4XM1VUgeSZYXzP73fu mTuexeONvVdPv3i29+pgfy+efLn3/OnB/jfx5a9fpldZZzyeM+H060rcI5ZT Hk9mIv8iYqL/OV0+XT5d/uiW/xCzgNhn76gV78UsLHdibyqodufMqyz1z7tt j5WiHTwdcEuF/aKY6XeCIsorlvyg+U3V/GeyRKl5GDTfVs3fillIvBMTzS0V mN/8hmr+nZj5xTsNRD/v3Pw1NY8TPQaaX1fNX+Q2l0v1oPmWav4VVbhRNJdL 3tTvb37TzdOBMhghNhXiMRkvCURQLEWYiA2FeJBbEpnFBTPEDiHqKIt6JmJd IbYJUUuIVoBoAIg1hZBVtWgoyI4kAOISQKzaEPotMY48cminJ5WU1CAzKU3c zCNG5X9RK5XZj2Sik8xErzljRfWickQvMmErRWB6XRomgUsA2wiwSYXdANgA wC4zscvOWJRt0h3sChO7pLDrzCIgbBxgF52xKNtrANsEsAsKu8bMdpWZ7Qlg UbbzZtg1JnZOYVeZ2HWAbQbYWTPsBhM74yr2GhO7xcROl45tAdip0rGtADup sCsAGwTY68xsC2BRtjeY2U4obJKZ7TYTO146tg1gx8ywN5nYUYVdZmJvuYO9 zcSOlI5tB9hhhV1iYu8A7GWAHTLD3mVmq7GLABtiYlG2g2bYHSZ2wBmLivAp wHYAbL/CLjCzvcfEXv3PsagIuwDbCbB9CjvPzPYzJra3dGwXwF5R2DmALQfY +8xsC2BRtg/cwT5kjgSNnWUW4QSwKNs95s57AliUbY/CzjCL4BL2EbMIBbCo CPtm2Glmto+ZRwd3sVNM7BPmAf3jwH7JPLXT2EmADbuDRdk+dQd7wMQmFHaC WYTjYCudOHKVYVLOfZU3fVKHh4eZl7xnhS7DDPH2LaTRaZmY5tYB3QDRqvFj jLGMyk99MRQU2zcyghAJ0C08Q8ETIIiQoK50gfyIk7BzYBug+9KGgn3Qgyrq gaGg2CElI6gmwUUg6FaCMWYPHgFBjATVpQv2gKAObI0qM1Wxk5CMqoH6chyB DPycRlEzwdA3Jsxsf337QcxzTkcz2baCwlSYqYKUd5lQyaVdoGqnvhQQjBYs jJcEO0DQSQL0bVQBgf26KBp7J4vlF6ojm/sWkCZIGjKTqttJXpJqcYC6eBPY esHmQt/UmXtD5N2i0TdAfTN0qPvcvhxHprBhUNg10NUhkvuAvKuY3LLL0yNT TLO7g0gh2+NVoB8lveWsH2HqLaAPkz4J9BP6QG7b0GI54ez1Aa8XeCtA/RdA BlNiap2QtJI6O0eja942lhl19QKVD6iipJoGvXJJWgWKOs7UdzvrLaD3A/15 6vMYkC44S4eZ0gCQVpN0mClNlC69CArdD/SLZvoyoA8CfYz63EfjeBmoekpX fUKqHtC/olKfXapf4sM3X1QPStrJVF45nrKB+tYBREln0VABUQSIGknUxhT1 2kXeI6L051i+Iw7q1wRsKydia6IeNdIIXAXkPjvZPgI9nrMA20LYepD6CQja QJViTNVVm0qfDOcL2qkHFwF2zRk7SNhzANtB2AtMbD8H2wXKEQWC9SKCIx8k qDDd1INKGjGbADtghu0hbBjkXUAwBARoxPSCEgWYqkEzVR/1xQ8EW86CYSBA e20/CSymYMhMMHikWGI33HbGjjCxA5Q3gunvMkcBrMKpCHrdnx/+dszREJvd eGUCy6it/mp3DAjQQaT3SN5Kkq9CA9FQ1WMbiPmCDSDQ336PAwE68mY/DILu CLpAsQxVE0BVXvCjOQIE6KN5zExwGfTFUDUJVCGnw6Psy1kgQAdF/ezHFBCg 08lW0BeXVM3Ul/NAgE6D9OMx00CALgKaQF9cUmVPIGuAAJ1A6ieIZpiCehLE 3BHUgWLVAtUSUOlnt2aBCl2G1tpOIl0RxEBfkApd/enH2+aACl3R19jOs10R VIO+xIEK3TJQ2z7nqYlCd1+ytwdazAQLQIDuZZ2zXWblC+aAYNZMEAXFMlQt AhW6LZi9VdUJBDNAMGcmqAB9MVSpx7zw/dUKyj8BoNMAOl8cGgE59wD8lDNe PUiXd9+5nNLtA7xJwFuw83C6QZCuIT6J0/VTugOANwF4+nFw+xOlmTSzX2cM A9i4GcwCfUbYETGVq/SPAOSTuWVZhmwt/hsD0YMUvWqLlismQPM+MZVF1L9D kVFyxThoniC6/nWPfIhe/vpiCDTvILr+IVP29yWi5U9/UVcspwHWRsYdhdgm hCTI8dUNApvIvasCb1MZ/RR4GQQ2kPGhCrxLxiAFNoPAWjI+UoH3KLCcAhtA YA0Zn6jA+2Lmyw1EZx9VZDxQgVIsf2MToMALILCSjM9UYPZ3VD4KRGef5WR8 rgJfkLGMAstBYICMr1Tgt2IWUcb85hZ5XqvmP4hZSI8VfXGa3f/eqEY/Ut2+ VytSSnK6fLr8v1v2nPkXzbbosA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 266.625}, {301.75, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"97892361-9553-4c62-b0c2-6fb263c05760"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(61\\). \\!\\(\\\"triaugmented dodecahedron \ (J61)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"0a374141-f344-49c0-9268-f9cf44077572"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.13093 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0758012 1.20561 0 1.20561 [ [ 0 0 0 0 ] [ 1 1.13093 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.13093 L 0 1.13093 L closepath clip newpath .5 Mabswid [ ] 0 setdash .52639 .32954 m .36042 .43304 L .56199 .51327 L closepath p .656 .651 .833 r F P 0 g s .36042 .43304 m .39325 .64863 L .56199 .51327 L closepath p .728 .594 .707 r F P 0 g s .74489 .6162 m .56199 .51327 L .39325 .64863 L p .668 .49 .634 r F P 0 g s .70109 .30809 m .52639 .32954 L .56199 .51327 L p .509 .547 .831 r F P 0 g s .84394 .49967 m .70109 .30809 L p .56199 .51327 L .509 .547 .831 r F P 0 g s .56199 .51327 m .74489 .6162 L .84394 .49967 L p .509 .547 .831 r F P 0 g s .36042 .43304 m .23589 .55973 L .39325 .64863 L closepath p .868 .688 .656 r F P 0 g s .35188 .89929 m .46459 .84431 L .39325 .64863 L p .893 .593 .471 r F P 0 g s .19716 .71015 m .35188 .89929 L p .39325 .64863 L .893 .593 .471 r F P 0 g s .39325 .64863 m .23589 .55973 L .19716 .71015 L p .893 .593 .471 r F P 0 g s .39325 .64863 m .46459 .84431 L p .74489 .6162 L .668 .49 .634 r F P 0 g s .36042 .43304 m .52639 .32954 L .31698 .35089 L closepath p .715 .883 .959 r F P 0 g s .36042 .43304 m .31698 .35089 L .23589 .55973 L closepath p .941 .935 .763 r F P 0 g s .68883 .82646 m .88695 .73233 L .74489 .6162 L closepath p .551 .373 .593 r F P 0 g s .88695 .73233 m .84394 .49967 L .74489 .6162 L closepath p .394 .379 .724 r F P 0 g s .46459 .84431 m .68883 .82646 L .74489 .6162 L p .668 .49 .634 r F P 0 g s .46459 .84431 m .35188 .89929 L p .74881 .86885 L .348 0 0 r F P 0 g s .74881 .86885 m .68883 .82646 L .46459 .84431 L p .348 0 0 r F P 0 g s .31698 .35089 m .52639 .32954 L .70109 .30809 L p .112 .665 .737 r F P 0 g s .88695 .73233 m .68883 .82646 L .74881 .86885 L closepath p .231 0 .075 r F P 0 g s .60128 .31544 m .34018 .3446 L .31698 .35089 L p .112 .665 .737 r F P 0 g s .70109 .30809 m .60128 .31544 L p .31698 .35089 L .112 .665 .737 r F P 0 g s .23589 .55973 m .31698 .35089 L .34018 .3446 L p 0 0 0 r F P 0 g s .19716 .71015 m .23589 .55973 L p .34018 .3446 L 0 0 0 r F P 0 g s .88695 .73233 m .74881 .86885 L .85479 .65131 L closepath p .925 .967 .772 r F P 0 g s .88695 .73233 m .85479 .65131 L .84394 .49967 L closepath p .853 .6 .061 r F P 0 g s .84394 .49967 m .85479 .65131 L .69904 .54388 L p .922 .555 .309 r F P 0 g s .70109 .30809 m .84394 .49967 L p .69904 .54388 L .922 .555 .309 r F P 0 g s .69904 .54388 m .60128 .31544 L .70109 .30809 L p .922 .555 .309 r F P 0 g s .2736 .85758 m .35188 .89929 L .19716 .71015 L closepath p .809 .341 0 r F P 0 g s .35188 .89929 m .52772 .91939 L .74881 .86885 L p .348 0 0 r F P 0 g s .2736 .85758 m .52772 .91939 L .35188 .89929 L closepath p .073 .597 .874 r F P 0 g s .2736 .85758 m .19716 .71015 L .26022 .58641 L closepath p .034 .052 .546 r F P 0 g s .34018 .3446 m .26022 .58641 L .19716 .71015 L p 0 0 0 r F P 0 g s .85479 .65131 m .74881 .86885 L .52772 .91939 L p .822 .793 .825 r F P 0 g s .69904 .54388 m .85479 .65131 L p .52772 .91939 L .822 .793 .825 r F P 0 g s .26022 .58641 m .34018 .3446 L .60128 .31544 L p .656 .465 .613 r F P 0 g s .2736 .85758 m .4812 .72004 L .52772 .91939 L closepath p .694 .716 .866 r F P 0 g s .52772 .91939 m .4812 .72004 L .69904 .54388 L p .822 .793 .825 r F P 0 g s .60128 .31544 m .69904 .54388 L p .26022 .58641 L .656 .465 .613 r F P 0 g s .4812 .72004 m .2736 .85758 L .26022 .58641 L closepath p .595 .496 .712 r F P 0 g s .69904 .54388 m .4812 .72004 L .26022 .58641 L p .656 .465 .613 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{267.625, 302.625}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm0lvU1cYhk08D3HmhpDJmRxnwCTBZCQjZCAzIRCGAg2UIQwFAapaVVXV XVWW3WaJ1D+Qv9Bll2z5CV12m94z+PPJ9Xvt78ZUaqVU8rXxPc/3nPec65s7 dW333dNHL3ff7T3cTSy+2X39dO/h28TCqzfWV95THs+pqPVKJzzi86HHk13I /2Jiof9x8vnk88nn//3nA/EWFL/xTfXF7+KtXHwROPzr/bLHe0g/f2v1umq0 L96iYk0taLSmGv0m3sJije/ww9t93chqLpEGAK4q8FcC40xwRYE/E1jvDvxe vIXEmgQAzwBwWYGvydjDBK8o8AmBQwBsBOCSAu8ReJEJLipwh2Z63h24TeAV JrjAAZsAOK/AawQuA7AZgJft4ArTyAKR8ZICtwhcY4JzHLAFgLMKvErb6jrT aILSuME0znDAVgBOK3CTurrJBKcMUBqvugM3yLjFBCc5YAKAFw1QdnWbCU4o cJ2MCGwD4PjnAGVXbzDBMQWukRGB7QActYM7THBEgasE3jwueIsJDnPADgBe UOAKgbcB2AnAjB28wzRqUP7tCTuByHjeAKXxLhMc4oBdABxU4BXq6j2m0QSl 8T7TOKDAJTIiMAnAc3bwKyaYNkDZ1V0AdgPwrAIXyfiAaWSByNivwAUCv2aC fRwwBcDeEsF5Ah8zwR4O2APAlALloUBErHnCBLsNUBqfHhfcY2bU4CXq6nFA aXzmBJaJr1L25s+dthez+Rx1i99cVn/ptP2bzWepusvm3xTZg3zal7/e7BjN UrdeuQNnyIjAXAdxc9k6r9G0raZf1vz450d6iQ50OWNmeI1Y/7KWsnmHM/gS gAGNm7kSYECSqtgUFXshiklPBJRo5ZR4DvoTpSCsEs9AiTjoT5NzscmCxSqp P6wSe6BEDehPA6fYExrielDitFz6qIQu02VUCdt3fdkunaZUhavII2J5VeAR qNIIelVXvJ7MZmH7PxzIZqLwA1C+mTrJLVomakriPg1dO+hkNbOej+p9CfrX Qf1T9fxH6mVntVMVnaD5sKqEQu9lW6u6RYmlNzsS0nMT2JIgR0UJ3gBl2wG2 FLDFmbaQmgpLpguIiRbKICmv0fT00yCWXD4MRnIDZEuDbNHi8nGSe4E8QtnW gXKAUpYsipFoBYjOg2zhAsoOQxlUm3y+Mg4GdoFmcAQoQ6UqKyjlPEg5SsPJ EI2RyA9EVSDbLFBOgJR+N/KAk1zmmAHKSUrJFQXEN0EgqiHRJBDNgGxlpSrr wMCO0kZzWSr9plK+PHJ7sES2g92EUo6SMgSUX1DKEZBynobTWqFd2lTYJ3sZ Br7T5MsA3xL5igVyFJwBYzgAVMvGBOqJsiawsFT+9YsAaSOlStN0rbkTjFAq JGgmQR/IsmpujH//4bhFtBoqn9qz5qtawQB2A+na55QmKF/SUeUnVfaltsvC SrkmBpTtpGynOds8nmiYsiFRJxjQFpBywzag1kvsUqwl3qW0GXJJlQN5F6Vs BspNoPTKZd6BHsvWDaI2ML2+AlEThlwf+OTLUxS1nib0GhD5cUDtuEABkaOX HLUg1hawBYrbZL0KYOsHw1kJvChlUE9m1uvhSs9SxAqmKlREpVeJI2mhQ+N6 jqQxIN12J81QvkqgGgSDGqQN5gZQRYCq1VDZ8qFBHaJ8AZDvX5JmSOoF0h0g jYqlvpLgav6GbYMqensLCGIlCSR4G5QtNwYru29uNvYZDEHGSHBw8MkxQZwS tLgT5DaBMiFgzEaeagSo0G540JZF6fKl14G0Egxlkzv9OWNj50krnOdvFEjR X9k0yIz0aF+C9C3u9P2UOcyUxoFU/yjGgBQdNfWBzEiPdtpIn3Cn76HM5UCK /hii36k+sBgHUnQknAKZkf4qU9/uTp+kzJVMaQxI9dngBJCic5oukBnp0WEV 0ne603cYBz35UnTYGgVS80qhTYpOTNtBZqRfZ+qT7vS5E5J6pjQCpPp2wiSQ ovP/VpAZ6e2nXk76lDt97iSzEUjtJ5lCFwZSfQNyCkjR9ZwmkBnpV5j6Xnf6 M5S5hSkNAam+PzwNpOgCWu4iSAJIl5nSfnfSejDQXH0Q6PVd+BmgR1cn6yhz J5AuMaVpd9JakJmrDwC9fkhiFujRdedqytwNpItM6YA7aRXIzNX7gV4/ijIH 9OiOQu4qdB+QzjOlQ85SlLkcZObqfUCvnxS6xMwcpcxpptQLpBl30gjIjPSX mXr9IJd6FNRv6rP3wIwbNoNMURkQDRcXhUG2IaCcYyr1Y3HqwVrfEaXHY9xj u+DowNcExwvWDYAUyDBbwKAfk1ywbRRiVe5O66hjUd+Rop7s8Q+s5wXdHQOV p3Fl/QipfCqrLFdQNvNIs1Op3PyJdlNGHblmCoBTAJxW4BKBk06gvn0km8uH +uTYo6y5+0n68eFVM17l/ieK53Xafi4aXc1uj9q9TsV8opbP6Zc1JpbyK/28 9SaBAQLPAjAjljKcfhh9i8AQgT0AlDdf5Vr9/wZsGxuMiG29rF+ptZTVu0CJ XnJvqBLXyR0ndxsAk+RWUvXMvj7nyoLNAGwj400F3iKwmsAGADYReFeBdwis pYx1AKynrj5QoOTlzbYaMlYBsJqMjxX4ULyFjw4OOq2Nk/G5Al+It8jRGUXX AMJkfKXAb8nopYw+APrJ+E6BP4m3mN7o9aWy3B7sO9XoFxqIH9UXh4o6+Xzy +T/52XPqHz19RvA=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 266.625}, {301.625, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"86160e7e-ac9d-4eb5-b159-6d5de57ed835"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(62\\). \\!\\(\\\"metabidiminished icosahedron \ (J62)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"5d8d8a01-39f5-48d3-ab78-d9b09aa42ac1"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.07982 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0545689 1.15407 0 1.15407 [ [ 0 0 0 0 ] [ 1 1.07982 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.07982 L 0 1.07982 L closepath clip newpath .5 Mabswid [ ] 0 setdash .70054 .2149 m .32327 .23185 L .59713 .40221 L closepath p .585 .724 .939 r F P 0 g s .70054 .2149 m .59713 .40221 L .85661 .56871 L closepath p .364 .443 .809 r F P 0 g s .58348 .75822 m .59713 .40221 L .27984 .56521 L closepath p .713 .568 .689 r F P 0 g s .58348 .75822 m .85661 .56871 L .59713 .40221 L closepath p .54 .422 .667 r F P 0 g s .59713 .40221 m .32327 .23185 L .27984 .56521 L closepath p .769 .722 .81 r F P 0 g s .29151 .86519 m .58348 .75822 L .27984 .56521 L closepath p .779 .505 .521 r F P 0 g s .10241 .51927 m .29151 .86519 L .27984 .56521 L closepath p .958 .662 .429 r F P 0 g s .27984 .56521 m .32327 .23185 L .10241 .51927 L closepath p .939 .879 .748 r F P 0 g s .85661 .56871 m .58348 .75822 L .29151 .86519 L p .676 .972 .911 r F P 0 g s .10241 .51927 m .32327 .23185 L .70054 .2149 L p .599 .336 .489 r F P 0 g s .76852 .51859 m .70054 .2149 L .85661 .56871 L closepath p .907 .554 .09 r F P 0 g s .76852 .51859 m .85661 .56871 L p .29151 .86519 L .676 .972 .911 r F P 0 g s .10241 .51927 m .35479 .73421 L .29151 .86519 L closepath p .087 .299 .78 r F P 0 g s .29151 .86519 m .35479 .73421 L .76852 .51859 L p .676 .972 .911 r F P 0 g s .70054 .2149 m .76852 .51859 L p .10241 .51927 L .599 .336 .489 r F P 0 g s .76852 .51859 m .35479 .73421 L .10241 .51927 L p .599 .336 .489 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{273.938, 295.75}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2vtvk1UcBvB3W7uNbY5dGWMXujEsu9/Yxm7sfr+C4jUaJ6AbC8PBwlSG giA6p6BAQBQiElAEp0SiMTHRn/x3+Bdq3/M9/banPOfllBSjyUjWHtrzfM7z tn17eduxqYXp/QenFmb2TnkGDk+9NT2z94in/9Bh/0VxMZYVk+7/83ose+yz rMCJ+Jdhn8j/rI3Xxv+D8a/2WbL9GN5FF1y3z7LtC5J8V3cfs+J8/PD2Xz1B k1Z40mZ7Uqw9mqSrFu2zLPuCBpAfp0mvc36I85J+wT5Lsi94FV4lQf9Vgt8f Pul5MOmNkCYPVtLEHiubPAemT7MpJ+0Bk2aAOUbTnwXTDzzOdBdPl5FRSjwD ErOOid0gcRBUktN3gelzeIGRx01MgsQhcepWEoFqwxSbALF5vJBMjIPEYYeF hig2BmJHnlhsFMQWwu4g/58VK07VnaqfiBFAHHVYeZBiwyC2aLhyX9SIIUC8 DYg4QPQSMQiIdw1bSGIAEMciI/oBsWS4IT1RI/oAcRwQLkB0E9ELiPcNW0ii BxAnDFt0EdENiJNPhnADopOILkB8EBnRCYjThhsiiQ5AfGjYoiNqxE5AnAFE PCAoa7UD4mPDFpJoA8SyYQta3moFxCf/OtECiBVAJACCbgSrGRCfGbaQxA5A nDVs0Ro1ogkQ5wCRCAi6Ha1GQHxh2EISDYA4HxmxHRAXDDekOWpEPSAuAmId IOjetOoAccmwhSRqAXHZsEVT1IgaQHwZGVENiCuASAIEPSytKkB8bdhCEpWA uGrYoiFqRAUgrgEiGRD0yLbKAfGNYQtJlAHiemREKSC+NdyQ+qgR2wBxAxAp gKBd1PIC4qZhC0k8DYhbhi1qo0ZsBcR3gHgKELSXWyWAuG3YQhJbAPFDZEQx IO4Ybkh11IgiQNwFRCog6OnK8gBi1bCFJDYD4ifDFpVRIwoB8XNkRAEg7gFi PSDoSdPKB8Qvhi0kkWefiSNU9+2gmJMGppeHTJdXpQ3/bZ9TaUHE+X70PRAj tGL5w6UDxCoTCTZhsGeUhWIuxiR4h70kruSgFGDle1ZSWUEvAIriVpTABt5k KgNsIHrPUxr6QHOFo4IKfWnwowLO5KYOaOgOIEErVpyCl3KBbWQWvVfdpmfj AHuF2Xxm0Qc0yXoM2UvMesBtjA4uePULuMACF3iBLdzbgS0yZD9n1sssuQE1 cEsg0c0Ph7PslIdtvw1KohgQ8aDUMmNVXMqBSADEGSbqQvoEbiR6cVZeHZ2w U4zV21ipPp0I0ifUNH6clRhixx0x+WSwVYeJ4BLYc9GNVK7HkkCzRbWZvPt8 4W+nnIgFJraDPg5YMsDmVUyM5HszryExx0QD6OOApQBsVsVkM1/4+2aFEJNm ONgIWjgQqaDFPsaaACY/FpUaYlMqJkby43KZIRH8dmwH6OOArQfYyyomRvKY TLmOEJNe5GAzaOFApIMWe8D+hTZOHrOqMGR3qx3FqENPZABigokW0EdilYbY qIqJUbeeyARE8FvTVtBHYlU6TAQHVEKM+vTBbNCim4k20EJi1YZYB2PtAJNf cdUYYm0qJkZDemIDIJqZ2An6SKzWEGtUMTEa1RM5fC81gF0C3T4SqwPYRtCn BvSZ0BO5gKhkogP0kVi9IVbGWCfAJvXYJoB5VUyM6Btz5aCqE1HCRBfo44Dl 8T1XrBJiRD82UA4wB4L5oEUBE92ghcQaDbFNKiafvbVEASBymOgBfSTWZIhl MdYLsJf0WCHA0lVMjF4hYoeOEJPSwP6FNs4B84A+yaDPa0Q0GxKJTPSBPg5Y EcDcjPUDbIqwFkMsVsXEaJ+eKBanLibsc/H683ARqbRqFfWO6uPl36Rg2yO2 IBBEjzgHwgOIHl77AAXbQXAzCKJd2YEoNCRmidgJiAJABJ8Z5/TBfF0wbG1J dAAiDxDBl5x5fXATCIp3GeKiIxTsBMFcEGzm4NHIgo0cfIeCXSCYA4LBTypL FOwGwQ0gWMcrvqcPZoNgDQdPUrAHBLNAsJKDp/XBTBCs4G38iIK9IJgBgqW8 4rI+mA6CXg5+SsE+EEwDwRIOntMH14Ng8JDReQr2g2AqCHp4xYsUHADBFBAs 5ODlyIJ5HPyKgoMgmASCuRy8Flkwh2+c6xQcAsFEEMzmFW9EFszg4C0KDoNg PAimcfB2ZMHgMeS7FBwBQTcIJvOKq/qgCwTXcfAeBUdBMA4E4zl4n4L0U0R8 aDuBt+u3R092sfw7TR4Pq2RPCn6N8EfoJHfoJNHVnvwnTQn9MWfg1eQvukr8 5z/0Q+m18drYZGzF/APqgpP2\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.938}, {294.75, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"b8fb8dae-59a0-49b6-838e-ab6cbbad28ff"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(63\\). \\!\\(\\\"tridiminished icosahedron \ (J63)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"2d0463f2-fe0c-47ac-a61d-c5eee9f2ae68"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.08874 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0578923 1.17144 0 1.17144 [ [ 0 0 0 0 ] [ 1 1.08874 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.08874 L 0 1.08874 L closepath clip newpath .5 Mabswid [ ] 0 setdash .70489 .63303 m .43621 .39986 L .36944 .75156 L closepath p .721 .602 .723 r F P 0 g s .63622 .95328 m .90447 .69924 L .70489 .63303 L closepath p .384 .182 .478 r F P 0 g s .36944 .75156 m .63622 .95328 L .70489 .63303 L closepath p .66 .438 .572 r F P 0 g s .40112 .25892 m .43621 .39986 L .70489 .63303 L p .085 .418 .866 r F P 0 g s .72494 .4547 m .40112 .25892 L p .70489 .63303 L .085 .418 .866 r F P 0 g s .70489 .63303 m .90447 .69924 L .72494 .4547 L p .085 .418 .866 r F P 0 g s .36944 .75156 m .27625 .92291 L .63622 .95328 L closepath p .743 .356 .319 r F P 0 g s .28611 .60827 m .27625 .92291 L .36944 .75156 L p .952 .876 .471 r F P 0 g s .40112 .25892 m .28611 .60827 L p .36944 .75156 L .952 .876 .471 r F P 0 g s .36944 .75156 m .43621 .39986 L .40112 .25892 L p .952 .876 .471 r F P 0 g s .63622 .95328 m .27625 .92291 L p .72494 .4547 L .754 .778 .873 r F P 0 g s .72494 .4547 m .90447 .69924 L .63622 .95328 L p .754 .778 .873 r F P 0 g s .27625 .92291 m .28611 .60827 L .72494 .4547 L p .754 .778 .873 r F P 0 g s .40112 .25892 m .72494 .4547 L .28611 .60827 L closepath p .638 .384 .518 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{272.812, 297}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2vtTVHUcxvFDRGWMo5SNidwRcENAbnILuUPcRa6GCCtigBKJZJllJplm F0sts9S0bKZ/xH+jf8X2nM/ysNM8z9d22h/6AWaAw57X+/tddjm750J/eHV+ bim8ujAbzulaCb83vzB7NqdzeSVyU3KS5yVtj3yGcjx/+annrX8JPtL8L9Ef Npc3lzeX/9Pykv/tOX/7ehRzg5fs3/L08fG1YMt7aKtOB9+ex6roZ1A/iCXJ sSTy0zq6p1FKlGI7j4i7xk8R/iLGdKAtQHc0SiUT3za+SPhWjOlA24BuapRG Jr5hfIHwVzGmA70G9I1GO8nE143PE74LYzrQbqBrGmWSia8Yf4fwbIzpQLlA axrlk4kvGT9JeAHGdKAioIsahcjEF4zPEV6MMR2oBOi8RmVk4nPGTxBejjEd qBJoVaNqMvEZ47OE12BMB6oDWtaogUxsLzTeccIbMaYDNQEtatRCJrY/Qi9M eBvGdKAOoDmNusjEdge9GcK7MaYD9QLNaNRPJp4yPk34IMZ0oCGgSY2GycQT xo8RPooxHWgcaEyjI2TiYeNThE9iTAeaAhrSaJpMPGD8KOFhjOlAs0B9Gs2R ibuNTxJ+EmP2aBRMHNwUWfHkyV/rg7sGnkGT4if/uEddFr5NwmMIt5CwU4eT CLeSsEOHEwi36/AICccQ7iBhuw5H8Ki/TsI2HQ5hxnQdTpBwEGEWCVt12Icw j4QtOuxGWEjCZgvHSdiFMBRf2I6whIRNOmzF01FOwoMWjpGwGTNWxhc2Iqwh YaMO6xE2kPBNC0dJWIuwiYQNOqxG2BpfWIGwk4T1Fo6QcGOnpoeEdTosxYx9 8YXFCA+RsNbCYRKGEI6QsEaHhQgnSHhAh/kIJ3V4mIS5CKdJWK3Djd35WRJW 6TADM87pcIiE6QgXSFipw50Il0hYocMdCM+QsNzCQyR8BeFqfOE2hB+ScL8O Nw5kPyZhmYWDJEzFjBfjC19CeJmEpTpMQfgFCUssHCBhMsLrJNznCj3/ENrd BGu+J6jYUH/MwP7ejg9vEf5GwvhtwkOa/0D4Xs1/JLwoYfwO4YWa/0R4QcL4 XcL3aP4z4fma/0J4XsL4PcJzNb9PeE7C+APCszX/lfAszR8Snpkw/ojwDM1/ I3y38T7Cf4+PPyY8XfM/CN/1DB68GTjGjPMuxPkLsocvQ3P25GRqzp76LM3Z 32G25uyvPEdztg3las426DzN2ctFvubstWuP5uyVsUBz9rpbqDl7EyjSnL3F 7NWcvd+FNL+FjWKfRjfJmA7OdhdKNP+O8FLNbxBepvm3hO/XnO0PlWv+NeEV mn9FeKXmbIeuSvMvCa/W/BrhBzS/SniN5mwvtlbzK4TXaf454fWarxHeoPln 2CgOanSJjOngnxLepDk77GjW/BPCWzRnR0PR81q9/5K3aX6B8HbNPyK8Q/Pz hHdqzo4YuzT/gPC3ND9HeLfm7xPeozk7TO7V/CzhfZqvEN6vOTvYH9B8GdvQ kEbvkjEdnJ2oOKz5acKHNT9F+Ijmi4SPas7OzoxpPk/4eAx/wV9zgqDoVaDg UUz117BzZna63K6JBIidA7TT/3YFL0DNBEUvZK0AVRFk114iL1KRj5f9Nexk dfS62VWMlEmQXbey/zgIUBpB04buA7GrKjOG/vS/pfhr7Hqrgf/R/65sLruX vaS/AdQTiVQ=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 271.812}, {296., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"cbbd0f0a-c28c-45c0-a0ed-f968d7b15aba"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(64\\). \\!\\(\\\"augmented tridiminished icosahedron \ (J64)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"5d3c93c2-2e1b-4647-8112-709bd96ea7fd"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.03144 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0331256 1.12098 0 1.12098 [ [ 0 0 0 0 ] [ 1 1.03144 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.03144 L 0 1.03144 L closepath clip newpath .5 Mabswid [ ] 0 setdash .48859 .48849 m .21877 .49957 L .2683 .73793 L p .776 .439 .416 r F P 0 g s .71881 .68632 m .48859 .48849 L p .2683 .73793 L .776 .439 .416 r F P 0 g s .74567 .35963 m .48859 .48849 L .71881 .68632 L closepath p .59 .501 .721 r F P 0 g s .21877 .49957 m .48859 .48849 L .74567 .35963 L p .667 .902 .978 r F P 0 g s .2683 .73793 m .61599 .86202 L .71881 .68632 L p .776 .439 .416 r F P 0 g s .71881 .68632 m .61599 .86202 L .85451 .57799 L closepath p 0 0 0 r F P 0 g s .89594 .40829 m .71881 .68632 L .85451 .57799 L closepath p 0 0 .07 r F P 0 g s .28735 .35904 m .21877 .49957 L p .74567 .35963 L .667 .902 .978 r F P 0 g s .74567 .35963 m .66157 .26097 L .28735 .35904 L p .667 .902 .978 r F P 0 g s .85451 .57799 m .66157 .26097 L .74567 .35963 L closepath p .75 .327 0 r F P 0 g s .21877 .49957 m .28735 .35904 L .2683 .73793 L closepath p 0 0 .39 r F P 0 g s .2683 .73793 m .21877 .49957 L .28735 .35904 L closepath p 0 0 .39 r F P 0 g s .28735 .35904 m .2683 .73793 L .21877 .49957 L closepath p 0 0 .39 r F P 0 g s .85451 .57799 m .61599 .86202 L .2683 .73793 L p .731 .629 .745 r F P 0 g s .28735 .35904 m .66157 .26097 L .85451 .57799 L p .731 .629 .745 r F P 0 g s .2683 .73793 m .28735 .35904 L p .85451 .57799 L .731 .629 .745 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{280.25, 288}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmu1TE1cUhxeSgFTQ2NGq4wtB6nu1tdZWW6mAEN4ULLRYKagBU6Ejo6W0 peILCiLYiCAoClhnWjvtTGf6wQ9+42+j2XtujpvNbzf3JoH6AWZIFvY5z++e TXaz2b0nQ72d4e5Qb1dHKFDVE7rS2dXxQyB4uSf6L0+WYWRtiP4GAoa5vGAY sQfxs9F8kH8sLy8vLy8vyvIr88lj7nfn6B8vzSev+Y/shfkX84ZYtyB/jDaC /mUoF0CtBP3D6nwAfUPQX2xabULZ5pKs/4NXreVVsuo5r9pgUc830gGkhaBZ hrZwvVw1zau28aoztGqSV+0A6q8JGufW9gLoNEERNu0XkJchCTYTN8LcQSCT 0BBDhwH0FUEDDB3FiV8Sd425Msw1EdfHXBBzjcT9yJujVnC+OC42yC8I/p6l 9VgquW7mGl2kpwjuYvi0C9xAcJjhVhe4nuAQw+dtGz76a+4j0cf4d3YdFbZx Ydgl5STBLbwFuxRTaqmwmVO6FQtrqLCRC3sUC6upUGxxscf8BAo9oLDKUhjD X8yLYlVFkBQNnN2XauEvioWVVFhvGbRhtIvX7KriBtNUoFFUkILeJV6LQmj6 FQfibrmmaDlOlhPiyWezUFsZVF1XVJWTqi5hI7cb2eIx/g2nusk0taqNl1m1 uPEBl6OF3G61iqO6oTiqUj3tTZcRFlscMf1m0tcAvcdRn3zUgfSj3LZ1kekQ h4ytJK0GUi+Q3nKRFrK0MBVp8o2y2R5QBQJ8IOC2y6i3xDn8rztR1w+66DcJ h9ei91saCIKEnJQS4hsI6OmHXPQbcQMyoRIk5P4vCXdcEtbHHZL81pRYTAWI WQFihvF53TsJL4JfHF78trfw1lTScFPrXJoqopjjICYPxNzFTa1VbKowlTTc 1Nsg0uMcWQ4i3wKRI7jBRUobxWl+xbRARtJWgzSvc1oZSFsJ0u7htFXpp6He IuD7YAGI8jlHlSo2FsGN5Ss2VqSXdh80tlKxMRl1DETlO0YlNJYH0nLSTxsD jWlGfQ6iCkDUAxCVqxi1Lf2oHBCV6xxVAqJWgahxEOVbuigviFqRftQEiMoG UXnpv1YPzUdxlogCUC/FKQRYdijixW6epnnSfPRkUpZwiElbOwV38ETtu3rH jUf8qmVKZhsjeuE1tY95jBmQTbMMHZ+2L4JM9bPpCcvQp4+LDH2CP82kbIZl 6CNYUzZrOQ21nz/vIhU6TUFntLOWQ07iuHboyeYshxfLmDSHNMdDonPM2IiM nXqeZ+zZrVf4m2UfjG0JmY3ObNG3nwwongHFLj3FHFDs1lPMAsUePcUMUOwl Bfrehb4hPwWK9/QUT4Bi35IrpoFiv57iMVC8Twr03RxdNHkEFB/oKaaA4oCe YhIoPnRWoMtXaBRSgS6+oCt4aBQH9RQPgeIjPcUEUBzSU4wDxcd6igdA8Qkp 0PU4D1CMAcXhJVfcB4ojeooIUHyqp/gVKD4jBbo+i67p3wOKo3qKUaAoWXLF CFDQebu81o7vuqDkY8nLUFpp8rK7oKwsedkwKCtPXnYHlMk7SXSjJOGWYNIK 6+uA8QpnfAjglc74IMCDzvhtgMs70OIGlzhRuwWgajs0AKCalKCbAKq1QzcA JOcSWG9Dxt7o/QA/4YxfBbicfCCexJqfASTnQZxiqNcZamLoCoDk9Itmhi4B SE7oOMNQJ4DkFJFW3nZhAMnJKWfZFAKQnOkSYqgNQHLazAWGWpyhiww1A0hO 1PmOB94EIDnl5xKbGgAkJxldZqgOQHK6Ug9DVQCSE59eT+KpcIb6GCoFkJxd 1c/dlQBITuG6zqYjAJJTwAYYOgQgORltkKEDADpL0DBD+wB0jqBRhvY4QxHu bieAzhM0xqZiAIUImmCoEEDtBE0xtAlAHQRNM7QeQBcImuGBr3OG5ti0BkBh gp4zVACgbwn6naE8AF0k6E+GfADqJOhvhqLrzeOZZGg3khMNbaVylfjjDZpu ubz85i8bWf8BK7swRw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 279.25}, {287., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"02fd2a6b-c48c-41c8-93de-dd23f8e4fb17"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(65\\). \\!\\(\\\"augmented truncated tetrahedron \ (J65)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"b9996606-19f1-41bf-b0e4-2e3c1e1ffe04"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.01586 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0259259 1.10782 -2.22045e-16 1.10782 [ [ 0 0 0 0 ] [ 1 1.01586 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.01586 L 0 1.01586 L closepath clip newpath .5 Mabswid [ ] 0 setdash .33954 .51893 m .42216 .76395 L .58673 .58128 L closepath p .75 .568 .649 r F P 0 g s .58673 .58128 m .42216 .76395 L p .84803 .56449 L .292 0 .242 r F P 0 g s .84803 .56449 m .78773 .48037 L .58673 .58128 L p .292 0 .242 r F P 0 g s .58673 .58128 m .78773 .48037 L .7437 .28996 L p .649 .707 .89 r F P 0 g s .33954 .51893 m .58673 .58128 L p .7437 .28996 L .649 .707 .89 r F P 0 g s .33954 .51893 m .2585 .34069 L p .4389 .87864 L .844 .505 0 r F P 0 g s .4389 .87864 m .42216 .76395 L .33954 .51893 L p .844 .505 0 r F P 0 g s .2585 .34069 m .33954 .51893 L p .7437 .28996 L .649 .707 .89 r F P 0 g s .42216 .76395 m .4389 .87864 L p .84803 .56449 L .292 0 .242 r F P 0 g s .78773 .48037 m .84803 .56449 L .7437 .28996 L closepath p 0 0 .468 r F P 0 g s .2585 .34069 m .25625 .41143 L p .4389 .87864 L .844 .505 0 r F P 0 g s .7437 .28996 m .45922 .21096 L .2585 .34069 L p .649 .707 .89 r F P 0 g s .25625 .41143 m .2585 .34069 L .45922 .21096 L closepath p 0 0 0 r F P 0 g s .25625 .41143 m .35545 .70928 L .4389 .87864 L p .844 .505 0 r F P 0 g s .4389 .87864 m .66345 .78268 L .84803 .56449 L p .292 0 .242 r F P 0 g s .66345 .78268 m .4389 .87864 L .35545 .70928 L closepath p .614 .737 .933 r F P 0 g s .66133 .22795 m .45922 .21096 L .7437 .28996 L closepath p .121 .613 .91 r F P 0 g s .66133 .22795 m .7437 .28996 L .84803 .56449 L p .915 .553 .109 r F P 0 g s .25625 .41143 m .45922 .21096 L .66133 .22795 L p .399 .072 .291 r F P 0 g s .77723 .53721 m .84803 .56449 L .66345 .78268 L closepath p .89 .989 .749 r F P 0 g s .84803 .56449 m .77723 .53721 L .66133 .22795 L p .915 .553 .109 r F P 0 g s .35545 .70928 m .25625 .41143 L .4468 .45152 L closepath p .343 .326 .695 r F P 0 g s .66133 .22795 m .4468 .45152 L .25625 .41143 L p .399 .072 .291 r F P 0 g s .77723 .53721 m .66345 .78268 L .35545 .70928 L p .685 .7 .858 r F P 0 g s .35545 .70928 m .4468 .45152 L .77723 .53721 L p .685 .7 .858 r F P 0 g s .77723 .53721 m .4468 .45152 L .66133 .22795 L closepath p .764 .563 .626 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{282.438, 286.875}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt21tvE0cUB3Dj2LFjx4njXEgIScMtQK4khFwhFyAh5EYSwp0ATqANlBQa wq0ItaoqoQqpqqpWVSUe+9hHXnns1+hjH/kKqWfO5LBY/7OdsQG1EkjetXfP /P4zu+sN3rWn0+srN1bT6zeX0w0n1tJ3V24u32sYu7OWWVSwJRDYsi3zqG8I qOcbgcDmRP+rVRPz4uPzj8//Z8+/UbOoOp5/ogVf61mBWrKxlJxQj0ChmsbV omdU9FTNgmpBhVpVrJ49oVV6ppvv4FZ3adVXvKqVV92gVY/ULKQW9KlVEfXs Cq16yKuGdGeoa6+fV+s34SIV3Vez8Jsi/XTjz59/f6v4MhWvZxWHuNg0CKoW engXqcWamhUi3tMq42Samf6Zf4FzBOgtEMkehGmceUXTzb4qJgiws4Td8cVC ACvgARlilXc7IsKACIP+nCbsti8WkTDdH0PcUrMiiYgCIgL6M0vYiprFJKwI YFGAnSLsM18sLmF6cIbQx3hcIooBEQP9mSLsui9WYolNErakZsUSVgqwOA/O EGlfIgmIBOjPOGFX1SwhYSlL7ARh+tRQImHlACsB2Bhhl32xCjdMn1VKJazK Ehsl7IIvttUN06erpITVWO4Ag51RszIJ22bZs+OELfhitW7YvJqlJKzOcpgG m/PF6i17dowwfcool7BP3LAZX2yHJXaUMH3+qZCwnW7YhJpVStguN+ykL7bH EhshbNwXa8wBE7fZPsvjzIvpvTlsiaGeDXuwlITtzwErk7BmS2zIgyUlrCUH rFTCWnPASiSs3RIb9GAJCTuQA1YsYZ2Wx5kXi0vYQcueHfFgMQnrygErkrBu S+ywB4tKWE8OWETCenPACiWs3xIb8GBhCRvIAQtJ2OEcsAIJG7TE+j1YUMKG csD0mkGAjVhifR7MrJqff6ke9PmxF9hH3eyTwA6pqd5HB0HAsfwDohzQBgJG LQN65YBiNdWbaB8IGHMLmAABSR7BLhBwAgSUgoAeOaCCR1AHAk5ajsAnoIZH UA0CJtwCJkHAdh5BCgRMWQZ0ywE7eAQJEDCdf8AeDoiCgBm3gCkQsI83URAE zFoGHJIDWnkEc/ljbXpKy/54+Zd60IUvtKnR4d5F9jSwW4AdVlMdYHs0OgYU cYDtGcExIKGmehE6aaJNdJACZkBAEwgo4xEMW47AMaCSA2z/NDsG1HBAn2VA JwWckt5PWQH1HHDo/QTs5IAOy53c4RbQyAFtliMwAbMgoBEENHNA0/sJaOf3 wV7LTXTALaCTR7DbcgQmYA4E7AYBPRzQ8H4CBjgAXTtCAe1uAUMcgK7B+QTM g4CdIOA4B1Ra7uQ2t4BxDkCXcdEIHAOmOABdBPcJOA0CGkDAHL8P0FV/tIla 3QIWeATohgcagWPAeQ5AN4l8AhZAQD0IWFRT/V+iMoC1uGFp3t5o2/pgdQBb 1lNa9vfGKzUP6I+L6EJIM9lngL0d2EtZduaReZWZ6kXo9ss7CCjkAHQnzCeg 1jIgxgHo1l8TBZwFAdssAxIcgO51OgakQUAZB7TIWI1lbyvMbvX2cT+x5wBb /eFYNHTENsnsVsvelgPWHGrnAVtl2VvEtuTPpgDbKrOVebDmT8kFwFZ8OPaa Jdsus+Uu7y38n6aLgE1Z9haxHfmzScB2ymxZHqz5BHUJsMkPx161ZLtkttSy t6WANdchLgO2xJItAWy3G4s2AmJ7ZDZh2dsEYM0FyEXAFlv2FrF9MhvPo7eO rG1vzRX1K4CNWbLFgB2Q2aI82MP5s3HAmttXVwEbBewVS3ZQZiN59NaRte3t ELHXAFtoycYAOyyzYcuNUATYETcW9Rax5hsLacCGLNkoYI/JbEEevX0HLOqt +d7MEmCD0odKC3bUy4a9rH5kXsOTYQRQY/9OoQMJUebLaMt6FnqLEpRCoIx7 lTebzKUjjgTqBd2so68g6g/PaI+jhhOehnoN2qdh0HDS09CsevHqtXrQtrwA nBBwzJcnbwCnQE01tmCJTctYhLFZN+xTgMUYm7TEZmSsRE31oTwGsAKAeb8A m4WluGcjltisjFUxdgRgQYDRVVP6nm8WVsNYryU2L2N1jHVpLOzF9EO9e+gi S+AmABoYaLfszWkZ281Ys09vzBe8bwFgLwONPsA5GWhmQN82MaczT+Pzctt2 bluH29Kn0cDnoG0nt63J2oyqwxflht180FfIDW+Dhv2cWAoaXpIbDnLDuGqo z5LmZweroHyEywu5fFEuH+XyoKdbm8eOyfkCNBxX0yD9xRGLtK4X0V98+qFB VtFRlq7LRcNcRKci8wuQt4sOc9yKXNTPEu3fwJegqIeLVuWiLo6jHtOPOrKK Olhak4vauWidiu5J7xW96IFctJ+lx1S0DooaueiJXLSL455S0X3pdKSlb+Si ei76Vi6q5bjvqOgBKKpm6ZlcVMVF31PRQ1CU4rjnclGSpR+o6BEoSnDRj3JR jOPMj6Ieg6IIS7/IRWEu+pWK9G+gzMnPFHHYb7hEzTOPF7T2iSdl841vVukX /6Hfln18ntvzwJZ/AFylCt4=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 281.438}, {285.875, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"ea4fb61a-d947-43dd-b546-0b6b45e406a0"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(66\\). \\!\\(\\\"augmented truncated cube \ (J66)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"b8e789c5-98ed-4dab-8dc3-0a3f35b3d888"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .97095 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.00731429 1.04693 0 1.04693 [ [ 0 0 0 0 ] [ 1 .97095 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .97095 L 0 .97095 L closepath clip newpath .5 Mabswid [ ] 0 setdash .27753 .45496 m .32789 .62689 L .44245 .49423 L closepath p .779 .643 .711 r F P 0 g s .44245 .49423 m .32789 .62689 L p .74837 .52961 L .62 .408 .573 r F P 0 g s .74837 .52961 m .61141 .45335 L .44245 .49423 L p .62 .408 .573 r F P 0 g s .44245 .49423 m .61141 .45335 L p .64848 .23217 L .681 .753 .906 r F P 0 g s .27753 .45496 m .44245 .49423 L p .64848 .23217 L .681 .753 .906 r F P 0 g s .70094 .34911 m .61141 .45335 L .74837 .52961 L closepath p .499 .471 .757 r F P 0 g s .61141 .45335 m .70094 .34911 L .64848 .23217 L p .681 .753 .906 r F P 0 g s .32789 .62689 m .27753 .45496 L .20127 .34967 L p .982 .718 .448 r F P 0 g s .33028 .78559 m .32789 .62689 L p .20127 .34967 L .982 .718 .448 r F P 0 g s .32789 .62689 m .33028 .78559 L p .74837 .52961 L .62 .408 .573 r F P 0 g s .20127 .34967 m .27753 .45496 L p .64848 .23217 L .681 .753 .906 r F P 0 g s .64878 .84199 m .7697 .69101 L .74837 .52961 L p .62 .408 .573 r F P 0 g s .46086 .88014 m .64878 .84199 L p .74837 .52961 L .62 .408 .573 r F P 0 g s .33028 .78559 m .46086 .88014 L p .74837 .52961 L .62 .408 .573 r F P 0 g s .87192 .52818 m .74837 .52961 L .7697 .69101 L closepath p .412 .263 .567 r F P 0 g s .70094 .34911 m .74837 .52961 L .87192 .52818 L p .414 .415 .751 r F P 0 g s .33028 .78559 m .27812 .84891 L .46086 .88014 L closepath p .721 .283 .21 r F P 0 g s .27812 .84891 m .33028 .78559 L p .20127 .34967 L .982 .718 .448 r F P 0 g s .82282 .3352 m .64848 .23217 L .70094 .34911 L closepath p .406 .588 .916 r F P 0 g s .87192 .52818 m .82282 .3352 L .70094 .34911 L p .414 .415 .751 r F P 0 g s .137 .37979 m .20127 .34967 L .27333 .23103 L closepath p .806 .989 .734 r F P 0 g s .1928 .75823 m .27812 .84891 L p .20127 .34967 L .982 .718 .448 r F P 0 g s .13022 .5529 m .1928 .75823 L p .20127 .34967 L .982 .718 .448 r F P 0 g s .20127 .34967 m .137 .37979 L .13022 .5529 L p .982 .718 .448 r F P 0 g s .27333 .23103 m .20127 .34967 L p .64848 .23217 L .681 .753 .906 r F P 0 g s .7697 .69101 m .64878 .84199 L .7511 .74961 L closepath p 0 0 0 r F P 0 g s .7697 .69101 m .7511 .74961 L .86147 .57452 L p 0 0 0 r F P 0 g s .86147 .57452 m .87192 .52818 L .7697 .69101 L p 0 0 0 r F P 0 g s .46086 .88014 m .27812 .84891 L p .7511 .74961 L .649 .796 .953 r F P 0 g s .7511 .74961 m .64878 .84199 L .46086 .88014 L p .649 .796 .953 r F P 0 g s .82282 .3352 m .87192 .52818 L .86147 .57452 L p .881 .593 .076 r F P 0 g s .64848 .23217 m .46614 .17842 L .27333 .23103 L p .681 .753 .906 r F P 0 g s .61897 .25381 m .46614 .17842 L .64848 .23217 L closepath p .53 0 0 r F P 0 g s .61897 .25381 m .64848 .23217 L .82282 .3352 L p .65 .092 0 r F P 0 g s .27812 .84891 m .1928 .75823 L p .7511 .74961 L .649 .796 .953 r F P 0 g s .82282 .3352 m .80804 .36573 L .61897 .25381 L p .65 .092 0 r F P 0 g s .86147 .57452 m .80804 .36573 L .82282 .3352 L p .881 .593 .076 r F P 0 g s .27333 .23103 m .46614 .17842 L p .63725 .42934 L .592 .359 .532 r F P 0 g s .137 .37979 m .27333 .23103 L p .63725 .42934 L .592 .359 .532 r F P 0 g s .46614 .17842 m .61897 .25381 L .63725 .42934 L p .592 .359 .532 r F P 0 g s .13022 .5529 m .137 .37979 L p .63725 .42934 L .592 .359 .532 r F P 0 g s .49139 .60187 m .69569 .64705 L .7511 .74961 L p .649 .796 .953 r F P 0 g s .27347 .65201 m .49139 .60187 L p .7511 .74961 L .649 .796 .953 r F P 0 g s .1928 .75823 m .27347 .65201 L p .7511 .74961 L .649 .796 .953 r F P 0 g s .86147 .57452 m .7511 .74961 L .69569 .64705 L closepath p .866 .882 .846 r F P 0 g s .1928 .75823 m .13022 .5529 L .27347 .65201 L closepath p .379 .403 .76 r F P 0 g s .80804 .36573 m .86147 .57452 L .69569 .64705 L p .843 .686 .688 r F P 0 g s .80804 .36573 m .63725 .42934 L .61897 .25381 L closepath p .768 .488 .511 r F P 0 g s .27347 .65201 m .13022 .5529 L p .63725 .42934 L .592 .359 .532 r F P 0 g s .69569 .64705 m .63725 .42934 L .80804 .36573 L p .843 .686 .688 r F P 0 g s .69569 .64705 m .49139 .60187 L .63725 .42934 L closepath p .802 .664 .711 r F P 0 g s .63725 .42934 m .49139 .60187 L .27347 .65201 L p .592 .359 .532 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{288.875, 280.438}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm1t3FFUahpt0d46Q8zmEJEDOJwLBwYiAoAEEBAdHHNYgBiZDEDGQBAMh gAmRiEFGlji6nMOVl3M5f8FLLufWS3/C3GZq72/XR3fnqaZ7imY5a8laXd3U fut59rd3dVd1pevY2MzE+OWxmYvnx1oPTo1dmbh4frp1dHLKWxVdF4msa/Ue 9a0R83o1EvEX9l+bWbj//Pr619fP+fWSeYqb/e1bWbFgnqJmRWz18emVmHn1 WJpumSe7osg02a0eSdOcblVmmvLsDhxbvSu7sv94KOFPlFOt4TyTteu+kNC0 Ehs1ZIF23bKEJpXUoqG4hpYk9JGS2jWUr6EFCU0oqUdDBdqnWxIaV9I2DRUp aU5CY0raqaFiDc1K6H0lvaKhEg3NSOi0kvZpaL326YqETilpVEOlSrosoZNK OqKhMg19KKETSnpbQ+UauiCht8yTbXpXQxUa+mNCSNaYkHl4/UzqndSw+kO5 PmzbOQEcA8Dp5IFyrW5jD2eWss79i5wV2FGAnUmeZPuqUHvhNjwCG36QvDOm 9KJYEWcE8SYgzj99h0T1HWK2LoUaTgvnMHD+lDBLvtbFD0H8gl3KsP94867/ nny67Xuy7UHYdsIu47qt/4jY2V/b698JahRQF+0ymojy9N4ypRKHeAMQHwIi BoiTgngdEJcAkW+XyRNaBsWdEOwBwF4Owqb0zCH2A+JjQBQCQt5jkdcAMQmI 4gyLO5IdtgR65hD7AHEFEBsAIbt7ZC8grgKiLMPiZH+M7AHsFGDLoWcO8Sog pgFRCQjZHyO7ATEDiOoMi5Mp844na7HXAFsDPXOIEUDMAqIWEDJlkZcBcR0Q 9cmIlJJkiCK7AHYDYI0wUqXaMwf7DcDmANYExcnARF4CxE1ANKctTjrinSSs hc0DrCVtcQ42DLBbAGuF4nZmh9ictrjtAtsBsNsA2xpUXAp2SLDbAXsHsO3a xzSwIYAtAKxDYSU6ZlKfdza4FrEIiC4oszChZz8/LreHVDd6g4C9C9hu7VmB OxfyYQ7oeAPAWwJer/LiaXn9wPsMeP12GU8s2z5MqVHDTJkYGc5IH+DvAX5A u+s1OK6jrmXLmHolrmUvA3swYSgCYT0A+xxgfWYZdR399z//pR2NBbO7gX0f 2D3a0ZhBJ+xQzxiJLhB8AYJO7XxBhgLZ3bwN1wpWgj4D7Kri8IIHIGjTIdqQ G8EmraAsN4KNWkFVhoL+7AQNWkFNbgS1KqjPjaBah6gpN4IKrWBThoK+7ARl WkFbbgTrtYItuREUawUd4QVfBn2lsqu6MxT0ZieIqqAvO0EHCB7aZSxRoAM0 +Jzwlj70vPoq68wRygB3ZIjteeFYO3Xu5DU07EHCND3x+vhEDtDDQKbjdXcw WZbxJLKjZ9zxNPjEo7VDe2enTxSb7YCnUd0HVQxU28OrPgdVPEMVzU9XeFWm A5hGtQyq/Nyo7oGqMMRcpVF9BqqiEHPVGaxaAlVxiAFMo7oLqpLcqBZBtSHE XOVIRXPVEaxaAFVpiAFMo/oUVOUhBjCN6g6oKnKjug2qyhBz1R6sugWqqhBz lUY1D6qaEAP44lXtGapqQ8zV1mDVTVDVhZirNKo5UDWEGMA0qhugasyN6jqo mkLM1ZZg1SyomkNU9ctQfQKqTblRXQNVS4aqvOx2ixlQtQWq4okq+/D+73+a E34a8JufH34K8FtC4O33KoJuDYSuuVDcuba75879aFVXgdyewbxGgrHeQy7L fwzsjuzYMhLxRLZ2/SPAd/4v+NSum2XypE6AqhtUqV/9n6GKmqUdqgsg6HlG Lf5bye0tnSCIQS3nQdUbVIvtXFewIK4VnANsH2AHFes1/PTzT34p/jiRpQDK OAu+fvD1mqVdlWd0KWPnpF0ZSs+AdACk3VpkDKRdwdJCHc8/gGoQVJ2qys9O VQz1vQfSbSBtV2kBSN3lhO4gqd3wFKi2g6pN568oO9V6qO8kSHeAtEXrKwFp T7B0g9Z3wqjsB9cwCJpVsB4EvcGCMqjqsFnaD/346g9P/mOlNGuNKi0NlvZk KD2g9ZUaqdXT+71O568MpH3B0nIdyr1aX53WRx/0NVpfZXaqSqhvl0pbtT46 jleptAqk7q8avUHSPNlBfFWX1kfnVuWqqgbVQLCqGurrV+mQSuk8v1SltdlJ a0DaqTvNiA4qfTsr0Z2mDqTuT6Z9QdI8mSu/vgNaH10fKNL6GrNT1UF9G1V6 VOujSy35Km0CKfzh3ZfWa331qnpH66OLfTFVbQTVULCqEeqrUOkZrU8u0cYS pTp7m4KV/RkqS3SXGdc65WK3jblHK4jg5xG+qEmHsUArmjR4u25zdrBm6LUl zhiiazBnOobaAmz385WBILbt1A2ANQNs+Bkwt86DWeD18NiNgJ0DLO3q7tdO g4BtBOxNwNLb9qVgbANgbwG2ITfYesC6X41tA2wdYO8Alj4m02BrAbsA2BrA 7grG1gB2EbB0+Ho5GFsN2CXA0gHYYYcAW5Uhlk4mRoKxlYC9B9iK7LAVgF0G bDlg5ceoSb/Xo1M7H3sfsHTGuPuFY0sBuwJYOqmW3won/RaSvir42AfhsSWA fQjYYsDuCY+l70t7g7HFgP0KsIXB2GHAFgL2EWDpi+S+YGwBYL8GLH0pzhL7 GLD0td79bHsnYOOA/QawUcDuD8bGAPstYOnKRxpsFLDf2WU8EetfvXE3h7ij I1+r+5vdPJa0eTZbPq3HrBtN3CyWtJn3+h8JW/jVOpE9JNrTqb9D6GBCKKX8 v0L8UHD8e4i7myl2Qfw7iMstS0m/4Pfjf4G4u9tjBOJf64mtu1nlFQg9AqaL 74b4nyF+XOKvQvxLiLubb/ZAfAXib0t8L8TvQ/y3Et8H8WWIu3uUXoP4kg7f uxLaD6FFYLr4AYh/CvFTEn8d4rch7m4TewPi8xD/vcRHIT4HcXcD20GIz+p4 uJvrDkHoGjBd/DDEpyH+vsTfhPhViJ+V+BGIT0L8A4kfhfhliI9J/BjEL0Hc 3T/5FsQvmKVdNS6h4xAaM0v7eTghIXmzxDRkniPmPkM/5+4wfcc85ZsVx7Vp SprslMblU9dvcrfBntWtRrRpXprGtWlQm9y9upe0aas23ZOmq9rUoE0r0jSr 3SjTpq+kaV63imnTN9K0aJ5s+d/LCjvOv6AbuP9fXkfW/RfhHn0c\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.875}, {279.438, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"7c55f22c-619a-4e84-9e89-af3cde3272ee"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(67\\). \\!\\(\\\"biaugmented truncated cube \ (J67)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"da52b4da-7a9e-4ba3-9c2f-4bcbc77192ba"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.1332 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0766814 1.21764 0 1.21764 [ [ 0 0 0 0 ] [ 1 1.1332 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.1332 L 0 1.1332 L closepath clip newpath .5 Mabswid [ ] 0 setdash .75785 .7252 m .65342 .61653 L .52096 .71007 L p .668 .451 .581 r F P 0 g s .65342 .61653 m .50718 .543 L .52096 .71007 L closepath p .75 .601 .691 r F P 0 g s .5875 .40799 m .50718 .543 L .65342 .61653 L p .69 .64 .794 r F P 0 g s .65342 .61653 m .73684 .48506 L .5875 .40799 L p .69 .64 .794 r F P 0 g s .65342 .61653 m .75785 .7252 L .84702 .59238 L p .539 .443 .694 r F P 0 g s .84702 .59238 m .73684 .48506 L .65342 .61653 L p .539 .443 .694 r F P 0 g s .5875 .40799 m .41574 .42069 L .50718 .543 L closepath p .719 .679 .81 r F P 0 g s .44945 .83818 m .52096 .71007 L .50718 .543 L p .879 .696 .651 r F P 0 g s .32418 .85242 m .44945 .83818 L p .50718 .543 L .879 .696 .651 r F P 0 g s .21717 .72893 m .32418 .85242 L p .50718 .543 L .879 .696 .651 r F P 0 g s .20281 .54003 m .21717 .72893 L p .50718 .543 L .879 .696 .651 r F P 0 g s .28989 .41317 m .20281 .54003 L p .50718 .543 L .879 .696 .651 r F P 0 g s .50718 .543 m .41574 .42069 L .28989 .41317 L p .879 .696 .651 r F P 0 g s .52096 .71007 m .44945 .83818 L .62259 .82349 L closepath p .694 .45 .551 r F P 0 g s .52096 .71007 m .62259 .82349 L .75785 .7252 L p .668 .451 .581 r F P 0 g s .73684 .48506 m .72451 .38121 L .5875 .40799 L closepath p .549 .662 .911 r F P 0 g s .84072 .49115 m .72451 .38121 L .73684 .48506 L p .182 .357 .803 r F P 0 g s .73684 .48506 m .84702 .59238 L .84072 .49115 L p .182 .357 .803 r F P 0 g s .84702 .59238 m .75785 .7252 L .76246 .81521 L p .063 0 .285 r F P 0 g s .75785 .7252 m .62259 .82349 L .76246 .81521 L closepath p .461 .138 .332 r F P 0 g s .41574 .42069 m .5875 .40799 L .72451 .38121 L p .359 .812 .942 r F P 0 g s .28989 .41317 m .41574 .42069 L p .72451 .38121 L .359 .812 .942 r F P 0 g s .79169 .81844 m .76246 .81521 L .62259 .82349 L p .013 0 0 r F P 0 g s .67102 .83328 m .79169 .81844 L p .62259 .82349 L .013 0 0 r F P 0 g s .46543 .85079 m .67102 .83328 L p .62259 .82349 L .013 0 0 r F P 0 g s .32115 .85845 m .46543 .85079 L p .62259 .82349 L .013 0 0 r F P 0 g s .32418 .85242 m .32115 .85845 L p .62259 .82349 L .013 0 0 r F P 0 g s .62259 .82349 m .44945 .83818 L .32418 .85242 L p .013 0 0 r F P 0 g s .84702 .59238 m .85737 .67676 L .84072 .49115 L closepath p 0 0 .106 r F P 0 g s .76246 .81521 m .85737 .67676 L .84702 .59238 L p .063 0 .285 r F P 0 g s .84072 .49115 m .75069 .35281 L .72451 .38121 L closepath p 0 .273 .778 r F P 0 g s .28437 .38679 m .28989 .41317 L p .72451 .38121 L .359 .812 .942 r F P 0 g s .42526 .35515 m .28437 .38679 L p .72451 .38121 L .359 .812 .942 r F P 0 g s .62891 .34042 m .42526 .35515 L p .72451 .38121 L .359 .812 .942 r F P 0 g s .72451 .38121 m .75069 .35281 L .62891 .34042 L p .359 .812 .942 r F P 0 g s .76246 .81521 m .79169 .81844 L .85737 .67676 L closepath p 0 0 0 r F P 0 g s .28437 .38679 m .20281 .54003 L .28989 .41317 L closepath p .798 .932 .563 r F P 0 g s .21717 .72893 m .32115 .85845 L .32418 .85242 L closepath p .616 .135 0 r F P 0 g s .75069 .35281 m .84072 .49115 L .85737 .67676 L p .914 .719 .625 r F P 0 g s .62891 .34042 m .75069 .35281 L p .85737 .67676 L .914 .719 .625 r F P 0 g s .54634 .48017 m .62891 .34042 L p .85737 .67676 L .914 .719 .625 r F P 0 g s .56411 .69313 m .54634 .48017 L p .85737 .67676 L .914 .719 .625 r F P 0 g s .67102 .83328 m .56411 .69313 L p .85737 .67676 L .914 .719 .625 r F P 0 g s .85737 .67676 m .79169 .81844 L .67102 .83328 L p .914 .719 .625 r F P 0 g s .20281 .54003 m .28437 .38679 L .25639 .46664 L p 0 0 0 r F P 0 g s .17019 .62771 m .21717 .72893 L .20281 .54003 L closepath p .988 .766 .376 r F P 0 g s .25639 .46664 m .17019 .62771 L .20281 .54003 L p 0 0 0 r F P 0 g s .32115 .85845 m .21717 .72893 L .17019 .62771 L p 0 .072 .63 r F P 0 g s .25639 .46664 m .28437 .38679 L .42526 .35515 L closepath p .252 0 .057 r F P 0 g s .17019 .62771 m .27919 .76176 L .32115 .85845 L p 0 .072 .63 r F P 0 g s .27919 .76176 m .46543 .85079 L .32115 .85845 L closepath p .427 .663 .96 r F P 0 g s .17019 .62771 m .25639 .46664 L .37278 .59869 L p .461 .38 .678 r F P 0 g s .37278 .59869 m .27919 .76176 L .17019 .62771 L p .461 .38 .678 r F P 0 g s .54634 .48017 m .42526 .35515 L .62891 .34042 L closepath p .682 .402 .491 r F P 0 g s .42526 .35515 m .54634 .48017 L .37278 .59869 L p .651 .405 .535 r F P 0 g s .37278 .59869 m .25639 .46664 L .42526 .35515 L p .651 .405 .535 r F P 0 g s .46543 .85079 m .56411 .69313 L .67102 .83328 L closepath p .719 .707 .839 r F P 0 g s .56411 .69313 m .46543 .85079 L .27919 .76176 L p .683 .658 .819 r F P 0 g s .27919 .76176 m .37278 .59869 L .56411 .69313 L p .683 .658 .819 r F P 0 g s .37278 .59869 m .54634 .48017 L .56411 .69313 L closepath p .761 .607 .687 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{267.375, 302.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt28lPG2cYx3HHHoPBrDbEQE3YMWY1YQk7IRAgW9t0lXpoC1GrpFWbKsmh Us49VD32VCmHHnL0sdcc+yf03+ixV+p38YM9fG3eGVqpqkDyzDAz/n2ed2Y8 HntePzh68fiLb45ePHl0NHjw7Oi7x08ePR/cf/qsNCt2JRK5kiw9Zgcjavok EikP9F+LGth/Lqcvpy+nL6fPmf7VTJdOIZ+ZGT+rUaua0XhSPH4ZianJkz/f vFKPSFQNE2rWx2b1H9SoTc1Iw+pJWf0ds/r3kj4Eq6dl9QOz+lM1alIzZmD1 rBp6atauWf1rNYrrE2Ls5PXxT3pt9bx5ePagHpp59i+yY3K+lJzoyU4kET0p B9rVS2E6cA5ihyD2pok9ViNdb4OKtSupOlW0BwC1egSAbQN8KkBC6k5A7HSw 2E8kNgl1NwEwCcAYAFsG+EiAVqm7FWInIDYHsZsm9qHsxg6ouw2AXDDggdSd lrpTEDsGsXmI3TCx99RIh12FutMAjAIwCcB6BWAX7ZhjpaIFGQCGAZiqDdyt Bfja0gMUnRimgVqrTXVKW7IADAAwC8CqAe7I3khBC/oB6Adg7hzA14J2acEQ AFkACgCsGOBQWkCvg2EA+gC4DsANP9AmdY9DbG+w2IPqWF/dOQAyACwCsOwH WqTuScfYJYhdMrH7ahSrdb6cAqAbgOXawG0BmqXuOYilt+QViF30xzZB3QUA UgCsArBggD010ufLRql7EWI7IHbtnNiYxPrqXgKgHYB1AK4bYFfqjkvdqxDb CrGbEDvvj/Wg7jUAkgBs1QZuCRCTurcgthlityG24I+NQt3bACQA2AFgzgD6 MqxRLdmFMLouPS9MXwXsQ1gcwnYhbNaE3ZSwQwjzIGwPwmb8YXcgLApht2uH bUtYafnz42J5n9hCvcpsQ56NmvZHRVWSb/8e+GpV4l0ImzJhWxLmQZjeJfq4 vOcSEYeIvYp6fn+l2x25D2GTJmxTwhohbEfqiaow3+anGvP+2ATEbvtqVNEB gQ0BmgHYkLrjIWI98xZ4NnYN6g4IrEvdBKxI3YlgsWsS2waxy1B3EwB03J4B 2gFYkLpbHOueMLGrEtsJsfNQd2ggBcCs1N0eLHZFYrsgdhrqDg10A5CXulPB Ym9IbAZic1B3aKAHgFGpuztY7LLE9kLsCNQdGugDYAiAq8GAJQGyAFyTDdMb IlafsK5BbBbq7nMEcn5gAIBeqbs/WOyixA5BbAbqDg0MA9AldQ+GiNVLRiE2 BXUHBBakbgI6pO6RELF6yTjEtkHdAYHrUncOgKTUPR4iVi/JQ2wT1B0amASg QerOB4udl9hpiPWgbgLowm3cD8xowKsEpOoZx6orQ+3n5+qqI3peoLCCVFhQ YTY2eIR+4nxFI4vFP/Q4ePvmfHkxySs91EeM4h966dQ/GetJrOsxVBlrF6mP MCp6DoBGAXLBgFmpuwCxzRI7FiLWoe4WAVzPNXWAWQDaBRhyfHGNGWDGsQWd AgxcHKAWdAlwzXETjdXeRDMAXBUgGwKInp5/qmN7Jdb1cmPMd8x3vC7XXnVi LgNZNdSzMiEBdQIxCAID0gLXK8k6QB6AYQHSwYACABMAjArQGQbwTgGDjIOR E8P184015tkYAyMvRqvji2y00ohXG3aDjQA0LVAyGHSdGzMMxpwY9AH8XIMb MwTQvECuXyVYaKEONADQokANYaBYJVR6C1bD6tNWFtBlQb2LozFA+wBdFZS+ rKIvT+zBvujYUkLX5URX5+2EAGpVDwBbeljdFvo21L73LjlSmX+H8oDqPod6 85u+XkTKXq4vO1LpmlRcqPJDkYfByDiQKYfWlR6lA0oNqzcufdte+UWNQ4s7 HfnYxXlqfQfwm8DHgb8FfL423wB8m2PrG4CnmzCWX3HkWx1bnwD+ZjC+Efik Y+uJpxtm9p7DqmPrmx35ZuDpNmAdnlrf5LjxW4DfAN7evllz5BsdWx+QX3fk Gxxb3wY83Zy2N9M2HHnPke8Anm65W37T8dBz5TuBvwG8vSu55chHHfnUxfnG 8pn/lFfT26B1gUb9PuzN4W2HXR2pQXUDRT1XKu9D16HqbcMMUNQLp/L+Oe5C sw2/Kv5llkXMpZtP6wmm3TrngFFa6RGxfTDOer3gUd+oQlCvNNToMqBvAUo9 viy664jG1FDPWgA0C+gMoLYzyB6gcUAbpKUFQPuDobcB9QBNCDoD6ACg1PvQ dtfZd0SbBJ0CdBBQ6lNp0QNAY4AmBZ0AdBhQ6ilaB6WWtgg6BugIoBOA2u5W h44tbRN0BNBRQKmrrUXvOKLt8pIZAHQcUOqXbDvE3QU0CmhKWpoFNBcMveeI pgXtA3QCUOribXsU3tcj/g4kI1AGoEmAhsNBvQJ1ATQNkP4FgA6zXV0f1Inv k/iUY3yXGurfI9gO32/r0ZnvvbKS3A7Js5B8+sMIc4a0v484k9wvya2QPAfJ p7/QMNsi8q7/eNKvjfKrpKnWLk2qWR9WRpwpbkiKa6j1TqF/GfK5SXkIhYxI hFfrWlf/WuRbE/GeGtnzWPmJpecU7f0x9RxP2JfmOe+XWfsFu3rt6B3Wof79 0az0QUVtVe9JaTXrF7OS3hrNakbRzNBH9n/oxzyX05fT/9fpyJW/AWgX9gg= \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 266.375}, {301.938, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"f767f3e2-4617-431a-94e1-02c6684af4c3"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(68\\). \\!\\(\\\"augmented truncated dodecahedron (J68)\\\"\ \\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"6476284a-b79c-4927-bbaa-29af7f41809e"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.08196 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0553378 1.16005 -3.33067e-16 1.16005 [ [ 0 0 0 0 ] [ 1 1.08196 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.08196 L 0 1.08196 L closepath clip newpath .5 Mabswid [ ] 0 setdash .48664 .56798 m .47144 .66097 L p .74876 .69243 L .622 .476 .663 r F P 0 g s .54925 .49753 m .48664 .56798 L p .74876 .69243 L .622 .476 .663 r F P 0 g s .47144 .66097 m .48664 .56798 L .39933 .59926 L closepath p .75 .598 .687 r F P 0 g s .48664 .56798 m .54925 .49753 L p .52624 .34068 L .783 .731 .805 r F P 0 g s .39933 .59926 m .48664 .56798 L p .52624 .34068 L .783 .731 .805 r F P 0 g s .63753 .47515 m .54925 .49753 L p .74876 .69243 L .622 .476 .663 r F P 0 g s .63753 .47515 m .56521 .41162 L .54925 .49753 L closepath p .652 .604 .788 r F P 0 g s .54925 .49753 m .56521 .41162 L .52624 .34068 L p .783 .731 .805 r F P 0 g s .47144 .66097 m .50981 .74354 L p .74876 .69243 L .622 .476 .663 r F P 0 g s .47144 .66097 m .39933 .59926 L p .44144 .85981 L .826 .558 .533 r F P 0 g s .50981 .74354 m .47144 .66097 L p .44144 .85981 L .826 .558 .533 r F P 0 g s .39933 .59926 m .31711 .57931 L p .44144 .85981 L .826 .558 .533 r F P 0 g s .31711 .57931 m .39933 .59926 L p .52624 .34068 L .783 .731 .805 r F P 0 g s .71963 .51106 m .63753 .47515 L p .74876 .69243 L .622 .476 .663 r F P 0 g s .63753 .47515 m .71963 .51106 L p .77028 .38091 L .429 .56 .885 r F P 0 g s .56521 .41162 m .63753 .47515 L p .77028 .38091 L .429 .56 .885 r F P 0 g s .49988 .81945 m .58957 .78448 L .50981 .74354 L closepath p .675 .415 .52 r F P 0 g s .50981 .74354 m .58957 .78448 L p .74876 .69243 L .622 .476 .663 r F P 0 g s .44144 .85981 m .49988 .81945 L .50981 .74354 L p .826 .558 .533 r F P 0 g s .52624 .34068 m .56521 .41162 L p .77028 .38091 L .429 .56 .885 r F P 0 g s .31711 .57931 m .25347 .61088 L p .44144 .85981 L .826 .558 .533 r F P 0 g s .25347 .61088 m .31711 .57931 L .27096 .51235 L closepath p .896 .743 .684 r F P 0 g s .27096 .51235 m .31711 .57931 L p .52624 .34068 L .783 .731 .805 r F P 0 g s .74876 .69243 m .76313 .59411 L .71963 .51106 L p .622 .476 .663 r F P 0 g s .76313 .59411 m .78436 .50585 L .71963 .51106 L closepath p .437 .393 .711 r F P 0 g s .71963 .51106 m .78436 .50585 L p .77028 .38091 L .429 .56 .885 r F P 0 g s .68154 .76569 m .58957 .78448 L .49988 .81945 L p .347 0 .015 r F P 0 g s .58957 .78448 m .68154 .76569 L .74876 .69243 L p .622 .476 .663 r F P 0 g s .74591 .76987 m .68154 .76569 L p .49988 .81945 L .347 0 .015 r F P 0 g s .75655 .79785 m .74591 .76987 L p .49988 .81945 L .347 0 .015 r F P 0 g s .70233 .84116 m .75655 .79785 L p .49988 .81945 L .347 0 .015 r F P 0 g s .60106 .88193 m .70233 .84116 L p .49988 .81945 L .347 0 .015 r F P 0 g s .49775 .90133 m .60106 .88193 L p .49988 .81945 L .347 0 .015 r F P 0 g s .43797 .89174 m .49775 .90133 L p .49988 .81945 L .347 0 .015 r F P 0 g s .49988 .81945 m .44144 .85981 L .43797 .89174 L p .347 0 .015 r F P 0 g s .53675 .28662 m .44357 .31357 L .52624 .34068 L closepath p .656 .784 .942 r F P 0 g s .53675 .28662 m .52624 .34068 L p .77028 .38091 L .429 .56 .885 r F P 0 g s .28202 .42174 m .27096 .51235 L p .52624 .34068 L .783 .731 .805 r F P 0 g s .34878 .3444 m .28202 .42174 L p .52624 .34068 L .783 .731 .805 r F P 0 g s .52624 .34068 m .44357 .31357 L .34878 .3444 L p .783 .731 .805 r F P 0 g s .80583 .45737 m .78436 .50585 L .76313 .59411 L p 0 0 .211 r F P 0 g s .8196 .47117 m .80583 .45737 L p .76313 .59411 L 0 0 .211 r F P 0 g s .8189 .54951 m .8196 .47117 L p .76313 .59411 L 0 0 .211 r F P 0 g s .80272 .66263 m .8189 .54951 L p .76313 .59411 L 0 0 .211 r F P 0 g s .77822 .75907 m .80272 .66263 L p .76313 .59411 L 0 0 .211 r F P 0 g s .75655 .79785 m .77822 .75907 L p .76313 .59411 L 0 0 .211 r F P 0 g s .74591 .76987 m .75655 .79785 L p .76313 .59411 L 0 0 .211 r F P 0 g s .76313 .59411 m .74876 .69243 L .74591 .76987 L p 0 0 .211 r F P 0 g s .74876 .69243 m .68154 .76569 L .74591 .76987 L closepath p .424 .204 .474 r F P 0 g s .27096 .51235 m .28202 .42174 L p .21975 .66762 L .869 .8 .31 r F P 0 g s .25347 .61088 m .27096 .51235 L p .21975 .66762 L .869 .8 .31 r F P 0 g s .25347 .61088 m .23498 .68632 L p .44144 .85981 L .826 .558 .533 r F P 0 g s .23498 .68632 m .25347 .61088 L p .21975 .66762 L .869 .8 .31 r F P 0 g s .78436 .50585 m .80583 .45737 L .77028 .38091 L p .429 .56 .885 r F P 0 g s .44357 .31357 m .53675 .28662 L p .43149 .33763 L 0 0 0 r F P 0 g s .34878 .3444 m .44357 .31357 L p .43149 .33763 L 0 0 0 r F P 0 g s .28202 .42174 m .28264 .36937 L p .21975 .66762 L .869 .8 .31 r F P 0 g s .28264 .36937 m .28202 .42174 L .34878 .3444 L closepath p .873 .953 .858 r F P 0 g s .44144 .85981 m .35387 .84487 L .43797 .89174 L closepath p .683 .183 .051 r F P 0 g s .27324 .77743 m .35387 .84487 L .44144 .85981 L p .826 .558 .533 r F P 0 g s .23498 .68632 m .27324 .77743 L p .44144 .85981 L .826 .558 .533 r F P 0 g s .28264 .36937 m .34878 .3444 L p .43149 .33763 L 0 0 0 r F P 0 g s .59808 .27244 m .53675 .28662 L p .77028 .38091 L .429 .56 .885 r F P 0 g s .53675 .28662 m .59808 .27244 L p .43149 .33763 L 0 0 0 r F P 0 g s .22178 .7106 m .27324 .77743 L .23498 .68632 L closepath p .926 .542 .161 r F P 0 g s .21975 .66762 m .22178 .7106 L .23498 .68632 L p .869 .8 .31 r F P 0 g s .35387 .84487 m .27324 .77743 L .22178 .7106 L p .219 .491 .898 r F P 0 g s .43797 .89174 m .35387 .84487 L p .22178 .7106 L .219 .491 .898 r F P 0 g s .77028 .38091 m .80583 .45737 L .8196 .47117 L closepath p 0 0 .448 r F P 0 g s .28264 .36937 m .27138 .37906 L p .21975 .66762 L .869 .8 .31 r F P 0 g s .27138 .37906 m .28264 .36937 L p .43149 .33763 L 0 0 0 r F P 0 g s .49775 .90133 m .43797 .89174 L p .22178 .7106 L .219 .491 .898 r F P 0 g s .77028 .38091 m .68906 .30836 L .59808 .27244 L p .429 .56 .885 r F P 0 g s .68906 .30836 m .60201 .27751 L .59808 .27244 L closepath p .32 0 0 r F P 0 g s .59808 .27244 m .60201 .27751 L p .43149 .33763 L 0 0 0 r F P 0 g s .75655 .79785 m .70233 .84116 L .77822 .75907 L closepath p .724 .965 .701 r F P 0 g s .50831 .86595 m .49775 .90133 L p .22178 .7106 L .219 .491 .898 r F P 0 g s .45912 .79488 m .50831 .86595 L p .22178 .7106 L .219 .491 .898 r F P 0 g s .36722 .71716 m .45912 .79488 L p .22178 .7106 L .219 .491 .898 r F P 0 g s .27396 .66823 m .36722 .71716 L p .22178 .7106 L .219 .491 .898 r F P 0 g s .22178 .7106 m .21975 .66762 L .27396 .66823 L p .219 .491 .898 r F P 0 g s .77028 .38091 m .8196 .47117 L .79651 .43868 L p .699 .289 0 r F P 0 g s .74534 .34486 m .68906 .30836 L .77028 .38091 L closepath p 0 .24 .734 r F P 0 g s .79651 .43868 m .74534 .34486 L .77028 .38091 L p .699 .289 0 r F P 0 g s .60201 .27751 m .68906 .30836 L .74534 .34486 L p .52 0 0 r F P 0 g s .8189 .54951 m .79651 .43868 L .8196 .47117 L closepath p .95 .695 .237 r F P 0 g s .49775 .90133 m .50831 .86595 L .60106 .88193 L closepath p .546 .839 .998 r F P 0 g s .27138 .37906 m .25145 .45481 L p .21975 .66762 L .869 .8 .31 r F P 0 g s .32676 .36755 m .25145 .45481 L .27138 .37906 L closepath p .2 0 .278 r F P 0 g s .43149 .33763 m .32676 .36755 L .27138 .37906 L p 0 0 0 r F P 0 g s .77822 .75907 m .70233 .84116 L .60106 .88193 L p .802 .777 .83 r F P 0 g s .74534 .34486 m .6563 .31376 L .60201 .27751 L p .52 0 0 r F P 0 g s .6563 .31376 m .53937 .30228 L .60201 .27751 L closepath p .56 .067 .04 r F P 0 g s .60201 .27751 m .53937 .30228 L .43149 .33763 L p 0 0 0 r F P 0 g s .7637 .58566 m .80272 .66263 L .77822 .75907 L p .802 .777 .83 r F P 0 g s .6709 .56014 m .7637 .58566 L p .77822 .75907 L .802 .777 .83 r F P 0 g s .55941 .6009 m .6709 .56014 L p .77822 .75907 L .802 .777 .83 r F P 0 g s .47725 .69255 m .55941 .6009 L p .77822 .75907 L .802 .777 .83 r F P 0 g s .45912 .79488 m .47725 .69255 L p .77822 .75907 L .802 .777 .83 r F P 0 g s .50831 .86595 m .45912 .79488 L p .77822 .75907 L .802 .777 .83 r F P 0 g s .60106 .88193 m .50831 .86595 L p .77822 .75907 L .802 .777 .83 r F P 0 g s .25145 .45481 m .23112 .5682 L .21975 .66762 L p .869 .8 .31 r F P 0 g s .21975 .66762 m .23112 .5682 L .27396 .66823 L closepath p .265 .27 .678 r F P 0 g s .74534 .34486 m .79651 .43868 L .73975 .47076 L p .858 .531 .433 r F P 0 g s .6563 .31376 m .74534 .34486 L p .73975 .47076 L .858 .531 .433 r F P 0 g s .8189 .54951 m .7637 .58566 L .73975 .47076 L p .95 .761 .613 r F P 0 g s .73975 .47076 m .79651 .43868 L .8189 .54951 L p .95 .761 .613 r F P 0 g s .8189 .54951 m .80272 .66263 L .7637 .58566 L closepath p .959 .8 .641 r F P 0 g s .23112 .5682 m .25145 .45481 L .32676 .36755 L p .595 .444 .647 r F P 0 g s .27396 .66823 m .23112 .5682 L p .32676 .36755 L .595 .444 .647 r F P 0 g s .36722 .71716 m .27396 .66823 L p .32676 .36755 L .595 .444 .647 r F P 0 g s .47725 .69255 m .36722 .71716 L p .32676 .36755 L .595 .444 .647 r F P 0 g s .55941 .6009 m .47725 .69255 L p .32676 .36755 L .595 .444 .647 r F P 0 g s .57867 .47948 m .55941 .6009 L p .32676 .36755 L .595 .444 .647 r F P 0 g s .52832 .37888 m .57867 .47948 L p .32676 .36755 L .595 .444 .647 r F P 0 g s .32676 .36755 m .43149 .33763 L .52832 .37888 L p .595 .444 .647 r F P 0 g s .52832 .37888 m .53937 .30228 L .6563 .31376 L p .683 .366 .433 r F P 0 g s .53937 .30228 m .52832 .37888 L .43149 .33763 L closepath p .648 .334 .427 r F P 0 g s .6563 .31376 m .64954 .39092 L .52832 .37888 L p .683 .366 .433 r F P 0 g s .73975 .47076 m .64954 .39092 L .6563 .31376 L p .858 .531 .433 r F P 0 g s .73975 .47076 m .7637 .58566 L .6709 .56014 L closepath p .848 .709 .709 r F P 0 g s .36722 .71716 m .47725 .69255 L .45912 .79488 L closepath p .629 .611 .813 r F P 0 g s .64954 .39092 m .73975 .47076 L .6709 .56014 L p .778 .599 .657 r F P 0 g s .64954 .39092 m .57867 .47948 L .52832 .37888 L closepath p .702 .489 .596 r F P 0 g s .6709 .56014 m .57867 .47948 L .64954 .39092 L p .778 .599 .657 r F P 0 g s .57867 .47948 m .6709 .56014 L .55941 .6009 L closepath p .764 .603 .679 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{273.625, 296}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm8tz3FQWhzvdUj/dD3fc7fYjxgmQB8/EIQ4Oduz2I7bzcOIEwmsYMIHK YyYzIQlQBdRUzWSoqSlYsJjFLMyCqixZZjvLLFlmO0v+hGyNzjlXx2r5p/aV 26agKq7Slay+9/vOudK9UtvSuZW71z6+uXL3+pWV4fnbK7euXb9yZ/jUX297 u1K7Eold3d5ycDhB22uJhF/wT5UK88uT7SfbT7Z/1e0faOXQePyz7PieVgXa cV12/Fd3pNa+qWS57lX56D+06qIdGfrIpa2P5aPvaFWiHQX6yGtLI/6eGfr8 24dS81talWlHmWs6WtMsXPkDqfxvWlVoR5UqJ2nL0UrvSaWvJT9vRz3kvsdu v/q7Uv3vtGrQjpoy01SJt96WSn+jVY8J/v7FG4z88Z0bnt0ruXu6gMxV2WXh fEGrmoTtYUx1D8GwEpV57esQLKNBvS6wz2hVl/7fCGtQmaZdOZO4Trpe42VB 3FFEDiD2cCn7/n+Pk5YA1kMxnFvK6bLgeIvX2itTrZ19XmA3FVa2hLkKc0Gu ZwV7Q7FVS2xWsSmN0cCuKqxmCStQmVRYKMZFwX6k2IYltqgxCnfNv74a4ooS ByyJFSp5MM8L4o+Bk3b1zn2u3QtgQwC2W8M7JbB3FZYnWDKqCxGszmVrx80I lsfpbvqkojGiwxwTe1mxdY22YtmPDYCdFuwlnaIGNdpiHCwHYmLkIdhNO/Zp jAVLWB+IsSnYJZ1rDyrWZpIgYD/ATgmWxw/P9y9q6q7lgerX1E2MZ2hlLk5H Es0RDTRlSRwAgU4K+zStMjLbeWxTyRPQkmAVX6uGo7AciMmaB2NKjsxG2CiV rOoHsEGFTQZgppIHY2AeYI9zKfsefLlKizeCvbIgc+sWVTmgGgOqkqocoNqj qpOiWrBUnQCqPir5Wjdkg80C7DjADnIp+x6u/sjT6rpgIlqAzpgJIBjg0lWB v7SKxuOJTkZ1UCATb/F+kxKfuEY6bymdBNIGkLptpa9FS9NA2gTSOpBmgLTf RuoC6TSQ1oA011Z6IlrqAOkskPYAaR5I+8LSU5bSOSDdDaRdbaVj0dIUkM4D aTeQloC0YSNNAukCkFaAtNJW+mo86WLUnBmSVqlkwXqnHg+q3KCKF5o/zgJ8 EeBrIKd6WDTXRnTOUlQHopreHo4GRU6LKEHfDDY6CsDRAI6qJuN98PjhKn+Y CCvXjxd9dAH48sDXD3x8/2xSIJ1ZuNKxgJJDughEWSAaBKKiJuaSIBkQzKrg EhBkgGAICPIqyGgGrwQEoRMaqVygGgaqjKpypDKfPn4wxodjG6R7gdRRaYGl jkqN+Gi093XgTQHv08CbDNx1mrPDRJAKRiBfOEfixZAEMTzLpaMxmAFQxkkb 4QwQXubSCQpp+1AgRz8fgbstcP9wHtnMsJ4SVX9u+/Bv6jeEQzqrdneACt0c Hgh29IMHvCToG2MHBid4KGn7WXMjFZQYkcllwyHdVIJvQVvOXbHQueuV6GBE WactOi98Pwqnih2PwAERDIEIUjsWgQsiGAQRuCCC0rZEkNZxMQC86cjMWyfs mNIsSLsX6DM7o88Bfb1zfRPo3wL6PND3AH0u8qBb61H2XUBfBfr8zuiLQF8B +kJU5yfX4ktLQFreaWkZSItAWozq6K1IKzqeu4CqZKOasjyPqyC/LJCWtypF +fUAaRpIK5uMXfOTeDmevgb07q+nrwN9CuirQF/capf3Bm5AwrcMNSDqCk4S P90PThK2ykYoT0LUgSqvOSVJhTt30vJ8ZilfT1FWuVBWpNsGKZ9QvMtZ++nh I9ajo5fWTB0gPRwtRd27W6UFkvIWGqUuyHkb9BXVd2vOaOZNac6ZTaRcCXVv SafDhqrQZT0JMt2ytKD5DWn3OlCaoH+LRVpOBvqz2ZRRgHxZ9T2jScpNK1dL 8MVgE4ujFmNqf7P4PInMZWYj+UhsckpTeInIoSOB+qjF4bY4/L56A3yh8jUj QJPrQMOWY9sMNc08KIOPA3x2M3wqiPdOOSpbh+jFzlUTQJUCqmWgGgOqNFCN RKscoDoPVCd2RrUEVONA5XauOgdUE52rXKA6A1STQIUuCDFVp4FqamdUi0DV jKcaB6oMUC0A1TRQobuIo/FU80A107kqC1RzQDXHpRtU6Z3fsXj4WYA/tX34 GYBf4NJpwbcn5wC5CciL20KeAuQzev01/9V4DcAKAHYSwM5uFTYBYEuB084/ xV7ZeSw/EDMOGp63i2fsy59p8W4YvdL8T9EOdiwaVlHYKIBdiAerKuwogC3H g/Uo7DCAXYwHqyvsRUvY6MYR4MN6FcbPIfGHb8RD9Clin96aJdfurz4KRXYp HnZAsQOE5fko3Tl2j2JrGm2hc+xTii0rtmSJPR6N3avYrHZCdQvY/cpJani9 8Th8yT8QOCixWvPd8UHOST73WjOhATjoHDb//p+M4tQt4zGcqShObQuc0EHb D7A98bDNKCz3PYKhPjPPaUwD2AEQY3c87IwlttI5Fh0o29FlsLOW2GI87FwU lg8UgqHUwaNDPuwQiDEfDztvic11jn0OYLMAi66f5kmxBUssuhYs662VeXxw 0RLmAtgFhZmHHfmZVfP3GP8Io4bB25b/PZZ/HRvEWct40PVzCWAnBXsuEusG sbxQMxSheZZ2ySLCdYSjCIMxlPNRFO60JdzWPHZ8YZMIWm7KTYI+xU/GoJb1 iCHA6VAveIv8kTD4HHmbKQN9owkEITOOeZ1kc8o8OCYyu3g3ZO1n2tZvbq0I 82LAZUvELJW8y7ye8KZlw2kdLebViLdAw/2gYVMbnpaGb1s2nNSGZ6Qhv/yA unZCa5r3S/5AK5RF8O9I/rxk2rwX1eYEaCMDUt7tQLGPgTYy8hLvR7UZ1SzM a0Ef6Nn9DKg+okdSzmN5Jczcp2+sfljp5mWqj8BhGAYNX1CPHHF5SY1Je0H1 Q+oxb4hd1epPger7lW7eP7uu1YdA9X1a3bzT9ietzjf+jjT0Q7gilW6CVPu5 lEH9zaM1f+HH4GtqMS/k/UUtfYGgTBPvAuiV/AJCl5qvScNb2rAXNCyr0dGG N6ThbW1YAw17qOTYJbXEXZBhN2hYoZKn1E+k4aegYQU0zGuon0nDz2nlStIb qzta/Supzqss7UiB6sz5h9T8J6246b9kB4+e39Bbn0+2f7/biV2/ABnKgt8= \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.625}, {295., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"904c1d44-98e5-4145-b6f5-151d1a0a1ada"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(69\\). \\!\\(\\\"parabiaugmented truncated dodecahedron \ (J69)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"408eb24c-39e3-43ee-8790-e240fc986d59"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.085 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0569464 1.15247 4.44089e-16 1.15247 [ [ 0 0 0 0 ] [ 1 1.085 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.085 L 0 1.085 L closepath clip newpath .5 Mabswid [ ] 0 setdash .53353 .62522 m .61101 .56333 L .51878 .52697 L closepath p .684 .561 .71 r F P 0 g s .51878 .52697 m .45624 .45337 L p .32405 .74491 L .804 .643 .683 r F P 0 g s .53353 .62522 m .51878 .52697 L p .32405 .74491 L .804 .643 .683 r F P 0 g s .44622 .36697 m .45624 .45337 L .51878 .52697 L p .616 .613 .825 r F P 0 g s .49604 .29924 m .44622 .36697 L p .51878 .52697 L .616 .613 .825 r F P 0 g s .59024 .27896 m .49604 .29924 L p .51878 .52697 L .616 .613 .825 r F P 0 g s .69125 .31743 m .59024 .27896 L p .51878 .52697 L .616 .613 .825 r F P 0 g s .75577 .39886 m .69125 .31743 L p .51878 .52697 L .616 .613 .825 r F P 0 g s .75825 .48798 m .75577 .39886 L p .51878 .52697 L .616 .613 .825 r F P 0 g s .70178 .54958 m .75825 .48798 L p .51878 .52697 L .616 .613 .825 r F P 0 g s .51878 .52697 m .61101 .56333 L .70178 .54958 L p .616 .613 .825 r F P 0 g s .53353 .62522 m .49532 .71383 L p .67459 .84037 L .579 .384 .581 r F P 0 g s .61101 .56333 m .53353 .62522 L p .67459 .84037 L .579 .384 .581 r F P 0 g s .49532 .71383 m .53353 .62522 L p .32405 .74491 L .804 .643 .683 r F P 0 g s .70178 .54958 m .61101 .56333 L p .67459 .84037 L .579 .384 .581 r F P 0 g s .45624 .45337 m .3669 .43181 L p .32405 .74491 L .804 .643 .683 r F P 0 g s .3669 .43181 m .45624 .45337 L .44622 .36697 L closepath p .765 .722 .812 r F P 0 g s .41617 .76044 m .51106 .79912 L .49532 .71383 L closepath p .727 .482 .557 r F P 0 g s .49532 .71383 m .51106 .79912 L p .67459 .84037 L .579 .384 .581 r F P 0 g s .32405 .74491 m .41617 .76044 L .49532 .71383 L p .804 .643 .683 r F P 0 g s .77382 .59152 m .75825 .48798 L .70178 .54958 L closepath p .493 .425 .709 r F P 0 g s .77382 .59152 m .70178 .54958 L p .67459 .84037 L .579 .384 .581 r F P 0 g s .3669 .43181 m .44622 .36697 L .38999 .30548 L p .776 .748 .827 r F P 0 g s .38999 .30548 m .3085 .37259 L .3669 .43181 L p .776 .748 .827 r F P 0 g s .3669 .43181 m .3085 .37259 L .28338 .4734 L closepath p .837 .747 .765 r F P 0 g s .3669 .43181 m .28338 .4734 L p .32405 .74491 L .804 .643 .683 r F P 0 g s .57856 .84893 m .51106 .79912 L .41617 .76044 L p .705 .239 .142 r F P 0 g s .59316 .89354 m .57856 .84893 L p .41617 .76044 L .705 .239 .142 r F P 0 g s .54275 .9149 m .59316 .89354 L p .41617 .76044 L .705 .239 .142 r F P 0 g s .44176 .90106 m .54275 .9149 L p .41617 .76044 L .705 .239 .142 r F P 0 g s .3333 .85615 m .44176 .90106 L p .41617 .76044 L .705 .239 .142 r F P 0 g s .26634 .80084 m .3333 .85615 L p .41617 .76044 L .705 .239 .142 r F P 0 g s .26558 .75904 m .26634 .80084 L p .41617 .76044 L .705 .239 .142 r F P 0 g s .41617 .76044 m .32405 .74491 L .26558 .75904 L p .705 .239 .142 r F P 0 g s .38999 .30548 m .44622 .36697 L .49604 .29924 L closepath p .697 .732 .878 r F P 0 g s .51106 .79912 m .57856 .84893 L .67459 .84037 L p .579 .384 .581 r F P 0 g s .75825 .48798 m .77382 .59152 L p .83794 .58912 L 0 0 .464 r F P 0 g s .75577 .39886 m .75825 .48798 L p .83794 .58912 L 0 0 .464 r F P 0 g s .79763 .67712 m .77382 .59152 L p .67459 .84037 L .579 .384 .581 r F P 0 g s .77382 .59152 m .79763 .67712 L p .83794 .58912 L 0 0 .464 r F P 0 g s .22328 .47652 m .28338 .4734 L .3085 .37259 L p .923 .843 .747 r F P 0 g s .22328 .47652 m .23968 .56493 L .28338 .4734 L closepath p .928 .819 .718 r F P 0 g s .28338 .4734 m .23968 .56493 L p .32405 .74491 L .804 .643 .683 r F P 0 g s .23968 .56493 m .25542 .67001 L .32405 .74491 L p .804 .643 .683 r F P 0 g s .32405 .74491 m .25542 .67001 L .26558 .75904 L closepath p .894 .601 .484 r F P 0 g s .3085 .37259 m .24886 .37162 L .22328 .47652 L p .923 .843 .747 r F P 0 g s .24886 .37162 m .3085 .37259 L .38999 .30548 L p .823 .943 .903 r F P 0 g s .49604 .29924 m .49681 .25179 L .38607 .25823 L p .63 .816 .972 r F P 0 g s .38607 .25823 m .38999 .30548 L .49604 .29924 L p .63 .816 .972 r F P 0 g s .49681 .25179 m .49604 .29924 L .59024 .27896 L closepath p .592 .785 .972 r F P 0 g s .67459 .84037 m .57856 .84893 L .59316 .89354 L closepath p .481 .104 .246 r F P 0 g s .25542 .67001 m .23968 .56493 L .22328 .47652 L p .811 .578 .02 r F P 0 g s .26558 .75904 m .25542 .67001 L p .22328 .47652 L .811 .578 .02 r F P 0 g s .29605 .29928 m .24886 .37162 L p .38999 .30548 L .823 .943 .903 r F P 0 g s .38999 .30548 m .38607 .25823 L .29605 .29928 L p .823 .943 .903 r F P 0 g s .76817 .35524 m .69125 .31743 L .75577 .39886 L closepath p .264 .461 .866 r F P 0 g s .76817 .35524 m .75577 .39886 L p .83794 .58912 L 0 0 .464 r F P 0 g s .82224 .7146 m .79763 .67712 L .75987 .7738 L closepath p .184 0 .361 r F P 0 g s .67459 .84037 m .75987 .7738 L .79763 .67712 L p .579 .384 .581 r F P 0 g s .79763 .67712 m .82224 .7146 L p .83794 .58912 L 0 0 .464 r F P 0 g s .59024 .27896 m .69125 .31743 L p .52929 .30554 L .505 0 0 r F P 0 g s .49681 .25179 m .59024 .27896 L p .52929 .30554 L .505 0 0 r F P 0 g s .67459 .84037 m .59316 .89354 L .65784 .90698 L p .398 0 .154 r F P 0 g s .65784 .90698 m .74106 .85137 L .67459 .84037 L p .398 0 .154 r F P 0 g s .74106 .85137 m .75987 .7738 L .67459 .84037 L closepath p .413 .138 .383 r F P 0 g s .69125 .31743 m .76817 .35524 L p .52929 .30554 L .505 0 0 r F P 0 g s .82224 .7146 m .75987 .7738 L .74106 .85137 L p .097 0 .254 r F P 0 g s .24886 .37162 m .21167 .43574 L .22328 .47652 L closepath p .965 .918 .577 r F P 0 g s .26634 .80084 m .26558 .75904 L p .22328 .47652 L .811 .578 .02 r F P 0 g s .25622 .77355 m .26634 .80084 L p .22328 .47652 L .811 .578 .02 r F P 0 g s .2382 .68005 m .25622 .77355 L p .22328 .47652 L .811 .578 .02 r F P 0 g s .21997 .55826 m .2382 .68005 L p .22328 .47652 L .811 .578 .02 r F P 0 g s .20989 .46409 m .21997 .55826 L p .22328 .47652 L .811 .578 .02 r F P 0 g s .22328 .47652 m .21167 .43574 L .20989 .46409 L p .811 .578 .02 r F P 0 g s .2594 .36281 m .21167 .43574 L .24886 .37162 L p 0 0 0 r F P 0 g s .24886 .37162 m .29605 .29928 L .2594 .36281 L p 0 0 0 r F P 0 g s .38607 .25823 m .49681 .25179 L .44231 .24558 L closepath p .259 .76 .889 r F P 0 g s .44231 .24558 m .49681 .25179 L p .52929 .30554 L .505 0 0 r F P 0 g s .54275 .9149 m .65784 .90698 L .59316 .89354 L closepath p .334 0 0 r F P 0 g s .29605 .29928 m .38607 .25823 L .44231 .24558 L p 0 0 0 r F P 0 g s .79254 .37935 m .76817 .35524 L p .83794 .58912 L 0 0 .464 r F P 0 g s .76817 .35524 m .79254 .37935 L p .52929 .30554 L .505 0 0 r F P 0 g s .74106 .85137 m .80509 .79249 L .82224 .7146 L p .097 0 .254 r F P 0 g s .80509 .79249 m .83835 .68371 L .82224 .7146 L closepath p 0 0 0 r F P 0 g s .82224 .7146 m .83835 .68371 L .83794 .58912 L p 0 0 .464 r F P 0 g s .74106 .85137 m .65784 .90698 L .66648 .88447 L p .645 .958 .773 r F P 0 g s .80509 .79249 m .74106 .85137 L p .66648 .88447 L .645 .958 .773 r F P 0 g s .29605 .29928 m .34985 .28806 L .2594 .36281 L closepath p .132 0 .084 r F P 0 g s .44231 .24558 m .34985 .28806 L .29605 .29928 L p 0 0 0 r F P 0 g s .21167 .43574 m .2594 .36281 L .20989 .46409 L closepath p 0 0 0 r F P 0 g s .26634 .80084 m .25622 .77355 L .3333 .85615 L closepath p 0 .195 .71 r F P 0 g s .66648 .88447 m .65784 .90698 L .54275 .9149 L p .422 .832 .973 r F P 0 g s .34985 .28806 m .44231 .24558 L .45167 .26513 L closepath p .18 0 0 r F P 0 g s .52929 .30554 m .45167 .26513 L .44231 .24558 L p .505 0 0 r F P 0 g s .54275 .9149 m .54585 .89273 L .66648 .88447 L p .422 .832 .973 r F P 0 g s .54275 .9149 m .44176 .90106 L .54585 .89273 L closepath p .365 .784 .977 r F P 0 g s .79596 .69684 m .83835 .68371 L .80509 .79249 L p .968 .932 .685 r F P 0 g s .80509 .79249 m .76165 .81039 L .79596 .69684 L p .968 .932 .685 r F P 0 g s .66648 .88447 m .76165 .81039 L .80509 .79249 L p .645 .958 .773 r F P 0 g s .83794 .58912 m .81992 .46939 L .79254 .37935 L p 0 0 .464 r F P 0 g s .81992 .46939 m .74808 .37857 L .79254 .37935 L closepath p .927 .553 .278 r F P 0 g s .79254 .37935 m .74808 .37857 L p .52929 .30554 L .505 0 0 r F P 0 g s .83835 .68371 m .79596 .69684 L .83794 .58912 L closepath p .983 .9 .649 r F P 0 g s .2594 .36281 m .34985 .28806 L .45167 .26513 L p .526 .31 .529 r F P 0 g s .20989 .46409 m .2594 .36281 L p .45167 .26513 L .526 .31 .529 r F P 0 g s .3333 .85615 m .25622 .77355 L .2382 .68005 L p .577 .619 .858 r F P 0 g s .44176 .90106 m .3333 .85615 L p .2382 .68005 L .577 .619 .858 r F P 0 g s .54585 .89273 m .44176 .90106 L p .2382 .68005 L .577 .619 .858 r F P 0 g s .21997 .55826 m .20989 .46409 L p .45167 .26513 L .526 .31 .529 r F P 0 g s .66648 .88447 m .54585 .89273 L .60815 .83071 L closepath p .67 .788 .937 r F P 0 g s .76165 .81039 m .66648 .88447 L .60815 .83071 L p .794 .811 .866 r F P 0 g s .64583 .3502 m .74808 .37857 L .81992 .46939 L p .831 .661 .672 r F P 0 g s .5501 .39937 m .64583 .3502 L p .81992 .46939 L .831 .661 .672 r F P 0 g s .50045 .51141 m .5501 .39937 L p .81992 .46939 L .831 .661 .672 r F P 0 g s .51996 .64144 m .50045 .51141 L p .81992 .46939 L .831 .661 .672 r F P 0 g s .60039 .73429 m .51996 .64144 L p .81992 .46939 L .831 .661 .672 r F P 0 g s .70646 .75363 m .60039 .73429 L p .81992 .46939 L .831 .661 .672 r F P 0 g s .79596 .69684 m .70646 .75363 L p .81992 .46939 L .831 .661 .672 r F P 0 g s .81992 .46939 m .83794 .58912 L .79596 .69684 L p .831 .661 .672 r F P 0 g s .2908 .60961 m .21997 .55826 L p .45167 .26513 L .526 .31 .529 r F P 0 g s .39914 .59314 m .2908 .60961 L p .45167 .26513 L .526 .31 .529 r F P 0 g s .50045 .51141 m .39914 .59314 L p .45167 .26513 L .526 .31 .529 r F P 0 g s .5501 .39937 m .50045 .51141 L p .45167 .26513 L .526 .31 .529 r F P 0 g s .45167 .26513 m .52929 .30554 L .5501 .39937 L p .526 .31 .529 r F P 0 g s .60815 .83071 m .54585 .89273 L p .2382 .68005 L .577 .619 .858 r F P 0 g s .76165 .81039 m .70646 .75363 L .79596 .69684 L closepath p .88 .81 .776 r F P 0 g s .60815 .83071 m .70646 .75363 L .76165 .81039 L p .794 .811 .866 r F P 0 g s .74808 .37857 m .64583 .3502 L .52929 .30554 L p .505 0 0 r F P 0 g s .21997 .55826 m .2908 .60961 L .2382 .68005 L closepath p .375 .339 .691 r F P 0 g s .60039 .73429 m .60815 .83071 L p .2382 .68005 L .577 .619 .858 r F P 0 g s .51996 .64144 m .60039 .73429 L p .2382 .68005 L .577 .619 .858 r F P 0 g s .39914 .59314 m .51996 .64144 L p .2382 .68005 L .577 .619 .858 r F P 0 g s .2382 .68005 m .2908 .60961 L .39914 .59314 L p .577 .619 .858 r F P 0 g s .52929 .30554 m .64583 .3502 L .5501 .39937 L closepath p .727 .437 .488 r F P 0 g s .70646 .75363 m .60815 .83071 L .60039 .73429 L closepath p .781 .773 .846 r F P 0 g s .50045 .51141 m .51996 .64144 L .39914 .59314 L closepath p .677 .556 .71 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{273.25, 296.438}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm0tsHEUaxzvT3fOyM+OxY8cOBAxEAYPzMElwEjtO/I7f7zwcWNY8skmW XdjAol0tByQjrbSIAxLHPXL0ca8cc/SRa44cc+Q69PdV9TfdPf8aV3uciJVi qavH3V/9fl9V9XOme2Hri3sf/2Xri/sfbvVOP9z67N79Dz/vnfr0YbDIPeQ4 hyrB9EavQ5+rjhMW/NdOhf7n+efnn59/jn3+kmY52l9+UAv+RrMs70ButU/t StVt/i8oOfI7FfkJzQq0wKPAIECHcnieSub8W4Xfo1kLLciC8BKVvOgbFX5X wvMgvEKlR4u+VuEfSXiBwnlVpwR9pYI+kKCcBHnV7dntDH06Kin8U4X/kWZF yZjDixLeLfS/q/A/SLgn4W0SfkzoD1X4HUmG+5lXdUn4CxL+qQq/LeGRcaH/ wnBd8UWp+ImqeJNmJVrwigQdpyD+9EAFbdCslRa8Hg9i0p9U0Jqk0C9BLwnp YxW0IhuUV+112sJxm92myTkVr8grP1AVl2nmqgGvr3hWKr4sFd+PVNThQUWu nKWSwy9IxV5J9T1VcclUMeFmhF7204N/1Xq9lsqmIi7SLKM2sHrOOwlOMAWc oEykdysCS6TnA+wgwHpUuvEcNxR2AWA96a4hAMvGYRy3pmDz0mCUGYIVpME1 2EoElsjMBdhhgG2RHGtbpBpfZ05yRFvkFQArSY41mOo2Z1ZgrvTZNYBok3xq +9qcQszEEYl8RgGsXWC1vft6EpYBsDEA65TG1TKbUrDrDWHjAHY0nhnXnVCw aZr5il5fsYdKT450XHEsUlG30WDUo/nzzo4rx1Y9FIyYEsQsQBwRRIEQnhzN dZz+CzYNhk0KbM40NgwrSz5dADYcgXH4PIBVuFTLAhhNgSDMsQNghxR2QnJE 2LLk2CM5VgDssoKNC2wBwA5Hdo4wsxKAXUrCFgGsKLATklkrgF1UsDGBLQFY XmB9BONz3iWbilmp2M9drtY++XaUpmAjoTKez6DCjgp22XQQZuwZgM2bsbwV eyasCzaSs5aCdyICXrMKz0nBf+cBMWcmXpWUmcgxgwCR3QPhqpNLLamwhQiG 8rmgYCOSD4JdtMwsCjNmdhnAfDPsSsPMhixh5yMwY2ZXAMwzw4YbZpYSxgcm 3wQbsYSdi8CMmV0DMNcMu9wws1EAy+wBM2Y2bgl7W8EuNcxsPzBjZpNc+lEY Tw7v+haAqQaAcxEA11oHgGkuvRgA1UXymURXJKUZk3QGS99O1kXSOSCNVkxc Lq0CxDyVmaQxUXEFVFyUigPpKi5Fkg43kDNPFbEMEMvPHLEEEKsAcTqyGycQ i80jFgBi7f8RMQ8Q688cMSv38rdAxVPmijMR9863/+NdNyVC3Yt4gtCYlJRp Lv0YZZ8JTSXaFEzB6YDKeB/fSIedkD7OAthGOtg4yBFhUY79CjsEsKMAm2se ew1g881jR6RHW5qHXQE5HgB2GGBbm8cOAWzJEvtWBFv31VQIK+8Dpldtrqrd 7qIMT3tzsGByal85JhI9EDaV8Q4eAKqOdKphS9UZoDrSvMqlkrut9t3w0eax PmhBH2hBt6XqTbMqKy14Awh6mhfkQVtOANWx5lUFactrQPBC84IW0Bb+8YJ/ KjpuOuXoL2eqcs9rge2gMqfOZD/89zGvRF1kJWiVjmkVbBth9W9B+8SWQN4Z EfRI3l1AELuE++VHPpg1UJWp9NTQhnmj/Xc/WL0swNLknJS8K0CwGrkHI4GW WPZS6HhTHOiE0tgxYhrghOO0dBQ6F6Z3tADHgLSjABwrXPoxR2JQkKgIRBek MehS6QBFg9IiH4iWEptXMAVbPJXwGIKkBSAdkta5T0eaB9IRKnkDWGlekAOC MS7jbVkEKtesurrHyTFUjT871QRQzQOVl07lAdUUUM01r3KB6jpQzTavygDV LFBdByq/edUcUE3vR+VHVXLxvQTwkwCfNeOvJVri8O5Yj53YB5YPKKsHBEv0 LMKOAWxuD+wNwBk1pRe9HkFJrQPYVdNGzIuCFb8+2QmzCy/JEXsDsEfAOTQk ewTGDR+1xPNvFkzPAthbZhjqVP6dR5+pU8FuAlj0F6hfdh9xTxbTYW8B7AW5 6MwQVq+lASJ0Dgj60wnOicAFgrxZMGYpGEh0jJI0rboNVKelLVnLzjplFmwC QT9oi2/ZlgaqO0DVJ23JNy94FwhOiqCYTjBuKTgBOgup0LicNqvek2u0XmlB q2UL9sLqA9ejR4/Die9ie0BLDkzpRpVBZ4TSirSubNlpZ9KpDlPpqw0gVLVZ tkqrJvbYFEJVu7TKBV35lKTdVPKiDssOPLsPgV62u/uYD/ntlm1poEJj1cWl L6pwcnhDeSrKI1TqJwEDVWLMSumkk5Zd2pHoUhJngf6w5YgOpNO3A30e6Fss W59SXwH6ItDbHrBT6ssy4iUgLVh2uf4hfApI7wBpCbS5DPQ5yzZH9dwW1NLD QFoBUnQZ0UA6LVLU0hbp3k6gQpcRqHvPRVR6lTOgbpI2gbQIWtoF9B7Q8yW2 /gEkIvVqUiW+DbwF4O0GXnRVy/cJvEg/Pld7jJUilbTuQjw054H5GJd+1CwX 6Z60MlP98ddH+sHEWdC/yJaVQX2JHV7MwdAYPjGauoFzljYPtO1lKn11bq0X 6ObMA8ENIHCB4JXIsAUCLalX6SczF4BqA19ccbe8CvAewOtnWfkhel6zDqAO fRlux9MP2i7LtrWW6A8nTE6fBAMEf1Lf9aln3GvfJ6Rqi0asCiL6/UbY772W sKsKtiawpUjH7Ow+4clx1IZiwVO3+kH3hryFSHKaRw8mBCXYy/TtVz1W3ZAG W11t8wjPCzNA4AFBN2iBD1T6ufObQDUNVFmg6rJUqYtt/YZHXDUJVHmg6pBu ywGBfvie3xaaAsQiIFZA8mhI1IWBetdFP7BfL2gFgrJJMKOI78pOOgKIJUBs bdgJ+t2I9yXRIYBtA9ii5TCqw72zJXkPAkE7EORNO1X0HZOPJO/zAHsEYLOW +6oW3JW8zwJBFxC44MCm3rty7ku2pwCsm0t8J4K2MQ39s2TYB6DHEhmaYPq9 or9KhidN/VmIN21dVfxMsnjVdMip0KJ89cHP1UT3o9O3xn4u+XQTtqw+EcKL IiQbdWBSrxnqr3iCaiW19W/uhuYAwJDjAOXoQ4Lj/INm/Otyp6kuL9JvtH0l 4RUQ/iKV+rKZw7clvADCO6nkrtZv4P1HwjMg3KeyjRbdVeHfy3gEkRTFFw2O ftfySxXEXf07esP2+eff52fn0G/x3boJ\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.25}, {295.438, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"aba6a199-44ea-4012-a95c-353c366aa54d"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(70\\). \\!\\(\\\"metabiaugmented truncated dodecahedron \ (J70)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"82ac4705-01fa-4de7-903c-33315d27dd47"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.08693 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0576268 1.15825 0 1.15825 [ [ 0 0 0 0 ] [ 1 1.08693 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.08693 L 0 1.08693 L closepath clip newpath .5 Mabswid [ ] 0 setdash .63356 .44945 m .53599 .46469 L .59807 .54019 L closepath p .697 .6 .743 r F P 0 g s .59807 .54019 m .68432 .57962 L .72105 .48796 L p .629 .523 .715 r F P 0 g s .72105 .48796 m .63356 .44945 L .59807 .54019 L p .629 .523 .715 r F P 0 g s .68432 .57962 m .59807 .54019 L .60741 .63782 L closepath p .638 .516 .698 r F P 0 g s .59807 .54019 m .53599 .46469 L p .47265 .76162 L .763 .608 .687 r F P 0 g s .60741 .63782 m .59807 .54019 L p .47265 .76162 L .763 .608 .687 r F P 0 g s .60741 .63782 m .56022 .72225 L p .82958 .69627 L .509 .301 .533 r F P 0 g s .68432 .57962 m .60741 .63782 L p .82958 .69627 L .509 .301 .533 r F P 0 g s .47265 .76162 m .56022 .72225 L .60741 .63782 L p .763 .608 .687 r F P 0 g s .51934 .37804 m .53599 .46469 L .63356 .44945 L p .701 .664 .81 r F P 0 g s .51934 .37804 m .44316 .43926 L .53599 .46469 L closepath p .722 .677 .806 r F P 0 g s .53599 .46469 m .44316 .43926 L p .47265 .76162 L .763 .608 .687 r F P 0 g s .63356 .44945 m .61906 .36216 L .51934 .37804 L p .701 .664 .81 r F P 0 g s .70023 .34412 m .61906 .36216 L .63356 .44945 L p .56 .563 .814 r F P 0 g s .76483 .42446 m .70023 .34412 L p .63356 .44945 L .56 .563 .814 r F P 0 g s .63356 .44945 m .72105 .48796 L .76483 .42446 L p .56 .563 .814 r F P 0 g s .56022 .72225 m .55942 .80521 L p .82958 .69627 L .509 .301 .533 r F P 0 g s .55942 .80521 m .56022 .72225 L .47265 .76162 L closepath p .694 .45 .55 r F P 0 g s .72105 .48796 m .68432 .57962 L .7659 .56805 L closepath p .539 .424 .67 r F P 0 g s .7659 .56805 m .68432 .57962 L p .82958 .69627 L .509 .301 .533 r F P 0 g s .44316 .43926 m .51934 .37804 L p .3654 .28785 L .796 .881 .908 r F P 0 g s .35366 .47502 m .44316 .43926 L p .3654 .28785 L .796 .881 .908 r F P 0 g s .44316 .43926 m .35366 .47502 L p .47265 .76162 L .763 .608 .687 r F P 0 g s .76483 .42446 m .72105 .48796 L .7659 .56805 L p .414 .369 .699 r F P 0 g s .47265 .76162 m .37713 .73912 L p .52733 .91065 L .712 .266 .191 r F P 0 g s .55942 .80521 m .47265 .76162 L p .52733 .91065 L .712 .266 .191 r F P 0 g s .31147 .66183 m .37713 .73912 L .47265 .76162 L p .763 .608 .687 r F P 0 g s .3026 .56015 m .31147 .66183 L p .47265 .76162 L .763 .608 .687 r F P 0 g s .35366 .47502 m .3026 .56015 L p .47265 .76162 L .763 .608 .687 r F P 0 g s .51934 .37804 m .61906 .36216 L .55685 .31064 L closepath p .694 .741 .887 r F P 0 g s .51934 .37804 m .55685 .31064 L p .3654 .28785 L .796 .881 .908 r F P 0 g s .27986 .47261 m .3026 .56015 L .35366 .47502 L closepath p .87 .764 .742 r F P 0 g s .27986 .47261 m .35366 .47502 L p .3654 .28785 L .796 .881 .908 r F P 0 g s .63858 .29053 m .55685 .31064 L .61906 .36216 L p .559 .71 .941 r F P 0 g s .61906 .36216 m .70023 .34412 L .63858 .29053 L p .559 .71 .941 r F P 0 g s .37713 .73912 m .30356 .7457 L p .52733 .91065 L .712 .266 .191 r F P 0 g s .30356 .7457 m .37713 .73912 L .31147 .66183 L closepath p .856 .595 .543 r F P 0 g s .55942 .80521 m .60875 .85647 L p .82958 .69627 L .509 .301 .533 r F P 0 g s .60875 .85647 m .55942 .80521 L p .52733 .91065 L .712 .266 .191 r F P 0 g s .23555 .61374 m .31147 .66183 L .3026 .56015 L closepath p .851 .673 .661 r F P 0 g s .3026 .56015 m .27986 .47261 L .21053 .52496 L p .892 .774 .724 r F P 0 g s .21053 .52496 m .23555 .61374 L .3026 .56015 L p .892 .774 .724 r F P 0 g s .7659 .56805 m .81202 .5059 L .76483 .42446 L p .414 .369 .699 r F P 0 g s .81202 .5059 m .7659 .56805 L .82271 .61092 L closepath p .378 .322 .668 r F P 0 g s .82958 .69627 m .82271 .61092 L .7659 .56805 L p .509 .301 .533 r F P 0 g s .30356 .7457 m .31147 .66183 L .23555 .61374 L p .88 .618 .539 r F P 0 g s .70023 .34412 m .76483 .42446 L .80086 .41396 L p .194 .404 .84 r F P 0 g s .76483 .42446 m .81202 .5059 L .80086 .41396 L closepath p .153 .245 .706 r F P 0 g s .70023 .34412 m .73355 .32993 L .63858 .29053 L closepath p .251 .573 .941 r F P 0 g s .80086 .41396 m .73355 .32993 L .70023 .34412 L p .194 .404 .84 r F P 0 g s .63858 .29053 m .53884 .2607 L .55685 .31064 L closepath p .553 .742 .964 r F P 0 g s .55685 .31064 m .53884 .2607 L p .3654 .28785 L .796 .881 .908 r F P 0 g s .21053 .52496 m .27986 .47261 L .24997 .42938 L closepath p .916 .897 .794 r F P 0 g s .24997 .42938 m .27986 .47261 L p .3654 .28785 L .796 .881 .908 r F P 0 g s .23555 .61374 m .22522 .69839 L .30356 .7457 L p .88 .618 .539 r F P 0 g s .19185 .66361 m .22522 .69839 L .23555 .61374 L p .997 .772 .447 r F P 0 g s .18246 .5516 m .19185 .66361 L p .23555 .61374 L .997 .772 .447 r F P 0 g s .23555 .61374 m .21053 .52496 L .18246 .5516 L p .997 .772 .447 r F P 0 g s .30356 .7457 m .22522 .69839 L .28028 .78169 L closepath p .873 .483 .295 r F P 0 g s .30356 .7457 m .28028 .78169 L p .52733 .91065 L .712 .266 .191 r F P 0 g s .80086 .41396 m .81202 .5059 L .82271 .61092 L p .771 .57 0 r F P 0 g s .59916 .89762 m .69335 .8525 L .60875 .85647 L closepath p .396 0 .116 r F P 0 g s .60875 .85647 m .69335 .8525 L p .82958 .69627 L .509 .301 .533 r F P 0 g s .52733 .91065 m .59916 .89762 L .60875 .85647 L p .712 .266 .191 r F P 0 g s .73355 .32993 m .80086 .41396 L .79291 .36655 L closepath p .037 .318 .804 r F P 0 g s .79291 .36655 m .80086 .41396 L p .82271 .61092 L .771 .57 0 r F P 0 g s .79155 .38693 m .79291 .36655 L p .82271 .61092 L .771 .57 0 r F P 0 g s .79822 .47528 m .79155 .38693 L p .82271 .61092 L .771 .57 0 r F P 0 g s .81056 .59689 m .79822 .47528 L p .82271 .61092 L .771 .57 0 r F P 0 g s .82293 .69599 m .81056 .59689 L p .82271 .61092 L .771 .57 0 r F P 0 g s .69335 .8525 m .77965 .79059 L .82958 .69627 L p .509 .301 .533 r F P 0 g s .82958 .69627 m .77965 .79059 L .82998 .73129 L closepath p 0 0 .039 r F P 0 g s .82998 .73129 m .82293 .69599 L p .82271 .61092 L .771 .57 0 r F P 0 g s .82271 .61092 m .82958 .69627 L .82998 .73129 L p .771 .57 0 r F P 0 g s .53884 .2607 m .46615 .25031 L .3654 .28785 L p .796 .881 .908 r F P 0 g s .46615 .25031 m .53884 .2607 L .63858 .29053 L p .556 0 0 r F P 0 g s .44904 .26499 m .46615 .25031 L p .63858 .29053 L .556 0 0 r F P 0 g s .50176 .30211 m .44904 .26499 L p .63858 .29053 L .556 0 0 r F P 0 g s .60843 .34753 m .50176 .30211 L p .63858 .29053 L .556 0 0 r F P 0 g s .72202 .38058 m .60843 .34753 L p .63858 .29053 L .556 0 0 r F P 0 g s .79155 .38693 m .72202 .38058 L p .63858 .29053 L .556 0 0 r F P 0 g s .79291 .36655 m .79155 .38693 L p .63858 .29053 L .556 0 0 r F P 0 g s .63858 .29053 m .73355 .32993 L .79291 .36655 L p .556 0 0 r F P 0 g s .18246 .5516 m .21053 .52496 L .24997 .42938 L p .881 .938 .567 r F P 0 g s .24875 .74998 m .28028 .78169 L .22522 .69839 L p .728 .271 0 r F P 0 g s .22522 .69839 m .19185 .66361 L .24875 .74998 L p .728 .271 0 r F P 0 g s .77965 .79059 m .69335 .8525 L .59916 .89762 L p .761 .967 .929 r F P 0 g s .24997 .42938 m .22334 .45194 L .18246 .5516 L p .881 .938 .567 r F P 0 g s .22334 .45194 m .24997 .42938 L .28119 .35818 L closepath p .819 .94 .578 r F P 0 g s .3654 .28785 m .28119 .35818 L .24997 .42938 L p .796 .881 .908 r F P 0 g s .24875 .74998 m .32283 .8362 L .28028 .78169 L closepath p .613 .129 0 r F P 0 g s .28028 .78169 m .32283 .8362 L p .52733 .91065 L .712 .266 .191 r F P 0 g s .82998 .73129 m .77965 .79059 L p .59916 .89762 L .761 .967 .929 r F P 0 g s .82293 .69599 m .82998 .73129 L p .59916 .89762 L .761 .967 .929 r F P 0 g s .75403 .70201 m .82293 .69599 L p .59916 .89762 L .761 .967 .929 r F P 0 g s .64735 .75109 m .75403 .70201 L p .59916 .89762 L .761 .967 .929 r F P 0 g s .55043 .82247 m .64735 .75109 L p .59916 .89762 L .761 .967 .929 r F P 0 g s .50603 .88362 m .55043 .82247 L p .59916 .89762 L .761 .967 .929 r F P 0 g s .59916 .89762 m .52733 .91065 L .50603 .88362 L p .761 .967 .929 r F P 0 g s .19185 .66361 m .18246 .5516 L .21171 .53897 L p 0 0 .515 r F P 0 g s .18246 .5516 m .22334 .45194 L .21171 .53897 L closepath p 0 0 .238 r F P 0 g s .3654 .28785 m .46615 .25031 L .44904 .26499 L closepath p 0 0 0 r F P 0 g s .21171 .53897 m .22334 .45194 L .28119 .35818 L p .408 .173 .442 r F P 0 g s .25449 .58735 m .21171 .53897 L p .28119 .35818 L .408 .173 .442 r F P 0 g s .34057 .57328 m .25449 .58735 L p .28119 .35818 L .408 .173 .442 r F P 0 g s .43627 .4971 m .34057 .57328 L p .28119 .35818 L .408 .173 .442 r F P 0 g s .49875 .39092 m .43627 .4971 L p .28119 .35818 L .408 .173 .442 r F P 0 g s .50176 .30211 m .49875 .39092 L p .28119 .35818 L .408 .173 .442 r F P 0 g s .44904 .26499 m .50176 .30211 L p .28119 .35818 L .408 .173 .442 r F P 0 g s .28119 .35818 m .3654 .28785 L .44904 .26499 L p .408 .173 .442 r F P 0 g s .19185 .66361 m .22163 .65612 L .24875 .74998 L closepath p .014 .2 .711 r F P 0 g s .21171 .53897 m .22163 .65612 L .19185 .66361 L p 0 0 .515 r F P 0 g s .32283 .8362 m .41913 .88698 L .52733 .91065 L p .712 .266 .191 r F P 0 g s .41913 .88698 m .32283 .8362 L .24875 .74998 L p .485 .546 .844 r F P 0 g s .52733 .91065 m .41913 .88698 L .50603 .88362 L closepath p .315 .725 .978 r F P 0 g s .50603 .88362 m .41913 .88698 L p .24875 .74998 L .485 .546 .844 r F P 0 g s .55043 .82247 m .50603 .88362 L p .24875 .74998 L .485 .546 .844 r F P 0 g s .52967 .72262 m .55043 .82247 L p .24875 .74998 L .485 .546 .844 r F P 0 g s .44794 .62505 m .52967 .72262 L p .24875 .74998 L .485 .546 .844 r F P 0 g s .34057 .57328 m .44794 .62505 L p .24875 .74998 L .485 .546 .844 r F P 0 g s .25449 .58735 m .34057 .57328 L p .24875 .74998 L .485 .546 .844 r F P 0 g s .24875 .74998 m .22163 .65612 L .25449 .58735 L p .485 .546 .844 r F P 0 g s .22163 .65612 m .21171 .53897 L .25449 .58735 L closepath p .136 .131 .587 r F P 0 g s .79155 .38693 m .79822 .47528 L .72202 .38058 L closepath p .9 .578 .428 r F P 0 g s .82293 .69599 m .75403 .70201 L .81056 .59689 L closepath p .925 .835 .736 r F P 0 g s .79822 .47528 m .81056 .59689 L p .44794 .62505 L .777 .616 .68 r F P 0 g s .72202 .38058 m .79822 .47528 L p .44794 .62505 L .777 .616 .68 r F P 0 g s .81056 .59689 m .75403 .70201 L p .44794 .62505 L .777 .616 .68 r F P 0 g s .50176 .30211 m .60843 .34753 L .49875 .39092 L closepath p .68 .391 .478 r F P 0 g s .60843 .34753 m .72202 .38058 L p .44794 .62505 L .777 .616 .68 r F P 0 g s .75403 .70201 m .64735 .75109 L p .44794 .62505 L .777 .616 .68 r F P 0 g s .55043 .82247 m .52967 .72262 L .64735 .75109 L closepath p .723 .711 .839 r F P 0 g s .49875 .39092 m .60843 .34753 L p .44794 .62505 L .777 .616 .68 r F P 0 g s .64735 .75109 m .52967 .72262 L .44794 .62505 L p .777 .616 .68 r F P 0 g s .34057 .57328 m .43627 .4971 L .44794 .62505 L closepath p .613 .494 .694 r F P 0 g s .44794 .62505 m .43627 .4971 L .49875 .39092 L p .777 .616 .68 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{273, 296.688}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm0tzE1cWxxupJctPXjbGYBMRA8bEGGRjjN/Y+A2Ox4xjQng4xmFCGCZk SGZSCUnVzLhqKpVUzWxY5iNkyZZlPkK2WWbJMltH55zbR92t/xVXljyVqcJV fbvd95zf/9xX95V079LGZw/u/2Xjs482N7JzTzY+efDR5qfZ2cdP8reSezxv z/78cTrr0fW25wUJ/x2gxPzz+vr19etr6/XXdErR2Pmv3PiSTj7d8Le/87wa uvpGsj6nU5puNGjWPyXrb3TiG82UxcCvJOsJneroRhtlJenqC8l6TKda0XrY /ankkREdIfO/i/kjOmXoRi2ZJ+iqnYw43Cdi9FCD3AuYHcp8LOYfqvlBYP6G 0v8s5h9odR3WEDqV+UCM7tGJbxwDzIL5fTHf4JMY5c3ZJav0U2p+T8zfB+ad QKfguC6O68DxJHA8TSlr3xHHu8CxSwM8o+a3xPw2nUxWgf7Dvaf8hOaMbo3t XfG5BSTi3vkj751PY7JrgngPIN4CCB8gVgVxEyB6ACJNaTJakBVB3NDCnwOO tUB7WRzXgDZC1Ee1GbEkiHcA4jxANGkUhfAXBbEKEDmA2AeimBfEHwGiDyAO RqMwuebPmxHYilbnAEC0KKLQZ43jH0AUCNGqBelSxBVBLAPERYBoo9TXsRor yGWBve0IK8Tjb//4/Q98dUIjM7AlABssWT91BOMY3wQxjgn2GsBeAtgDGuM+ jTGrMYZhI7auw5aHNKhj6j0i3ldBKEMA1qihtGsoHaCElwS7CLDDtkGWkOoK sEcBdrA8bCbU2YKit9qxCwCLajSt0fZqtM2VY5MabT9h+e3eaMfOA+wop34Y q7EOEtTY//LsIR35//KpmRAEPcI03RzAj1HK9GEAq6c07YIw9/IIxowCWBOl 4XhmAWwcwMYArNEFhiKbALCGOGzGMTIn2LQjbNLWAIHdM/mANmjHogJfAdg6 O/aKY7TTNqzpmQybcoTNAljtrsImHWHzAJZxgaGmWASwmjjssmNkVwEsDdr1 omAnHLFLAJuqHPs2wPp27LgjdrlyLGqoFduDFWPHHKO9DrAJO3bUEbvKaU0Y y0cFyHc49eNI7qcGxdMMvjEBAGsOMQ24gG5wmo6AQpAiBirNTU5TygBBDJcE 3KKUc/MZxpP9Lrh43w41e0x2KNQe9B9loQ5553+OGAWIu3aEvOv8EIIxI4Cy XkWKrxRDMg0yiEE8o+R22gRBlPYNz52/f/qcPUpQZJSkYhSp20uhOR2hDG6H NPnYkorQKgxwQOvJJ1Ss6jfs0IGinjTEU9Ch2DOnL1aZJLJLUjkglSpP6gKQ SgKp80CqBki9X54UKtU5baE6q0DR4OgvT6MXFKd8tX7HyjsL1OqrosZlMx/u ijUaHPuCEeiDT4eh4OXgeVtBqSLfewVqjZWqcTbrFL4f5Kt9OyCzIz0CtoxR NvuMjU6D0MsUyEVaYotFRMpXKSN3Cqjtr5ZaKqIWFPAEkDxQuWS6hORxbaoW q1BRt+57lVYyrJXv6pRGB1YHKOoh94FVhQjaQQStuxZBEkRwBERwuOwI+qyd LBqBDyJooZQ7xpFd000B3SZK0zLOn373M/c/VHLU0cuUTwP5jBa7UeVR56uC fI2p+5C8lr1ZxZt3RzxDKd9qVynX58lOpMy9vBQd3jEVdX1K76hyo6LHVbTJ /YGWs+uiwZwGup2U8i00P6iObgrodml5a21DmHMTpGlyzV9+vlaxfLfKZ4D8 uot8v2Nr+0C+R+XTQD780fDlTy+4i+1SIL0aCPrEcDf0fQEFYoKJdQNX/STQ z6l+AujfCX3xEejHYqhGEP06BtarL5gAghc5jZb1dqzR80fel9Lk/5U8nq8N A8n3gGSyepIjQPKmVbLoGXferhp/yJDaGFC7AdT8qqiNA7W1stUu2GrU/Lhb rLEKNNKgyZwEJoHAdSBQU54A/bfFt64AgZUdCFC0W748pLxc8JAKRtMUUFkG KhkHFWrsXRMI6in3nEVcpZaAVK1dagBIpYAUapxr5UldBFI+kJoGUotAqq5y qRkgtWCVKhqY5o0+WIHaHFBrAAUrU2oWSM2WJ3UJSCWB1ByQmgZSjXapIUcp VKpdkkKlmrL1DH6jedGfR3pFbxjoocfSPNCbDE3nQ9Mbs8Lhx19f4iLKIphU WFIOj1bGFMuMU8qzxsZXQV9djgUgMKLz82YSSISGzmiJWK8BFC/74FuHykEt AdQFjaotjpIfNf0oilZhFVNySjkap4yXoDCkV307yvE1Ebx4/hMdYtSl9ZIN taH5884KdCLehlZiPmXscY2w0469DLBLAJtR7FHFniwPi6KtV2yLYrvs2El9 eSPYXoXtVdhpAOt1gR1UWEabpxvATJtPKQzVXqvCEhrZWwBm3oDhtSzB2LwK sEcpZVgPgOXssGsA1sapGSC/vmRgCey0Y4yHHbHme50ZgF0E2ENa9F4AM990 zwLYAoC1gBjPAqz5rWsOYOcBttkRa35EngfYOYA9oEU/B2BmlcOCI2wfiLEE dhFgZ21D0QELVlGWwjZq0XMAZtatXQWwGQBrADGeB1iZdUSWyKLZboCt0xj7 AEymFJFlvGiWHsBqQYxcdHnHRNYWl+LUOJbVrOBdBtgpgE1FyyrrySILsAPv SeDtOwZ1uTxs0tb3wiu8VwBMPoX7YVjJ/mZQ162oQlxegGCYPJciy+UDxwn9 kg4pGsdV4Bj5mqLEiJOHV2TDQIAYA4izGrTZJrAGHEdsjjFtgyhslBgGjj2q aPY23FTzQZt5TMc43lLHAeCI3r8ynGTzi+nWxY5nNECz8WNdzc/ZzGM6xnFD HXuAY7fqmD0qm2p+Bph3qbnZFXMftNQp4HhKHc2OnD+pzklgfoJSviXbbmTr k1kxX2zeqXSzpeihmmeB+XE1XxfzR2reAcyzai5bqbyP1fwIMH9DzTfF/BNQ R/WUNkiAgbnZr8UbzTirfvv6i+0YvV3NPxRz3hrHz5P9wLwNdAyzjewLdWwC jq2UPhLLwia+OmC5X9vqYzH/l4LTwLyBUob9Vcz/reZJYJ5Wc7NL71sNJqFZ TyXrP3Ri93/IDS7v72g35Ovr3/+1t+c31JS+jw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.}, {295.688, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"b3cc41e7-8635-4517-8aa8-721b02df3b25"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(71\\). \\!\\(\\\"triaugmented truncated dodecahedron \ (J71)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"36c181c2-9109-4f55-919b-0147c86ee8ed"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.09752 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0617588 1.17581 0 1.17581 [ [ 0 0 0 0 ] [ 1 1.09752 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.09752 L 0 1.09752 L closepath clip newpath .5 Mabswid [ ] 0 setdash .51557 .61494 m .42098 .61168 L .41871 .70832 L p .744 .596 .692 r F P 0 g s .41871 .70832 m .51364 .71077 L .51557 .61494 L p .744 .596 .692 r F P 0 g s .51364 .71077 m .59703 .66374 L .51557 .61494 L closepath p .677 .54 .691 r F P 0 g s .51557 .61494 m .47176 .53008 L .42098 .61168 L closepath p .744 .611 .71 r F P 0 g s .48161 .43879 m .47176 .53008 L .51557 .61494 L p .624 .561 .763 r F P 0 g s .54365 .37455 m .48161 .43879 L p .51557 .61494 L .624 .561 .763 r F P 0 g s .63653 .36387 m .54365 .37455 L p .51557 .61494 L .624 .561 .763 r F P 0 g s .7238 .4136 m .63653 .36387 L p .51557 .61494 L .624 .561 .763 r F P 0 g s .76907 .50432 m .7238 .4136 L p .51557 .61494 L .624 .561 .763 r F P 0 g s .75433 .59829 m .76907 .50432 L p .51557 .61494 L .624 .561 .763 r F P 0 g s .68779 .65834 m .75433 .59829 L p .51557 .61494 L .624 .561 .763 r F P 0 g s .51557 .61494 m .59703 .66374 L .68779 .65834 L p .624 .561 .763 r F P 0 g s .63681 .74204 m .59703 .66374 L .51364 .71077 L p .634 .452 .62 r F P 0 g s .51364 .71077 m .55153 .78974 L .63681 .74204 L p .634 .452 .62 r F P 0 g s .51364 .71077 m .41871 .70832 L .39439 .78677 L p .735 .494 .564 r F P 0 g s .55153 .78974 m .51364 .71077 L p .39439 .78677 L .735 .494 .564 r F P 0 g s .47176 .53008 m .48161 .43879 L .44541 .36905 L p .851 .766 .768 r F P 0 g s .42098 .61168 m .47176 .53008 L p .44541 .36905 L .851 .766 .768 r F P 0 g s .59703 .66374 m .63681 .74204 L .68779 .65834 L closepath p .615 .444 .628 r F P 0 g s .34589 .65612 m .41871 .70832 L .42098 .61168 L closepath p .812 .653 .685 r F P 0 g s .34589 .65612 m .42098 .61168 L p .44541 .36905 L .851 .766 .768 r F P 0 g s .39439 .78677 m .41871 .70832 L .34589 .65612 L p .848 .62 .593 r F P 0 g s .44541 .36905 m .48161 .43879 L .54365 .37455 L closepath p .717 .718 .85 r F P 0 g s .55153 .78974 m .61795 .82272 L .63681 .74204 L closepath p .565 .325 .511 r F P 0 g s .54368 .87409 m .61795 .82272 L .55153 .78974 L p .596 .27 .388 r F P 0 g s .55153 .78974 m .47809 .8388 L .54368 .87409 L p .596 .27 .388 r F P 0 g s .39439 .78677 m .47809 .8388 L .55153 .78974 L p .735 .494 .564 r F P 0 g s .68779 .65834 m .63681 .74204 L p .64012 .87214 L .321 .103 .418 r F P 0 g s .75433 .59829 m .68779 .65834 L p .64012 .87214 L .321 .103 .418 r F P 0 g s .63681 .74204 m .61795 .82272 L .64012 .87214 L p .321 .103 .418 r F P 0 g s .34589 .65612 m .31915 .73462 L .39439 .78677 L p .848 .62 .593 r F P 0 g s .27181 .64542 m .34589 .65612 L p .44541 .36905 L .851 .766 .768 r F P 0 g s .34589 .65612 m .27181 .64542 L .31915 .73462 L closepath p .869 .645 .597 r F P 0 g s .39439 .78677 m .31915 .73462 L .35487 .8185 L closepath p .873 .543 .423 r F P 0 g s .47809 .8388 m .39439 .78677 L .35487 .8185 L p .773 .381 .312 r F P 0 g s .5623 .2998 m .54365 .37455 L .63653 .36387 L closepath p .622 .647 .854 r F P 0 g s .54365 .37455 m .5623 .2998 L .46102 .29344 L p .707 .734 .872 r F P 0 g s .46102 .29344 m .44541 .36905 L .54365 .37455 L p .707 .734 .872 r F P 0 g s .81486 .58346 m .75433 .59829 L p .64012 .87214 L .321 .103 .418 r F P 0 g s .75433 .59829 m .81486 .58346 L .76907 .50432 L closepath p .404 .354 .689 r F P 0 g s .47809 .8388 m .4417 .87293 L .54368 .87409 L closepath p .619 .178 .179 r F P 0 g s .35487 .8185 m .4417 .87293 L .47809 .8388 L p .773 .381 .312 r F P 0 g s .46102 .29344 m .37313 .34874 L .44541 .36905 L closepath p .794 .819 .871 r F P 0 g s .22762 .57895 m .27181 .64542 L p .44541 .36905 L .851 .766 .768 r F P 0 g s .2343 .48007 m .22762 .57895 L p .44541 .36905 L .851 .766 .768 r F P 0 g s .29114 .3905 m .2343 .48007 L p .44541 .36905 L .851 .766 .768 r F P 0 g s .44541 .36905 m .37313 .34874 L .29114 .3905 L p .851 .766 .768 r F P 0 g s .61795 .82272 m .54368 .87409 L .64012 .87214 L closepath p .55 .205 .335 r F P 0 g s .31915 .73462 m .27181 .64542 L .22762 .57895 L p .867 .469 .003 r F P 0 g s .35487 .8185 m .31915 .73462 L p .22762 .57895 L .867 .469 .003 r F P 0 g s .5623 .2998 m .63653 .36387 L .69331 .33974 L p .473 .611 .907 r F P 0 g s .63653 .36387 m .7238 .4136 L .69331 .33974 L closepath p .464 .578 .884 r F P 0 g s .76907 .50432 m .81486 .58346 L p .71682 .34044 L 0 0 .528 r F P 0 g s .7238 .4136 m .76907 .50432 L p .71682 .34044 L 0 0 .528 r F P 0 g s .69331 .33974 m .7238 .4136 L p .71682 .34044 L 0 0 .528 r F P 0 g s .69331 .33974 m .61701 .27278 L .5623 .2998 L p .473 .611 .907 r F P 0 g s .5623 .2998 m .61701 .27278 L .54594 .24777 L p .514 .816 1 r F P 0 g s .46102 .29344 m .5623 .2998 L p .54594 .24777 L .514 .816 1 r F P 0 g s .84604 .62414 m .81486 .58346 L p .64012 .87214 L .321 .103 .418 r F P 0 g s .83145 .70966 m .84604 .62414 L p .64012 .87214 L .321 .103 .418 r F P 0 g s .77405 .80514 m .83145 .70966 L p .64012 .87214 L .321 .103 .418 r F P 0 g s .64012 .87214 m .69931 .86757 L .77405 .80514 L p .321 .103 .418 r F P 0 g s .54368 .87409 m .4417 .87293 L p .69931 .86757 L .12 .667 .818 r F P 0 g s .69931 .86757 m .64012 .87214 L .54368 .87409 L p .12 .667 .818 r F P 0 g s .4417 .87293 m .35487 .8185 L .36645 .86896 L closepath p .769 .334 .219 r F P 0 g s .36645 .86896 m .35487 .8185 L p .22762 .57895 L .867 .469 .003 r F P 0 g s .37313 .34874 m .46102 .29344 L .44645 .26159 L p .781 .957 .926 r F P 0 g s .44645 .26159 m .35452 .31943 L .37313 .34874 L p .781 .957 .926 r F P 0 g s .37313 .34874 m .35452 .31943 L .29114 .3905 L closepath p .819 .967 .9 r F P 0 g s .54594 .24777 m .44645 .26159 L .46102 .29344 L p .514 .816 1 r F P 0 g s .81486 .58346 m .84604 .62414 L p .71682 .34044 L 0 0 .528 r F P 0 g s .4417 .87293 m .36645 .86896 L p .69931 .86757 L .12 .667 .818 r F P 0 g s .2343 .48007 m .20206 .56 L .22762 .57895 L closepath p .992 .882 .569 r F P 0 g s .34676 .8633 m .36645 .86896 L p .22762 .57895 L .867 .469 .003 r F P 0 g s .30007 .79666 m .34676 .8633 L p .22762 .57895 L .867 .469 .003 r F P 0 g s .24528 .69398 m .30007 .79666 L p .22762 .57895 L .867 .469 .003 r F P 0 g s .20749 .60202 m .24528 .69398 L p .22762 .57895 L .867 .469 .003 r F P 0 g s .22762 .57895 m .20206 .56 L .20749 .60202 L p .867 .469 .003 r F P 0 g s .61701 .27278 m .69331 .33974 L .68934 .30956 L closepath p .054 .42 .866 r F P 0 g s .71682 .34044 m .68934 .30956 L .69331 .33974 L p 0 0 .528 r F P 0 g s .29114 .3905 m .35452 .31943 L p .41869 .32255 L .034 0 .179 r F P 0 g s .2343 .48007 m .29114 .3905 L p .41869 .32255 L .034 0 .179 r F P 0 g s .20206 .56 m .2343 .48007 L p .41869 .32255 L .034 0 .179 r F P 0 g s .61859 .28507 m .54594 .24777 L .61701 .27278 L p .435 0 0 r F P 0 g s .61701 .27278 m .68934 .30956 L .61859 .28507 L p .435 0 0 r F P 0 g s .36645 .86896 m .34676 .8633 L p .69931 .86757 L .12 .667 .818 r F P 0 g s .83145 .70966 m .84928 .60671 L .84604 .62414 L closepath p 0 0 0 r F P 0 g s .84604 .62414 m .84928 .60671 L p .71682 .34044 L 0 0 .528 r F P 0 g s .44645 .26159 m .40372 .29166 L .35452 .31943 L closepath p 0 0 0 r F P 0 g s .35452 .31943 m .40372 .29166 L .41869 .32255 L p .034 0 .179 r F P 0 g s .50659 .27785 m .40372 .29166 L .44645 .26159 L p .269 0 0 r F P 0 g s .44645 .26159 m .54594 .24777 L .50659 .27785 L p .269 0 0 r F P 0 g s .62187 .85695 m .69546 .86176 L .69931 .86757 L p .12 .667 .818 r F P 0 g s .50499 .85543 m .62187 .85695 L p .69931 .86757 L .12 .667 .818 r F P 0 g s .39774 .858 m .50499 .85543 L p .69931 .86757 L .12 .667 .818 r F P 0 g s .34676 .8633 m .39774 .858 L p .69931 .86757 L .12 .667 .818 r F P 0 g s .69546 .86176 m .77405 .80514 L .69931 .86757 L closepath p .569 .911 .69 r F P 0 g s .20749 .60202 m .20206 .56 L p .41869 .32255 L .034 0 .179 r F P 0 g s .61859 .28507 m .68934 .30956 L .71682 .34044 L closepath p .596 .023 0 r F P 0 g s .54594 .24777 m .61859 .28507 L .50659 .27785 L closepath p .606 .128 .092 r F P 0 g s .83145 .70966 m .77405 .80514 L p .59733 .6737 L .891 .825 .776 r F P 0 g s .84928 .60671 m .83145 .70966 L p .59733 .6737 L .891 .825 .776 r F P 0 g s .77405 .80514 m .69546 .86176 L p .59733 .6737 L .891 .825 .776 r F P 0 g s .39774 .858 m .34676 .8633 L .30007 .79666 L closepath p .246 .515 .909 r F P 0 g s .41869 .32255 m .40372 .29166 L .50659 .27785 L closepath p .371 0 .03 r F P 0 g s .84928 .60671 m .81958 .53097 L p .71682 .34044 L 0 0 .528 r F P 0 g s .81958 .53097 m .84928 .60671 L p .59733 .6737 L .891 .825 .776 r F P 0 g s .61859 .28507 m .71682 .34044 L p .3888 .40641 L .738 .458 .505 r F P 0 g s .50659 .27785 m .61859 .28507 L p .3888 .40641 L .738 .458 .505 r F P 0 g s .25311 .58509 m .24528 .69398 L .20749 .60202 L closepath p .194 .196 .633 r F P 0 g s .25311 .58509 m .20749 .60202 L p .41869 .32255 L .034 0 .179 r F P 0 g s .69546 .86176 m .62187 .85695 L p .59733 .6737 L .891 .825 .776 r F P 0 g s .81958 .53097 m .76755 .42628 L .71682 .34044 L p 0 0 .528 r F P 0 g s .71682 .34044 m .76755 .42628 L p .3888 .40641 L .738 .458 .505 r F P 0 g s .3888 .40641 m .41869 .32255 L .50659 .27785 L p .738 .458 .505 r F P 0 g s .30706 .74117 m .30007 .79666 L .24528 .69398 L closepath p .091 .275 .758 r F P 0 g s .39774 .858 m .30007 .79666 L .30706 .74117 L p .351 .542 .901 r F P 0 g s .74905 .51334 m .81958 .53097 L p .59733 .6737 L .891 .825 .776 r F P 0 g s .74905 .51334 m .76755 .42628 L .81958 .53097 L closepath p .922 .658 .521 r F P 0 g s .24528 .69398 m .25311 .58509 L .3164 .62897 L p .297 .288 .68 r F P 0 g s .3164 .62897 m .30706 .74117 L .24528 .69398 L p .297 .288 .68 r F P 0 g s .30706 .74117 m .40914 .80471 L .39774 .858 L p .351 .542 .901 r F P 0 g s .39774 .858 m .40914 .80471 L .50499 .85543 L closepath p .526 .721 .963 r F P 0 g s .76755 .42628 m .74905 .51334 L p .3888 .40641 L .738 .458 .505 r F P 0 g s .32383 .5096 m .25311 .58509 L p .41869 .32255 L .034 0 .179 r F P 0 g s .41869 .32255 m .3888 .40641 L .32383 .5096 L p .034 0 .179 r F P 0 g s .58246 .78633 m .62187 .85695 L .50499 .85543 L closepath p .709 .768 .898 r F P 0 g s .62187 .85695 m .58246 .78633 L .59733 .6737 L p .891 .825 .776 r F P 0 g s .3164 .62897 m .25311 .58509 L .32383 .5096 L closepath p .403 .27 .584 r F P 0 g s .58246 .78633 m .50499 .85543 L .40914 .80471 L p .692 .732 .881 r F P 0 g s .59733 .6737 m .66263 .56711 L .74905 .51334 L p .891 .825 .776 r F P 0 g s .74905 .51334 m .66263 .56711 L p .3888 .40641 L .738 .458 .505 r F P 0 g s .48597 .73267 m .40914 .80471 L .30706 .74117 L p .593 .553 .779 r F P 0 g s .42786 .6212 m .48597 .73267 L p .30706 .74117 L .593 .553 .779 r F P 0 g s .30706 .74117 m .3164 .62897 L .42786 .6212 L p .593 .553 .779 r F P 0 g s .43395 .49933 m .32383 .5096 L .3888 .40641 L closepath p .576 .392 .595 r F P 0 g s .54014 .5623 m .43395 .49933 L .3888 .40641 L p .738 .458 .505 r F P 0 g s .66263 .56711 m .54014 .5623 L p .3888 .40641 L .738 .458 .505 r F P 0 g s .32383 .5096 m .43395 .49933 L .42786 .6212 L p .582 .42 .628 r F P 0 g s .42786 .6212 m .3164 .62897 L .32383 .5096 L p .582 .42 .628 r F P 0 g s .40914 .80471 m .48597 .73267 L .58246 .78633 L p .692 .732 .881 r F P 0 g s .48597 .73267 m .59733 .6737 L .58246 .78633 L closepath p .77 .714 .8 r F P 0 g s .59733 .6737 m .54014 .5623 L .66263 .56711 L closepath p .755 .621 .711 r F P 0 g s .42786 .6212 m .43395 .49933 L .54014 .5623 L closepath p .69 .512 .641 r F P 0 g s .54014 .5623 m .59733 .6737 L .48597 .73267 L p .735 .613 .723 r F P 0 g s .48597 .73267 m .42786 .6212 L .54014 .5623 L p .735 .613 .723 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{271.688, 298.125}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnMlzFEcWxovuqu6u3tVSq1sSCGHEIoFkMBo2s0gsAmRks4lFLEbgcQCe MWNDzETM3IbTBJc5cOTIkaOuOuroo/8Fjhznqqn3MuupqvvLVpYEhA8oorKr qzK/3/deZi1di2YXnj/6818Xnj9+uDB07teFvz16/PDZ0PTTX4NF6U2Os6kS TKNDDs2vOE5Y8F+VCv3l8/zn+c/zsfn/0odH28s/1YL/0EeWN6D0ypTalFZe D1WdFJVp+voPVfPfUjNLFZ10WJWru1S6tOi5qv4vqV4C1bNcqmVP9AacovIX 1ZqZLNcNWvtUcvUUteaVP6uGf+cPVX1KTU4PkCiKRFokflISHACv6gUNK9LQ lYaPVMNnHRvWpKFHDXnuR9XwF2nYAA3rLbl6ErK5xQ9K4il9cJ0aSZRprkuI Gan+QFX/WYgFqu6rXM7rSvmVpWcvKirGdon7SuIvQkyLhC8SAyThx6O9pxr+ JCOjKtV3UHVXsqqj1X/ObdXwsRCD9TlnhOvMc6ChzgjpeDIyeJlu/UhCdqmx RsxriZJIjJFE2AVqckKoHqr87ZaS/VFMeUC2ILL7SFYPuNdUOZi7oSR+EIkc kMiJxIRIuCTB6ZpTEg8luDyQyIjEYZHwSILnrimJBZEoAglXJI7FXbR01RUl dl/EyizmRsVEahKkOgVELyvR7yPbNnU/CbfK6945Hc92i94ls14lEnsgwQbP ihgy950SuwfEqkDsnIgpa6FWqHPXUmeGSl6kG94BDbtAw4ti4FvV8DZoWAMN Z6XhrGo4b9nwUqSbw6zNKIlbQKI7mcRNINEDJC4DiQtK4oalxBWzxHUgUQcS V4HE+WQS14DEOSUxZykxZ5a4BiR6gcR1IDGtJK5aStwwS1wBEg0gcRNInFUS l4FEM5nEJUuJeSBxRkl8ByT6gMRtIHFaSXwLJPo3LoFc3AUSp5TErKWLDhIX gcQAkLgHJKbMEsjF92aJb0wuHoI2k+Y2UeyrB6+58YJZYsYo4YoETQ6do7Wr nFQqF4wp9GIqWglKnTBLtcYUTMExj8p4eu+bZc9byrqWsseV7Lk1xs4HlEVu PZMsHw916NOWHjNALDrm3799wZ3XQRZ5zBplXZHV0jr6s5bKPlC+21H5jGUq zMpeTDlMyTGzPDJeAPJ31pY/bSlfBPK3WzoymIJvqowOwCMKdcoyUSWAmt84 CkVVtkS5AHVYoaYsUVWAuvXpUDcBKgNQhxRq0hJVA6gbyVAnLVHdlqgsQB38 5KgTlqg6QF0HqBxA/WnjqDmA8pOh+gCqAVDXACoPUBMKddwS1fx0KB7sfKEH AQoAcEABjlkC+IjOF6OCA9yTN/qQs/jiDX86TuxX2Tq5fFKfo0W9zPCEEU50 dLgEQCUA+moNUBjgkzcMG+AyHUUGJ11BqX9rL+krYx1QX5tQLLEFAFwBzESi evf7Mk0BPigZikbIfjM0+hvtwdQrThvCZ7iMD9DVyyy+4NEuUuOPGvGu4LUF 5CArCTgDElCikhehQ88+s4PeyMl46KBTInyxMSnhdxOcJXT3HjGC0lFQ0G1U rj26CgI9DmJvUMlr95vxdYBPA3w/wJdB569emBxgE/GEf2k20gOMuJZGKpKH g4IfBPhxhT+8ATzqhi7BHwDdkNBINzDiWRrpBh0yLhnZZjZyyNJIxtJIj2Rk DGTkC2Bk7OMY6RUjI5KHHcnwNYDPWuKboEN2gIx0sHTQ0lLO0lKfZGS7ZGQE 4Pea8V0A71vi+6nspkVVkIeERqrASD5J14TX75deL/HK5deLgWhQVtXYbXez x+ymAtwUEo9Tl8zotYERtrSFy3iq9pjNoVFcAuaKibfmDDC3GZjbm8xcEZgr WZqriTkfmOsH5saBuVGzuQIwV7Y0VxVzhY9jzqcyrTYnO0tlsVQGlprA0j5g acRsKSOWgrG8f786vZ+ZeUufFUuTRTFZ3bhJdJRNiUn2qNeSy2BSNzVtB2Ah uo8P9iPktwu47gWu99u7pnyyryw0TOXaO0J08pSXXPcA13Xg+gBwvTviWt+/ breZBjbRgQPZzInNBrDZsw6behUNUbLqA8MulQy1PbxmxGYfsNkNbE6YbR4B NnPAZgbk1faccfUH5GZguAsYPggM70pmOCt5tbW5+kN68OPYRJtVHuTV9reZ PuVu91oBXg+ZvR4FXjPAa4HLDj9Yufr2T2eoKH3spEMnnKc6lXyRZidwUzK5 0WeqK62XLEIPHvBQFg98zSm8+vQyDC3cXw8DI0Vg5PB6jVSozKm9lx2+8MHx 4aB9ucwWNlsayQMjR1qNHANG0JEVGdliacQ3GcE7z09hKQcsHTVbOg4spS0t DVpaygBLX//xLB2VETS6cSNbLY24ptxEjZwARlKWRoaAEbTLTQMjx9ZrpAyM bLPMSMpkBJ+UnuQPL2opPMUPztTbbXxhzIcXtcETaZz8uGiVATeGtqG6MapD D6q2A7db9D2ZnTTTojcmw9gSofQF6HAg7UkmOwxkh0SWBu3ib+FIgUnTA5dv 5aZMeUKUQaEwpGVAnlgvagdADQjK+9io/mjvB6kjXELoKYGiMb4TQBsSXxag OvRa9LGC6tQydznaxyFoXaB+MuhpAEX7s10AWhNowTKpezA0mBz9wLQduSrk UjLymchOTJMl7AKA7wbwksAr64G3hk1l/HiSA0ZGgJG8GOlKZuSsyYgetu34 UYDPCb4b4I+bryQjvAvy4AIje4CRDNjMa5aW9EX+aUtLaUtLruSmnszIOUsj KWBkL5du1IjYaAAb6Dxj3GzDkxFiA6dPhy7CJOKeB9xMS/i0rY4TjRf1AwA6 3f7SDMhKYGORIBaX3oUTr2sCEPqpoe9pXzCBOmxZGkeXhDS09wNBUyvzL991 2LGG5KyQewAZ/djTt7ZnADnacQGeLbD2TkDOcxnfiKuW0Sf2EJT6Dly7kaKk AOFRCvTDBd8AvAfwLuiLrcBIRYyUgZHDwMgBsxEXGMlIHgYBvib4YjL8RYBP A3wO5KEfGKmLkTwwgi6UTSQz4ksemoRPqd1KCM0BKLq0qR9imwXQFIAWBFoH MW8WfCYZXr2ggE9wKiDhXQC+FWyKKUsbB9e2UZXIqwC+TSJPiFQviLgxpENv cbYHXQTcYSp5ERpRh6KM+Nlyj4RTALK7IrkMg0A3HPRDuPyijN7zt/vOAsDO CGBx+R1bQllqAzTEd8Yo64lsOJE88q8fjb4s8k2RT1u4Dia6w7Dcmqqv1kDp VUdevGdnfS1Jo2W7AcoFKHQDU11q1y9RuVGUhGgRWAbQxuQagX7Q/2oLQ3Ma +pBBi18s/S9EDwNMFmDQcwAdgMGkd0lxqp70LZV2tA/QowCtX8SIvhqnsUHv UxnfR3ZFEqwtBKZCI4PASB4Y2S2p1i8uzZnw+rdUOzTDZbyn+yKH53boToGe MkNdEHMZ4LMScxPEXAH4YcHrF9eum/A6gnaoL9A6gFYBlB8r40X6nb0bAOoJ tAigBYHWALQGoEMS6bQZmgWJzgF8WfAVgO8G+K2C16993jTh9clEO7Qq0CKA 1gF0i0D1G6+3ADQHYvYAviZ4H+B7AX5A+vmCGe9LzAjaAzYoD+CbAN8neP3i 8jzA50H0KWCkLtG7AN8P8KtP9arzy9hr33G8G8XTfL/QgvoUt4bR+V4bqC5x zppBRR2nBnBMJSon6Gs1sg9+9V5d/tYvq98xbZu9K3yIb779Pa96r10i+oY9 //+Ja1Td03HpWlxH1+T/YsAa81Sz5aigKz2MOAoqccVpKn3VkCvx/9vIq/10 sKpBc0/VKhb7A/2LmM/zn+c3Mu9s+j+OKNos\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 270.688}, {297.125, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"4bd49586-da9b-4ace-857e-7ed104552440"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(72\\). \\!\\(\\\"gyrate rhombicosidodecahedron (J72)\\\"\\)\ \"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"e4370c6c-90fb-409d-a13d-513fe7e7291a"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.09723 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0616425 1.17542 -4.44089e-16 1.17542 [ [ 0 0 0 0 ] [ 1 1.09723 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.09723 L 0 1.09723 L closepath clip newpath .5 Mabswid [ ] 0 setdash .53212 .76072 m .51147 .6404 L .38624 .6472 L p .75 .542 .614 r F P 0 g s .51147 .6404 m .53212 .76072 L .63223 .67851 L closepath p .68 .495 .629 r F P 0 g s .51147 .6404 m .54846 .51724 L .44674 .44449 L p .76 .64 .728 r F P 0 g s .38624 .6472 m .51147 .6404 L p .44674 .44449 L .76 .64 .728 r F P 0 g s .54846 .51724 m .51147 .6404 L .63223 .67851 L p .662 .535 .699 r F P 0 g s .63223 .67851 m .66995 .5538 L .54846 .51724 L p .662 .535 .699 r F P 0 g s .63154 .43073 m .54846 .51724 L .66995 .5538 L closepath p .637 .571 .763 r F P 0 g s .54846 .51724 m .63154 .43073 L .52867 .35457 L p .688 .655 .812 r F P 0 g s .52867 .35457 m .44674 .44449 L .54846 .51724 L p .688 .655 .812 r F P 0 g s .60687 .83718 m .71018 .75108 L .63223 .67851 L p .61 .384 .548 r F P 0 g s .63223 .67851 m .53212 .76072 L .60687 .83718 L p .61 .384 .548 r F P 0 g s .66995 .5538 m .63223 .67851 L .71018 .75108 L p .519 .388 .642 r F P 0 g s .80186 .66634 m .77391 .54145 L .66995 .5538 L p .519 .388 .642 r F P 0 g s .71018 .75108 m .80186 .66634 L p .66995 .5538 L .519 .388 .642 r F P 0 g s .63154 .43073 m .66995 .5538 L .77391 .54145 L p .534 .508 .773 r F P 0 g s .38624 .6472 m .29628 .69872 L .40442 .76966 L closepath p .823 .592 .59 r F P 0 g s .38624 .6472 m .40442 .76966 L .53212 .76072 L p .75 .542 .614 r F P 0 g s .44674 .44449 m .34437 .52513 L .38624 .6472 L p .76 .64 .728 r F P 0 g s .29628 .69872 m .38624 .6472 L .34437 .52513 L p .862 .688 .664 r F P 0 g s .34437 .52513 m .44674 .44449 L .39793 .35686 L p .819 .774 .81 r F P 0 g s .52867 .35457 m .39793 .35686 L .44674 .44449 L closepath p .742 .747 .856 r F P 0 g s .60687 .83718 m .53212 .76072 L .40442 .76966 L p .699 .372 .419 r F P 0 g s .56306 .28287 m .52867 .35457 L .63154 .43073 L p .536 .642 .901 r F P 0 g s .697 .31972 m .56306 .28287 L p .63154 .43073 L .536 .642 .901 r F P 0 g s .63154 .43073 m .73524 .41323 L .697 .31972 L p .536 .642 .901 r F P 0 g s .77391 .54145 m .73524 .41323 L .63154 .43073 L p .534 .508 .773 r F P 0 g s .34437 .52513 m .25156 .57225 L .29628 .69872 L p .862 .688 .664 r F P 0 g s .29065 .4402 m .25156 .57225 L .34437 .52513 L closepath p .889 .784 .74 r F P 0 g s .39793 .35686 m .29065 .4402 L .34437 .52513 L p .819 .774 .81 r F P 0 g s .52212 .89926 m .60687 .83718 L p .40442 .76966 L .699 .372 .419 r F P 0 g s .40442 .76966 m .39183 .85453 L .52212 .89926 L p .699 .372 .419 r F P 0 g s .39183 .85453 m .40442 .76966 L .29628 .69872 L p .848 .521 .432 r F P 0 g s .39793 .35686 m .52867 .35457 L .56306 .28287 L p .684 .821 .949 r F P 0 g s .76919 .78754 m .71018 .75108 L .60687 .83718 L p .415 .108 .333 r F P 0 g s .71018 .75108 m .76919 .78754 L .80186 .66634 L closepath p .352 .146 .454 r F P 0 g s .85257 .60937 m .82189 .4791 L .77391 .54145 L p .191 .172 .605 r F P 0 g s .77391 .54145 m .80186 .66634 L .85257 .60937 L p .191 .172 .605 r F P 0 g s .73524 .41323 m .77391 .54145 L .82189 .4791 L closepath p .344 .384 .759 r F P 0 g s .29628 .69872 m .27784 .78152 L .39183 .85453 L p .848 .521 .432 r F P 0 g s .29628 .69872 m .25156 .57225 L .20065 .56613 L p .98 .702 .424 r F P 0 g s .27784 .78152 m .29628 .69872 L p .20065 .56613 L .98 .702 .424 r F P 0 g s .60687 .83718 m .52212 .89926 L .66053 .87892 L closepath p .487 .08 .195 r F P 0 g s .60687 .83718 m .66053 .87892 L .76919 .78754 L p .415 .108 .333 r F P 0 g s .29065 .4402 m .39793 .35686 L .42581 .28401 L p .83 .978 .884 r F P 0 g s .56306 .28287 m .42581 .28401 L .39793 .35686 L p .684 .821 .949 r F P 0 g s .7861 .3847 m .697 .31972 L .73524 .41323 L p .107 .344 .813 r F P 0 g s .73524 .41323 m .82189 .4791 L .7861 .3847 L p .107 .344 .813 r F P 0 g s .25156 .57225 m .29065 .4402 L .24203 .42597 L p .973 .9 .686 r F P 0 g s .24203 .42597 m .20065 .56613 L .25156 .57225 L p .973 .9 .686 r F P 0 g s .24203 .42597 m .29065 .4402 L p .42581 .28401 L .83 .978 .884 r F P 0 g s .81961 .73571 m .85257 .60937 L .80186 .66634 L p 0 0 .209 r F P 0 g s .80186 .66634 m .76919 .78754 L .81961 .73571 L p 0 0 .209 r F P 0 g s .48652 .91366 m .52212 .89926 L .39183 .85453 L p .526 0 0 r F P 0 g s .39183 .85453 m .34862 .86592 L .48652 .91366 L p .526 0 0 r F P 0 g s .27784 .78152 m .34862 .86592 L .39183 .85453 L closepath p .784 .291 .032 r F P 0 g s .56306 .28287 m .53024 .25831 L .42581 .28401 L closepath p .417 .827 .975 r F P 0 g s .53024 .25831 m .56306 .28287 L .697 .31972 L p .033 .551 .867 r F P 0 g s .63332 .89223 m .66053 .87892 L .52212 .89926 L p .03 0 0 r F P 0 g s .52212 .89926 m .48652 .91366 L .63332 .89223 L p .03 0 0 r F P 0 g s .81961 .73571 m .76919 .78754 L .66053 .87892 L p .574 .901 .651 r F P 0 g s .20065 .56613 m .21637 .70142 L .27784 .78152 L p .98 .702 .424 r F P 0 g s .34862 .86592 m .27784 .78152 L .21637 .70142 L p 0 0 .496 r F P 0 g s .79381 .45836 m .7861 .3847 L .82189 .4791 L p .856 .552 .024 r F P 0 g s .83747 .60525 m .79381 .45836 L p .82189 .4791 L .856 .552 .024 r F P 0 g s .82189 .4791 m .85257 .60937 L .83747 .60525 L p .856 .552 .024 r F P 0 g s .697 .31972 m .67226 .29715 L .53024 .25831 L p .033 .551 .867 r F P 0 g s .697 .31972 m .7861 .3847 L .67226 .29715 L closepath p 0 .152 .612 r F P 0 g s .42581 .28401 m .32794 .32466 L .24203 .42597 L p .83 .978 .884 r F P 0 g s .32794 .32466 m .42581 .28401 L .53024 .25831 L p 0 0 0 r F P 0 g s .73548 .79992 m .81961 .73571 L p .66053 .87892 L .574 .901 .651 r F P 0 g s .66053 .87892 m .63332 .89223 L .73548 .79992 L p .574 .901 .651 r F P 0 g s .24203 .42597 m .21904 .50018 L .20065 .56613 L closepath p .696 .732 .219 r F P 0 g s .21637 .70142 m .20065 .56613 L .21904 .50018 L p 0 0 .365 r F P 0 g s .21904 .50018 m .24203 .42597 L .32794 .32466 L p 0 0 .026 r F P 0 g s .85257 .60937 m .81961 .73571 L .83747 .60525 L closepath p .887 .832 .364 r F P 0 g s .52296 .86624 m .48652 .91366 L .34862 .86592 L p .393 .632 .95 r F P 0 g s .39504 .78274 m .52296 .86624 L p .34862 .86592 L .393 .632 .95 r F P 0 g s .34862 .86592 m .28789 .78639 L .39504 .78274 L p .393 .632 .95 r F P 0 g s .21637 .70142 m .28789 .78639 L .34862 .86592 L p 0 0 .496 r F P 0 g s .2362 .64182 m .28789 .78639 L .21637 .70142 L closepath p .042 .198 .701 r F P 0 g s .21904 .50018 m .2362 .64182 L .21637 .70142 L p 0 0 .365 r F P 0 g s .67346 .36726 m .67226 .29715 L .7861 .3847 L p .858 .433 .21 r F P 0 g s .7861 .3847 m .79381 .45836 L .67346 .36726 L p .858 .433 .21 r F P 0 g s .43276 .29963 m .53024 .25831 L .67226 .29715 L p .658 .24 .241 r F P 0 g s .53024 .25831 m .43276 .29963 L .32794 .32466 L p 0 0 0 r F P 0 g s .32794 .32466 m .30921 .39529 L .21904 .50018 L p 0 0 .026 r F P 0 g s .43276 .29963 m .30921 .39529 L .32794 .32466 L closepath p .279 0 .159 r F P 0 g s .75128 .66528 m .83747 .60525 L .81961 .73571 L p .947 .9 .747 r F P 0 g s .81961 .73571 m .73548 .79992 L .75128 .66528 L p .947 .9 .747 r F P 0 g s .48652 .91366 m .52296 .86624 L .63332 .89223 L closepath p .545 .844 .999 r F P 0 g s .51846 .37029 m .43276 .29963 L p .67226 .29715 L .658 .24 .241 r F P 0 g s .67226 .29715 m .67346 .36726 L .51846 .37029 L p .658 .24 .241 r F P 0 g s .62637 .76881 m .73548 .79992 L .63332 .89223 L p .757 .849 .92 r F P 0 g s .63332 .89223 m .52296 .86624 L .62637 .76881 L p .757 .849 .92 r F P 0 g s .21904 .50018 m .30921 .39529 L .38997 .47131 L p .429 .3 .602 r F P 0 g s .2362 .64182 m .21904 .50018 L p .38997 .47131 L .429 .3 .602 r F P 0 g s .70413 .51196 m .79381 .45836 L .83747 .60525 L p .914 .723 .63 r F P 0 g s .83747 .60525 m .75128 .66528 L .70413 .51196 L p .914 .723 .63 r F P 0 g s .28789 .78639 m .2362 .64182 L .34243 .63099 L p .447 .467 .787 r F P 0 g s .34243 .63099 m .39504 .78274 L .28789 .78639 L p .447 .467 .787 r F P 0 g s .30921 .39529 m .43276 .29963 L .51846 .37029 L p .56 .296 .472 r F P 0 g s .73548 .79992 m .62637 .76881 L .75128 .66528 L closepath p .839 .807 .819 r F P 0 g s .79381 .45836 m .70413 .51196 L .67346 .36726 L closepath p .859 .588 .528 r F P 0 g s .38997 .47131 m .34243 .63099 L .2362 .64182 L p .429 .3 .602 r F P 0 g s .51846 .37029 m .38997 .47131 L .30921 .39529 L p .56 .296 .472 r F P 0 g s .62637 .76881 m .52296 .86624 L .39504 .78274 L p .677 .679 .845 r F P 0 g s .54536 .51811 m .51846 .37029 L .67346 .36726 L p .761 .527 .579 r F P 0 g s .67346 .36726 m .70413 .51196 L .54536 .51811 L p .761 .527 .579 r F P 0 g s .54536 .51811 m .70413 .51196 L .75128 .66528 L p .776 .659 .733 r F P 0 g s .49661 .6804 m .54536 .51811 L p .75128 .66528 L .776 .659 .733 r F P 0 g s .75128 .66528 m .62637 .76881 L .49661 .6804 L p .776 .659 .733 r F P 0 g s .49661 .6804 m .39504 .78274 L .34243 .63099 L closepath p .61 .566 .78 r F P 0 g s .39504 .78274 m .49661 .6804 L .62637 .76881 L p .677 .679 .845 r F P 0 g s .51846 .37029 m .54536 .51811 L .38997 .47131 L closepath p .669 .466 .601 r F P 0 g s .34243 .63099 m .38997 .47131 L .54536 .51811 L p .647 .521 .696 r F P 0 g s .54536 .51811 m .49661 .6804 L .34243 .63099 L p .647 .521 .696 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{271.75, 298.125}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnEmQFMcVhovu6n3vmZ6efYHZZ2AYxD7AgNjBaLO1GEsKYSwbsGUcgOyw CEXYJnxQELpx5MiRo64cOerIlSNHHXUd18uX9Tq76q+erOlGQmEmorJ6ann/ l//LzFq6qy5duXPt8y+u3Ll+9crk2VtX/nbt+tXbk2du3vIWJbc5zraKNy1O OvR5w3H8Qv1VqdD/vP78+vPrz7E/f0uzFPWpr3nBN7LA3Xh86FCSPn3Fq/5L swwtyNEqlz79nVf9m2Y5WlCRvW7zKhU3TwsastdNXvVPmhVpwYis+jOv+pJm ZVowJQGv8apbNKvQglnZ6w+86ibXzFuwLHtd4VVfyKpV2esTXnVDVh2UvS7z qmuy6qis+pBXfU6zOi1Yp1WOWrfx/MaqGqA+4I2u0qxGS5Ib9y/c1Rt5m6td jqjSlR31zu/zvgq8xJk44Szofb0oOlI43poqU23xfKDfcNBPaVagJRkKmuBP 4VCHA3XyJidBpdrjPQ72Mc2ytKAACLMg7CEQ1lUlL9N/ztss8FuapblZhQXy VCoeFDYFwr7FYT+imdqxLiZUAO1+EDYNwl4ywupVXlhFXAXcVSC1D0hlxG8t 8KFwV4W7HwTbC4LlAPcFDvtBe9gAbUNcRmHzIOx5DquacTIqeYOAexUIFIDA ORZQTVr1npLYMQrC7gZhi+KtDvZrGfeKgHYMhF0BYcuA9rQh4EYJTACBXUCg AgROscB7UoO82LFDkoeCVUGwkxzsXel5OUA7A2iXgEBNXNZh3+kYdg6EXQRh +wD3cRZQA0emfXxbAmEXQNh+EHY9GDYNuJeBQB+VTVo0AMIe47BqPMrKEK9o VyjYwIY6Xj6998BnfHBPDeMD4qgOcak9RIBsl0l2+6EKsaDCuhJWh24CzDXW +BXNcnwUi9JwRUPrLAbovclJRPlxmIUu0kydK7CS2sbxTUkwgRdf7+0JKJF5 KEXl5gk+xMpqKFSnIrsDlpGcC0TngGjSUvSgIVqIEk1ZirpU6mNBpNR5qd8K kEpbSqVB/Vp9XFt5TqS8LW9ceOg3Fu6HCe78dklEetWg3lnRU3KB1jkPqmsr nxFnQ6JnRDQFRGeBaN5SNAfqXDIS+/w+d4mDBog+oQuDtMb/smWK81HyKooW PS2iOSA6BWpvK18Qy1GdD7D8KZEvAPkJIF+xNL8Iap+PBjkpraAIQEbF/Lql fAnI56Ll3xT5MpAfBj7YgpQlDTl9ju7La4T9THBCCKqAYBAQ9Fs2hCqwIr05 S4HtDrMMAJaGJUsNsKR0abL46dlnAOV5YA4D9UnrGLRMSk2SYiF+XMQHgHgN uGGL0QfcSMQBagKgCgAasgTqjwm01wBSZzVDAKgo6Rm1xGhIeizE10V8BIjn gRtjlo21GXCDRF2SD5wYrBog6vxxDIBkAci4pR9N8WMzeXViPQHk00B+opfy x6T2k0A+KW1gu6XogGH+D08eKfNTQH63IZ9hAZJPmfJqogDTcfqBboCeuHHM YIDOGOqqbDrgAsnPWMrXjeHJTn7FkFdVnyV5tY2taDVgOAnHlD8q8nNG7R/d +44m/s82/a3DZnYLDOrANg8ZvDLJnST+iYRvS84SaVcQCdmSESTb4bF1ZleM B3Kkozd5Kt04h9GcgJS3AKLWLACQsjgyEOfyIpCkiiXSTgMpEYVUF6Q+S6SU eFOPB7ImIIsApCEgVUsQF3izFSS9ii5DCQu5NChwpTj3FlRlG90joUY9Ko3a 9lJVn0iGaRLd00yKQeg+gbqdpOSHLc1YZvnDHZvMDhFFN1/GqNTfHPVQdFZE naR/H0vp5ahs0L+FjaePnwQaJqo48j3EgJrjIpWqapPdS/HdCr5ioi+1eIJZ Xmod7khXaS8AgiFLw5deGoGtB50J0FENESz+7ARLllnoQMD3bVIBAkXRcwzU GBY3x5i1xFjuIh89xNjZRVJeLYwDxmFAI6jDyeXAoWGHJdKuyAThK+LlaIwk wNhuibHShTMLryzSfoDk9hipU7KW4mFMWWLsfjUwVrtI0PwvHmnSEmlPzGQt vhyMNyKd6Yhh26m7x9g8QXPxkCYA0rIlUqcEdRjuUILGLZ3ZFzNB/38YnJTQ FxoxCcYsCQ4AAnXJqAD4vM1vnp2aZq8ZmkZv+fHFEwWT2Hjx7LK6Rpr/6UAG jHQQiIZJEkug587Goxq1pDoEqPqo1L998Ih0q/WQZHJaNh20HEq6AaoH8kVQ jOa2obVa8k9BVYukwoZ1QEMZHLYcexFaRTKY7h1Qg0r11QVyaA1glIBDPQRS 38WrL/hSG7dvf6/XPnzwlCb+b96StCCG5XC7WoyHlqBSfdtWBWgJKtWiGUu+ PHByi6TK+iFAlRKqKUB1FFBlAVW+K/88KkU2AviywjduyZeWrJa2RqX2HQMs eWEZsWRJAa+KmKrtJk47lXmZnF39TvUaxFcSvkHAdwzwJQFfhGs94KsKXz/g W1ela/JJJqtbZHKFSXMhrLpg1SyxHPriYnMifM8lSSwWLb8hWGWAdZxK5U2f Pgb5JKSx3DuMQcHId8To3xqGa4kxLBiZyCTxsmffP1ORNwUK3SlNWbKMCYsb 2c9cYdE8KE07e4IzSaXaW2VDG+1L+3bE109b6k+JHccCafAmryNS2T7E1KJZ Dktfvuz3XWuQSX1Eo2WPHz+XicKvSUN1AVD95QBNtM5JfBjvP6/Uv3IMuxUJ p39dH4mUidN2A0hpDWa24r0ALhUPTgZea7hRAJcVv94ASOmtImUB0jBAGgFI BeDXLmlfOcsGHxMO+TUE4EoAbhk4F4mpHw/YCH53GzeZgwCuIslcAkh5G6Qj lkgomU2AVAd+zQG4gg3cUQBnO1g0AFy/+DULkIrWSPoBPDuQfgDSBC5NSZMv bzKk+rczdJM/Ji7d7TikohT2AbghcWkSuBQTbh2k0PZIXANwo8C5UYBZ6ZhM /RO64wDO9gyqCuDGxbkRgFS1QTphiYSSWQFIU8CvJoCrbTLM+mldMTD1zwbt /CoBuB3iV8M48Q2DVMUl/QvQN0GTt3WpCEBmgUs14BKCqxguPXjBvx7VmCcB JrpQQJgFgDkvflUBXAPAlQHcHoY7BVpawjKZOQC3BDwsAswBgFmUBHsrNKfC M1n16aadfVlAuBMQ5qThDUZx6VN5wtJo+ufgp4XKNqkZQLUiSc0CtxBVAVPp n+yfkcvDu2Zulbnoej0FmPYAp1xANwTo8phOP+9xtgPdKKBzAd1ecSwJmIYB U1baV4J4AmOaNu6ccd1mYCGqJKA6EPCM/Q6zZIybt74/ftc8aJD43UFjKApm SZksaqIt10g/ycRh1XQHVf103PkoVR4B3DZVh061jQo//4Emz16vdKO6kytp SII0mM9XGoMmahlOhHyGyiQfUMLyycBgSAioPWg/LgZACKFMZSWq9gWpPTqc JizlDwflHR/BKfPY//tHPwYa3z5AUxUadGZrS2M+TaxSN0Hy/qsFQqINEc1C UT/3oaeh9QlnuGq7gcqw5Dl4Ee2oY0S4Guaz20ZOSa5VoRUgNS4V8lbouz+R Kuus8jZQQVVbAno7qNSHurCAfmD+HaNteGFbAvpHshFhUbpDD/rrVxCEaWfj hA1wmy8oaAmoTzNdhDVfohDwG9Vgqgsp84UQSEr3Df/INKPCth8FfbfNN2EE kjgtoUYB67Qq8SCuXwvyPgg6A6wYjBn+ohFe8c0JabNjK0YjvfkKk4CXc4C1 LzJt2F/zxSsBK1rU9cig2AD9cpuPQNB5wFyOGZ57NL87B4XX38DFC/quEVTf JgqT5mIG1a8RugyStyikWcuUOfKOo9+BmiNc1z6yfiXTx1GR/VdT2MbTr4f6 BMRbDpCSUdPSB9B4ouE+jQqmFm3HrZxbifMZzZI84rfk7z/foIn3GsMB9Iuy rkqAWRAgRWWKeziMwilz/ihRtoMoBSpd7nHtUfSBlNPjXJco4yBKVaKU5NDP 1jl/kR1HwI79UomMpOMz3vGm7NgEOw6LYkJ21G8luyX9qR/sOCY7XuXN74hO FWzepFI9Tfon3vwfsnkRbF6Tzf/Km38lm+ei3FcPiX7Jm38tm6eiUq6i3+XN /yWbe1tS+9RbO2qj//BG92Sjb3iBauGv0PvyXn/+5X52tv0Pshd9DA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 270.75}, {297.125, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"5721c248-0f7a-4afa-b9e6-c92ef148100c"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(73\\). \\!\\(\\\"parabigyrate rhombicosidodecahedron \ (J73)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"b1a28a1f-bc49-4b84-ab8e-a06364def07d"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.08331 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.055829 1.16346 -3.33067e-16 1.16346 [ [ 0 0 0 0 ] [ 1 1.08331 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.08331 L 0 1.08331 L closepath clip newpath .5 Mabswid [ ] 0 setdash .46749 .64383 m .52408 .5291 L .41436 .47127 L p .764 .637 .721 r F P 0 g s .5281 .40803 m .41436 .47127 L .52408 .5291 L closepath p .728 .66 .782 r F P 0 g s .67213 .67031 m .64985 .54399 L .52408 .5291 L p .672 .524 .676 r F P 0 g s .55779 .73224 m .67213 .67031 L p .52408 .5291 L .672 .524 .676 r F P 0 g s .52408 .5291 m .46749 .64383 L .55779 .73224 L p .672 .524 .676 r F P 0 g s .5281 .40803 m .52408 .5291 L .64985 .54399 L p .655 .598 .778 r F P 0 g s .46737 .80799 m .55779 .73224 L .46749 .64383 L p .742 .517 .588 r F P 0 g s .46749 .64383 m .3757 .71597 L .46737 .80799 L p .742 .517 .588 r F P 0 g s .35636 .58787 m .3757 .71597 L .46749 .64383 L closepath p .792 .606 .65 r F P 0 g s .41436 .47127 m .35636 .58787 L .46749 .64383 L p .764 .637 .721 r F P 0 g s .77689 .64069 m .75263 .50996 L .64985 .54399 L p .537 .432 .683 r F P 0 g s .64985 .54399 m .67213 .67031 L .77689 .64069 L p .537 .432 .683 r F P 0 g s .65684 .42187 m .64985 .54399 L .75263 .50996 L closepath p .565 .519 .763 r F P 0 g s .64985 .54399 m .65684 .42187 L .5281 .40803 L p .655 .598 .778 r F P 0 g s .65585 .78759 m .55779 .73224 L .46737 .80799 L p .646 .367 .481 r F P 0 g s .55779 .73224 m .65585 .78759 L .67213 .67031 L closepath p .612 .404 .576 r F P 0 g s .35636 .58787 m .41436 .47127 L .35666 .38695 L p .862 .768 .757 r F P 0 g s .41436 .47127 m .5281 .40803 L .47494 .32059 L p .756 .746 .844 r F P 0 g s .47494 .32059 m .35666 .38695 L .41436 .47127 L p .756 .746 .844 r F P 0 g s .3757 .71597 m .35636 .58787 L .25826 .58354 L p .868 .657 .615 r F P 0 g s .25826 .58354 m .35636 .58787 L p .35666 .38695 L .862 .768 .757 r F P 0 g s .76319 .76165 m .77689 .64069 L .67213 .67031 L p .488 .295 .544 r F P 0 g s .67213 .67031 m .65585 .78759 L .76319 .76165 L p .488 .295 .544 r F P 0 g s .5766 .27577 m .47494 .32059 L .5281 .40803 L p .604 .683 .897 r F P 0 g s .69277 .34241 m .5766 .27577 L p .5281 .40803 L .604 .683 .897 r F P 0 g s .5281 .40803 m .65684 .42187 L .69277 .34241 L p .604 .683 .897 r F P 0 g s .46737 .80799 m .3757 .71597 L .27738 .7174 L p .82 .477 .407 r F P 0 g s .25826 .58354 m .27738 .7174 L .3757 .71597 L p .868 .657 .615 r F P 0 g s .79403 .43386 m .69277 .34241 L .65684 .42187 L p .448 .499 .818 r F P 0 g s .65684 .42187 m .75263 .50996 L .79403 .43386 L p .448 .499 .818 r F P 0 g s .43159 .87459 m .46737 .80799 L p .27738 .7174 L .82 .477 .407 r F P 0 g s .46737 .80799 m .43159 .87459 L .56521 .86772 L closepath p .68 .306 .332 r F P 0 g s .46737 .80799 m .56521 .86772 L .65585 .78759 L p .646 .367 .481 r F P 0 g s .84903 .52338 m .79403 .43386 L .75263 .50996 L p .209 .204 .633 r F P 0 g s .83641 .65658 m .84903 .52338 L p .75263 .50996 L .209 .204 .633 r F P 0 g s .75263 .50996 m .77689 .64069 L .83641 .65658 L p .209 .204 .633 r F P 0 g s .76319 .76165 m .65585 .78759 L .56521 .86772 L p .34 0 .179 r F P 0 g s .77689 .64069 m .76319 .76165 L .83641 .65658 L closepath p .26 .102 .468 r F P 0 g s .35666 .38695 m .25604 .45544 L .25826 .58354 L p .862 .768 .757 r F P 0 g s .31499 .34174 m .25604 .45544 L .35666 .38695 L closepath p .883 .918 .844 r F P 0 g s .35666 .38695 m .47494 .32059 L .44016 .27116 L p .77 .903 .934 r F P 0 g s .44016 .27116 m .31499 .34174 L .35666 .38695 L p .77 .903 .934 r F P 0 g s .5766 .27577 m .44016 .27116 L .47494 .32059 L closepath p .614 .837 .985 r F P 0 g s .25826 .58354 m .20989 .6388 L .27738 .7174 L closepath p .96 .717 .524 r F P 0 g s .20989 .6388 m .25826 .58354 L .25604 .45544 L p .994 .858 .591 r F P 0 g s .27738 .7174 m .30825 .81745 L .43159 .87459 L p .82 .477 .407 r F P 0 g s .30825 .81745 m .27738 .7174 L .20989 .6388 L p .92 .528 .15 r F P 0 g s .74292 .82867 m .76319 .76165 L p .56521 .86772 L .34 0 .179 r F P 0 g s .56521 .86772 m .61318 .89787 L .74292 .82867 L p .34 0 .179 r F P 0 g s .61318 .89787 m .56521 .86772 L .43159 .87459 L p .434 0 0 r F P 0 g s .62643 .26958 m .5766 .27577 L .69277 .34241 L p .135 .54 .921 r F P 0 g s .69277 .34241 m .74871 .34043 L .62643 .26958 L p .135 .54 .921 r F P 0 g s .69277 .34241 m .79403 .43386 L .74871 .34043 L closepath p .164 .408 .85 r F P 0 g s .81991 .71932 m .83641 .65658 L .76319 .76165 L p 0 0 0 r F P 0 g s .76319 .76165 m .74292 .82867 L .81991 .71932 L p 0 0 0 r F P 0 g s .25604 .45544 m .31499 .34174 L .26728 .38565 L p .844 .961 .626 r F P 0 g s .26728 .38565 m .20629 .50468 L .25604 .45544 L p .844 .961 .626 r F P 0 g s .25604 .45544 m .20629 .50468 L .20989 .6388 L p .994 .858 .591 r F P 0 g s .8042 .42981 m .74871 .34043 L .79403 .43386 L p 0 0 .457 r F P 0 g s .79403 .43386 m .84903 .52338 L .8042 .42981 L p 0 0 .457 r F P 0 g s .4722 .90579 m .43159 .87459 L .30825 .81745 L p .473 0 0 r F P 0 g s .43159 .87459 m .4722 .90579 L .61318 .89787 L p .434 0 0 r F P 0 g s .44016 .27116 m .5766 .27577 L .62643 .26958 L p .108 .657 .817 r F P 0 g s .83285 .57965 m .84903 .52338 L .83641 .65658 L p .837 .752 .236 r F P 0 g s .83641 .65658 m .81991 .71932 L .83285 .57965 L p .837 .752 .236 r F P 0 g s .62643 .26958 m .48231 .26454 L .44016 .27116 L p .108 .657 .817 r F P 0 g s .31499 .34174 m .44016 .27116 L .48231 .26454 L p 0 0 0 r F P 0 g s .26728 .38565 m .31499 .34174 L p .48231 .26454 L 0 0 0 r F P 0 g s .30825 .81745 m .34187 .84566 L .4722 .90579 L p .473 0 0 r F P 0 g s .20989 .6388 m .23908 .7399 L .30825 .81745 L p .92 .528 .15 r F P 0 g s .23908 .7399 m .34187 .84566 L .30825 .81745 L closepath p 0 .047 .565 r F P 0 g s .20989 .6388 m .20629 .50468 L .23418 .5132 L p 0 0 .427 r F P 0 g s .23908 .7399 m .20989 .6388 L p .23418 .5132 L 0 0 .427 r F P 0 g s .72255 .80806 m .74292 .82867 L .61318 .89787 L p .646 .965 .907 r F P 0 g s .61318 .89787 m .58448 .88189 L .72255 .80806 L p .646 .965 .907 r F P 0 g s .4722 .90579 m .58448 .88189 L .61318 .89787 L closepath p .339 .806 .923 r F P 0 g s .84903 .52338 m .83285 .57965 L .8042 .42981 L closepath p .967 .681 .265 r F P 0 g s .59589 .31118 m .62643 .26958 L .74871 .34043 L p .814 .366 .174 r F P 0 g s .71111 .4162 m .59589 .31118 L p .74871 .34043 L .814 .366 .174 r F P 0 g s .74871 .34043 m .8042 .42981 L .71111 .4162 L p .814 .366 .174 r F P 0 g s .74292 .82867 m .72255 .80806 L .81991 .71932 L closepath p .833 .997 .772 r F P 0 g s .26728 .38565 m .23418 .5132 L .20629 .50468 L closepath p 0 0 .168 r F P 0 g s .58448 .88189 m .4722 .90579 L .34187 .84566 L p .518 .706 .956 r F P 0 g s .62643 .26958 m .59589 .31118 L .48231 .26454 L closepath p .578 .075 .024 r F P 0 g s .34187 .84566 m .23908 .7399 L .25599 .66717 L p .26 .416 .829 r F P 0 g s .23418 .5132 m .25599 .66717 L .23908 .7399 L p 0 0 .427 r F P 0 g s .74006 .57397 m .83285 .57965 L .81991 .71932 L p .911 .837 .759 r F P 0 g s .66795 .72239 m .74006 .57397 L p .81991 .71932 L .911 .837 .759 r F P 0 g s .81991 .71932 m .72255 .80806 L .66795 .72239 L p .911 .837 .759 r F P 0 g s .48231 .26454 m .37218 .33822 L .26728 .38565 L p 0 0 0 r F P 0 g s .23418 .5132 m .26728 .38565 L .37218 .33822 L p .352 .132 .434 r F P 0 g s .52313 .80053 m .58448 .88189 L p .34187 .84566 L .518 .706 .956 r F P 0 g s .34187 .84566 m .36516 .77797 L .52313 .80053 L p .518 .706 .956 r F P 0 g s .25599 .66717 m .36516 .77797 L .34187 .84566 L p .26 .416 .829 r F P 0 g s .37218 .33822 m .48231 .26454 L .59589 .31118 L p .597 .252 .356 r F P 0 g s .74006 .57397 m .71111 .4162 L .8042 .42981 L p .921 .677 .552 r F P 0 g s .8042 .42981 m .83285 .57965 L .74006 .57397 L p .921 .677 .552 r F P 0 g s .72255 .80806 m .58448 .88189 L .52313 .80053 L p .763 .808 .889 r F P 0 g s .52313 .80053 m .66795 .72239 L .72255 .80806 L p .763 .808 .889 r F P 0 g s .25599 .66717 m .23418 .5132 L .34136 .46994 L p .458 .365 .662 r F P 0 g s .37218 .33822 m .34136 .46994 L .23418 .5132 L p .352 .132 .434 r F P 0 g s .48522 .38969 m .34136 .46994 L .37218 .33822 L closepath p .565 .328 .515 r F P 0 g s .59589 .31118 m .48522 .38969 L .37218 .33822 L p .597 .252 .356 r F P 0 g s .36565 .63052 m .36516 .77797 L .25599 .66717 L closepath p .497 .488 .777 r F P 0 g s .34136 .46994 m .36565 .63052 L .25599 .66717 L p .458 .365 .662 r F P 0 g s .48522 .38969 m .59589 .31118 L .71111 .4162 L p .75 .49 .538 r F P 0 g s .36516 .77797 m .36565 .63052 L .52832 .65156 L p .634 .603 .8 r F P 0 g s .52832 .65156 m .52313 .80053 L .36516 .77797 L p .634 .603 .8 r F P 0 g s .71111 .4162 m .74006 .57397 L .60276 .50001 L closepath p .819 .613 .625 r F P 0 g s .71111 .4162 m .60276 .50001 L .48522 .38969 L p .75 .49 .538 r F P 0 g s .66795 .72239 m .52313 .80053 L .52832 .65156 L closepath p .733 .686 .805 r F P 0 g s .34136 .46994 m .48522 .38969 L .60276 .50001 L p .66 .507 .666 r F P 0 g s .36565 .63052 m .34136 .46994 L p .60276 .50001 L .66 .507 .666 r F P 0 g s .52832 .65156 m .60276 .50001 L .74006 .57397 L p .782 .656 .724 r F P 0 g s .74006 .57397 m .66795 .72239 L .52832 .65156 L p .782 .656 .724 r F P 0 g s .60276 .50001 m .52832 .65156 L .36565 .63052 L p .66 .507 .666 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{184.562, 199.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm8uLHFUUxiv16Hd1T3fPIzPJvDKZTDITk2jMQ43mpYmvGIghC0MWIQiJ MESi7hQR3bgQBDcigiCID1A3LiIuFMXHQoKC5h9wo+hSyLK959xbp6u7vtu5 k+4JURyoWz1V95zvd859Vk/NsbPPnn9y+eyzF86dnTl66ezT5y+ce2bmyMVL 6lKwxvO8y+r4fsajzy310RSXW+pH3fz/NJjTSTo1KLcn9IXjdCrQhaD15oHT AX0qtt5o5qr06X5d6RidinQhT5V8+tSkSl5IH1s/ndnaMk12SFs8Km7LYjHE FoFYqMPzudTXzI+3X7t4WESrQlYBLkIqWcAYPkinEl1oiHYJGObE8F5teEQM R8UwDwyLYniPNuQ0lenCuKCGwLAshndpw8OiOCWKykZZJnZeDWRot7Y+KLIz IlsXCVNpv1SapUpexJ6+fOFVOTzOVGJ2pzbjlFTEN9+KqHpXSG29O7Thvk5D U91oqZxnXTRAhNu1s7vF2SxwVrA5Yx7jgjMd04VpCaQCDJuAYqt2sVdSqO4/ MXuR67z++Mu69jpAFjuGaQT2SFcPyb+ppBRYxaeSucckgrqjwJIW2C3DMQIC kQgMg1gajlKLWmoXnfJ66GSl8lTypZrEMkoCfivphdgtd8tID+Ws25JEUAER rAURDAGpLVpqJ51C7SwrVRGpIpCaAFJoBBspHjN8JwZSNUlWKMmachTYrAVu 55O+RT2XRKpAqiFR6XUgCUoNYje9hZXpNSW0DUCgahfYQSeznGTd1iWMoPXB Sx91NQ6KBUltSkk5xDIkork+ROe16Pae8dXa0w5JsVzeUTS+UdFY4iv3IbVR S20TqTqQKotUFUhNU5nTc4BV4LZUq3lq/vMsUbWnjDqQmkxF9fPb77CXsPXn x6/xLI12LXMrky+k5tys/DouQ5E3CDER8FUTrF4/wpTakq0V86DrjADptTIb ByRr7ipdOlSzUNkZ+YY0S2fkqI3bq804kB/tSjwhhACEU8FeTOKX3FMRCsF6 QDAMCKIBE7SX9GlAUJcmKNiawNdTJ+suYl2Ue2OWlayBoAcpTp1hHujGQLfo oqsX0KhLNzXe2H4BSJYku5XrdPBrnxxmf7NpSdy+7G8RqBVAgLGtN2HdzT1C jSVUZfvcmQ+T4Q1ZcoCl6piDGc2ykBnkS9yplrrWyaIkJSSsrnkHwQXSLPXV QcpJqnIAaYlL/HDUtAKFAmSgpjXTJkemSNJUsjK10+TxarFaLL7kpwJYtlLJ pCPW3ht1ECTNNKUx5mXhD6G4R48EFl0T2w/vf26igE3iCiG5WOZbOd3neqef pNWhOKnsHEJD7k1ixVjmDCybazSQiafhSBVQafZvNhacl8n+gRYBUE6A7PPL QICaAGgLACoIkMukrw6lRmXnTmeif7jNAK4scGWHleEG4ALHpkRwMejxaGdw EzEXAGZNcmjdtmTgPNoArgpNXWhyq0iD+tc8oBkWGrSTvtk0o0LjO8wNdL76 1T6eGwYAtBEAjXOZediqdU3hZuXpMUH1AzFBZaCncKUbpKQ29dE554DUJJX8 pXM+1fRJkldT1Fz74+rXdCh5VfK3kuqG0WfZ9StjQDmedWSocdlXCm5B+RlH +aH/pPy0o3x9ZfKhY/e/ifIo+skVyYcibxD+dQTcBLyJn3DUbYDET6VE80CF n00CM1e9+Px3fPPdt35Uv6mS/97RHJC8Q8wVoQkJxtxVIIxUFKSyI1Kzf6Si IOUB0pAghauDFAGkSJBKAGmMSt5oTAH5Ybv8gmNGfJGPgfwEl7rzf/HpFeNN LX0DZ6Hq5uHw+hjm8PV4GgyLeV/AJh6kxdVvifwYkB+xy2+2rRh+69BTv5gb NHKJw56KTppIaEZsNOZr3N4MJsMKhA+PvnFwI8gLQQMQjLoQpJ9NDYGHklJ1 RCoK0tAgkQKAZB85nUhlQYptSF29xsB1fo+8nDro2S0LVHEEigWo3DNHM9fH yAOMsiNGTTAKAGMMY4RdGKrBswRoSkUEdSHI9UFQAgRFR4KmEASAYG03wWKm u1IbZuULjvIjIq/1E3X13NnuleYn6ZWIoQIY0FKLGEZTc3oS7qxdKgZSOUep 4XS431z5TcJdmwr319a3XMMwLKUYktkAMUQraXFzjRDUoWYcKu2rSYK0wY5U BUho/3W9YZAFaQKQOTtIDYAENzAjZEEaqS05gRgYw7LVkcW/gUkyyzKEWcDf +TtZojRLsldXG6usfgX0E0RSwyTm7YltVpKwg8QCUZIk1IB0jKXNKyrbHRrE FnwhtbHI6pZknghIs2uaMm2wwybv24LNg4wj+WLXgCAEH4CYJrjdBsKJG++5 sRsF8nlHedMMd1gnC91wr3z2d3Lwg2qz5753HABFAAg1TBrI/P2l3RsMgmr5 BCTusftfBzBCRwzzstZOwYgBRpXKSM9EWQyPNvZZAt+RwLz/dqcQVABBUxLh EwHfnGbRKC3Kh8dTt1VolwiVgNAElXxpQ1dMNrfmBcHd4rYI3K7nsnM0zaYE kgSFQMC8V7lHBPJAYAoITFJpvr9/79rvDqPEvIS6V6RyQGoaSE2IVMRSUcc0 mCyUeiXQ7wr3eKRIhGaA0JgIFbpiIgE9wZuXvaO0QPIwpybErNNhcVoip+mX kvkl6ewzIfLSAF70dKff0fZBiHPATw342an93JfKXOJiHriIU11LueBMFcTZ Lu3sgLQyclESiqIY7tGGh8QQ4ReAoXmJnt++59qzwDAChua1/aOiiPqEDwzN Pwo8JIa614Zi6PEuOmWxX1s8IhY8pNpdjT8d1JWOSaVRqsRew9apK3+Zv90l 1Q/r6scl7vZMWqLqhsc0EX1+QFucEIGCCLAFfzN3VFc6KZV8qaRSo2ol0Xn8 LvxjuvopOrH9aX3hlvg/l1U8eWv+AYpdWnA=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 183.562}, {198.938, \ 0.}} -> {0.047981, -0.00019759, 0.0046824, \ 0.0046824}},ExpressionUUID->"588911e1-b7b9-4c42-aebb-f1873ebab3b7"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(74\\). \\!\\(\\\"metabigyrate rhombicosidodecahedron \ (J74)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"0c0b62fd-e2af-4ba3-b2c9-32aa0effcb3f"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.07551 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.052476 1.15791 0 1.15791 [ [ 0 0 0 0 ] [ 1 1.07551 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.07551 L 0 1.07551 L closepath clip newpath .5 Mabswid [ ] 0 setdash .5937 .63575 m .5629 .5111 L .43519 .50085 L p .729 .588 .698 r F P 0 g s .71131 .60753 m .67966 .47995 L .5629 .5111 L p .622 .521 .719 r F P 0 g s .5629 .5111 m .5937 .63575 L .71131 .60753 L p .622 .521 .719 r F P 0 g s .57997 .39431 m .5629 .5111 L .67966 .47995 L closepath p .638 .593 .787 r F P 0 g s .5629 .5111 m .57997 .39431 L .44886 .38299 L p .713 .663 .799 r F P 0 g s .44886 .38299 m .43519 .50085 L .5629 .5111 L p .713 .663 .799 r F P 0 g s .72033 .73034 m .71131 .60753 L .5937 .63575 L p .593 .42 .617 r F P 0 g s .5937 .63575 m .59965 .75633 L .72033 .73034 L p .593 .42 .617 r F P 0 g s .48518 .70394 m .59965 .75633 L .5937 .63575 L closepath p .677 .485 .619 r F P 0 g s .48518 .70394 m .5937 .63575 L p .43519 .50085 L .729 .588 .698 r F P 0 g s .38635 .62039 m .43519 .50085 L .33566 .45161 L p .823 .701 .73 r F P 0 g s .44886 .38299 m .33566 .45161 L .43519 .50085 L closepath p .785 .729 .8 r F P 0 g s .43519 .50085 m .38635 .62039 L .48518 .70394 L p .729 .588 .698 r F P 0 g s .41921 .79196 m .48518 .70394 L .38635 .62039 L p .791 .566 .596 r F P 0 g s .59965 .75633 m .48518 .70394 L .41921 .79196 L p .701 .441 .528 r F P 0 g s .38635 .62039 m .31657 .70569 L .41921 .79196 L p .791 .566 .596 r F P 0 g s .28459 .57511 m .31657 .70569 L .38635 .62039 L closepath p .849 .658 .644 r F P 0 g s .33566 .45161 m .28459 .57511 L .38635 .62039 L p .823 .701 .73 r F P 0 g s .82611 .50882 m .74698 .41477 L .67966 .47995 L p .435 .399 .72 r F P 0 g s .80075 .63096 m .82611 .50882 L p .67966 .47995 L .435 .399 .72 r F P 0 g s .67966 .47995 m .71131 .60753 L .80075 .63096 L p .435 .399 .72 r F P 0 g s .57997 .39431 m .67966 .47995 L .74698 .41477 L p .548 .582 .841 r F P 0 g s .71131 .60753 m .72033 .73034 L .80075 .63096 L closepath p .472 .33 .606 r F P 0 g s .72033 .73034 m .59965 .75633 L .53671 .84783 L p .514 .215 .397 r F P 0 g s .41921 .79196 m .53671 .84783 L .59965 .75633 L p .701 .441 .528 r F P 0 g s .44886 .38299 m .57997 .39431 L .64282 .32484 L p .651 .751 .923 r F P 0 g s .74698 .41477 m .64282 .32484 L .57997 .39431 L p .548 .582 .841 r F P 0 g s .54395 .26547 m .42032 .30479 L .44886 .38299 L p .651 .751 .923 r F P 0 g s .64282 .32484 m .54395 .26547 L p .44886 .38299 L .651 .751 .923 r F P 0 g s .33566 .45161 m .44886 .38299 L .42032 .30479 L p .811 .836 .869 r F P 0 g s .28459 .57511 m .33566 .45161 L .30095 .37641 L p .941 .865 .735 r F P 0 g s .42032 .30479 m .30095 .37641 L .33566 .45161 L p .811 .836 .869 r F P 0 g s .41921 .79196 m .31657 .70569 L .24706 .72481 L p .848 .475 .346 r F P 0 g s .4225 .8718 m .41921 .79196 L p .24706 .72481 L .848 .475 .346 r F P 0 g s .41921 .79196 m .4225 .8718 L .53671 .84783 L closepath p .718 .362 .374 r F P 0 g s .31657 .70569 m .28459 .57511 L .21335 .58684 L p .936 .702 .559 r F P 0 g s .21335 .58684 m .28459 .57511 L p .30095 .37641 L .941 .865 .735 r F P 0 g s .21335 .58684 m .24706 .72481 L .31657 .70569 L p .936 .702 .559 r F P 0 g s .82528 .70424 m .80075 .63096 L .72033 .73034 L p .273 .076 .42 r F P 0 g s .72033 .73034 m .73994 .80731 L .82528 .70424 L p .273 .076 .42 r F P 0 g s .73994 .80731 m .72033 .73034 L p .53671 .84783 L .514 .215 .397 r F P 0 g s .53671 .84783 m .62097 .88413 L .73994 .80731 L p .514 .215 .397 r F P 0 g s .62097 .88413 m .53671 .84783 L .4225 .8718 L p .534 .052 .059 r F P 0 g s .67587 .29208 m .64282 .32484 L .74698 .41477 L p .239 .486 .891 r F P 0 g s .74698 .41477 m .7864 .38775 L .67587 .29208 L p .239 .486 .891 r F P 0 g s .74698 .41477 m .82611 .50882 L .7864 .38775 L closepath p .146 .298 .762 r F P 0 g s .85285 .5774 m .82611 .50882 L .80075 .63096 L p 0 0 .417 r F P 0 g s .80075 .63096 m .82528 .70424 L .85285 .5774 L p 0 0 .417 r F P 0 g s .64282 .32484 m .67587 .29208 L .54395 .26547 L closepath p .353 .668 .974 r F P 0 g s .42032 .30479 m .35411 .30112 L .30095 .37641 L closepath p .776 .971 .92 r F P 0 g s .35411 .30112 m .42032 .30479 L .54395 .26547 L p .473 .885 .933 r F P 0 g s .30095 .37641 m .2217 .45956 L .21335 .58684 L p .941 .865 .735 r F P 0 g s .2217 .45956 m .30095 .37641 L .35411 .30112 L p .695 .93 .617 r F P 0 g s .50401 .91069 m .4225 .8718 L .31281 .83203 L p .376 0 0 r F P 0 g s .24706 .72481 m .31281 .83203 L .4225 .8718 L p .848 .475 .346 r F P 0 g s .4225 .8718 m .50401 .91069 L .62097 .88413 L p .534 .052 .059 r F P 0 g s .81167 .45139 m .7864 .38775 L .82611 .50882 L p 0 0 .286 r F P 0 g s .82611 .50882 m .85285 .5774 L .81167 .45139 L p 0 0 .286 r F P 0 g s .21335 .58684 m .20507 .65993 L .24706 .72481 L closepath p .965 .673 .258 r F P 0 g s .20507 .65993 m .21335 .58684 L .2217 .45956 L p .753 .659 .104 r F P 0 g s .73994 .80731 m .76465 .80366 L .82528 .70424 L closepath p 0 0 0 r F P 0 g s .76465 .80366 m .73994 .80731 L .62097 .88413 L p 0 0 0 r F P 0 g s .31281 .83203 m .24706 .72481 L .20507 .65993 L p .627 .207 0 r F P 0 g s .62097 .88413 m .63804 .88552 L .76465 .80366 L p 0 0 0 r F P 0 g s .50401 .91069 m .63804 .88552 L .62097 .88413 L closepath p 0 0 0 r F P 0 g s .54395 .26547 m .48338 .25933 L .35411 .30112 L p .473 .885 .933 r F P 0 g s .48338 .25933 m .54395 .26547 L .67587 .29208 L p .217 0 0 r F P 0 g s .80884 .59072 m .85285 .5774 L .82528 .70424 L p .963 .938 .639 r F P 0 g s .75079 .73902 m .80884 .59072 L p .82528 .70424 L .963 .938 .639 r F P 0 g s .82528 .70424 m .76465 .80366 L .75079 .73902 L p .963 .938 .639 r F P 0 g s .62191 .28743 m .67587 .29208 L .7864 .38775 L p .804 .315 .013 r F P 0 g s .70747 .38988 m .62191 .28743 L p .7864 .38775 L .804 .315 .013 r F P 0 g s .7864 .38775 m .81167 .45139 L .70747 .38988 L p .804 .315 .013 r F P 0 g s .2217 .45956 m .21365 .52749 L .20507 .65993 L p .753 .659 .104 r F P 0 g s .35411 .30112 m .27288 .38553 L .2217 .45956 L p .695 .93 .617 r F P 0 g s .27288 .38553 m .21365 .52749 L .2217 .45956 L closepath p 0 0 .059 r F P 0 g s .31281 .83203 m .39174 .87037 L .50401 .91069 L p .376 0 0 r F P 0 g s .20507 .65993 m .27321 .77116 L .31281 .83203 L p .627 .207 0 r F P 0 g s .27321 .77116 m .39174 .87037 L .31281 .83203 L closepath p 0 .352 .822 r F P 0 g s .67587 .29208 m .62191 .28743 L .48338 .25933 L p .217 0 0 r F P 0 g s .27288 .38553 m .35411 .30112 L .48338 .25933 L p .351 0 .172 r F P 0 g s .63804 .88552 m .50401 .91069 L .39174 .87037 L p .571 .802 .986 r F P 0 g s .85285 .5774 m .80884 .59072 L .81167 .45139 L closepath p .995 .756 .439 r F P 0 g s .20507 .65993 m .21365 .52749 L .29161 .55078 L p .268 .285 .693 r F P 0 g s .27321 .77116 m .20507 .65993 L p .29161 .55078 L .268 .285 .693 r F P 0 g s .6164 .82526 m .75079 .73902 L .76465 .80366 L p .818 .935 .907 r F P 0 g s .76465 .80366 m .63804 .88552 L .6164 .82526 L p .818 .935 .907 r F P 0 g s .3537 .40066 m .27288 .38553 L p .48338 .25933 L .351 0 .172 r F P 0 g s .48338 .25933 m .49108 .31774 L .3537 .40066 L p .351 0 .172 r F P 0 g s .62191 .28743 m .49108 .31774 L .48338 .25933 L closepath p .579 .128 .146 r F P 0 g s .6164 .82526 m .63804 .88552 L p .39174 .87037 L .571 .802 .986 r F P 0 g s .21365 .52749 m .27288 .38553 L .3537 .40066 L p .342 .166 .491 r F P 0 g s .39174 .87037 m .45549 .81488 L .6164 .82526 L p .571 .802 .986 r F P 0 g s .39174 .87037 m .27321 .77116 L .33058 .70986 L p .449 .565 .88 r F P 0 g s .33058 .70986 m .45549 .81488 L .39174 .87037 L p .449 .565 .88 r F P 0 g s .70124 .53335 m .70747 .38988 L .81167 .45139 L p .903 .658 .558 r F P 0 g s .81167 .45139 m .80884 .59072 L .70124 .53335 L p .903 .658 .558 r F P 0 g s .3537 .40066 m .29161 .55078 L .21365 .52749 L p .342 .166 .491 r F P 0 g s .29161 .55078 m .33058 .70986 L .27321 .77116 L p .268 .285 .693 r F P 0 g s .49108 .31774 m .62191 .28743 L .70747 .38988 L p .74 .418 .437 r F P 0 g s .63995 .68779 m .70124 .53335 L .80884 .59072 L p .861 .743 .731 r F P 0 g s .80884 .59072 m .75079 .73902 L .63995 .68779 L p .861 .743 .731 r F P 0 g s .75079 .73902 m .6164 .82526 L .63995 .68779 L closepath p .808 .783 .829 r F P 0 g s .70747 .38988 m .57494 .42501 L .49108 .31774 L p .74 .418 .437 r F P 0 g s .43326 .51199 m .3537 .40066 L .49108 .31774 L p .642 .412 .554 r F P 0 g s .49108 .31774 m .57494 .42501 L .43326 .51199 L p .642 .412 .554 r F P 0 g s .70747 .38988 m .70124 .53335 L .57494 .42501 L closepath p .801 .566 .581 r F P 0 g s .63995 .68779 m .6164 .82526 L .45549 .81488 L p .712 .691 .828 r F P 0 g s .3537 .40066 m .43326 .51199 L .29161 .55078 L closepath p .556 .391 .613 r F P 0 g s .4736 .67588 m .45549 .81488 L .33058 .70986 L closepath p .608 .595 .812 r F P 0 g s .45549 .81488 m .4736 .67588 L .63995 .68779 L p .712 .691 .828 r F P 0 g s .33058 .70986 m .29161 .55078 L .43326 .51199 L p .591 .501 .721 r F P 0 g s .43326 .51199 m .4736 .67588 L .33058 .70986 L p .591 .501 .721 r F P 0 g s .43326 .51199 m .57494 .42501 L .70124 .53335 L p .735 .591 .695 r F P 0 g s .4736 .67588 m .43326 .51199 L p .70124 .53335 L .735 .591 .695 r F P 0 g s .70124 .53335 m .63995 .68779 L .4736 .67588 L p .735 .591 .695 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{185.938, 199.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm8uPFEUcx5vp7pmeZ89j37vszr6XfQHyFkUFgkSCQaMhkHjYoAnEGAhy NfEfkBBDgokeTPTgUS5G4iPxpBc0Po5ePOlNT56Maz1+/dvqnm/P1OwsIuom XT3bXfP7fOpX1dU1uz2n165dfOmVtWuXLqw1n7y6duXipQuvNk9cvioOudsc x7kjti+bjny9Ll5ScWdd/IiT/++2ZndW7vIyt+f0gefkzpUHMuvnnGXHky/X bzZno60gDzyrK5+RO1XDV5Vds7KT5eqndfXTHDsPqhe5+kld/SmuXgLVq1z9 mK5+gmVCUL2fqx/R1Y9x9D5QPZSlr9Pw2cuX6ezdM67cHFWqs4d1sCfkLiMP DIJgBQ4WgGA5CimP0Y9z0AhLp0RYFXoAAHwGVCwBBzTgcQBALfB1nuxi79ex H0uLrfpoJC2YyiKFONJB7/1Lb6hpYQwEywOzPTrso2lpVWxXhqWzIqwKjWwR 4CENeKRDv0lvCfF6QO3WqMMA1c9tCboBqHdQ2IdB2D4OW7QMWwDeqxpwKA2Q SJEtqghQKxp1EKAa3JawB8CyBhxIAyTaUu0BtaRR+wGqzm3p6wag3kFh96WF TbSgHwCGAaAMWrCgUXsBqsYtGLJsAQLMa8AeAKgyYLQHwJwGqIu85UYTpWis B8CsAaA779nF16KN7iBRS5oANCRL9cY24XcbCaLQYuqNABnQpkmAajAqs373 xk3S/fmD6+u0WCsBgxltsEvuMvp+Jbjq1QxghMzIJhi0qXeiWaYFFKpmxps1 DZAFRhYU0jWR4jdddroFEn4nxF9/8R1115oFeJ/xFYD3uM0BgE5r6KrRvRLs MN5jPCkgA1WpDuBZhmc7wGGLxSZGiizjnTAlS3VoAEADhvoAOqWhK6kt7ozX Q1uN/PVPb93mTcboB0IFFnI7CKlKVaDhAo1xWVI7BT4aYjduKgXUHSVV+uZQ VJsUp85YtsyLD4RGWSgAQjUgVObMOGxiJmXJmNW0TZg2TrJAaNgYq9RJYtnS qlYFaiGrTZsunTOTAyKDnJkywIcAXzNmjWikNLXIon1SAuDSxy5V4IKmkDYu O+xdCsClDjqoJstM2nS2NS5F4BJyXgZAXtDMXuchMmkadB4iJYCvgFQMApH8 VoqUgUiR8zAK8IENfsG+JyrAIGCDcWCQSzOgY39+cUW1t2m6dE5FFYhkQZ9M AKXs36fkcW6m+TrZDD71fltXpWdCGTkP2u6mwj2Gk8CEDb+RaLQUXwTczOa4 iTVsOc1AHVpWXN/kqk069bVlzbdtYyhLWgffev3jxAhbUqUXozLQjwGjnh1P Uitpsw6tjFupy4kcO10g1btQKgNGFtOQSreRGK1iE6mRZXymHzOgdOr4ydty 078V0lYqru6KVocVdkheMZtyECX9bTNlKUlL5RQR6vUfP/+EJgcxB7RaucBq NN0qJ0tXj7boE9tAhxEgDcQm3iFKGlE9ixRYZMQS76kyfpEXexcpbowYKaJk kNISUPI5I0jEAyIjvYssApGARfLdicwBkTIQGbYUKbBI7v6KlFjEByI+EBnu TgR1zQIQCcGwzaTlhpZa90SkyhnJgNuV2FR18abff3svSky73qlY9s48cGnI MisPeRJn3xO9QPuNnpBtlGCE77LNKP9z9wYfWrZ+1hLv/yvxMwA/cH/xtq1v c+lXLfHT9xc/ZYnPpuNnAb72n8bXLfHNHvBjDzx+whKfe6DwDYAfssT3AXyQ jkfXvW3rt/fQ+u0ajxbF6MIblGVRHhq8N1DU5pos6R9cb7/1DZ396MPv5SZG tCjVH2+CHrqBlBYs81CWpVrF5YBSvyzVkzno3tcGvwPg0eyfZ3wR4MdUqdeY X3/1g9o7jl74JVzyvbt43DuhhQttqlLVMjn0J45FCyGx1781Ul1c00XcikVJ H6w3ZfPuXicy0jb0KJEdPsf4omXvEH4JJEOvkHWur974SW1qDNq55Nklb5mK Ce2yDFxKRseQi7h6ZamPCSWlZdtPRZbLWso10+WKQM4DcnVLuTIPabc7uRUg lwdyWSBXA3KjQK7GmdN2kRv0on8crAKvHPAKZKli29rU2abQHT4L8EWQlko3 aaFj3/76i8oPut7oP6A7gZIHlMpAqWQ5jELOTUYqWazc6F+iu4BcBsiFQC79 BhKXqyTypQVbNdFnm5imb2qqzVHzdTSSkBDqwLIxI7RqoE/39GTH7kS2HDVH tmYmsBTZmJqC7kTUs0J0u2jFo4UFwhdAxyARF4jEHlrSp5zz36mMIKWspVLA GSkpEd8Uif7GFT1UtscS7lvCcyAfFhp70zToD5mt8BEAz3LLQ4X0YkgnWlUR zdugaeIQaDda8yK0D9rdXmJfOwnPlJCvtwOmy81tSJJ6tRgPHq2PCACHu8Ph WxaK9GxkFBw8SkmBRZ5kGZ/w+rkDUXhHPia0caFEFwUxDlgy+mSZ18HgunvD fjU9sgsi1400vXn3D7mJ0S3KUM96gpZIj55hY0/NtgNUAWBQljkOm8gNAQ7x zOWBsBUQdlyV8dFZZW96uPswh0W2JRC2CcJWgLf59DjdYaPBWARhJ0HYEtua D8lvBEvY5kDYKRC2wGFjXxxouSpRvBkQLwCtp8hHWVjnN/KNrX2j2LMgdpZd 6bsTx+WOFr6tIeZACB/oUbATRsONjy+LIEqGRegbISeNER/hd8A3OtE3J5xT LJ8UlRk6qis9zZXMZEfmuq+cZ7jSiKyk7jO6NcZ3cup86pQ+dZZPFfjUGX3q PJ/K8Knn9akXuBPP6wP/iO8ibenO2fYXplIl/Q==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 184.938}, {198.938, \ 0.}} -> {0.0453153, -8.72294, 0.00466987, \ 0.00466987}},ExpressionUUID->"ce75c506-d9a8-47f2-8f08-2774aa1cfdcb"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(75\\). \\!\\(\\\"trigyrate rhombicosidodecahedron (J75)\\\"\ \\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"7bb58880-7cda-4864-abe1-63d91d51c64b"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.07914 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.053994 1.16126 0 1.16126 [ [ 0 0 0 0 ] [ 1 1.07914 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.07914 L 0 1.07914 L closepath clip newpath .5 Mabswid [ ] 0 setdash .61773 .63014 m .56841 .5116 L .44035 .52075 L p .717 .572 .69 r F P 0 g s .7277 .58294 m .67672 .46152 L .56841 .5116 L p .613 .521 .726 r F P 0 g s .56841 .5116 m .61773 .63014 L .7277 .58294 L p .613 .521 .726 r F P 0 g s .56466 .39239 m .56841 .5116 L .67672 .46152 L closepath p .642 .6 .791 r F P 0 g s .56841 .5116 m .56466 .39239 L .43327 .40134 L p .719 .661 .791 r F P 0 g s .43327 .40134 m .44035 .52075 L .56841 .5116 L p .719 .661 .791 r F P 0 g s .75291 .70231 m .7277 .58294 L .61773 .63014 L p .565 .405 .624 r F P 0 g s .61773 .63014 m .63943 .74765 L .75291 .70231 L p .565 .405 .624 r F P 0 g s .5199 .71368 m .63943 .74765 L .61773 .63014 L closepath p .653 .464 .616 r F P 0 g s .5199 .71368 m .61773 .63014 L p .44035 .52075 L .717 .572 .69 r F P 0 g s .40965 .6457 m .44035 .52075 L .33179 .48574 L p .816 .675 .707 r F P 0 g s .43327 .40134 m .33179 .48574 L .44035 .52075 L closepath p .791 .715 .78 r F P 0 g s .44035 .52075 m .40965 .6457 L .5199 .71368 L p .717 .572 .69 r F P 0 g s .4641 .80876 m .5199 .71368 L .40965 .6457 L p .765 .531 .578 r F P 0 g s .63943 .74765 m .5199 .71368 L .4641 .80876 L p .664 .404 .518 r F P 0 g s .40965 .6457 m .3499 .73836 L .4641 .80876 L p .765 .531 .578 r F P 0 g s .29947 .6145 m .3499 .73836 L .40965 .6457 L closepath p .83 .621 .62 r F P 0 g s .33179 .48574 m .29947 .6145 L .40965 .6457 L p .816 .675 .707 r F P 0 g s .81809 .46296 m .72833 .38405 L .67672 .46152 L p .421 .416 .748 r F P 0 g s .81524 .58988 m .81809 .46296 L p .67672 .46152 L .421 .416 .748 r F P 0 g s .67672 .46152 m .7277 .58294 L .81524 .58988 L p .421 .416 .748 r F P 0 g s .56466 .39239 m .67672 .46152 L .72833 .38405 L p .564 .608 .855 r F P 0 g s .43327 .40134 m .56466 .39239 L .61095 .31163 L p .688 .769 .913 r F P 0 g s .72833 .38405 m .61095 .31163 L .56466 .39239 L p .564 .608 .855 r F P 0 g s .7277 .58294 m .75291 .70231 L .81524 .58988 L closepath p .436 .321 .624 r F P 0 g s .75291 .70231 m .63943 .74765 L .58682 .84596 L p .445 .162 .388 r F P 0 g s .4641 .80876 m .58682 .84596 L .63943 .74765 L p .664 .404 .518 r F P 0 g s .5003 .2669 m .38799 .32633 L .43327 .40134 L p .688 .769 .913 r F P 0 g s .61095 .31163 m .5003 .2669 L p .43327 .40134 L .688 .769 .913 r F P 0 g s .33179 .48574 m .43327 .40134 L .38799 .32633 L p .832 .82 .838 r F P 0 g s .29947 .6145 m .33179 .48574 L .28112 .41453 L p .941 .817 .694 r F P 0 g s .38799 .32633 m .28112 .41453 L .33179 .48574 L p .832 .82 .838 r F P 0 g s .3499 .73836 m .29947 .6145 L .22545 .63357 L p .91 .645 .525 r F P 0 g s .22545 .63357 m .29947 .6145 L p .28112 .41453 L .941 .817 .694 r F P 0 g s .4641 .80876 m .3499 .73836 L .27837 .76429 L p .798 .407 .313 r F P 0 g s .4733 .88446 m .4641 .80876 L p .27837 .76429 L .798 .407 .313 r F P 0 g s .4641 .80876 m .4733 .88446 L .58682 .84596 L closepath p .663 .302 .349 r F P 0 g s .22545 .63357 m .27837 .76429 L .3499 .73836 L p .91 .645 .525 r F P 0 g s .84472 .65587 m .81524 .58988 L .75291 .70231 L p .181 .031 .428 r F P 0 g s .75291 .70231 m .77825 .77299 L .84472 .65587 L p .181 .031 .428 r F P 0 g s .77825 .77299 m .75291 .70231 L p .58682 .84596 L .445 .162 .388 r F P 0 g s .58682 .84596 m .67043 .86683 L .77825 .77299 L p .445 .162 .388 r F P 0 g s .67043 .86683 m .58682 .84596 L .4733 .88446 L p .425 0 .005 r F P 0 g s .63137 .27066 m .61095 .31163 L .72833 .38405 L p .285 .558 .928 r F P 0 g s .72833 .38405 m .75608 .34761 L .63137 .27066 L p .285 .558 .928 r F P 0 g s .72833 .38405 m .81809 .46296 L .75608 .34761 L closepath p .143 .351 .81 r F P 0 g s .61095 .31163 m .63137 .27066 L .5003 .2669 L closepath p .436 .739 .991 r F P 0 g s .84862 .52347 m .81809 .46296 L .81524 .58988 L p 0 0 .436 r F P 0 g s .81524 .58988 m .84472 .65587 L .84862 .52347 L p 0 0 .436 r F P 0 g s .38799 .32633 m .31603 .32976 L .28112 .41453 L closepath p .844 .962 .882 r F P 0 g s .31603 .32976 m .38799 .32633 L .5003 .2669 L p .616 .948 .935 r F P 0 g s .28112 .41453 m .21156 .50574 L .22545 .63357 L p .941 .817 .694 r F P 0 g s .21156 .50574 m .28112 .41453 L .31603 .32976 L p .839 .961 .629 r F P 0 g s .27837 .76429 m .22545 .63357 L .20182 .62877 L p .891 .527 .054 r F P 0 g s .21156 .50574 m .20182 .62877 L .22545 .63357 L closepath p .96 .769 .322 r F P 0 g s .55373 .90813 m .4733 .88446 L .35481 .85868 L p .247 0 0 r F P 0 g s .27837 .76429 m .35481 .85868 L .4733 .88446 L p .798 .407 .313 r F P 0 g s .4733 .88446 m .55373 .90813 L .67043 .86683 L p .425 0 .005 r F P 0 g s .25811 .76805 m .35481 .85868 L .27837 .76429 L closepath p .74 .236 0 r F P 0 g s .20182 .62877 m .25811 .76805 L .27837 .76429 L p .891 .527 .054 r F P 0 g s .78377 .40294 m .75608 .34761 L .81809 .46296 L p .65 .26 0 r F P 0 g s .81809 .46296 m .84862 .52347 L .78377 .40294 L p .65 .26 0 r F P 0 g s .5003 .2669 m .4328 .26695 L .31603 .32976 L p .616 .948 .935 r F P 0 g s .4328 .26695 m .5003 .2669 L .63137 .27066 L p .045 0 0 r F P 0 g s .77825 .77299 m .79448 .76165 L .84472 .65587 L closepath p 0 0 0 r F P 0 g s .79448 .76165 m .77825 .77299 L .67043 .86683 L p 0 0 0 r F P 0 g s .67043 .86683 m .67965 .86161 L .79448 .76165 L p 0 0 0 r F P 0 g s .55373 .90813 m .67965 .86161 L .67043 .86683 L closepath p .269 .762 .692 r F P 0 g s .31603 .32976 m .24425 .42231 L .21156 .50574 L p .839 .961 .629 r F P 0 g s .20182 .62877 m .21156 .50574 L .24425 .42231 L p 0 0 .203 r F P 0 g s .35481 .85868 m .43162 .88178 L .55373 .90813 L p .247 0 0 r F P 0 g s .35481 .85868 m .25811 .76805 L .33176 .78666 L p .072 .433 .873 r F P 0 g s .33176 .78666 m .43162 .88178 L .35481 .85868 L p .072 .433 .873 r F P 0 g s .56981 .27093 m .63137 .27066 L .75608 .34761 L p .73 .211 0 r F P 0 g s .66527 .35587 m .56981 .27093 L p .75608 .34761 L .73 .211 0 r F P 0 g s .75608 .34761 m .78377 .40294 L .66527 .35587 L p .73 .211 0 r F P 0 g s .63137 .27066 m .56981 .27093 L .4328 .26695 L p .045 0 0 r F P 0 g s .79861 .53948 m .84862 .52347 L .84472 .65587 L p .991 .884 .605 r F P 0 g s .76285 .69538 m .79861 .53948 L p .84472 .65587 L .991 .884 .605 r F P 0 g s .84472 .65587 m .79448 .76165 L .76285 .69538 L p .991 .884 .605 r F P 0 g s .24425 .42231 m .31603 .32976 L .4328 .26695 L p .22 0 .131 r F P 0 g s .67965 .86161 m .55373 .90813 L .43162 .88178 L p .636 .832 .976 r F P 0 g s .20182 .62877 m .23521 .5489 L .31942 .6465 L p .235 .301 .728 r F P 0 g s .25811 .76805 m .20182 .62877 L p .31942 .6465 L .235 .301 .728 r F P 0 g s .24425 .42231 m .23521 .5489 L .20182 .62877 L p 0 0 .203 r F P 0 g s .31942 .6465 m .33176 .78666 L .25811 .76805 L p .235 .301 .728 r F P 0 g s .84862 .52347 m .79861 .53948 L .78377 .40294 L closepath p .974 .682 .404 r F P 0 g s .31802 .42104 m .24425 .42231 L p .4328 .26695 L .22 0 .131 r F P 0 g s .4328 .26695 m .44128 .31906 L .31802 .42104 L p .22 0 .131 r F P 0 g s .56981 .27093 m .44128 .31906 L .4328 .26695 L closepath p .476 .025 .099 r F P 0 g s .64105 .80074 m .76285 .69538 L .79448 .76165 L p .859 .914 .867 r F P 0 g s .79448 .76165 m .67965 .86161 L .64105 .80074 L p .859 .914 .867 r F P 0 g s .31802 .42104 m .23521 .5489 L .24425 .42231 L closepath p .261 .09 .45 r F P 0 g s .64105 .80074 m .67965 .86161 L p .43162 .88178 L .636 .832 .976 r F P 0 g s .43162 .88178 m .47897 .81364 L .64105 .80074 L p .636 .832 .976 r F P 0 g s .47897 .81364 m .43162 .88178 L .33176 .78666 L closepath p .503 .645 .919 r F P 0 g s .67676 .49631 m .66527 .35587 L .78377 .40294 L p .872 .601 .526 r F P 0 g s .78377 .40294 m .79861 .53948 L .67676 .49631 L p .872 .601 .526 r F P 0 g s .44128 .31906 m .56981 .27093 L .66527 .35587 L p .689 .36 .414 r F P 0 g s .23521 .5489 m .31802 .42104 L .40729 .5155 L p .496 .37 .638 r F P 0 g s .40729 .5155 m .31942 .6465 L .23521 .5489 L p .496 .37 .638 r F P 0 g s .33176 .78666 m .31942 .6465 L .47121 .67085 L p .58 .577 .814 r F P 0 g s .47121 .67085 m .47897 .81364 L .33176 .78666 L p .58 .577 .814 r F P 0 g s .63867 .65819 m .67676 .49631 L .79861 .53948 L p .851 .707 .702 r F P 0 g s .79861 .53948 m .76285 .69538 L .63867 .65819 L p .851 .707 .702 r F P 0 g s .66527 .35587 m .53481 .40875 L .44128 .31906 L p .689 .36 .414 r F P 0 g s .40729 .5155 m .31802 .42104 L .44128 .31906 L p .602 .378 .549 r F P 0 g s .44128 .31906 m .53481 .40875 L .40729 .5155 L p .602 .378 .549 r F P 0 g s .66527 .35587 m .67676 .49631 L .53481 .40875 L closepath p .771 .523 .561 r F P 0 g s .76285 .69538 m .64105 .80074 L .63867 .65819 L closepath p .817 .763 .802 r F P 0 g s .63867 .65819 m .64105 .80074 L .47897 .81364 L p .72 .687 .818 r F P 0 g s .47897 .81364 m .47121 .67085 L .63867 .65819 L p .72 .687 .818 r F P 0 g s .40729 .5155 m .47121 .67085 L .31942 .6465 L closepath p .608 .515 .723 r F P 0 g s .40729 .5155 m .53481 .40875 L .67676 .49631 L p .72 .571 .685 r F P 0 g s .47121 .67085 m .40729 .5155 L p .67676 .49631 L .72 .571 .685 r F P 0 g s .67676 .49631 m .63867 .65819 L .47121 .67085 L p .72 .571 .685 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{185.312, 199.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm8mPG0UUh53evLTt9jZbZhLPvmaBTDYCYQkhQSEBKRcuEcooikgOLEpy 4YKQEJyQkIAL4QbiSpDgkOSKECckInFBCEXihvgLckCmXlX1m3b7V3Y5Hmc4 EKnLnq7u9331amm70z63cePK5Tc2bly9tDF9+trG21euXro+feqta2KXuyOT ydwR20/TGXrfEm91cacl/onK/1+29OVlelmmFD+vdpylF0fm3G0dzczQu9Y7 wUSmSGWN/sy27h6mWqrR/zLPqrPP8NnyZH2QOFGGqFPpqtpvL1zVtSKYDJin Up6rg73IwQIQLOJgWRCsAByPq7CnOGwOhC1y2NAUVp6rg53kYAUQLM/BIhAs BI7HVFjVGaqKOoFCI0DAgLoJIOV02OfYtgSCuRxsDAQrcrCjKtgzHKySCkaD R1ZMUhz5rgzaekjFOc5xqhRHHjPdVUCf+CSfWJMCnjz85sWP5Cbez4AoJSBy QMU7BpJeTTRNRxYOVKp9AiAhTRNK+nUBVADAswSgpO5XqCcsUUE/KNkWDTgK ABGVejLYhY1AC/YowBETINWCcADUmhlVBqgSQO2mUk9xI+CwJSACgJ0MEBU/ fvCxrLz/+YfqMDScVxX0EICWuIfqADXG09Ujkq4VLMlzqHTUymiEHjRBUy1t AHyD8QHAe1TKXXmAX1H4dUv8KMBXONE5gM9y69Hlrwu+CPDjAF/i1ocAn2d8 APDLCn/AEr8T4PPc+hLAh5x814x/HOBDHnC7ATTgNlcBtMRtdgB0SUEfM0FT bW4CvMv4OsBH3OYVM6oAUDMpFF8ORwCltjmXuWmLirffkjdLpb5uGwASrzO2 r5+wGV/uu/3JLd6oOaM2oL30UqYd84mM6DDiL1HKwxumYHLXYiKYPujE2HXa hDWV5uTHqIBRtR498OCb12X7NFReivSc3ES9+9pX8iCEyuu20T5arAkXAWid 27eQRqlW+YyKN0I2ATLk1hlBqdZp5FoipbR2ZRjuJuFi7FLZnuZJIFJmEbSE 1PUqHotomXmzSx64eMBFrqZ6GndmvzA0Fx+4jIK8NDgvZhe/zSXuqDkltGop lAVCDSA0BtKU3Tq1HFDLA7UaUJvgXKGLcHqqik2MTirbF9BpJafWbS8ht94y +BWAXwX4TbEf+oyyNX5Z4FcEfmXg1wRd61osCybTpjJVV3g/Zaq6OwC6ZaAb 8jSd4yRug1oE1PIgkwssmfrc3QB+LvDb3dvPB35V4JcFfsvsN9Kf0FLHlF2X H0/WU1dXF8jVgJwP5FYTF/dOOQ/I7epPzgFyDSDnArm1xBz57fvvZE/oD6Gd rj5wnVKui8DVlaWfdJUbMcb1VSPhF9+pEB/K2p3EJpxEKXeVhys2kUqcSShg oRAIBUBospeQ1yaUoVtGmy5xh+0FLnl2yQ3u4mCXKUuXIrsEpo5yVLx+DZLZ +OL9O8aeidjANa2erl7K/vnzZpyW3inZnHQZtvHYRhuhlNSplEeq2a5jy80j h1Tn7ByaySiV+ot7/1wH9YLYRC2VYNVDeL2PUk8KwcMnIF7rJoCSu71K40DJ B0orQGkEKPXsrmxSSW+Z1lPn7nYsat10li0z1FMHX+IdEkplagSoBcNRW+ii 5gG1OlDLAbWl4ar5QK02gBoaX7mHUwuAWgWoFYDagmXWeqqB7wydVhGwCh+p VQ5YlYBVcQArNMImk1bJlYu+gncqFYFSCSjNDzCyuiiFQKkAlMpAaW6Avksq 6ds2nSI5IBINW6QMRLJApAJEZoctEgCRqqUIGi15u9FC1zWSQUoeUKoDpZnh KEVAyQFKDaA0bdldXZQWjUr4Juroo9OopDJD+HGAbw4HX6VSJmHEEopGQ8EM XerR5s8+/YU2MRpEKT+vobVjl2Xrt0AkzyLoo8MIlWFLjpG+8Ms9ZkWMrzBe fVqP6WJ1E2WkvG7fuqdPu/fDz7Spv+qW42GqP6UxKgu0awySRemqjrPLSBc8 6pBxWepuuHVPKkwBkYBK+QEjtMyDvqO0YpkHW5ECZyS3vSIlFvG3V6TCIqJC 31AzDg99E3IVOJQHcKhTqf+n7pFBa5uTs/X7X3/IDKA2NxV+DeBLA+CrsvQZ H2+kgbq/T40JoDFp6v5EFsQm1nsq20ckusUwPRylCCh5QMk3K+0ZoLOQUhko +UAJ3RybGY5SkedMHoi4ZpG9QKQ46JKayg1ScoDS7HCU8kAp1J2WUIrvpsb/ dbzVGjmgUeytsQ9ohANoZIFGOdVBhF8YDj4A+OjR4X2Ar1Ap507yYR15TGEA lMtTspZoXzzWNUo+ZyU/CuUAaswS5YBWVQFUP8yTfLas9uZ92tT9Hq8vBz/p IDfquDrg6ofK1gHXpTL+wKHv9/a4PnhtXANSP+d1ECB9KqU8alt6dTW1CTyZ GQOyumW0772v/5YhPDUQDLzNYSLfqaWn7VFTU2yxib9EGdCuIgCMUhmYxqFG HbFE5aiUucsCVJFK+f3Db33564Mu0zzGq/nd9gRyN3yR8Q7AO4yvAHwJ4MET 1t3wFSrlV75JAAgBQD1n2Pa0eDdAVfcn7RMACdkFUAWAUo9sqifpLVARQDUB KsujUs2lzFOWgBIAzACAD9qiUcctUSFAzQKUB1D6BwhPW6IKADUHUA5Aqfms fmxhO9dSqHlZ4u8JahTrX9z0Dh+A8IupllDY5O9NXDXzO4N5INhyIlicAu14 koP5pvUMNVzu0r/WOU0vnloK1KqeCMHL7gKfprKeeYlPU5gYosaLPPKEOlL+ nEoO/BmuekFVnacXCRznqtOq6lWuqnDVGVV1gdEFrjqrqi7yWQ5XvaKqLrPG ebXjP/Fbs2G8ZHb8C27kqvg=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 184.312}, {198.938, \ 0.}} -> {0.0464917, -9.46065, 0.00467219, \ 0.00467219}},ExpressionUUID->"06f02628-60c2-4c36-9d74-330cb38ec67d"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(76\\). \\!\\(\\\"diminished rhombicosidodecahedron \ (J76)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"4eaf8745-e647-41d8-b992-ec269046a357"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.08454 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0556904 1.17149 1.11022e-16 1.17149 [ [ 0 0 0 0 ] [ 1 1.08454 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.08454 L 0 1.08454 L closepath clip newpath .5 Mabswid [ ] 0 setdash .59232 .77859 m .63032 .67113 L .52727 .61207 L p .681 .455 .572 r F P 0 g s .46155 .78289 m .59232 .77859 L p .52727 .61207 L .681 .455 .572 r F P 0 g s .52727 .61207 m .4244 .6784 L .46155 .78289 L p .681 .455 .572 r F P 0 g s .58567 .50099 m .52727 .61207 L .63032 .67113 L p .628 .495 .681 r F P 0 g s .4244 .6784 m .52727 .61207 L .46016 .50592 L p .754 .594 .679 r F P 0 g s .58567 .50099 m .46016 .50592 L .52727 .61207 L closepath p .696 .578 .719 r F P 0 g s .35622 .57082 m .46016 .50592 L .45126 .38758 L p .805 .718 .769 r F P 0 g s .46016 .50592 m .35622 .57082 L .4244 .6784 L p .754 .594 .679 r F P 0 g s .46016 .50592 m .58567 .50099 L .57937 .3822 L p .694 .636 .786 r F P 0 g s .57937 .3822 m .45126 .38758 L .46016 .50592 L p .694 .636 .786 r F P 0 g s .57937 .3822 m .58567 .50099 L .69025 .55817 L p .555 .526 .778 r F P 0 g s .63032 .67113 m .69025 .55817 L .58567 .50099 L p .628 .495 .681 r F P 0 g s .34599 .7826 m .46155 .78289 L .4244 .6784 L p .794 .512 .509 r F P 0 g s .4244 .6784 m .31109 .67522 L .34599 .7826 L p .794 .512 .509 r F P 0 g s .35622 .57082 m .31109 .67522 L .4244 .6784 L closepath p .811 .606 .624 r F P 0 g s .31109 .67522 m .35622 .57082 L .27774 .49299 L p .882 .698 .648 r F P 0 g s .27774 .49299 m .35622 .57082 L p .45126 .38758 L .805 .718 .769 r F P 0 g s .69898 .77097 m .73537 .66017 L .63032 .67113 L p .506 .274 .497 r F P 0 g s .63032 .67113 m .59232 .77859 L .69898 .77097 L p .506 .274 .497 r F P 0 g s .69025 .55817 m .63032 .67113 L .73537 .66017 L closepath p .533 .382 .622 r F P 0 g s .45126 .38758 m .57937 .3822 L .68339 .3616 L p .447 .823 .991 r F P 0 g s .33779 .37626 m .45126 .38758 L p .68339 .3616 L .447 .823 .991 r F P 0 g s .45126 .38758 m .33779 .37626 L .27774 .49299 L p .805 .718 .769 r F P 0 g s .69025 .55817 m .75411 .47406 L p .57937 .3822 L .555 .526 .778 r F P 0 g s .8027 .57712 m .75411 .47406 L .69025 .55817 L p .401 .316 .645 r F P 0 g s .69025 .55817 m .73537 .66017 L .8027 .57712 L p .401 .316 .645 r F P 0 g s .75411 .47406 m .68339 .3616 L .57937 .3822 L p .555 .526 .778 r F P 0 g s .34599 .7826 m .31109 .67522 L .22906 .59853 L p .926 .572 .339 r F P 0 g s .27774 .49299 m .22906 .59853 L .31109 .67522 L p .882 .698 .648 r F P 0 g s .46155 .78289 m .34599 .7826 L .45299 .84951 L closepath p .734 .345 .313 r F P 0 g s .59022 .84522 m .59232 .77859 L .46155 .78289 L p .605 .225 .297 r F P 0 g s .46155 .78289 m .45299 .84951 L .59022 .84522 L p .605 .225 .297 r F P 0 g s .59232 .77859 m .59022 .84522 L .69898 .77097 L closepath p .449 .102 .284 r F P 0 g s .21429 .47337 m .27774 .49299 L .33779 .37626 L p .916 .884 .788 r F P 0 g s .27774 .49299 m .21429 .47337 L .22906 .59853 L closepath p .956 .814 .663 r F P 0 g s .33779 .37626 m .27709 .35062 L .21429 .47337 L p .916 .884 .788 r F P 0 g s .27709 .35062 m .33779 .37626 L p .68339 .3616 L .447 .823 .991 r F P 0 g s .81141 .63619 m .8027 .57712 L .73537 .66017 L p .009 0 .239 r F P 0 g s .74378 .76224 m .81141 .63619 L p .73537 .66017 L .009 0 .239 r F P 0 g s .73537 .66017 m .69898 .77097 L .74378 .76224 L p .009 0 .239 r F P 0 g s .72637 .33128 m .68339 .3616 L .75411 .47406 L p .225 .366 .797 r F P 0 g s .75411 .47406 m .8008 .44976 L .72637 .33128 L p .225 .366 .797 r F P 0 g s .75411 .47406 m .8027 .57712 L .8008 .44976 L closepath p .149 .188 .646 r F P 0 g s .29941 .31834 m .27709 .35062 L p .68339 .3616 L .447 .823 .991 r F P 0 g s .4076 .2924 m .29941 .31834 L p .68339 .3616 L .447 .823 .991 r F P 0 g s .55911 .28569 m .4076 .2924 L p .68339 .3616 L .447 .823 .991 r F P 0 g s .68271 .30155 m .55911 .28569 L p .68339 .3616 L .447 .823 .991 r F P 0 g s .68339 .3616 m .72637 .33128 L .68271 .30155 L p .447 .823 .991 r F P 0 g s .39571 .8478 m .45299 .84951 L .34599 .7826 L p .659 .109 0 r F P 0 g s .34599 .7826 m .28438 .77745 L .39571 .8478 L p .659 .109 0 r F P 0 g s .28438 .77745 m .34599 .7826 L p .22906 .59853 L .926 .572 .339 r F P 0 g s .22906 .59853 m .20834 .65787 L .28438 .77745 L p .926 .572 .339 r F P 0 g s .20834 .65787 m .22906 .59853 L .21429 .47337 L p .973 .776 .35 r F P 0 g s .62973 .84045 m .74378 .76224 L .69898 .77097 L p 0 0 0 r F P 0 g s .69898 .77097 m .59022 .84522 L .62973 .84045 L p 0 0 0 r F P 0 g s .80962 .50349 m .8008 .44976 L .8027 .57712 L p 0 0 .145 r F P 0 g s .8027 .57712 m .81141 .63619 L .80962 .50349 L p 0 0 .145 r F P 0 g s .62973 .84045 m .59022 .84522 L .45299 .84951 L p .083 .642 .766 r F P 0 g s .50627 .84196 m .62973 .84045 L p .45299 .84951 L .083 .642 .766 r F P 0 g s .45299 .84951 m .39571 .8478 L .50627 .84196 L p .083 .642 .766 r F P 0 g s .21429 .47337 m .27709 .35062 L .29941 .31834 L p 0 0 0 r F P 0 g s .21429 .47337 m .1923 .52757 L .20834 .65787 L p .973 .776 .35 r F P 0 g s .1923 .52757 m .21429 .47337 L p .29941 .31834 L 0 0 0 r F P 0 g s .68271 .30155 m .72637 .33128 L .8008 .44976 L p .86 .432 0 r F P 0 g s .73453 .41076 m .68271 .30155 L p .8008 .44976 L .86 .432 0 r F P 0 g s .8008 .44976 m .80962 .50349 L .73453 .41076 L p .86 .432 0 r F P 0 g s .28438 .77745 m .30763 .7687 L .39571 .8478 L closepath p 0 .369 .823 r F P 0 g s .30763 .7687 m .28438 .77745 L .20834 .65787 L p 0 .131 .679 r F P 0 g s .20834 .65787 m .22729 .64229 L .30763 .7687 L p 0 .131 .679 r F P 0 g s .1923 .52757 m .22729 .64229 L .20834 .65787 L closepath p 0 0 .435 r F P 0 g s .74378 .76224 m .62973 .84045 L .70005 .75563 L closepath p .778 .995 .87 r F P 0 g s .77122 .62255 m .81141 .63619 L .74378 .76224 L p .934 .967 .744 r F P 0 g s .74378 .76224 m .70005 .75563 L .77122 .62255 L p .934 .967 .744 r F P 0 g s .81141 .63619 m .77122 .62255 L .80962 .50349 L closepath p .996 .864 .554 r F P 0 g s .41877 .75958 m .50627 .84196 L .39571 .8478 L p .458 .664 .951 r F P 0 g s .39571 .8478 m .30763 .7687 L .41877 .75958 L p .458 .664 .951 r F P 0 g s .22729 .64229 m .1923 .52757 L .24568 .43091 L p .23 .172 .582 r F P 0 g s .29941 .31834 m .24568 .43091 L .1923 .52757 L p 0 0 0 r F P 0 g s .57401 .75439 m .70005 .75563 L .62973 .84045 L p .743 .871 .939 r F P 0 g s .62973 .84045 m .50627 .84196 L .57401 .75439 L p .743 .871 .939 r F P 0 g s .24568 .43091 m .29941 .31834 L .4076 .2924 L p .395 .125 .382 r F P 0 g s .69233 .5312 m .73453 .41076 L .80962 .50349 L p .932 .729 .606 r F P 0 g s .80962 .50349 m .77122 .62255 L .69233 .5312 L p .932 .729 .606 r F P 0 g s .55911 .28569 m .68271 .30155 L .73453 .41076 L p .811 .472 .415 r F P 0 g s .30763 .7687 m .22729 .64229 L .28386 .54691 L p .495 .502 .793 r F P 0 g s .41877 .75958 m .30763 .7687 L p .28386 .54691 L .495 .502 .793 r F P 0 g s .24568 .43091 m .28386 .54691 L .22729 .64229 L p .23 .172 .582 r F P 0 g s .50627 .84196 m .41877 .75958 L .57401 .75439 L closepath p .661 .735 .905 r F P 0 g s .3552 .40854 m .28386 .54691 L .24568 .43091 L closepath p .459 .302 .581 r F P 0 g s .4076 .2924 m .3552 .40854 L .24568 .43091 L p .395 .125 .382 r F P 0 g s .69233 .5312 m .77122 .62255 L .70005 .75563 L p .83 .757 .783 r F P 0 g s .56587 .61318 m .69233 .5312 L p .70005 .75563 L .83 .757 .783 r F P 0 g s .70005 .75563 m .57401 .75439 L .56587 .61318 L p .83 .757 .783 r F P 0 g s .4076 .2924 m .55911 .28569 L .60843 .398 L p .668 .413 .526 r F P 0 g s .3552 .40854 m .4076 .2924 L p .60843 .398 L .668 .413 .526 r F P 0 g s .73453 .41076 m .60843 .398 L .55911 .28569 L p .811 .472 .415 r F P 0 g s .73453 .41076 m .69233 .5312 L .60843 .398 L closepath p .84 .61 .59 r F P 0 g s .28386 .54691 m .40662 .61903 L .41877 .75958 L p .495 .502 .793 r F P 0 g s .57401 .75439 m .41877 .75958 L .40662 .61903 L p .689 .651 .807 r F P 0 g s .28386 .54691 m .3552 .40854 L .48029 .47773 L p .604 .47 .672 r F P 0 g s .48029 .47773 m .40662 .61903 L .28386 .54691 L p .604 .47 .672 r F P 0 g s .40662 .61903 m .56587 .61318 L .57401 .75439 L p .689 .651 .807 r F P 0 g s .60843 .398 m .48029 .47773 L .3552 .40854 L p .668 .413 .526 r F P 0 g s .48029 .47773 m .60843 .398 L .69233 .5312 L p .766 .598 .671 r F P 0 g s .69233 .5312 m .56587 .61318 L .48029 .47773 L p .766 .598 .671 r F P 0 g s .56587 .61318 m .40662 .61903 L .48029 .47773 L closepath p .693 .578 .722 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{184.375, 199.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmjlsG0cUhtfcg7d46r6o23LkM05iJ3HsBHZsBHAfpJONALaAIIHtzqXL tCpVumTpwo1KIZVKtypTpnTLzHszOxou/yUfs5aRABGws6sh+b7vvZnhkst9 uPviyc+/7L54+ni3c//Z7m9Pnj5+3vn+12eqyz/ned5btf3R8ei4pw5N87an /tSD/+/Ofvcj7VpU94e64wHt6tQx0evuvfJ8Ouwdv9yjzctRW6Cue/rpd2kX UEeu92jmkXm6eiG/eA6EKFKbp65vdIg7NkQIQsyDEHVqQ+q6qUN8bUMUQYgF EKLJre472dMT74YOdsMGqwqDtbgN3GC0fa7j8S5HHXUQb1EQz2wc47oT1LxM BeXANRB+KTW874ZXsanVfebPu6pRnwlRy0KUD1BXNOq6LVUDADqCcZQAErmg UUEoaS6XNerTobmsZsjFAK7Rzh8HIM3gkgNIzWBNCAgA4KIGXB2awXqGDFxA agYbGTLY0YArQzPYzJCBC+AMmhkAKINPNODy0AzOZwBc+EiAS0MB20JACADb YgCfEmtCbxP2og2LhtYtzNFBl09QUe/dwX6ZDgNhBueTKH7j5jMLA3hm+QQw L1QA2tTJX7URdeVB2C0ddseGLVNYPiPnes9/2DfnroOX3fhcuG5pEaA1uR2d zgA3styIub7lqk25qJahK4lqkgISaTgifx0ecNVRATa1CK8hzlU9TucTk61n ijKoFFilRVuREhCpcxtYESMTjXAJ9RgPcvOWO2u5lVRu2MeNC4HgGxp+wRai AeBFC58C41BNm37OOKhN/afbUctr3VHyzWjc3N7n55DbBDCscNu/Ahu2UA1g WAWGATBE7+3GcNudPaMMq7aGNevVyuCFKrfmePl6MSst8ySlxFoVIFe3chUw wG2gWQaakbB8RvO81QyAJlp8TatZsDWcAXIlIJcHcuhDs0iuBOQmrVxg5eaE cgWh3KqW27JyoVBu2sqpB2iBmPFVX4cGDQvAsMRt6Bra713rSasIWBWA1Zyz auPJ9gGFNq1QHgjlgdA8EFoEQhEQqpil6golXMzUlbm4xXmzf8iJLQOXELhU E/MpWRQWKQKRMLUogRUxMktClwngYhbZhnUpCV10UcI+l2HF8YFQnVqmijSC EfPEKKj1Su3ouZMDSg2nRvFaX9Fy61auAuR8wcTRWmcnZx6iEyAJloFmTqgZ pmoGriYdtz+eVQSsFrBVKzm31oBLldvAdaHjBYDOC8bNOwNuIS3lnK29jHZa cS8FVQSoeTfFo+PTFOMBP/ndfR9Zs2ukRtBcWlYlgJqxWfmEQu8Vcih6X6gA 6FQiPwIHAF9Lx6NJXtUiL18dm28KMpu2LUEBOFSd8xo5GA9Xg1/rjrcyoM1j F/Q5KWE1AayaoEZF4FcR+lWAX2BrJbWq21pVgUs5g0tkXZrApQ5cqtalDlyK zgek2AXNIQ5QBkJFMHg1oNYAamUweA0gWRBKmpd53h4/VAS6ZVu/CSDZBJJF W79JoJb/cGpVq1YGam2glgf1Q5JR4g1CbWrRUTvyzBgLF4BwHQx9Qage2qrO AuFwPOENIBwB4aatcB5oTgFNH1R4DggHZyPctsIhEJ4GwvzkJWCYA4b+eIYh MJzmNnTnQHxBUBWq34/6VlgNX3kKs+vM2IKpB+ILk/aMVtNvs/o86hpI4IED ZwEf8Oeprem3lzevjxMzZ5Vac3l0XFoO0BacBahoTJwDXE6Zu4KPz43n4ftD 2vR/eubFFvEFC20QJQz24otmy0LqKqAG1LqfRTdxtp0MjPA0v2RtB2neOLQV IW3VoeX04HmdbmLwFgF0HkA7/wAar9BOl8FSPMp5WYh3xzPMwFsCvCidt5XG k64NxEP5mQsyfKUxyMBbFObn8gTDOZ8Bj9I1vzRsC/FzQvyCMHv3hw5zljJ4 vXmeuOAIiTLedJGjM54V4ueFGbu/KwnwMxnwKPuts8HPCfHml9MdIX76bPAX h0w36XjPCpHuz9KCjKeEZ4uZ8fCXMuBR9tNCvHu3QkrBpVNsSrjA+pCjM57M gEcZmxtArgjxbSF+Upi9wV8dUnDpGCMkynjHRY7OuAXwFWovUFeQDrg2JCf+ atymw4le9/BPE+Dw5D1tqsjU6r6j3gltSk21/AnRvfFL4O9TW6KufO95Nw6r oAyeFuIDbvvzdG9xS4jwnZ1NwJsU8nxq+TOqztO5KVAV4ad35ukKwJAWQLXG QSVSM1D3/koFZXBOiG9kwOuSel/YnH0htJ4KDVyoLa65OfWmO1V1nnrz6KrW ICZ90oZJDMcw99R+afORFrEiXh1e/23A8Zep00RQHiVhudTxVzr4LZuCHhNN 8ejXjMHwBXl4Le3dRuHTihMJwhu9Wzr8t8n5nCIepkVmtds62He04+egEP7Q EHd0iLs2XR0idEPwpk8ApwMerxAT4F4iwKlD2gt1Cbz7TiXiCVigdpW67uon 8V3wFeqo9eqvj6p09EA/9K+4bf+/svPO/Q2q9UTr\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 183.375}, {198.938, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"ebb968f4-0270-4849-bf52-128bef170583"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(77\\). \\!\\(\\\"paragyrate diminished \ rhombicosidodecahedron (J77)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"31d45b0e-6328-46c1-bf57-5c687ac31275"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.07959 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0542715 1.16008 1.11022e-16 1.16008 [ [ 0 0 0 0 ] [ 1 1.07959 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.07959 L 0 1.07959 L closepath clip newpath .5 Mabswid [ ] 0 setdash .61269 .77385 m .64856 .65529 L .54181 .5904 L p .688 .495 .62 r F P 0 g s .48016 .77933 m .61269 .77385 L p .54181 .5904 L .688 .495 .62 r F P 0 g s .54181 .5904 m .43895 .66453 L .48016 .77933 L p .688 .495 .62 r F P 0 g s .60027 .47824 m .54181 .5904 L .64856 .65529 L p .634 .525 .713 r F P 0 g s .43895 .66453 m .54181 .5904 L .47115 .48449 L p .754 .619 .709 r F P 0 g s .60027 .47824 m .47115 .48449 L .54181 .5904 L closepath p .698 .604 .748 r F P 0 g s .36651 .5581 m .47115 .48449 L .46026 .37067 L p .808 .746 .794 r F P 0 g s .47115 .48449 m .36651 .5581 L .43895 .66453 L p .754 .619 .709 r F P 0 g s .47115 .48449 m .60027 .47824 L .59354 .36386 L p .693 .662 .816 r F P 0 g s .59354 .36386 m .46026 .37067 L .47115 .48449 L p .693 .662 .816 r F P 0 g s .36394 .79383 m .48016 .77933 L .43895 .66453 L p .791 .546 .566 r F P 0 g s .43895 .66453 m .32423 .67504 L .36394 .79383 L p .791 .546 .566 r F P 0 g s .36651 .5581 m .32423 .67504 L .43895 .66453 L closepath p .809 .628 .658 r F P 0 g s .59354 .36386 m .60027 .47824 L .70934 .54208 L p .548 .549 .807 r F P 0 g s .64856 .65529 m .70934 .54208 L .60027 .47824 L p .634 .525 .713 r F P 0 g s .72316 .77908 m .75789 .65598 L .64856 .65529 L p .544 .348 .565 r F P 0 g s .64856 .65529 m .61269 .77385 L .72316 .77908 L p .544 .348 .565 r F P 0 g s .70934 .54208 m .64856 .65529 L .75789 .65598 L closepath p .551 .425 .662 r F P 0 g s .32423 .67504 m .36651 .5581 L .28391 .49238 L p .88 .715 .673 r F P 0 g s .28391 .49238 m .36651 .5581 L p .46026 .37067 L .808 .746 .794 r F P 0 g s .70934 .54208 m .77761 .46849 L p .59354 .36386 L .548 .549 .807 r F P 0 g s .8301 .58566 m .77761 .46849 L .70934 .54208 L p .422 .358 .681 r F P 0 g s .70934 .54208 m .75789 .65598 L .8301 .58566 L p .422 .358 .681 r F P 0 g s .5456 .86055 m .48016 .77933 L .36394 .79383 L p .727 .374 .381 r F P 0 g s .48016 .77933 m .5456 .86055 L .61269 .77385 L closepath p .66 .375 .478 r F P 0 g s .65787 .86943 m .72316 .77908 L .61269 .77385 L p .518 .202 .37 r F P 0 g s .61269 .77385 m .5456 .86055 L .65787 .86943 L p .518 .202 .37 r F P 0 g s .46026 .37067 m .59354 .36386 L .70398 .35338 L p .184 .714 .841 r F P 0 g s .34266 .37188 m .46026 .37067 L p .70398 .35338 L .184 .714 .841 r F P 0 g s .46026 .37067 m .34266 .37188 L .28391 .49238 L p .808 .746 .794 r F P 0 g s .36394 .79383 m .32423 .67504 L .23798 .61263 L p .919 .602 .426 r F P 0 g s .28391 .49238 m .23798 .61263 L .32423 .67504 L p .88 .715 .673 r F P 0 g s .77761 .46849 m .70398 .35338 L .59354 .36386 L p .548 .549 .807 r F P 0 g s .84364 .66865 m .8301 .58566 L .75789 .65598 L p .173 0 .388 r F P 0 g s .77325 .79445 m .84364 .66865 L p .75789 .65598 L .173 0 .388 r F P 0 g s .75789 .65598 m .72316 .77908 L .77325 .79445 L p .173 0 .388 r F P 0 g s .21808 .49427 m .28391 .49238 L .34266 .37188 L p .924 .92 .792 r F P 0 g s .28391 .49238 m .21808 .49427 L .23798 .61263 L closepath p .96 .831 .672 r F P 0 g s .36394 .79383 m .30238 .81359 L .42655 .87845 L closepath p .797 .361 .212 r F P 0 g s .36394 .79383 m .42655 .87845 L .5456 .86055 L p .727 .374 .381 r F P 0 g s .30238 .81359 m .36394 .79383 L p .23798 .61263 L .919 .602 .426 r F P 0 g s .75321 .34225 m .70398 .35338 L .77761 .46849 L p .161 .351 .805 r F P 0 g s .77761 .46849 m .83089 .46459 L .75321 .34225 L p .161 .351 .805 r F P 0 g s .77761 .46849 m .8301 .58566 L .83089 .46459 L closepath p .157 .214 .672 r F P 0 g s .34266 .37188 m .27941 .36661 L .21808 .49427 L p .924 .92 .792 r F P 0 g s .27941 .36661 m .34266 .37188 L p .70398 .35338 L .184 .714 .841 r F P 0 g s .72316 .77908 m .65787 .86943 L .77325 .79445 L closepath p .223 0 .158 r F P 0 g s .65787 .86943 m .5456 .86055 L .42655 .87845 L p .318 0 0 r F P 0 g s .30334 .35575 m .27941 .36661 L p .70398 .35338 L .184 .714 .841 r F P 0 g s .41952 .34313 m .30334 .35575 L p .70398 .35338 L .184 .714 .841 r F P 0 g s .58192 .33471 m .41952 .34313 L p .70398 .35338 L .184 .714 .841 r F P 0 g s .71149 .33467 m .58192 .33471 L p .70398 .35338 L .184 .714 .841 r F P 0 g s .70398 .35338 m .75321 .34225 L .71149 .33467 L p .184 .714 .841 r F P 0 g s .23798 .61263 m .21973 .69583 L .30238 .81359 L p .919 .602 .426 r F P 0 g s .21973 .69583 m .23798 .61263 L .21808 .49427 L p .977 .775 .356 r F P 0 g s .84498 .54389 m .83089 .46459 L .8301 .58566 L p 0 0 .219 r F P 0 g s .8301 .58566 m .84364 .66865 L .84498 .54389 L p 0 0 .219 r F P 0 g s .6114 .89493 m .65787 .86943 L p .42655 .87845 L .318 0 0 r F P 0 g s .42655 .87845 m .45941 .90077 L .6114 .89493 L p .318 0 0 r F P 0 g s .45941 .90077 m .42655 .87845 L .30238 .81359 L p .401 0 0 r F P 0 g s .73311 .81574 m .77325 .79445 L .65787 .86943 L p .438 .843 .654 r F P 0 g s .65787 .86943 m .6114 .89493 L .73311 .81574 L p .438 .843 .654 r F P 0 g s .21808 .49427 m .27941 .36661 L .30334 .35575 L p 0 0 0 r F P 0 g s .21808 .49427 m .19806 .57398 L .21973 .69583 L p .977 .775 .356 r F P 0 g s .19806 .57398 m .21808 .49427 L p .30334 .35575 L 0 0 0 r F P 0 g s .30238 .81359 m .32764 .83203 L .45941 .90077 L p .401 0 0 r F P 0 g s .32764 .83203 m .30238 .81359 L .21973 .69583 L p 0 0 .557 r F P 0 g s .71149 .33467 m .75321 .34225 L .83089 .46459 L p .911 .509 .132 r F P 0 g s .76971 .46505 m .71149 .33467 L p .83089 .46459 L .911 .509 .132 r F P 0 g s .83089 .46459 m .84498 .54389 L .76971 .46505 L p .911 .509 .132 r F P 0 g s .21973 .69583 m .23981 .7067 L .32764 .83203 L p 0 0 .557 r F P 0 g s .19806 .57398 m .23981 .7067 L .21973 .69583 L closepath p 0 0 .413 r F P 0 g s .80744 .68213 m .84364 .66865 L .77325 .79445 L p .868 .972 .659 r F P 0 g s .77325 .79445 m .73311 .81574 L .80744 .68213 L p .868 .972 .659 r F P 0 g s .84364 .66865 m .80744 .68213 L .84498 .54389 L closepath p .983 .879 .519 r F P 0 g s .23981 .7067 m .19806 .57398 L .25112 .49019 L p .236 .214 .629 r F P 0 g s .30334 .35575 m .25112 .49019 L .19806 .57398 L p 0 0 0 r F P 0 g s .60533 .83431 m .6114 .89493 L .45941 .90077 L p .582 .81 .986 r F P 0 g s .45941 .90077 m .44404 .84074 L .60533 .83431 L p .582 .81 .986 r F P 0 g s .32764 .83203 m .44404 .84074 L .45941 .90077 L closepath p .356 .64 .962 r F P 0 g s .6114 .89493 m .60533 .83431 L .73311 .81574 L closepath p .744 .922 .951 r F P 0 g s .72824 .60794 m .76971 .46505 L .84498 .54389 L p .939 .762 .636 r F P 0 g s .84498 .54389 m .80744 .68213 L .72824 .60794 L p .939 .762 .636 r F P 0 g s .32764 .83203 m .23981 .7067 L .29665 .62741 L p .465 .524 .834 r F P 0 g s .44404 .84074 m .32764 .83203 L p .29665 .62741 L .465 .524 .834 r F P 0 g s .25112 .49019 m .30334 .35575 L .41952 .34313 L p .456 .233 .486 r F P 0 g s .72824 .60794 m .80744 .68213 L .73311 .81574 L p .838 .805 .819 r F P 0 g s .59705 .70474 m .72824 .60794 L p .73311 .81574 L .838 .805 .819 r F P 0 g s .73311 .81574 m .60533 .83431 L .59705 .70474 L p .838 .805 .819 r F P 0 g s .25112 .49019 m .29665 .62741 L .23981 .7067 L p .236 .214 .629 r F P 0 g s .58192 .33471 m .71149 .33467 L .76971 .46505 L p .815 .524 .496 r F P 0 g s .36811 .48342 m .29665 .62741 L .25112 .49019 L closepath p .478 .356 .635 r F P 0 g s .41952 .34313 m .36811 .48342 L .25112 .49019 L p .456 .233 .486 r F P 0 g s .29665 .62741 m .42922 .71195 L .44404 .84074 L p .465 .524 .834 r F P 0 g s .60533 .83431 m .44404 .84074 L .42922 .71195 L p .682 .69 .851 r F P 0 g s .76971 .46505 m .72824 .60794 L .63853 .47031 L closepath p .842 .643 .634 r F P 0 g s .76971 .46505 m .63853 .47031 L .58192 .33471 L p .815 .524 .496 r F P 0 g s .42922 .71195 m .59705 .70474 L .60533 .83431 L p .682 .69 .851 r F P 0 g s .41952 .34313 m .58192 .33471 L .63853 .47031 L p .68 .465 .588 r F P 0 g s .36811 .48342 m .41952 .34313 L p .63853 .47031 L .68 .465 .588 r F P 0 g s .29665 .62741 m .36811 .48342 L .50438 .56623 L p .608 .507 .714 r F P 0 g s .50438 .56623 m .42922 .71195 L .29665 .62741 L p .608 .507 .714 r F P 0 g s .50438 .56623 m .63853 .47031 L .72824 .60794 L p .769 .632 .709 r F P 0 g s .72824 .60794 m .59705 .70474 L .50438 .56623 L p .769 .632 .709 r F P 0 g s .63853 .47031 m .50438 .56623 L .36811 .48342 L p .68 .465 .588 r F P 0 g s .59705 .70474 m .42922 .71195 L .50438 .56623 L closepath p .694 .612 .76 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{185.25, 199.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmjlsG0cUhtd7kFxyRUoidVDipcOyIsmKrxzOYedAbAeBESNIGhcBBCeA HSBIYLlzqVKtS5csXbpxkdJI5VKty5Qu3W7mvZkdDZf/UkOtFLgIgZlZ7fH/ 33szszsi9/bOo/u//r7z6MG9nd7Nhzt/3n9wb7d344+HYpd3xnGcF6L83XNo OxabqnoRi484+H/zzje/ULNM3XZZ7viJmhrtKMbPdp84Hm3GB3uPqTgzXMt9 b/Z6VORfF+TVt6iZoB1zlle7VLu0a1tKfE5NhXYE8e7V5HQhxoItayiNFquP syUNPqSmSEdqwKBtaeADg01pcIUan440gEEnh8GGNLisDWZO2wBF0Mth8J40 uERNkNcgAAbrhkFmBEvAYNYyAmVwcWQEyzkiOHeSBgVgsCYNLow0WM0RwYka oAjOHtcAdTIyWJUG7480WLOMoAgMVv4jg+2RBus5DJZP0qAEDJakwXlqCuMY oE5GEZgGmRFs5IigJw22RkaADFAEyKCbNqgDg60cESiDzZER2BqEwKBzXIMy 1bzSqADZdloWJeY81SwRxQf9vgWtkt2wpn3Zf06tWA0JA17llI8ru8l1oGWT 4vAygPj5cRe/fdnnIrZHhMDP4aI8SXhFtMUODBmQcpLwfp/Vp7kOBjyUDxw6 ptGkjPzx3QTy6R6DU1lPpYucs/09018sHqk++nbekizrOug6s3iaRRQhRvVg 0ld0SkKANAWQPICEnpFWSB7VbL8MslQGSDWAFAAktLIxkbif3fjqxeRCAceA NYBZ0JhdgFmxxCwATLSMV5jn9GyxxSyBDl7QHVwDmFWAWQSY7hGYnE0PYFYB ZllnswmyOQkwJwBmSXW9gcmFpmvHQPPlfB9GmwBokUab0XmrA6AIAJW59geA DlnWdJoQSwRYaqA3p0DCGoCvAvgqmK9t8PHBgiXfpM7VJKCaBVRlQBWlRpuT QuIjJYBUBkh1jRTp7msCkBCAVKl20xkZy34G9FgJ5GYBIJUAUs3ITTLrFiXc WQ0XArgQwM3p3BR0btonBMJiFQBSAiBNDeKB3HQAUvEkkYoAqZXqOIcfSMMg QRaIOW5WtX1kad827JM8LOWyVycJe0ZAIAEA6QAQlAf/tEHMjDx/+pI7ZBWA eFkTORkZ/+yZdxRbJD8zN75GUlgrgMo9arwCKs5cFbB4FukRRZhSjQZRYMJx IfOpbKCzlmlyjxhCo9DksPIH0E6PCiXMz0zYENWk8egkKkXWTt9vZP/5Jg5t 94B7kOXuHqbh2IZdYFjIMvTGj/Aw4U5GeEXg1jVH46sDXRzWPVzNJf4j+t9x flOXCRw3K+QQQLR0jgMyh2ukkRhrg7nINC8D84EHv4xe9MswRvkYGLt7B6lB vwioKoCqCahKgCq0pEr1UWSMUQGZFGZHiBFAnNW9FgGwYuqmIYq4C1AN1wcI 0lwpKECBPJzTOQBcBcANkNMJgF44HfRAZ9gWeNq49wxjBuNhngOYIcAsacwZ gFkDmJMgr9MA2M8PXALAFTAkpgD6FECvAvQGQHcBupcfPdK5RsDTALiih8Q8 Y+KvxoKj0HwDjfEKgK4GEjsBOOuAswwS2+R66AtDzqNnPNkyEAOAOKUTiMAa AKyoE9gmHN4SXuqemRQ3fh0/GyuBiK4OEhgCzlnAGYAEdjSxD/jMb9KG+TzA N6OzZ0vlA6quMV8ElSIbl88FfPOarwD45tWK0eDTfbtkydQ2mFw1dRRQsp7l vS3Qkx5gaqZyRteuABY0vjopln0J5CUQjNDWKXGzZmIYZ5iiBChT/sKcjuyn uqCbCtzhzhAu/LZGKX72/HVqOKDUo3C70nlDh5ty7lFdivlxOezSs4xPuWxm uZjxCRd2aln6oah6hp8e5PuqyJgs3GynlPlbH4quk8MPRWf+eIn82pZ+HUu/ ZcNvOJu20Y3pto3dbGNrW7qZP8brpQI7wcAWgVXLcpgoqwtZ3baYww+Ftmr4 DSeyZem2aBmdcrsIEpnHCgWmXgG5BKxQDtHwaFpGNWA1lMOFHG4oMPXyzGUQ mK3VvKWVetPoCrBqno7VB8Bq3tJqzlizKisq/ATeOHl5qTHw0mBKec5SeRYr y1up85GlMposs3oVKu9dzlUttp/cVuTS0kKM/7HlH1TVy5yfGGTJ/alhKRZS zUsGN/7rzVtmlBPI+RTI1jNlfVNWi5ZIlE9Xr61+Rg2/xRACqYjqOu2q6gvl WHGuJXdioXm3/3aetmrxk1cJoTidirwwoT6QS1E5KJwvtESNJNRJQoJlFoFY pHMiDpBaMk2U4ldGioQiq0aW2uW0tpqGzsdS+2tNOwEUF4BimApdFNWJzjda rGIpVszCU4o3tWJoGbCvFV0SvCZ1vtU6RUsdT6kZPUzlutT7TusVMiP1TT0q vONLKXBbC/gWqZL5cVR3Oc733ATmiOAiH63iWj75hjz5jrYSGuos1m9QzRPo ljzzB2o8GZU4VKWtO/LQj9Twmyk/yx3vxPvqp9g4Z/4FSLga7A==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 184.25}, {198.938, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"c3f64405-6cdc-4912-aceb-cd1a3d0f940b"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(78\\). \\!\\(\\\"metagyrate diminished \ rhombicosidodecahedron (J78)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"976e5279-fdd8-44e4-a0c7-bfe4d00fd8d9"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.06906 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0499839 1.14548 -3.33067e-16 1.14548 [ [ 0 0 0 0 ] [ 1 1.06906 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.06906 L 0 1.06906 L closepath clip newpath .5 Mabswid [ ] 0 setdash .44216 .62101 m .53469 .53271 L .48652 .41803 L p .762 .654 .742 r F P 0 g s .53094 .71222 m .62403 .62254 L .53469 .53271 L p .692 .535 .669 r F P 0 g s .53469 .53271 m .44216 .62101 L .53094 .71222 L p .692 .535 .669 r F P 0 g s .65287 .49695 m .53469 .53271 L .62403 .62254 L closepath p .642 .534 .716 r F P 0 g s .53469 .53271 m .65287 .49695 L .60586 .3795 L p .66 .605 .782 r F P 0 g s .60586 .3795 m .48652 .41803 L .53469 .53271 L p .66 .605 .782 r F P 0 g s .40571 .7338 m .44216 .62101 L .33339 .56292 L p .807 .608 .633 r F P 0 g s .44216 .62101 m .40571 .7338 L .53094 .71222 L closepath p .739 .532 .614 r F P 0 g s .33339 .56292 m .44216 .62101 L p .48652 .41803 L .762 .654 .742 r F P 0 g s .69716 .77689 m .72731 .65826 L .62403 .62254 L p .588 .377 .562 r F P 0 g s .57166 .80928 m .69716 .77689 L p .62403 .62254 L .588 .377 .562 r F P 0 g s .62403 .62254 m .53094 .71222 L .57166 .80928 L p .588 .377 .562 r F P 0 g s .65287 .49695 m .62403 .62254 L .72731 .65826 L p .55 .444 .686 r F P 0 g s .44216 .83328 m .57166 .80928 L .53094 .71222 L p .706 .432 .508 r F P 0 g s .53094 .71222 m .40571 .7338 L .44216 .83328 L p .706 .432 .508 r F P 0 g s .48652 .41803 m .60586 .3795 L .68139 .33022 L p .619 .891 .988 r F P 0 g s .36039 .43505 m .48652 .41803 L p .68139 .33022 L .619 .891 .988 r F P 0 g s .48652 .41803 m .36039 .43505 L .33339 .56292 L p .762 .654 .742 r F P 0 g s .60586 .3795 m .65287 .49695 L .758 .52847 L p .491 .51 .804 r F P 0 g s .72731 .65826 m .758 .52847 L .65287 .49695 L p .55 .444 .686 r F P 0 g s .23812 .55825 m .33339 .56292 L .36039 .43505 L p .872 .767 .743 r F P 0 g s .33339 .56292 m .23812 .55825 L .29325 .67648 L closepath p .879 .694 .649 r F P 0 g s .33339 .56292 m .29325 .67648 L .40571 .7338 L p .807 .608 .633 r F P 0 g s .44216 .83328 m .40571 .7338 L .29325 .67648 L p .832 .493 .414 r F P 0 g s .36039 .43505 m .26558 .42448 L .23812 .55825 L p .872 .767 .743 r F P 0 g s .26558 .42448 m .36039 .43505 L p .68139 .33022 L .619 .891 .988 r F P 0 g s .78019 .42554 m .68139 .33022 L .60586 .3795 L p .491 .51 .804 r F P 0 g s .758 .52847 m .78019 .42554 L p .60586 .3795 L .491 .51 .804 r F P 0 g s .78025 .74553 m .80953 .62202 L .72731 .65826 L p .313 .119 .449 r F P 0 g s .72731 .65826 m .69716 .77689 L .78025 .74553 L p .313 .119 .449 r F P 0 g s .758 .52847 m .72731 .65826 L .80953 .62202 L closepath p .395 .293 .62 r F P 0 g s .34752 .84129 m .44216 .83328 L p .29325 .67648 L .832 .493 .414 r F P 0 g s .29325 .67648 m .25159 .73903 L .34752 .84129 L p .832 .493 .414 r F P 0 g s .25159 .73903 m .29325 .67648 L .23812 .55825 L p .955 .695 .504 r F P 0 g s .83489 .51881 m .78019 .42554 L .758 .52847 L p .178 .196 .641 r F P 0 g s .758 .52847 m .80953 .62202 L .83489 .51881 L p .178 .196 .641 r F P 0 g s .57166 .80928 m .44216 .83328 L .54508 .87918 L closepath p .624 .251 .316 r F P 0 g s .67701 .84643 m .69716 .77689 L .57166 .80928 L p .446 .077 .243 r F P 0 g s .57166 .80928 m .54508 .87918 L .67701 .84643 L p .446 .077 .243 r F P 0 g s .23812 .55825 m .26558 .42448 L .23914 .38647 L p .983 .904 .587 r F P 0 g s .19262 .61543 m .23812 .55825 L p .23914 .38647 L .983 .904 .587 r F P 0 g s .23812 .55825 m .19262 .61543 L .25159 .73903 L p .955 .695 .504 r F P 0 g s .45181 .88979 m .54508 .87918 L .44216 .83328 L p .592 .069 0 r F P 0 g s .44216 .83328 m .34752 .84129 L .45181 .88979 L p .592 .069 0 r F P 0 g s .69716 .77689 m .67701 .84643 L .78025 .74553 L closepath p .174 0 .148 r F P 0 g s .23914 .38647 m .26558 .42448 L p .68139 .33022 L .619 .891 .988 r F P 0 g s .30354 .33201 m .23914 .38647 L p .68139 .33022 L .619 .891 .988 r F P 0 g s .44173 .28417 m .30354 .33201 L p .68139 .33022 L .619 .891 .988 r F P 0 g s .59062 .26663 m .44173 .28417 L p .68139 .33022 L .619 .891 .988 r F P 0 g s .68139 .33022 m .68052 .28617 L .59062 .26663 L p .619 .891 .988 r F P 0 g s .68052 .28617 m .68139 .33022 L .78019 .42554 L p .008 .327 .813 r F P 0 g s .82155 .57778 m .83489 .51881 L .80953 .62202 L p 0 0 0 r F P 0 g s .78572 .7264 m .82155 .57778 L p .80953 .62202 L 0 0 0 r F P 0 g s .80953 .62202 m .78025 .74553 L .78572 .7264 L p 0 0 0 r F P 0 g s .78019 .42554 m .78551 .38692 L .68052 .28617 L p .008 .327 .813 r F P 0 g s .78019 .42554 m .83489 .51881 L .78551 .38692 L closepath p 0 0 .559 r F P 0 g s .32522 .82841 m .34752 .84129 L .25159 .73903 L p .62 .113 0 r F P 0 g s .25159 .73903 m .2235 .71983 L .32522 .82841 L p .62 .113 0 r F P 0 g s .19262 .61543 m .2235 .71983 L .25159 .73903 L closepath p .877 .507 .024 r F P 0 g s .67582 .83374 m .67701 .84643 L .54508 .87918 L p .339 .819 .858 r F P 0 g s .52902 .86176 m .67582 .83374 L p .54508 .87918 L .339 .819 .858 r F P 0 g s .54508 .87918 m .45181 .88979 L .52902 .86176 L p .339 .819 .858 r F P 0 g s .34752 .84129 m .32522 .82841 L .45181 .88979 L closepath p 0 .298 .67 r F P 0 g s .67582 .83374 m .78572 .7264 L .78025 .74553 L p .639 .922 .644 r F P 0 g s .78025 .74553 m .67701 .84643 L .67582 .83374 L p .639 .922 .644 r F P 0 g s .23914 .38647 m .19123 .50861 L .19262 .61543 L p .983 .904 .587 r F P 0 g s .2235 .71983 m .19262 .61543 L .19123 .50861 L p 0 0 .409 r F P 0 g s .76889 .43912 m .78551 .38692 L .83489 .51881 L p .963 .653 .25 r F P 0 g s .83489 .51881 m .82155 .57778 L .76889 .43912 L p .963 .653 .25 r F P 0 g s .19123 .50861 m .23914 .38647 L .30354 .33201 L p 0 0 .181 r F P 0 g s .59062 .26663 m .68052 .28617 L .78551 .38692 L p .833 .394 .192 r F P 0 g s .64241 .36262 m .59062 .26663 L p .78551 .38692 L .833 .394 .192 r F P 0 g s .78551 .38692 m .76889 .43912 L .64241 .36262 L p .833 .394 .192 r F P 0 g s .39729 .79625 m .52902 .86176 L .45181 .88979 L p .431 .69 .973 r F P 0 g s .45181 .88979 m .32522 .82841 L .39729 .79625 L p .431 .69 .973 r F P 0 g s .32522 .82841 m .2235 .71983 L .22349 .61303 L p .364 .456 .822 r F P 0 g s .19123 .50861 m .22349 .61303 L .2235 .71983 L p 0 0 .409 r F P 0 g s .25504 .45916 m .22349 .61303 L .19123 .50861 L closepath p .179 .101 .524 r F P 0 g s .30354 .33201 m .25504 .45916 L .19123 .50861 L p 0 0 .181 r F P 0 g s .39729 .79625 m .32522 .82841 L p .22349 .61303 L .364 .456 .822 r F P 0 g s .7396 .65563 m .78572 .7264 L .67582 .83374 L p .864 .876 .845 r F P 0 g s .78572 .7264 m .7396 .65563 L .82155 .57778 L closepath p .954 .87 .716 r F P 0 g s .30354 .33201 m .44173 .28417 L .48745 .38286 L p .531 .29 .494 r F P 0 g s .25504 .45916 m .30354 .33201 L p .48745 .38286 L .531 .29 .494 r F P 0 g s .67582 .83374 m .52902 .86176 L .62336 .76847 L closepath p .746 .852 .928 r F P 0 g s .67582 .83374 m .62336 .76847 L .7396 .65563 L p .864 .876 .845 r F P 0 g s .44173 .28417 m .59062 .26663 L .64241 .36262 L p .691 .359 .409 r F P 0 g s .68272 .51226 m .76889 .43912 L .82155 .57778 L p .91 .725 .641 r F P 0 g s .82155 .57778 m .7396 .65563 L .68272 .51226 L p .91 .725 .641 r F P 0 g s .48922 .69813 m .62336 .76847 L .52902 .86176 L p .679 .713 .874 r F P 0 g s .52902 .86176 m .39729 .79625 L .48922 .69813 L p .679 .713 .874 r F P 0 g s .64241 .36262 m .48745 .38286 L .44173 .28417 L p .691 .359 .409 r F P 0 g s .22349 .61303 m .33324 .65662 L .39729 .79625 L p .364 .456 .822 r F P 0 g s .22349 .61303 m .25504 .45916 L .36725 .49639 L p .482 .385 .669 r F P 0 g s .36725 .49639 m .33324 .65662 L .22349 .61303 L p .482 .385 .669 r F P 0 g s .76889 .43912 m .68272 .51226 L .64241 .36262 L closepath p .847 .596 .558 r F P 0 g s .48745 .38286 m .36725 .49639 L .25504 .45916 L p .531 .29 .494 r F P 0 g s .39729 .79625 m .33324 .65662 L .48922 .69813 L closepath p .609 .595 .812 r F P 0 g s .68272 .51226 m .7396 .65563 L .62336 .76847 L p .778 .677 .752 r F P 0 g s .48745 .38286 m .64241 .36262 L .68272 .51226 L p .755 .544 .61 r F P 0 g s .5253 .53592 m .68272 .51226 L p .62336 .76847 L .778 .677 .752 r F P 0 g s .62336 .76847 m .48922 .69813 L .5253 .53592 L p .778 .677 .752 r F P 0 g s .48922 .69813 m .33324 .65662 L .36725 .49639 L p .647 .546 .726 r F P 0 g s .5253 .53592 m .36725 .49639 L .48745 .38286 L closepath p .668 .491 .636 r F P 0 g s .68272 .51226 m .5253 .53592 L .48745 .38286 L p .755 .544 .61 r F P 0 g s .36725 .49639 m .5253 .53592 L .48922 .69813 L p .647 .546 .726 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{187.062, 199.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm8lvFEcUxpvp7tlXz3jB63gBY3azE0iCEAkkBKKgSJE4BVAksBQlAm4c OfIv+MjRR98QR5RTjlx9zJFjrpOq96rf9PR8bb+2Tcghlqp63FP9fb96r7q6 eqbnzoPnj3/59cHzJ48edG8+ffD74yePnnW//u2p2eUf8DzvjSl/dD37umde uupNz/yZN//f7Ovmid0UbIhv846f7aZkdwS9zftrnm9f9t4/XLXF7DP/3eSW P0nLOmjp2zq0u65z8x/sJm93jIPmRVuT+hfc/K7dUBvT8uW3L6i1PW4KHF2x Ne26wkfflqNDe7Brbg6kgyeBRM1R233uz7vEYrdErKgUqwOxiyz2lYhVgBjq HBK7wGLXRayhJGsAsfMs9qWIjSjJkNg5FrsqYmNKsiYQO8til0XsoJIMiZ1h McpDzr4zoyRrAbFVFuM88Fuet0LDFckiRiR7mmXPA9lZIDutlD3FspybICZL 0nNK4BGgfJKVOVFhQpnBkTwCR/InWH5VcmbfXnGN7KxgpbX8bWBwnA1ODwV8 RW01YWua2DrA4BgbnAIGATDoAoOmrQs8Jb97te4SuLX+yqnBjh1l35NK33ng WxLfCvmG4hsVL8V8hc1PAPNQaZ4T83ai067keKYaNj/C5seV5gu2pq5NkpEf NzL/RVbovFrOZhXv58aL1262GDYNnfVOc+1htj8G7POpYysQe4cwm0ZA3c7o i7rdTXTbFJNeW/M+Y08IUwCkICDVGMjfry9T8JazgcwBEF8JUhKQcjrIUWUm ZgFIoASpgMFRyIaEYoOQQoA0nYZEsckTSCggUbFAbtSsKGM0A4AKyhjVBCjY HRCKEAIqKoEa7qyKJY2KR5c0A5Q4w5ayoU0DtJIyeYTmlsrDIIsMckSZtCkA UlaCNCVpGUFQRBBINVOyeN+HtzxN5wHSAiMtK2MzCZBqSqR6bPxYpKh4KdHK iHYQoNWVaasmomWKmd1t3Z+PGDATJi1S6FqF4BpZZqYEnA/gAgA3z3CH0+Dc vpWJl5SGXO/Fww3aNQqAW8pElwFwqIzmNsC+YDOwgw6FuQWYR5RBLgLm/G6Y k3cmKzQb5CytO8zg2mIuBBF4DYC3leB5mXFKyjHRZdxDtMG3OwHALQtuCeB2 lLghiHNZGecB8KE7wBAw14Q5BMxjyvEcAOaKMthzzLw0xEw3PXnA3BRmr/+h kQWdUIY4B3Cru8ClQVUEhG0hTEfC91lNZaYHotafoiwKClmHgV6/eksRTh+L gzdgNGXo4jLLQIsAqJAG5PYZKluMbMSH5lHic7eDHwWpDZBKtqZMoWXFhK1D DqgubfuAVJcooWVpy9bRpwgb7xKDXBu5mSTmWoSqxhwRTHTLU7J1keM6jKkd c3FMGhnakTYmcJ4f3SATV07C11GGD2V511yTMtymlPY53SBzGYRzA8reNNUu ZxvvCGZGmalPjDTiVlMxJLkX7O4dYwpgzKqTlWQIYgxrvZR1BRopCGMuNUHB QDTM6/l/FSIZC29XBNpB0VWM009EQANgIe4bJnzX3KS0+8E4v0MColOyuzMG WpNrx8ECwGhmicF+mzfiQ2BrkzwGMOLzwRqdq9FXC9HN36gy/8i+DuwXP479 IrCvxucBY+8Q9oEAxX8JEFTi87IjUATCj2FkHQYIo5zIgyn2imXqwdNjfgck GsbaeBwCIEUA4u8K5P6z97S/pRwfiKagpNnmjIlnyiDZ4vXh6kq4wwAuBHBB OtwSgMsBuNDW7lsHXR6XAVwA4MK9wxUkcqU9wPkALr93uLJErqCEO0I1/miz lA40+BHM4AWiLhHylWOLIYIBiBT/xZ39W9afxGZTvfrZsEeUd2fUkY6iyK7Y mnJRSZcf/ORNpEnZHbG+/qct3Gh8hx5t/bVFaNktR4Glb2tq2U4d16H4RiVt 6Cxl9i/YOuRZavsZyXmb/7je6bzKzlKVWJR3mLojliAby+DH8DzCxgBIQ0BC JUgegKCZMCNIW0A8+gQr4oAMRcCALhXbMIwDhjFb064lYFoGpmhNwSd57Nut tWhWhR0f75+PvY3NLQc5sMCPCCp7J0DdHnWnZ0Rgiv1Of3MrMRpmAFKNarze W45h0NQ1Acw7wDywNR0xDSwb7nyIW/bd4l+zRhey1PGW8C2I70Hg28zsi4Ld Ar5lEOxRQDBia+I7ks20CUyr0tkOsGonrY4qrerAqiFWrTSr6Lr+ga+hzvSY Mpk1YDoipnWlqXvS6bjStAJMR0Emy6n2Qdy+1yc4AQjQVaQMCMal2yVlt91T bSeBKVo5lIDppJjmlabuWb1TStMCMJ0Bsc4p7d2ziKeBfRvY54H9nPTZvGH9 nafhH/Zzj1auKv0C4LcQ6+52XXPPh54BViNpqzJk5aaGYQP3XOvZVIMwbkDF o0sqT+32vbdbH6h4Hs9pCQf3QO454EDLcacSU1+KBceJm7Fg68GA1YGbe5b4 PHBrJgLmpVgFwKoKrNwz0BeAVUOW/4vAIA8MysDAPbF9ERhU5W7O761t9tyn 1MNWRWBVBFbuSfNLwKoUu3GMrGaAVQlYFYCVe0L+MrAKJWwVsZoEVhVgFQIr 92T/Z8AqJ71qitU4sKoBKx9YuV8kXOHlUaTdEe0O0G5QXYhrR3dJosth4qf2 HaSR9Bl8WLJFdf/GKy7FYeCfcbgVXERXA1JNW8sa3l3WrILTuQZ0ykCnauuQ h+q99zwTXWWJ/q8kxkWiACQKts7zFclI0Jufs8QNIBEACV8oilaC+nWNJW4O xja6CkTLdwloSQ68wQd+IweO2QMDHrgR4C1udFsatSRzVQnEd9zojvSiMtgo cS9wl5t/L83z0pwiEzp281KOucfH3BMOnjJI16Ocmeo+N/rRbqgfj3jHf+Kn UB9/4x34B3gY9Ok=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 186.062}, {198.938, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"815d80c6-381d-485f-82c4-d893ddfe6e99"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(79\\). \\!\\(\\\"bigyrate diminished rhombicosidodecahedron \ (J79)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"e5bba19d-16e6-417d-9ebf-a549f630bd46"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.12776 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0745411 1.20032 -1.11022e-16 1.20032 [ [ 0 0 0 0 ] [ 1 1.12776 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.12776 L 0 1.12776 L closepath clip newpath .5 Mabswid [ ] 0 setdash .56619 .40859 m .49467 .51008 L .57031 .61538 L p .648 .57 .753 r F P 0 g s .68971 .45299 m .56619 .40859 L p .57031 .61538 L .648 .57 .753 r F P 0 g s .57031 .61538 m .69059 .58255 L .68971 .45299 L p .648 .57 .753 r F P 0 g s .46663 .69156 m .57031 .61538 L .49467 .51008 L p .736 .592 .695 r F P 0 g s .6499 .70809 m .69059 .58255 L .57031 .61538 L closepath p .623 .479 .665 r F P 0 g s .57031 .61538 m .46663 .69156 L .54468 .78679 L p .678 .485 .618 r F P 0 g s .54468 .78679 m .6499 .70809 L .57031 .61538 L p .678 .485 .618 r F P 0 g s .45592 .35193 m .38498 .4569 L .49467 .51008 L p .734 .693 .811 r F P 0 g s .49467 .51008 m .56619 .40859 L .45592 .35193 L p .734 .693 .811 r F P 0 g s .39006 .58549 m .49467 .51008 L .38498 .4569 L closepath p .773 .669 .748 r F P 0 g s .49467 .51008 m .39006 .58549 L .46663 .69156 L p .736 .592 .695 r F P 0 g s .46663 .69156 m .39006 .58549 L p .29658 .73927 L .82 .601 .607 r F P 0 g s .29658 .73927 m .41283 .78798 L .46663 .69156 L p .82 .601 .607 r F P 0 g s .41283 .78798 m .54468 .78679 L .46663 .69156 L closepath p .732 .488 .559 r F P 0 g s .39006 .58549 m .28429 .61061 L .29658 .73927 L p .82 .601 .607 r F P 0 g s .27749 .47773 m .28429 .61061 L .39006 .58549 L p .846 .725 .73 r F P 0 g s .39006 .58549 m .38498 .4569 L .27749 .47773 L p .846 .725 .73 r F P 0 g s .69059 .58255 m .6499 .70809 L .74706 .73671 L p .517 .369 .619 r F P 0 g s .74706 .73671 m .78908 .60596 L .69059 .58255 L p .517 .369 .619 r F P 0 g s .78961 .47139 m .68971 .45299 L .69059 .58255 L p .486 .437 .728 r F P 0 g s .69059 .58255 m .78908 .60596 L .78961 .47139 L p .486 .437 .728 r F P 0 g s .6499 .70809 m .54468 .78679 L .57023 .87053 L p .546 .274 .455 r F P 0 g s .74706 .73671 m .6499 .70809 L p .57023 .87053 L .546 .274 .455 r F P 0 g s .53294 .28067 m .45592 .35193 L .56619 .40859 L p .645 .712 .896 r F P 0 g s .56619 .40859 m .64573 .34129 L .53294 .28067 L p .645 .712 .896 r F P 0 g s .68971 .45299 m .64573 .34129 L .56619 .40859 L closepath p .593 .609 .837 r F P 0 g s .27846 .38073 m .27749 .47773 L .38498 .4569 L p .834 .849 .858 r F P 0 g s .39435 .29997 m .27846 .38073 L p .38498 .4569 L .834 .849 .858 r F P 0 g s .38498 .4569 m .45592 .35193 L .39435 .29997 L p .834 .849 .858 r F P 0 g s .54468 .78679 m .41283 .78798 L .43236 .87282 L p .695 .36 .404 r F P 0 g s .43236 .87282 m .57023 .87053 L .54468 .78679 L p .695 .36 .404 r F P 0 g s .64573 .34129 m .68971 .45299 L .78961 .47139 L p .436 .514 .84 r F P 0 g s .43236 .87282 m .41283 .78798 L .29658 .73927 L p .819 .442 .341 r F P 0 g s .45592 .35193 m .53294 .28067 L .39435 .29997 L closepath p .702 .833 .945 r F P 0 g s .29658 .73927 m .31089 .82385 L .43236 .87282 L p .819 .442 .341 r F P 0 g s .31089 .82385 m .29658 .73927 L .28429 .61061 L p 0 0 .221 r F P 0 g s .3224 .82823 m .31089 .82385 L p .28429 .61061 L 0 0 .221 r F P 0 g s .32579 .73682 m .3224 .82823 L p .28429 .61061 L 0 0 .221 r F P 0 g s .31837 .57978 m .32579 .73682 L p .28429 .61061 L 0 0 .221 r F P 0 g s .30326 .43072 m .31837 .57978 L p .28429 .61061 L 0 0 .221 r F P 0 g s .28786 .35771 m .27846 .38073 L .39435 .29997 L p .601 .939 .755 r F P 0 g s .28786 .35771 m .30326 .43072 L p .28429 .61061 L 0 0 .221 r F P 0 g s .27846 .38073 m .28786 .35771 L p .28429 .61061 L 0 0 .221 r F P 0 g s .28429 .61061 m .27749 .47773 L .27846 .38073 L p 0 0 .221 r F P 0 g s .78961 .47139 m .78908 .60596 L .82732 .68334 L p .001 .029 .535 r F P 0 g s .74706 .73671 m .82732 .68334 L .78908 .60596 L closepath p .313 .165 .514 r F P 0 g s .53294 .28067 m .64573 .34129 L .74681 .35549 L p .259 .619 .958 r F P 0 g s .78961 .47139 m .74681 .35549 L .64573 .34129 L p .436 .514 .84 r F P 0 g s .57023 .87053 m .70032 .84015 L .74706 .73671 L p .546 .274 .455 r F P 0 g s .82732 .68334 m .74706 .73671 L .70032 .84015 L p .118 0 .214 r F P 0 g s .78961 .47139 m .82919 .45455 L .74681 .35549 L closepath p .091 .276 .759 r F P 0 g s .82919 .45455 m .78961 .47139 L p .82732 .68334 L .001 .029 .535 r F P 0 g s .70032 .84015 m .57023 .87053 L .52709 .91075 L p .218 0 0 r F P 0 g s .43236 .87282 m .52709 .91075 L .57023 .87053 L closepath p .545 .055 .044 r F P 0 g s .41072 .27225 m .39435 .29997 L .53294 .28067 L p .455 .865 .958 r F P 0 g s .53294 .28067 m .55753 .25208 L .41072 .27225 L p .455 .865 .958 r F P 0 g s .55753 .25208 m .53294 .28067 L p .74681 .35549 L .259 .619 .958 r F P 0 g s .52709 .91075 m .43236 .87282 L .31089 .82385 L p 0 .323 .66 r F P 0 g s .39435 .29997 m .41072 .27225 L .28786 .35771 L p .601 .939 .755 r F P 0 g s .70032 .84015 m .7814 .78965 L .82732 .68334 L p .118 0 .214 r F P 0 g s .6638 .87946 m .7814 .78965 L .70032 .84015 L closepath p 0 0 0 r F P 0 g s .52709 .91075 m .6638 .87946 L .70032 .84015 L p .218 0 0 r F P 0 g s .74681 .35549 m .69713 .3005 L .55753 .25208 L p .259 .619 .958 r F P 0 g s .69713 .3005 m .74681 .35549 L .82919 .45455 L p .582 .102 0 r F P 0 g s .82732 .68334 m .85447 .5914 L .82919 .45455 L p .001 .029 .535 r F P 0 g s .85447 .5914 m .82732 .68334 L .7814 .78965 L p .792 .846 .388 r F P 0 g s .4636 .88499 m .52709 .91075 L p .31089 .82385 L 0 .323 .66 r F P 0 g s .31089 .82385 m .3224 .82823 L .4636 .88499 L p 0 .323 .66 r F P 0 g s .82919 .45455 m .78262 .40342 L .69713 .3005 L p .582 .102 0 r F P 0 g s .78262 .40342 m .82919 .45455 L .85447 .5914 L p .972 .672 .285 r F P 0 g s .6638 .87946 m .52709 .91075 L .4636 .88499 L p .527 .868 .992 r F P 0 g s .7814 .78965 m .80734 .69933 L .85447 .5914 L p .792 .846 .388 r F P 0 g s .7814 .78965 m .6638 .87946 L .60668 .85134 L p .848 .944 .883 r F P 0 g s .80734 .69933 m .7814 .78965 L p .60668 .85134 L .848 .944 .883 r F P 0 g s .55753 .25208 m .51112 .28467 L .41072 .27225 L closepath p .326 0 0 r F P 0 g s .51112 .28467 m .55753 .25208 L .69713 .3005 L p .642 .139 .037 r F P 0 g s .85447 .5914 m .80826 .54689 L .78262 .40342 L p .972 .672 .285 r F P 0 g s .80734 .69933 m .80826 .54689 L .85447 .5914 L closepath p .993 .851 .593 r F P 0 g s .4636 .88499 m .60668 .85134 L .6638 .87946 L p .527 .868 .992 r F P 0 g s .30326 .43072 m .28786 .35771 L .41072 .27225 L p .439 .109 .307 r F P 0 g s .44733 .3854 m .30326 .43072 L p .41072 .27225 L .439 .109 .307 r F P 0 g s .41072 .27225 m .51112 .28467 L .44733 .3854 L p .439 .109 .307 r F P 0 g s .69713 .3005 m .65835 .33632 L .51112 .28467 L p .642 .139 .037 r F P 0 g s .78262 .40342 m .65835 .33632 L .69713 .3005 L closepath p .827 .388 .192 r F P 0 g s .47434 .79537 m .4636 .88499 L .3224 .82823 L p .493 .618 .903 r F P 0 g s .3224 .82823 m .32579 .73682 L .47434 .79537 L p .493 .618 .903 r F P 0 g s .78262 .40342 m .80826 .54689 L p .59994 .44049 L .852 .602 .561 r F P 0 g s .59994 .44049 m .65835 .33632 L .78262 .40342 L p .852 .602 .561 r F P 0 g s .4636 .88499 m .47434 .79537 L .60668 .85134 L closepath p .637 .751 .931 r F P 0 g s .80826 .54689 m .80734 .69933 L .69779 .73452 L p .89 .774 .727 r F P 0 g s .60668 .85134 m .69779 .73452 L .80734 .69933 L p .848 .944 .883 r F P 0 g s .59994 .44049 m .44733 .3854 L .51112 .28467 L p .705 .412 .479 r F P 0 g s .51112 .28467 m .65835 .33632 L .59994 .44049 L p .705 .412 .479 r F P 0 g s .80826 .54689 m .69682 .57602 L .59994 .44049 L p .852 .602 .561 r F P 0 g s .69779 .73452 m .69682 .57602 L .80826 .54689 L p .89 .774 .727 r F P 0 g s .69779 .73452 m .60668 .85134 L .47434 .79537 L p .739 .729 .842 r F P 0 g s .46631 .53691 m .31837 .57978 L .30326 .43072 L p .582 .413 .618 r F P 0 g s .30326 .43072 m .44733 .3854 L .46631 .53691 L p .582 .413 .618 r F P 0 g s .47434 .79537 m .32579 .73682 L .31837 .57978 L p .628 .566 .765 r F P 0 g s .56472 .6737 m .69682 .57602 L .69779 .73452 L closepath p .793 .697 .759 r F P 0 g s .47434 .79537 m .56472 .6737 L .69779 .73452 L p .739 .729 .842 r F P 0 g s .56472 .6737 m .47434 .79537 L p .31837 .57978 L .628 .566 .765 r F P 0 g s .44733 .3854 m .59994 .44049 L .46631 .53691 L closepath p .687 .488 .612 r F P 0 g s .31837 .57978 m .46631 .53691 L .56472 .6737 L p .628 .566 .765 r F P 0 g s .69682 .57602 m .56472 .6737 L .46631 .53691 L p .745 .596 .691 r F P 0 g s .46631 .53691 m .59994 .44049 L .69682 .57602 L p .745 .596 .691 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{177.312, 199.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmjtsHEUYxzf7uKfv7Xv6bJ9fCYEAeUFwRBIIIYFAkAgSAgkJORFSEgmB knQpKWldukyZJlJalxYVZVqXKSlpl3l883lv7793s77kkgJLO3uemf3//t83 szPr897Yenjnl1+3Ht69vTW4dn/r9zt3bz8YXP3tvqjyjjiO81Qcfw0c+TkU H6l4Goof0fj/yf70szwFMn83dMUP8pRVCfXCmzq14eNBznFl6clfr+ueN+Up IyuysqPjma6qe8Ddr+nuX7FwUXZ39SfRSX36XHe6xp3KQLPEmpd196vqpDs9 6FyXhwCLMi+rfCBRY4lLWuKKPCkLNXmhSkWLbV3QnT4DnHlZuuGze49UfZOF z+trPmXhluqvrxbd5SF+G73wnL7wEwBrAonssAS10o9zVotdZBcdIFFgiYO8 fKAvvABctIFEmSVKERfPb52Shx5lsvKxpWKdFfNQUZRK9oyWPc8R9oBYk8UC IOaz2Gkttgk8doFsl2VFg5xbpCoGxSie0orn2N4C0FmUpatjNRee1Bd+CKwk SohIZN3+zp8hLYfKCHXd7ugV8n2tfJYtLSbqeawnDpF0WQ7nLgCA9zTgDLDe t0T5slTmMgDwrgacBgDbWDIMCDjlY2RtfedZ9mBSnUiWRSO5BGSLIPMHt8A7 GnAqApBzWGbK1neJfbsg328nA5Ln4jCgygCdmaj+8WT5Dq/GKC11WZr7j8SU yLFkRbWGejrS7Xs71Prk0Y489G89gGoy6q2oth/R3gzN9kErDZIXpapqA0aL GcfGMsrMyAFGhhkNwOjyOBwdyygyYw4wcsyoAEaP49gYy8gxowIYRWbMJTFI Mnxy3ax362OBAQPrAFhmYA4A+xi4FgVmYsBNc7PT/jzKrDEzsGASl5gnR2b3 ptppN2mjH6XNM00/eRiYuLlkGQyBCOasTqCZteLejiK2AbclS+VqEFnICCJU ZDn83LI8PbR5cEOHuzvPVCwI7wH8Ujo8ynVDlQHjzZHGxuL0Nmqc+kDiYxNs ERjxgZF+shHPcjiqseGQZl6zpQqwlAWW+rOzVOLhKgIjC7MzMgdyMzeFpYV0 ltBUznNuKq/XSA7kpgos9WZnKQss1YGl7uwsBTxczddrxAe5aVlaQqvyGEu+ 5d3lAUsdYKljmaWetjT6vDvuhvejlniw+sBG+9XYiA+W3BqXZoynp5JRaOvV QFuyVFWrllA0BVNCGwx1w8fbe7GJZxv9SzBSZSMZSyMN/lsiA/DddPgS4wuW +LIsfZ25F3u79CA1tZG8LJVsCRhZAUbybCQjjRj8/ra6a9DEHGMJLVMB56Zu mZuALRWUJZ8tkS00YVK6ctlVy9KVclFWhoIhQyZX6M+NFK60hCO/JUgw5Ook Do+SOCRZlAc3lZSizeQ0IKuJQ1/QjaKiC+Xfz/aUWANAPQDtTYAOAE/vCz7z iImQviwpR+NBVCdoirgEuF1OqSeZ1CqgClwD+CAaMQ1wZ3ojnVjCtZmZWVoG llrAkm9p6dCDhCZHgwcpmwaP70JlJAPIK4BcAymYtYcKR1+wJHuc/IUJvFXA K4GYU5HxJp7oYQ14KAIPRUsPLkffPwQ5z9kuT8WzmOrrAJ8FgScbGd4TjQ36 Xkf9gyQA3A3ADQC38pK5RwHXjWxpr4KGvyFrAlYVDq3jmG/rziTNonhYjnqc eImAY7Kkf/ImyR48jKgR3L+lbFgpU353d5/TjHXmEzH+EEYcy2mSIwjikGO+ +zxxzKv8JCz3Px2IgkwKZgOgAlmqKjSZrVBpb2Qi5znIUhJZVQ2mRxUZhZbI MqNiQS6nI68BcpnJeUAuMtkN9/99YVYXmpsU+Nmk+3cV8GrMQ5twjnmB5Kl+ K4egNHjSoKedgClZENUk3grgtTkqF/Bc5hU4qtUJlAGg9DgqEZYUpztYT1Fb 5WWgvMj+K6yzFtehb0ISrqY6cbXKaTlZh3o+2nmhQqF9104W24vNfTdGEYeo E6Wq6qRGradDBbKk7zXtUNXDorIcVR2g+gBVi8x483hHqVRv9PiAUuCAKqkD 2pigPccRFC21UQTrEygVpuQs81Q/BKXOeQrSUKL/bFfaHtBusrZrqd0AEWxM oHRUaal9PCI2+q/0npLS1Y/3/jHr1ILliNJLFOrtJjTzOzF5OlSntiXjuBXD izIEUZRqHObHzvsTh9DOsHYtSTsWQZSiWrpANs+JKVnK0ntOH0VWIeO7DQBz 7LuYtI7GAPQC2Hn23QSyZZbNjd1g6A26CybVYnaOilU5CX6SWMwjyV5ij1Ug 22CPosE8fydFTS8PXmaj5SRFPzRbcUyCXma8wqaKQKLCEn74x35II2PSpV8Y 1K/Q0oPfqESRJQpSYuRhyfghsS/ZTwDEsrIM9Lw2fnwgRi+2fs3OPCDmsbMO i4lKOZKkRW9nOt/Ik0/tkSXI/Mkmro4ZoAu/ZQMLspNyflE3fceBNrhJv/Xr fB8ZE9P0hW76kZs8bqL3qH/ippu64o143fuNODlH/gOfzm8/\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 176.312}, {198.938, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"f61bafe6-8bb2-43ef-98d9-42ac737ee8fb"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(80\\). \\!\\(\\\"parabidiminished rhombicosidodecahedron \ (J80)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"7f5324e6-c3ec-4600-b5b0-485b79f716d1"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.11927 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0709642 1.1926 0 1.1926 [ [ 0 0 0 0 ] [ 1 1.11927 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.11927 L 0 1.11927 L closepath clip newpath .5 Mabswid [ ] 0 setdash .42042 .55558 m .4851 .66661 L .61078 .63995 L p .704 .585 .719 r F P 0 g s .31931 .61526 m .38597 .72908 L .4851 .66661 L p .791 .611 .657 r F P 0 g s .4851 .66661 m .42042 .55558 L .31931 .61526 L p .791 .611 .657 r F P 0 g s .50649 .78236 m .4851 .66661 L .38597 .72908 L closepath p .747 .523 .59 r F P 0 g s .4851 .66661 m .50649 .78236 L .63546 .75519 L p .675 .475 .607 r F P 0 g s .63546 .75519 m .61078 .63995 L .4851 .66661 L p .675 .475 .607 r F P 0 g s .61078 .63995 m .63546 .75519 L .69301 .81902 L p .318 .242 .611 r F P 0 g s .62436 .512 m .61078 .63995 L p .69301 .81902 L .318 .242 .611 r F P 0 g s .50635 .45961 m .42042 .55558 L p .61078 .63995 L .704 .585 .719 r F P 0 g s .61078 .63995 m .62436 .512 L .50635 .45961 L p .704 .585 .719 r F P 0 g s .33218 .48366 m .42042 .55558 L .50635 .45961 L p .778 .706 .784 r F P 0 g s .42042 .55558 m .33218 .48366 L .31931 .61526 L closepath p .825 .694 .72 r F P 0 g s .55062 .35643 m .50635 .45961 L .62436 .512 L p .647 .623 .812 r F P 0 g s .62436 .512 m .67239 .41059 L .55062 .35643 L p .647 .623 .812 r F P 0 g s .67239 .41059 m .62436 .512 L p .69301 .81902 L .318 .242 .611 r F P 0 g s .50635 .45961 m .55062 .35643 L .42044 .38452 L closepath p .717 .706 .839 r F P 0 g s .50635 .45961 m .42044 .38452 L .33218 .48366 L p .778 .706 .784 r F P 0 g s .63546 .75519 m .50649 .78236 L .47448 .86486 L p .594 .271 .392 r F P 0 g s .34832 .80916 m .47448 .86486 L .50649 .78236 L p .764 .454 .462 r F P 0 g s .50649 .78236 m .38597 .72908 L .34832 .80916 L p .764 .454 .462 r F P 0 g s .25121 .74021 m .34832 .80916 L .38597 .72908 L p .893 .622 .52 r F P 0 g s .23504 .61643 m .25121 .74021 L p .38597 .72908 L .893 .622 .52 r F P 0 g s .38597 .72908 m .31931 .61526 L .23504 .61643 L p .893 .622 .52 r F P 0 g s .59205 .89075 m .69301 .81902 L .63546 .75519 L p .594 .271 .392 r F P 0 g s .47448 .86486 m .59205 .89075 L p .63546 .75519 L .594 .271 .392 r F P 0 g s .24822 .47841 m .23504 .61643 L .31931 .61526 L p .909 .772 .698 r F P 0 g s .31931 .61526 m .33218 .48366 L .24822 .47841 L p .909 .772 .698 r F P 0 g s .24822 .47841 m .33218 .48366 L .42044 .38452 L p .861 .878 .849 r F P 0 g s .28707 .36765 m .24822 .47841 L p .42044 .38452 L .861 .878 .849 r F P 0 g s .42044 .38452 m .39785 .30977 L .28707 .36765 L p .861 .878 .849 r F P 0 g s .39785 .30977 m .42044 .38452 L .55062 .35643 L p .704 .798 .923 r F P 0 g s .55062 .35643 m .67239 .41059 L .7417 .37228 L p .494 .65 .928 r F P 0 g s .7417 .37228 m .67239 .41059 L p .69301 .81902 L .318 .242 .611 r F P 0 g s .53466 .28012 m .55062 .35643 L p .7417 .37228 L .494 .65 .928 r F P 0 g s .55062 .35643 m .53466 .28012 L .39785 .30977 L p .704 .798 .923 r F P 0 g s .51537 .90645 m .59205 .89075 L .47448 .86486 L p .444 0 0 r F P 0 g s .47448 .86486 m .39428 .87875 L .51537 .90645 L p .444 0 0 r F P 0 g s .47448 .86486 m .34832 .80916 L .39428 .87875 L closepath p .738 .285 .175 r F P 0 g s .29373 .80862 m .39428 .87875 L .34832 .80916 L p .775 .268 0 r F P 0 g s .34832 .80916 m .25121 .74021 L .29373 .80862 L p .775 .268 0 r F P 0 g s .80833 .42077 m .7417 .37228 L p .69301 .81902 L .318 .242 .611 r F P 0 g s .84252 .54654 m .80833 .42077 L p .69301 .81902 L .318 .242 .611 r F P 0 g s .82568 .69642 m .84252 .54654 L p .69301 .81902 L .318 .242 .611 r F P 0 g s .69301 .81902 m .76615 .80072 L .82568 .69642 L p .318 .242 .611 r F P 0 g s .76615 .80072 m .69301 .81902 L .59205 .89075 L p .051 0 0 r F P 0 g s .23504 .61643 m .24822 .47841 L p .39896 .67367 L .133 .084 .532 r F P 0 g s .25121 .74021 m .23504 .61643 L p .39896 .67367 L .133 .084 .532 r F P 0 g s .24822 .47841 m .28707 .36765 L p .39896 .67367 L .133 .084 .532 r F P 0 g s .34108 .32372 m .28707 .36765 L .39785 .30977 L p .533 .916 .78 r F P 0 g s .39785 .30977 m .45618 .26406 L .34108 .32372 L p .533 .916 .78 r F P 0 g s .53466 .28012 m .45618 .26406 L .39785 .30977 L closepath p .58 .894 .987 r F P 0 g s .7417 .37228 m .65617 .28781 L .53466 .28012 L p .494 .65 .928 r F P 0 g s .65617 .28781 m .7417 .37228 L .80833 .42077 L p 0 .179 .679 r F P 0 g s .45618 .26406 m .53466 .28012 L .65617 .28781 L p .082 .628 .84 r F P 0 g s .59205 .89075 m .66191 .8758 L .76615 .80072 L p .051 0 0 r F P 0 g s .59205 .89075 m .51537 .90645 L .66191 .8758 L closepath p .151 .688 .698 r F P 0 g s .29373 .80862 m .25121 .74021 L p .39896 .67367 L .133 .084 .532 r F P 0 g s .28707 .36765 m .34108 .32372 L p .39896 .67367 L .133 .084 .532 r F P 0 g s .65617 .28781 m .58153 .27161 L .45618 .26406 L p .082 .628 .84 r F P 0 g s .80833 .42077 m .72063 .33355 L .65617 .28781 L p 0 .179 .679 r F P 0 g s .72063 .33355 m .58153 .27161 L .65617 .28781 L closepath p .538 0 0 r F P 0 g s .49531 .85208 m .51537 .90645 L .39428 .87875 L p .295 .617 .958 r F P 0 g s .35045 .7881 m .49531 .85208 L p .39428 .87875 L .295 .617 .958 r F P 0 g s .39428 .87875 m .29373 .80862 L .35045 .7881 L p .295 .617 .958 r F P 0 g s .82568 .69642 m .76615 .80072 L .66191 .8758 L p .868 .976 .851 r F P 0 g s .80833 .42077 m .84252 .54654 L .7746 .54404 L p .936 .605 .38 r F P 0 g s .72063 .33355 m .80833 .42077 L p .7746 .54404 L .936 .605 .38 r F P 0 g s .34108 .32372 m .45618 .26406 L .58153 .27161 L p .494 .086 .195 r F P 0 g s .65031 .81955 m .66191 .8758 L .51537 .90645 L p .649 .868 .981 r F P 0 g s .51537 .90645 m .49531 .85208 L .65031 .81955 L p .649 .868 .981 r F P 0 g s .39896 .67367 m .35045 .7881 L .29373 .80862 L p .133 .084 .532 r F P 0 g s .75713 .70228 m .82568 .69642 L p .66191 .8758 L .868 .976 .851 r F P 0 g s .66191 .8758 m .65031 .81955 L .75713 .70228 L p .868 .976 .851 r F P 0 g s .84252 .54654 m .82568 .69642 L .75713 .70228 L p .969 .835 .656 r F P 0 g s .75713 .70228 m .7746 .54404 L .84252 .54654 L p .969 .835 .656 r F P 0 g s .39154 .37388 m .34108 .32372 L p .58153 .27161 L .494 .086 .195 r F P 0 g s .34108 .32372 m .39154 .37388 L p .39896 .67367 L .133 .084 .532 r F P 0 g s .58153 .27161 m .72063 .33355 L .69496 .40526 L p .762 .375 .322 r F P 0 g s .7746 .54404 m .69496 .40526 L .72063 .33355 L p .936 .605 .38 r F P 0 g s .58153 .27161 m .5483 .34003 L .39154 .37388 L p .494 .086 .195 r F P 0 g s .69496 .40526 m .5483 .34003 L .58153 .27161 L p .762 .375 .322 r F P 0 g s .54953 .74029 m .49531 .85208 L .35045 .7881 L p .62 .634 .843 r F P 0 g s .49531 .85208 m .54953 .74029 L .65031 .81955 L closepath p .713 .748 .88 r F P 0 g s .35045 .7881 m .39896 .67367 L .54953 .74029 L p .62 .634 .843 r F P 0 g s .65997 .61826 m .75713 .70228 L .65031 .81955 L p .797 .747 .806 r F P 0 g s .65031 .81955 m .54953 .74029 L .65997 .61826 L p .797 .747 .806 r F P 0 g s .75713 .70228 m .65997 .61826 L .7746 .54404 L closepath p .861 .732 .718 r F P 0 g s .69496 .40526 m .7746 .54404 L .65997 .61826 L p .816 .62 .638 r F P 0 g s .41539 .5098 m .39154 .37388 L .5483 .34003 L p .662 .439 .571 r F P 0 g s .39154 .37388 m .41539 .5098 L .39896 .67367 L p .133 .084 .532 r F P 0 g s .57729 .47511 m .5483 .34003 L .69496 .40526 L closepath p .756 .499 .544 r F P 0 g s .65997 .61826 m .57729 .47511 L .69496 .40526 L p .816 .62 .638 r F P 0 g s .5483 .34003 m .57729 .47511 L .41539 .5098 L p .662 .439 .571 r F P 0 g s .65997 .61826 m .54953 .74029 L .39896 .67367 L p .703 .587 .723 r F P 0 g s .57729 .47511 m .65997 .61826 L p .39896 .67367 L .703 .587 .723 r F P 0 g s .39896 .67367 m .41539 .5098 L .57729 .47511 L p .703 .587 .723 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{178.688, 199.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2rtz1FYUB+DFK+37/fB6HzYLNuaV8A4hJMRDSICQkGGYSQo6h8kMFJlk gI4/wS2lS5epGFqXTCpKty4pU6ZV7jn37EHe/clzFVmEIjC6Wku657vn6rHS 6t5df/bol1/Xnz1+uD6+9WT990ePHz4d3/ztiVmUPZTJZF6a6c9xhj4H5qMU LwPzz6z8f5Zwdo9mVerUH+2CH2g2RwuqwfPGeV512676Xlf1aVUmSx+D1w/u 8z7xqbxht7yjWw6mtjRTZo5KXmRWbNhdyn9xjTUb4raGGIEQPpW8liPwyi9s xW9oxgsWQcWCVvSooqyVf5nPbIgbao9BiJI2f45C8HZS8bpWPAIq1tSeA/Zl G2JNQyyDEA0NMdV1Uvua1l4BtduoNtW7ZGt/rrVXQe0ulR4tumg3v8ozXhKM Gxs8Rch9lS/YurbDsuG6pleotMtMCA6D+nHI5d7eO2vDXgFhPRCWDw3PHiST lp2zIT4FIXIgRI9K3+7NP56+kH54/Xxjsk8G3Ey7+K/Nn3kyn6WllwFTAExT mfwUIxO3fUHOirAlXuaMBT8BYAmAFe2aKoPZMEjn7vMNXtQN7QXhzFoq9+6Z 05a/BPgK4HOabxPwvmbcArwH+FOWvwj4GuBZngdyXuUGkH0gnwzJLaK49hDE LmrsKoidB7FP2NgXQFaNUFaGYm4A0LKiZYAWAHo8HooyrShaBGgRoKvJ0Zoe sz5AywA9ZtHzAG05dm9TM80CtALQleRoW1GrTkzTBbPecnKvo14TAEctcA4A bcdd1wwntLO5pQkh70hyr8GlXUacmcxFjcq9+68B+HFyvqbp+vHQswDtOu7E d+dkAaD1dNBS6Orjhh6Oh6LuLYC9G5M/A/h5Rz6nOdcBik7RA0C90Cn63tA5 RTuO6JJFPwboQuQh5YfRya2XuTGbJavJSc6TFy2kA/QVGAIAfWMI8BEA+gDo UCl3rK9ebE+dCH3HrBZD6AgodVUKjgpKbTFeaiVFawBFOywmOgCop2g7QaYj d5SObr4z7zt66N5GvNPAG+pd6lKKgCwzACOuVCk5ddjx2EBZDZNTrlnFpMaO FLq7/jCoAaCORu2rQsC3R7PAIB6wDID5UC6726/4hMsFwc5Wjj7K0XbKsbMQ wF+H8hOQASYZ7GzRZLqNSpiVK7oC0NZUVgS/R76hOfvpoMcAWgM5p8SvAr6s Oecd0WFytKhoMR30OEDzoKMPgEdn7AnA+5pzJR560jHnkwDNgpxT4k8BXh4h 3otHV8BmOtRpKuXJJD1Alr3ZfsO5NNLsNl+pyURkzZEc/fsDUzjzly3DB2Y5 Hf4E4H3Al+LxrteC44DPA971UrQP33fki4AvpMOvAr5MpfyMkwp6DKA1kLPr 12xMfgXwDcB76fDLgG8BPntQvH3Rs7m1w/MMvVKcbUFHzrtQC/TGtQxUecJF 98i9UNKkmsl805iSFy0BvMultwc/GNenUl6XzLq9qW4/oGTzii4AtK+nl09U nj4djgbmAVBSoAuAIZX8nJELdoNd91wQVdEd1wTUKNyB9j9dKIPdcTylrgnV 4ihTqS1Fo12AthQtJ0Bl16FfXToA7ShacERL8dA2QHu6E70E6DgeOtBMzQq6 +IlpjsBZr5zcG6nnChyJBloAWORSLubbbzmzIaAq0RT6BbcZlYtcjYmaTET2 HUl5aYZ+fa87ZGcm+nV3+y136bwjuhwPHQHU53Kf70fhq9E8erVTc+RzgG86 Zi8vXtGLu4pjl+cBX3fMPiaPsi/qHq85ovu84S47omWQcwnwtWgevdXPUyn3 HLNoFaAFR3SfoQSeol5wZ/Nv/jQAfE07Og/QejSKxp/wXyXyOGIPeE2QbjYq XY4io054uI38UDABugBoyckbAsLPyjPpSPjw6CUTnibThknPNQHUmcokw02b tNpezPeMvZqEbWj76yBsm8psMAk21VoJe0U7o6XBKiBYnUp5Qba1G0z1cVlb K0O4roLWNrUTilGnjGcPn1kAfXsL9W5kXkczyEddBn2b3yyQ1wxkFN41kEFb AQ8AWc2gCQB05yrUl4DqaGeZFaEnHftM0QWADwAZjbimXdTTDAYgRFY7QcZM Xo9qmSwzIThMHwSbA+2RsF/t3WVTwWzLvHAw+izjSL8GTWo5NIlq2aPSDoNF B+dUiB6VvEjGz96cqmivBLMVW1TyobZmK35LMxk4OLt5VTeXMcJ3aSbviWc3 L+rmt+zm9zW6Bzb3qOSHp+/s5j/p5mZLSYO35Jj37EYPaMaBZPDzBzEk+7+d ZQ79A+ZsHKg=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 177.688}, {198.938, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"63c05b85-05fc-4f88-8234-b70fb7a0a5b7"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(81\\). \\!\\(\\\"metabidiminished rhombicosidodecahedron \ (J81)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"9fe36208-7b72-4f1d-970a-049588507f3d"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.0953 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0603534 1.18124 2.22045e-16 1.18124 [ [ 0 0 0 0 ] [ 1 1.0953 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.0953 L 0 1.0953 L closepath clip newpath .5 Mabswid [ ] 0 setdash .61714 .64519 m .49544 .60839 L .41464 .70095 L p .693 .483 .599 r F P 0 g s .32226 .6098 m .41464 .70095 L .49544 .60839 L p .781 .616 .676 r F P 0 g s .49544 .60839 m .40557 .518 L .32226 .6098 L p .781 .616 .676 r F P 0 g s .53012 .48469 m .40557 .518 L .49544 .60839 L closepath p .733 .619 .731 r F P 0 g s .49544 .60839 m .61714 .64519 L .65271 .52045 L p .666 .549 .712 r F P 0 g s .65271 .52045 m .53012 .48469 L .49544 .60839 L p .666 .549 .712 r F P 0 g s .40557 .518 m .53012 .48469 L .50684 .36971 L p .745 .689 .797 r F P 0 g s .53012 .48469 m .65271 .52045 L .71136 .4276 L p .62 .606 .815 r F P 0 g s .50684 .36971 m .53012 .48469 L p .71136 .4276 L .62 .606 .815 r F P 0 g s .48728 .79934 m .61517 .76347 L .61714 .64519 L p .693 .483 .599 r F P 0 g s .41464 .70095 m .48728 .79934 L p .61714 .64519 L .693 .483 .599 r F P 0 g s .73021 .61452 m .61714 .64519 L .61517 .76347 L p .55 .367 .585 r F P 0 g s .73021 .61452 m .65271 .52045 L .61714 .64519 L closepath p .583 .464 .682 r F P 0 g s .32226 .6098 m .40557 .518 L .37887 .40327 L p .858 .754 .747 r F P 0 g s .50684 .36971 m .37887 .40327 L .40557 .518 L p .745 .689 .797 r F P 0 g s .65271 .52045 m .73021 .61452 L .79278 .52276 L p .493 .441 .727 r F P 0 g s .79278 .52276 m .71136 .4276 L .65271 .52045 L p .493 .441 .727 r F P 0 g s .41464 .70095 m .32226 .6098 L .31274 .72948 L closepath p .828 .602 .597 r F P 0 g s .38575 .83212 m .48728 .79934 L .41464 .70095 L p .785 .49 .489 r F P 0 g s .41464 .70095 m .31274 .72948 L .38575 .83212 L p .785 .49 .489 r F P 0 g s .2258 .67706 m .31274 .72948 L .32226 .6098 L p .914 .684 .577 r F P 0 g s .32226 .6098 m .23794 .55403 L .2258 .67706 L p .914 .684 .577 r F P 0 g s .23794 .55403 m .32226 .6098 L p .37887 .40327 L .858 .754 .747 r F P 0 g s .42961 .30437 m .50684 .36971 L .61939 .33097 L p .638 .752 .931 r F P 0 g s .50684 .36971 m .42961 .30437 L .37887 .40327 L closepath p .747 .771 .873 r F P 0 g s .71136 .4276 m .61939 .33097 L .50684 .36971 L p .62 .606 .815 r F P 0 g s .516 .8742 m .64976 .83621 L .61517 .76347 L p .596 .267 .383 r F P 0 g s .61517 .76347 m .48728 .79934 L .516 .8742 L p .596 .267 .383 r F P 0 g s .73109 .7352 m .61517 .76347 L .64976 .83621 L closepath p .493 .223 .433 r F P 0 g s .61517 .76347 m .73109 .7352 L .73021 .61452 L p .55 .367 .585 r F P 0 g s .79278 .52276 m .73021 .61452 L .73109 .7352 L p .25 .132 .518 r F P 0 g s .37887 .40327 m .27379 .42146 L .23794 .55403 L p .858 .754 .747 r F P 0 g s .27379 .42146 m .37887 .40327 L .42961 .30437 L p .828 .881 .882 r F P 0 g s .48728 .79934 m .38575 .83212 L .516 .8742 L closepath p .696 .318 .328 r F P 0 g s .73109 .7352 m .79702 .72416 L p .79278 .52276 L .25 .132 .518 r F P 0 g s .79702 .72416 m .83734 .58637 L .79278 .52276 L p .25 .132 .518 r F P 0 g s .71136 .4276 m .79278 .52276 L .83734 .58637 L p .697 .194 0 r F P 0 g s .61939 .33097 m .71136 .4276 L p .83734 .58637 L .697 .194 0 r F P 0 g s .34728 .85051 m .38575 .83212 L .31274 .72948 L p .867 .43 .157 r F P 0 g s .24301 .75007 m .34728 .85051 L p .31274 .72948 L .867 .43 .157 r F P 0 g s .31274 .72948 m .2258 .67706 L .24301 .75007 L p .867 .43 .157 r F P 0 g s .61939 .33097 m .54456 .26223 L .42961 .30437 L p .638 .752 .931 r F P 0 g s .54456 .26223 m .61939 .33097 L p .83734 .58637 L .697 .194 0 r F P 0 g s .71275 .83028 m .79702 .72416 L .73109 .7352 L p .164 0 .16 r F P 0 g s .73109 .7352 m .64976 .83621 L .71275 .83028 L p .164 0 .16 r F P 0 g s .23794 .55403 m .19153 .55666 L .2258 .67706 L closepath p .996 .783 .496 r F P 0 g s .19153 .55666 m .23794 .55403 L .27379 .42146 L p .979 .912 .657 r F P 0 g s .42961 .30437 m .54456 .26223 L .51441 .24805 L p .486 .894 .927 r F P 0 g s .32278 .31945 m .42961 .30437 L p .51441 .24805 L .486 .894 .927 r F P 0 g s .42961 .30437 m .32278 .31945 L .27379 .42146 L p .828 .881 .882 r F P 0 g s .27379 .42146 m .22917 .41662 L .19153 .55666 L p .979 .912 .657 r F P 0 g s .32278 .31945 m .22917 .41662 L .27379 .42146 L closepath p .891 .986 .799 r F P 0 g s .516 .8742 m .38575 .83212 L .34728 .85051 L p .557 0 0 r F P 0 g s .6101 .8676 m .71275 .83028 L .64976 .83621 L p .013 0 0 r F P 0 g s .48455 .89521 m .6101 .8676 L p .64976 .83621 L .013 0 0 r F P 0 g s .64976 .83621 m .516 .8742 L .48455 .89521 L p .013 0 0 r F P 0 g s .34728 .85051 m .48455 .89521 L .516 .8742 L p .557 0 0 r F P 0 g s .20749 .62565 m .24301 .75007 L .2258 .67706 L p .729 .444 0 r F P 0 g s .2258 .67706 m .19153 .55666 L .20749 .62565 L p .729 .444 0 r F P 0 g s .51441 .24805 m .54456 .26223 L p .83734 .58637 L .697 .194 0 r F P 0 g s .51441 .24805 m .36971 .28525 L .32278 .31945 L p .486 .894 .927 r F P 0 g s .22917 .41662 m .32278 .31945 L .36971 .28525 L p 0 0 0 r F P 0 g s .82386 .59105 m .83734 .58637 L .79702 .72416 L p .833 .841 .374 r F P 0 g s .79702 .72416 m .78124 .73691 L .82386 .59105 L p .833 .841 .374 r F P 0 g s .79702 .72416 m .71275 .83028 L .78124 .73691 L closepath p .63 .866 .505 r F P 0 g s .5482 .30283 m .51441 .24805 L p .83734 .58637 L .697 .194 0 r F P 0 g s .63967 .41148 m .5482 .30283 L p .83734 .58637 L .697 .194 0 r F P 0 g s .74866 .52527 m .63967 .41148 L p .83734 .58637 L .697 .194 0 r F P 0 g s .83734 .58637 m .82386 .59105 L .74866 .52527 L p .697 .194 0 r F P 0 g s .19153 .55666 m .22917 .41662 L .27191 .38708 L p 0 0 .314 r F P 0 g s .20749 .62565 m .19153 .55666 L p .27191 .38708 L 0 0 .314 r F P 0 g s .36971 .28525 m .27191 .38708 L .22917 .41662 L p 0 0 0 r F P 0 g s .34728 .85051 m .24301 .75007 L p .54076 .52404 L .59 .609 .839 r F P 0 g s .48455 .89521 m .34728 .85051 L p .54076 .52404 L .59 .609 .839 r F P 0 g s .67748 .77177 m .78124 .73691 L .71275 .83028 L p .816 .973 .898 r F P 0 g s .71275 .83028 m .6101 .8676 L .67748 .77177 L p .816 .973 .898 r F P 0 g s .6101 .8676 m .48455 .89521 L p .54076 .52404 L .59 .609 .839 r F P 0 g s .24301 .75007 m .20749 .62565 L p .54076 .52404 L .59 .609 .839 r F P 0 g s .36971 .28525 m .51441 .24805 L .5482 .30283 L p .499 .085 .186 r F P 0 g s .39591 .3424 m .27191 .38708 L .36971 .28525 L closepath p .346 .017 .257 r F P 0 g s .5482 .30283 m .39591 .3424 L .36971 .28525 L p .499 .085 .186 r F P 0 g s .74866 .52527 m .82386 .59105 L .78124 .73691 L p .9 .809 .748 r F P 0 g s .65351 .63907 m .74866 .52527 L p .78124 .73691 L .9 .809 .748 r F P 0 g s .78124 .73691 m .67748 .77177 L .65351 .63907 L p .9 .809 .748 r F P 0 g s .67748 .77177 m .6101 .8676 L p .54076 .52404 L .59 .609 .839 r F P 0 g s .27191 .38708 m .25927 .52039 L .20749 .62565 L p 0 0 .314 r F P 0 g s .20749 .62565 m .25927 .52039 L p .54076 .52404 L .59 .609 .839 r F P 0 g s .27191 .38708 m .39591 .3424 L .38668 .47865 L p .482 .28 .53 r F P 0 g s .38668 .47865 m .25927 .52039 L .27191 .38708 L p .482 .28 .53 r F P 0 g s .5482 .30283 m .63967 .41148 L .54076 .52404 L p .685 .452 .563 r F P 0 g s .39591 .3424 m .5482 .30283 L p .54076 .52404 L .685 .452 .563 r F P 0 g s .54076 .52404 m .65351 .63907 L .67748 .77177 L p .59 .609 .839 r F P 0 g s .25927 .52039 m .38668 .47865 L .54076 .52404 L p .59 .609 .839 r F P 0 g s .54076 .52404 m .38668 .47865 L .39591 .3424 L p .685 .452 .563 r F P 0 g s .63967 .41148 m .74866 .52527 L .65351 .63907 L p .801 .626 .665 r F P 0 g s .65351 .63907 m .54076 .52404 L .63967 .41148 L p .801 .626 .665 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{182.562, 199.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmrlz20YUh2GSICmKskRJlCxZByVRpA7rvu/D1mUdmWg8ScaZFBpPZuwi k4ztzqX/BZcpXbrMuEudyqXalP43mN19i2eQ/IF8MJVRimgGCwrY9337FrsA COL86vXzn3+5ev3i2VXu6OXVb89fPHuVO/z1pdoUveM4zke1/JVz9OeS+miL jyX1p3b+vwq9+lGvYrobv6cN3+mVqzdESm/axp2o/lj6Y466OqLLJ1TzkkOT pmaMa9rFVL6kyhdcuaUCqxZVU5e0zf4531DgCbcnAwKjIPCCAg/Y2C0MPKfA fb0ye+6DwBgIPKPAPQ7sFwaeUuAuB6r9TxVH19GEPiHnMXG2OeWIxthKCmEw KBsXwE4ItsWwKID16tJsSgDEMSE2GeECRFaXtrUfXr2raFkcYI8Iu8HYOMBm GJsQYg8Ju87YBMC2MDYtxB4Qdo2xTQCbZGxGiH1E2FXGpgA2xtguIfYhYVcY 2wyxZlbIiPtEXGZiWhNNnZwQsUeIpfJcvZnyZu+tqa1ZQ0LiLhEXmZhkYkwD bXUFC4XdIexC+ci086MaOyzEbhN2vnweRagnZFg0PbcIO1c+w6N0jKqxI0Ls JmFnGau61Dub2aUV4PNC/AbhZ/Qqrve0A9ioELZOsGluaxbACkLYGsGm9Mob nPrKZ6aOonYCdlHIXiX2A2bro3/pzUs1AzS6AwjGhIIVEkzqVYTmgUwwLhQs k2DCrKJ2JFwaiVQ1IVQtkWocqFygQgNoEqiSQLXYuMqf1af3H8zASQHVQrAq 3LFyWeUtQcp5Uo4Js6s3/qxO/UdlveN4A/oi0LtC/Vzj+gLQJ4T62cb1o0Df JNTPkL4I9PEG9CmhfrpxfR7o00CPLrk3oB8B+rtC/RTpC0CfEOqHgb5NqH/Q uH4I6DPCYz8ZTp/RpTmp5YC0I0gaso/v6tJsckvvfr82n/qALyvsY7oQqjki 06dZ36z15mblHtB3CfXj4fRJXRppO2ffCfT3hPqxcHqXs+/h7FuBvleoL4bT R1if4+ybgb4vSG97Ow98yQqfvhabG7ACZxoHqgGgQl/jC3XMRjXFWUWAKidU jcqSVCq9qAuMKo0+rwURyrQaSzx1OpVh50xZnsGwL4PPn/40fWxUhXDsecDO 2XsKj+0tjoN7aSRYmQDKRaAcqEhHLeo/Kv0HCT3dGg6nXwL6PqB3hfoh0g8L 9StA3wv0CaE+F06/CvQ9QJ/Upf3WVC0dDJbGgXQdSLuBtNl2vC9ns+iBV6Ob kXIDKLNA2VJDmQseWDGg3ALKDqBsraEcDFZGgXIHKDNAmamhHAin3AXKVqDs AOPXjKf+YF8E+PaB7y7wdfKAVTuur59641XNbd853PX77KKfqFc70sCRNSX9 HKAVVtPvN8QqDM4RgKcAvMvXYRbsHZsA8jEgJwPJVc0ug/sPhOM8BuQ4IHfX JJurpzkkp4DnBvLK+2DQB6sYGwgblTezBvnMlPixQm9o2nlFOzXlPkjVnnAK dRBeWj24IbdIKU/HnrKLQkTAUbpFSnk69j5jDCDO/h1EwMStQUG5ZEFDRnwI M0MvwgWOCzPoxBl8FaW8IfkbQ0wIEe04l6+iRP0U72tGKITZZAMn65wby24D vGvk+7/flrxrZD4cpy2IU6M9KJE0J6Kv2aXP9hrkTVP70KZ+e1LcHoMxn8Z8 CLMBNSDBDYhxoP1iOw3cJwARY0SiEjEDEMcAEeHmNzHCPkuZDULYHw296vb5 0hyo7r//0H2sFl+gfS42DwIPgwIrvgxY9wJAPKrpto+rFkHgfs1A+yhzCQTu gsBm0GjrXgaIHWHethUrALFVs/n2MfgqCNyoGWgf36+BwDVh3ta9DhArQoRt xQZALAPElzFtf1naBIGLINDMJ7PJ/tC2BQLnQaDLgfb3y20QOAsCoxxof/Hd 0SuzwTza8U7+VJ3z2qHKX16vmaxg61OaqWl/9j/gmkVd03yybz8c864h3mXf DjnlXeaJobk5te/HXPCuDO+yrxl9y7tSfN6w7zk94V0RjvqBdpl3pkyTf6IN /4l3um5p5dz5B7nKapM=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 181.562}, {198.938, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"5f4a5678-a9c2-4960-9bfa-a8fcac344397"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(82\\). \\!\\(\\\"gyrate bidiminished rhombicosidodecahedron \ (J82)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"0c3e11de-fdaf-4329-a61e-a496535c5cdf"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.0929 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0597571 1.17363 -1.11022e-16 1.17363 [ [ 0 0 0 0 ] [ 1 1.0929 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.0929 L 0 1.0929 L closepath clip newpath .5 Mabswid [ ] 0 setdash .51646 .50323 m .61471 .58838 L .72141 .53143 L p .637 .581 .775 r F P 0 g s .43118 .60144 m .52976 .68682 L .61471 .58838 L p .715 .578 .7 r F P 0 g s .61471 .58838 m .51646 .50323 L .43118 .60144 L p .715 .578 .7 r F P 0 g s .65575 .70703 m .61471 .58838 L .52976 .68682 L closepath p .659 .495 .652 r F P 0 g s .61471 .58838 m .65575 .70703 L .76562 .65213 L p .58 .452 .67 r F P 0 g s .76562 .65213 m .72141 .53143 L .61471 .58838 L p .58 .452 .67 r F P 0 g s .34063 .52116 m .43118 .60144 L .51646 .50323 L p .777 .677 .754 r F P 0 g s .51646 .50323 m .42843 .42065 L .34063 .52116 L p .777 .677 .754 r F P 0 g s .55831 .39 m .42843 .42065 L .51646 .50323 L closepath p .723 .678 .805 r F P 0 g s .55831 .39 m .51646 .50323 L p .72141 .53143 L .637 .581 .775 r F P 0 g s .36517 .77854 m .49289 .7968 L .52976 .68682 L p .778 .559 .603 r F P 0 g s .32828 .65432 m .36517 .77854 L p .52976 .68682 L .778 .559 .603 r F P 0 g s .52976 .68682 m .43118 .60144 L .32828 .65432 L p .778 .559 .603 r F P 0 g s .65575 .70703 m .52976 .68682 L .49289 .7968 L p .663 .434 .563 r F P 0 g s .43118 .60144 m .34063 .52116 L .32828 .65432 L closepath p .822 .667 .69 r F P 0 g s .76562 .65213 m .65575 .70703 L .62232 .81945 L p .478 .251 .491 r F P 0 g s .49289 .7968 m .62232 .81945 L .65575 .70703 L p .663 .434 .563 r F P 0 g s .72141 .53143 m .76562 .65213 L .8076 .7312 L p 0 0 .512 r F P 0 g s .68777 .40589 m .72141 .53143 L p .8076 .7312 L 0 0 .512 r F P 0 g s .72141 .53143 m .68777 .40589 L .55831 .39 L p .637 .581 .775 r F P 0 g s .34063 .52116 m .42843 .42065 L .40371 .33 L p .858 .832 .82 r F P 0 g s .42843 .42065 m .55831 .39 L .53982 .29785 L p .722 .759 .882 r F P 0 g s .53982 .29785 m .40371 .33 L .42843 .42065 L p .722 .759 .882 r F P 0 g s .53982 .29785 m .55831 .39 L .68777 .40589 L p .585 .665 .894 r F P 0 g s .24089 .6401 m .32828 .65432 L .34063 .52116 L p .905 .743 .671 r F P 0 g s .34063 .52116 m .25436 .50032 L .24089 .6401 L p .905 .743 .671 r F P 0 g s .25436 .50032 m .34063 .52116 L p .40371 .33 L .858 .832 .82 r F P 0 g s .38702 .86486 m .52069 .88223 L .49289 .7968 L p .748 .391 .376 r F P 0 g s .49289 .7968 m .36517 .77854 L .38702 .86486 L p .748 .391 .376 r F P 0 g s .62232 .81945 m .49289 .7968 L .52069 .88223 L closepath p .655 .339 .425 r F P 0 g s .27788 .77045 m .36517 .77854 L .32828 .65432 L p .9 .621 .505 r F P 0 g s .32828 .65432 m .24089 .6401 L .27788 .77045 L p .9 .621 .505 r F P 0 g s .68777 .40589 m .67529 .31294 L .53982 .29785 L p .585 .665 .894 r F P 0 g s .67529 .31294 m .68777 .40589 L p .8076 .7312 L 0 0 .512 r F P 0 g s .71485 .83993 m .8076 .7312 L .76562 .65213 L p .478 .251 .491 r F P 0 g s .62232 .81945 m .71485 .83993 L p .76562 .65213 L .478 .251 .491 r F P 0 g s .61133 .9066 m .71485 .83993 L .62232 .81945 L p .474 .078 .208 r F P 0 g s .62232 .81945 m .52069 .88223 L .61133 .9066 L p .474 .078 .208 r F P 0 g s .36517 .77854 m .27788 .77045 L .38702 .86486 L closepath p .846 .455 .307 r F P 0 g s .40371 .33 m .29221 .37754 L .25436 .50032 L p .858 .832 .82 r F P 0 g s .29221 .37754 m .40371 .33 L .45997 .26424 L p .726 .981 .912 r F P 0 g s .53982 .29785 m .45997 .26424 L .40371 .33 L closepath p .677 .866 .971 r F P 0 g s .53982 .29785 m .67529 .31294 L .69119 .28928 L p .268 .707 .963 r F P 0 g s .45997 .26424 m .53982 .29785 L p .69119 .28928 L .268 .707 .963 r F P 0 g s .25436 .50032 m .20505 .55495 L .24089 .6401 L closepath p .994 .834 .577 r F P 0 g s .20505 .55495 m .25436 .50032 L .29221 .37754 L p .934 .948 .616 r F P 0 g s .53035 .905 m .61133 .9066 L .52069 .88223 L p .306 0 0 r F P 0 g s .38399 .87752 m .53035 .905 L p .52069 .88223 L .306 0 0 r F P 0 g s .52069 .88223 m .38702 .86486 L .38399 .87752 L p .306 0 0 r F P 0 g s .2676 .77685 m .27788 .77045 L .24089 .6401 L p .833 .514 0 r F P 0 g s .21987 .63635 m .2676 .77685 L p .24089 .6401 L .833 .514 0 r F P 0 g s .24089 .6401 m .20505 .55495 L .21987 .63635 L p .833 .514 0 r F P 0 g s .69119 .28928 m .67529 .31294 L p .8076 .7312 L 0 0 .512 r F P 0 g s .73401 .35726 m .69119 .28928 L p .8076 .7312 L 0 0 .512 r F P 0 g s .78761 .49869 m .73401 .35726 L p .8076 .7312 L 0 0 .512 r F P 0 g s .82615 .6481 m .78761 .49869 L p .8076 .7312 L 0 0 .512 r F P 0 g s .8076 .7312 m .83227 .73494 L .82615 .6481 L p 0 0 .512 r F P 0 g s .83227 .73494 m .8076 .7312 L .71485 .83993 L p 0 0 0 r F P 0 g s .71485 .83993 m .73349 .85086 L .83227 .73494 L p 0 0 0 r F P 0 g s .71485 .83993 m .61133 .9066 L .73349 .85086 L closepath p 0 0 0 r F P 0 g s .2676 .77685 m .38399 .87752 L .38702 .86486 L p .626 .089 0 r F P 0 g s .38702 .86486 m .27788 .77045 L .2676 .77685 L p .626 .089 0 r F P 0 g s .29221 .37754 m .24364 .42661 L .20505 .55495 L p .934 .948 .616 r F P 0 g s .34438 .31203 m .24364 .42661 L .29221 .37754 L closepath p .604 .871 .538 r F P 0 g s .45997 .26424 m .34438 .31203 L .29221 .37754 L p .726 .981 .912 r F P 0 g s .69119 .28928 m .55144 .25705 L .45997 .26424 L p .268 .707 .963 r F P 0 g s .34438 .31203 m .45997 .26424 L .55144 .25705 L p .154 0 0 r F P 0 g s .65702 .84599 m .73349 .85086 L .61133 .9066 L p .588 .929 .955 r F P 0 g s .61133 .9066 m .53035 .905 L .65702 .84599 L p .588 .929 .955 r F P 0 g s .26116 .50322 m .21987 .63635 L .20505 .55495 L p 0 0 .326 r F P 0 g s .20505 .55495 m .24364 .42661 L .26116 .50322 L p 0 0 .326 r F P 0 g s .55144 .25705 m .69119 .28928 L .73401 .35726 L p .705 .232 .124 r F P 0 g s .82615 .6481 m .83227 .73494 L .73349 .85086 L p .893 .928 .835 r F P 0 g s .24364 .42661 m .34438 .31203 L .43299 .30719 L p .323 .055 .343 r F P 0 g s .55144 .25705 m .43299 .30719 L .34438 .31203 L p .154 0 0 r F P 0 g s .71403 .71557 m .82615 .6481 L p .73349 .85086 L .893 .928 .835 r F P 0 g s .73349 .85086 m .65702 .84599 L .71403 .71557 L p .893 .928 .835 r F P 0 g s .26116 .50322 m .24364 .42661 L p .43299 .30719 L .323 .055 .343 r F P 0 g s .38399 .87752 m .2676 .77685 L p .67157 .56156 L .614 .58 .792 r F P 0 g s .53035 .905 m .38399 .87752 L p .67157 .56156 L .614 .58 .792 r F P 0 g s .2676 .77685 m .21987 .63635 L p .67157 .56156 L .614 .58 .792 r F P 0 g s .58715 .32479 m .43299 .30719 L .55144 .25705 L closepath p .59 .183 .239 r F P 0 g s .73401 .35726 m .58715 .32479 L .55144 .25705 L p .705 .232 .124 r F P 0 g s .65702 .84599 m .53035 .905 L p .67157 .56156 L .614 .58 .792 r F P 0 g s .21987 .63635 m .26116 .50322 L p .67157 .56156 L .614 .58 .792 r F P 0 g s .73401 .35726 m .78761 .49869 L .67157 .56156 L p .799 .548 .56 r F P 0 g s .58715 .32479 m .73401 .35726 L p .67157 .56156 L .799 .548 .56 r F P 0 g s .78761 .49869 m .82615 .6481 L .71403 .71557 L p .871 .727 .701 r F P 0 g s .43299 .30719 m .38334 .42903 L .26116 .50322 L p .323 .055 .343 r F P 0 g s .43299 .30719 m .58715 .32479 L .54267 .44982 L p .638 .373 .501 r F P 0 g s .54267 .44982 m .38334 .42903 L .43299 .30719 L p .638 .373 .501 r F P 0 g s .67157 .56156 m .71403 .71557 L .65702 .84599 L p .614 .58 .792 r F P 0 g s .26116 .50322 m .38334 .42903 L p .67157 .56156 L .614 .58 .792 r F P 0 g s .71403 .71557 m .67157 .56156 L .78761 .49869 L p .871 .727 .701 r F P 0 g s .67157 .56156 m .54267 .44982 L .58715 .32479 L p .799 .548 .56 r F P 0 g s .38334 .42903 m .54267 .44982 L .67157 .56156 L p .614 .58 .792 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{182.938, 199.875}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmktzE0cQxxd5ZdmyHpYsDBhsC4Nl5BfGLyy/wDZYiW0CUVKVSg6puCiq 8CEVCvgGOXLlmGM+AsUtZ04cueaYI8dclenp2dZK+q8868XgQ1Q1M6vZ7t+/ p2cfo109OHz59Mmvhy+PHh8Wq88Pnz09evyiuPvbc9XVdc5xnLeqvCs6tF1X m6Z6W1cftfP/5qTNL9QkKJsPueMHanp1euP1Iidal9fliu6N1d9ULrq0uc8e NWri1JEghy7acsmcN8mcivrmOVbZUStqmyQ5xhjR7pigWgtss+OBOPaJYxI4 9oniJjvuUaPNU+KYAo5ZcVxlx6ooNhyzwDFPtd67wo73mxW1dQ44DpgUUZ/5 OMuM2AbaBYAoAMQSI+4IIi2IC5aIRUboDA6G0fY7ml21nhoVFQXV3PfnT79T Ud9U3Rs0I0hggQU2LAXSItAVTmAdCGSAwCDVCU5RO2yeYWsAlgWwIZMU6nv/ 6hUVR58D/YB9i9mrEdjdVLuc/kCBChDotxRIUq1H0AME5lhgxVLgMhDIygjc 6AJoBAWqu6nLpOM2gOUsYZeo1ieiiWzZEoaGPqTr5gHPMnYJYPOWMV4B2BnG LlpiUbQdsAsAOxAdOx8BOwKw06eKvQWwBcspKwLsFGPnLLEo2g7YmwB7Pjp2 NgJ2DGAnGTsDsIPRsdMAe8ESew1gy8FYnQR9l7kIYNfDwfTRahZef7x+n6St TDjslA9Li0HVNp0ECktFXctUrW+/cSAwDgRuBAvkJO5hwuqL8kQ4RFYQ4zq+ 4+OZYBhPueuD1Tht7WMuATJKZWdySiKdBDx0+DTx4i08Hn6vQGcsoaXjoT0g B7MAj84kgy+3TVVNr1drLUeuK/HPWwqMhxOIicASCeitE2HjfqwulKoKiHo0 GH8D4OlAqemuNQAbkQVG6RhEy4StA9hlgakdf//1xgvx2PBa2BuAfamxttVo rziN0CcAPg7wmwA/KKHHCduS3mvBAij+u0BgQAQS0QW25FjLCbY3OnYHxJ32 HW0m552kSpZS94FUUsaSBgJj4QR2gUBCBLLRBapAwBWBXLDAuOVh+hUQiIHZ CCmFxrKna1ek2F4tItrJV8OR932D8AL+/Fg0pzGAPTgd7ANLbPEzYPEt+dEX Q/G1qW01860lZfTTU5oXgLUzgfjOEjHCCP+N1jtabKM48wjbXAwzomwZRYFq fe0eDeeYF0e145+PH7wgvDHYcvg6zicVYbziNEKatERlJCSXEDgxtrCUwLqj w5IC6wmGTQEYOpX96xCTrbBYFGO3xNgXHeYKLANgVxg2bTngmMD6TwLDq+d8 OJQepO4aOIFjy2x1QMwEDiMS4hFAFE4VMQsQD6MjvrFEDIdDoHSaC9lNgDiw RIyGQ6BjshiM2LdEmHXbHEDsAUQOIMZ8CH0mIu0OjvNAu2qJML+xFgBiFyDQ NeI6IxYB4p4lwvyYXwKIHYDIAoT5wb4MENsAga6c5uHVbZmHLUtH87CvArQ3 wyFWAWLdEmEei64BxBpApAHCPFReB4iKJcI8Rd8AiBWASAGEeRuxKfOAHNF9 1Lx0uQu0F6jupy7z1msLGM1R7b2b//ivecinzbeB+bTcthrm5t3zDjAvCz0t 5uZN+z1gXgLm/nf7+pfJVQmhYWT+OfA1Nfr2PCSkjBjxFKvLtfroh9h5YGT+ vPC9kJIi1zDibDs/ilGXkLJiZP4/8TM1fXW9VFO7WqbPGB1Ro98z7HLHmfi/ yuk3zrn/ADy3yHc=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 181.938}, {198.875, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"0b8d059e-e469-4649-8186-8160afd51c79"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(83\\). \\!\\(\\\"tridiminished rhombicosidodecahedron (J83)\ \\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"64b2ea89-4d33-413d-8ea4-f023acb01511"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.16244 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0890855 1.23998 -1.11022e-16 1.23998 [ [ 0 0 0 0 ] [ 1 1.16244 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.16244 L 0 1.16244 L closepath clip newpath .5 Mabswid [ ] 0 setdash .67877 .8203 m .5993 .72154 L .45996 .74566 L p .696 .443 .536 r F P 0 g s .5993 .72154 m .70541 .62599 L p .3356 .68795 L .748 .672 .777 r F P 0 g s .3356 .68795 m .45996 .74566 L .5993 .72154 L p .748 .672 .777 r F P 0 g s .5993 .72154 m .67877 .8203 L .78873 .72215 L p .606 .432 .619 r F P 0 g s .78873 .72215 m .70541 .62599 L .5993 .72154 L p .606 .432 .619 r F P 0 g s .70541 .62599 m .74101 .49129 L p .3356 .68795 L .748 .672 .777 r F P 0 g s .70541 .62599 m .78873 .72215 L .88317 .64573 L p .492 .411 .692 r F P 0 g s .74101 .49129 m .70541 .62599 L p .88317 .64573 L .492 .411 .692 r F P 0 g s .3161 .80512 m .44579 .86253 L .45996 .74566 L p .821 .56 .544 r F P 0 g s .45996 .74566 m .3356 .68795 L .3161 .80512 L p .821 .56 .544 r F P 0 g s .45996 .74566 m .44579 .86253 L p .67877 .8203 L .696 .443 .536 r F P 0 g s .68965 .36469 m .74101 .49129 L .8515 .49727 L p .469 .518 .826 r F P 0 g s .74101 .49129 m .68965 .36469 L p .3356 .68795 L .748 .672 .777 r F P 0 g s .88317 .64573 m .8515 .49727 L .74101 .49129 L p .492 .411 .692 r F P 0 g s .23607 .75649 m .3161 .80512 L .3356 .68795 L p .954 .709 .527 r F P 0 g s .20898 .60001 m .23607 .75649 L p .3356 .68795 L .954 .709 .527 r F P 0 g s .3356 .68795 m .27355 .56523 L .20898 .60001 L p .954 .709 .527 r F P 0 g s .30278 .42211 m .27355 .56523 L .3356 .68795 L p .748 .672 .777 r F P 0 g s .41567 .31748 m .30278 .42211 L p .3356 .68795 L .748 .672 .777 r F P 0 g s .56556 .29617 m .41567 .31748 L p .3356 .68795 L .748 .672 .777 r F P 0 g s .68965 .36469 m .56556 .29617 L p .3356 .68795 L .748 .672 .777 r F P 0 g s .44579 .86253 m .58503 .91175 L .67877 .8203 L p .696 .443 .536 r F P 0 g s .78745 .84138 m .67877 .8203 L .58503 .91175 L p .509 .187 .358 r F P 0 g s .78745 .84138 m .78873 .72215 L .67877 .8203 L closepath p .509 .287 .513 r F P 0 g s .78873 .72215 m .78745 .84138 L .88582 .76672 L p .322 .143 .475 r F P 0 g s .88582 .76672 m .88317 .64573 L .78873 .72215 L p .322 .143 .475 r F P 0 g s .68965 .36469 m .80066 .36495 L .74511 .29118 L p .39 .657 .965 r F P 0 g s .56556 .29617 m .68965 .36469 L p .74511 .29118 L .39 .657 .965 r F P 0 g s .8515 .49727 m .80066 .36495 L .68965 .36469 L p .469 .518 .826 r F P 0 g s .44579 .86253 m .3161 .80512 L .39174 .91428 L closepath p .817 .442 .344 r F P 0 g s .58503 .91175 m .44579 .86253 L .39174 .91428 L p .685 .257 .226 r F P 0 g s .23865 .44905 m .20898 .60001 L .27355 .56523 L p .972 .906 .688 r F P 0 g s .27355 .56523 m .30278 .42211 L .23865 .44905 L p .972 .906 .688 r F P 0 g s .39174 .91428 m .53838 .96717 L .58503 .91175 L p .685 .257 .226 r F P 0 g s .69284 .93783 m .58503 .91175 L .53838 .96717 L closepath p .484 .027 .09 r F P 0 g s .58503 .91175 m .69284 .93783 L .78745 .84138 L p .509 .187 .358 r F P 0 g s .88582 .76672 m .78745 .84138 L .69284 .93783 L p 0 0 0 r F P 0 g s .69284 .93783 m .72823 .92882 L p .88582 .76672 L 0 0 0 r F P 0 g s .72823 .92882 m .85516 .81642 L .88582 .76672 L p 0 0 0 r F P 0 g s .8515 .49727 m .88317 .64573 L p .85516 .81642 L .983 .697 .346 r F P 0 g s .80066 .36495 m .8515 .49727 L p .85516 .81642 L .983 .697 .346 r F P 0 g s .41567 .31748 m .56556 .29617 L .5915 .24711 L p .589 .887 .991 r F P 0 g s .74511 .29118 m .5915 .24711 L .56556 .29617 L p .39 .657 .965 r F P 0 g s .39174 .91428 m .3161 .80512 L .23607 .75649 L p .835 .365 .019 r F P 0 g s .30278 .42211 m .41567 .31748 L .43236 .26922 L p .753 .992 .798 r F P 0 g s .23865 .44905 m .30278 .42211 L p .43236 .26922 L .753 .992 .798 r F P 0 g s .88317 .64573 m .88582 .76672 L .85516 .81642 L p .983 .697 .346 r F P 0 g s .5915 .24711 m .43236 .26922 L .41567 .31748 L p .589 .887 .991 r F P 0 g s .74511 .29118 m .80066 .36495 L p .85516 .81642 L .983 .697 .346 r F P 0 g s .23607 .75649 m .31293 .86989 L .39174 .91428 L p .835 .365 .019 r F P 0 g s .53838 .96717 m .39174 .91428 L .31293 .86989 L p 0 .491 .845 r F P 0 g s .56393 .96001 m .72823 .92882 L .69284 .93783 L p .165 .701 .725 r F P 0 g s .69284 .93783 m .53838 .96717 L .56393 .96001 L p .165 .701 .725 r F P 0 g s .20898 .60001 m .23865 .44905 L p .51965 .4621 L .402 .34 .674 r F P 0 g s .23607 .75649 m .20898 .60001 L p .51965 .4621 L .402 .34 .674 r F P 0 g s .41798 .89656 m .56393 .96001 L .53838 .96717 L p 0 .491 .845 r F P 0 g s .31293 .86989 m .41798 .89656 L p .53838 .96717 L 0 .491 .845 r F P 0 g s .31293 .86989 m .23607 .75649 L p .51965 .4621 L .402 .34 .674 r F P 0 g s .54175 .26461 m .43236 .26922 L .5915 .24711 L closepath p .075 0 0 r F P 0 g s .5915 .24711 m .74511 .29118 L .70444 .3118 L p .506 0 0 r F P 0 g s .70444 .3118 m .54175 .26461 L .5915 .24711 L p .506 0 0 r F P 0 g s .43236 .26922 m .31869 .35245 L .23865 .44905 L p .753 .992 .798 r F P 0 g s .23865 .44905 m .31869 .35245 L p .51965 .4621 L .402 .34 .674 r F P 0 g s .43236 .26922 m .54175 .26461 L .42605 .3521 L p .313 0 .074 r F P 0 g s .42605 .3521 m .31869 .35245 L .43236 .26922 L p .313 0 .074 r F P 0 g s .70444 .3118 m .74511 .29118 L p .85516 .81642 L .983 .697 .346 r F P 0 g s .41798 .89656 m .31293 .86989 L p .51965 .4621 L .402 .34 .674 r F P 0 g s .79764 .76262 m .85516 .81642 L .72823 .92882 L p .835 .913 .889 r F P 0 g s .72823 .92882 m .66355 .88202 L .79764 .76262 L p .835 .913 .889 r F P 0 g s .72823 .92882 m .56393 .96001 L .66355 .88202 L closepath p .676 .886 .975 r F P 0 g s .31869 .35245 m .42605 .3521 L .51965 .4621 L p .402 .34 .674 r F P 0 g s .69883 .43458 m .70444 .3118 L p .85516 .81642 L .983 .697 .346 r F P 0 g s .73548 .6135 m .69883 .43458 L p .85516 .81642 L .983 .697 .346 r F P 0 g s .85516 .81642 m .79764 .76262 L .73548 .6135 L p .983 .697 .346 r F P 0 g s .51329 .81342 m .66355 .88202 L .56393 .96001 L p .623 .733 .925 r F P 0 g s .56393 .96001 m .41798 .89656 L .51329 .81342 L p .623 .733 .925 r F P 0 g s .54175 .26461 m .70444 .3118 L p .51965 .4621 L .682 .381 .458 r F P 0 g s .51965 .4621 m .42605 .3521 L .54175 .26461 L p .682 .381 .458 r F P 0 g s .70444 .3118 m .69883 .43458 L .51965 .4621 L p .682 .381 .458 r F P 0 g s .51329 .81342 m .41798 .89656 L p .51965 .4621 L .402 .34 .674 r F P 0 g s .73548 .6135 m .79764 .76262 L .66355 .88202 L p .758 .698 .795 r F P 0 g s .55479 .64367 m .73548 .6135 L p .66355 .88202 L .758 .698 .795 r F P 0 g s .66355 .88202 m .51329 .81342 L .55479 .64367 L p .758 .698 .795 r F P 0 g s .69883 .43458 m .73548 .6135 L .55479 .64367 L p .741 .569 .661 r F P 0 g s .55479 .64367 m .51965 .4621 L .69883 .43458 L p .741 .569 .661 r F P 0 g s .51965 .4621 m .55479 .64367 L .51329 .81342 L p .402 .34 .674 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{172, 199.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmsluG0cQhsfcKUriooUStZAUKYoSqV2y48SOnQWWEUBA4AQBslwkI4B9 CBLYvumYV8gxj8Cjrz4GOeWYq44++hWYrqpmhcs/o2GIoQUhAqZ61NP9/dU1 w2Gzuk/PXj378aezV8+fnpVOXpz98uz505elRz+/MFXhW47jtMzxZ8mh87Y5 tabVNn/m4v+FV3FORYwi9rlUfE9Fkioi7V/JmLOHculrKuJUEW5nyJizFDXi s/vS6JSKHFVktP9dufSYihRVxNtPnIx0a7fOX9LhhMhyVVY7HkvHEy6kuenI ndMAESMbUQRfPBDEI4CYJhuiqimgvSMdOSwhGc+gYqZXkds1peNnPp2eU+1J RZgm7dffcTOCNIT4qecYltSVOHFsO8KYw2DJhjtIJm0K9qHnCIvqXkjdiwFY XWAPfI66QpZhCXfY/V7P+GyDu/cOLg4QG4K459MfhEWe1QT7kU9sHWCTALsu 2LtgwI3hEB/49AxhJwC2Ktg7PrFNgE0BbEWwt6mYoSu7/6GjvXT+pEWH8Yds rz/bADsJsGuCPQbYLMCiYU4BbFmwRwA7A7DopnhgDwF2DmA3ATYNsCXBHgBs HmDRw+2B3QfYRYBFH0UP7B7AFnxiMwBbFOwuwC4DbG107ArArgNsFmBXBbsD sEWArQ6H3QbYMsBWhsM2AbYCsGsAmwPYFcE2AHYdYMvDYbcAtgawq/oFPAdg ywLbBLA6gOXJ8rws3H7zW6vP2xl3gToQ2AICabI8mUuOLtAAAgkdQQYIzAKB JXeBJttIt4Di8z7998Bvk+WqleFgGwC20xUMA2MgwqIQFK4tFj3Ti+7Y3RG8 DRZbA9i9EYKwcFOw+yNg84Fi1wH24EZi5wF23h17OIK3wWKrAHv0frEotnNj xx6PEIRgsRWAvf1+sSi2s2PH3hkhCNcDWyDLs6cFAJtxf6xQRGfJ2qnpH6// 8hHbIQWmyPLUdAIIoHB4CKBwxHQE2aAEONT+2Lkr2Fy1OhwMvdW7Q21gDAwI WwRYNCXzwB4DbCkYbBlg0Zw/WCyaOx0B7BrAol+vHthDgK0Eg60CLMoM3Bjs AcDWABbliCwW/fDZHx92A2BR/m382D2A3QTY6bFjUVJhd3zYLYBFeePxY3cA tkGWqzxgKFG27epjlOv+fvdWD/M/TPRbPErqNa+4YRZt/hPbHRa0IjOkVB1I RYEUWu2y8xOUAd3yKRUHUlH3qSfK4W5e8bHvSCWBVGR0qRqQSgEptBZqf6yg hHcdSPEXBS/Ppe196hLgg54/mxBAyfmaG7TP/0yf/4S1ORy0lFDVCSOCZcmy 14vuCEnES6r19zfvOgc3KrlB+6Jp8Whppnv5wKJN9Ixlv1Z8CtiEJlpSKgKB hAoUfAosuQusAoGUhmhOn4wZgLU5dLTCtgywafU7B/zOAQG7ZoFWBgtAIKcC ac/npeSOXSDLjfIahJTPKFssWh6dB94W1NuETwG7UMrLunxlFmBXFBv1ibWr xbIobj4qF5d82R4ZoFHS2Dj8q7kjAW+iXePuXspniYtL+VymgEBFBRDRruJ/ SAWPNEw0hsXcYPal1nrb1sPh0Q3i7d6De9jhi0uuCrkKhbuFzH9iB17j7PjA 1pC4ClQBLEqW200Av7s3rdjnysD4rAxgCeBZDGDtxppPQDj+9XZZn7pJ9TEK YDJ9kM0/diAdHxeBj9N22F0+6nxIvt1kSxP3SipqHqAyfcMlhN0VdaKIhA4o 54bgKvmqcb7o7cja0xoJdp6TJ/Lild1kYb3NIXn6B3WSZBNUJe8S50vtGNOO CdAxRpZzTXaT2lca55iOLAI6hrTjx9LxG3C3o6ptLtAzb98QkiCSHWLOt6Bj iCw3eiyNftDxnErFtdg9GHzh3PoHAu3wRg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 171.}, {198.938, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"c41b3bb6-a4e5-46f8-84cf-2497deab5f1e"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(84\\). \\!\\(\\\"snub disphenoid (J84)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"4efcd8fe-7d15-4cee-85fe-f64fb0697712"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.08323 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0563445 1.14633 0 1.14633 [ [ 0 0 0 0 ] [ 1 1.08323 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.08323 L 0 1.08323 L closepath clip newpath .5 Mabswid [ ] 0 setdash .31933 .99176 m .58841 .86044 L .61875 .70938 L closepath p .066 0 0 r F P 0 g s .23126 .57774 m .31933 .99176 L .61875 .70938 L closepath p .749 .586 .674 r F P 0 g s .61875 .70938 m .54577 .30638 L .23126 .57774 L closepath p .736 .611 .719 r F P 0 g s .61875 .70938 m .84684 .48325 L .54577 .30638 L closepath p .464 .424 .728 r F P 0 g s .58841 .86044 m .84684 .48325 L .61875 .70938 L closepath p 0 0 0 r F P 0 g s .54577 .30638 m .40076 .41118 L .23126 .57774 L closepath p .551 .882 .621 r F P 0 g s .84684 .48325 m .40076 .41118 L .54577 .30638 L closepath p .657 .171 .087 r F P 0 g s .23126 .57774 m .10136 .8024 L .31933 .99176 L closepath p .967 .709 .491 r F P 0 g s .40076 .41118 m .10136 .8024 L .23126 .57774 L closepath p 0 0 0 r F P 0 g s .10136 .8024 m .58841 .86044 L .31933 .99176 L closepath p .57 .771 .974 r F P 0 g s .40076 .41118 m .84684 .48325 L .58841 .86044 L closepath p .773 .613 .681 r F P 0 g s .58841 .86044 m .10136 .8024 L .40076 .41118 L closepath p .725 .592 .707 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{184.625, 199.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2VtTWlcYBmAiIGgaYj0fQEE5CCIIgqKiosRTHXPquc20sbYd0+khk6TT 6fRv5LI/IZe9yE0vM/1ZdK/1LV83m3c5xYvmJs6wl+71Pt9awnYflienL86/ ++n0xZOz0/jBs9On50/Onsf3f3nm7PLf8Pl8r53XP3Gf+r7lfGs2r1vOl9P5 rnm7zZlq/OozeSg7vtFNQO1pvcoOXLx61I77EnmsGr2jV3X5NG+ZL9+JhL7W jd9dxxdCJRP6ioT6ETqW0CMMd5sMdyihL0mly4mb0OeoNIKufen6jPgxhO5I 6BP4KJnJjoQ+JpViqGRCH5FQHKFtCT3EcCkyXF1CD0ilNCqZ0D1UWkDXunTd JX4RoZqETkhoicypKvFjDFdBJdP1Aam0gtCyhI5UE5DxL7pK0nWI0v7Wmz9f 9WIQz0wKEj9A3On/++VfOuM451B0tiH1YwFDGLMP06OIKezENbyFYXOAeYF7 rrl1wiHANJlvVkroA033BEiJcUz68lgxsAkYJHAGY0cBMwJ3AUMEJgHHAVMC dwDDBOYw1SHy285KiQY+5z5SYgljRzC2gduA/QSuAF6eS+ICtwBvEljHpINk 0jEpsYkSt0iJXbUNq10mXkc8QuKHauuXD0bHN1QTlJNdZ/xIb9unNSlwHXDA No4HTglcAxwkcJ9AM9Ua4FB3cFU1vTa4R6B5L1cARwhsEjgtsAo42h2sAI4T uEPgjEB9JgvZYINAc4SWASe6gyXAKQK3CEwIXAKMErhJoPkrLKrGHOuWPyYO C4DTBG4QOCdwETBO4BqBSYF5wER3cAFwlsAageb0mFNNn+qZs52iPDDtgnrE ZHcwC5gmsEJgxgVDck3ohMsEzgucx4jzBJbtMAOYJbBEYNYF9VRztiuGB+YE pgHzBBavCwsELghMARYIzBNobiOSgMVrQH2yKtmuyB64KHAOIzKYJbDggnrE cndwFrBCYIbAogvqi06VwDSBSwITgKsEpuwwjqkymCSw5IJ6xBqBcwSWBc4A rhOYIHDZBfW9xkZ3cBoj1m13jx5YERgD3CRwmsCqC+qpbhMYs8MoYIPAKIEr /wVOEbgqcApwl8BJO5wEbBI4QWDNBXXPHoFjBK4JnMCI14G654DAEQLN4+M4 4CGBwwRuuKC+NT/qDo4BHhM4SKB5CB7FVBl8n8BNFzTLFp1wwA5HAO8SeJvA LRc0XeqpVWE2doSU2JYSwxj7vu0plsMhwAcEvkdgwwU9k2Yl+kkJsywyqJqg bdJXwGHX2C/ftNTLF7YdXGFSZ7fzjb+oE1JbXWyHFAuRYk3XceMpFlHbPttF 4YpiY6TYKGbGrttBUswsZI2TYjEUY/dkAVJsT4pNkGJJFGO3zX57sUkcfXmU mCQlekgJs5QXJfMp4W2Xh9yAu5gcJy1cljx2DRPpv9JOE9uA9a4lOa1ZDDOP jO3wQG0DcrJq4W7CE9pXW/d6aoKEmgjdk9As3uIddMkqonnoafd1hD6UUMr2 HumQLH+aZ5L2UFVt9a5PJZQhoTIqfSGheRIqIvRIQlkSyiMky8xyR6935ND1 WLryxKcQkjVxc7fcHppF6FsJFUhoBqHvJVQkoShC5xJaIqEJhH6QUMl2WtCh HyVUxi8+jK6fpatCfASf01MJVUnoJio9l9AKCYUR+lVCqyQUROg3CdVIqAeh 3yUkNy4BhFTrvP6Q3nVXiYvTg+n6v//D4rvxL70226I=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 183.625}, {198.938, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"6c682f38-bc6e-4258-b46f-09956c69fd84"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(85\\). \\!\\(\\\"snub square antiprism \ (J85)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"bc8638dc-d9c9-4328-acb9-d00026862e22"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .99901 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0195561 1.08426 0 1.08426 [ [ 0 0 0 0 ] [ 1 .99901 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .99901 L 0 .99901 L closepath clip newpath .5 Mabswid [ ] 0 setdash .18117 .4408 m .27083 .70035 L .31053 .60393 L closepath p .959 .622 .309 r F P 0 g s .27083 .70035 m .44944 .81691 L .31053 .60393 L closepath p .894 .503 .274 r F P 0 g s .31053 .60393 m .42532 .3756 L .18117 .4408 L closepath p .815 .76 .801 r F P 0 g s .31053 .60393 m .57038 .58931 L .42532 .3756 L closepath p .707 .62 .758 r F P 0 g s .57038 .58931 m .31053 .60393 L .44944 .81691 L closepath p .699 .515 .636 r F P 0 g s .71363 .7823 m .57038 .58931 L .44944 .81691 L closepath p .642 .447 .603 r F P 0 g s .71363 .7823 m .76915 .51344 L .57038 .58931 L closepath p .513 .414 .679 r F P 0 g s .42532 .3756 m .57038 .58931 L .76915 .51344 L p .565 .57 .817 r F P 0 g s .33445 .22244 m .42532 .3756 L .61796 .28033 L closepath p .615 .746 .939 r F P 0 g s .42532 .3756 m .33445 .22244 L .18117 .4408 L closepath p .81 .828 .864 r F P 0 g s .76915 .51344 m .61796 .28033 L .42532 .3756 L p .565 .57 .817 r F P 0 g s .44944 .81691 m .52619 .81779 L .71363 .7823 L closepath p .005 0 0 r F P 0 g s .44944 .81691 m .27083 .70035 L .52619 .81779 L closepath p 0 .46 .859 r F P 0 g s .76915 .51344 m .71363 .7823 L .80686 .70742 L closepath p .01 0 .421 r F P 0 g s .52619 .81779 m .80686 .70742 L .71363 .7823 L closepath p .526 .917 .908 r F P 0 g s .79753 .39992 m .76915 .51344 L .80686 .70742 L closepath p 0 0 .299 r F P 0 g s .79753 .39992 m .61796 .28033 L .76915 .51344 L closepath p .135 .348 .809 r F P 0 g s .18117 .4408 m .28237 .47132 L .27083 .70035 L closepath p .078 .156 .644 r F P 0 g s .28237 .47132 m .18117 .4408 L .33445 .22244 L closepath p .175 0 .374 r F P 0 g s .33445 .22244 m .61796 .28033 L .51607 .26649 L closepath p .201 0 0 r F P 0 g s .61796 .28033 m .79753 .39992 L .51607 .26649 L closepath p .551 0 0 r F P 0 g s .56058 .58934 m .52619 .81779 L .27083 .70035 L p .524 .563 .836 r F P 0 g s .27083 .70035 m .28237 .47132 L .56058 .58934 L p .524 .563 .836 r F P 0 g s .51607 .26649 m .28237 .47132 L .33445 .22244 L closepath p .428 .211 .48 r F P 0 g s .80686 .70742 m .52619 .81779 L .56058 .58934 L closepath p .714 .741 .873 r F P 0 g s .80686 .70742 m .56058 .58934 L .79753 .39992 L closepath p .812 .691 .731 r F P 0 g s .51607 .26649 m .56058 .58934 L .28237 .47132 L closepath p .622 .507 .701 r F P 0 g s .56058 .58934 m .51607 .26649 L .79753 .39992 L closepath p .773 .613 .681 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{200.188, 199.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmklvHEUYhivT07MvnpnY4zUe7x4vYzs7hBASlIBAYQcBEkhWhJQgsSjO AQlxIUeuHHPkyDHXHBG5cOSan5C/YLq+qnnd3fPWeDptCQ6M1NU9VV3v831V 1VXV1XV7/8Hdr77Zf3Dvzn7njfv739+9d+egc+u7+0GUd0op9TQ4/uwofX0Y XNrg6WHwCxL/P41+uqFPWV1+P4cilKdjDr/e+1EfKqf//WTSr+tTRkfkdFpe X/1gkl5DUlknFfTVQTyprpOK+upbk3QtBOyqz6UqW/omsSpI2DP1K/8k7q7J +KqcsshoM7eRV7L6+uqOyXFVTn4kRx85g2xZZPsynG0A1EEOHzk+MzleGQJa RrEd2feRyXYlVhTBoTISRutjQUJj0KOHj+X8x6PfpXwzh78oVdVX7yYT7cRE rbAH5bJWlqbwtlF+mSh7RHleQj+ibNWD2EBebq9peZvT/tSbBvRSIpAXBgWu 6tDrl5E+Aif6PlU1VK4Sos4QVJag8lFUzL+bBnqZQLMEOkegPoEWAa3AP4u6 RFA+QcnjIBkLBFCOAmJemS5EXSSoHEFNE68YtBptiTHodTeU+cegRQKtA1pC UVrUhRH9myKoEkE18CgUiX+mt1PnCTRPoJMEWibQ0/CvAP8SotoEVSWo8Sgq 5p/pptQ5Ai0Q6Dja5xhBtYHKwysLOJsEEPOKoaaiqJhXl5NBTxNog0BnAM3B P4vaI6giQbUIqklQc2iVPvHPPANql0BLBNok0BaBduBfFv4lRDUI6jRBLUZR Mf9MxamdFNAJAl0C1IN/FtUjqDJB1fEATBHAShQQ88q4o7YJqkJQNeIVg65F JyExaC8ZtEqg0wTaBdS4Kon6n+VtEV6V8CqEN0N4mzqUWZLxJIh4ccAsAfTw wG0mA5QJYI4AdlFiGwawQQA1AigRwPxQQNcAugRQJ4AC2vQikd2R0MT99fiJ VHJCQJ54wFBSB3YurFEWZ2nrKWhLhLYtoR+hxRxcI8gxgswR5LKrFdteL0DF HlVDU6sE2iBQn0BXCHQjVoEafAL4LMGvunqKGN5341cIvknwGTTaDVefGIPm 3NBlfZIUJyrmKYMe9f7FY1A2aazzmz7Mv7qdNIfIcijp8wZpy8TFxNwglKiK ffkJw6UzdwyiMW5ptPrsc30dCiw+G9PO7rimCzFoORm0CGflxUTqaZegFgiq kgxVAUp5/QUI+bdHePNoNfXRHso+pQbKWdcEMuZGQkBdQtMoHv76d98LVmiz hDaWjmYPuYm1/xmCbBKkYUW68kgJ2jiLCwwIQqmOzaGvHePpUTmgugQ1Sfw7 AWgBhco66zaBTrih6wRaJdAyPGWj4gSBttNDq4Cy0b+FmpxOj6oDtUBQTeLf EGiXQMsE2kRNnnEta8SgM+mh4/CUTaLHCHQ2PbQNKHsVqaEm592oDYIqEdQU CrXtWguL+XcC0Fn4N06gFQLtpIeeAZS9n5cIdMEN3STQIoF2ULxsfaVIoIvp oUvwtD50qXglPWoFKLYUlyP+DYFuEWiBQNcAZUuNPoGupod2UZNs0ThLoGvp oVvwNEegmdAbthO1TVB5guoB5duvDCGUvt5Kz9hFGcY/lyiZ9KQGnNOhWN5z i/WImE/ELqJETkrMFurjJ8/kPLxQX1TZHse1ix0in3XKe2H54F8fsJ4ecIEA cjr0jumj0gCK8GDJDdglAG9EQBmAIaNIGkAVgCEDchpAHYA5N2CPADIjAhoA sCnTSnpACwA2+0wIOE8AE2imbPpuAWbB3Q8D5NBdHnu4pmA1e/t5QdEZiLZO TnQOog23aPhLW1/sEhGbhxh7a08otgCxajIx5uYyxNgKjBWTr5hyE5NYhQRb sRpJYh1tja3rjSSxCSvYcqiVCH9uHtb2tyGWOUbMflYblNiBS3aZ5BJuP0tu 3wPR3i6fImXg2yG396BuF7fNPhIzUKoDDMHbJO8WUEHCw+fP+771pa7AUJ3x SCso4kGxLgzJaK1YSVnFqy7FLlFcC1XkoKL93HItVJEiePBM2dJztHEPihlT MKJztKcqozXkpmXXM2cb6KBRVuwGN+qgP1QOynbga4HI2q9vr8PGLMTmXT2W Z57DQTH7vfImsdGD7NzQ3rVMZM0grG7BRh/lOE3EJmFjGVVhuiqzeci+DvTt mXSNS7b7G7THir1F3PQhO+EaTyWqRmTNPg6zactuVOiLtYhYEzaOETH7Ff42 sfHI9YZr1uLZ1AFZs21HvQMbC6iK2tA5ltgoXYfZuaXeI5YVYFmFiJVgmVSK DLNmy596H/aUIFEiEnlIlLSEbJKzu6A+JBIFIuFHHyexwu5J+5i4VIRYjohl YI8PMVNl6hPYU0YRZ4a8qWTg0AdG4FNijUiVdJRJNfsgmzriCxPxn9js+i+d 1Kl/AA5pvgI=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 199.188}, {198.938, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"a52264f5-b2dd-4fc6-9b10-d50be266e825"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(86\\). \\!\\(\\\"sphenocorona (J86)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"35918b69-6883-4a84-9aaa-d108ddd8abb2"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .95942 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.00215334 1.03504 5.55112e-17 1.03504 [ [ 0 0 0 0 ] [ 1 .95942 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .95942 L 0 .95942 L closepath clip newpath .5 Mabswid [ ] 0 setdash .75562 .59615 m .68696 .26996 L .48503 .45122 L closepath p .562 .521 .768 r F P 0 g s .48503 .45122 m .21255 .5748 L .47536 .76939 L closepath p .791 .61 .657 r F P 0 g s .48503 .45122 m .33869 .26704 L .21255 .5748 L closepath p .84 .793 .806 r F P 0 g s .48503 .45122 m .47536 .76939 L .75562 .59615 L closepath p .639 .482 .655 r F P 0 g s .68696 .26996 m .33869 .26704 L .48503 .45122 L closepath p .689 .758 .904 r F P 0 g s .47536 .76939 m .60787 .76587 L .75562 .59615 L closepath p .109 0 0 r F P 0 g s .31206 .54304 m .60787 .76587 L .47536 .76939 L p .14 .49 .903 r F P 0 g s .47536 .76939 m .21255 .5748 L .31206 .54304 L p .14 .49 .903 r F P 0 g s .85457 .48051 m .68696 .26996 L .75562 .59615 L closepath p .148 .225 .687 r F P 0 g s .75562 .59615 m .60787 .76587 L .85457 .48051 L closepath p .541 .819 .469 r F P 0 g s .33869 .26704 m .31206 .54304 L .21255 .5748 L closepath p 0 0 .286 r F P 0 g s .68696 .26996 m .56085 .24124 L .33869 .26704 L closepath p .189 .711 .869 r F P 0 g s .85457 .48051 m .56085 .24124 L .68696 .26996 L closepath p .767 .257 0 r F P 0 g s .31206 .54304 m .33869 .26704 L .56085 .24124 L closepath p .342 .124 .432 r F P 0 g s .56085 .24124 m .85457 .48051 L .60787 .76587 L p .725 .643 .767 r F P 0 g s .60787 .76587 m .31206 .54304 L .56085 .24124 L p .725 .643 .767 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{208.438, 199.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmutSE0kcxcckA7kCizdEDOEWRAxIuN8SoxIwwoq3laVEjailW7Xlluu3 fZ19DT9afvUpfI3Y3f9OO0xON91m3fKDVE13bPr8zpmenjDT7U793asXf9bf vT6s5zbf1v969frw71z1zVvWFD3hed4ndnzMefxzg32UxacG+2G//Fl9j+oN r+J8pH+nhpe8SvAGv3G37w8vyj823v/7QVwNn5f3qeeB6pkRPX3Vs3lwRazx ocIK9mmXZPeV7HTIgB3sX1TyNibkBwM3EduEuKUQFwDC52WENyW4UMTaJGGV V6JhDAjjwDulvK8HELITQwhMHsCSANbFS5GsQrANXomGiwCR0iFkm/zxymHY OIBl1Kh0A0QpjECn1APyZABsnWA3AiPleTUxG9Cw91pi1wLYiO4anrKErRLs Osg4CrBn1Oj9B7A+3TwLYVf02BGA7bfELhP2mqhiAaxADwPygCV5yUgeAuSs Gtc04C0Sj24WP8SjgcgB6BCImwT4hePxgwA/AvCJb8NnAX7MEj9P+KuO6fNq xNGQzB0PRZknQOY4wM8Svtwyo2via7EW+l49D6wmLa2Kblb9wKoArDr1ViVg FQVW54DVtLoq6Fxm3Az6gEERnEsHsLrSvtWspdU0Wa0DqxiwOgus5i2tptys zgCrRUurAlmtASsfWKFnoGU1GRwN0LkggzVwLjFgddnN6hSwKllaTZLVquWw IauypdUlN6uTwKqirpAPDCbIYAUYdACDXmBwA5xLpH2rX4BV1dLqoptVD7Da srQaJ6tlYNUJrLqBVU1doSgwyLdvsC3fNQLnIg7+J1LmX2oD/6soY0fw7uQu QN7F5LwbOQPId9WY06A3h5w9BAv2ImDHATsN2A9CU4ebOGJTAPsQYEcIuwCw CUvsHsAOu2GTALuvBtgRlgCwg0DG5n0xSNh5gE0CbBxgnwBs1g3bCbB1gL1A 2Lk2sIcAO+CG7QDY598Hi9LKQZgF2BTAhhd1dNisGzZmiZUTrAiwaYCNWmJz btiIJXaIsDMAm2k0nxcUVhz8Tn8BUMP/CyrtiJJfdVe0qWJHUBrK6HGUr6Ov CzJGiGmA6OJlROed1wuFt2hCt+O4XphUwmgj98/n0ER5CmDy2WgKwOIK1glg jwFsQg/zFSzFYWJUDIgCQEQVogfk2QewS2YYexZv5ewBzmSAI37Tp87hIegu Xz5EJToNAJ97QFhoHT8mFOJ+gLgDEFOtk+MIQuTZBcLpwK2gDb2jFxaNjttA KF/YZ4HwPPDeAgi5vDBnDF0FQrnwsWAMvQGEch1o0TJ0BSDkStWSMXQZCOW6 2YoxdAkI5XreqtFxVS9c1zmGEMsAIVdCS8bQS0Aol2TLxtBzQChXiSuWoYsA IdevrxlDzwBhcD1dG7oAhHKLYMMy9GU9omoMPQmEctdj0xh6HAjl3stNy9Bj AFEmRM0YehQIaaGXNtS0oXNAKDewdixDZwGC5gV70zWFNghvG0P3A6Hcwrtj dDwHhLSVxV5wW4Xo++o0QNCcZH+wTKFPAiHNRPYCbArdC4Ryz/M3o2MXEG6R cM/y2qYBgiaz3FPWhTYI942h40BIc997ZBm6AyBuEeLAGNoHQrkt/TgUGm+I 36bOTy2Cep7aNa+D7mledvMmmtHeM17x52VJ/zH+i8GPVHknvgDyJ98t\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 207.438}, {198.938, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"63a25e11-6ef5-4e8e-98f2-340e5a74c4d5"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(87\\). \\!\\(\\\"augmented sphenocorona \ (J87)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"ed5e3db2-6b98-4fdd-b368-b00ee170fc39"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.11707 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0701188 1.18818 -2.22045e-16 1.18818 [ [ 0 0 0 0 ] [ 1 1.11707 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.11707 L 0 1.11707 L closepath clip newpath .5 Mabswid [ ] 0 setdash .83947 .56197 m .55196 .49899 L .592 .82939 L closepath p .554 .403 .631 r F P 0 g s .63728 .23627 m .55196 .49899 L .83947 .56197 L closepath p .498 .512 .802 r F P 0 g s .27945 .63824 m .592 .82939 L .55196 .49899 L closepath p .789 .572 .607 r F P 0 g s .55196 .49899 m .63728 .23627 L .33824 .36749 L p .862 .908 .863 r F P 0 g s .33824 .36749 m .27945 .63824 L .55196 .49899 L p .862 .908 .863 r F P 0 g s .592 .82939 m .27945 .63824 L .35717 .95812 L closepath p .816 .517 .484 r F P 0 g s .75675 .84621 m .592 .82939 L .35717 .95812 L closepath p .184 0 0 r F P 0 g s .83947 .56197 m .592 .82939 L .75675 .84621 L closepath p .219 0 .298 r F P 0 g s .04789 .6854 m .35717 .95812 L .27945 .63824 L closepath p .884 .559 .428 r F P 0 g s .33824 .36749 m .04789 .6854 L .27945 .63824 L closepath p .898 .941 .829 r F P 0 g s .63728 .23627 m .83947 .56197 L .75525 .42274 L closepath p 0 0 .385 r F P 0 g s .75525 .42274 m .83947 .56197 L .75675 .84621 L closepath p .994 .836 .475 r F P 0 g s .75525 .42274 m .33824 .36749 L .63728 .23627 L closepath p .613 .223 .281 r F P 0 g s .43408 .70114 m .35717 .95812 L .04789 .6854 L closepath p .531 .625 .89 r F P 0 g s .75675 .84621 m .35717 .95812 L .43408 .70114 L closepath p .692 .796 .929 r F P 0 g s .43408 .70114 m .04789 .6854 L .33824 .36749 L closepath p .568 .34 .529 r F P 0 g s .43408 .70114 m .33824 .36749 L .75525 .42274 L closepath p .65 .387 .509 r F P 0 g s .75675 .84621 m .43408 .70114 L .75525 .42274 L closepath p .848 .733 .736 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{269.312, 300.812}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt2+lvHHcdx/GJvRvf97m+jzi213Z8rO/bXt/37diO7dhJaaKqapVGIKgq AQFBBQhEK1WFggAVoUo87NP+CTzkKQ95yL9gdn7f8Rd7/Z5JfqCChBJpx5vZ 7/fz+s3szB4zs6tnz5+88fbZ86ePzurmn529++Tpo/fq5t55lpiVestxbuUk bu11jnv/wnEuJ+Zfrjvx/vP6/uv7/+f3v3D/pLjb/7nM+JPOcFIvPhuauvD2 DOdMHv/c/ZPqzg25DzupF7rrJB4+laI/aEg6FJ1I0e+0KNO/6DfK5UDRsRT9 WpMKoOiBFH2qRUX+RZ9oUSkUHUnRxzqmcv+iX2pSFRQdStEvtKgWig6k6GfK 1fsX/USTmqDovhR9qEUtULQvRT/Soqh/0Q90TB1QtCdF39ekbijalaLvalHM v+gD5fqhaEeK3tekIf+ib2vRKBRtS9G3tGgCirak6LmOacq/6JkmzULRphS9 q0ULULQhRW8rt+Rf9JYmrUHRuhQ91aJNKFqToje1aNu/6LGOaQ+KVqXoXJMO oWhFih5q0QP/omPlTqFoWYqONOncv8jsfmH3kTMoWrpS5D30+fkL9+akuNM0 d9YRNC5K44EOIcstT/dbi1657Jwh89DHWy/MLXG/UKlV6F2QXtkdw9d6vX4n ovgcBMxLwN6VhfSaEwvpTq8veK2OhnYJL2wXwkIQ1qQjG4SwOQnbgbAwhHXo yHogbFbCtiHsNoT1alibf9gWhKVB2Igu5h0Im5GwTQjLgLBpHVm1f9gGhGVC 2KKOjN7m4nZhmzqyfAiblrB1CMuGsH0dGX1y8MLWICwHwk51ZCkQNiVhqxCW C2HfcKdmL/VGsQKNedD4ppnKvL999ZXZN72IZYgogIg3kiISNydF3npMzhLk FELOYzNNu5pzOaSLi7++b4Y2KZGLEFkEkY9waO40lWIXILYEYs8gNtVMQxrr RU9I8jwkl0LyQ0gOBSbPQXIZJJ+4U/O0pJm88LW8yxUx7h9aDqEPYLhpSes3 cUusc3d6fQsfEWoWqAhQR0Cl21EzQFUAdQhUBlCpQA0LFQeqEqgDoDLtqGmg qv1evJKoLKBCQA0JNQVUDVB7QGUDFQZqUKhJoGqB2tHNOs8OmACgHoAtWBai bgM1INQ4UA1+71VJVL4dNQZUI1AbQBUAlQZUvx21DlQhUOlA9Qk1ClQTUKtA FdlRI0DdBWpZt7tSADIA6BVgGIBmAJZgWSypIaBagVoAqgyoTKBiQg0CFQVq HqhyoLKA6hFqAKg2oOaAithR/UC1AzULVAVQ2UB1C9UH1D2g4kBV2lG9QHUC NaWbeA0AOQB0CRADoAuASVgWonKB6vSnuoEaB6rWjuoBqgeoMaDqgMoD6p5Q 3UDFgBoFqt6O6gKq1+/rYhLVAFQ+UB1CdQLVD9QQUI1AFQDVLtQ9oAaAGtBN /K4d0AHAIAD9sCxEFQLVJlQ7UMNA9QLVbEe1ATUCVAyoFqCKgIoKFQVqFKge oFqBKgaqVahWoMaA6gYq+p9T40B1AtVmR7UANQFUh27i9+yeoWYAJgFoh2Wx pO4CNQ1UFKhOO6oJqDhQrUB12e1Nd4CaAaoFqG47qhGoWaCageqxoxqAmgeq CaiYHVUP1AJQjbqJ99u9itcBsAhAAyyLJVUL1DJQdUANfD1ULVCDdm/pNUCt AFUD1JAdVQ3UGlBVQA3bUVVArQNVCdSIHVUJ1AZQEd3Ex+0+31UAsAlAOSyL JRUBahuoUqAm7KhyoHaAKgFq6hW/zHgf+8uA2gWqGKhpO6oUqH2gCoGKfz1U vm53c6/4JdP7DlgCwH0A8mBZLKlioA6AygVq3o4qAuoIqGygFuyoQqAeAJUF 1OIrHubwDggUAHUMVCZQS3ZUPlCnQKUDtWxH5QH1EKjbuomvveIxL+/oUC4A ZwCEYVksqRygzoEKAbVuR2W7f3LdR2gfSgFg499fbS8++7t7czLcaYU7S77C hK+i5pb4f+LN5CZEhz9jNzeAS6hBITl+HLoGOe6JfSsjH4wRNcw5ZLNp7drF FkDsjjvN9QujQ9q9N19JLsNOzVSW/su//MP89VnDAclFkHySlOzdTBFtKQHx 5oXdrL5jE5p6NTSxjSSmvvttQGwpjPoQgDQFVgCgMyPeOYQyAA4AyFCAXkUD gHIA9gHI1jVP73MBQASAPQDydAlmAaDzVN7JowoAdgEoUIA+4AQAlQBsA1Cs AH0uDACqANgCoFQB+owbAFTr1k+x5frUjkIsnff0zhDWwrjXAKjScdO3pwCg DoBVAGoUoC+dAUA9ACsA1ClA39XpNLd3argBgGUAGvQ5oAMbAUAjAIsA3NUl oONBAcAdABYAaFGADqMFAE26cVJsVGM7IJauZfAuMGiGcc8A0KFrng7QBgAt AMQB6NIloOPaAUArANMA9ChApwPoIhbvco8oAJMA9Clwxw5oA2ACgAEF6DxQ ANAOwDgAQ/oky5k6vmJJLkOQ4yneAZKbUaM61uqXR3XC+IYhdEJDK18e2gWh QxA6paGRl4d2Q+gghMZ1TcoVBDeuJfMu++qBvH7Im9dBFgfmxSCvD/IWNa8w MK8X8nohb1nzki+fcRy9cK5Pt5gYRKzpKsvxjxiA8XRB2KaOJ/mCqythgxDW CWHbGpZ8TdqVsCEI64CwPQ0zl+2Ze5MSMQwR7RBxXyPCyREjENEGEYe6slOS I0YhIgoRxxrhXXU6Bo0t0HiS3Diu2wWVH2m5d1XzJDhN0LjvTs2G7V2PPgWN jdC4o43e7wOmobHBb6szs7zfVsShsR4aV1X0figyA421fvudmeX9yGYWGmv8 XlCM6P1iaE6fBCqPa7n3G6sFcCqhcVIH6P1gbBEaI9A4puJjaVyCxnJoHFbx iTQuQ2MZNPar+JY0rkBjCTTGtPEdaVyFxmK/zzxm1nvSuKZPApW3q/NNKd8A J9/v06GZ9R1p3ITGPL+Pw0b8QBq3oDHX74O6afyeNG5DY7bfVwgz64fSuAON WdBYpeKPpXEXGjOhMaLiT6VxDxozoLFExZ9L474+e+lQXqjlH0n5AThhaMzT AX4ijYfQGILGLBV/JY1H0JgCjRkq/lYa5eeQ4auN5uaYt7FL5fdSLK8QoWvF jvvz0cu6P0rdia6uRPGX/zok5t6+kJJTLfmzzHCn/+vfyL6+/9+/79z6J+DH Kmk=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 268.312}, {299.812, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"adef18ef-6253-4a3f-87ec-1f78de5e1aa4"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(88\\). \\!\\(\\\"sphenomegacorona (J88)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"d8af81f7-09d9-4866-9fc1-3cc3fcc98a84"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.22393 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.116063 1.30176 -1.11022e-16 1.30176 [ [ 0 0 0 0 ] [ 1 1.22393 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.22393 L 0 1.22393 L closepath clip newpath .5 Mabswid [ ] 0 setdash .77748 .75801 m .53542 .51578 L .44441 .84526 L closepath p .712 .563 .684 r F P 0 g s .86701 .42581 m .64374 .25354 L .53542 .51578 L closepath p .719 .743 .871 r F P 0 g s .86701 .42581 m .53542 .51578 L .77748 .75801 L closepath p .693 .563 .704 r F P 0 g s .44441 .84526 m .53542 .51578 L .24574 .59123 L closepath p .83 .689 .708 r F P 0 g s .33438 .31494 m .24574 .59123 L .53542 .51578 L p .823 .869 .879 r F P 0 g s .53542 .51578 m .64374 .25354 L .33438 .31494 L p .823 .869 .879 r F P 0 g s .77748 .75801 m .44441 .84526 L .66738 .93006 L closepath p .522 .136 .25 r F P 0 g s .66738 .93006 m .81312 .57468 L .77748 .75801 L closepath p .876 .919 .523 r F P 0 g s .81312 .57468 m .86701 .42581 L .77748 .75801 L closepath p .78 .786 .287 r F P 0 g s .81312 .57468 m .64374 .25354 L .86701 .42581 L closepath p .915 .564 .357 r F P 0 g s .44441 .84526 m .24574 .59123 L .28278 .92834 L closepath p .929 .653 .495 r F P 0 g s .44441 .84526 m .28278 .92834 L .66738 .93006 L closepath p .505 0 0 r F P 0 g s .24574 .59123 m .33438 .31494 L .08926 .6276 L closepath p .918 .975 .769 r F P 0 g s .24574 .59123 m .08926 .6276 L .28278 .92834 L closepath p .965 .68 .443 r F P 0 g s .64374 .25354 m .81312 .57468 L .50689 .6656 L p .808 .56 .563 r F P 0 g s .50689 .6656 m .33438 .31494 L .64374 .25354 L p .808 .56 .563 r F P 0 g s .28278 .92834 m .50689 .6656 L .66738 .93006 L closepath p .712 .724 .859 r F P 0 g s .66738 .93006 m .50689 .6656 L .81312 .57468 L closepath p .86 .767 .759 r F P 0 g s .08926 .6276 m .50689 .6656 L .28278 .92834 L closepath p .685 .68 .839 r F P 0 g s .08926 .6276 m .33438 .31494 L .50689 .6656 L closepath p .717 .528 .633 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{257.312, 314.875}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm7lzE1ccx4UOH/g2xvJt2cbyiWUbH7LlAxtfGGxjc8NwJzNQMMkQijRp QpOZTJoMRZo0mZSUtCkpU6alTMm/QLT73j6k9ectv0W5ZsAzu5JX730+39/b XR177Nx7+vDzx/eePnpwL7X55N6XDx89+Cq18cWT/KLYkUjkiDPNpyLO87eR iDdz/6LOTP/z6fmn5x/p81+ch4SzX9xQC342C2Jvf//+eX7u7DJvnt9w953r qtFPplElNLqmGv3oPJQ5S2p9jfJTJOr8d0W1/MHgjrstE4UtDfayavydadyG WGeulum/yIHq+K3JkxJ23FcdvzHGNHSMOXO3Gt38a9N8FJrHwbOrOj4xASeg YwI67qiOj40xa+voBtTNH5rmS9C8DDzbquN9E/AMdCyHjmdVx1vGuC3suKU6 XjMd96BjhalMN3c3EbfNZWheCZ71go76pXxHtzMhjgJiTSEuFSBePvvV3WSv 2hBuaN3xovsQNx11Z+pbDfoVRTnw6fNTfpt25u+virCnFXYfsDEhtsZUGgCL C2G1kHFRYS8ANiHE1gF2QWH3AFteAjansLuArRBi682IBsAqhbAGyJhV2B3A HhViGwE7q7DnAVsdBuuWrmHnAFYjhDVBximF3QZsXQnYU6Vjj5vSNewswBqE sGbIOK6wW4BtBOwVITajsJuAbRKmTQJ2LByW0ibNiGrYBsCahRlbIeOIwq4D NinMSNhhhV0DbKswbZspXcPOAKxNmLEdMg6Uju0AbFphVwHbUQK2X2FXANsp xHaaEdWw0wDrFsK6IGNv6dhuwPYo7DJge0rAphR2CbC9pWMXAXsi9IrSI7oA sP4wMB5RwqZL2EY1NgfYgTA7qlt6n4LNA2xICGvzw+YANhwGxhs8YUeE2BaT 8YSCZQE2CjD62p30w2YBNhbmk7Lw7WIGYBlhsuN+2DTAJoTJPhhGyY4VrNdX v287jx52CrCnhBmPmYz6A+EUwKaEGRv9sEmAzQiTNUDBIbGUsd6OnQBsVpj2 3S8J/Xk9DrA5YcZayKixGcDmhBkDsGOAXRCmrQbsoB27KEwbgD0J2CVh2io7 dhSwp4Vp1YGMuMFqtCaPAHlFGLgSAg/ZsavCwAHYYcCeEaYt53HQ5CEgrwsD B5MHgbwhzJxgsv4+PwDkLSE5/h+R00DeFpKjTNa/wPqBfO5vIZ8A8o6VzIe0 ow7T9+Vn6EPw8SJ8xDl4byX3AXlPMCS2wHod9gL2QunYHsAeANb9rRuzla5h KYBdBNiBgUXfvn71Sq89bxvw3n5Gw0F3nbm7ouIONPrWUrjevroBexmw2yZr hQTbBdgrgN002KqAIVCfbPkfQ4eh1wC6aoagJjDraDjsssnaIMF2APYGYOdN 2mPuEKhX/3zzzLrNakE7CG6CYNbkToYTtIHgFggmTQVtgQOjV2MrYG8DNmNy dwpzBwjugGDY5E6FE7SA4C4IBkwFfa4gbgRaEuBIguM+OPqMI+06yvwOby/S h1+bnYdyZwENSbcZkiHhkIwVYPVLL1784Uz5cvPzamfRJVC1m+Cj8sEZOzw4 nq3O2OjbQtIUlgltawFbm7HRN/djprZJ11ZeZPOtGP0LCzVpo6FfxHWmqGm5 phU0E868yllEh3qqTDXZgjdpnwYHMHP4jcRT5kxl7aCsMMqcoLJJu2bTaOpB EzMDuCTXtIPmwGjoTKP734pvh8pP+TFz5jGydIDlljN3M66VDrvvztWyPMwF rgqx+gxRJ2DvFmBf/vbabX6mdOwdd54wWG9yuoVM3WUb2YLU+ck5r52fFw/Q MqhidlU3qG6CKg6qJZvK/XydsgtugCABgkUQxP2CFAiug6AMBAvCwdKqHlBd BVUFqHKBgzVtF1wBQSUI5gMHSwt6QXAJBFUgmJMI+kBwAIJqEGRBkJAI9kFQ C4LZwArU8eeiH5ye4AII6kAwIxH0g2AXBPUgmA4cogDBDggaQTAlEaRBcA4E TSCYBEFZwS7nfTDr1T0AqrOgOi5Uvatl1i7YAkESBBMSwSAINkDQAoJx4WDp 9TIEqnVQtYIqU7pqDVTtoDoJqnK7ahhUq6DqEKrKzBrK2gUrIOgCwYiwFr0x jIBqGVQpUA2HU42CahFUPf+eqhdUg0KVXlcnQZUDVZ9QRZu4Ot9adBLEU82B qh9UaWFVAaosqAZA1S+sSp3pLjoR5almQDUoVCVApS/KGwfVFKiGQdUnrOof UlFV+nLICVBNgmoUVD3CqrRqElTjoBoDlf+Aka2qRbsqA6qMUBUHlboUpuhM tac6CaoJUHUJq9KqKVCNgOoUqPyH9GxVLZeu6hCq9OXD06AaAtU0qNpLVw2C akaoioFKX7g9A6o0qLKgahWq1FVzRZeteKoToJoHVUvpqj5Q5UDlPxhuU6lL DIuu7PFUvaBaAFVzONUcqFKgWhSqoqBas6u6QbUMqiahSt/8MA+qTlCtgMp/ ZuQ9qhyo2kG1CqpGoWrDrmoD1Rqo3NNIlqOp+paWBcC3An4d8PXvxy8CPgn4 DcDXBeC37fhmwG8BvtadHzpMr67HL7ru0yM3AfkskGsCgmv8MuAbAX8O8NUc /Lyd3ADkHSAfDQiu8acBXwf4XSv+UHB9O9cKkGuBvAfkSt8+5QTetWNrALsP 2HIOrMmrQK4C8oGVXBx4z449CthLgE0AVt1WVHQhu4etAOzlcNg1wJYB9ipg 310/sB8Odg1gUQPT90muAywOsOsS2AbAogC7ibCId3ec5iQKOe7kjOjt9/Td 9GVw+tz19XGWqTv41G0wnzlL9B2n7sfK/+ie3U/PPz3/2J5HjvwFQay+9g== \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 256.312}, {313.875, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"ce9dc97a-c713-480d-ae65-d8a27f2f0119"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(89\\). \\!\\(\\\"hebesphenomegacorona (J89)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"b0f27f41-b565-4b91-8bbe-272461f7df1d"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.18657 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0998302 1.24565 -2.22045e-16 1.24565 [ [ 0 0 0 0 ] [ 1 1.18657 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.18657 L 0 1.18657 L closepath clip newpath .5 Mabswid [ ] 0 setdash .89448 .58017 m .63011 .42709 L .61343 .75419 L closepath p .602 .464 .665 r F P 0 g s .61343 .75419 m .63011 .42709 L .31013 .38521 L p .766 .604 .678 r F P 0 g s .7598 .27761 m .63011 .42709 L .89448 .58017 L closepath p .432 .503 .832 r F P 0 g s .31013 .38521 m .63011 .42709 L .7598 .27761 L p .616 .793 .966 r F P 0 g s .82741 .90124 m .61343 .75419 L .47736 1.0059 L closepath p .583 .302 .457 r F P 0 g s .89448 .58017 m .61343 .75419 L .82741 .90124 L closepath p .529 .331 .556 r F P 0 g s .47736 1.0059 m .61343 .75419 L .2864 .72417 L closepath p .762 .514 .558 r F P 0 g s .31013 .38521 m .2864 .72417 L .61343 .75419 L p .766 .604 .678 r F P 0 g s .2864 .72417 m .31013 .38521 L .12998 .49122 L closepath p .944 .766 .631 r F P 0 g s .31013 .38521 m .40491 .22402 L .12998 .49122 L closepath p .769 .993 .787 r F P 0 g s .7598 .27761 m .40491 .22402 L .31013 .38521 L p .616 .793 .966 r F P 0 g s .47736 1.0059 m .2864 .72417 L .21988 .85489 L closepath p .882 .486 .274 r F P 0 g s .2864 .72417 m .12998 .49122 L .21988 .85489 L closepath p .973 .663 .339 r F P 0 g s .81104 .5842 m .7598 .27761 L .89448 .58017 L closepath p .963 .641 .254 r F P 0 g s .81104 .5842 m .89448 .58017 L .82741 .90124 L closepath p .99 .854 .494 r F P 0 g s .47736 1.0059 m .21988 .85489 L .6021 .91692 L closepath p .402 .701 .982 r F P 0 g s .82741 .90124 m .47736 1.0059 L .6021 .91692 L closepath p .482 .893 .921 r F P 0 g s .7598 .27761 m .81104 .5842 L .42895 .54039 L p .773 .504 .528 r F P 0 g s .42895 .54039 m .40491 .22402 L .7598 .27761 L p .773 .504 .528 r F P 0 g s .6021 .91692 m .81104 .5842 L .82741 .90124 L closepath p .918 .839 .75 r F P 0 g s .12998 .49122 m .40491 .22402 L .42895 .54039 L closepath p .534 .324 .542 r F P 0 g s .12998 .49122 m .42895 .54039 L .21988 .85489 L closepath p .521 .41 .668 r F P 0 g s .21988 .85489 m .42895 .54039 L .6021 .91692 L closepath p .629 .55 .747 r F P 0 g s .6021 .91692 m .42895 .54039 L .81104 .5842 L closepath p .778 .616 .679 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{261.312, 310.062}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnMlz29YZwGku2ihR+0qt1Ert+75SuyNbXmLVsuO4spvWTpvW47jNNG4P HXemB596yyHHHHPstcf+Cb3m2GOOvSrA+8BPJPWDAgqSlxlzBg8g5n2/3/ce QBAEgXft6MWTz744evH08VH79vOjZ0+ePv6yfesPz61VoSuBwJWINU23B+zl 40AgXZhXgV04bz4sf1h+z5af2LOIvT9/Iyt+Y2Yhe83x61uvzZ4eOv7Pq1eF 9uI/pdKvzSyslZyKJXa9AnvptdT7zMwiWfXS0AqF/l0q/yrHbE2BoCllnVXd ngK1GvhXCXwMgSEIbNb0vpLARxAYhsCEGp9J4BEERiAwqcbPJfCXEFgIgcNq lMYFHkJgEQROqfGBBH4KgcUQuKDGAwl8AIElEJjSwH0J/AQCoxC4q6nuSuB9 CCyFwH01piTwHgSWQeCBXZpVKxJ4CIExCLxrSlnnvAJLgrgLiHI3RNBetSyB v4DACi+BBxBYCYGHGuikegcCq7wEfgyB1V4Cb0Ng7c/07/+/WzPHh0VB3AJE XX6IG/bMpNXoGhjWQCd4QWL3QU+UQ9A7iOuAaHJFnEpkXijXgBLPm7IHlGZX SiSLkm7WnKA+AlTL+VBXAdUKqHvcNoeyC5Q2VwonNCuoHUC1nw+1DagOV1Qo E2V9+9ll9mFnSrBbgE34x24CttMjNgTYScFuALbbR7YOdh2wPT6ynRBsCrC9 /rFrgO3zj10FbNIjNgzYccGuALbfP3YZsAOAve8ROybYJcAO+scuAnbIIzYC 2FHBLgB22D92HrAjHrEFgB0RrDmQma/PcYB94jFHBzYDOV4AdhqwEx6x1PRh wU4BdspHjzrYScBOe8QWAnZIsBOAnfGPHQfsrMe+JeygYMcAO+cfOwrYeY/Y IsAOCHYEsAv+scOAXfSPHQLskkdsMWD7BTsI2GXAPvCYrYMdAOyKRyxlmxRs P2BX/WOTgF3ziC0BbJ9g+wC77nGTnYHtBeyGf2wPYDd9dIKkaZ0TnsZu+cd2 AXbbIzYKWGm9dWJ8GrvjH5sA7K5HbClgpVOtHx3Wy/x2ItinHnPMhDm/xF59 /n16MldzaK8lPOXalYkPZeKtY35aQEeyPAUJEJSqgL40L0BQpYIxj4IyEHS6 CxpUQKfUFyBoVQH9envoUZA4/fFJCzpVQD+3vbbgDEFSBXQJhgQxEHS4C0ZU UHM5gikV0JVKEpSDoF0EXSCYVwFdYL4AwaoK6PI+7UXURWcItuzSXCCmYyRl 2+YO2zGlk+O339uTlbdVFturPs5P0O2WrbPuu9f/tufWkcUSFNmLeyCoAEGr u2DTlGEVOJIadWxclCOS5Ug3Jq69tehR1OIu2sjpLWuyNoddZm+ihLZuMj9p D0hTIA2DNKnSQZBWgrTZv3RMu7fTv3QNpBGQzmtL4/6lqyAtBOmaSqtBWgXS uEh7QbriUbqr3Rv12NIzpMsgLQbpTW1pyO23VNRe1eyuWgJVCagO7TJmryo5 Pv7hZU5bmvITREFw35QO9oeXRlLlruoD1QKoSkF1zy6DsoOcFsTdBfMgiIHg bkZbfvyvHN7eXdUcqCpAdWDKsKoc3Rm2JNhmwFYJtjumjGTZPDTwspS0Kza7 K6dBWQ3K2zmbz5qs7ym7zP4kVOSnnwJ9zeXo+0E/Cfpat+NXjj7kXz8B+jrQ 3wB9BPTl/vX1oN/3qI+BvsVdPw76BtBfB31BfvoB0I+Cvgn0e6AvfO/1I6Bv Bv1V0Bf51w+DvsXtbCVHXwz6MtA7p/eDoB8CfSvody5HPwj6NtBvg77Ev34A 9O1vV98B+k3QR/PTD4E+CfoE6DdAXwr6UtC3uev7QN8F+vW3q0+Bviw//TDo e0DfA/pV0Mf867tB3/t29X2gXwZ9OeijoG9313eBPgn6JdBX5KcfAX0C9AOg X3y7+gXQV/rXd4B+CPRzoK/yr28H/bBHfTXoi0HvXOUdBX2bR/0s6Gv861tB Pwr6mcvRt4B+DPTToK+9HP046CdBX5effgz0cdBP+NAXgT7hrm8C/RTox0Ff /+b0Y6Bv8K9vBP0M6Ef968dBXw/6WdCPgL4R9IWg78xPPwf6IdA3+dfXgX7+ zelrQb8A+kHQx/PTT4C+BvSLoB+4HH016JdA3w/6ZtAXgL7LXV8F+hXQ94G+ 5b3ST4K+AvRroO8Bfat/fTnoU6DvBn3b5ejXQd/lUR8Bfbe7Pgb6DdB3gr4D 9GF3/RToy0C/CfoO0Cf860tBv/Xm9FHQ74C+DfSd754+BHrnxq5p0BeDfhf0 raDv8q8vAv1HoG8Gffd7ry8E/TXQN4G+Jz/9DOgjoL8O+kbQ94I+CPre/PT7 oG+4HH0Y9DdAXw/6Pv/6EOhvgb4W9Mn89LOgD75pfSRTbybrfeAAlNWg7Ddl JFNpJpvRn6nJviU0YD/metpQBYaBcxvugqHyfAbzJKG5f+AQoBUAHfQIDbv1 xTmh5hEic4MI7TUxgA6ZMpwFDaT/bMp6gOrRv47tyXpnleY+vT1wlIFj+EzH svZusU02N+jRiUYpkEdy9vnACXZVsTFNeBWwUcCOumNT0COVKqCfhcUgGHMX rGve9YqlCx2uWBPrPPayqbC4wuiCXSHAxnNh2wpr0w1F170LADaRC9uFfuzU HOmvlIgX7FXNMakw+kcyDLDJXNiewoYURv+su8JyjrzOFr4OTR9VAd01EnT7 UBVJcga7r9lO6+aRu6EimTAz2fubOUkvtxeDxy//92NI9g2DuqmoBc1LboIL Z6FMumlKTCnOI6i3lbKiFLlVUSHWPKKARhsQlgYYwB3oqJRdmvvuutXnPMV+ oL6Uc6CyA61K9mR97aXpmUM0nKSXU/2ELg/oymgSJ30SzE5BHmXOGuQinfEM 0Ds0GXkQXIbVCMpnPU3vULo8VC+jfTiPXJ5mtmp12cGyhiNJJzMMgXFN5qYE PlLPoCYTV7psFRmX5eSTlsOsV6aMhCFjwzidlmbWK1P6TYadycm4A+g1GvhQ Ap8qvR2qV2oyMrRL4LdavVmTqVSmDGMT+AKSaQD6yX7/VAJ/r/Q6pZdpCr+T Ss+0UjUwS5TpDC3zXKtXQPUirf6lVH8BuUc1mUJN5k9S/Y9KLwF6WOlfS/Wv tHqBMkPKdIbf+TOkEAS6efc3iflawXKWYSoGzBEqoAMC/UUr/UNWmIPrOzR4 0ofld385cOUn6Vz1Dg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 260.312}, {309.062, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"2f96ef94-292e-458f-8fd5-0321e5bb1fd3"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(90\\). \\!\\(\\\"disphenocingulum (J90)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"cf599076-762d-4c88-9e00-701c45062354"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.0335 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0347733 1.11141 0 1.11141 [ [ 0 0 0 0 ] [ 1 1.0335 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.0335 L 0 1.0335 L closepath clip newpath .5 Mabswid [ ] 0 setdash .71 .46218 m .4872 .59932 L .6837 .72577 L closepath p .597 .431 .627 r F P 0 g s .48116 .85581 m .6837 .72577 L .4872 .59932 L p .68 .364 .434 r F P 0 g s .4872 .59932 m .28429 .7118 L .48116 .85581 L p .68 .364 .434 r F P 0 g s .28429 .7118 m .4872 .59932 L .46235 .35702 L p .864 .768 .754 r F P 0 g s .71 .46218 m .46235 .35702 L .4872 .59932 L closepath p .704 .655 .799 r F P 0 g s .71 .46218 m .6837 .72577 L .8473 .54197 L closepath p .363 .228 .561 r F P 0 g s .69091 .28458 m .46235 .35702 L .71 .46218 L closepath p .596 .69 .908 r F P 0 g s .69091 .28458 m .71 .46218 L .8473 .54197 L closepath p .119 .292 .764 r F P 0 g s .46235 .35702 m .40648 .21318 L .24542 .45816 L closepath p .866 .901 .855 r F P 0 g s .46235 .35702 m .24542 .45816 L .28429 .7118 L p .864 .768 .754 r F P 0 g s .69091 .28458 m .40648 .21318 L .46235 .35702 L closepath p .593 .764 .961 r F P 0 g s .6837 .72577 m .48116 .85581 L .7719 .82109 L closepath p .461 .054 .18 r F P 0 g s .6837 .72577 m .7719 .82109 L .8473 .54197 L closepath p .22 .04 .411 r F P 0 g s .28429 .7118 m .23128 .7251 L .48116 .85581 L closepath p .622 .056 0 r F P 0 g s .24542 .45816 m .23128 .7251 L .28429 .7118 L closepath p .97 .763 .331 r F P 0 g s .24542 .45816 m .34405 .45072 L .23128 .7251 L closepath p .03 0 .389 r F P 0 g s .40648 .21318 m .34405 .45072 L .24542 .45816 L closepath p .018 0 .232 r F P 0 g s .69091 .28458 m .8473 .54197 L .81316 .56672 L p .831 .399 0 r F P 0 g s .81316 .56672 m .63516 .27315 L .69091 .28458 L p .831 .399 0 r F P 0 g s .69091 .28458 m .63516 .27315 L .40648 .21318 L closepath p .193 0 0 r F P 0 g s .81316 .56672 m .8473 .54197 L .7719 .82109 L closepath p .853 .823 .345 r F P 0 g s .48116 .85581 m .23128 .7251 L .51813 .74302 L closepath p .443 .697 .973 r F P 0 g s .7719 .82109 m .48116 .85581 L .51813 .74302 L closepath p .543 .801 .993 r F P 0 g s .63516 .27315 m .34405 .45072 L .40648 .21318 L closepath p .515 .249 .45 r F P 0 g s .51813 .74302 m .81316 .56672 L .7719 .82109 L closepath p .77 .779 .86 r F P 0 g s .51813 .74302 m .23128 .7251 L .34405 .45072 L closepath p .574 .515 .751 r F P 0 g s .51813 .74302 m .34405 .45072 L .63516 .27315 L p .687 .559 .703 r F P 0 g s .63516 .27315 m .81316 .56672 L .51813 .74302 L p .687 .559 .703 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{280, 289.375}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm9lTFFcUxltmAQbZVxEFRAwg+4DDFkDZ3I0r0agRXILGLdFslaVSSSqV qqRSefAhD3nIQx7z6L/gYx7zmn+F9F3mcxi+7pybZiytkqq+3dP3nO93v9N3 mp6Z7hMrj9du3lt5fPv6StvShysP125ff9S2+OBDf1dsm+dta/KX9jZPba97 XrbRfztUY1+83n69/Qpvf6BWMTW3/8jZ4ek969+OP1KLF1evfjf9D9WqSO1I qj7d9ZvpeoCuMnT9mt9Via4nput+DtDzxvXbrBZBv5igeySoCUE/BQe1IOgH E3RXr+I5QTqwDXHfmbj39SqRF2dE9yL469zgTaLdiPvCxN0JEe1D8Kcm+PYm O+NekW43Hp0BJD52S0wj8aFJXBMmjiHRVNN7jyTGSOIUEtfcEmeReMMk3nJJ tEfmzx+f6vXfq+YQXDNSN4lUnEhNq1bP4ZiSsr2+mFr8Ovmt5lxxk52CbILI JiF70cjeILIJIjup2xiMK+kkAZSqVuOXDeC6EDCBcaeCZO0+++eddwOMAbCd AFIEcM4AVgkgSQAZUqJyIeqsQa0QVDFBjcJLVXQA8zICQK0QcMYArgkdpEmx 6oQH3qLeJagSghqCl0ahl9PBAOZlEIBmIeAtA7gqdDBAiuWIukJQpQTVBy+7 hYBTboBe4qVViDppUJeFqP3wsscN8A4BpAigG4BOIeCEG6CLFMsRdYmgyghq H7x0CwHHgwHMSycAvULAMQO4KHSwlxTLEfU2QW0nqD3wMigEHA0GMC/tAAy7 AZaFDtpIsdJC1BGDukBQ5QS1G14yQsBhN8Au4sURdV6IaoGXSSFgyQDOEUAF ATQD8CYBlBHAohtgBynWtNCLRZ0lqEqCaoSXQ0LAggGcEQIaAJgvDKCeFGtB iJo3qNMEVUVQtfByWHjg5wzgLSGgBoBjQgeOgGpSrONC1CGDOkVQ1QRVCS+n hMU6aAAnCaCGAMoBOCN0EAJgDspJsRiKeZk1qBNCL2XwckHoxQKOE0AtAaSI l2UhasYNVQIvl4TFmjaAY0JAMQBXhA4s4CgB1BFAkhSLoZiXN91QcXhZEXqx gCNCQAyAG0LAlAEcJoB6AigixWIoVqxJV5SnvkaS2bDaS0S7QbV61x3hQCeM 2GKQmB7ZPaHYeLCY/genPl56D4Q2rdgCEVOvxtUVkv5EvJp3jKSjHTMA/a9S 6ei3ZFbsybfP1Fo82lwxjHZVCzbqNg5ZK31fOMyMszIbM1M+EKzckFcKf/En qWr/u9asPAVCMVejwah6gopHQI24oRIEdffFoaSu0sGoOoIqjjAtCoRiroYN ak6IKo2AGnJDpSJMixBU/tlMQcoiuBp0Q22PMC0KhGKuBoJRNQRVEQHV74aq jDAtQlDVBFUVwVWfG6o6Aqr3pUBVEVRtBNR+N1RdhGkRgqokqPoIrnrcUA0u Zwt9TeroRQrI/cnnn78vqXUYqoKgmoSoJLwUKVReAbvdoDuE0yJh26y/7KJ8 hkz6coJsFvqM5ZVUeWWOQ6YMw+8U4u3P0YG8Q8IKS3iqisVuKGZtV9DB1F4Y YL8bYDcB3AbA73j27J/s8fLnqRNvO+G1Ep75uGtmosJll6AaOiLbCPImLMYV Km9Oxgm0Nzr0OqAJAmUTMwRaRqB7CDT3Oxdb2ELhOwj+KjyXRIemCHQvgV4G NCU8un1u0E4CvUQKvQX4UoJ/g+CX4bn8xUHPA1pZGGgXgZ4lha4Q4vuD8SUE 303wp+G5ujDQHgI9CWhtdGgxgfYS6HFSaIaPEfxAdPxReG4oDLSPQJcAbXKD HhRC+wl0kRS6UXicHfEDBD8Hz81Cz4PB0CSBDhHoLKAtLw46QwpdIPwwwU/B c2t0aIJA0wQ6AWg7gbLL7yE36AiBjpFCbwE+TvAHCH4UnjuEhd4CaBrQzsJA MwQ6RArN8KzQw8H4GMGPEfwAPHcVBjpOoL2A9kSHFhHoJIH2kEL32KvpHDw+ Qo9GR3bBZ6/QZ9oNOkWgnYD2/x9oIhdqF88/724G7SUF3ULkLEG2w9tQyJE7 kCsezxP3Ly426+6GbnpLdXeREgkIs5wwTwjNGPmosPQjzowmMDIhY8+E6i4Q 3QZSHTEh982hfkHfLF+LYU9snWg1RKe0aHyDqL89lqOn444QlUriPIpeOUY1 I1Q5SlRSUJkNKViuVGnQlCkhBmf50OzNAYcwtMT6o6fr6vtyemGSxCDnQvXm oVcLPfapPwa9hVC9Rei1Q499q15EnIcrH4byAJSTWnnj80GeCt34Hvf05NYq uTfz+Cpq8aeU36qvP/ypTEdgc49hBHM6z6j8+Ne6Wsyr+VCBExA4SAX8NmZ6 w1ROQWWaqBRDZZpUwd5JcxoSU0Qipdr48zMClTgLiQkiUYFRZIIlzkMiQyRq IDGiJOxodeIyEkdJYj0SBwnbSlyERJpINEGiL1gi96mC7FQaIGItKGd3sNjl jbM7T6IN49mHWtibx64isY8kdiCxIz/xGhJ7SOIbSGzLT1xFYhdJ7IHbncSt lbgBiX1Eoh/sJrDtbX+3kNhBEoeRWJ+fuLbxvJSXOIrEmvzEO0hsJYljSMz9 YjB7DWHd3iUTpYWITaJ0ZcFi9zCenURiFuMpCZZ4/jjvDiIxB4k4ajFjEj9A YiNJXESi9/znFJVnsx8hu45kL6lW/yu1t8N+hPAaEj6jWn13nb3H/BOEV5Hw DMLtczqfIbychA8i3D71+DnCy0h4F8Lt06NfkiNeQhJbVauvDszzpt5X4BQH nZY0xzx2bR5gfn41kBdehfCPTfg3CI+R8BKEf2XC9bPUMROe7fredOmVnqo/ mx16gr1ET8a/3n51t71t/wIVekGG\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 279.}, {288.375, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"7a921431-7c9c-431d-acb7-3432541f34c4"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(91\\). \\!\\(\\\"bilunabirotunda (J91)\\\"\\)\"\>"}]], \ "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"1c396a8a-5a0f-47c3-b9cf-1625388a15e8"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .97761 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.00851806 1.07316 3.33067e-16 1.07316 [ [ 0 0 0 0 ] [ 1 .97761 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .97761 L 0 .97761 L closepath clip newpath .5 Mabswid [ ] 0 setdash .24834 .62678 m .37079 .81376 L .57277 .73206 L p .8 .676 .727 r F P 0 g s .39002 .43017 m .24834 .62678 L p .57277 .73206 L .8 .676 .727 r F P 0 g s .57277 .73206 m .58629 .50481 L .39002 .43017 L p .8 .676 .727 r F P 0 g s .71554 .65114 m .58629 .50481 L .57277 .73206 L closepath p .456 .379 .681 r F P 0 g s .71554 .65114 m .57277 .73206 L .37079 .81376 L p .494 .904 .831 r F P 0 g s .58629 .50481 m .60488 .32158 L .39002 .43017 L closepath p .729 .735 .856 r F P 0 g s .58629 .50481 m .71554 .65114 L .74462 .46656 L p .294 .336 .735 r F P 0 g s .74462 .46656 m .60488 .32158 L .58629 .50481 L p .294 .336 .735 r F P 0 g s .36487 .79134 m .37079 .81376 L .24834 .62678 L closepath p 0 0 .468 r F P 0 g s .37079 .81376 m .36487 .79134 L p .71554 .65114 L .494 .904 .831 r F P 0 g s .39002 .43017 m .24381 .43933 L .24834 .62678 L closepath p .91 .876 .791 r F P 0 g s .24381 .43933 m .39002 .43017 L .60488 .32158 L p .671 .957 .946 r F P 0 g s .36487 .79134 m .59765 .681 L .71554 .65114 L p .494 .904 .831 r F P 0 g s .74462 .46656 m .71554 .65114 L .59765 .681 L closepath p .933 .935 .778 r F P 0 g s .24834 .62678 m .24381 .43933 L .36904 .60355 L p .107 .215 .695 r F P 0 g s .36904 .60355 m .36487 .79134 L .24834 .62678 L p .107 .215 .695 r F P 0 g s .38308 .32015 m .24381 .43933 L p .60488 .32158 L .671 .957 .946 r F P 0 g s .60488 .32158 m .62406 .24492 L .38308 .32015 L p .671 .957 .946 r F P 0 g s .60488 .32158 m .74462 .46656 L .62406 .24492 L closepath p 0 .227 .744 r F P 0 g s .59765 .681 m .36904 .60355 L p .62406 .24492 L .814 .691 .729 r F P 0 g s .59765 .681 m .36487 .79134 L .36904 .60355 L closepath p .727 .764 .882 r F P 0 g s .62406 .24492 m .74462 .46656 L .59765 .681 L p .814 .691 .729 r F P 0 g s .24381 .43933 m .38308 .32015 L .36904 .60355 L closepath p .361 .304 .657 r F P 0 g s .36904 .60355 m .38308 .32015 L .62406 .24492 L p .814 .691 .729 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{287.875, 281.375}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmulvFGUcx4d2t+32oOf2oNdyBAyKCkYChhCNgZ4Uet8t24O2iEEpJESM Ro2GhGgM0ajREI3BGPGIhre85E/gX+Al/wLuPL/ZX2d3P88yQ9ukL7rJzs7O fH+fzzPP3LN7Jnl1efHd5NWV+WSi40ryveWV+dXE6ctXUpMKdzjOjvbUuynh uONPHSc9MK+EO/C+bI9vj2+Phx7/1/0odPepd2TC3zqh4Omj+w8cM/rUezkr ErqnoSIILUvodw3F7KG7GqqA0JKEfnE/Iu6cKnvojpLiELogoR811GgPfa+h FggtSuhbDSUgtCCh2xraaw99pUt3AELzErqlpBftoZsaegVCcxL6XENH7KFP NXQUQkkJfaQNP24P3VDSSQidl9B1Db1lD13T0CkIzUroioY67aHLGuqF0IyE LmnorD0kO43Mmuj+0/10+iE+LfGL5iOica8kT4XscNGMirRoAMqmpGw5q12p d2p/docyLVVoisk8KYglQBSGQ5hdpUAOE7mF1PwJKVwAd0jEPCCKATEIiHFB zAGiJBwiCYgYIIYAMSaIWe3EMigcthfOgJsQI4AYFcQ0IMrDIaYAUQGIUUCM CGISEDvDISYAUQmIMUAMC2JM10NNuMJRcBNiHBBDghgBRC0gJgAxKIhhQNSF QwwBIg6ISUAMCGIQEPXhEP26HpqgcAoK+6XwHLhDIs4CYhcgpgEheqcPEM3h EGcA0QKIGUDIEjg92ont4Qq7wU2IWUDIojtdgEiEQ3QGRCQBIb3ndABidzjE aUDsAcQcIHoFcQoQezcHMQ+IHh/CbA37oHABCrtz3Y2H77uf6H4mIqIID0P9 uAiUro2nRDMo6cWibeMCoDq5Z1Lv1AWYO8xcU23rxxYCthWwS4DtsGMjgKWj zCZhTSeYbbLLDosCjA6m/nX+5MlDs0LzYIsAS4f5RW2jZX9wMcUAo9POArSx O/dAk6+NhJXdPqJYD52HTA1u3BByCZAbrEe7aAY5QJfEAE8XF8msnk69U/um O8R9LqiKLoVIVRhOVQoqunALulRddlUZqOgy83zApcqjKgcVXRTPgiqyZVUV oKp+xgVWWhUNp9oJqqpnXEemVUXhVJWgopunDVBVgYpu9aYCqvIcLYKqJkFV HE5VDSq6B94AVQ2o6I59AlQl4VS1oKLnC+Ogim1ZVR2oSkE1FlDVY1fFQUUP h0ZBVRpOVQ8qepQ1AqqyLatqABU94xsGVXk4VSOo6InkEKgqwqmaQBUJuFSb pAq6VL121S5Q0ePkQVDttKs6Aqro4fcGqJq92xCfyrxT37HTKsPhW7xbJj/e cbDhVVuF3JrV+25XDATEwrOZNLbNHZp7rX6AVYeDtbtDM6kPYDXPAfOmPXj4 2H3Lt57NYqeGZlIHCGrXLyhSwdsgqFu/IKaCNzdHUK6CEwEFfeEElSo4BoL4 +gU1Knh9cwRxFRwGQb1d0AmCNhA0quAQCBrsgi4QtIKgWQUHN0fQpoL9IGi0 C7pB0AKC3SrYE1Dgf3yPp6JMwT4VtD+HwBxtqd0HFNts6/lCOVIbWC+0dhdg Dyq2wbbXmhNWasaNx4+0yZ7lDFiawHJILbW2s5I5nxvJsI9tuoPa/aoSq4BY ru0ucolZ/e39wNcHjW8E1WuqKrfdfxhVCahGfCrv97NcwVEVlNhusY2gFATe 785nVUBLcFwFUXh+mO78MhdvGN4fGs5BB9UD/oTiUzPcCz13pnxLDSqh1X5B gWx8udiTiq3Wls1K4drvkdb2eL8apwu9f8YMaGEcCt+Awvkghceg0PvP0qAW 1tlWfYHsGLnd5CGGFFGbd/OsVfdydmENFB5Rd50Wyp9l5IfrAul6y76XVXhJ Cke0sAoKX9bCOCytH+HNcpxVsyFVAuylTJgZuyyIUW0FFR6EwvelcO3/Bjuh 8AUoXPUVZjW6AhD7AXFNEOPqpsJ9WlgPXedHZLWiHGB7MmFm7LogJgBRBogE ID4QxKQuCBW26uZqesCMfegrzHKXAqIZ3B8LYgoQMUA0AeITQUwDogQQDZmr 0sz8LBwiDlvDF4KYAUQxIGoz90Uz86YgZgFRBIhq2J1vhUNUZh7GzMwvBXEe EFFAVGQizNjXgkgCIgKIMkDcDoeIZR7IzcxvBDEHiEJArN3JrZ0LvhPEPCAK ABGBVvzgRxT5EAZjzs9mmXJPRD9Jpfy/L+qXp6tSjcgtu+Mv87d5Va4fqrVp P0tSzlaR7Katnbx/ldwFPMCnQ3ftoQo48v0m8SWIx5T5h4SW9cBUDKR72aEo hP6S0IqGCiD0j4Qu+tqUnvWfzDJfEtvj2+P5x50d/wN9elrr\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 286.875}, {280.375, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"a687d64c-7fda-412c-92eb-eb861c31f48f"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(92\\). \\!\\(\\\"triangular hebesphenorotunda \ (J92)\\\"\\)\"\>"}]], "Message", GeneratedCell->False, CellAutoOverwrite-> False,ExpressionUUID->"a6661b0e-d3b7-4148-9b7c-824b94516f84"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.27887 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.139769 1.3461 -1.11022e-16 1.3461 [ [ 0 0 0 0 ] [ 1 1.27887 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.27887 L 0 1.27887 L closepath clip newpath .5 Mabswid [ ] 0 setdash .3607 .54838 m .544 .66219 L .59606 .43619 L closepath p .77 .721 .806 r F P 0 g s .544 .66219 m .3607 .54838 L .39705 .81003 L closepath p .851 .67 .658 r F P 0 g s .544 .66219 m .39705 .81003 L .65571 .85557 L closepath p .732 .475 .539 r F P 0 g s .544 .66219 m .65571 .85557 L p .7549 .47498 L .398 .349 .687 r F P 0 g s .7549 .47498 m .59606 .43619 L .544 .66219 L p .398 .349 .687 r F P 0 g s .55972 .27029 m .59606 .43619 L .7549 .47498 L closepath p .287 .467 .863 r F P 0 g s .3607 .54838 m .59606 .43619 L .55972 .27029 L p .787 .825 .882 r F P 0 g s .65571 .85557 m .79523 .75446 L .7549 .47498 L p .398 .349 .687 r F P 0 g s .65571 .85557 m .39705 .81003 L .3829 .9584 L p .708 .342 .352 r F P 0 g s .3829 .9584 m .66434 1.00664 L .65571 .85557 L p .708 .342 .352 r F P 0 g s .65571 .85557 m .66434 1.00664 L .79523 .75446 L closepath p .152 0 .325 r F P 0 g s .3829 .9584 m .39705 .81003 L .3607 .54838 L p .946 .699 .234 r F P 0 g s .32279 .82203 m .3829 .9584 L p .3607 .54838 L .946 .699 .234 r F P 0 g s .27992 .51112 m .32279 .82203 L p .3607 .54838 L .946 .699 .234 r F P 0 g s .3607 .54838 m .30422 .39007 L .27992 .51112 L p .946 .699 .234 r F P 0 g s .55972 .27029 m .30422 .39007 L .3607 .54838 L p .787 .825 .882 r F P 0 g s .7549 .47498 m .79523 .75446 L .77361 .60223 L closepath p 0 0 .104 r F P 0 g s .55972 .27029 m .42722 .23954 L .30422 .39007 L closepath p .739 .951 .946 r F P 0 g s .7549 .47498 m .77361 .60223 L p .42722 .23954 L .86 .415 .132 r F P 0 g s .42722 .23954 m .55972 .27029 L .7549 .47498 L p .86 .415 .132 r F P 0 g s .3829 .9584 m .54068 1.04787 L .66434 1.00664 L closepath p .539 0 0 r F P 0 g s .79523 .75446 m .66434 1.00664 L .54068 1.04787 L p .952 .942 .734 r F P 0 g s .77361 .60223 m .79523 .75446 L p .54068 1.04787 L .952 .942 .734 r F P 0 g s .42722 .23954 m .27992 .51112 L .30422 .39007 L closepath p 0 0 0 r F P 0 g s .3829 .9584 m .32279 .82203 L .54068 1.04787 L closepath p 0 .315 .805 r F P 0 g s .54068 1.04787 m .60636 .78253 L .77361 .60223 L p .952 .942 .734 r F P 0 g s .60636 .78253 m .56013 .45635 L .77361 .60223 L closepath p .887 .692 .634 r F P 0 g s .77361 .60223 m .56013 .45635 L .42722 .23954 L p .86 .415 .132 r F P 0 g s .27992 .51112 m .42722 .23954 L .56013 .45635 L closepath p .558 .38 .595 r F P 0 g s .60636 .78253 m .32279 .82203 L .27992 .51112 L p .586 .484 .705 r F P 0 g s .27992 .51112 m .56013 .45635 L .60636 .78253 L p .586 .484 .705 r F P 0 g s .32279 .82203 m .60636 .78253 L .54068 1.04787 L closepath p .595 .57 .796 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", GeneratedCell->False, CellAutoOverwrite->False, ImageSize->{251.688, 321.875}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt29ly01YYB3BhS7ZjO3HiLE6czdmchT2EhCRsoc0GJIGw75gQSFIKFOh0 YzotHabT6fSOSy77CNz2EfIKvewjcMNF6rPw5SD/FT5ZtMMFmbEUW+f/0ycd WZZsaa7wZGX5y8KT1aVCbvpR4eHK6tLj3NSDR8WXwtssy3pjWdsmcpb4f6P4 VA/ebBT/ihM/jT7e0RdiFBb99YfxgiVf2fh7LSceli2e/aamrxnTf7/1Uva0 I1rJRs9Vo1UxCokXQqKRi4tQ859V8xVqHgbN42LoiJeequZ3qWYbNK8i/Vuj udQd0DxNzZ+o5neoeRQ0r6fmD1XzZSomBpo3iqHE7qvmt6l5BWjeJIfqNf1n 3VPBJTGSM44zg6onrVsUTIBgFgTX3MEkM7iqggUKVjGDKyp4U4wcr2AzCN5V wRsUrGYG76jgdTGKeAVbQHDZCMo5ppnB2yp4jYJ1zOCSCl6lUlGwFQRvqeAV CjYwgwUVvCxGUTElwwzeVMFLFGwEwTYQvOEONjGD11XwIgWzINgOgtdU8IIY xcSUZmbwqgqep2ArM3hFBc+JUYVXMAeCl42gnGM7M3hJBc9SMAeCHSB4UQXP UKkdzOAFFVykYBczeF4FT4tR3CvYCYLnVPAUBXuYwbOcYBcInlHBBQr2Mueo g/NilBBT+pjBRRWco2A/s9TTKnhSjJJiygAzeMoIyjnuYAYXOMFuEJxXwRMU 3MUMzhlB2R27QbAHBE+6g3uYwRNGUG7kg8zgcU4wD4KzKnicgkPM4Awn2AuC 00ZQ7jqGmcEpd3CEGZw0gnJPfgAE+0DwcxWcpTmOMoOfGUE5xzEQ7AfBY0ZQ frAeZAYn3MFxEbTVO7O0+VGjuUPrUv4X2njxwyvd/J9Xf4oxJI4oYobmOEhE 1EUUH1ZI7V1KncOG49DbU/6XhI4Yvr/TD7nZfmLTAdiDBmvTvl2yGcCGxTCk 9sil2LgbyxHWAjAH1Ih2BpqdJraF2A7ARqhGFpYhLA+wGKgRffCYrJxSS+x2 wFZQjRILqbfGJiFfSBGxBxAJUBk6tBlzs3Fih5ksOkbT7BSxEWLHAZukBWZh 6vRWtlHPioOjgK0C1aIzA3MGcsokwFJU4/sIPalISAZhNaAydO7pk01TjU20 4Yz7I+pAZQ0cbMoLC6n3UenCjRrbHqOyBlBZXXA2A9ja4GwjLfoHwLKgxurg bDPVWE09POaPaAWVVXIwtLm0Uj1lE+2gngRYUwcUO8NczBxg48HZDlrgD4B1 gRqjwdluqjFKnTLqj8iDymwOhno4T/WUTfTJoW3W46ZmmYvWr49VXJT8XPJJ DdCCFSdow+wwrrODHJ8F7KSgzzmygqgjtothuIzggNGDr1//taEPBXwqZucJ 5e3D2qSOM1dBn7GJa6Z4lC2G7775hv2xvYANB2fzgLXFUHbiiDeG1mI3wJxy sS6ARcrFOgEWA2tvvz+2A7AV/zt7gtnXOcDGg7PtgE1QRw17Y54f/C4sWS7W ArDKcrFmgKXA2hvyx2YBWx2cbQJsTXC2EbBpb/YkcxPKALaWOmq/N4ZqrAdY XblYHcAawALv+yjYWsBmgrNpwDYGZ2sA2xScrQZslvpfb5lzTKwKYC2gxkF/ bCVgW4OzScC2BWcTgG0PzsYBmwvOVgC24z9k5Walt9F5JhYFWBeoca8/NgLY 7uCsA9ie4KwN2HxwNgzYXjEc8ueEvBy8HXmzjsnKR/F58ZTDc0+HqGlXhYIY 8CYWvKqRWysKDnkHj4mh/o7aV1B+wyt/CLI3Xr5Yd63MPu9jT4QNEZYIju0k rIaJDXtjecIaAYa2mRFvrE0M9UUJgbEMVdYLMPRm02e7pwCWImwns7ItsBhh Q8zKRk3MNjGixsugpHQMBNEebqx0gYpBGUYEmrcmTgNiglnFuEGE/JSvg4sU RHNEHxgHjaCeZC2uy53QEea83yHsTUIxh5mF6J83z2DlUDmK866iFwttSojS P+Oe3YIaK4cKm5T4FXlx3bW1jAAWHUMcUew5JjscnA0DFr3LEat/oT/PZPcF Z23ADgK2E7AT3qwD2L2ARYem+nKIC0x2N7PaLdgIYHcxq9VXfVxksujDwycb BewOwKKzCX1xyyUmO8Csdgs2Bth+ZrWT3mwFYPv8sZeZLDp4QCeAU95sHLA9 zGo1e4XJdjOrnfZmE4Dt8sdeZbKdgEXn7DPebBKwOWa1mr3GZNExKap21put BGxbcLYKsK2ARV+z6MsIrzPZZma1W7ApwGaZ1eqrJW+Ikf7NvhRr8ocVCEOV odMa9C2YvgB0iTC09hqYmL4MdZm5Zdb7YzdvSkHbYx3AmgGmr7HdvN0GVVbr D1sjDO0u0OkqwvRlw/cIQ3vKan/YfdAV6MMtBdgsYPU10Q+oRvTZU8msUWNf EYYqSzIr05d5PyYMHRqgryG2wL4mDB0VxQEmv7qXL+lL678hAh0GxgBRT4S+ keA70IdhgEUBliZM30DxPdWDDqIjgEgRoW8XeUoEqsIBRJKIm4r4kQh0PhMG RJwIfSvQT0SoMt4KMB2ltL7n6Zl7nUqmNGhTUN/X9YsYhVXlorltNqfG+n61 59RYQWp26vFANfmVFuOReuGjuCPy08g1srb9C0oQwaY=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 250.688}, {320.875, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"32791f67-a8db-45c3-8876-5f274e127de4"] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Nets", "Section",ExpressionUUID->"ea39771c-d69a-4677-8918-9823ec6cb371"], Cell[CellGroupData[{ Cell["Example", "Subsection",ExpressionUUID->"2f3ea52e-fdf4-406c-9447-b6ec9e68afab"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"n", "=", "18"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Show", "[", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{ RowBox[{"Graphics", "[", RowBox[{"#", ",", RowBox[{"AspectRatio", "\[Rule]", "Automatic"}]}], "]"}], "&"}], "/@", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"ClosedLine", "@@@", RowBox[{"Net", "[", RowBox[{"JohnsonSolid", "[", "n", "]"}], "]"}]}], ",", RowBox[{"ColoredNet", "[", RowBox[{"JohnsonSolid", "[", "n", "]"}], "]"}]}], "}"}]}], "]"}], "]"}]}], "\[IndentingNewLine]", "]"}]], "Input",ExpressionUUID->"c3398159-\ 48ae-4388-abc2-35e1f5cfeead"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .44429 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.47619 0.0105784 0.47619 [ [ 0 0 0 0 ] [ 1 .44429 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .44429 L 0 .44429 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.0105784 0.477324 0.433713 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103175 0.15873 0.376508 0.15873 [ [ 0 0 0 0 ] [ 1 .93301 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .93301 L 0 .93301 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .5 .29714 m .34127 .29714 L .2619 .15968 L .34127 .02221 L .5 .02221 L .57937 .15968 L .5 .29714 L s .02381 .45587 m .02381 .29714 L .18254 .29714 L .18254 .45587 L .02381 .45587 L s .18254 .45587 m .18254 .29714 L .34127 .29714 L .34127 .45587 L .18254 .45587 L s .34127 .45587 m .34127 .29714 L .5 .29714 L .5 .45587 L .34127 .45587 L s .5 .45587 m .5 .29714 L .65873 .29714 L .65873 .45587 L .5 .45587 L s .65873 .45587 m .65873 .29714 L .81746 .29714 L .81746 .45587 L .65873 .45587 L s .81746 .45587 m .81746 .29714 L .97619 .29714 L .97619 .45587 L .81746 .45587 L s .34127 .6146 m .5 .6146 L .42063 .75207 L .34127 .6146 L s .5 .6146 m .34127 .6146 L .34127 .45587 L .5 .45587 L .5 .6146 L s .5 .6146 m .5 .45587 L .63746 .53524 L .5 .6146 L s .42063 .75207 m .5 .6146 L .63746 .69397 L .5581 .83143 L .42063 .75207 L s .42063 .75207 m .5581 .83143 L .42063 .9108 L .42063 .75207 L s .34127 .6146 m .42063 .75207 L .28317 .83143 L .20381 .69397 L .34127 .6146 L s .34127 .6146 m .20381 .69397 L .20381 .53524 L .34127 .6146 L s MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.522676 0.0105784 0.97619 0.433713 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103175 0.15873 0.376508 0.15873 [ [ 0 0 0 0 ] [ 1 .93301 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .93301 L 0 .93301 L closepath clip newpath 1 0 0 r .34127 .6146 m .5 .6146 L .42063 .75207 L F .5 .6146 m .5 .45587 L .63746 .53524 L F .42063 .75207 m .5581 .83143 L .42063 .9108 L F .34127 .6146 m .20381 .69397 L .20381 .53524 L F 1 1 0 r .02381 .45587 m .02381 .29714 L .18254 .29714 L .18254 .45587 L F .18254 .45587 m .18254 .29714 L .34127 .29714 L .34127 .45587 L F .34127 .45587 m .34127 .29714 L .5 .29714 L .5 .45587 L F .5 .45587 m .5 .29714 L .65873 .29714 L .65873 .45587 L F .65873 .45587 m .65873 .29714 L .81746 .29714 L .81746 .45587 L F .81746 .45587 m .81746 .29714 L .97619 .29714 L .97619 .45587 L F .5 .6146 m .34127 .6146 L .34127 .45587 L .5 .45587 L F .42063 .75207 m .5 .6146 L .63746 .69397 L .5581 .83143 L F .34127 .6146 m .42063 .75207 L .28317 .83143 L .20381 .69397 L F 0 1 0 r .5 .29714 m .34127 .29714 L .2619 .15968 L .34127 .02221 L .5 .02221 L .57937 .15968 L F 0 g .5 Mabswid [ ] 0 setdash .5 .29714 m .34127 .29714 L .2619 .15968 L .34127 .02221 L .5 .02221 L .57937 .15968 L .5 .29714 L s .02381 .45587 m .02381 .29714 L .18254 .29714 L .18254 .45587 L .02381 .45587 L s .18254 .45587 m .18254 .29714 L .34127 .29714 L .34127 .45587 L .18254 .45587 L s .34127 .45587 m .34127 .29714 L .5 .29714 L .5 .45587 L .34127 .45587 L s .5 .45587 m .5 .29714 L .65873 .29714 L .65873 .45587 L .5 .45587 L s .65873 .45587 m .65873 .29714 L .81746 .29714 L .81746 .45587 L .65873 .45587 L s .81746 .45587 m .81746 .29714 L .97619 .29714 L .97619 .45587 L .81746 .45587 L s .34127 .6146 m .5 .6146 L .42063 .75207 L .34127 .6146 L s .5 .6146 m .34127 .6146 L .34127 .45587 L .5 .45587 L .5 .6146 L s .5 .6146 m .5 .45587 L .63746 .53524 L .5 .6146 L s .42063 .75207 m .5 .6146 L .63746 .69397 L .5581 .83143 L .42063 .75207 L s .42063 .75207 m .5581 .83143 L .42063 .9108 L .42063 .75207 L s .34127 .6146 m .42063 .75207 L .28317 .83143 L .20381 .69397 L .34127 .6146 L s .34127 .6146 m .20381 .69397 L .20381 .53524 L .34127 .6146 L s MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 127.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnPtvG0UUhTdZ2/EzjuM4Ce+EUsr7Kd6kTds0oUIgXqUqVNAQUhJKSJsG EFKlCgkhIeBvDtmZ3bm79jfj2Yjlp7Vke3x35pwzd2fu3J3s5oPNw53tvc3D 3a3NpY2Dzds7u1t3l9b3D45N4UQQTCwFQXB/KYjKR8fF+EO9lqOP+McJy69G X/MR5K9RaRChX04dCkKhO/41C7ZftE3pUuqO3z31qWym3oaGfQUg5sD2E8D2 AXY9H+whwA4A9pKGfRkg5sF2Nx/sSwCxCLY7ALsAsGv5YG8D7AMAe1HDvggQ D4JtvxjYHwH2IYC9oGFfAIiHwfYDwD4CsOc17PMA8SjYbhUD+z3APgawqxr2 OYBYAttuMbA7ALsMsOc07LMA8TjYbgLsKYA9q2GfAYgnwLZdDOy3AHsaYFc0 7NMA8STYvgHYMwD7bqGwBTmhoFNW0AAraDoUBFtQqCkoMBYUxn1h9wDWsegU tJYVtPIWlH74JksHxcDmzMEKyhgLym+b0de9qG5flaI6rdQhj0S99z/U60mv ooLS11OfWdss2P67elpLo3RP6Z7SPaV7SveU7indU7qndE/pntI9pXtK95Tu Kd1Tuqd0T+me0j2le0r35HMPb0Pb7xepJLYgfv1s7VhF1TkKkh3xZPvbAzx5 TUaGw/EMyXsy+l4bR5O1hWC74z5bhjLUnxnvns9HXzH99CWtmJ7mpKoZqn1P qpqhOpePqm6o9jyp6oZqJR9V01Dd8qRqGqp38lG1wbbjSdqGofJmPvqO6akv acf0NKZaNhAznqTTpsUVVTqStmPppw39Gyn60Rgyncf/SstVDTQcYabznAwl 7C0UlrwUF51190C8llWXiU5tT4kjg3QZKCl2NTzlUr1rIs4Z4xqenWhAW0d3 JBb6dmLKtLgO0iVS+gqeMi3O2mVKHJ3ylFk1Lb4CmRJlpzxlVk2LVbtMicFV T5mhaXEDZEqErnrKDE2LC3aZMm1oNLsSg/RtTqPTJrSKdKYNJLE9KiIqz7E5 fZtUNvpX0hMhKvdH9URf63Ypag0IDbsqbQNhx9x90DcHN+ywKnAuRqabAKbi +EJUem+MMrEF4qGszao2sR2pH0EfbI4etJzDaMYxjLZAUEuGUTA6rrtyNtXR +K3qX7JLbBhKmpBdsElA3ASRDZmQVpFhRmRoZF60y6yDrWYbMx71KOTVQVwN OtFx1zMcjjAo0ZquB2lxl8DpjtZNENwCwXXjdYdMOdUkiWwSON1rX9tTZtPI dKx9NLk6NnEe9cZkHEZcBzrRcNczHJmMg2MAZcOUg3RNC1eON+Mpdtp4nCUG 8asPSmiW9ow6S37cB2FTIKxnhKXzY4U8AF5Kg+g+uc8USgQ78BTSh9P5etpX WQISRyGJ6n2qbRl6klkFmQOQ+Vo+mbQk0J2RBcmkO6hJJs1/knnFUybNdZIZ n/RTnjInPet9DjLn1Wd1eGar34snkVZN23TlCArqX7V6jeUsgJz4UpvutNdy RhLWBaiaict8/qwK4r2G0wBLCSHRf1EgfWgj/RJI54LENA9UcXSkZzAkFsdz JumyslF0vA70syYQaxQzCpRtzi7pDBDoDJNHo1z60e51Jg+KpXWNNN0/Xgp7 IPFtu0TZ4qrAUQo+lIV+DXIpMQjT9QJ7QHIkFU8BvSRmtPZIokf50A2Q3jKe roFgSfRyyqT8hgRLAt2Co5kLk1iwJLx1EIwJtMFzPOokQki6ZO2UGmX2CmKZ NSOzCTJlu6Nul0nPOMlUIn/J4KAVP7N3EMuUi7Z2+mj8lg2PKsh0PIpFSyQJ pksPaquv66sZ6UfxdXtqX3ZoS4Trr2rZ+lEvr+1iCRxD4fY7jZHQJOxdUCS7 5drniSddz3KRFtkyTz1+ZY4Ss2yUx3/SWbF1cch2z9aNIVIHrGyc3Acw2QhZ s0PIxsZvACHbFOt2CJqzBFaHzjlgJWT8DmASiS7bISRe/wEQEn3ft0PQukVg tNWegeWL1z9jnWmoRNWH2DyZSX9lWyaNP0o1Ugz/qFJ06BN7L/+WHhnbx7q6 +nHCf2sQTPwLQMzgaw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {126.938, 0.}} -> \ {0., 0., 0., 0.}, {{7.4375, 137.}, {123.875, 3.}} -> {-1., -2., 0., 0.}, \ {{149.938, 279.5}, {123.875, 3.}} -> {-7., -2., 0., \ 0.}},ExpressionUUID->"36da51f7-dab5-4779-b311-1bb1f359d849"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "GraphicsArray", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"7d6c283d-4e7c-43ee-a80d-\ 9e61adc55bfc"] }, Open ]], Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"Graphics", "[", RowBox[{ RowBox[{"ColoredNet", "[", RowBox[{"18", ",", RowBox[{"Labeled", "\[Rule]", "True"}]}], "]"}], ",", RowBox[{"AspectRatio", "\[Rule]", "Automatic"}]}], "]"}], "]"}]], "Input",\ ExpressionUUID->"7ba334e3-c09d-4d4f-9b54-f02c50e1a087"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"With", "[", RowBox[{ RowBox[{"{", RowBox[{"n", "=", "69"}], "}"}], ",", "\[IndentingNewLine]", RowBox[{"Show", "[", RowBox[{"GraphicsArray", "[", RowBox[{ RowBox[{ RowBox[{"Graphics", "[", RowBox[{"#", ",", RowBox[{"AspectRatio", "\[Rule]", "Automatic"}]}], "]"}], "&"}], "/@", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"ClosedLine", "@@@", RowBox[{"Net", "[", RowBox[{"JohnsonSolid", "[", "n", "]"}], "]"}]}], ",", RowBox[{"ColoredNet", "[", RowBox[{"JohnsonSolid", "[", "n", "]"}], "]"}]}], "}"}]}], "]"}], "]"}]}], "\[IndentingNewLine]", "]"}]], "Input",ExpressionUUID->"46ee4317-\ d061-479c-abf7-0e9530317f86"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .26171 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.47619 0.00623125 0.47619 [ [ 0 0 0 0 ] [ 1 .26171 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .26171 L 0 .26171 L closepath clip newpath % Start of sub-graphic p 0.0238095 0.00623125 0.477324 0.255481 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.266022 0.053291 0.249457 0.053291 [ [ 0 0 0 0 ] [ 1 .5496 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .5496 L 0 .5496 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .23938 .33146 m .19626 .30014 L .1798 .24946 L .19626 .19877 L .23938 .16745 L .29267 .16745 L .33578 .19877 L .35225 .24946 L .33578 .30014 L .29267 .33146 L .23938 .33146 L s .34135 .35314 m .29267 .33146 L .33578 .30014 L .34135 .35314 L s .23938 .49548 m .19626 .46415 L .1798 .41347 L .19626 .36279 L .23938 .33146 L .29267 .33146 L .33578 .36279 L .35225 .41347 L .33578 .46415 L .29267 .49548 L .23938 .49548 L s .38791 .45307 m .33578 .46415 L .35225 .41347 L .38791 .45307 L s .19069 .35314 m .19626 .30014 L .23938 .33146 L .19069 .35314 L s .02381 .30014 m .04028 .24946 L .08339 .21813 L .13668 .21813 L .1798 .24946 L .19626 .30014 L .1798 .35082 L .13668 .38215 L .08339 .38215 L .04028 .35082 L .02381 .30014 L s .11004 .4283 m .08339 .38215 L .13668 .38215 L .11004 .4283 L s .14414 .20985 m .19626 .19877 L .1798 .24946 L .14414 .20985 L s .14297 .03476 m .19626 .03476 L .23938 .06608 L .25584 .11677 L .23938 .16745 L .19626 .19877 L .14297 .19877 L .09986 .16745 L .08339 .11677 L .09986 .06608 L .14297 .03476 L s .04773 .15637 m .08339 .11677 L .09986 .16745 L .04773 .15637 L s .26602 .1213 m .29267 .16745 L .23938 .16745 L .26602 .1213 L s .76062 .05412 m .80374 .08544 L .8202 .13613 L .80374 .18681 L .76062 .21813 L .70733 .21813 L .66422 .18681 L .64775 .13613 L .66422 .08544 L .70733 .05412 L .76062 .05412 L s .24495 .01309 m .23938 .06608 L .19626 .03476 L .24495 .01309 L s .38791 .20985 m .35225 .24946 L .33578 .19877 L .38791 .20985 L s .49177 .35082 m .44865 .38215 L .39536 .38215 L .35225 .35082 L .33578 .30014 L .35225 .24946 L .39536 .21813 L .44865 .21813 L .49177 .24946 L .50823 .30014 L .49177 .35082 L s .49734 .19646 m .49177 .24946 L .44865 .21813 L .49734 .19646 L s .66422 .35082 m .64775 .30014 L .66422 .24946 L .70733 .21813 L .76062 .21813 L .80374 .24946 L .8202 .30014 L .80374 .35082 L .76062 .38215 L .70733 .38215 L .66422 .35082 L s .73398 .4283 m .70733 .38215 L .76062 .38215 L .73398 .4283 L s .56782 .48351 m .55135 .43283 L .56782 .38215 L .61093 .35082 L .66422 .35082 L .70733 .38215 L .7238 .43283 L .70733 .48351 L .66422 .51484 L .61093 .51484 L .56782 .48351 L s .7129 .53651 m .66422 .51484 L .70733 .48351 L .7129 .53651 L s .61209 .33974 m .64775 .30014 L .66422 .35082 L .61209 .33974 L s .50823 .19877 m .55135 .16745 L .60464 .16745 L .64775 .19877 L .66422 .24946 L .64775 .30014 L .60464 .33146 L .55135 .33146 L .50823 .30014 L .49177 .24946 L .50823 .19877 L s .50266 .35314 m .50823 .30014 L .55135 .33146 L .50266 .35314 L s .65865 .19646 m .70733 .21813 L .66422 .24946 L .65865 .19646 L s .57799 .1213 m .60464 .16745 L .55135 .16745 L .57799 .1213 L s .80931 .19646 m .80374 .24946 L .76062 .21813 L .80931 .19646 L s .97619 .24946 m .95972 .30014 L .91661 .33146 L .86332 .33146 L .8202 .30014 L .80374 .24946 L .8202 .19877 L .86332 .16745 L .91661 .16745 L .95972 .19877 L .97619 .24946 L s .88996 .1213 m .91661 .16745 L .86332 .16745 L .88996 .1213 L s .85586 .33974 m .80374 .35082 L .8202 .30014 L .85586 .33974 L s .96529 .35314 m .91661 .33146 L .95972 .30014 L .96529 .35314 L s .80931 .40382 m .86231 .40939 L .87339 .46152 L .82724 .48816 L .78763 .45251 L .80931 .40382 L s .86231 .40939 m .80931 .40382 L .81488 .35082 L .86788 .35639 L .86231 .40939 L s .86231 .40939 m .86788 .35639 L .91099 .38772 L .86231 .40939 L s .87339 .46152 m .86231 .40939 L .91443 .39831 L .92551 .45044 L .87339 .46152 L s .87339 .46152 m .92551 .45044 L .90905 .50112 L .87339 .46152 L s .82724 .48816 m .87339 .46152 L .90003 .50767 L .85388 .53432 L .82724 .48816 L s .82724 .48816 m .85388 .53432 L .80059 .53432 L .82724 .48816 L s .78763 .45251 m .82724 .48816 L .79158 .52777 L .75197 .49211 L .78763 .45251 L s .73895 .43083 m .78763 .45251 L .74452 .48383 L .73895 .43083 L s .80931 .40382 m .78763 .45251 L .73895 .43083 L .76062 .38215 L .80931 .40382 L s .80931 .40382 m .76062 .38215 L .80374 .35082 L .80931 .40382 L s .34135 .14577 m .33027 .09365 L .37642 .067 L .41603 .10266 L .39435 .15135 L .34135 .14577 L s .33027 .09365 m .34135 .14577 L .28922 .15685 L .27814 .10473 L .33027 .09365 L s .33027 .09365 m .27814 .10473 L .29461 .05405 L .33027 .09365 L s .37642 .067 m .33027 .09365 L .30363 .0475 L .34978 .02085 L .37642 .067 L s .37642 .067 m .34978 .02085 L .40307 .02085 L .37642 .067 L s .41603 .10266 m .37642 .067 L .41208 .0274 L .45168 .06306 L .41603 .10266 L s .41603 .10266 m .45168 .06306 L .46815 .11374 L .41603 .10266 L s .39435 .15135 m .41603 .10266 L .46471 .12434 L .44303 .17302 L .39435 .15135 L s .38878 .20434 m .39435 .15135 L .43746 .18267 L .38878 .20434 L s .34135 .14577 m .39435 .15135 L .38878 .20434 L .33578 .19877 L .34135 .14577 L s .34135 .14577 m .33578 .19877 L .29267 .16745 L .34135 .14577 L s MathSubEnd P % End of sub-graphic % Start of sub-graphic p 0.522676 0.00623125 0.97619 0.255481 MathSubStart %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.266022 0.053291 0.249457 0.053291 [ [ 0 0 0 0 ] [ 1 .5496 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .5496 L 0 .5496 L closepath clip newpath 1 0 0 r .34135 .35314 m .29267 .33146 L .33578 .30014 L F .38791 .45307 m .33578 .46415 L .35225 .41347 L F .19069 .35314 m .19626 .30014 L .23938 .33146 L F .11004 .4283 m .08339 .38215 L .13668 .38215 L F .14414 .20985 m .19626 .19877 L .1798 .24946 L F .04773 .15637 m .08339 .11677 L .09986 .16745 L F .26602 .1213 m .29267 .16745 L .23938 .16745 L F .24495 .01309 m .23938 .06608 L .19626 .03476 L F .38791 .20985 m .35225 .24946 L .33578 .19877 L F .49734 .19646 m .49177 .24946 L .44865 .21813 L F .73398 .4283 m .70733 .38215 L .76062 .38215 L F .7129 .53651 m .66422 .51484 L .70733 .48351 L F .61209 .33974 m .64775 .30014 L .66422 .35082 L F .50266 .35314 m .50823 .30014 L .55135 .33146 L F .65865 .19646 m .70733 .21813 L .66422 .24946 L F .57799 .1213 m .60464 .16745 L .55135 .16745 L F .80931 .19646 m .80374 .24946 L .76062 .21813 L F .88996 .1213 m .91661 .16745 L .86332 .16745 L F .85586 .33974 m .80374 .35082 L .8202 .30014 L F .96529 .35314 m .91661 .33146 L .95972 .30014 L F .86231 .40939 m .86788 .35639 L .91099 .38772 L F .87339 .46152 m .92551 .45044 L .90905 .50112 L F .82724 .48816 m .85388 .53432 L .80059 .53432 L F .73895 .43083 m .78763 .45251 L .74452 .48383 L F .80931 .40382 m .76062 .38215 L .80374 .35082 L F .33027 .09365 m .27814 .10473 L .29461 .05405 L F .37642 .067 m .34978 .02085 L .40307 .02085 L F .41603 .10266 m .45168 .06306 L .46815 .11374 L F .38878 .20434 m .39435 .15135 L .43746 .18267 L F .34135 .14577 m .33578 .19877 L .29267 .16745 L F 1 1 0 r .86231 .40939 m .80931 .40382 L .81488 .35082 L .86788 .35639 L F .87339 .46152 m .86231 .40939 L .91443 .39831 L .92551 .45044 L F .82724 .48816 m .87339 .46152 L .90003 .50767 L .85388 .53432 L F .78763 .45251 m .82724 .48816 L .79158 .52777 L .75197 .49211 L F .80931 .40382 m .78763 .45251 L .73895 .43083 L .76062 .38215 L F .33027 .09365 m .34135 .14577 L .28922 .15685 L .27814 .10473 L F .37642 .067 m .33027 .09365 L .30363 .0475 L .34978 .02085 L F .41603 .10266 m .37642 .067 L .41208 .0274 L .45168 .06306 L F .39435 .15135 m .41603 .10266 L .46471 .12434 L .44303 .17302 L F .34135 .14577 m .39435 .15135 L .38878 .20434 L .33578 .19877 L F 0 0 1 r .80931 .40382 m .86231 .40939 L .87339 .46152 L .82724 .48816 L .78763 .45251 L F .34135 .14577 m .33027 .09365 L .37642 .067 L .41603 .10266 L .39435 .15135 L F 1 .5 0 r .23938 .33146 m .19626 .30014 L .1798 .24946 L .19626 .19877 L .23938 .16745 L .29267 .16745 L .33578 .19877 L .35225 .24946 L .33578 .30014 L .29267 .33146 L F .23938 .49548 m .19626 .46415 L .1798 .41347 L .19626 .36279 L .23938 .33146 L .29267 .33146 L .33578 .36279 L .35225 .41347 L .33578 .46415 L .29267 .49548 L F .02381 .30014 m .04028 .24946 L .08339 .21813 L .13668 .21813 L .1798 .24946 L .19626 .30014 L .1798 .35082 L .13668 .38215 L .08339 .38215 L .04028 .35082 L F .14297 .03476 m .19626 .03476 L .23938 .06608 L .25584 .11677 L .23938 .16745 L .19626 .19877 L .14297 .19877 L .09986 .16745 L .08339 .11677 L .09986 .06608 L F .76062 .05412 m .80374 .08544 L .8202 .13613 L .80374 .18681 L .76062 .21813 L .70733 .21813 L .66422 .18681 L .64775 .13613 L .66422 .08544 L .70733 .05412 L F .49177 .35082 m .44865 .38215 L .39536 .38215 L .35225 .35082 L .33578 .30014 L .35225 .24946 L .39536 .21813 L .44865 .21813 L .49177 .24946 L .50823 .30014 L F .66422 .35082 m .64775 .30014 L .66422 .24946 L .70733 .21813 L .76062 .21813 L .80374 .24946 L .8202 .30014 L .80374 .35082 L .76062 .38215 L .70733 .38215 L F .56782 .48351 m .55135 .43283 L .56782 .38215 L .61093 .35082 L .66422 .35082 L .70733 .38215 L .7238 .43283 L .70733 .48351 L .66422 .51484 L .61093 .51484 L F .50823 .19877 m .55135 .16745 L .60464 .16745 L .64775 .19877 L .66422 .24946 L .64775 .30014 L .60464 .33146 L .55135 .33146 L .50823 .30014 L .49177 .24946 L F .97619 .24946 m .95972 .30014 L .91661 .33146 L .86332 .33146 L .8202 .30014 L .80374 .24946 L .8202 .19877 L .86332 .16745 L .91661 .16745 L .95972 .19877 L F 0 g .5 Mabswid [ ] 0 setdash .23938 .33146 m .19626 .30014 L .1798 .24946 L .19626 .19877 L .23938 .16745 L .29267 .16745 L .33578 .19877 L .35225 .24946 L .33578 .30014 L .29267 .33146 L .23938 .33146 L s .34135 .35314 m .29267 .33146 L .33578 .30014 L .34135 .35314 L s .23938 .49548 m .19626 .46415 L .1798 .41347 L .19626 .36279 L .23938 .33146 L .29267 .33146 L .33578 .36279 L .35225 .41347 L .33578 .46415 L .29267 .49548 L .23938 .49548 L s .38791 .45307 m .33578 .46415 L .35225 .41347 L .38791 .45307 L s .19069 .35314 m .19626 .30014 L .23938 .33146 L .19069 .35314 L s .02381 .30014 m .04028 .24946 L .08339 .21813 L .13668 .21813 L .1798 .24946 L .19626 .30014 L .1798 .35082 L .13668 .38215 L .08339 .38215 L .04028 .35082 L .02381 .30014 L s .11004 .4283 m .08339 .38215 L .13668 .38215 L .11004 .4283 L s .14414 .20985 m .19626 .19877 L .1798 .24946 L .14414 .20985 L s .14297 .03476 m .19626 .03476 L .23938 .06608 L .25584 .11677 L .23938 .16745 L .19626 .19877 L .14297 .19877 L .09986 .16745 L .08339 .11677 L .09986 .06608 L .14297 .03476 L s .04773 .15637 m .08339 .11677 L .09986 .16745 L .04773 .15637 L s .26602 .1213 m .29267 .16745 L .23938 .16745 L .26602 .1213 L s .76062 .05412 m .80374 .08544 L .8202 .13613 L .80374 .18681 L .76062 .21813 L .70733 .21813 L .66422 .18681 L .64775 .13613 L .66422 .08544 L .70733 .05412 L .76062 .05412 L s .24495 .01309 m .23938 .06608 L .19626 .03476 L .24495 .01309 L s .38791 .20985 m .35225 .24946 L .33578 .19877 L .38791 .20985 L s .49177 .35082 m .44865 .38215 L .39536 .38215 L .35225 .35082 L .33578 .30014 L .35225 .24946 L .39536 .21813 L .44865 .21813 L .49177 .24946 L .50823 .30014 L .49177 .35082 L s .49734 .19646 m .49177 .24946 L .44865 .21813 L .49734 .19646 L s .66422 .35082 m .64775 .30014 L .66422 .24946 L .70733 .21813 L .76062 .21813 L .80374 .24946 L .8202 .30014 L .80374 .35082 L .76062 .38215 L .70733 .38215 L .66422 .35082 L s .73398 .4283 m .70733 .38215 L .76062 .38215 L .73398 .4283 L s .56782 .48351 m .55135 .43283 L .56782 .38215 L .61093 .35082 L .66422 .35082 L .70733 .38215 L .7238 .43283 L .70733 .48351 L .66422 .51484 L .61093 .51484 L .56782 .48351 L s .7129 .53651 m .66422 .51484 L .70733 .48351 L .7129 .53651 L s .61209 .33974 m .64775 .30014 L .66422 .35082 L .61209 .33974 L s .50823 .19877 m .55135 .16745 L .60464 .16745 L .64775 .19877 L .66422 .24946 L .64775 .30014 L .60464 .33146 L .55135 .33146 L .50823 .30014 L .49177 .24946 L .50823 .19877 L s .50266 .35314 m .50823 .30014 L .55135 .33146 L .50266 .35314 L s .65865 .19646 m .70733 .21813 L .66422 .24946 L .65865 .19646 L s .57799 .1213 m .60464 .16745 L .55135 .16745 L .57799 .1213 L s .80931 .19646 m .80374 .24946 L .76062 .21813 L .80931 .19646 L s .97619 .24946 m .95972 .30014 L .91661 .33146 L .86332 .33146 L .8202 .30014 L .80374 .24946 L .8202 .19877 L .86332 .16745 L .91661 .16745 L .95972 .19877 L .97619 .24946 L s .88996 .1213 m .91661 .16745 L .86332 .16745 L .88996 .1213 L s .85586 .33974 m .80374 .35082 L .8202 .30014 L .85586 .33974 L s .96529 .35314 m .91661 .33146 L .95972 .30014 L .96529 .35314 L s .80931 .40382 m .86231 .40939 L .87339 .46152 L .82724 .48816 L .78763 .45251 L .80931 .40382 L s .86231 .40939 m .80931 .40382 L .81488 .35082 L .86788 .35639 L .86231 .40939 L s .86231 .40939 m .86788 .35639 L .91099 .38772 L .86231 .40939 L s .87339 .46152 m .86231 .40939 L .91443 .39831 L .92551 .45044 L .87339 .46152 L s .87339 .46152 m .92551 .45044 L .90905 .50112 L .87339 .46152 L s .82724 .48816 m .87339 .46152 L .90003 .50767 L .85388 .53432 L .82724 .48816 L s .82724 .48816 m .85388 .53432 L .80059 .53432 L .82724 .48816 L s .78763 .45251 m .82724 .48816 L .79158 .52777 L .75197 .49211 L .78763 .45251 L s .73895 .43083 m .78763 .45251 L .74452 .48383 L .73895 .43083 L s .80931 .40382 m .78763 .45251 L .73895 .43083 L .76062 .38215 L .80931 .40382 L s .80931 .40382 m .76062 .38215 L .80374 .35082 L .80931 .40382 L s .34135 .14577 m .33027 .09365 L .37642 .067 L .41603 .10266 L .39435 .15135 L .34135 .14577 L s .33027 .09365 m .34135 .14577 L .28922 .15685 L .27814 .10473 L .33027 .09365 L s .33027 .09365 m .27814 .10473 L .29461 .05405 L .33027 .09365 L s .37642 .067 m .33027 .09365 L .30363 .0475 L .34978 .02085 L .37642 .067 L s .37642 .067 m .34978 .02085 L .40307 .02085 L .37642 .067 L s .41603 .10266 m .37642 .067 L .41208 .0274 L .45168 .06306 L .41603 .10266 L s .41603 .10266 m .45168 .06306 L .46815 .11374 L .41603 .10266 L s .39435 .15135 m .41603 .10266 L .46471 .12434 L .44303 .17302 L .39435 .15135 L s .38878 .20434 m .39435 .15135 L .43746 .18267 L .38878 .20434 L s .34135 .14577 m .39435 .15135 L .38878 .20434 L .33578 .19877 L .34135 .14577 L s .34135 .14577 m .33578 .19877 L .29267 .16745 L .34135 .14577 L s MathSubEnd P % End of sub-graphic % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{402.125, 105.25}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnVuPHEcVx9vTPbednb17d71e25vEiWPi+IJN3pCFuCTiIj6DFSHFD9yC UeCJF4SEQBAB70gI8cC3QMr3Gtynqs/pqv5VT7V3bb94pe3pqXv9z6nqc+ua Hz159tlPfvrk2dNPn5x9/PmTX3z29NNfnX3v558/TyovFcWlvxVF8fSsqO9X z2/9Rf7+Xl/8lwH3H9Ufo7qZr+SubvEfLuuRZhWlS3FVi/9pyaKsh7BqMnyb D+qP0uqVNsrn37br66JO+re2I808L90pt1knfeGavafjmUCzy9Rop3Kt9Lv/ +6d2PobOl8EUV4b2rL5K2V+71t6pP5Z19hRGtaFQVJAbpcm4RlDuS+mjzp/A WBc61qoeqst1RNHZjbWGa9hN6JlLeBu6XKwfrnybKew0/Yj+RQqIv/jSkvg7 97+QazgZ4pO5Tn8K049rKEWjVn7pMt+CwS0hjag0y0wbKWTEx38GKJZyHQcT 8+uuIVRDV/lPAtHw+8rd+Unf0AHt6t2wCVbtNG2Dyv9RqbUrk6rag1wl5jOT axXPf+QXZIeYP3Pzug7974dpwpFzSNvozsuSwyY/qK+yA/wYaLcXsvHKOqza Y67v5zIVJvMGTFM6lh3yI9fCNRjdZSVHepph2ia0chvSaIv4ASBwUF+FVrZU 3c6gRJ6HDCufmzDj29D8hgGs5R66xk9hhEeQ5tbhuI2CoiFjLlO43FJ0t/Xu +zDIQxjkxF+jBRBwg9RY6IK9rQBuKagvNNdJzNjN5zSEol0EmeU9nfa+3n0y CIAp8bt2Om2tiVYpt4y628JKh1Tf7SlID1x7VwGQK5A2livvauPwDuHt7Bvv QtHLkPYdgO4YoBu3y/n/EezwY8kLd9NxzzbzLvR/AP3fHYYnPfNLxdEeiCZN uAkyH96E1ojVv50JZgVgVgrmSMGcAZgtWSIkRNTH2zAWWhMfnh9Ykio3e+Ak NiY56KIhbsndKpEuJG8cQNzkkez71jBYT2AKBDXpLZImSVsAMIlyZ5lE/BZM 4gQmUQKIleojy5A7m92zA9lZJsnuDIMsEhgFlEpXN4nUZYr5Lhq3EeA21qXt M5qszfpaRfz5SsBLalGRAuIWrVxDTfel4CZJ0xRQEb85YSY0CgyEjAbs5Fre veZQniRTg9juCDAiz2OYwqnpZO0xSZkNgGsjhEv+RyriuTGtbExrifPBy4Wr UpDIOvAqQTJhhp6hLwLNyJYOCW9gwYnSaJHuZdYl6Kjc15NwhsaMYHPzkNFy nQO0pDvvWnuatoCxEPALqOuYsTgOpygDuwZpr4IstAZIdaZyD9pQOGw9WTrq /KugzAZQJuaSqFxMGSfWdTQWWyn+GR3lo3WHqELUi6gi7VFdosoM6jqqdDRB h8Q0WC+tR5N8n2dSZNpPEbbH9VBkDnWdwao4lA/ev40sJHARxxKdaKXs9vSa u2L6rAf3XF6bRuEKMk+A3NHzYTpoqXT4IXe1zHqG6lcNKe+0d11RepEtXPCq 1coeWwKtnJdHpbttiPx/y4aelOCKgHZCk1l9Vw1aSgnb58WR7QDgIB3ayOZy A/dR/SkGtEj+rjSD1twupBHH0NokoSHD3yLfvgYUrVIUNYeY2T4ioV6IJ54m QXqeJOZ6o8gMCEtyxQzaI1eQU7ecJTKpXZJY6HALDMB6XxqhiQAdxyKt2tdF e7EXl0rTfoq77bJa+cng6vcreOKYoCFIU5QW9k4m7V4SL8izlJRlEUhbXrgs OiLuKf4goudu80R0KkftifozjhftcyCPlN7OLmQSq8dxkiR1tH140LMWfgXE mWYSewrtkVnGrWmHmoAhQm1toUCSubTAB+JRkO8URSBsnHTzJ30IUuO+DKtu S0yTS6NA76pq/p3DbNwmVF1QPgVwcQHS+iEzi3CRDMGDluEllW8kn9Ojk/Bx smpHx6AVkht4kGsNp/buA1aBn9anUQhClblGymiJ+TnvQtfkwRxDubWOoO6w tZzTKZyrP2OfIl9nbkgA7YU7kEZxFUkROqMctUeU3gFKL4HSI6A0RVbQBrcD /W6u84v0kJnKLaGcU0ucETFyS+/oHRGSVm0FreRKMuQsSkaDScuiw8tetw0E 2tZnF5GFFqBJsdva8o5JPAAoOY5KrbsLuU6dyA6gIrMHKW1moaZ1QyYtq3Gk d7QbUl1aIwsgAUWyzAB4UwNpFewBjGb9PlQCEcdTXfeocmF4Gfa7A4UHga+/ WSQhLRTSIElgcOU6UmVuk0SUORDFgmuQFCudz6qILJLtBjr00Plo2f3IyOl7 yG3SMZ5z3Uvwp8jfE+XTMkTek78F3nEXz/pTEnb1LlUPwF3U2bLXTjzX+nls KV5ua29P+biLgqpOsrlUffVIWHYhROMUbxxCmhiMNhU1MiyRub1UlJZ6l1FX vkmQUeMzLWImPAx3BqcLKuuVuilE9qKkDUlA3FQ4c+q2AL2pyJDGRLOzB91C 7yZ6dwJpyXJRy/cUgAngdgy4WeCJxfVONO1El7ulbUAaKVNuN3YAbBUFazIE j2kyUwBlmsqNWpEdektYIxMKeYKbthQBIGmbkMvTJoEkouIgTiEJ2XJPelvu d7gSeOT6XIR0z+WtXB2H+C2tuKTqMjFoV7PNnwQXAsWEnq3e3NPelpPh3VY3 yj0DYixNcAGgTgAo2kiTaoi0fNrbx+b6uhExth0xyJVhYjkJ7Y4YHB4ZqRkR ASxtN1Uu6kvMEyaAx6+LRBCz8d9qEpiWtpMqx8CR3LbXhcZm1klOCImGV55Q SbhdAyZtyXBtfE45+SBMbkA14CLz4n5PeQaQzEwmoF/Xu0NIOwrT2H4azP6y Dvy63h2uT4uG7rYaVKRoVyPS5JajRxaVO4HJHoGucApphxdT7g08g+AhKwqJ G/TUyy1HZjMqR/BcgemcQNrxxZTTsWy/gecNPOeFh2xm54GCypF/rqe9YOhX Xx4UVE7HsvMGnjfwnBeebRjmeR7iVI5ilqgcwXPt5T3EqZyOZXcNPEk51tJu QNppaoq50muUtp9Nxfoz1nAKHXpGuRuZ5ZJTjFwNB5B2vb/cqulEykkSteJB Sa78pC+AapDCi9X4ddNrPXkJ3ZI0vatKcTIz7IQgeEN+0VGKsVp0lIDH8DTV pPPZdJTLLMztFcEtSDuFtIixixQJ3A6cfAu23/xByqUBTsaJZZgbYW1p9lav xXsElgxQ1et/6W3byNOxgGTBTcFEFPVBJKC6kZmz6Mdz2k6LCZIdLNBPm1wD KFGJIug2jBztYaftU0kToM54TSSC9uIfOBm6gOBHZmgK3qCXR08y26MDBoZF YIZ1c0OB6AnS0kEUWqLgHOCOAzoEA2iPTOIz5ohk+GVG17kHoazjCPPWWGAc +XIkNzI85pKR2GehLWes1Su63ibrvT/iwqW3O5PxzVG5OJbQcV3B7xrv5OBr pwNsQtpJqlw5eK2U0McgfM1Rswz3uAhpS3MjHczOpdaN9+AY2gyroXCUkFzk oC29o9dhaCMcKXhCyGRocFTN4gxK6E2+0TZ0BNvGKHxiV7TDy+h767rRSyJE +cZ8rjVi4Q5JECkhBo/7Vl/2ALwiqlYFGYUXP2R7Edtt/ZpVK1jfPD0WqFxo EIqbfn0VP8MYck3N6Uaxi0Qnu4mUmq+061Uzmz6HTr9wQjxKwknfyzu0rZDw tR+2EfQ5VqKQoOcVt4A/nc9muopGFPBcrO62Zhe0tRepB+3pUSRYOsZMZdig T3kReKLEZP4lZyaBQeQhG0NuMCu5sihEwJE5qXikX24McaJgRKJJMqQxrRFq uT0otwSaubr95xhFGrc7tmNNGACJmFTDIidMSzQvovmjk0pdYch3lOsoKtVJ JplAJ4N2pZUDyLU+TBOk6KfEyUdnLj8Z6hKlkcyQjP/J3ppoy1s/lkySKAlp UVDce24cPdGK2tuHcvTqAIXGZFJS5S3/OjCRhIJXc2OYclXBpHc+YyykB+S+ K3APIJ4DKWgZ5r4iQe0RaQ+AtLNMvS3a+JJ6mxPTnaQvuhIBSoQUnao+MgOf erJVrnkFar1uLcQQlSh4Yb0H7onWuAw1ZJ+UXHoDimKYSV84aUGWMTHiePLV 0Clt9MRJvPmZ+3Kf6X5BlLf/pzObiNXJA0rHt1FwrlNvqwb7JnkMJKE3Xkwl 9LxLYBIaRByqSye85T6ZTMEjJY3oYfbMh0APet8w9/3Fm1BubWCmB751OFAm Wcxq6d92zz3ajHbmQWSJTBpTJQHu+UobuYtOVEluk7kvCCcx71pxPZZjRRq3 bPnWUSivDoOYOJ/8ofQeSwQxEU8UCul3luL84LHagzPxNoUyvdOLs1mX5qq2 yaEBU8/Rq7g9/zqqAyXrANIkiPQ+FnmVks6NiXJxlOs27PMdU5E8xqrrPlp1 H4tNn/W4VgIrvXX/GsAkqYUgpC2h72yYi4F1FPJjBCad7EmwumcQHlxFSo25 x2hZR1HUzWeSM3PBjISKVWt0XRAFElrKbmvtvOl0URBS0C5BCKHm9T2dTxox e0AdYs5chm09oOKhphBrMzAdURqfGOZrEK50JN4kjeudJIa8C5wlgYykqvOi +DiJGC/7syRs4bw77z6+duCC8sqFydM9Xz2AoYm2qds43c4L5IcwdpLdSUqi XaGPCOYJo9ZoE6UNk5AlKZ2kJTKqnwDKzZBNRi8B6gVATZvo0TCoSbGnILs+ qO09xyL0ltGuPVG60FmzOY7v1hCzsTW1tLAfbambj46qjYT+K8PANJ4byq2m FlE0S/IV4MeZEAprSdJQppxoza0QKflEB+XKuPAujJk8YvIQJ2kyd3eIToyn fbRSVo1yiQ8jy4hNlkRJMnXRgdwOKP69HeHDclVwfMFxC07zwMo0bg1CrWMx L93MuuUThix6/AiAFk0qQ791HpzcOm1jhOdxy5GP8aJeA+F9GD85It4fBKs6 7RqYmnviN3NKGddSOTpAn465eP/FoF61Vkuw/dHTp1Ko6YekaIf2eD/QKZq3 jeSpfu9d2lzHLiB7IhFrf1dy69HaW513AMSk4657Ykb7yRFBNyoSTxjcHVBX f6jTsaieaC+g4+pcZf5xFvIm08b6MeBib5ffVTQswMIPIniaFKE3y4Eg8xXx HJ2Zrfl/AwbWo94GaXSwTu75xAQSsSL9qg25kdYeLuZXZWDP9CwT2B/bacmw HQ+e/ACUuIIewdBdwEKHZSwC0A5CIIQk44f1rThuHsEEd1j3dT3Ud4vUzLpa sNOi3O/rUfB3hq5kM4uE1TkjkfzRtSTTBlZSP5/IJi+frXlrb36CX8DAkxbJ jIVh9vckTJL7V5hsbowpMe2YGFRzbe17p8RvMqdDmzrpyhQ5kHuK/JcARU5E cGsswWRL2ug0d6K5N9xIf1t/JMNjXQf9kWfkEDCBQ37I045IwQlMgyGuvDOw 6YAcUzZJH8bze+0wI1JEhk37a0J2lXb/JXd1XfLGuR70R4OCCZC/h7wPfip/ qD/K1BAX3SEC8WSG/5GGUru2b6idVt8n3LLOo+V+OlF6sZ9Q/a92I2kb9d17 rvifYAJfeaTbad90xeXLgB+OLS79H2hMvcc=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 401.125}, {104.25, \ 0.}} -> {0., 0., 0., 0.}, {{10.875, 191.5}, {101.75, 2.4375}} -> {-6., -4., \ 0., 0.}, {{209.562, 390.188}, {101.75, 2.4375}} -> {-26., -4., 0., \ 0.}},ExpressionUUID->"607bdb2e-ddfd-41cd-9915-abbab6e846d2"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "GraphicsArray", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"7dbe5677-75fe-420a-9c76-\ bd1007d06de5"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["All", "Subsection",ExpressionUUID->"e62e91be-fdd5-4809-8e6e-8fc0eafd3fac"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "::", "ID"}], "=", "\"\<`1`. `2`\>\""}], ";"}], "\n", RowBox[{ RowBox[{"On", "[", RowBox[{"JohnsonSolid", "::", "ID"}], "]"}], ";"}], "\n", RowBox[{ RowBox[{"Off", "[", RowBox[{"General", "::", "stop"}], "]"}], ";"}], "\n", RowBox[{"Do", "[", "\n", "\t", RowBox[{ RowBox[{ RowBox[{"Message", "[", RowBox[{ RowBox[{"JohnsonSolid", "::", "ID"}], ",", "i", ",", RowBox[{"JohnsonSolidName", "[", "i", "]"}]}], "]"}], ";", "\n", "\t", RowBox[{"WriteLiveForm", "[", RowBox[{ RowBox[{"\"\\"", "<>", RowBox[{"If", "[", RowBox[{ RowBox[{"i", "<", "10"}], ",", "\"\<0\>\"", ",", "\"\<\>\""}], "]"}], "<>", RowBox[{"ToString", "[", "i", "]"}], "<>", "\"\<.m\>\""}], ",", "\n", "\t", RowBox[{"Show", "[", RowBox[{ RowBox[{"JohnsonSolidNet", "[", "i", "]"}], ",", RowBox[{"AspectRatio", "->", "Automatic"}]}], "]"}]}], "]"}]}], ",", "\n", "\t", RowBox[{"{", RowBox[{"i", ",", "92"}], "}"}]}], "]"}]}], "Input",ExpressionUUID->\ "428c7156-5de3-4819-becc-2606b9bd9781"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(1\\). \\!\\(\\\"square pyramid (J1)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"f0dfa9f0-039b-4f60-9ebf-7113407f4321"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.348596 0.5 0.348596 [ [ 0 0 0 0 ] [ 1 1 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .3257 .6743 m .3257 .3257 L .6743 .3257 L .6743 .6743 L .3257 .6743 L s .3257 .3257 m .3257 .6743 L .02381 .5 L .3257 .3257 L s .6743 .3257 m .3257 .3257 L .5 .02381 L .6743 .3257 L s .6743 .6743 m .6743 .3257 L .97619 .5 L .6743 .6743 L s .3257 .6743 m .6743 .6743 L .5 .97619 L .3257 .6743 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy1m4d/VEUUhR8kqEhTEBBQEkCa0pv0Jr1LEUUEQggkdELovTeFPxnZd4Y7 j/gte3dk+P3Cbs4993u7Sfa9OW9mdnb0dXed6+jr6exo39zbcbG7p/Ny+6YL ve+klgFFMaC99tVe1J6/LYr3/5X/JtX+C998gudvyoeWt8Z/993rhqXX/Uq1 l/emYemf8mFQFWiWAP4bjtkC2qsk+ysoDQLtZZL9JZQ+B+1Fkv0FlAaD9lz2 51AaAtqzJPszKA0D7WmS/SmURoD2JMn+BEpfg/ZY9sdQGgXaoyT7IyiNBu1h kv0hlMaC9kD2B1AaB9r9JPt9KE0A7V6S/R6UvgftbpL9LpTaQLsj+x0oTQLt dpL9NpSmgHYryX4LSlNBu5lkvwml6aDdkP0GlGaCdj3Jfh1KP4F2Lcl+DUqz QbuaZL8KpbmgXZH9CpTmg9aXZO+D0kLQLifZL0NpMWi9SfZeKP0M2iXZL0Fp GWgXk+wXobQCtAtJ9gtQWgXa+ST7eSitAe2c7OegtA60s0n2s1D6BbQzSfYz UNoI2ukk+2kobQatR/YeKG0FrTvJ3g2l7aCdSrKfgtJO0E7KfhJKu0HrSrJ3 QelX0E4k2U9AaR9onUn2TigdAO247MehdBC0jiR7B5T+AO1Ykv0YlP4E7WiS /SiU/gLtiOxH6pII0az9cO3hVK0ShEO1h4E1oWiRU03hN9RqkNrjuy+90fDT 5ODd+ZHaIT05aEdthddKv76B1vG7EAdM+MyJaLWO34TYZ8IXTsRn1rFfiL1g 8sLIp497sceOQ5GZYIOtIyB2mUC5mBBDrEOntGKHCRR+CTHMOnTOxTO1F0a+ bcJuteOMdMK+so6A2GzCN07ESOvYIsQmMHlh5NMVvNhgx6FkTbDR1hEQ602g +EyIsdahUUqx1gTKyIQYZx0aRuFYzQsj32phV9lxJjph31lHQKwwod2JmGgd K4VYZsJkJ6LdOpYLsRRMXhj5FDKKJXYcis0Em2IdAbHIBIrShJhqHUpGxQIT KC8TYrp1KLphPvTCyDdP2Ll2nFlO2I/WERCzTZjjRMzq16GcX2E2Rszp97r1 svA9NoaRTz+zYoYdhyI0weZbR0BMM4FyMiEWWof+4oofTKDsTIjF1qG/e7wn 5YWRT5853UirfI4bw5ZaR0C0mbDSiVhuHTpj6d5i5ZzWGLHSOnTe1GkRz7GN YeTTObsYb8ehOE2wNdYREN+aQJmZEOusQ1c8vHZ6YeQbI2y81NLVn2Dxch4Q o0zY4kRssg4NGzS7UBnNNEZssQ6NmDQgwtFVYxj5NForhttxKHUTbLt1BMRQ EyhaE2KndWisW3xpAuVnQuy2Do24cSbMCyOfRvuaj6skiMawvdYREDGEUB4n RAw6mg4UqRToDkDdt1R2DK78iPuZ9jhh5AvYGEK8sBh0hgoRQ8guJyIGneFC jDBhhxOxzTr0wcIJQLorRjDyBWwMIV5YDDqaNdQ5pBToHiAhNlqHpgZ1JqsE DucptRJqdIrvZ1rvhJEvYGMI8cJi0BkvxAQT1joRq61Dl1Sc+KMb3QQjX8DG EOKFxaDTJkQMIXRbnxAx6IQFHpNNoHmHuoOpskNDMg3u+pmWOGHkC9gYQryw GHSmCRFDyCInIgadGULMNGGBEzHPOjSkx0lAmosjGPkCNoYQLywGHc0cVkII TSUSIgYdHbTybult1g1zZYciIf5gZzhh5AvYGEK8sBh09OdSCSHTnIgYdPRH W/m00Mek7s2AskO3FPCDSfP/BCNfwMYQ4oW1WYdON5UQ0uZExKCjk17lbEun 2bo3k8qONULQiX28E0a+gI0hxAuLQUeXq8p1ki6QhIjX4g1CxKv1GCcijggU anBgQGuOCEa+gI0hxAuLQUfDnco4iwZYdW8jlx26GY1DuuFOGPkCNoYQLywG HQ1UKyFkqBMRg46Gy5VxOg3Q605DlB2azMBIQMsICUa+gN1vx/HCBlmHgo7m bUqBFk0SosU6NLuo2aNSoFWdQrRWNfNryivMYH1oKd5Pev1HDtNl5UOL+cpn h1Uq5+G6asKRiuB4a6E/73xh/dKHWnjtx6D06WZS884C553BbnI6Pe/cft51 CXnXVDS5wCPvapO8K2WaXLaTdw1R3vVPedduNbmQLO+qtrwr8vKuJmxyaWPe dZZ514jmXd/a5GLbvCt/865azrviusnl33nXouddR593D0CTGxLuQenT7Y64 D6VPt7Mj766UJrfI5N2vk3evUZMbn/Luwsq7gyzv7rcmt+Ll3ReYd09j3v2Y jg2haTtNP7J1tfxm0v9/Xgz4F+n1YKk=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {287., 0.}} -> \ {-1., -1., 0., 0.}},ExpressionUUID->"e17423c3-2c2c-4585-a267-cc604306568e"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(2\\). \\!\\(\\\"pentagonal pyramid (J2)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"13b5239c-51a2-4cd9-a708-f664de26386a"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.05146 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.449727 0.338732 0.525731 0.338732 [ [ 0 0 0 0 ] [ 1 1.05146 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.05146 L 0 1.05146 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .16158 .52573 m .36069 .25169 L .68284 .35636 L .68284 .6951 L .36069 .79977 L .16158 .52573 L s .36069 .25169 m .16158 .52573 L .02381 .21628 L .36069 .25169 L s .68284 .35636 m .36069 .25169 L .61241 .02503 L .68284 .35636 L s .68284 .6951 m .68284 .35636 L .97619 .52573 L .68284 .6951 L s .36069 .79977 m .68284 .6951 L .61241 1.02643 L .36069 .79977 L s .16158 .52573 m .36069 .79977 L .02381 .83518 L .16158 .52573 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{273.875, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJytnIlfVUUUx5+iiIIhqODOC0XDLUTcMTQUcE8rSsuUzILKNJf20nbby/ay tMX6M407M5z7iO+Z7mn085HLm/O73ze8e+/MOWfOvANDF4dPnxm6OHJqqNx/ fujc8MipC+W+s+dHm6omlUqTGkb/l8ul7PfbpdLYD/evMfsRXtyB3//KDpMz /ohvuOUOVbfH3rCUm/50hyliCuZg/eNfJ2avJkPb017+O5iqdPlvYJqiy2+C aaouvwGmal3+K5hqoO20l1/PDu4zrtVFP4MpIv8JTHW6/EcwzdTlP4CpHtqe 8vLvwTRLl38HpgZd/i2YGnX5N2CarcuvZQd3cZpBdMqLvgJTRP4lmObp8i/A NF+Xfw6mBbr8MzAtgrYnvfxTMC3W5Z+AaYku/xhMLbr8anZwF2cpiIa86EMw ReQfgGmZLn8fTG26/D0wLdfl74LpHmg76eXvgKldl78NppW6/HJ2cJ/2Gl30 Fpgi8jfBdC+0nfDyN8DUoctfB9M6Xf4amDp1+atgWq/LXwHTBmh7wstfBtNG XX4pO7iLs0UXXQRTRH4BTNug7biXnwdTty5/EUzbdfk5MN2ny8+CqUeXvwCm ndD2uJefAdP9utz5CtWZ5UT2m7tMu/9DTr7PjKzpIbBGYNPA5DyB2qxpAKx9 Nliz9IyuHr3BYx5GLlFZYPTg7bHBVgpsBVj32mBdAqPZcZ8Omw4m90m5C0B+ 0H4bbEB6Ri7sQWg75mEzwHQ4+zktazpkO/FhaHOv6K8JHHJgH4Q258m7JroD IrAj0FYjMLrRA4x85QegrU5gu8B61AarFxgNPQFGbjld49kCo1EyAjsAbc0C o/HfCFsgMJp7HvWwu8BED9kSgdHkGIHR498qMJrHA4wCHRrllguMPBQjrF1g 5EwFGI0ldI+vEdgqsD6iw2iaWScwckwDjMI3emC6BEY+dATWC22bBdaqwyhS pKevW2AtNtgOrc01Ueg0aIP1CoyivACjCJfGhX6BUfwagdHcv09gc3QYmchr PCgwuv4RGI1YRwRGD6CfykpzwUQj1qDAaKCPwDZD2zGB0VQfYE1g2gRtxwVG LmUERmPpkMAoDxdgdNd0QdtpgXnamDHGoTF5RDjGE591P/NkZXYc/e+9D8zG UOD4nPs5tbJtjBZ8D0TRhPA8tLn8qIsWvLuAaR8Klwk2RWAHddhaaKNgp1pg 3r3DsWc1tFGgRe72Hh1LkxaFe9OljwG2EESU7yBYrcD6dRjlWihunSmw3TqM plOKmWkE87EoRioUChF2lvQxAqPUFaUBGgXmZzCc9yjLRikIGuS361jK9VEi ZK70McAoT0meBMGaBbZNh90NbZegbb7A/PSDLgi1vQRtdKttTMcukj4GWBlE dHkoz7VEYF06jO5HyrGVBdapw+hTofweXX8/AOPVpOGLsEuljxEYjdeUsmwT mI8VsNM0T1K6dIXAVukwciEoVUvjox/m8Ckln4mwK6WPERiNGpR9Xi0wP7jh sES+OWW+1wpsWTqMvAZ/n2C0RAHcZWhbJ32MwGiSuQJt6wXWosMoHKe1iA0C 8wMHTjeUdSAY+ccLdCy58rS8sln6GGA0v1K+jJZ2tgpsXjqMgij/RKFrQU4Y rVZtlz5GYJQnppWyHoH5mBJHCMpq0irdToE1pMMooeDvW3QZKSSihcdd0scI jMoirkJbn8Dq0mEDAvM3WBjvJ5Rz0Iou5dKmVVJy0+gR15D3yduHEyl4oPfe LydW207cKyfW2LpKOehxiEKfWb+8vU9cJ1283QKbmQ7rFVi9Dit6w9OqWMCm PJ47pI+N6bD7BOadhKQhrVtgTTqs6GBLuauATZkatkgf56fDNgnMO9FJ0ykl niLYopN/l/TRx2FJbkmnwMo6rKjD1CGwVh1W1JWjVFDApjiea6SPbemwVQLz N12Ss94usHYdVjSMoAc1YFOCnuXSx9U6rGg4tkxgPlOXFCi2CqxDhxUNYenc gC2DqWjA3SJ9XK/DiqYCFgtsgw4rmqRYKDAfWiSlT+hTvgPYedLHrR6WkoZq Eli3DiuaIJsjML8MlZS601e3khKNDdJHvyKYlAKtF1ivDiuanKWpKmBTUsl1 0sc+HVY0yT1DYAM6rGj6vUZgPtZIWhggVy6CLbqMMVX66KsekhZYqgR2SIfp Sz/jQ5Ax1GGPsi1JTYhm/s8amWvylWuFl+iG5cRB24n54iKFPJFe0EplvuxJ 4USAFV1DzRdk6R40ru4eFZhej1V43TlfxCaf2rgini+vk+caYEXX6vOFfxrm IzBKgO0VGP0txvqGvFiCngVj5UVexkHjpLEmpEdgNEcbYXnpC3kKERjV0eRF OTS5Gyt88nIhmoWNtUcdAqMZzlgVlZdY0ewRgVG9Vl78RQN+gBWtJGsTGA3W xrK0vGCOhk5j9V1eykejnbEuMC8y3KrDilYsNgmMhgEjLC/M7AGrscozLxml RJux/rRWYHRLG2F5mS3dOAFWtGY3LwCmG8dYTexe0ZWJVDe7v9CVRdPfGjnR Pc+uOJtm/EgvqPzLjcSubJyG20ihNcE6pWc0Rxir49sFRoOnsW6/RWA0qhh3 FMwVWA9Y+3UYXS93i9Vq9yGN3eNgE7xy169BOI0mqMrdIa7kzLmmzrGPyI07 WyheIqcgyCnw69Hlxj0/xh1Fxv1KlEmgySLIKSVCnnTYPOXSMe7iRETGPWGU IKNHJMgp50fxUpAbd8sZ9+IZd/qp1RQsvwwmqpQP8ivZoSInO1500ouMuymN ezVpuYfSP0FOS03k9Aa5cRercY8srRpS4i/IP8oOFWscKKI10hZdbtyHbNzl THuoKSwLctqhTZmkIDfu/zbuLr8GJkopBPnX2aFivRJFtMeeAtsgN+7gN34/ gPHbB+i7DSiKCHL65gTyxoPc+L0M18FEbmOQ/5IdKooyUHQDTOS8BPlNMNH2 gCA3frOG8Xs7jN8K4r9ihOvth/0vt0IPKyW5dcL3mfwNb/aMN7kXd+A7VEqT /gEwKMCd\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.875}, {287., 0.}} -> \ {-1., -1., 0., 0.}},ExpressionUUID->"ca4701d3-edde-4e08-9990-f5447499c68b"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(3\\). \\!\\(\\\"triangular cupola (J3)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"158fc44d-4fbc-4a41-8e88-95dd42ee4a67"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.68301 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.348596 0.341964 0.348596 [ [ 0 0 0 0 ] [ 1 1.68301 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.68301 L 0 1.68301 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .1514 .34196 m .3257 .04007 L .6743 .04007 L .8486 .34196 L .6743 .64386 L .3257 .64386 L .1514 .34196 L s .3257 .99245 m .6743 .99245 L .5 1.29435 L .3257 .99245 L s .6743 .99245 m .3257 .99245 L .3257 .64386 L .6743 .64386 L .6743 .99245 L s .6743 .99245 m .6743 .64386 L .97619 .81815 L .6743 .99245 L s .5 1.29435 m .6743 .99245 L .97619 1.16675 L .80189 1.46864 L .5 1.29435 L s .5 1.29435 m .80189 1.46864 L .5 1.64294 L .5 1.29435 L s .3257 .99245 m .5 1.29435 L .19811 1.46864 L .02381 1.16675 L .3257 .99245 L s .3257 .99245 m .02381 1.16675 L .02381 .81815 L .3257 .99245 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{171.062, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy1nGdvG0cQhilRvfcukeq9W9WWrDiJnQSOYTgFQRAEUZwEcpBiKPpX/pGK 7m41Q1LPLG/PuA826Zl33llembZ3/vry5ur3vy9v3r29LL+4vnx/9e7tf+Xn /17fiYoNhULhQ6HQUC4Xou+3d/90f30o3N7eRsrAj6Po40nEcVwhKBQT1rtv 0Z9jkB0m8ENQnYLsIBP8AFRPQPYogT8C1TnI9jPB90F1AbK9TPA9UD0D2W4C 3wXVZyDbyQTfAdVzkG1ngm+D6guQbSXwLVB9BbLNTPBNUL0E2UYm+AaoXoFs PRN8HVSvQbaWwNdA9QZkq5ngq6D6FmQrmeAroPoeZMsJfBlUP4BsKRN8CVQ/ gmwxE3wRVD+BbCGBL4DqZ5DNZ4LPg+oXkM1lgs+B6leQzWaCz4LqN5CVE3gZ VH+ArJQJXgLVFchmMsFnQPUnyKYT+DSo/gLZVCb4FKj+AdlkJvgkqN6DbCKB T4DqGmTjmeDjoLoB2VgmeL5rDzyQ+Z7VfK/IwNsj33s13zgTGPTyjcD5Zo98 M19gGs63Jsi3ngksrvKt9PKtUgNL5nzr93x7j3z7psAmLt+OMt9uOLA1z3dO kO+MI3Dgku/0Jx5FnUWaowpBDTaZTTXdy6LP6M9BPYvmKpmzvP9daYdgjdHf jZFoL8ywSQx3wgxbxHArzLANZOthFO3iO9CwUwxXwwy7QbYURtEjvgMN+8Rw IcxwQAznwgyHQFYKoxgW34GGo2I4HWY4LoaTYYbUfoyFUUyJ70DDGTEcCTMs i+FQmCEVzv1hFPPiO9BwUQx7wwypjOwKo1gR34GGa2LYEWa4IYZtYYZUADWH UWyLb2eocZ5qDqLYEYumCoqHCY7qL/NXxXwtlXyc/ugQEClVolX0VpqkApkc rItFu02rB5eaAKJdFYtOm7Yl5Z1g3jGxg27bQauA0tJSt+hxoImamlhysCAW fTZtJ8gorpnxL3YwYDvoElBaWpp2eBxoMVBO6aAkFsM2rZYKNGgi2mmxGLVp B0BGWdPMrrGDcdvBoIDS0tKI0eNguGYV9R2MicWUTTsKspGUDkZqzhU60FWk pR2qubKQdkJAVOoR7SDIPA5o6Nqf0lW/LG7edqDXbVraXrFYtGn1LutNSdst Fss27ayAqJEg2i6QeRzQwLIjpasOWdya7UDjclraNrHYsGmXBERtIdG2gszj gCaKzSldNcvitm0HmsnT0hbFYtem1bqjaNI2Vcnu8fs26eZDs+j7KYsPbKK4 PCuKbfzt0IbHh+88Eh3VWVz8C5KfLMqT6uVFn3WWR8VdI8hoDES4PduVdgd0 +smBnn4PrXYrdF/QLE3nMTtpbjcqoWi8qBXclk1LxV1aBzqS8dzF2nFSWKYZ bQ/IVm0HGqApnZADTSceWk0nlGepydGZjSfaU3E3bN1SZn3gSYO184z6t5eO bTxJW8sOKvOod6Iyz1N2aLlE+7LkQMtTD+1IDah+itG5jqe4o1NGfQQ1Z2Vx 4ClPtaymLUfq5fRGm7BptUCjlVEwIJmn36i9t6AUoUNUr42hmEDXBPV8Guc9 7Ze2jXTnEa3OiAZtWi3QKBDRJanjn36bVgs02vkpgYxGRz22AyrVyBWFs31Z nMeBFmg0F6MQcCAWXTatZugT0FJrcywWHZW0XKDRNhbFucdi0WaSRt+fgi11 uWfWEXTMseYCQJQDnsriKilqQJ+AjFpmwjWG0VJ7TFujjpaKNaKlEE24ok1L q6BumnCOlgaBtAqiJZwb6NL9SXAqiQjXHEbbl/IgOFoqhImWKkTCtYTRUvKg 1Tra9pS0NA8gXKtNS6ug6ptwjpZ6eloF0RKuzaalVaQ9WG4EH7aKtO5x5GKf ivq4DpvWvszr4xxt2gsnbaTrtGntyFSf1qVZunvsOPpRtMlqeVvpU8C77QsK GzU/PP6kx3MCKWgVrsqhmBj//ljkMaQYHT9eQxOVRivT99pkZ57DSmeNqhy3 pUPbCaeyVv++XSCtFmaUQ3Xfjgo9VzpTUtUykmIMuaJJkMcBTXjIle7g0QNT bgOKZg+7YkjRVKc+VK97aLXxoEBCrmj72PVCaUca5EpbMZqyuGcmqGjURo/u Rd23oyGIh1YHenSZ6r4dNbyu46TKWZ+ooLNBrqjr9zigZptc6aiBen33cAs1 Ejp5I/e6b0c7HB7akhhSK0SuSiYOKXREZj4/ZG7Eel7CIDKS6SiN+lHPaxv+ ldlk1TLPmxt6ysqg1X27QFq9wGiOoqebgobnxRFKdeRAL1N7Mxwd1G47Vmvp qqYywvNyikY6msbpvh3VSp6XWChWkwPdUqBC1/Pai46faAZHQ1VKgNO2A90R oVit+3YeWooJOh2izKL7dlR4V714w7UUjfg2PfjZSsoHm2Q0sdMHsWrKwoQD R9DEo7nePV76nbX0ihE0guj8eOCaopdtkCbcVRukF++6DaL71gPXEfqWDdJw smODNKjt2SC68j1wTVsHNkiTy5EN0kRyYoN05+SxDaKQ7YFrJji3QbpHcWGD NDY/s0F2j4lwDcef2yCd6L+wQRogv7RBNIzwwHVi/tIGaYR7VQniafZrExJ9 f1OhjZ18Y7t1quD/OaTQ8D+iG5+K\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 170.062}, {287., 0.}} -> \ {-1., 0., 0., 0.}},ExpressionUUID->"be4e0b5b-0a80-4c25-a6e2-f453af4c85d6"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(4\\). \\!\\(\\\"square cupola (J4)\\\"\\)\"\>"}]], "Message",\ ExpressionUUID->"a8ab9044-a776-4fc4-9613-6245e0f41397"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .5541 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.712335 0.175904 0.277049 0.175904 [ [ 0 0 0 0 ] [ 1 .5541 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .5541 L 0 .5541 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .3241 .48938 m .14819 .48938 L .02381 .365 L .02381 .1891 L .14819 .06471 L .3241 .06471 L .44848 .1891 L .44848 .365 L .3241 .48938 L s .62438 .365 m .62438 .1891 L .80029 .1891 L .80029 .365 L .62438 .365 L s .62438 .1891 m .62438 .365 L .44848 .365 L .44848 .1891 L .62438 .1891 L s .62438 .1891 m .44848 .1891 L .53643 .03676 L .62438 .1891 L s .80029 .1891 m .62438 .1891 L .62438 .01319 L .80029 .01319 L .80029 .1891 L s .80029 .1891 m .80029 .01319 L .95262 .10114 L .80029 .1891 L s .80029 .365 m .80029 .1891 L .97619 .1891 L .97619 .365 L .80029 .365 L s .80029 .365 m .97619 .365 L .88824 .51734 L .80029 .365 L s .62438 .365 m .80029 .365 L .80029 .5409 L .62438 .5409 L .62438 .365 L s .62438 .365 m .62438 .5409 L .47205 .45295 L .62438 .365 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 159.562}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnOtvVEUYxqfdLZY7SKkUKHsK5VIKWmmtN0KIMWgIGEKMMcYYK2qK8UJq 43+iojFqNMZAjNH4B9ae8w7v6R5+p/scdvfb9MNu+8zlfeb+zswzvbmyvvrJ Fyvrd++sZG+srdxbvXvn6+zaV2ubUGskhJEshPBLFvLfNzZ/jR/Fz0z+Ef/o 8ft/+ddSnvblLUBobXhmm389V3y2HYvWXuyVYmwr9ihlWO6VrBsbzT9Hc2ip WcK2J7zULOEOT7hgCX+ASM+ImY0DdrH/bHc6x5jZ/UqkvKaPiJnt9szm+89s r2c2Z0m/L764L6jF3Q/YGcvkOwhqATYhmjrg/Idk4Gk3MGsGvoVIY4AdEg1M uIGTZuB8/rVUDtnBmZp0U9kWU5VIC4AtAfZUXWUJRKh3ThulOQi6BNgiYDR6 D4qUprxuIpFzYj08D9jOPogccyLHjMhZiLQsZrYbsANi2mknMmVEzkCklwB7 dsBEOoBNGqXTEPQKYBcA2wsYzVxEKfO6iURmIdJlwOYB2ydiROSkE7EJLZyC SFcAo3FGpVeJzDoRmwTibNYd6SpgNM6oZ1BzERHqpVawMANBr4lZ0PBVKZ31 uolEMoj0OmDUq2iy3yMSOedErFlxaF0DjHoVraA0zGsbqSBiTR1OQKQ3AaMm PNwHEZpAIqVpCLoOGDXmJGC7REqnvG6sqcNxiHQDMKpDctlUIjNOxGo4Lkjd kd4CjGqOlnxaJmsXgIKIFScchUi3ACPCU30Qqa9hzPY2YESdMPJliNJxrxvL BSv6bcAoHvU08vOIyFEnYrlg13sHMBor1INUIkeciDUXGngXMJpHqMV3iESo AiIlMvUeYDTZd/qgdNjrJp4o0CT+PmDk2dPER9sTInLIidjSgiX9ADByDcjV aItEDjoRWwqwpB8CRs5SP0T2OxFz+NHj+Agw8kLIcaBdMBEhjy9Sosr/GDBa fWmlVSnt8bqxHStW/qeA0VJH3t2oSGSXE7EdBVbWKmA0nZvny0cttKscd+O2 w8KW/wwwmjmbGqc8Ig3yPj8HjOYGa892F40aBmNefAvFXvYlYDQCG9htuV07 c8BOdQ8w6lTVjWhZ3e1qUxQmX7BI5KCscREWKtX0WIR4EEw9ch3YVfIrAm3X j33im/zzfg6N94hUwejciYZg7RlwMpVMJVPJVDKVTCVTyVQylUwlU8lUMpVM JVPJVDKVTCVTydTGk51PFsrN4hw0tAyxQJloJKWcu7q97Q7oCy5kyEq0zZlx N3bBM6u9quplSj0Rn/fMlAvLvKQXIV5sOPX4nyRX9eYfOy6n5Fa18sXHeS92 vdCgiV313mfO7dbLYbiDkTrMGlm+8aIsBkhDvQGsSp56j1O6tqHLSyuMfCda isBU3WNDIup9MelJVUp0YUvaMBsZ8l16KQdTpcw0VZE2zIaKrC447URIoTEA IqreopRTqqJ7ul3tABaVf6oChZQEQ6Kk6nRKgRwJp+qX3m6MJEY2qcjKpVJ8 S8KpARBRtVykO1Epkf9DurmoilR1bqV4sCMSIceIrNk8J2sAMydCw3IARFRV ZFZXSwIl8huol0bttaoY7Xjd0DAfABFVQ3vCiZA6p1aJU8FoTosaWlVfTPGG RKkDQaS9Lt9hkDtERMjNohUwPhmgjklq9JIIvRsaABFVn18OaXo8QETIUyd/ KQqd1bcL5PqQh0aU1Ocn8YGJ+q6j9GCGRER96VI63kSdiJCDTuSi4lp9+1Nu OtXZtiGRft5F0XxDlKhBaHSZxyC/GSvFXUMior6iW3Qiqt9CWxZaneLjNfVd 4bITUZ1LmkfIqYr6/PJ556sQSXWtGxr90UulGqCtG/nz8ZHiT25A3Tg1NPCz G1C3iBSP9q/xucKvbkB9qdnQwG8QpJ5JTMTq2YJZQHjkR4Tfnb+aabWl8szM Fwh/eGbq07JtMvvTM1NfHtFOMBbzAQSpL0OibPWh82mY8C9PqD5ziAn/9oSq 4j0m/Kf4kmTKMcW/+VerR6Tifyss5iG2YFqEHv98Ioz8DySsAhs=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {158.562, 0.}} -> \ {-4., -1., 0., 0.}},ExpressionUUID->"8d2bd850-b48f-4168-b822-5e52837ca476"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(5\\). \\!\\(\\\"pentagonal cupola (J5)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"2305f3f4-f258-44ac-a31a-24d292e5480d"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .54572 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.545598 0.145845 0.269692 0.145845 [ [ 0 0 0 0 ] [ 1 .54572 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .54572 L 0 .54572 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .38695 .46061 m .24824 .50567 L .10954 .46061 L .02381 .34261 L .02381 .19677 L .10954 .07878 L .24824 .03371 L .38695 .07878 L .47268 .19677 L .47268 .34261 L .38695 .46061 L s .61852 .34261 m .61852 .19677 L .75723 .1517 L .84295 .26969 L .75723 .38768 L .61852 .34261 L s .61852 .19677 m .61852 .34261 L .47268 .34261 L .47268 .19677 L .61852 .19677 L s .61852 .19677 m .47268 .19677 L .5456 .07046 L .61852 .19677 L s .75723 .1517 m .61852 .19677 L .57345 .05806 L .71216 .01299 L .75723 .1517 L s .75723 .1517 m .71216 .01299 L .85482 .04332 L .75723 .1517 L s .84295 .26969 m .75723 .1517 L .87522 .06597 L .96095 .18397 L .84295 .26969 L s .84295 .26969 m .96095 .18397 L .97619 .32901 L .84295 .26969 L s .75723 .38768 m .84295 .26969 L .96095 .35542 L .87522 .47341 L .75723 .38768 L s .75723 .38768 m .87522 .47341 L .74198 .53273 L .75723 .38768 L s .61852 .34261 m .75723 .38768 L .71216 .52639 L .57345 .48132 L .61852 .34261 L s .61852 .34261 m .57345 .48132 L .47586 .37294 L .61852 .34261 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 157.125}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzFnPtvFUUUx5c+oKWU2he1FNkLUgq0IIiAvARBwAdE0fiKr1QkggZBwBhj /FP8SzQajUaDv/r/IDtn+M69289cZrm7lYR7556dme93z8ycOXNmppeW7167 emP57vUry60Lt5dvXbt+5U7r/M3bD0T9a7JsTSvLsh9bWZG+/yDpP9y/bcWH //GI9L3ia7Aoe9kEfxVf/YWgzwlc8r7/l7mcFy3nH8o5iDkf/BsoRC9b9t+U fRiyD4nHWcv+i7JvgOyjyv6CZf9J2ccg+4TIHLPs51T+KxWchILTynfICp7p fGmXuqbUJqhis7APWBWnlH1EqU+VmoUqtorFklVxQtnHlfpQqaegiu3FZ18h 2mNVHFX2GaXeUaoFVTwNsl1W2eFObJd6QykquB1ku62yg50FXepVpRagILH1 r7lfBXcrda6ki86COcgWrbK9quIZpc5EXwTasCTzrblHlR1S6lT0lTplW0C2 Vu83bwALqva4UicTec/FANpkWYDaIYAXlTqQUEUMfnO07GC7TDR2WGKbwC8o tS+RBqn5SZANSs1k/7x9zZXpklKLoL6hRH3MxIgkvFirjVLp0aUE+F5pDoBs XZwmDZjXQbbgdUC9gaqn5p0GWX/x2SczjVYCTe1lkM3HABKakvQ7lVgfzZ1b /1/qNM1SfRtBZpzR6L0FMpp4iCb1TOom4yBzXlKfpmImTEb0bZDRrBh1rhJ0 /USMMPlHOLOgAX4XZDQH0/AjXRN1cuOIOo2EuWrUc5CRj0q9lLrJqH/RkkVy nYQMo6dLnt/7ICPDSHRTNW02gg0oqdBkOCV+ADIarGRRSbtEd6QLXcKaXT26 1BmGu9ClljSe2E8+Ahk10GgiXdKu0Q19t/jO2GfwTGnN8wnIqHv3wrTsihQK JftpmsQpfjma/fFsEbU/+co7IN+majRJ69HpKUGbYTW7E54aK7S1V6LZ6yPn LJkzn7vi5MivuAoyyjfpdUCDdClGPLqCnKqLUKq2eKoh4lYvzvefg4wabbqL rhaBTuZXy+hyIMJ1kNEQnGG0JWlgf5O4rIEQZXgWShoqumVfgozM4yy/9E7h UjehFbiRwBe8ATJaSUS4hLANrUKpUTwXcvlvgmw9yOaYSy4uVIi4jDXGZYu4 UMNSGxkJzP41yGh1Xl7mFZ10VkRoGBARY4Cd4A7IqN1zIDItIjRlUOs0RGRC RMhNISLGAF3Db0BGzrgLETlDNSZ4cj+pQQwXe9+3ICOnahvoIUSkWzE9OML+ 7WnZ8Z37ZOs4rwqGBETOUDlUl6VArhhvFCruFy493csVeWgaXt8D0wW9pTW7 e+j/l2N/xa89yk/NZE2Ma+kfis+l+5EZlnylxwEoyUhvBE9+JI2ChuBdtwpd rfR0uHdQMgq0/mgInoxCrncms9QQKC1iG4Inl4oMJs0ONcAfBJmbLoINXx1Q imU0BP8cyGjtSS5tDfCHQObWME7ltEqqAfQwyMhRWkV4Ui+5TEO9wx8BmfO6 nMqp69UA+jzIyIisIvyw3pmi9zWAHgUZ1dcQ/DGQ0b4CGdga4I+DLIRV8iZB 2Tctu8M1QZ4oyQqouJvQE9RJqa9JgNK7NNlcprsV0S0nILdjXe+Q1C0HSjSK 74yXajUwoHFJy1j3i1arDXFw9YVVSnQ3qwZ4soy00g32gubCGojQvLBBoK5f uIcUT20InuJSIT5OfkINRMgnIKiwi0AhqxqIkG80obcfUop8hxrgyR2Ndj1H hMIVDRHZ1AnqHhLG2t7haVVApij4UPEzSrWvjuYEOqIUxT1qgKcFKU1MzngN qIvWD5qDjFbBNbwzxQBCJHO6dwAKrFCQcKIZqBCjfBTA3kKUGnkbq8a2VXw6 R5X2c9yvaCgRZ4yk6GXxy20YDMSMR/f4adh686DxaC0YD/e6NM+vE2hKsLj4 NVINfkrwFEZZL/gWPKU+5GOaqdF5F1xwKqcd9lHBp24OePjUvYlwmJ78uXDC nBbfXfYmUvdognGk95sSfOoW0YZq8IN6e2rdcDieIkBddqhS9+yC70Z9e07w qVuGHj51+5LmZTo2uVVEUvdRN1YjQkscWsaGk92pm8ve8qZudJOdpJ4xLyJk obvscqfu/pOic5DtEhHyDDxo6nmH+IHhThkdDqd3Hq8GT72crILNcys26mgq 8LN46pEX6iYUgXMKKC2H6cSNh089DESKojN+AZ5GMDkgk9WIkL5oAiCPgyjR dqA/KJV6rIzy0YwVdBMWhHSK3fuqqUfuKF93eBrBZNMqEqH9Fyob9pXJEyCb 5g8hph7ppP5AjUTGIoRRcijhD232cgqWOjoRoQmKBrw/7trLOWIa3OXxU1Ai G0SvWJES3figyYgOFWZ+3nItRkt9f8w69RB7DjJ67QgXsk40BPxZ9dSbALQH QFMSNRp1fOqDFS8nkL2gSTqiKFIKKc+zSr2oQr4qGZkIqxCqoiHhb56k3vKh mYUWfhGfgUYPtbm/ypN6bYqWx8TKNMRbUjSYqO0rUiPvIH6xr8vFkOjc4q+Y pV7hSzk3H/KlX/2gAEZuBdyXe/KaUuQ9pt60ojUADSaqz2ZiG+nuyTmlyKOP 3+thzbhXjbqKHjysZk4pRcH2+LWHbruq/MzWmW3rl3An/ViXYhT3IlplB6co 668HLwooXDa3PySwwjxUQmu/dL1PNYdr42eUKXqrgEaSK2EGxdb8/RK41Hml qGtS7HuuVMIi+k4QFtgXlSITS9WG01D+avsRVREQ31SKAg1U7YyqtSFq3aNf 85tLvadUnlhtmIVs5Wr72y5POJD7sVJkYajaSZWw0ZudliBszHymFBl5qnZc bP2fojirKkJQ9otOxSRYjjFVa5t8bZ3pllLkMVBl4ZyQbeFmP3dqNKGKsGdj W/HZr6qCZhoyaeFssR1YyH6XgKa56NaUY3HaqvhTVaTexw2BPfsTEdnfqsIa 7GHuyO7+w9IvWdZ/JOCw/EMzkGX/CueVNkGpgH/kfjziT8Rka/4Da2pzcw== \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {156.125, 0.}} -> \ {-3., -1., 0., 0.}},ExpressionUUID->"b47dc561-7dfb-40c5-b9b0-862d712224f7"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(6\\). \\!\\(\\\"pentagonal rotunda (J6)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"42b05cd9-bc33-48e8-9c4c-cee4943abbf0"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.61749 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.466249 0.193445 0.336193 0.193445 [ [ 0 0 0 0 ] [ 1 1.61749 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.61749 L 0 1.61749 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .15325 .33619 m .21303 .15222 L .36953 .03851 L .56297 .03851 L .71947 .15222 L .77925 .33619 L .71947 .52017 L .56297 .63387 L .36953 .63387 L .21303 .52017 L .15325 .33619 L s .46625 .93155 m .64297 1.01024 L .62275 1.20262 L .43353 1.24284 L .33681 1.07531 L .46625 .93155 L s .46625 .93155 m .30975 .81785 L .36953 .63387 L .56297 .63387 L .62275 .81785 L .46625 .93155 L s .46625 .93155 m .62275 .81785 L .64297 1.01024 L .46625 .93155 L s .62275 .81785 m .56297 .63387 L .75219 .67409 L .62275 .81785 L s .64297 1.01024 m .70275 .82626 L .89619 .82626 L .95597 1.01024 L .79947 1.12394 L .64297 1.01024 L s .64297 1.01024 m .79947 1.12394 L .62275 1.20262 L .64297 1.01024 L s .79947 1.12394 m .95597 1.01024 L .97619 1.20262 L .79947 1.12394 L s .62275 1.20262 m .81619 1.20262 L .87597 1.3866 L .71947 1.5003 L .56297 1.3866 L .62275 1.20262 L s .62275 1.20262 m .56297 1.3866 L .43353 1.24284 L .62275 1.20262 L s .56297 1.3866 m .71947 1.5003 L .54275 1.57898 L .56297 1.3866 L s .43353 1.24284 m .49331 1.42682 L .33681 1.54052 L .18031 1.42682 L .24009 1.24284 L .43353 1.24284 L s .43353 1.24284 m .24009 1.24284 L .33681 1.07531 L .43353 1.24284 L s .24009 1.24284 m .18031 1.42682 L .05087 1.28306 L .24009 1.24284 L s .33681 1.07531 m .18031 1.18902 L .02381 1.07531 L .08359 .89133 L .27703 .89133 L .33681 1.07531 L s .33681 1.07531 m .27703 .89133 L .46625 .93155 L .33681 1.07531 L s .27703 .89133 m .08359 .89133 L .18031 .72381 L .27703 .89133 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{178, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNnPtvVUUQxw9tbysPgfIuUO7FSnm2YAvlbSsoKEiMMYYYY6QhRIgxGuQv 4x+sPTvDzu3pZ7eztPd4+YG7nX18Z3dn57XnnGer716/+mv13ZuXq73Hb1f/ ef3m5b+9R3+/XSeN7qqq6n1V7er1qrq8tv6n/vd+bf3femXpz0r9c64e45kQ lsPPaE1Z03/VDNCeSPP79c9IXXM+lrTqHvS6CLTH0vwuVF0G2iNpfjvCXY0l rboFvb4A2kNpvhT734glrboBvW4CbUWaX4eq20CTNa4WIpytolYRu8tAkzXu W4KHsaRV89DrmySf1RxUPQaarLFsUIB7GktadQl6PQOarHF1Ifb/MZa06jz0 +gloC9J8Fqp+BpqscXUOqp4D7VobzT+Hql+AdrWN5nTsfwXafBvNP4Oq34A2 10bzs1D1O9CutNG8B1WrQLs8hM27UPUSaJfaaH4Gql4B7WIbzaeh6g+gXWij +WmoegO08200PwVVfwJtdgibD9VCDpWIDdXhK2zehar/TYsNlX4fKkM5VC5E YfOh8sWGykv9GIc8RBfPY0kDh8I4IxOxFMY+FOY+BdqSNL8S4b6LJQ3fCqO9 TNxYGIEuQNX9JK1ajHB3Y2lFqgpj7kz0XpgHoEj9KtC+luZ3ItxcLGkqozDz kcmh0IpnsjErUEVKUoSr+qr+Ccmf7/sIjbZdoHX6JuvFHKv/Dx0flHXcHTve L+u4P3a8Vbaah2LHxbKOx2PH+bKOwXMLG6+26ktoRJqOXL5LZUOQC3u5bIiT QNOJkBIgRXsCaHNlQxwH2nzZEMeApnbGe6iPAO1a2RCHgabZqi5U0erTsIeA tpAedgpoZKkm08M2/ej1X+SWhj0ItMX+Ycf6q+qyl+EDQJPUrQYtnQ0jf2A8 LaEbaZ8CTQ09ndZRoB11Qu0D2tJgoPYCTcwyKpAO0EisycDuBtqtNNQ40EjU CeoToKlvRHI60R4UNacjQQ4NrcgdgaIzQuvthaJ9lpscPC8kRXQcCWoMaPfS UHQ26GguAm0EaOp8kJGhYdNQrF1W0sPvd85uUZepoRbFqUPTRktPW2Su9YP0 YCQye2LHTd45KR46S8RPUzzqBQwLPlMXD5cB7IucWThEAkCMdIEm9hD9AKKR oJDVIpb2AI08YdkaVMC0SiRw5FCQPdkBlki4AkuNGInUXCE8yQMpEzoo5McT S6Reqe+BMpYOxnU4G0s0ezIkGXjy5sg+UTtK+bbIEq0cOQx0kMmyU6QjRwN1 HXlcgaWwNVOxRKerEJ7EkXLW2znwA2LpSFyHw7FEG0wniSI2UZ/CxWxdQ/Mj 5nYKtFHVA1onNUnS/STFA+NrTdMVoWPYi72xRAtJ7h5ZBnFPcH6U+LYUD6kL ksQWmQurGbyqibg2nVgi1TwgRiwtNaYwfbXSpOIQiQw1+RiiGdG5pKx8MNTj AXX0A374aZGHABVI3oh3B0AFyjzt+rfiOI7cNoqvRfDRNtEDTUmoQKIoYkCM UEAZ1FVShwyIETqIuyMjYgn5xFCwKU4bqqMLQCOX1eKKycGCJy1eAD8wWHAK aYKiCiQ5UJtCUoq5xSlEb5mu08hMHouT3jMwXDLj5ts1R6l2BjTpbo5sNEt0 dzZRBkWuUjcCmN3LQJF7fwVoSbsXSCM7CUWKfTZC0fXi+PYB7ILYkh+68eTS 0N0tncKmJ0EyVpVDeQXEkSkZL0OmNfZmQLztlCVypK8lm2+97eRfeDMlhSyR U0lmM/iGjkxJITxlX2kzaTxvpkRZopnS8wW0z0n5cmRKOlvB+40oDe/NjmzJ xiazRotDbpM3GaIc0JZfjytIZs1cnny6ox8gNLq+sdRoTkN40xgK5RHzKgFv vlQ+ZaFQpPbsERGZdD8mLSQN701iKBsm9aK4Jkh447yJCXKxvBkLZSLtRfJZ Ij1J2sg2wpOvQCG3B8EIlGh0q0egZfmKvkNDoeZ2mDN/2JOvwOPT3TjER9qk KW1NW05KSTQPSjxp0e2w1gyka5Yok6AsWdadGhEoSQO5EoGR0dTICk9H7Xhk iRwpL/yJOMpoLFGSQRmxA0ihL4GSf0ne29G4DhOxRPkMZYQO1mRkjkBJGZCj a1O07CihKSPe+9XtsGQTsxLl+JUlkww62sQIqXfyZ80kHt3IEjOSfOogdPTe 1BMjtjXmcdCqKyPehzq8zylQRiTYvECajiWaorJ0KvJtSpq2ywtvdn8mlsgM K3zuiSevx0HpOEtKWBhCEie2DJ8Uo6yHF97W0l5RpY1W+C5U0SbQYaNLMdOh FimTcVB4r2fBDkKl7lsoUVD0MSiBdDuW1EWg8IqUcwi0wpPF6asA92DBHnZS k+smaRlXBPykAEBhAj0+cKYMYDICkGLJAJClTkZxAYAOTQaALHDSxQoAlPCl AH+6FKBiO5EZO6i/cOlLN82ZjjNxNl6JIp8s/Ty28FMkUbSrGYCpCJCUqKSX mhk2qIMxrxzVSposKl1Ny/xk2MA3qdLmllUJmcgA2EmgSEcANiVQqGkGw1wX kmTBYItKTiK5NSf7gNyCwpCk4TOQ5CrQHpMQ0WGiiCUDT9JMEpA0ug0aiTGp JMFAP41MEgkHwZMHlYEnr5dEhuApW0cuTAbem2cjePJuaDXJZMrxw8UiLUHi Q7MvhCdR8UovzZ5EeUDw3scOyQMU8UbH2nt4CJ5yERl4mqn38JBfT7QMPImZ 9/DQTEke6J5ADjf6VF7pJXg6DRl4OuNe6U3HdG540nBkhtIPibDlo3tjmSrq dK/EJp4tyKCRe+EV0OY+bDGx7UBZItruq3WLyAR7ZZxmQNcNCpVOOpZD1X81 onA1dd4n1Pwom2kZS3taV9ArtnQcvHfP6llN60o6xDaZLmrkczSaotyNd1jv dbFCdSO2iWjyCfPGlW9PhqDgy3uF673WVSh6iNNzxlM0ElqZTl+uz64ak+8N NfKlklVCl5rkiYb1eo4KRRk7cirJA6DbWP2gjUmmXe6RY+G9XdVhaRFIigjK e4eqX8GhpH8XaOSv0J2ovsdtOdDpWCKr673N1GGL8mtEa6S99WVtb16Qhs3d NOpb2GYL7O6CuKabQX0Lm/RF8sFAGrb/syP09AZJIxlGu7XTF5jtwxp2M0Ia ym7Z9H1hUtjk29FgJnn6QusSNCI5orSd3Wzpe6Q3I8EkhY6fKQZ9VVOYYVkg G2MrtizN7jQaVRXf0duNj75rSd8yJUQzU/pRkRephQuNHqUb2dJ8m25ktxJP co2q+D2QF3FiP6Q7aFXxp2erXf8BYyDxTg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 177.}, {287., 0.}} -> \ {-2., -1., 0., 0.}},ExpressionUUID->"eb3847dd-059c-44a7-9663-260b546e2703"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(7\\). \\!\\(\\\"elongated triangular pyramid \ (J7)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"3c42dadf-e46c-4454-af7b-\ ad8b6deefb73"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .91068 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.31746 0.204969 0.31746 [ [ 0 0 0 0 ] [ 1 .91068 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .91068 L 0 .91068 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .34127 .29661 m .5 .02168 L .65873 .29661 L .34127 .29661 L s .02381 .61407 m .02381 .29661 L .34127 .29661 L .34127 .61407 L .02381 .61407 L s .18254 .889 m .02381 .61407 L .34127 .61407 L .18254 .889 L s .34127 .61407 m .34127 .29661 L .65873 .29661 L .65873 .61407 L .34127 .61407 L s .5 .889 m .34127 .61407 L .65873 .61407 L .5 .889 L s .65873 .61407 m .65873 .29661 L .97619 .29661 L .97619 .61407 L .65873 .61407 L s .81746 .889 m .65873 .61407 L .97619 .61407 L .81746 .889 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 262.25}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnGdXE0EYhZfDAUVQUFHElmBBERXEXrGCvdePoRcRBOyKFRDrT0bCjByM z8jLO6vuh/EcSXLv472ZkGy2zHgpM9zV3pcZ7m7NpJsHMwNd3a1D6ab+wSkp Py+K8tJTfwvTUfb+ZBT9/DH9pyr7wz5Q3v8+fZM/OZM59ejbnNa3HCv7lL7P aX2dvimYHTiD2OAv0JkP2mcV/hmsAtA+qfBPYC0AbcLgE2AVgfZRhX8Eqxi0 cRU+DtZi0MZU+BhYpaCNGnwUrKWgfVDhH8BaDtp7Ff4erBWgvTP4O7AqQHur wt+CVQnaGxX+Bqw1oL1W4a/BWgfaiMFHwEqB9kqFvwKrCrSXKvwlWBtBe2Hw F2BtBu25Cn8O1hbQnqnwZ2DVgPZUhT8Fqxa0JwZ/AtYO0B6r8Mdg1YH2SIU/ AmsXaMMqfBis3aANGXwIrL2gDarwQbD2g/ZQhT8E6yBoAwYfAOswaP0qvB+s o6A9UOEPwGoErU+F94F1ArT7Br8P1inQelV4L1hnQOtR4T1gNYPWbfBusM6B 1qXCu8C6AFqnCu8E6xJoHSq8A6wroLUbvB2sa6C1qfA2sG6A1qrCW8G6BVqL wVvAugNaRoUX2odRVJ79sWCWmvMP7oJ2T8gVhNgQG2JDbIgNsSE2xIbYEBti Q2yIDbEhNsSG2BAbYkNsiA2xITbEhtgQG2JDbIgNsb/GZu/8i2vVNL33do42 dftbbFaj2MK/GrsQrJt2OLO0mag7f/Byn072kX2taVbyddBoojbNiCCO8hYm on4RWFdBo4nkNNuEOMorSkQ9zRm/DBq9w2kmD3GUZ4YdlYBF84nok+DDFbvr LzpfrLljiaM8W09T6s878V81mtNFHOWVJKJ+CVhnQaOnSfPliHPn/e96Wh/R BBpxNBdRmmeGHZWBRTMi4+ZK3fWnQaN1HhRLHOXZesJPgkYLQWhWKnGUV5aI +mVgHQeN1rXQjF/iKM8MG59tI2grY+aWueuPgUbrbiiWOMqz9eVg0ZzuVTFz y931R0CjdUEUSxzl2Xp6qxwCjRYO0bx64iivPBH19E49ABqtg6I1C8RRnhk2 vlNp5cT6mLmV7vp9oKWEscRRnq2nDwqtSknHzFW46/eARuvIKJY4yrP19Dlt AI3WpdHKIOIozww7Wg0WrU/aFDNX6a6vB43WzVEscZRn62kzQWu/qmPmVrvr d4JG6/ooljjKs/VrwaJ1dVtj5ta467eDRusOKZY4yrP1tI3eBhqtY5RqlGeG jdto6Qh8uHXueunvT/oLoTxbnwJL+u714da766WfXemHkfJsPX1DSbdcPlzK XS/dbks3xJRn6+kLUvqt5cOZYUcbwJJ+Z/twVe566R6LdBeE8mw9vTAp0KT7 f1Jug7teurdKsdK9X1tP70rpvroPZ4aNHx7pkYoPtykR9bRBlB6l+nCb3fXS Y3TpQTfl2Xr62pCeofDhqt310vMz0hMulGfraVdAenbKhzPDxj0W6bk5H25r IuppL1R6XtaHq3HXS89KS08zU56tp/1yn3P8Us4MG/fL53dFQsfVJqKeDguk V6N8uO2JqKejEumVSB9uh7teeh1WemGV8mw9HRRJr0L7cGbYeFAkvQbvw9Ul op6OyaTzL3y4+kTUN9iXZ5Zl/OjnfJv5e+Zk62/nXLNW7kwhl7Yntgg66KT5 SqTZgUw/iOH/vYzyfgBFymsI\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {261.25, 0.}} -> \ {-1., 0., 0., 0.}},ExpressionUUID->"088bd620-9770-4ab1-b5bf-79ec3b687696"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(8\\). \\!\\(\\\"elongated square pyramid \ (J8)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"5f29a087-2143-481d-9f39-\ 046689f11aa1"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .71651 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.380952 0.238095 0.136107 0.238095 [ [ 0 0 0 0 ] [ 1 .71651 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .71651 L 0 .71651 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .2619 .25515 m .2619 .01706 L .5 .01706 L .5 .25515 L .2619 .25515 L s .02381 .49325 m .02381 .25515 L .2619 .25515 L .2619 .49325 L .02381 .49325 L s .14286 .69945 m .02381 .49325 L .2619 .49325 L .14286 .69945 L s .2619 .49325 m .2619 .25515 L .5 .25515 L .5 .49325 L .2619 .49325 L s .38095 .69945 m .2619 .49325 L .5 .49325 L .38095 .69945 L s .5 .49325 m .5 .25515 L .7381 .25515 L .7381 .49325 L .5 .49325 L s .61905 .69945 m .5 .49325 L .7381 .49325 L .61905 .69945 L s .7381 .49325 m .7381 .25515 L .97619 .25515 L .97619 .49325 L .7381 .49325 L s .85714 .69945 m .7381 .49325 L .97619 .49325 L .85714 .69945 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 206.312}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmt9KAlEYxI+I5Z+0MjUtyzW1lIiIiIiI6KK6iB5CItCLKMrniJ6sV7I9 7iKbjWCJ+/nFdLHuzvw4M55aO+7ufbvXeXxq97oPbef2tf3S6T68OTfPr64U jRgTcYwxn46x+313198Mfqp24x/8Yv/OvlzbcT4Cgon2hwO7R1dAeydOnDhx 4sSJEydOnDjxIL7oHxqTtZt4QJ1gkGm0BUYxilGMYhSjGMUoRjGKUYxiFKMY xShGMYpRjGIUoxjFKEYxilH/M8ruSN2BjAPrckRzX38MMalmjxZDj0oA62Kw jQW14VCXU3nfc/zfYRJY50CLCnEJVTVTwDoDWkyIS6qquQSsU6Chz6EwuJSq mmlgnQANfSiFwXnTaDLAOh77rsLn0qpqLgPraCwePpdRVXMFWIdAQ28nPM6s AusAaFLciqqaWWDtA21NiFtVVRPhLaDlhbisqpo5YO0BbV2I86YRvqsG0EpC XE5VzQKwakDbFOLyqmqiP+Uq0LaEuIKqmkVgVeZI86YRnnFSM4e4oqqaG8CS OqsRV1JVc7w1H/+ZNlTVLANLajWEOG8a4dkltbZEXFlVzW1gSX3vQdyWqpoV YM3Td/dtVTUdYMleL0KrJrgEkLr6hjhHVc0dYEldGUZcVVVNtKCSumuBOG8a TR1YUveAEFdTVROt+6TuTyKurqrmLrCk7p0jrqGqprfYn8UzG9hrejvNkUbW +utTKVZrzXRYtIaf5skgfxIGB9XJ903kC7a3yvg=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {205.312, 0.}} -> \ {-1., 0., 0., 0.}},ExpressionUUID->"defce678-2e7a-4bca-b31d-c70bc207f1af"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(9\\). \\!\\(\\\"elongated pentagonal pyramid \ (J9)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"c41565fb-2ad5-4093-984a-\ 27dd3c039918"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .68097 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.190476 0.178242 0.190476 [ [ 0 0 0 0 ] [ 1 .68097 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .68097 L 0 .68097 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .40476 .30933 m .3459 .12817 L .5 .01621 L .6541 .12817 L .59524 .30933 L .40476 .30933 L s .02381 .4998 m .02381 .30933 L .21429 .30933 L .21429 .4998 L .02381 .4998 L s .11905 .66476 m .02381 .4998 L .21429 .4998 L .11905 .66476 L s .21429 .4998 m .21429 .30933 L .40476 .30933 L .40476 .4998 L .21429 .4998 L s .30952 .66476 m .21429 .4998 L .40476 .4998 L .30952 .66476 L s .40476 .4998 m .40476 .30933 L .59524 .30933 L .59524 .4998 L .40476 .4998 L s .5 .66476 m .40476 .4998 L .59524 .4998 L .5 .66476 L s .59524 .4998 m .59524 .30933 L .78571 .30933 L .78571 .4998 L .59524 .4998 L s .69048 .66476 m .59524 .4998 L .78571 .4998 L .69048 .66476 L s .78571 .4998 m .78571 .30933 L .97619 .30933 L .97619 .4998 L .78571 .4998 L s .88095 .66476 m .78571 .4998 L .97619 .4998 L .88095 .66476 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 196.062}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztXGlPU0EUfUiQTVAQEJClgDsuQTSGGGOIUUIMIcb4A2pZWqAspaLiioq7 +Kf8X9jpnUyAHnSGmXdDmtsPfbfnnLmnt6+dN+/NvE4k8+npbDKfSSUTY7nk cjqTWk08WMoVoMqKKKpIRFH0JxGpeLsQ6qfio0896RcO8ZbaVKo8vwn4VdxU bZvE+qGctij4WdxU7pQUXpViP0j+XW2OKKbaRJr6BlrVAuwryb+Y9g0m0tRn 0Oo4wDZJvgmoJoB9IvlHY9dqIk19AK1OAWyD5BuA6gDYe5K/M3bdJtLUW9Cq F2BvSP7atB8wkaZegVZnAbZO8nVAnQfYS5K/MHaDJtLUc9DqCsDWSL4GqGsA e0byvLEbNpGmVkGrmwDLkXzFtB8xkaaWQavbAFsi+RKg7gBskeRZYzdqIk0t gFb3ADZP8nlA3QfYHMkzxm7cRJpKg1YPATZL8hnTftJEmpoGrR4BbIrkU4B6 DLAUyVOAegKwpxxyx/cer9zxc49XPgOoSYBNc8hnATUBsBkOueMPLV55BlDj AEtzyOcANQawDIfcsWeNV+54VIhXngXUKMAWOOSLgLoLsCyH3HEYEK/ccQgT r3wFUCMAW+aQ5wB1C2ArHHLHMWu88jyghgFGaenETwVRs3qq2YFaJLkRWHdU 7MVe7MVe7MVe7MVe7MVe7MVe7MVe7MVe7MVe7MVe7MVe7MVe7MX+//YqOEzz WzWAGtqDFbYlaRW2N62tTr2qPhT2aBkpLRbEa1uv/4Mb8mq3+z3o70YdoNDS R7Su9qqljiNfbVmWUw+oQYBVAeyypY4jX11ZlnMMUBcBhvrfS5Y6jnz1/uUg Hep4fXSO5TQACi0PRx30BUsdRz7aLVEjoNDiePQbO2ep48jXUJbloFs8BvaV 78bOWOo48jX6l7N/2nA6x3JOAKoPYKjsfksdXz6vcpDONl9oX10Out+pF2BI l7DUceSjj6dw5lVKdQPsJMB6LHUc+Zr8y0G6lsA6x3KQ/DTAWgHWZanjyNfs Xw7StQXWOZaDdjq6KxHd2NhpqePIR7sFVm+bot3jrYfO1+Jfjs8nHHrP6nLQ dzj074QjX6t/OT69U+heUZeDdlzoYwxHvjb/cnyO7KFHFLoc1JtwjLtCj/do t8CeI/TomSNfu385Pucsoc+VdDmo/w995smRr8O/HJ/z/dDXGXQ5qF/nuBoT +ipQZ1mWg47OHFcyQ19Bpd0CD1Ohr0dz5OvyL8dnFiD07IMuBw02OOZoQs8N dZdlOb2A4pjfDD2v2lOW5SSKm7Dz/gddS6D/k2vvME1RtisibFdT9LNboUGq 7SoX25UvB/wTtKjiL4uXLEI=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {195.062, 0.}} -> \ {-2., 0., 0., 0.}},ExpressionUUID->"ba89db81-cf06-45cc-a323-20d18d2c8603"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(10\\). \\!\\(\\\"gyroelongated square pyramid \ (J10)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"e7339f1c-e4d2-442d-b0b8-\ c8109f423d5f"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .60712 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.12963 0.21164 0.348286 0.21164 [ [ 0 0 0 0 ] [ 1 .60712 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .60712 L 0 .60712 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .02381 .40938 m .12963 .2261 L .23545 .40938 L .02381 .40938 L s .23545 .40938 m .12963 .2261 L .34127 .2261 L .23545 .40938 L s .23545 .40938 m .34127 .2261 L .44709 .40938 L .23545 .40938 L s .44709 .40938 m .34127 .2261 L .55291 .2261 L .44709 .40938 L s .44709 .40938 m .55291 .2261 L .65873 .40938 L .44709 .40938 L s .65873 .40938 m .55291 .2261 L .76455 .2261 L .65873 .40938 L s .65873 .40938 m .76455 .2261 L .87037 .40938 L .65873 .40938 L s .87037 .40938 m .76455 .2261 L .97619 .2261 L .87037 .40938 L s .02381 .40938 m .23545 .40938 L .12963 .59267 L .02381 .40938 L s .23545 .40938 m .44709 .40938 L .34127 .59267 L .23545 .40938 L s .44709 .40938 m .65873 .40938 L .55291 .59267 L .44709 .40938 L s .65873 .40938 m .87037 .40938 L .76455 .59267 L .65873 .40938 L s .55291 .2261 m .34127 .2261 L .34127 .01446 L .55291 .01446 L .55291 .2261 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 174.812}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnNtOFEEQhmezQQ4qIiAggjMrchIEBBRE0UQSvfIhVmICF0aD3BtfyJfz AXB7ukJ2J/9qV2qtrk6Gi92Zqpq/P2bnUN1dMx/bl2efv7Qvz0/bxYeL9rez 89PvxfuvFx1Ts5FljSLLsl9F5pavOov0Uf613Aet/GP5k/s6dtv+7DJkzatr sc7aS2D7UYfX4XV4HV6H1+F1eB1eh9fhVsOX3ddv5xnpMlRijwI1Q+Nu+KYe V1wuTa9KOFtVIjTOrQ2rN7VUfg11u643O/yL70C0XS8K/ZaPgKsJbPuBcXsK eqPJo7eAawjYdgPjninojSWPXgDXMLDtBMZtK+jd5KEjiREBukSP0HPgGgW2 rcC4pwp6tzz6w77/Va9tMzBuQ0HvdvLoi31dvbYngXHrCnrjyaMvANcdYFsL jFtV0wtGRxITAnS5XvYAuO4C20pgHErNB603wUNHEpMCdIkeoc8D1xSwVbsE /eKWFPT8rsjuA9c9YEPJMYpD6dyg9SZ56EhiRoAu0SP0OeCaBTaUpqG4XEFv ioeOJNC2oegSPUJHsuggQrkOikN350HrTfPQkQS6OoWiS/QIHZ0a6FqPbOhO HLqtRM+f9vDst7SHkd4MD93S8U/o08CVA1usqwnSm+WhW7rWEzrKGyzdOZHe HA/dUl5D6CjR1Mj+JHr+1DWfmyO9eR66pZ4ToYf2B+P2Q9EdViQRa5SA0JFL YyxForeQPPo4cGmMG0r0FpNHRz+Ixhi5RM9nmDTM3uuyNIOB9HIeuqX5JUJH x5LGLJxEr0gefQy4NGacJXqt5NHRxed5+alXfeHzdHjRqRZmuHBJzcmyelPl daYsDlrpMlTalhQCoTilPerWlPZoV1O6h2xvO/QbWj/hV5PCtH7TWksK03ri tc7DjJXaEqb1zoPvgZrvnm0khWl9iGGTh4n2emjzEj3CtD5M5k8/82OoW0lh Wp8H2OZhonmw0OYleoRpfUJoh4cZa8qNMK1Pavok0PyM9y4PM1ZNAWFar9rY 42HGKiQhTOvlO/s8zFgFIoRpvXrOj66Yr098wcOMVSlBmKE1trHSkQMeZqzi DcK0Xid+mBSm9Wcd/Ihx8NMksTrFRzzMWNUJhGn9iahXSWHmwGWpwuC1x0Qp gKXnJo95mLEqBwjT+rO/b5LCtP78+tukMLXfqfDOLwz6rREn/1V20G/uoJ1Q rjDem5c1/gCr3YQJ\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {173.812, 0.}} -> \ {0., -1., 0., 0.}},ExpressionUUID->"3c882bc4-c67c-4693-a01b-e6ab8dfa09b1"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(11\\). \\!\\(\\\"gyroelongated pentagonal pyramid (J11)\\\"\ \\)\"\>"}]], "Message",ExpressionUUID->"c0aa533b-ace3-404f-a7e2-87cd76b04a10"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .59471 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.11039 0.17316 0.3806 0.17316 [ [ 0 0 0 0 ] [ 1 .59471 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .59471 L 0 .59471 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .02381 .43059 m .11039 .28063 L .19697 .43059 L .02381 .43059 L s .19697 .43059 m .11039 .28063 L .28355 .28063 L .19697 .43059 L s .19697 .43059 m .28355 .28063 L .37013 .43059 L .19697 .43059 L s .37013 .43059 m .28355 .28063 L .45671 .28063 L .37013 .43059 L s .37013 .43059 m .45671 .28063 L .54329 .43059 L .37013 .43059 L s .54329 .43059 m .45671 .28063 L .62987 .28063 L .54329 .43059 L s .54329 .43059 m .62987 .28063 L .71645 .43059 L .54329 .43059 L s .71645 .43059 m .62987 .28063 L .80303 .28063 L .71645 .43059 L s .71645 .43059 m .80303 .28063 L .88961 .43059 L .71645 .43059 L s .88961 .43059 m .80303 .28063 L .97619 .28063 L .88961 .43059 L s .02381 .43059 m .19697 .43059 L .11039 .58055 L .02381 .43059 L s .19697 .43059 m .37013 .43059 L .28355 .58055 L .19697 .43059 L s .37013 .43059 m .54329 .43059 L .45671 .58055 L .37013 .43059 L s .54329 .43059 m .71645 .43059 L .62987 .58055 L .54329 .43059 L s .71645 .43059 m .88961 .43059 L .80303 .58055 L .71645 .43059 L s .62987 .28063 m .45671 .28063 L .4032 .11594 L .54329 .01416 L .68338 .11594 L .62987 .28063 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 171.25}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzlXHlT00AcLXaQQ0CQQw6BFgRF5BJU8MYDvPgC3hW5nMEDCoKCCDjq6Kij jo76FfyE/lVJfusOZd6GpNn+2m5n2mb73tvf5qXJZq90JBKdHJuORKdGI6Hh mciTyanR2dDQ45kNKJgTCOSEAoHAn1DASsc2kuIjtvGKha0PC9k+/dvaBK28 6wT8sje5Ilrs/9v+vkaSn/YmGCcJAmyF5D+szQ6LyZMpQX0HuQoAtkTybzJ/ sUwJ6ivItRtgiyT/AqgygC2Q/LMsrlKmBPUJ5NoLsDmSfwRUDcCiJP8gi6uX KUG9B7kaAfaU5O9k/maZEtRbkKsFYI9I/gZQBwA2TfLXsrh2mRLUOsjVAbCH JF+V+XtkSlCvQK5egE2QfAVQRwE2TvJlWdyATAlqCeQ6CbBRkr8A1GmA3Sf5 oixuUKYEtQByXQDYXZLPy/zDMiWoOZDrCsBukTwKqGsAu0nyWUCNAOxGQnK0 M9e9yR323aMcHcir3uQOx92jfB5Ql73JhwF2OyH5M0ANeZNfAtidhOToyrno Te5woXmULwLqfFLlgwC7R/LngDqXVPlZgEVIjqrKM0mVO1TEqJo/lVS5w01k GVAnkiofANgDkr8EVH+q5Oi+fgxgYxxy1CbpA9g4h3wVUEcANsEhXwNUN8Am OeSoEdoJsCmSN1qbvxaTvwnYou1yiaFy3Op2UvEN8ZS97XKJdSams995aVG8 3StS9FY7EuQO+8oXv5viHNkHKNRjbtOsO8gQryBrLNYBKhdgqDPsR9fKEK8w ayzWAioPYGgExI9uP0O8XWqL+QBrVp7r2+t0x3OrExbRmJnuopCuiSFekdpi IcDCyqO0vU53PLc6YbGaoSikCzHEKyaLaCy4GGCoGelH18AQryRrLFYBCk0v 1GvWoVZVcuJBi6UAQ00ENHWCdLrjudUJi5UMRSEduh/rjleqtrgHYOjmUu5S pzueW52wWMFQFNKhm5XueGVqiwhDNS86A5BOdzy3OmERHRFUBfkpXnc8tzq6 QOB1wnGEOc6UcrVFjuuE43oXFlEFzFHbcdTaFWqLHPcsjnuvsJiqlgdHC6pS bZGv/ZhYPLc6YRFRHL0Ajt5MVdZYLAFUCGDp1MN3q6P7J3TPMa7CMT5UrbbI MTrGMconLBYxFMUxtori1agtcoxUc4y4C4voXOeYb+CYN6nNGouoJuKY++OY w6zLGouoxjpEP30cFrPVyZmnd+KoZQQrzC3T+/bWz6oGhDWmRfF2XWovcQlt Arbsj5+lK26Xx6Tu17Dfqfs1NhefPpcMamEbU2mFjbRjSsOgyUg7pjS+m9V2 MrG7RIfMmA6usGPKqEuLkXZMGfZrVdvRPSaMdOis8BOPKm9jhtYd7GTiZAg1 pIyZvhJ2TJlTbVPbycRZcOpzGbNuwcEOxxIJ3RbbyY4pC2cc7GTiUicadzBm /R0NhxizYtLBTiaucaUxN3ip6W4e6o7n0U4mLrKmkU5jVv53G2nHlKdresiO Kc9DOdjJxCfY6AlxY5457DXSjinP9fYZaSednn8/TrvE8Y8A/exFoeaN7n95 EAfQ/uLhL/wCOf8AdfPujw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {170.25, 0.}} -> \ {0., -2., 0., 0.}},ExpressionUUID->"61cb19c3-0498-483d-ad13-266805a91178"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(12\\). \\!\\(\\\"triangular dipyramid (J12)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"caca4cda-afb6-4f69-a726-a6e82e435358"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.1547 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.18254 0.549857 0.852279 0.549857 [ [ 0 0 0 0 ] [ 1 1.1547 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.1547 L 0 1.1547 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .02381 1.12721 m .02381 .57735 L .5 .85228 L .02381 1.12721 L s .02381 .57735 m .5 .30242 L .5 .85228 L .02381 .57735 L s .02381 .57735 m .02381 .02749 L .5 .30242 L .02381 .57735 L s .5 .85228 m .97619 .57735 L .97619 1.12721 L .5 .85228 L s .5 .85228 m .5 .30242 L .97619 .57735 L .5 .85228 L s .97619 .57735 m .5 .30242 L .97619 .02749 L .97619 .57735 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{249.375, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy9nOmLXVUWxV9SVc7tPE/1TIzzPCcOVU5JHKJxnq0qYzRRY2JMGpoWaWia RhFBuhFBRJQgiCIiIiIiSDdNIyIiIiIi0jTS+B/4KW3dmLWqnr973ln3gx+S 2nX23b91q967956zzq63ambLurUbZrasXzPTX7F5ZtO69Wse7y/fuPnnoZEF vV7vp15vQb/fm423//ztL//91Nu+fftssvbL2OyXhbPFPyraZU6qN7oD3Iw0 Ij/ouN7IzvHmyLG5ZWMa/uVf8/1/C7l5qiPzDlkoye8VjcJxo+2IURV+O/Bz ViPo8K8rjytgd9X5fKVo9wyxuwq/ULRnhthThZ8p+l2GoMM/qTyugN1b5/Nv RftmiH1V+E9F+2eI/VX4cVu2HnYgjH0ogYMy2EEq/EDRIRniEBW+p+iwDEGH v1N5XAF7uM7nbUVHZogjVfimoqMzxNEqfL0tWw/rw9g2CRyTwY5R4auKFmeI xSp8uS1bD1si2IuKjssQx8PY84KdkMFOUOHfFZ2UIU5S4XNt2XrYKTD2jARO zWCnqvBpRadniNNV+Ne2bD3sTMH+rOisDHE2jD0p2DkZ7BwVPqHovAxxngr/ 0Jath10g2FZFSzPEMhjbJNiFGexCFW5sy9bDLhbsYUWXZIgJGHtAsMkMNqnC +xVdliEuU+FMW7YedoVg9yi6MkMsh7HbBVuRwVao8La2bD3sKsFuUnR1hrgG xq4T7NoMdu38wia6LkNY+6q2bD1s9fyXvIluyBA3Ft/jN2Uwv0p0zYWwWwTz DeXWDHGbCs9XdHuGuAPG6GkSYu/U+fjpdleGuFuFfmDfkyHuhTFPbaYy2JQK aaoVwmYE8zzyvgyxRoXjiu7PEGth7AgYC7F++Bym6MEMsU6FXqetzxAPqXA/ RQ9niEdgjJbhIXaDzsf2waMZYqMK7YNsyhCPwdgIjIXYzTof+1zNd49nnObw ZmhLh5+LjLZmbHMG2/HDs/NGvyyaERbwj+pcyZezfxdiH1Fhq6nWZDd0vaJ2 g+wuXa8yuq5JgMbWZVIPzr/yBrL2A0PsWhXS3cEX+QMZ1nf4fSBLUmsyAXri kJS9xFBgWoVk9dlfpIXCsOd6U0iWoD3H8KHsGcfBkCWpuzMBmgGRlJ95ocAd KiTD0H7lnRnW80yaHfghH04SPQM+CrIkdUsmcDOMkZS9zlDgRhX2IWv/M1wa eN2zCLJ9ZcO1kNdmx0KWpML12ioYIynPeUOBa1RIc3C7qOG61+vwEyF7vLLh 2txewcmQJanQPyBng6TsxYYCdl9Og+wpyoaOjB2iMyBLUqFrNCkBMlLt3obY CRgjAa95JzMBu4HnQvZsZUOH0AbD+ZAlqdDFXCoBMmbtBofYC9qk6LguvrDP 7CLILiv+2qocdHqhSCq06M8qvsH8LgqxZ7ZdSnQddNmn8JV3OWQvVZZuC1U7 OnQjIqlwy+hkCdAN1HfJEEu7YCSwXAJ0d6/ax6NH18q2inqB4yRAj1w/V0Ps sSqkCYJnAeEeKe3KksAqCdDspWpfmaZm17dV1AuMS4CmlJ43htijVEgTYM9y xzMstRyQwM0SoNl5VZ8DLT3ITT88EzhUArRk8rooxB6sQlrgeRV3aIalFhgS uEsCtPosCBygwinIkjt/QCZgq5YsAa/7Q+w+KiQDY1rZ/TLs3jBGAvdJgNyV gsBeKiTriGz5vTKBPSRAlpd9rRC7mwofgqxduD0y7K4wRgLkKFJtQWpM50gm qZ3QEDuiQrJ07dtS7Tzs6LzUzjLy9O0xk2HdDp2NybPfxIfO7UNtCsi2f0zZ uYc3J7cVDvdeQrm3tvU0aRtgbC6KnX3aJNhYOL6qB5f2UbwTRP5/4X1kD582 jtxK0qVXtymkra/1ypIVP+x2UHGN0j0olLKHTwLemezc50sbmW6V6dL72xTS Viw9SkIBet6Q6+/96M49woSdUrZz3/A0ZN0KRKZ8AXugCqk1gKZKoQDNp8j1 d39E555jwrqtqUsfclNIDSG3KkumfAF7hAqpW4qWAqEArRfI9XfnTuceZsLe oGw/w/ZVSA1K1ytLpnwBu0iFqyFLS91QgNbD5Pq7f2xJJmAPn7BXK0v+fwFr D58a5lYqS6Z8AXuiCqnbjaycUID8HnL93R9HrdIFAXv4hL1cWTLlC9jTVHgF ZMl2DwXOkADBJpUlS3OYsTowNgFjl0iAmuUKAvbwCXuRsmTKF7DnqvBiyJLt Hgq4wZBg9v/Jsh+2cTAwRgjLUyt3QWBZ8cz8ayNTvoD1C0XN7GS7hwJ+gxHM /j+9i4ZtjA2M0SXiy+vSTMAePmF9WyBTvoD1jYj+uIJs91DAN1CC2f+nu+Sw LeCBMXL9/SAhU74g4EcXYcl2DwX8yCWY/X96rhawniCQh2//n2YBw1ocBsbI 9fdEiUz5goCnZoQl2z0U8JSSYOPK0ryxgPUEeByy9v9pljushWdgjFx/LwTC FncvPQhLtnso4CUTwez/07qogPUCjzx8+/9dmuIHxsj190I3bJn30pqwZLuH AlMSIJj9/+kMawODPHz7/12a7AfGyPW3kUOmfEHA1hFhyXYPBWx5Ecz+f+cG ffLw7f93adofGCOLncZCKZukBLMxTU5oAWtLt+z/d2743+His//f6U8AfmXl L4RDu/wVQGOW//Zt//4dd2r2h/cBvRb1WG/A2Jzu3NDvG03YvE9N+eQO0xVY wHpPwHvDIcLbgTY3Ozfge6IRNtvTbZXcxS4t9p7Ote5BFxDTKrQ51rlhnvwn 8sKHTRFoTdNqrBdgbkVwb1jnpnebK2GDO3WPkEFCLnbV5NUGSYhwa4y7+jo3 qdNaPlxHUF+T23lDmBdTbpUm47qAcKsWLUDD1aMby9wqHyKoz2518RyrFvf+ UwkymgsItw7SAiZ0M66EMS90QpgtHS8JyCyuMpvolho6VxOCecocIqjb1xPl iQxmi9FTSjJ3q8xPagwJnVQ3WW9RFCKojfr3goXWsb3bP7Zl62F+cvhjU0IE bR38SbBwm8D+618UhVsZ9lqfasvWw7xN5I/dCRG0lfWsYOG2lf3Sv7Vl62He HPQHJoUIMjFfECzcrLT7+ZKicBvV/uYrbdl6WF+wbYpCxDiMvSZYP4PZrXyj LVsP84LhLUUhws0T7ygK+xjIJHy38rhh7SjN+byvKETYSfRH7XXpGh4Y+0iw sMPGDuE/2rL1MPuC/1IUIrwg/0RRly7fgbFPK48rYO3tfa6ocx/vl4rCnl23 FH6tKOzpo7FvKo8rYO0TfadoKIJ9t/8oyntsf+DhX/XT/k9Rod30x3b5+g+3 7S34P+tTY6s=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 248.375}, {287., 0.}} -> \ {0., -1., 0., 0.}},ExpressionUUID->"1586102d-d2d7-4302-8184-ed94bb61a8cb"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(13\\). \\!\\(\\\"pentagonal dipyramid (J13)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"cc5d35f4-a172-4d0f-a3ff-913cbe3f9531"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .57735 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.34127 0.274929 0.426139 0.274929 [ [ 0 0 0 0 ] [ 1 .57735 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .57735 L 0 .57735 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .2619 .5636 m .2619 .28868 L .5 .42614 L .2619 .5636 L s .2619 .28868 m .5 .15121 L .5 .42614 L .2619 .28868 L s .2619 .28868 m .2619 .01375 L .5 .15121 L .2619 .28868 L s .5 .42614 m .7381 .28868 L .7381 .5636 L .5 .42614 L s .5 .42614 m .5 .15121 L .7381 .28868 L .5 .42614 L s .7381 .28868 m .5 .15121 L .7381 .01375 L .7381 .28868 L s .2619 .28868 m .2619 .5636 L .02381 .42614 L .2619 .28868 L s .7381 .5636 m .7381 .28868 L .97619 .42614 L .7381 .5636 L s .2619 .01375 m .2619 .28868 L .02381 .15121 L .2619 .01375 L s .7381 .28868 m .7381 .01375 L .97619 .15121 L .7381 .28868 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 166.25}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzFXA1PVFcQfbAgn1oF+RLBBYsfqHyIiCAKiECVGGOapmlM02yIqaQxtmLT NI1pmsa/0r9J2TeTue9tz7uct7NJE4XHzDkzd5fZd++cN/qi9vHtm3e1j4cH tereh9rPbw8Pjqq77z+cmCptSdJWTZLkn2pSvz4+udQvxyd/jqfqX+qW06+f 179V6tzPdrUvrq/q39rTsJX6pSY4TlLbX1HvMwmxl37rNJ/+DaykkvN9Konf lTQ7tpYOAGo37x8kTsNum+EMgHeY9zcS91TCPgEgRES2Iwd3S9Jv2np6AKjL vL+QOA372Ax9AN5j3nckbkPCPgIgRES2Qwd3XdI/tPWcA6B+8/5I4jTsqhnO A/g58x6QuDUJu2KGAQA/b94fSNwDCXsfgBAR2V47uMuS/p6tZwiABs37HYnT sHfNMALgQ+b9hsQtSdhFAEJEZHvl4C5I+nlbzyUAGjXvSxKnYe+Y4TKAXzLv Pombk7C3AQgRkW3Pwb0l6WdtPVcAaMK8OyROw94wwxSAXzHvFom7KWGvmeEq gE+Z9xGJuy5hZwAIEZFt1cH9UtJftfVcKwKl3hUSp2HDy7wB4OGtXCJx0xK2 CkCIiGzzDq7UXTLZUGp50E3z3iFxGvZynog+LKEQCdyEhB0HIERENlSVLFfu aMmYrWcBgObynxICp2FHzHAXwBfy7y2BG5WwYSO5B+BhsxonccMS9iIAISKy oW2G5Q5K+gFbzwoALZt3iMRp2HBEQXegcKu4UAaXJF8AECIi21kHV86MEiJz TMyD1szbR+I0bIA/BvB183aRuH4J2wtAiIhsqJdjudKNJN22ni0A2jBv6E7T n+JgjR3eCdSrpQ1UJepNud0SLLQ0m0WvsLCNjjN6M7/fBhBqm8TGN9fFMfI2 XUZochAoNFLx1jvOlQ9ZpvF5WPQJI9rxOFfuBfSdpht4z5BcvfugFgi1XsiG 0iMbG0+XFJomBAqNWbyVj3Nlh6L3P3Sf7SO5uieyOzjaDs6SXN3VxwAInQOR DaVHNjaeLik0YQgUTo5xaSDOlZMffa5Eh5QBkqtnTfZkPAy8F0munpY9PQBK j2wl+wK220HlOEJytQNi+zV0+B8judrDzTQY8vDphhLIe8dJrixEe2HQKRM2 lB7Z2Hi6JFZFQOU4SXJVWWB1kGngrZJc1UY8ig9Kj2wlVSBW2yoUSni9i1Xn UDnOkFxV7BbNMArgww0lkPdeJ7myBarymQchCRbZUHpkY+PpkljNGJXjLMlV Hfm+GQYBPHSgc8B7m+RKUyx6fObICM4GhI4R58pRVZ8ooDb1dBtKj2xsPF0S +ywGleMiydXnM0FC7Qfw3oYSyHuXSK70tpnmEzXUocuN6yJx7qakQr1vF2lD 6ZGNjadLemJrRKBO86JyfEBytyXVUzN0AniloQTy3jWSuyOpds0gfXVHDp4v gHyodYopjz7kAX0eUr9uB3GLxRWKrgnTp/qpgFAoo6Te5wIPswVxGYWaN9gs egWFjCZnEFohnZScS/AIJiVnFTyCic4vhMdWHtEjzpWCgb/0VksdbLwNWRI7 5+ARTDRVuBl4RI84V0ovc4PziB5xrpQeLItWSx1sPB1wYOcmPIKJpgpbtkf0 iHOl9DIHEY/oEedK6cGyaLXUwcaTAYxMVXpEjzhXU4WjtUf0iHOl9DINg0f0 iHOl9GBZtFrqYOPNypJCVVYBiBU94lxNFVpgj+gR50rpwbJotdTBxhONI1OV HtEjztVUoSo9okecK+MnmXfeI3rEuTpWi8qi1VIHG29SlhSq0iN6xLmaKtxL PKJHnCulRw95eAQTHfxAZdFqqYONJ6MZmar0iB5xrqYKe75H9IhzpfTooRGP YKKDJKgsWi11sPFkxDdTlR7RI87VVOzAiUcwKTmE0rxg0tRYilM8AQ0cNZkS 11BS7v85ilIhcU0NoICKbZJbcvCkh8SVHDJpbHCLcNmBEtiGnm4rbmFZbmZ7 RaCGZxkETppeelBkhMRlh0LQdkHYUOvGcjU9u71OkDjdSsOxFf1jgfCMcIrE ySulBztmSFx2iAMdwwgbOpazXE3PHltvkTg9ooZ2cBbAw7P3eRJXlbCo80Rv ArKhXzLL1fRsM7VM4rRxYtvBVRKnrZ+n8UX32pJNLtvib5A4bedZkWKbxKkg Eep7EsDDpNUeiZNPCdQZkRKFbM8cXE3PSmcvSJzKZKz494rEqdDnkTm/dnA1 PSvofkviVLxlJenXJE7lZ9TioHYL2b53cDU9OytRI3HZuYjMeS4PD2fBNyRO H4qwj3oOSZw+1kFdCmqQkO0nB1fThztnvFV/T+KkG6EfQB6ROH3YuA1AqD1B tl8dXE3Pzif8TuJKzSJ8olDl5w7+5KH/mTH42650nmAfsD4Dm8LTH0757w+S tn8BMSMzMA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {165.25, 0.}} -> \ {-1., -1., 0., 0.}},ExpressionUUID->"6748094f-410f-434a-b68a-9197633be0c9"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(14\\). \\!\\(\\\"elongated triangular dipyramid \ (J14)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"a6a9077b-6894-4b54-82d0-\ 006b66e26173"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.01962 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.214286 0.190476 0.41457 0.190476 [ [ 0 0 0 0 ] [ 1 1.01962 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.01962 L 0 1.01962 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .11905 .22409 m .40476 .31933 L .30952 .60505 L .02381 .50981 L .11905 .22409 L s .40476 .31933 m .11905 .22409 L .34438 .02428 L .40476 .31933 L s .02381 .50981 m .30952 .60505 L .08419 .80486 L .02381 .50981 L s .40476 .31933 m .69048 .41457 L .59524 .70028 L .30952 .60505 L .40476 .31933 L s .69048 .41457 m .40476 .31933 L .6301 .11951 L .69048 .41457 L s .30952 .60505 m .59524 .70028 L .3699 .9001 L .30952 .60505 L s .69048 .41457 m .97619 .50981 L .88095 .79552 L .59524 .70028 L .69048 .41457 L s .97619 .50981 m .69048 .41457 L .91581 .21475 L .97619 .50981 L s .59524 .70028 m .88095 .79552 L .65562 .99534 L .59524 .70028 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{282.438, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy1nWlXVEcQhkcFERQUBFHQSHDfcF9BwQ3QuMZEoyYaYkz0Q05yjL8se34d cbqbqhGeaqrPdM5RB7pr6q2p2131ds2t692F929e/7Tw/u2rhbG5dwu/vHn7 6tex2Z/ffRhat6bRWDPy4e/YWKP582KjsfTP4oc/i6PNf5ojdX5+2XxZ29T/ bxx4EV7WJcTF8JqmvgkvHUtTS9Np9uuP3xj+roWxv6L4c5haZ4s/g6kOW/wp THXa4l/B1Hpb/AlMbYCxP6P4l+LjjbbQFzCVEX8EU5ts8c9hqtcWfwhTm2Hs jyj+AKa22OL3YarfFr8HUwO2+F2Y2mqL34GpIRj7PYrflmu53Ra6BVMZ8XmY 2mGLz8HUiC0+C1M7Yey3KH4TpnbZ4jdg6hNb/DpM7bbFr8HUGIzNy1V5E984 IwN7QXyZS8JreuM0iJOK6KYVsTBpuQLv2Adj5D2Kma+j2sswtR/GyMsUW5Pa KZg6AGN0NSgGJ7WTMHUIxmZgjGJ1UnsJpg7D2BVZAhSak7KLMHUExsjz3TD2 fVR7AaaOwhh5vsdWex6mjsEYeZ5ySVJ7Vjx1EoTIRZRpkrIzMEVqyUWUkZLa 0zB1CsbIRZS5XkW1pIKg1EWUeZIy+phnnQAZtSdg6pzTHZT4ktrjTu/Rpxq0 1U44rzV9qm0w9l1US8ucViZ9qmFb7RG5rrTDCZTyeFJGUYjUKuiorYwiJaUV As2oPQhTlPMInmjAQlRL6YLiOsETXUhqKblRFiI5ohVJLaViypkkR/QjqSWe QBme5D6FsTlZJ3HRNfaAEPG1cXkjfYJl7wivCWAcxIk/krU2v1nBkhJa0BLe QAyYrp+X7BCHGmoBXc6Nmr+RI2lpepkREa5kA62hDnEGKaOtR3vpqqXZb0iX GEJxgU4OFILovUTqMob0iCFEkyjGEXOjmElH+2QIrbo+MYS453bZbJT6pmSW eN2gDdovoJSUKaURPDHBQkMGxRCidpSyKQeT54iSJkNo420XQ4iS0JndyzuJ zmYMGRVDyOXEjbxMlQhwxpBPxBA6XBClJOpJXJIoc+SSGIrGxRDiDVTbobVE XJnKSBlD9okhlCrCpwqbkVYB+YZMz8CHkBzSHWXSPudyPClm0lpK8BSIj8mn p41Mi4soNDHzQkNOiCHkJdr3FB8ojlC8GbANOS2GUIWMIiFFTNrmFIGTIZSa zosh9EYqJdDJgbY5HUgyhlwSQ+iaUqmEMihlWipZZgy5LIbQJlsve4AoDTEO usAJnqauCjzFOuJMZAiFO1qH/bYhN8QQSkPEIokgHhB/mWSC4ecEnhYhEWk6 0hD5zxhCS+UzMSTSs86PZhfD+7j4TecpIpQZ8HsCHh2+4shCJxQ6jtHxIoP7 UHAjcPOn8Bt9hUA5hWyIORMDQ/gqqsP6QGQ8OTcD8JjWcPM3OkbSCqGVVIon TqWzIREpIgsJlMI1geqxaQZmQ0wI25MiRiGUHowoR1CspXi5uQy0V0ApVVNk oRyRQCmLE6gegogn0XqgDFkIqgceIqTkL6oTFoIOCyidFUgLkZIESmchAtWD DFEt0kLcsK8MNH9oIVJCx7hCUC010VYIyyzsTjqWJCiyjKD0CEKVIjrPVAA9 KKAUr4nh0Kmvtwz0iIBS4qDTjn3mxW8qCPS4gFIgpzOO/U2TG/SUgBK5o/MM HawKQc8KKDEHOrtQZE6gVAwg0IsCSjGHKCIV5zaVgU4JKPkmZNawO6fbh5oW KNqJVBjMgNLBhUCvCyhtCjprEIcoBJ0VUFqfdK6gA04h6C0BpZMknSaIokWD 8QoR6F0BjRVmPjkQAS0EeiBA8ZOsOCXQ6aQQI9zYFT4BMfSkjAI6KXsiW6eW Mh0Lr0E3ebanTHc5jU8AtKHo9jwCWC8AtN0yAA7vhL/dAkBEvRCgnJQnAMqJ XhdtEQDKot02gNdFWwWAyHYhQDmxTgBUefG6aEQAiERnALwu2iUARJgLAcrJ cQzkmES8LtorAESJMwBeFx0QAKK/hQDlVDcBECXzumhCAIjWZgC8LjopAERh u8oAyulqAiAC6XXRBQEgapoB8LpoUgBMGuoHKCefCYCIk9dF1wSAssp6G8Dr opsCQLupEKCcQCaArjZcdEcA6HaEDIDXRfcFgOhuIYDJEAP1TCtGeYzXCTTW 2aJsORNr/kYNCjV0i/HUReAFyLi1UwCoM6ACwAYBuP3/AGwUAGLaXoAuG0Bv cCGmXQFA67jEtAsBKDAojaRyhBdggw2wTQCoslMBYIcAUGWuAsBOASAi7AXo tgF2CwAR4UIASrPKU4kIVwBQnkr31nkBemwA5an0NVcFgMMCQF8WVgDQW0yI p3oBUuWB6KbWd+mLrAoAWsv1fp9YCKBE2FtIp7FNNoASYW9ZrhBAiXA7xYkE QERR7/1o58TRawPMCEA7TCsDoCVdKt9WAAipPrA8ak4lZX22snmx1ssQkzIq K0QSIrXPpdcg5CWJGfVGZ53eH+3liZttDG/fnYJ6uWMG1NuVp3cSePlkBtTb s6f3FHg5ZrppgWpzRPLotKXlSy/vzIDm+/20kOlloBkobzfggIB6WWm/Dert FRwSUC9TzYB6Own13mwve02glGC8HYd6+4KX0Q7YoN5+RL19wctyM6DebsUx AfUy3wxovpdxj0B5OXC6D5js9nY67hdQLy/OgHr7IA8JqJcrZ0C9XZJHBdTL nwdtUG8PpRaXvZw6A+rtsNSCs5dnJ1CqjXo7Mc8IqJd7D9mg+T5NvaPby8Iz UN4uTr1728vMM6DeHk+9PcPL1rfZoN4O0GkB9TL4BEpXw9sfqvVzL6vPgHq7 RwPhNZn+sA1Q1EcaAMwvSBmgvI90rTiQHlCTgWqzo1SLvPRwmdRvSpmHVkE7 XaZqCD1YJmNI7VZTrUrbT6NBQ2q3mmr1mjpsd9iG1G411So3+TBjSO1WU62G k+nJEGIs7bSaaoWcOP2IDVq71VQr6US5M4YQs2mn1VQr7nTrScaQ2q2mWpkn LaO2IbVbTXeLIXSBkyEEWrvVNGSDEORtYoSG1G41zfeT7rQNqdNqqrd1U59P Br5Oq6ne9UK8JQNfu9VUDzCUFGLGwm1Zu9VUG1vpJpeMIbVbTbWxlczMGFK7 1fScGGKzGjSkdqup3rlOESVjSJ1WUz0kUYhP8HStareaXhFDzC9p2ZA6raba V0scLANfu9VU+2pJ80eG1G811Uf3jLcCVW0rpUJ9QhsW+Hb6SMn7e1oAlk21 01FKx6sol54rtvr1pnVBy3efrdbbGkrbc7+tNt/8OWNtMVbmbe+kUHrQVutt 4KRUET9VelLf6hmDMsukuOiorczbekkJPqPWrJg6CMwxW623fZLI+YSt1tsg SVQ7spz07Etgn2YLJNHlE7Yyb5Oj/axIVOttY6Qj0ClbrfeLGfLyaVuttxWR 1kR0TOMHmPI2G07IBT1vK/M2EdIuy6j1tglSgLlgq803AlIQvGgr87b6UciO Lmr8CFPeZj6qqE3aar3telQxnLLVehvyKLdeblXrb7mj7H+lVZWrqU4r09EL 8cHLZqcb0ZDWNxJ7c7C8SC/Sg7ZXpxLXbXEqut6wxYn337TFiTPM2uLmY2Ia 6aHpq+f4eVucsvgtW3xILuwdW4iSYkacamnxBp/0AHzIjcvG7tnilP3u2+KU 1R7Y4pStHtrilIXifwaQ/jOD1bPLI1u8Wy7OY1vIbgdBcbu5A8Upjsfv0Rp/ wxTF56e2OMXdZ7Y4xdPnreIcJ1+0iqyIfy/j7D/i629bBpaBJdnwS4X/HaSx 5j/CE+zq\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 281.438}, {287., 0.}} -> \ {-1., -2., 0., 0.}},ExpressionUUID->"de27daa0-8c63-486f-89eb-bfb7751646d5"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(15\\). \\!\\(\\\"elongated square dipyramid \ (J15)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"4e9a2eb5-f37d-48f6-a496-\ c731ba3fc198"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .86124 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.17033 0.14652 0.320731 0.14652 [ [ 0 0 0 0 ] [ 1 .86124 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86124 L 0 .86124 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .09707 .17421 m .31685 .24747 L .24359 .46725 L .02381 .39399 L .09707 .17421 L s .31685 .24747 m .09707 .17421 L .2704 .02051 L .31685 .24747 L s .02381 .39399 m .24359 .46725 L .07025 .62096 L .02381 .39399 L s .31685 .24747 m .53663 .32073 L .46337 .54051 L .24359 .46725 L .31685 .24747 L s .53663 .32073 m .31685 .24747 L .49019 .09377 L .53663 .32073 L s .24359 .46725 m .46337 .54051 L .29003 .69422 L .24359 .46725 L s .53663 .32073 m .75641 .39399 L .68315 .61377 L .46337 .54051 L .53663 .32073 L s .75641 .39399 m .53663 .32073 L .70997 .16703 L .75641 .39399 L s .46337 .54051 m .68315 .61377 L .50981 .76748 L .46337 .54051 L s .75641 .39399 m .97619 .46725 L .90293 .68703 L .68315 .61377 L .75641 .39399 L s .97619 .46725 m .75641 .39399 L .92975 .24029 L .97619 .46725 L s .68315 .61377 m .90293 .68703 L .7296 .84074 L .68315 .61377 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 248}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy9ndlyVDcQhg/GxsYYAzGbCTBjCIvZN5tAIDZLAUkgIcsLuKhUwUUqKcJr ZH+tkO1pckc4klAPw9c9LR8FLmY8Up/uX9I53b96esSDtWePv/5m7dmTR2v9 u0/Xvnv85NH3/TvfPn3ZtHFD02zoN03zb79p/37x8s/0Ev4ttC/pwzr/vt++ jbU6/4kNn4S3jS9eGWmk6+PwNp67Unfq/WjowvbTGLT9GcXvQddGXfwudI3r 4nega0IXv51nYUoXugVdm6Htjyh+E7qmdfEb0LVFF1+FrhldfAW6turiH0LX Nmh7HsWvQ9d2XfyD9i3M9pwudBW6DPEr0LVTF38funZD2+9R/DJ07dHFl6Fr ry6+BF3z0HY5z9tv8cKLuWE/iA+jaOTCCyB+ANouhdc3nvik5TxccRDaLkIb eYafo9pz0NWDNhoEeZCk9ix09aGNRkWeJqk9A10L0EajIo+U1J6GrsPQFuRU z5WUncxCR0HoFLSRX/spKjsBXaT2JLSR/0tqF6HrGLSRefKTSe1x6KI2Mk/+ NKn1IiM58rtJrXceSY78849R7RHoolUnOfLjSe170KXet6q/T8oOZSF6Ug5B m6GMHkB6run53wVtP0S1JE5eqAdtFF2SWhInn0m+laJQUkvil6CNHD9Fq6SW xCmCUUiyo9pX0QBdSAF4Pl/ogdSIgXfbt9BDNICGXhAbB228EZwaDva0iF0C 6ecRwz7oGs9jpxuXbtIetHlDrwFkMgOhwEwPYZdgbQCZzkDId5GTIWdEg6Dw noDQgzCbgVAkeQfaiBAQH9lUBmRHBkLhKwQElUzQHBIzeaib35nNU4ChMKeG zQCT2EEyT8/63myeosgstHn5RCEQcVM96CVyQkYJHF1rADmYgZBrplF1oUIJ CPnEQxkI3TdELruQp890IEcyEPKYRJ670C0DyPEMhBwVPXjkH8iP7NCB0JhP ZSB0YfCE4WEkh03+lNydYf5sNk8PKEUEAkIPPCURPtWBXMhA6LmgGKkSyDBf tOjJPMXI5Wye1p64gpcRFgK5koHEKDgx2BtFGs6rkI8hr2QYv5aND094a5RI H9E1m6xGu3h7rLavYcCUlSIOQuaJwBpGb+Ux0/hoLDTRCqkdZZeILiXB6Cai m81LdKOXQN93G3G9miMyQI8zsXAv+TXA0aQJIaYNcJj6cON597bk9AohvV1q nMCR56fF3JrBvQ26bICjmRMKTfyLgrw3mUJ+fUcZOCHYxECICpGcTbATJCID tJh7MiS6gyimE530km4DHM2XTcSJw3qzjkTEC8EJOSdHSqP3ZlppYAkc3cC0 rAsZnLrzHmrzZpfpLt2ug6OZExJPYSk8Z2Oa7/NS90JIQucp1E5CWxc6n8DR VNJinszgSBk5TfL8XrJvgKOZkw0AXUGxkKKsdwOwrQycbArogSfuQAG9176q m4IEiVwlLeZShkS7VeJaRJm8GwUDHM2XbB7iXcWbByKY3s1DIaDhDcUbBJk2 Mt49RcJC7pZWbiVjiWBCZ/uJeL93szGrY6D5CG3j2sC9m41Co8zoG39Kne7W hIGeS7JHuMpT6rSrMIB4J8NOqds7iArmZbdAyS7vbiHeDUhcvAsiiXSiOt6d gQHEOyOORPpQG+0CKgApT6kTwUlAiLZ5l6Y8uU7kzwDinRHh9PQwejn9THcg 5cl1vVQBY7l3acqT68TVDSDeGbGT6zYvr2DeTql7OXhcONytexdEUurkKbx8 2wDinZHy5Dpx6wpAypPrxKMTEFpJ79KUp9mJGhhAvDPiS7MTU57ublxYcRyx ixUnu3T7emd/tX0NIyXKO2gg+AlSq5oa86gd6GrC6Buu3/UMKCsgFmtMVpjy 0ETFut4lFC20vYtuFO8RIb1UqOtdyU1ZC3kMw7xQXbrHvOY3Zy0USwzzQnXp 6zPv5M9kLRRJDfOS+qZp845+e9ZC1GZKNy8VIBT5vObnshaieMm8mu0OTfTt vnfyd2UtRP4N88KlidR7Rz+ftfTLzEumnKi81/z+rIU2xYb5fflCIvDeye9l LZSMmNTNHzBxe0d/OGuh3FAyTxxScFNixTv6o1kLfXltmBeKTukNr/nFrIW2 wob5QMzDE0s5Ue/kS8U60VrD/LGM2/vdSDmZjZEWdzuL5oV1KKxhXnYDXfbf NnE1zMu01aSrbvMybbTdWC9hdZsP3CzQW/phmcpRx2W+cLmXs5B3BCQ3oRug GhKhfKv/j1GlhmQi26Wfi6lZZl4ksustGhEgVJ5TRF0ZiLdAZCoDoQ1aIRDK 3BI7pOdnSwZCc+hdmkkdiLcERDK3dIV3Rgwg3nIP4ZiUy64AxFvaMZeBUNrP uzRTOhC7jGN3Nk8JYe88JPOUVfWWbAhfpi8NKgDxlmcIc+45jeq/G0Yg3lKM XgZCHLpoC8xAvGUXUuRBbLoQCHEr2uioX56EJuLV3qWZ1oF4CytspuqdEQOI t4jiRAbirQsoBOItmBD26v0ai9q26EB67ataHGGzV+88JPP0DHgLIWweWwGI twBC6j8aqSIowTCjYygqpg48sYLRLmXVQokpi1sIpGOpdTlNTt+GkkesXW8t 4CjrWwiudr210GnKCReCq1NvXU6sZ3VIteuthWzTPsEAR0GN2rrUWwsBJ6Zc CK52vXU5Kd+mg6tTby1EnWhbIaTa9dZC3umWKARXu966nNCn0lQiXLXrrXsZ HIWQQnC1662F+FPMKwRXp966fAtg/Haidr21bAuKfkbC4rXrrWWr4K1qTuAo LNWuty7fPhi/dKpTby1bCm9FiwGpdr21bDMo8I8EV7/eumi7MTeIpWqpdSjs UBPuya5Qvy4V1XT6lp16HzQ/1NWlynqJp1Go/DW4KIJIv7gefb/p56OMvs/t dLwBxLt/oAepPB1vALH3CrR9sfcKdMUu3bx3X+A9gcxOwhtAin5zqZ5ZZqfe k/mH0NWF5dP3zcLyiUru1oF4GT2NjzianYQ3gHh5vPdMNTsJbwDxcnbvKWzC 2fUzsdIJN6NH5T01pTwJbwDxcnFarvIkvAHE5t20FbB5N4Wvvbr5Io6tniFn J9wN811YNAGxE+4JyBfQVZsxn85A6E6b14F42XEf2uyTWWipDSBeTuw9Fc9O vb8GxM9/vWfnSQHJ/kFDLnJbfpBesvFlblCJrPvwWAES1a6ToHqJYpRLxzmO Xlsv7Tuoq+1y9F1PV9vlILu+rpYeee+pswu6WnJpxOCkhi8SrHR+KcSJolNn DWVFx74h90K1XRjSUV1tF74Tzaeje0ezFy9pOK6r7XJw2qKutssxaCd0tbRn sE+dPa0rk1+JeE+dTcp+gS7vMWP0/J/R1VJE9p46e1ZX2yW+nhtU2y1anh9U te54GOej+bV9C8tJuQQ5MHZpQHxIyHskbFLxHLooQi3r4hR5LuviFFEi6HR6 /2iXfkUXpz38VV1cfPx1XYh8tyFOPjn+xin9Twyvd9H+cEUXJx+6qouTb7yh i5PPu6mL66nj5i/okmMU7+hC5IUMcfIud3Vx8hr3BsXZG8T/VaT5e+jqtuv+ QFcY2wOWbT8l2fBhnf/hSbPhP3NXu2Y=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {247., 0.}} -> \ {-1., -2., 0., 0.}},ExpressionUUID->"1905f991-9011-4900-bd6b-e0fd1362fa1f"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(16\\). \\!\\(\\\"elongated pentagonal dipyramid \ (J16)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"6318a97e-a105-47ed-b227-\ 025547ddd3c1"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .76226 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.142857 0.119048 0.262082 0.119048 [ [ 0 0 0 0 ] [ 1 .76226 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .76226 L 0 .76226 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .08333 .14303 m .2619 .20256 L .20238 .38113 L .02381 .32161 L .08333 .14303 L s .2619 .20256 m .08333 .14303 L .22417 .01815 L .2619 .20256 L s .02381 .32161 m .20238 .38113 L .06155 .50602 L .02381 .32161 L s .2619 .20256 m .44048 .26208 L .38095 .44065 L .20238 .38113 L .2619 .20256 L s .44048 .26208 m .2619 .20256 L .40274 .07767 L .44048 .26208 L s .20238 .38113 m .38095 .44065 L .24012 .56554 L .20238 .38113 L s .44048 .26208 m .61905 .32161 L .55952 .50018 L .38095 .44065 L .44048 .26208 L s .61905 .32161 m .44048 .26208 L .58131 .1372 L .61905 .32161 L s .38095 .44065 m .55952 .50018 L .41869 .62506 L .38095 .44065 L s .61905 .32161 m .79762 .38113 L .7381 .5597 L .55952 .50018 L .61905 .32161 L s .79762 .38113 m .61905 .32161 L .75988 .19672 L .79762 .38113 L s .55952 .50018 m .7381 .5597 L .59726 .68459 L .55952 .50018 L s .79762 .38113 m .97619 .44065 L .91667 .61923 L .7381 .5597 L .79762 .38113 L s .97619 .44065 m .79762 .38113 L .93845 .25624 L .97619 .44065 L s .7381 .5597 m .91667 .61923 L .77583 .74411 L .7381 .5597 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 219.5}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzFnflyVUUQh282EggEwxJFthsJSyBsAiKggKD4lw+RoqyCPywtBJcncn0i 4/IokTunmXsSvm56MgtVhJvMzO3+nZme7i/DOZev1p8/+fqb9edPH68Pv3y2 /t2Tp4+/Hz769tnLpqmJwWBiOBgMNoaD0febL7+VvzZf/tlcHv01akn7/t7o ZXJk57+u4W54mRLLm+FVuj4NL9Ovul51S+8nW98Yviah7e9u+B3omtKH34au aX34Leia0Yd/DF279OE3oWsO2ja64TfiHM/rg65DlzH8GnTt1Yd/CF379OFX oWs/tP3VDb8CXe/owy9D16I+/BJ0HdCHX4Sug9C2Flflz+6NF2LDuzD8POwL eeN5GE4mVnn/iJVVeMd70HbOuc9+68zS8CPQdhbaaD+KWRr+PrSdgTbat2KW hh+DthVoo/0tZk9D13FoOwVtlAfELKk4AW0fQBvli187s6TiJLQNY8BSohBj y3EQmSW1hrGhc85obik7iVm6OJpbigTKYmKWLo4i4Si0Ubb7pTNLF0dxS9uB sqKYpYujzUs5gbKnmKWLo1RDCYuyrJili6M8uARtdjb+uXNAOeoCtB2Kb/Rm bXEQ5jH0rDk1JuT0vo/tSXX0E00VLWJOAfih00Cqp+O1Ux6nIM0pGYaQ2SiE 9jttwpwiYwjZE4UsQ+8CtOWUJRFCm2MhCqH0Rdkup5AZQhajELpSKhI5pe+F LuRQFEJBuAfa0ouluD8MXeM8QeLmotmc8mq4PxrdU0qada69tyAbQk5EIZQf KLhySrgIOaSFVGiibUn7PqfoP9eFnI5CaE0pE+ZggiHkXBRCW4tqQw5YiBC1 ioemLuvNbOndDO8bYBn34ofh/HJ03l3xa0WZ6nw6nzzSFYTfssM10y+h6aQi rmgePooXW4Fe3uT3bRHNQ13XDWhrSzkijq6ZJq0t+SSKa0tDhjha1raEJOIo Wmjm2lLTgzRxLUjKkESL2YKuRBLtKZqltsSVKK4thRniaDHbktlnnThyRTPX ltYSxbUlOEMcLWt9qhNBFII0W1VJL6BbyDkH0lTl0N+2yQuvhntapTJEeJ4n VLRQAqOpqEKJq0bwJeqrR4u0LSm37NcFq4tbhSDpYilTi2DKnd4IKEOVVDKI KhMFVybNSS23GzK9gdCWOUUw0aI3EMpwKAURvXchTXBpSiXptCaGTG8glCFX Cg7KUyJ4d0YglKFZ2nS0ORMF1yNc2qZkzxDsDYmC1NtjIpprTBbeQKjHvwUE 12di2q6GSO/iF+NkOnQWfZRVvKtuEzP9IwS19YWEHu8a2sRM10xzY8xD+Ilu vcpmZopqiv69hrh49XQ/VhlqJrSnkm/I3GUuUkFWDumNMrOIo404F81SOmrL xYbM+eiAqlFbGjZkjh0Qi9ajYZ3QUObYAc1DPQYepskcO6ADtTLkS2RCMSwy afhSdED5qwz50vRQiBkyj0QHVBcK8u6ktk0NcceiWe8/8JRhW0LFPbrMk6aD ekRLlcmQOZ6HnN9xyxCtyCQhK9GBF8HKcqwh7Ww0SlFTlV4NVYGjghG63d/m U7oHfbfuai26SmdRQmHDFZ0cT0ZjVeDTUKMcH89EQfVYU1RRUvDeXzCWWY81 DZneOw1aUKch03vPQWnqJEyb02V6z4lbUKch0z4dbsGaIo6O+PTI2Np2MDqo x5qGTCJjyk7tWBNlUgBTSJRmTYLCWV2m9/y3BXUaMr2nvi2oU2SSe+/dDMvR QT3qNGSGmFNPeOuwpluc91y3NHdS8d2ly/Se7O4QRKfHy4ruvQe3O4RTngfa U96TU7rltQy6GuIyb40tQ7Kzuj7vye5bYFoW7D3jbUu3hmD7tLct3c7pMqmN ap73LtsynCuCqYJ5WcJ7520Z9jUEe8+CvXdGlKHg3bpg76nwMEY4XWIZCjZk qodqjuCox8OGYFrMnHt6y5CxHGXRSfFMXGDvA/P1yNiQ6T0zbsvIhmDv6bH3 LuAy3DyvC6aK7/0gCYrNMgS9RTCfKBOMeO8WTudnEbTtisMrHbcmPRSWRNJ7 e0LC/qWD5fQHxdKpuS9kW5f3A1SqUrPoe+CM27aEvE8XV/qpsnQaNsSVfqos nYENcaWfKkvn3QVdXOmnytLZVsQ91JbBwVb1ONYQV+apsnRm3a9LKvNUWTqV GpJKP1WWTqCGuNJPlaVzZ5dVB59DV+mnytIZ0xBX+qmydJ40xJV+qiydHRf7 4so/VWZz4hbn5T8rQMVC8fvF6CUkoTKfFWAj4IGeU1LbEvdEywtnWNVDO0NI W4w7qAtpi2yGkLZ4Zghpi2JdbZfPSXqb2GUIaYFYhvsWOHVYd98WnQwhbTFJ hPwIXW2RaEkX0hZ/DCFtUWeLkJpYc6TvqNLHHYmPn2JDNq6Er77Z4kBC0SUf ClqON47qZnPo4ZhuNocFjutmcyr7Cd1sTp3uqpd8zG65qjvUzabX0FO6sfSK aBjLqW8rutmcatUVk8Hv0JVTe87oZnMqyVndbE5dONc3m5flV/umdpzHuzQ7 +CMGn52pL/aG7zADi4kN6KLMekkfThnzsj6cMuEVfThluKv6cMpc3S/V8h8A vDkjXdOHU6a5rg8f55Kb+iDKEcZw2vvdEcngH+iiPX1LH0579bY+nPbgnf5w 3lt3+0Ne2zP3ut5/4+Td7zVscyZjww87/F80BhP/A9daOzY=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {218.5, 0.}} -> \ {-1., -2., 0., 0.}},ExpressionUUID->"00f449c6-53ff-470f-b089-37fe65f3649b"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(17\\). \\!\\(\\\"gyroelongated square dipyramid \ (J17)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"c8c7df4b-2c73-4067-ae96-\ eca7e9de32df"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .57735 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.12963 0.21164 0.319223 0.21164 [ [ 0 0 0 0 ] [ 1 .57735 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .57735 L 0 .57735 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .02381 .38032 m .12963 .19703 L .23545 .38032 L .02381 .38032 L s .23545 .38032 m .12963 .19703 L .34127 .19703 L .23545 .38032 L s .23545 .38032 m .34127 .19703 L .44709 .38032 L .23545 .38032 L s .44709 .38032 m .34127 .19703 L .55291 .19703 L .44709 .38032 L s .44709 .38032 m .55291 .19703 L .65873 .38032 L .44709 .38032 L s .65873 .38032 m .55291 .19703 L .76455 .19703 L .65873 .38032 L s .65873 .38032 m .76455 .19703 L .87037 .38032 L .65873 .38032 L s .87037 .38032 m .76455 .19703 L .97619 .19703 L .87037 .38032 L s .02381 .38032 m .23545 .38032 L .12963 .5636 L .02381 .38032 L s .23545 .38032 m .44709 .38032 L .34127 .5636 L .23545 .38032 L s .44709 .38032 m .65873 .38032 L .55291 .5636 L .44709 .38032 L s .65873 .38032 m .87037 .38032 L .76455 .5636 L .65873 .38032 L s .34127 .19703 m .12963 .19703 L .23545 .01375 L .34127 .19703 L s .55291 .19703 m .34127 .19703 L .44709 .01375 L .55291 .19703 L s .76455 .19703 m .55291 .19703 L .65873 .01375 L .76455 .19703 L s .97619 .19703 m .76455 .19703 L .87037 .01375 L .97619 .19703 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 166.25}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzVnelOFEEQx4cQ5FYEBOSQQW45BORGQCTRTz7EhpjAB6NBnskX9AGQnS4T dvPvpma7dqo6EWatLqp/M0xPdx09fKvdXX//Ubu7uarlX29rv65vrn7nX37e Pog6O7KsI8+y7E+e1T/fP3ykb/cP/+7n6t/qkqc/XxaHTvrhoiU7BrIjpt5C W81+bmwqjsdAdsTUW2yr2Yvi0NVwIv9VDgNtBy3+HF2kT+D6dQLZLlPvg7C9 uaQwz0FTF5DtMPW2he3lSWGegaZuINti6r0Xtjfrx+yJ6B7pxdgjzFPQ1Atk m0y9DWF7bxzmR9DUD2TrTL01YXszSWGegKZBIHvH1FsVtjedFCZabLwAshWm 3rKwvSk/5lBE90gvxh5houXcSyBbYuotCtub9GMOR3SP9GLsEeYhaBoBsgWm 3rywvdcO8wA0vQKyt0y9OWF7E37MsYjukV6MPcLcB03jQJYz9WaF7Y37MSci ukd6MfYIc89726KVytN6M8L2xvyYkxHdI70Ye4SJXKdpIJuKkMXYc8MKeoLS VyTG3qgfU+s+DGAiD096tMbYG/Fjaj0jA5jIr5aeSWLsDfsxtebvACZy67VW Q8ieW9xBt156zRhjb8iPqbVSD2Ci6IO0PxNvD2JqeZEBTBTz0fLJkb3nSWGi WI5WvAjZG0wKEzVpxTKRvQGHie4b6YhvjL1+P6ZWnD2AiUaXVtYC2etLChPN EFoZNWSvNylMNI+6SIhsJhfFqtxohwuopkBhceTmqlEstLvyrorl3t96S88j QZNuTAEB0nvmulpoDb+V06ywq/moW0/0lkWOnqVMf2DAJ4yO3GZLFQGBSSth 9Bw0WSpwCCy8uOgGl7az3mHQKDPoPKAIraWqg4B7ljA6indbqk4IhBi46H4T raHH2CN0lNuxVGwRCJOhdJOlyoZAvDRhdJRRs1QBEYj5c9GRidEI9Bh7hI4S hJYKOgIJIS66wZQbyndaKvxA9iipidQtVVkEsttcdIP1A+j+kq6oaFOFBhfd 0ukQOhr9lm6OQPkOF93S0CV0NINV8YATqJRDk7Sl6SdQi8hFt7Q4IHRU+mBp qRWop+WiW1oIE7qWuyBQE54wekyhi/K+BtRkKXAR2DnCRbcUViJ0dPZVBN8E dj8ljI5+IVUEmgV28A2AJktpgMAeSS66pSQNoaN7qYpUlsA+34TR+0BTFWlb gb3qCaOjh4/bFVP5+xPQQ6epuqE4CrwhosKuiudMUWGz9EjQ1HdMNU3gtR1t Ps3iq5or+riram/Zxn7od2h9wC8nhWl90lpJCtP6wmu1HKbW0pYwrTsPzgM1 756tJYVpPcSwnhSm9TDZRjlMre1thGk9XrpZDlNr6yVhWo/5u5nJfEJoqxym VsqNMK0nNbfLYWq9AIAwrWe3d8phatUPEKb14hLn7pkv39kth6lVZUGY3BI0 rdG/Vw6zimck0iNM67WI++UwtQo6CNN6KbCL4LGLrbXWoIflMLUqGwiTu2FA yz86KoepVWxBmNY3vRwnhWl999NJUphoDrZUCOFeDmx+j+RpOUytAgfCtL7P 9ywpTOt71c+Twqz6/Qnub1CIvyHisq1mpd/SQReh+M8Tf7gk6/gH+MdlCQ== \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {165.25, 0.}} -> \ {0., -1., 0., 0.}},ExpressionUUID->"683a19e5-f243-47bd-9d98-a4ab6d1e5377"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(18\\). \\!\\(\\\"elongated triangular cupola (J18)\\\"\\)\"\ \>"}]], "Message",ExpressionUUID->"0ce440a0-fc99-4386-baf5-063c418fafc8"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .93301 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103175 0.15873 0.376508 0.15873 [ [ 0 0 0 0 ] [ 1 .93301 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .93301 L 0 .93301 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .5 .29714 m .34127 .29714 L .2619 .15968 L .34127 .02221 L .5 .02221 L .57937 .15968 L .5 .29714 L s .02381 .45587 m .02381 .29714 L .18254 .29714 L .18254 .45587 L .02381 .45587 L s .18254 .45587 m .18254 .29714 L .34127 .29714 L .34127 .45587 L .18254 .45587 L s .34127 .45587 m .34127 .29714 L .5 .29714 L .5 .45587 L .34127 .45587 L s .5 .45587 m .5 .29714 L .65873 .29714 L .65873 .45587 L .5 .45587 L s .65873 .45587 m .65873 .29714 L .81746 .29714 L .81746 .45587 L .65873 .45587 L s .81746 .45587 m .81746 .29714 L .97619 .29714 L .97619 .45587 L .81746 .45587 L s .34127 .6146 m .5 .6146 L .42063 .75207 L .34127 .6146 L s .5 .6146 m .34127 .6146 L .34127 .45587 L .5 .45587 L .5 .6146 L s .5 .6146 m .5 .45587 L .63746 .53524 L .5 .6146 L s .42063 .75207 m .5 .6146 L .63746 .69397 L .5581 .83143 L .42063 .75207 L s .42063 .75207 m .5581 .83143 L .42063 .9108 L .42063 .75207 L s .34127 .6146 m .42063 .75207 L .28317 .83143 L .20381 .69397 L .34127 .6146 L s .34127 .6146 m .20381 .69397 L .20381 .53524 L .34127 .6146 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 268.688}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnPlzVEUQxzcX4QgEQ7iPbABFMIB4iwd4gRfe9wUpyjIBYzBESBAIgRAD MWBZVlmWVZZl6d8Z845M7/HpyfQj+W2qyO6j59vf7n3vTR+zO+9E73Df1wO9 w/2ne8vHh3rP9fWfPl8+Njg0J2pqKJUaynN/beVScjxbKs2/zM79m+1OXhJJ 8ePe5O1gwvlLhaDUlFtJoaWHQHYng5+Cof0gmykEPwlDB0H2sw5/GGTTGfwr GDqkw7+EoUdBdrsQ/AsYehxktwrBP4ehJ0E2pcOfAtlPGfwzGHraBj8MsskM /ikMPaPDP4Gh50B2sxD8Yxg6ArIJHX4UZDcy+Ecw9IIN/iLIrmfwD2HoJRv8 ZZCNZ/APYOgYyK4Vgr8PQ6+CbCyDvwdDr9ngr4PsagZ/F4besMHfBNmVDP4O DL0FssuF4G/DEFH8WAhOhunkXsrgJ2CIrrQHTvfRaAanc0xTZqQQnC44BZOL heBL67vxRBqvqhG+tHfkIswmOlv5XDVObWPgMIYlY4wk+HGQFQvYBH8FZHn2 MCYbYyoz5lVj1jbWBDTrn7fBPQUKVUvP2uCe4spY6RnrSGOVSjXwEza4p2Re 2nLf2HsY4SdhyNM3nYKhxWviliVvyUGpM3lprZDWKFCfuS8Qdy+6LdGl6FJ0 KboUXYouRZeiS9Gl6FJ0KboUXYouRZeiS9Gl6FJ0KboUXYouRZeiS9Elr0vJ QdWXPfqPCpvnZcl78jezkEZLlSzXnP8mK/TXi43Ja2Mium1TbHaKUzbFZU5x 0qa43ClO2BRXgmzcRrHK2TYqrnaKYzbFdqd4xaZ4H8gu2Sg6nG2jYqdTHLEp bnCKF2yKm0B23kax2dk2Km51it/bFLc7xUGbYpdTHLApdoPsjI1ip7OdKx52 gvsDKXY5jf4KivrQt8vyqVK+s5V8HBh3BpKWQVZFrwVQUiQDO5zGdzqthNcd gbTbnMY5nZYS5VbL7V4j85hqdf6EGqibiES7woE2B9JudBo/6LSrQLYh0ADh PKbanD+hBurCKtGucaDOQNq6ME+0ax2oI5BWNC7rtETWHmiAcB5T65w/oQbq kjbRrneg1YG0dUUE0W4EGRUwxkKHTG1y/oQaqCvBiHaLAy0PpK0rCYl2G8ha Ag0QzmNK8nOogSancUunlezdpNI2V8nm8dM6aXe9WnK8n8UzOlGaH5ucbnp0 R4enOfpQIrq7gHPpJ8g+shvsqXYveV/APcqujSDbG4i7rZuSBE2XnwzI5ffQ SoKmebHHOy+mdFrKritARkUa4W7qpiRBtwUaWOk0PLSSoClAUzEoAfqGTkvZ NdQA4a7ppiRBr9NmAXVpqYaHVhL0+kBayXVXdVpJ0NQ9dWmncqGUTueMarTt gbhR3ZRcf8oKZECSkodWEjSdBJpokiku6rSUXUMNEG5YNyUJmu5qOssSoj20 EohokhOttHpDOi2F1wdARjUR4QZ1UxKhaR2PpteDTqOKlhN0TyDpPqcxoJIm x/QbdQot9GvzyvY8HaGdv0R2wDlXSVEDoh/b05IT4b7RaR8BGQUUwuW0tFuD vCBawvXptOQFdQGEy2lpKwp5QbSEy1dUaEMMwanfJdyZJaWl3T4EpzqFcGd1 WroUrYG4nPZIoBdES7hvM9qjgXCKluTtItASLg9YtFuM4NTikLeLQEu4fGmN NoFncF4kpI1KefinXXU1ltP3x+6dgrzIV9poK2Aa31ORUVECfk171qiljXyh m/Yv9nhOq2TfAzop7aHc6xSbA28GSu9DuoE9zgAtjcoqLHV9+SolbRXd7RSp 15Nyiro+D62swVNNKcXfbhjNyzvaB1sGGRmQbo4W0z0GpKOmdEbNJK1652uq 9PgC+SqGsru0Cx5a2k8sK2RU4shXdFS5X9BpqZ4lA9IkUqPm2U8v/SitBUuT SC2yh7bDqygLolRcevbnt3s/Jp2stboB2qNONx2ZkstNd9GobkAaR7oTpPck RzyPFpAJTS2trCfRXPU8gkDCT5c289TQ5XlUgQR5WpmgGEMxveppBZxNqLWV NpaSQtUzDepWHSlaSv9akxo9DzAgHkkEY5niCIAkrI/rIDqpHniX45zQQbJ8 MamDJLZO6aAtIPPAZaZN6yBZdZrRQRLq7uogCkgeuMTdX3WQRK3fdNAakHng 8tXg7zpIsvAfOkhCx586iBoVD7zFcf6lgyQK/F0J4mWTf1RIcvxvxWhq5D/d bD6U/mcRngZXavgfIcwvPg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {267.688, 0.}} -> \ {0., -2., 0., 0.}},ExpressionUUID->"19621b25-e5e3-4468-8f49-8a6a183acf73"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(19\\). \\!\\(\\\"elongated square cupola \ (J19)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"e361f971-bfde-4305-b234-\ 4ec5fb369271"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .80178 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0833333 0.119048 0.36602 0.119048 [ [ 0 0 0 0 ] [ 1 .80178 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .80178 L 0 .80178 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .5 .3065 m .38095 .3065 L .29677 .22232 L .29677 .10327 L .38095 .01909 L .5 .01909 L .58418 .10327 L .58418 .22232 L .5 .3065 L s .02381 .42554 m .02381 .3065 L .14286 .3065 L .14286 .42554 L .02381 .42554 L s .14286 .42554 m .14286 .3065 L .2619 .3065 L .2619 .42554 L .14286 .42554 L s .2619 .42554 m .2619 .3065 L .38095 .3065 L .38095 .42554 L .2619 .42554 L s .38095 .42554 m .38095 .3065 L .5 .3065 L .5 .42554 L .38095 .42554 L s .5 .42554 m .5 .3065 L .61905 .3065 L .61905 .42554 L .5 .42554 L s .61905 .42554 m .61905 .3065 L .7381 .3065 L .7381 .42554 L .61905 .42554 L s .7381 .42554 m .7381 .3065 L .85714 .3065 L .85714 .42554 L .7381 .42554 L s .85714 .42554 m .85714 .3065 L .97619 .3065 L .97619 .42554 L .85714 .42554 L s .38095 .54459 m .5 .54459 L .5 .66364 L .38095 .66364 L .38095 .54459 L s .5 .54459 m .38095 .54459 L .38095 .42554 L .5 .42554 L .5 .54459 L s .5 .54459 m .5 .42554 L .6031 .48507 L .5 .54459 L s .5 .66364 m .5 .54459 L .61905 .54459 L .61905 .66364 L .5 .66364 L s .5 .66364 m .61905 .66364 L .55952 .76674 L .5 .66364 L s .38095 .66364 m .5 .66364 L .5 .78269 L .38095 .78269 L .38095 .66364 L s .38095 .66364 m .38095 .78269 L .27785 .72316 L .38095 .66364 L s .38095 .54459 m .38095 .66364 L .2619 .66364 L .2619 .54459 L .38095 .54459 L s .38095 .54459 m .2619 .54459 L .32143 .44149 L .38095 .54459 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 230.875}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnAlPFEEQhQcXFO8LD1DiEmKMMcYYY4wxxhijxHiAFyiisiIKKh6I9wHe J8Zf6d9ApqutLPjN0g07MdFKdGfyqvq96t2Znu6qHk6URgb6h0ojg32lYttw 6d7AYN+D4pG7w5NQoSZJaopJkvwsJun5xOSp/5iY/DfRkn6kSNz5UHpoTXl+ CHDbHQqe2bkmLYCNi/stMLUC9k3cb4JpM2BfxX0QTFsA+yLuA2DaCthncb8B pm2AfRL362DaDthHce8H0w7APoj7NTDtBOy9uPeBaRdg78T9Kph2A/ZW3Etg 2gPYG3HvBdNewF6L+xUw7QNsTNwvg2k/YKPifglMBwB7Je49YDoI2Etxvwim Q4C9EPduMB0G7Lm4XwBTG2DPxP08mI4C9lTcu8B0DLAn4t4JphOAPRb3c2Bq B+yRuZu7uZu7uZv7bN0jn02RT77I52rkUztyThA544icz0TOliLnYpEzvch5 ZOQsNXIOHDnDjpy/R64OItcekSubyHVT5Koscs0XuaKMXK/OTw/pSdKQfiwo Q6c1KAK26S9hFEudhW6hW+gWuoVuoVvoFrqFbqFb6Ba6hW6hW+gWuoVuoVvo FrqFbqFb6P9r6OnJlFrHUCZx7W8sPab/x2dqUTcF8y1/V2aym03F5qWf81LI F4yohLkskKxWyT7NnWy+kvky3LRarDsuDySrB+zt3GkXaoyerLvCLxPa8cVK 6kutVOIuZDUMEFiqAqP5CCxXAV/oppp+HWCLAgVWAlZhW95cpFZpX7wAbWdY kHVtBAg0qMCTfATWqkCF/RtERjcNCawH7IFI0c4SuoqofyTVqH3JSaBJBYZF 4GzWDUTDVeiX5QRG8hFYB5iXOgMmGurofiGpNdqXx/kIrFYBv9vnNDjRYFAb KLBSBZ7nI7ACMC91KqvDASMxSS3Tvvj9Qh1ZPxnNAQIElqjAWD4Ci1TA7xqi TWhyffMjlvae1Cvpu+qR0nDi6U+CqVGumXJsIoO5TsP9WBW+gvL5DUS0U2/D VKys27XTvxJH5XcLHQeqZnUCgvR8PLitM34Xd7dh8EYK3CkDqjiVv220Rmu0 Rmu0Rmu0Rmu0RvuP0pbPo90LAm7OLUsFbVSMI5b3EiqsoJwGEUiqWl6bcE6Z a+uZKPrVKSBZ4o7N4Oe/mD4ly86D/bG42QCud4WP3oCpDnOvRpqdoOUfphH8 7wnpZSWlZNQsSXuUNDTDTqkDSjHcF4FuFaCkDQlQdoWyMD4dSKnynKS6tC8N gQJ041Bw5blTJ7A2H4EzKkApYhKgxCBdKj6hSdm6UCkaIuhSfyhSHdoXuhOr INCuAhsDBSgJRSOAT/ufUoGmfAQo+0vZaJKikZBqEj7RfFb7kpNApwrQaEMC REZfYPlrrk6AhgASoIoV3S8+VU5vulI2ugpSF7UvoQJ0FdHw6Gtul1Qgqoga LnBFBZYECogfPwF91bOkpKHFxmnDgzv6ZD69ERta1KpAe01jDCWjX8B3+LqS hRZ4fHZ3QBuGFjt8Q3m9NSgR7lu4N1wLMzj98YeZnHWWf+UpqfkFnHBC/Q== \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {229.875, 0.}} -> \ {0., -3., 0., 0.}},ExpressionUUID->"039ad5be-a7ab-49af-ba90-6c87d3e2d5dc"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(20\\). \\!\\(\\\"elongated pentagonal cupola (J20)\\\"\\)\"\ \>"}]], "Message",ExpressionUUID->"e1068517-3af6-4cf9-890e-bc32a7855fb8"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .75301 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0714286 0.0952381 0.358661 0.0952381 [ [ 0 0 0 0 ] [ 1 .75301 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .75301 L 0 .75301 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .5 .31104 m .40476 .31104 L .32771 .25506 L .29828 .16449 L .32771 .07391 L .40476 .01793 L .5 .01793 L .57705 .07391 L .60648 .16449 L .57705 .25506 L .5 .31104 L s .02381 .40628 m .02381 .31104 L .11905 .31104 L .11905 .40628 L .02381 .40628 L s .11905 .40628 m .11905 .31104 L .21429 .31104 L .21429 .40628 L .11905 .40628 L s .21429 .40628 m .21429 .31104 L .30952 .31104 L .30952 .40628 L .21429 .40628 L s .30952 .40628 m .30952 .31104 L .40476 .31104 L .40476 .40628 L .30952 .40628 L s .40476 .40628 m .40476 .31104 L .5 .31104 L .5 .40628 L .40476 .40628 L s .5 .40628 m .5 .31104 L .59524 .31104 L .59524 .40628 L .5 .40628 L s .59524 .40628 m .59524 .31104 L .69048 .31104 L .69048 .40628 L .59524 .40628 L s .69048 .40628 m .69048 .31104 L .78571 .31104 L .78571 .40628 L .69048 .40628 L s .78571 .40628 m .78571 .31104 L .88095 .31104 L .88095 .40628 L .78571 .40628 L s .88095 .40628 m .88095 .31104 L .97619 .31104 L .97619 .40628 L .88095 .40628 L s .40476 .50152 m .5 .50152 L .52943 .59209 L .45238 .64807 L .37533 .59209 L .40476 .50152 L s .5 .50152 m .40476 .50152 L .40476 .40628 L .5 .40628 L .5 .50152 L s .5 .50152 m .5 .40628 L .58248 .4539 L .5 .50152 L s .52943 .59209 m .5 .50152 L .59058 .47209 L .62001 .56266 L .52943 .59209 L s .52943 .59209 m .62001 .56266 L .60021 .65582 L .52943 .59209 L s .45238 .64807 m .52943 .59209 L .58541 .66914 L .50836 .72512 L .45238 .64807 L s .45238 .64807 m .50836 .72512 L .41364 .73508 L .45238 .64807 L s .37533 .59209 m .45238 .64807 L .3964 .72512 L .31935 .66914 L .37533 .59209 L s .37533 .59209 m .31935 .66914 L .28062 .58214 L .37533 .59209 L s .40476 .50152 m .37533 .59209 L .28475 .56266 L .31419 .47209 L .40476 .50152 L s .40476 .50152 m .31419 .47209 L .38496 .40836 L .40476 .50152 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 216.812}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnPlvHDUUxyfZ3ezm2KTZbNpASrIpUApCqEIIVQhVCFUFIUDl6AEF2m0a SGjTTZPQhvu+r9/4B/in+G9CxvY+7/Gx8SQw7A+WmrX7ju/z83g8z8+eeam5 vbqy3txeW242nttsbqyuLW81zrY290iFoSQZaiRJ8lcjSeu7e1Xzs7v3b3cp /Ukp2epbabGQ4vyuCZuqKBhkJZocBdovWvw2sBaA9rMWb6XFcMo5JjXDugVa DwDtBy1+U/RPSM2wboDWI0D7Vou/D6xHgfaNFl8VcyelZljvgdbjQPtSi78L rCeA9oUWvy7mTknNsJZB6ymgfarFm6J/WmqGdRW0ngHaR1r8CrCeBdqHWvwd YJ0B2s6+xN8G1lmg3c1D/C1gPQ+0O3mIXwbWC0D7IA/xN4H1ItC28xB/A1gv A20rD/FLwDoHtM08xC8C61Wg3c5D/AKwXgfaRh7i54FFEK19iQ+UqwM1CAbq 9hioiWOgptSBetgM1GN4oAIUFVyp0O+M1ExUlzEIbALrNNA+1uLXxNzTUvtM s66D1imgGfEV0X9Saia2zhiKrwLrJNC+0uJrYu4xqZnVRMbFx01gnQDad1p8 Xcwdl9qPmtUCrWNAM+Ibot+QmlnTZVwCbgHrXqD9qsXLaZFWklr6U+mg9ijM HYB2z/+kS7SR6GJ0MboYXYwuRheji9HF6GJ0MboYXYwuRheji9HF6GJ0MboY XYwuRheti2mlK0duk/8lJ1yxTUvL9M9k3Xv2GVTpRil10dryJt9/o9tQm+1G 66YNixc/aTw6fzUcSCMDRTFgzoOtgVDhAAZGgGa2c2gfqXgAU2XxxRigfS3q +VADo2Lga22ADqWVPYOCdnrGBdRsr62AUCUjaBVoZh9wWeyNZwSdFE0Ddc3l TgbQQwL6iQalDdKJjKA1oJlTdVddjvXfpIQ8I801eFdAaCocry54OxqPjvEd CserCZ7Zb6aN7ulwvL7LQ7v4M90052WZApqBpZMK9UDYqrTxcw2mzmAomdlA CHsTVkT3TgdY74SonjaB2HbWKAs2zTieQ3ZFUbTXg0zZGXBENGjC85iybax6 TZWEWxKNUZDznNEZS3+Loug0VRBuQTQm3KYuuUZeQTrGaYqui+33cHs1sVfw 2lNTWh0YnnNWs4KtwYWp4iuFeMSNSMfIlOKCq40eRRKnByfJeY61UaBINA8s Hd0jcaKRqX8Blmieg4bUivlssHSYksTpvAqZzx+WxO8LNG+OiNKBTRKnFzHI fP6wJL4YaF6/KJK8FijeCDSfPyyJLwWaX9ewdFqWxP8jWDpfRl55YEn8/kDz elGbvJIWBddcT2BzonGrY4wWXM8Zeg2pLhr0gDUtuyhCMyD0INCmRYOCHANr g0F6hhPspGhU3LAqrnaGIseBNioaY+6r3vTafghoNtKbdMOqs9kVaa2zz8hA QTSm/8EAhYhVuerO699zhFOVKmKiwGi9YxjTcFBOPuwdoR6II9AU3SelLlq7 nAUMc5fQ/TvbDdX+U//XI7GMvHZJHeIxR+I2Hl2SWs9IUCXdg57pmVbclPqh h/cImCe8jObtYmheanqF0rfypYHtsUbidE/T4BvjFtDS2BMSkDjNQzQ+J7gF NHtkbIFdMdo0yZRnyFOWyvMeEInTnE5NgxSKNHE8WzOon2n8UXNJjqZEmvw9 rzzR4LOZJZvcOBxonnYNMponUwRLcpRvpqeV570r6sA56QebvHDmG3polJf2 mCdP5z13Ak2L1AyimWZQqoA6rceUKhcDTdFYyWie1kNEK3p6y5McoetE3hGt R1eVnvQVdcYiQNBywm67ZDSwIIpObsBFMNkMndrsexIsebqenNnpRAPfVXND L4x54eqyKDYA1jmwOjPplPk+CmB0r1LqwpOgnw+EpfxN5z4CTUmqpMyqnc48 OyeH+RKHztgGmTZ6KLVOT1IKQcz3E+hLDDPcYHroUoja+W6c6psa41G0Y3Pr nm9OOPZ2CI/iEM8bd1XPbeeMtnpo5pU7+9kN386ZM4zt3EOlDefRjKA0ej1v APp2UOma051mXgGkNwZDd4ApViPd77Upe+AgdA+blmd9G/4tT2eQobpH3pxJ 2OhWc86odIebExL0JRsKGNQtpZbkv2nFuy5FlSf4QwupnTe1Ev5TE5TcPj/a kwz9DTTUyXw=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {215.812, 0.}} -> \ {0., -3., 0., 0.}},ExpressionUUID->"a0540f70-0586-4aee-8ff5-f75273a9bbdb"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(21\\). \\!\\(\\\"elongated pentagonal rotunds \ (J21)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"55a3deb3-7a36-4a3f-b885-\ b7e7f82a9f31"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .89634 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0714286 0.0952381 0.362073 0.0952381 [ [ 0 0 0 0 ] [ 1 .89634 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .89634 L 0 .89634 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .5 .31445 m .40476 .31445 L .32771 .25847 L .29828 .1679 L .32771 .07732 L .40476 .02134 L .5 .02134 L .57705 .07732 L .60648 .1679 L .57705 .25847 L .5 .31445 L s .45238 .55625 m .53939 .59499 L .52943 .6897 L .43627 .7095 L .38865 .62702 L .45238 .55625 L s .45238 .55625 m .37533 .50027 L .40476 .40969 L .5 .40969 L .52943 .50027 L .45238 .55625 L s .45238 .55625 m .52943 .50027 L .53939 .59499 L .45238 .55625 L s .52943 .50027 m .5 .40969 L .59316 .42949 L .52943 .50027 L s .53939 .59499 m .56882 .50441 L .66405 .50441 L .69348 .59499 L .61643 .65096 L .53939 .59499 L s .53939 .59499 m .61643 .65096 L .52943 .6897 L .53939 .59499 L s .61643 .65096 m .69348 .59499 L .70344 .6897 L .61643 .65096 L s .52943 .6897 m .62467 .6897 L .6541 .78028 L .57705 .83626 L .5 .78028 L .52943 .6897 L s .52943 .6897 m .5 .78028 L .43627 .7095 L .52943 .6897 L s .5 .78028 m .57705 .83626 L .49004 .87499 L .5 .78028 L s .43627 .7095 m .4657 .80008 L .38865 .85606 L .3116 .80008 L .34104 .7095 L .43627 .7095 L s .43627 .7095 m .34104 .7095 L .38865 .62702 L .43627 .7095 L s .34104 .7095 m .3116 .80008 L .24788 .7293 L .34104 .7095 L s .38865 .62702 m .3116 .683 L .23456 .62702 L .26399 .53645 L .35922 .53645 L .38865 .62702 L s .38865 .62702 m .35922 .53645 L .45238 .55625 L .38865 .62702 L s .35922 .53645 m .26399 .53645 L .3116 .45397 L .35922 .53645 L s .02381 .40969 m .02381 .31445 L .11905 .31445 L .11905 .40969 L .02381 .40969 L s .11905 .40969 m .11905 .31445 L .21429 .31445 L .21429 .40969 L .11905 .40969 L s .21429 .40969 m .21429 .31445 L .30952 .31445 L .30952 .40969 L .21429 .40969 L s .30952 .40969 m .30952 .31445 L .40476 .31445 L .40476 .40969 L .30952 .40969 L s .40476 .40969 m .40476 .31445 L .5 .31445 L .5 .40969 L .40476 .40969 L s .5 .40969 m .5 .31445 L .59524 .31445 L .59524 .40969 L .5 .40969 L s .59524 .40969 m .59524 .31445 L .69048 .31445 L .69048 .40969 L .59524 .40969 L s .69048 .40969 m .69048 .31445 L .78571 .31445 L .78571 .40969 L .69048 .40969 L s .78571 .40969 m .78571 .31445 L .88095 .31445 L .88095 .40969 L .78571 .40969 L s .88095 .40969 m .88095 .31445 L .97619 .31445 L .97619 .40969 L .88095 .40969 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 258.125}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnI9vVEUQxx9tjxawlt/+ALkrCIg/iDGGGGOIUQRBQUUp9QeWWsAWxJa2 CCiCaFBU1PgX176d6ezd62cf+9q7y0t8JPT2Znb3O7s7uzM7b+6dHJ+fvHh1 fH5qYrxxbHZ8ZnJqYq5xdHp2kdS7JknWNBb/9zSStLyQJEt/3L/h9I9+WWF5 Lv3Ylfb5jxBm3UfvgoEsftsJtIdS/RqwdgHtT6k+nX70pJzdVlLWt9DqWaA9 kOpXgbUPaL9J9W+A9RzQfpXql026F62krClodRBov0j1SWC9DLSfpfolg3vV Ssq6CK0OAe2uVL8ArNeAdkeqTwDrdaD9KNXHTbrDVlLWeWj1JtC+l+pjwHoL aLek+pfAOgK0myuqfg5YR4F2oxvVvwDWu0D7rhvVPwfWCaBd70b1z4D1PtDm u1H9U2CdAtpcN6qPAutDoM12o/pZYJ0G2rVuVB8B1idAm+lG9TPAoi6mV1S9 VEMtlRKUanuU6uAo1ZFaKmNTKjNcKgfFOVfO9TtiJfXqCjqB48A6DLQfpPpX BveGldSPLej2XrT2h6x0T1hfQ6tXgKbVCzr6UwZ30Er3hXUFWj0PNK1e8Gpz 1eD2Wel3YU1Dq91A0+oz1r5hJb0WFrxFzgHraaD9JdXX6tck2Zr+6W+iZho8 BbQnI2llalurhlgSMashVkOshlgOMashVkOshlgOMashVkOshlgOMashVkOs hlgOMashVkOshlgOMashVkP8Xw0xLbTEyOcjO66l3zTMT8H5IHBfSrofbkhR /YH0r0P8qVjDQUO8LQ3pscMOoG0yxBvhhvS8Ylv61z3ouF6s4Xag6ZNXSqF7 JoSdoc2Hu6AsvC1Au16si81A02eTM8CqA20T0G6Eu2gAbQhoN6ULeu69NbLb x4F2K9wtTecw0AaBpg8+RzOsxG3YuG4fA5o+IJW0iFozy7onqekp33qg3X50 96Qge4C2DmiaQUgZJr1AIy0gqAGg3Vk9FGWnkmW5K1CUxFMDGmnL3si2eoBS Ok4/0EiDCKoPaPdWD0X5uj1A00fmHwOLtIgUd79OGWns/XZ139fSfWIpw5SQ tCESzT3JdxZHM5k/gkqkMv3W8ICVHhTrguTJqkc6gW4sO9Oi5HFg0hPtIALY w1NJ80Wey1gxCdbb3AxbifY/HSHkkki+cfIBsMjs0ajI9rdBJMr9IlOwweZh h5VoQxOtDfCkh09EwtPhS86YpDklJ4FFThaJRPVoQTokknNU3NJssRLpUkF4 SsmjyaedRDQSicwWOZqSGJe8l37UUw4B0NKQpVkJaIbFV56lee9pLZGsHZNh QS9BdJrSNiHhyMKThyy5k5guSRetARNurc1NzUrkKnZIEKcUNX+6sydAW42O 3jYI5K+ggrDERBnIKSKXXdJsk+PAIqviLhqORNfTDoHK+Lx9Tz8TvvR0ctgE 5Uhiplk/yGGViyHm7NaBRjrv98ZQZ8HJBVln4IOdBd8INLctHUm86mVuHyWy yp05OQYsuibTpX6jDXqgY7hkm7y1zh7MSXtAyfhtN1B/9FI+8dliUGTcnYFy pJ4YKMotj40VuJ3d10GAeusIXGm0WLfkEWZtBy184qHegS7oik6enqzaMt3e a8OhA3akGC55NbsBdwmSzu82iEFuA60IWXNywqieikQ/H90fOSoSyW/KnVai 1XwkfPzJTV4hXaZXJMYyfaPJoZ3hg+u0HRX3bWD5AAedoN7AkeGnaM6ZJqhM BOUAVKeDcMhakBlQgBjlTgKgdNATVA58+BSrNcObGDS5gzZOf/khQ6+Qx6yS D7dk90kIiq4tpMg58GEPkfcOnQJ0+nh3gnYMeV0q0Alr6IMtBEo0OkskosIn L2m/ihF771+NaFn4dH7p2qEixUZCCD5sk0AkR8oR5JRNoHfeaJVjQTdbL71W ylma2EAmwdPuIE9uyOah30o5ShsbPiaR6GTPekTWnz8/g0EVFem0VfLHEJmY WHjfy6ZWQRg+9iEI0ch61IHmhuNI26xEbUUWkSzj9JOti4X3d1R/UtFsKnze E0KCpMmlu7sfTN1KNKsqBj1ejbWcwTi8A93TOr8MTw+NaRFIsylM6745d6qX LGcTMr0shrb0DuvsJSuNFOvC3fnqppgsD/0sl8L/jlYLDY7in5eLAbip7gup TQ4AvSCHBrzeAGilKRQobxSSHzVHGOE+myKKbLQFIOEsgZy+x9KPRsiU0laS 30tL7K7QgtOk5wA4bc5f8J4VyH3aug0uc9C014EmvzYXtyd6cZPAQuUAHDe5 wyu87AZHQcscDO/lhyd1GQa57eSsXGrCiNYMNkR07OZAUqCTlpe0hpSbDFEO PF1eYheG4MkM58DTgw0yBwRPTnr42X8rTcwQPg4jlekQPN2QaIfSBMY+vM+B p9sQ+SwET6ExusDQxVasKj68j9Veco+IlgNP2RSx2ksjpRnJgacrWKz6EDxt RoqRTaweXkwen34UVVJIuuHFamzggUoOGqVHxSqoQ3Om5gXgiseDmV2xKuij hz4IqHpBt75Y1couYLogpAMKRbmDsWoUWBCSSk+bEZ2hWK0hhIVlcT51nM6y OOF+H32Y5rhpowZP+hGM42QuuvJGHrnOZXSBZCRHkxxt7ZbeRxXU9QgauUHy kiB821Ts8zC/E3wgTF84d84IfrnJPgQj5RmadjsGLFprgoq95etb6s6b3H7V gwlHmUCT5vHHXq9ik6dIixQq9i5KDpKPVXtN1wT+C0bwK0weptwc+HzQLPxL kYOk7ilSrFn49E6u4HN26rb5HWWTRvBrSRcWH7HV9PfLUIlWizrzsVbNQL9i vfv1oGuv1zzNvJY3IPMq0E3dD1JfTZx943LakKJOPvKomdL0njBC9DFDTTx+ CJX8qP8IV/Jxt4d5lRa//d3Ed4R/ww2U5b604V3ayZr/AFTSylg=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {257.125, 0.}} -> \ {0., -3., 0., 0.}},ExpressionUUID->"b9eb1662-ac0a-4c16-984f-ae29e16ebcd4"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(22\\). \\!\\(\\\"gyroelongated triangular cupola \ (J22)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"bd11414b-2843-4073-84ec-\ eeca4dcb47fe"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .84063 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0970696 0.14652 0.358389 0.14652 [ [ 0 0 0 0 ] [ 1 .84063 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .84063 L 0 .84063 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .39011 .2738 m .24359 .2738 L .17033 .14691 L .24359 .02002 L .39011 .02002 L .46337 .14691 L .39011 .2738 L s .02381 .40069 m .09707 .2738 L .17033 .40069 L .02381 .40069 L s .17033 .40069 m .09707 .2738 L .24359 .2738 L .17033 .40069 L s .17033 .40069 m .24359 .2738 L .31685 .40069 L .17033 .40069 L s .31685 .40069 m .24359 .2738 L .39011 .2738 L .31685 .40069 L s .31685 .40069 m .39011 .2738 L .46337 .40069 L .31685 .40069 L s .46337 .40069 m .39011 .2738 L .53663 .2738 L .46337 .40069 L s .17033 .54721 m .31685 .54721 L .24359 .6741 L .17033 .54721 L s .31685 .54721 m .17033 .54721 L .17033 .40069 L .31685 .40069 L .31685 .54721 L s .31685 .54721 m .31685 .40069 L .44374 .47395 L .31685 .54721 L s .24359 .6741 m .31685 .54721 L .44374 .62047 L .37048 .74736 L .24359 .6741 L s .24359 .6741 m .37048 .74736 L .24359 .82062 L .24359 .6741 L s .17033 .54721 m .24359 .6741 L .1167 .74736 L .04344 .62047 L .17033 .54721 L s .17033 .54721 m .04344 .62047 L .04344 .47395 L .17033 .54721 L s .46337 .40069 m .53663 .2738 L .60989 .40069 L .46337 .40069 L s .53663 .2738 m .60989 .40069 L .68315 .2738 L .53663 .2738 L s .60989 .40069 m .68315 .2738 L .75641 .40069 L .60989 .40069 L s .68315 .2738 m .75641 .40069 L .82967 .2738 L .68315 .2738 L s .75641 .40069 m .82967 .2738 L .90293 .40069 L .75641 .40069 L s .82967 .2738 m .90293 .40069 L .97619 .2738 L .82967 .2738 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 242.062}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnPlvVFUUx6cLLXsrLa1tgU7B0mLFfd93Ygwx/gkNMYEfjAb5Z9ygLV0o XdUKKJuAxsQYE2OM/h3+Ada++y73vJl+zuu7b+bNm2AT6AznfM/33Dnv3bPc N+X46JmTH3w4eubUidHisdOjH588deKT4tsfnV4TNTUUCg3FQqHwT7EQvF9d e2t/rK79WR0IfgSS9O/fCl5GAs7liKDQZL0YaGEIZIsh/E1QHQHZQir4G6Aa Adl8CH8dVEdBNpcK/hqoHgHZxVTwV0H1GMhmU8FfAdUTILsQwl8G1VMgm0kF fwlUz4BsOhX8RVA9B7KpVPAXQEWyyRD+PKjo85xPBad10pWeSAV/FlR0U4+n gtMVpO0+lgr+NKgos50L4XSzHgPZ2VTwJ0H1Dsi+TAWnbfwuyL5IBX8cVMdB 9nkIpxT0Hsg+SwV/FFTvg+zTVPBs1+4ZyGyvarZ3pOf28NyrnvBs80y2OdIz YWdbbDwrnyfcswxn20Jk2/549mKecM/GMNumNtuG3HM6yHZU6Qte/g00rRFB GZYGKZINV2BLsi3hknpLVeZ1KKFsuAJbWlJL5UsKZc1R2tXqrKonjFqJ6q7Z YErd4Qw4B+Ej2NvvflA1gWygyriDOfkl3NbNUJSFohtUW0DWX2VcMSe/hNuW bygI15JvKLpA1Qqy/VXGHcjJL+G2h6HYq0apVEbVvRLcvpz8Em7HZijKQtGp qkplPVXG9ebkl3A78w2FvqTcQtEBql0go0pTCY76mVr41XG5hYJwu/MNxR5Q tYGM0mslOCritfBLuPASFO4DFcno7qkERzmqFn4J15ZvKAhHd2gNQ9H+P/vY hGvPNxT1tGlsKPJKVfWUSsPw5FbA8i2ctFnrakl5tV02FKS6l5tswnXkG4p6 GtFsKOjq1GIwrqfBvXMzFGWhoBumFodo9XTIFxZde65XquoH2b1ypEu4rnxD UU8PBGwoaO/U4jFMPT0m6t4MRVkotoLqUHgrlchWDbq+HgWHfQhmwrKnxOY1 ++fp5rWvWqsqlVXyZQS7JJOfzfc1wlqN3xYsi0jwGvy9vZEFX6JbG5mVyhqD n42B6KafYbMzvO5n2OIMr/oZ0sa54kexzfn2NNzhDC/5Ge5yhit+hm3O8Gs/ Qzr+WPKj2ON8exp2OsMFP8MuZzjnZ0jz8gU/ih7n29OwzxlO+xnud4aTfobU gIz7URSdb2u40wmoMBLFgLMYi1Csz2DUfqmfyvBNRPk4v1EIiJQmghJ6LQ9S 608O9jmLKZ1WsmTSb+r1OosZnZb6ftoJ6o4xDmZ1B60OlJSWDppiHEgmpnNQ crDXWczrtJKn6aSZaDucxaJOS2dBlGfVfGwcLOsOdjtQUtp19YFo2x2IToKJ ls5CYxzQ4w7CkStJPN/qDuTyJKXd7iwu67RyM9G8qnYfxuI7nbbbgahZIVpq WmMc0MEdTaDq93PN4q7pDiT9JKVtchY3dFpJljQZwUzg8D/opAfWmwXvj7D4 tk5kakqTszXv7uhwU9eOBqIfN1ic+QThR3bK4dLl3S2WMcujitQIMvqiLuFu 6q6kpaHLTw7k8sfQSoulT7/alHBdp6XalPSkQQrQVd2BtKWkJVo6FL2iO5CG mRI09ToyUMTQSgNP5YRopZxc0mmJjCoA3bCypBXdgayCnmYSrQQwpkpJzOiO oc6Mupkl3UHSVK3KosMWkUlRo0N/opWdvKDTSlGje4KCIGltTqeVzUtbhGhp VLigO6DkRNML3UUH3eJiHEhWo5xHtA84i+koLRc1+tUb+irDkLOYVEmD9/QL SbRZHwRZdAw0mocSko24xUUpykD0m1WU6h4G2dlMaamnJ1rCEe25TGmpLyda qj9EOxbSUszo+hMtuR/XaQlOxZpWa2npm0xES0010U5kSkt7hmgpmRHt+Uxp qY4TLfXvRGsTFmU1usGIltxP6bQhnE+N6HTMUtFBQZlnlWK6ahRUUkycjIh+ +3VGNzRpnmYPI6OwWjI6ixmOCStdNfr1VVtpqfIPurU2g1aO5ahkzuq0h5wh nZXJsdxhnZZ6RepnyIF0QDTcXNQd9DtDyo00PVHrZB1QXyiTOOV0mYqoIZzT aeXcgAqbHMtRD29p6UtOSb8OJx0+sczrDmTCoyog8wgtxNLS/CDHVpRXk34z 1nbu1PInHcVk7KKUuag7iB/FZOyihVhautZy6Ee7Vq4G9TtLOq3MR3Rz0sWj u986oEcHtPPipzk6WFzWHUjGoKsh0xwtxNLSlpVBhpzKgyjqFr4KacMEwwWA kk9/DH4lSrnuDIyya9EtsayWfRNSkY0qi54203/nItn3sg6iQMbAJeF+r4Mk fV7TQfLk5oYOom0VA5eD8Fs6SLLZHR0kzzl+0kGSVX7WQbT3Y+CSUn7RQZIg ftVBchzymw6iKSAGLqfuv+sg2aV/REF8ePCnCgne/xXRGid/626tyvwj5X/t WGj4D6a94iE=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {241.062, 0.}} -> \ {0., -2., 0., 0.}},ExpressionUUID->"7e7d6e83-8a61-4872-8f4a-a259b563397a"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(23\\). \\!\\(\\\"gyroelongated square cupola (J23)\\\"\\)\"\ \>"}]], "Message",ExpressionUUID->"a6ff1261-ae99-4198-9237-7ee4258560e9"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .73885 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0798319 0.112045 0.352781 0.112045 [ [ 0 0 0 0 ] [ 1 .73885 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .73885 L 0 .73885 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .30392 .28809 m .19188 .28809 L .11265 .20886 L .11265 .09682 L .19188 .01759 L .30392 .01759 L .38315 .09682 L .38315 .20886 L .30392 .28809 L s .02381 .38513 m .07983 .28809 L .13585 .38513 L .02381 .38513 L s .13585 .38513 m .07983 .28809 L .19188 .28809 L .13585 .38513 L s .13585 .38513 m .19188 .28809 L .2479 .38513 L .13585 .38513 L s .2479 .38513 m .19188 .28809 L .30392 .28809 L .2479 .38513 L s .2479 .38513 m .30392 .28809 L .35994 .38513 L .2479 .38513 L s .35994 .38513 m .30392 .28809 L .41597 .28809 L .35994 .38513 L s .35994 .38513 m .41597 .28809 L .47199 .38513 L .35994 .38513 L s .47199 .38513 m .41597 .28809 L .52801 .28809 L .47199 .38513 L s .2479 .49717 m .35994 .49717 L .35994 .60922 L .2479 .60922 L .2479 .49717 L s .35994 .49717 m .2479 .49717 L .2479 .38513 L .35994 .38513 L .35994 .49717 L s .35994 .49717 m .35994 .38513 L .45698 .44115 L .35994 .49717 L s .35994 .60922 m .35994 .49717 L .47199 .49717 L .47199 .60922 L .35994 .60922 L s .35994 .60922 m .47199 .60922 L .41597 .70625 L .35994 .60922 L s .2479 .60922 m .35994 .60922 L .35994 .72126 L .2479 .72126 L .2479 .60922 L s .2479 .60922 m .2479 .72126 L .15087 .66524 L .2479 .60922 L s .2479 .49717 m .2479 .60922 L .13585 .60922 L .13585 .49717 L .2479 .49717 L s .2479 .49717 m .13585 .49717 L .19188 .40014 L .2479 .49717 L s .47199 .38513 m .52801 .28809 L .58403 .38513 L .47199 .38513 L s .52801 .28809 m .58403 .38513 L .64006 .28809 L .52801 .28809 L s .58403 .38513 m .64006 .28809 L .69608 .38513 L .58403 .38513 L s .64006 .28809 m .69608 .38513 L .7521 .28809 L .64006 .28809 L s .69608 .38513 m .7521 .28809 L .80812 .38513 L .69608 .38513 L s .7521 .28809 m .80812 .38513 L .86415 .28809 L .7521 .28809 L s .80812 .38513 m .86415 .28809 L .92017 .38513 L .80812 .38513 L s .86415 .28809 m .92017 .38513 L .97619 .28809 L .86415 .28809 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 212.75}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnPluFEcQxsfe9c1pAzZBCWsgkHCE20DAHOESQjzECkWCP6JEwLNw5iAc OQCFOwcQzkR5Ad7HcXe1it3ht3Y3npZmUSMxu1P1zfdN10zPdFfX+lj9zIkv v6qfOXm8Xjt8qv7NiZPHT9cOfX1q0lTpyLKOWpZlr2uZ+T4x+dVt7L9Rs3E7 Ad/HzMdyw/OfGLbaj8qEEk/ujYLtH4FvAddysL0S+GZwfQy2lwLfBK5VYHsh 8I3g+hRszwW+AVxrwPZM4OvBtQ5sTwX+GbiI4m+BExO154nA14KLgvtY4NQs utKPBL4aXNvA9pfAKcY7wPanwD8B106w/SFwuuDjYPtd4CvBtQdsDwVOd98+ sD0Q+Apw7QfbfYFTVzgItnsCXwauw2C7K3Dql0fAdkfgNXAdBdvtBE/wBE/w BH/v4Z3Gc1S/uRdL4Hso8C0X+A4NfEMHvv8DRxeBY5fAkVHguCtwVBc4Zgwc kQaOdwNH04Fj9cCZQOA8I3AWEzhHCpyBjYFrKdj+Ffiw280y2+F7G6y5Az4s ua1bTn1RzjX5+Ra8TDaz19P2p77QfnQ1uvSwJe+Nr7nprq8sAFcFbNSnEo5x fXabQhsvtEPg6gLbwoTzxvXbbQptvNAOgqsHbHQJEo5xA3abQhsvtPPB1Qe2 hPPHzbLbbB64BsA2N+G8cbPtNoU2Xmhbu5LtXW1z7DaFNl5o54CrTJ2rfXEp tPFCSzd0mQYy7YiToYEbgzW7yjT8bkecXIIU2nihpWdFmVId7YiT5EEKbbzQ 9oOrTGnldsTJgyOFNl5oafCw2G7LtKxXrE9Wcd3qYHPT86uIBl6WxVxjG277 U+/R62DLGUZkh2qVhKTaSGL+P5zuCL7oD6Y7rNnWabb2DF0NFFX10MyFyKpK dmfmZN1K9puQ5etJTGtpukpkdCPdnDltn56jI5MSGb4yvg0fUNJf5VAq06FH Hb0+SGC2CvwcR4AmxtdEiiqUaLBBz2uSmqdtiSQwqAJXRIBKsmiQT7ccCSxQ gctxBPLFPGbvO5GiajQKDMmT1LC2xQlQdRyNzbs9BUZU4Ns4AotU4HsRoHJA 6sl0j5EAjbYjSQ1pW34UAaqEpL5a9RSYrwJX4wjMVYHrIkCFmJQroqcXCdCD 3klRUSpN8Ds9pWZpW36JI9CvAjdEgMpQpyqPWwr4XiW9VRwpPU4cPRUay4iq 2kTfgrlLT/d2IXwV5XMV5VSruzhne9Psaj4klsqVj1PF9hIFEUGmo0KPY63T FYfbkuG6MZxvMHjcU762s4k20SbaRJtoE22iTbSJNtF60zaOTA+YDzuKzSqC lIOyj8KI5XebU8xJrAYRnBPYPgW1nK1OR7FHQT7pB3Nm9OseF5hxJWud+Hlr upCfmpi9C+LbBa5imD/XM6VMzFTJa1rUuSjO7UraOo8aTDqmpJSlaJkvz9lo 0n5JBOgnk5GkNmtbqICeBChJQskUl2rbqAL0aygSoI5DrXfJwvUqQCnLAgQo PeUrRUk3uhNdLm+ttoU6SgECa1TgA08BegZRB/1BBNapwEgcAUp3UnaUpCiD RInryyK1QdviK0BPQhJ1mdVNKkA9tACBLSpAPZQEKBx0j7llDfq1dtAymL/U Nm2LrwAtPNHTy6Whd6gAVa8VILBTBXyXxAZcUOgF9ZN8GYfDfBde8u00tG5x b7eeawFke5XMdxGCHmGuwV8omW+63qUz7RjRL4HrjrB/9KMyDciumY8aj/ur FxNieKfvWcf/RuXdsg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {211.75, 0.}} -> \ {0., -3., 0., 0.}},ExpressionUUID->"94b034e5-2ed2-48a6-b831-d952ee0bac90"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(24\\). \\!\\(\\\"gyroelongated pentagonal cupola \ (J24)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"1c736a6c-780e-413f-afd0-\ 390a146a4ede"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .70439 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.069161 0.0907029 0.348294 0.0907029 [ [ 0 0 0 0 ] [ 1 .70439 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .70439 L 0 .70439 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .34127 .29593 m .25057 .29593 L .17719 .24261 L .14916 .15635 L .17719 .07009 L .25057 .01677 L .34127 .01677 L .41465 .07009 L .44268 .15635 L .41465 .24261 L .34127 .29593 L s .02381 .37448 m .06916 .29593 L .11451 .37448 L .02381 .37448 L s .11451 .37448 m .06916 .29593 L .15986 .29593 L .11451 .37448 L s .11451 .37448 m .15986 .29593 L .20522 .37448 L .11451 .37448 L s .20522 .37448 m .15986 .29593 L .25057 .29593 L .20522 .37448 L s .20522 .37448 m .25057 .29593 L .29592 .37448 L .20522 .37448 L s .29592 .37448 m .25057 .29593 L .34127 .29593 L .29592 .37448 L s .29592 .37448 m .34127 .29593 L .38662 .37448 L .29592 .37448 L s .38662 .37448 m .34127 .29593 L .43197 .29593 L .38662 .37448 L s .38662 .37448 m .43197 .29593 L .47732 .37448 L .38662 .37448 L s .47732 .37448 m .43197 .29593 L .52268 .29593 L .47732 .37448 L s .20522 .46518 m .29592 .46518 L .32395 .55144 L .25057 .60476 L .17719 .55144 L .20522 .46518 L s .29592 .46518 m .20522 .46518 L .20522 .37448 L .29592 .37448 L .29592 .46518 L s .29592 .46518 m .29592 .37448 L .37447 .41983 L .29592 .46518 L s .32395 .55144 m .29592 .46518 L .38218 .43715 L .41021 .52342 L .32395 .55144 L s .32395 .55144 m .41021 .52342 L .39135 .61214 L .32395 .55144 L s .25057 .60476 m .32395 .55144 L .37726 .62482 L .30388 .67814 L .25057 .60476 L s .25057 .60476 m .30388 .67814 L .21367 .68762 L .25057 .60476 L s .17719 .55144 m .25057 .60476 L .19725 .67814 L .12387 .62482 L .17719 .55144 L s .17719 .55144 m .12387 .62482 L .08698 .54196 L .17719 .55144 L s .20522 .46518 m .17719 .55144 L .09092 .52342 L .11895 .43715 L .20522 .46518 L s .20522 .46518 m .11895 .43715 L .18636 .37646 L .20522 .46518 L s .47732 .37448 m .52268 .29593 L .56803 .37448 L .47732 .37448 L s .52268 .29593 m .56803 .37448 L .61338 .29593 L .52268 .29593 L s .56803 .37448 m .61338 .29593 L .65873 .37448 L .56803 .37448 L s .61338 .29593 m .65873 .37448 L .70408 .29593 L .61338 .29593 L s .65873 .37448 m .70408 .29593 L .74943 .37448 L .65873 .37448 L s .70408 .29593 m .74943 .37448 L .79478 .29593 L .70408 .29593 L s .74943 .37448 m .79478 .29593 L .84014 .37448 L .74943 .37448 L s .79478 .29593 m .84014 .37448 L .88549 .29593 L .79478 .29593 L s .84014 .37448 m .88549 .29593 L .93084 .37448 L .84014 .37448 L s .88549 .29593 m .93084 .37448 L .97619 .29593 L .88549 .29593 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 202.812}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnPlzFEUUxzfZ7G429wkBgWyIBAFRIYonIoLEC6//IEVZBT9YWsjf431g QBHwvigtSy2r/NVf/VNipvvtm9nNp9ueuDs1GVIFO533Xn/f6+v1mz7m7PKl 86++tnzpwrnlxtLF5TfOXzj3ZuPM6xfXSOWeUqmnUSqV/myUovTqWlJ+Vtf+ rc5FPxHlv9NL0WN3lPcHSzhjHmVBM6KlO4D2rRV/Cli7gfaNFT8VPXojzpym hPUk5JoH2pdW/CSw9gHtCyt+QtUd0JSwHodch4B23YofB9ZhoH1uxR8D1r1A u2bFH1HrFjUlrIch1wNAu2rFHwLWg0C7YsWPqbpHNSUsUkK1cNmK3w+sE0D7 2IovAosa96MNiR8F1imgfZiF+BFg0QD6IAvx+4C1BLT3NyROXfzpdOLPAO29 DYnfA6xn04k/B7R3NyROvuL5dOJngfaOFb8bWC90VfxFoL1txcmLvtRV8ZeB 9pYVPwisVzomntKY7tZMymbqbp9J2YE7MDw84h0Y2h7H0V0vltKldte/kziF jplMZSR+GmiZTPIkTrFtMp4x0dZJTUkglTLu8kRwKWPBlJGmJ2ZNGf0e1/yH NXXDsiiCPAA0EX8CWPuBdtOKx3W/T1NfWRY19RzQRPy05p/VlLwrpXy1otG3 A2jfWfGp6BElSpXopz9BbcuwvcO0bRnoIFrVFnGylWWe2ztM25aBDipi7bYp 4oR5VFpYzWzTGfOmcmTLNFSZjO1xYJWBthnlenNuX6hcvVhNNZZz+zrQVFTE CtBGN6FcX87tC5UbKFZTjeTcvg40FbFqQBvehHLVnNsXKjdYrKYayrl9HWgq chx1p/jmkuvPuX2hcrYbeloxH2b+H7mBnNsXKjdcrKYqygjyNBX5+Dz56a35 qxndFqapihLteZqKBmGe3im23rWacoVpqqKsTHiaiqKkPK1/ba0LNstRmKYq yiq6p6koOLTbZfnYv8nTXpKtF3wvaNtmMs/NuMM4ddsU0cRvhmIa25bOHr41 hw5oJrJwfUm46P/vNu8iKHOjcBf7zUIdbVXUZLvRwG+ZUvxq8eiEDzk3opGC PlXwi1VA55nI64QqoLeEW1YVnX+h8CdUVU3LIgro1BrVfKiCuir40SqgQ3c1 T6egUysUuMpJlkOqbyAl6JDmFCg6xZkWdERB5aYCHTsaTAlKAZPcbLgLWMM8 ngh5XM0VPDr2NBKON6F4cl9iAYRGw/HGFE9OTNGtjbFwPIrCBflOV/WEIQ+r pXIii66j0NEcZ383YN9bsL3Rw8hMBUJQVBoP/hsJ2HZHFv01HqilXxFraqF1 hSp23aNK84wE6quqvqrmJXco92no6F1saOwASBU5wdhgihmuuZUOaMa6V2lZ ubEqcn4eVcOasdqmqqUfK6/X1QhJRQ3X4CirrQlFLZ5N00Z0AoA+c+uYcvWq meg3EcsEI5o5y9xhm3FnnAUWNRdNgAT7aeawJB6qSmD3BEIQjdRfzRyWxOkM LVWCwNL1RLKMYEn9lcxhSZzkqBIEdlegtaHqVzKHJXEaNlQJAktNQdaGjsZP MoclcZpBqBIEdmegtQRL6i8nYMuuSdFpo5lyVhJdv+yaEJzBGM0tUtaG8mnS IsQxzUExiZR1XoUoGCXYthmdW2ZBhSheoLC5rjloWUxgTXtUFNYZ+5CCOESj 7bykgjaWCUnqEamiEBSOkdI4bqLq9XRjE6INQndoe8Uyz15Xt/AomNSq3K82 0o2LFTcErRjZSqi00JrPSTc8OQhrDYeJ8RX8MhhBVeFRRHbRkCHP3wfqaRnY MxuQOA0tMr0K6un9PKX6+NVsh6bq65sjSlOY7pn/3ecsW2nkNgfYAtoh9lhA BsfvXpOacqwzkPPwaCPjqA6IBhaodVRnYgbFnmQ19RMyl+Ro/Y125T0m0cQQ L9jEaw7klEg9uWQJmylaoVmGOh2ViuTIJHIiHpNoJosji4qmKHShBV+iedRT Sa3b57VB8keh685iRgNYAa7PPGm0lT3met7CqesQPLlPmgA86yFUQTQ6nHNN 8ooqKaDa3gM2Ug+g/iqv33s9NTurdpFyKsnNJOg6FxvjkUHUCC14reVseMHI OFmNnNeMsT3UN3cpV6ygOJA6sHu8YeEWVM9OrjbCm9FMsq5MK/S0U0fukS7L CiztK0yzmTRzkY//2iIf1BJAPOiakOONBNlMoQ8/jHm6dOh8KfDxle9RDyhF HvFCvWxQ0RbbkAeUAgeaWgWeNgt9u0pUaGrBnyz8ES0OdSByD84rGwblZwtL X04K3Rak+Jbyiir/LjQpoLeNdbvAxzx1TIp8d4plo7rtKwhOKNqjkW1z+rgC uUlTh8aYP2xG+vCYaXHznvyXRyj662/LN59MMOP5H0swIim+AFfq+ReX/5IA \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {201.812, 0.}} -> \ {0., -3., 0., 0.}},ExpressionUUID->"94066e91-346d-4cc7-a0cd-b3c74f422cde"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(25\\). \\!\\(\\\"gyroelongated pentagonal rotunda (J25)\\\"\ \\)\"\>"}]], "Message",ExpressionUUID->"5d10842a-0501-4fb5-9099-05fd3f4d25bd"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .84089 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.069161 0.0907029 0.351544 0.0907029 [ [ 0 0 0 0 ] [ 1 .84089 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .84089 L 0 .84089 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .34127 .29918 m .25057 .29918 L .17719 .24586 L .14916 .1596 L .17719 .07334 L .25057 .02002 L .34127 .02002 L .41465 .07334 L .44268 .1596 L .41465 .24586 L .34127 .29918 L s .02381 .37773 m .06916 .29918 L .11451 .37773 L .02381 .37773 L s .11451 .37773 m .06916 .29918 L .15986 .29918 L .11451 .37773 L s .11451 .37773 m .15986 .29918 L .20522 .37773 L .11451 .37773 L s .20522 .37773 m .15986 .29918 L .25057 .29918 L .20522 .37773 L s .20522 .37773 m .25057 .29918 L .29592 .37773 L .20522 .37773 L s .29592 .37773 m .25057 .29918 L .34127 .29918 L .29592 .37773 L s .29592 .37773 m .34127 .29918 L .38662 .37773 L .29592 .37773 L s .38662 .37773 m .34127 .29918 L .43197 .29918 L .38662 .37773 L s .38662 .37773 m .43197 .29918 L .47732 .37773 L .38662 .37773 L s .47732 .37773 m .43197 .29918 L .52268 .29918 L .47732 .37773 L s .25057 .5173 m .33343 .5542 L .32395 .6444 L .23523 .66326 L .18987 .58471 L .25057 .5173 L s .25057 .5173 m .17719 .46399 L .20522 .37773 L .29592 .37773 L .32395 .46399 L .25057 .5173 L s .25057 .5173 m .32395 .46399 L .33343 .5542 L .25057 .5173 L s .32395 .46399 m .29592 .37773 L .38464 .39659 L .32395 .46399 L s .33343 .5542 m .36146 .46793 L .45216 .46793 L .48019 .5542 L .40681 .60751 L .33343 .5542 L s .33343 .5542 m .40681 .60751 L .32395 .6444 L .33343 .5542 L s .40681 .60751 m .48019 .5542 L .48967 .6444 L .40681 .60751 L s .32395 .6444 m .41465 .6444 L .44268 .73067 L .3693 .78398 L .29592 .73067 L .32395 .6444 L s .32395 .6444 m .29592 .73067 L .23523 .66326 L .32395 .6444 L s .29592 .73067 m .3693 .78398 L .28644 .82087 L .29592 .73067 L s .23523 .66326 m .26326 .74952 L .18987 .80284 L .11649 .74952 L .14452 .66326 L .23523 .66326 L s .23523 .66326 m .14452 .66326 L .18987 .58471 L .23523 .66326 L s .14452 .66326 m .11649 .74952 L .0558 .68212 L .14452 .66326 L s .18987 .58471 m .11649 .63802 L .04311 .58471 L .07114 .49845 L .16185 .49845 L .18987 .58471 L s .18987 .58471 m .16185 .49845 L .25057 .5173 L .18987 .58471 L s .16185 .49845 m .07114 .49845 L .11649 .4199 L .16185 .49845 L s .47732 .37773 m .52268 .29918 L .56803 .37773 L .47732 .37773 L s .52268 .29918 m .56803 .37773 L .61338 .29918 L .52268 .29918 L s .56803 .37773 m .61338 .29918 L .65873 .37773 L .56803 .37773 L s .61338 .29918 m .65873 .37773 L .70408 .29918 L .61338 .29918 L s .65873 .37773 m .70408 .29918 L .74943 .37773 L .65873 .37773 L s .70408 .29918 m .74943 .37773 L .79478 .29918 L .70408 .29918 L s .74943 .37773 m .79478 .29918 L .84014 .37773 L .74943 .37773 L s .79478 .29918 m .84014 .37773 L .88549 .29918 L .79478 .29918 L s .84014 .37773 m .88549 .29918 L .93084 .37773 L .84014 .37773 L s .88549 .29918 m .93084 .37773 L .97619 .29918 L .88549 .29918 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 242.125}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnftvVUUQxy+0pVAefQBtoba9lJf4QFERUBRErcaoMf4HDTGBH4wG+UcU xWcEX2g0PkARAR/4iInxv/EfqD2zw+y9p5893e29PTlcSOSe09nZ/c7uzM7O Ps763MzJYy+9PHPy+NGZ+lMnZl49dvzoa/XpV07MkbqW1WrL6rVa7b96LXuf nXvVn9m5/2a3ZD8ZZfHv09ljPCvzF0d4Uh5diiKstTGgXXHsj2eP5VnKpL1p 0hHItQVolxz7Y5C01cpUpkNGuB3Yf3BMj0LSLsuoTAeNsBvYzzumhyHpHqB9 59gfgqQ9hqNM+43wILB/7Zj2QdI+y6hMe41wENi/dEwPQNIjllGZ7gemw0D7 3LHfB0mk7XNlsO+BpCeA9lkZ7PdC0jTQPi2DnSz1aaB9UgY79bJngPZxGex3 Q9KzQPuoDPa7IOl5oJ0tg/1OSHoBaGfKYL8Dkl4E2ocVZK9UQ1bKxCrV+Srl lirlsCs1lFVqkF9MPCPR1hF7+8IlUXBG0auy5wI+efvKJVHAuB9oyk5JvvRv HNMBI5CcyhQMkSWjxtFRwTZVnJzuBcd+CJJ2Gs5Fx3TYCDuAXZmCExXJ+JNj 8hOdOrArU3DyJBmvOiYy801AU/b12SN7qfXKTwM1l2GkzbTREjCI1uOqONSc JM+RNtNGS8CgKq4or4qO1t0IP1tuLQedVpuSrmfbWHLacIVk2QhNpt17AJK6 gDZYcb6hisvXCt/KW6q6UfhUVf2Q1AO0qvORyVVJvlb4VnWWqohvRcXlS1TV OkjqBdraivN1Sj2Ir6+zVEV8KysuX6KqKGkV0FZXnG9NxeVrhc/RsIpVEjOW r6/i8rVuhh2jqk7uaaoqYq+Sn77ZxqUwX8eoqvOjQvTxVZpT3GxzKOJb11mq 6uQVDFUVDWNVWv+6tS54XaW3VHUD1ENVRZGT2/esxv5NlfaSnOpx5M9tM8nz xttQlOf6smvZTCtjt1irKPGNUGTXf4Oj0gFjUEf2T8zkT5ftAGSjEwc9lvHX tIx9lvFyWsZ+y6jHsulgCh0/l2YS0vm0jLTp+m1aERuApoe76RjOONDIU59P K4Kc6YVwEROh1s/RvndF0Nn0SaDR9EhVSWf9qd5ULM1qLqYVWwcaTVR/dMXm 2BucajM7wVOkfqn1YilU0YNGrs14KCDDmAIaDa9aPBkLDdSkpq1AI4d9uXWo bUCjKF0/SKFeROy0kEZQ3UC7mgZFBrk9skV+dlC3RbY3GemOAjP6zRVPDpAM k2iu+HmRwrW0kslOd0K3+t0VuzmymaWN/KdE8vZHWhEk7TaQTIulATB2m2eK m1JYx7I3PXZOZ/aCe7f+OKO8kZGRJdFRrw/S4Kk1yZBJJFr6oaZ934lE0pKL JJE2WdsQ6BIJssZAqTXbIMgwJNF5UrJNin2og5JvpA7/nhOJojKikUiD1l6k wiUShOKeWENPFEmaXD7RXGc1JXgatqj/0Nj0bgNURG8XPxTcbxIJqTGWSprs t9vcYYQHa4Nw1GGozwm8jLA91jb+jULB5UCjGPmdNEHWWCu5mvKoT22+RAIN WMs4iSyxDTJQuxZPI4sWVyikfTsNKFcneTZYwJLhkjK6zPwGFgdOo1bsFHWF gTsfNi+kofD3dBou7S6sMk3n/JY82wBKPmWtVbYvDZRqQOZO4+GA1dSHuDuB 7600KHL3Gwygp51QNGiOGEBXDBRpI3aOLeG/2OUuSH0zDYCCo4nmGsjb6TYV W2xj8lQoiiGo01N06bQ2r+9uZXIiIE2U6/NLtqabbDYN1lcsOAVnpACCIgdc IBJ1XvIJNPbRgg6JHlzmzdFOLSQSDxIkrncFvs+SuS4IGTU0hDeJFuZTCciz +Y5JHw7GbiISXyNozgeQP4s9BUB8p6JNX54Ev9qEW9v8xlD9xuQ/oHR22YhE TRq7EFIAHh6pe9F4rz9JnNhjP8Sn4oRDNO5L5CnIQ/k29j2Nqq5irDcmv5pB UEQjL1P0NR9F7m84MWIn1q2IRp9TEoaKNGzt4duIfCPRgrsQDZMJBI1dIWtF kIFmRUsiWaOKFLsuSfDUJ+qh8rpsKGiYfaBIm43JOyDy4LHw5Mao6yp87Jo6 0chp0SZHnwkyaG1Dga+KNN5sovIWe8qWpiu9BjpcWJ7Cu4CPe334aPzCYvjK jJlAFHCqGDndBuHJfIPry7llcDLz1x187OZfNHz21zZDJj+nyHStCbkN34oy d5EQ6lRaEeIOZL2R3LnKQ3e+0CAknlXMhqJYWs07lwbQb9UksyFvqwB0hQ4F jn0GQJom36nXhNDdFTQwdFsTkUdqB0DI/9M+l5YtseCEuYeIiY7e1DKVrHAS uQBg3ABitz1Iq9QbFWDUAIq3hKh3kIvT+3R8T6BxLye3PEnuAgC/7kOSjQEA 9ScaqhoBcklhqHmzt9jVH70MKehNEkJq6lAUHigk9ZHwpIIhyfUXQFKNqKFI 79TByEfRqKXXX5H6aEwgeBqtKEajSF3hY7f4yEyo9onw5NpoMYDgYzfLaQZ3 1sGTMySXQ/C01kOBC51bUXgaGykCJPMheKIVwJOnJv0RPNWUFEILRmdah3cD D/d/updWIWm4pTEsvAg7z6cWoNEQSu0WcV5LnrQWrodOaDAlayAoPx30x3DU QmJ9HmmZakDrPAo1UaBRWhajni6iT1kldNCcZMVFFwq0giG6bvCkLjI2PwOi 5taQyC/m+cVK6ixkX6OWQ28PJisIWgbVwK8t51IVgJxO7B4KOcAhA9Xrkrcb YdLeYj+opsFdiyWboF4cnG8HD17orX/kLYJHBSKGZb+EoZcB+lu2Rwrl8QdZ qL21sNgJGgFQK3cbqJ60jp1iUmH+0BGNOwoQO+OOCHXlqQerdxu2X8yiQM6v aurRabp0kxRAhfkK68lmujQz4sMM3whSmJ4C9ndk+gUhik/EMoWkB23dzZTs uGm89SarnzjshXamjP5k0zWXkU7IBw8ANZ4upUuDfa3/CjMtt8r/XcCU/fVP Q7ok/xvOoEnyxyL/JwK1Zf8DJ5SxtA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {241.125, 0.}} -> \ {0., -3., 0., 0.}},ExpressionUUID->"bac6eb15-9905-423a-8aeb-20bc9003b871"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(26\\). \\!\\(\\\"gyrobifastigium (J26)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"b018143c-2d8c-4424-8dfa-b893446998fa"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .9602 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.165279 0.282939 0.409364 0.282939 [ [ 0 0 0 0 ] [ 1 .9602 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .9602 L 0 .9602 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .02381 .55083 m .02381 .26789 L .30675 .26789 L .30675 .55083 L .02381 .55083 L s .44822 .79587 m .30675 .55083 L .58969 .55083 L .44822 .79587 L s .30675 .55083 m .30675 .26789 L .58969 .26789 L .58969 .55083 L .30675 .55083 L s .30675 .26789 m .44822 .02286 L .58969 .26789 L .30675 .26789 L s .73116 .79587 m .97619 .6544 L .97619 .93734 L .73116 .79587 L s .73116 .79587 m .58969 .55083 L .83472 .40936 L .97619 .6544 L .73116 .79587 L s .58969 .55083 m .58969 .26789 L .83472 .40936 L .58969 .55083 L s .83472 .40936 m .58969 .26789 L .73116 .02286 L .97619 .16433 L .83472 .40936 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 276.5}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy9nAlvVUUUx29pS9mhtcpSyntA2SkFZJWl7CKrihpcoSIKKoKA+wIfRj+R 0RijMRpjNMZojNEYjZV3Zzjntfxmeh9nRhLavnPO/f/nLm/mzFnu8ZHrF85f Grl+8dxI/cGrI1cuXDx3rX7o8tVbova2omir3/rfWy8af48Wxe0f5b/FjR/+ Q4K/b5a/2kcF/9anE42fkxqi4xMYFR0i86M86v6+Me6IxvhPAMokkB1uDaJd RusP/LD81dlsJADHAGCyABxyZh+EWHCgY2VTBeyAHWy6gO1zYO+DUSfIDoFs FsiG7bCzZYwe7D0w6gLZAZD1CNiuMNgUkO0HWa+A7XBg74LRVJDtA9lckG1z sO+AajrI9oBsvowxAVifgG1xYG+D0UyQ7QbZIgHbZAerC9hGB/YWGM0G2U6Q LQXZUBh2Dsh2gGxAxujB3gSjbpA9ALIVAjbowN4Ao3tAtg1kqwVsjR1sLchW OtjroLoXZFtAtk7GGAG7D2SbQbZewJY7sGtgRN/ITSC7X8AGwmDzQgdWGK1f Sa+Caj7INoJsq4zRg70ORn2hK0XPYwlWC4MtBNkQyHYKWL8DuwJG/SBbB7Jh AesLgy0C2SDI9oLM3cbiMqhqIKPvwn4ZYwSsDrI1IDsoYO7RL14Do8UgWw2y wwLW68AugRFNjitBdhRk3WHYAZCtANkxGaMHexWMloFsOchOCtjsMBgdSASP CJhbtIpXKp4SnfpjAjY9DEaXnW7PEyBzPk7xMqjo0aBH6LSM0YNdBCN6aOnh fhpknWFY+mLVWoO9ACqaBmi6INjJYViaqmhKi8C+BCqaTmnaJdiuMCxN+bQ0 PAUy/yS8CCpalmj5otF62POgokWUFluCnRqGpYWeHIII7AugouWdnBaCnRaG JYeJHCu6ZX6COQcqcu/IDaTRJoCl0c5wsM+DitxkcqdptB52BFTkypPLT7Az w7C08aANSgT2LKhoc0SbKIKdZYelW+bX1jOg2gMy2ozSaBPA0mjdrS2eAxVt 22l7T6P1sM+CikILFIIg2O4wLIU/KExCF6HHwT4DKgrRUCiHRpsAlkbr5g5k pKAXBcfo2ASwNFrvW5PqiD/tJplTFHzR3BRfPAmq8XHIBgQ9JS1C0Cj8zqN0 VD4erWA0TnUSZIHgLw1z7t0g8zU+nQp+rKyMQZeO8uOgnWcn6BCCR0E7306g EeyH8xDQfEeh9AV2Kg2gZyLQoPpDoO2zE8wUApo1F9oJyA+hVSoB1Rw5F1pd ++0EGvEnryABgWYBdoF2kZ2A9gfk6yagmivnsh20NTuBpiNoy1K3E2iKgnZw CQho30475sV2Ks2QZCKoCwEFPpbYCZYIAQWVltoJqoYNE1Atk3OhiOCAnUBT OnRWCQhWCQGF85bZCSjYR9+X5XaqtXIumQg037QAtCvsBJqDonBVAgIKuPWC bKWdSlNgmQg2CwFFdFbZCTRBRmUMq+0EtKBSTCIBlebnpoF2jZ1Ac3bktycg 2C0EFANYaydwviDvAofs8Htl/EX7bdzy1zo79j7BXp/oOtBAE1yEYZBROdag nWqXnAY9LwkIdggBPfEJHkhy6Cm2mODLtU3OZUYegi1CQBvJBBPcJiGg1SAB ASWVekCWYOHZIOdCCZsEBENCQH5GgrWZspuU2Evg0qjXR3nOBARaCVUDbQK3 chXIMlHpfoKKAhK4+9l3REuFgEodEhAsARndoQTbx7qcC9UuJCDQaAHVBSTY zNNGKxOVRnFoJk4Q+cgeh9JIGmW7ExBQVDBT0E4jnJS0TkCgMdph0CaIa5Kb kIlKy9UpYp4g3pw9+k9eYSaqaXIuR0CbIFUyRQgo2ZOAQDNjdESCbBJtaDIl 4bTR5VQqgo5mmcBTQeJdpUHHwhecwb0b5FJEKfrmdPBHDQ0lu70RDYauO1UY +Hz5/5jaj0C0WqtAUL7sIVM1Rabaj0yVKpnqaixVQC0WFyWoWcpUYXUGVHtA 1mI9mAU2Ur12FlQJau0ssJHKwEx1jJmqLjPViGaqaM1Uf2upFm6xCDlBbXOm SuxMdeOZqtwz1eRn6iDI1O+QqTvD0ktSXtvSf+0Kg1Xtd9HmmWJs4sUP1NKY 49xrds380C3tRKdk6B2g7QwTVG1+0k4q8tk9gaVVS98/QD5LhKBqY5l2qVEG 1hNY2uBou9wiVdVGPu0KJG/BE1jaDrWHkfwGT2BpktSMKS31EYIayGi2oE7R CJWlKVUz41RpESGo2kKruX1auz2BpeF3uxDQchshqNqerKUcVLnjCSzN1OTo RKgs7eAb5Vzo/kUIqjavaxVSLUxgabUfFAKaDyIEVV8MQF/ICJXl1QZaQEfz dAICTdnRquIJLK+N0HdQ0FTvCSwvuaCMWotUVV/TUZdzoUnfE1heKtIvBDQT JyDQNBdNlJ7A8sKWeUKwIQ8BTTMRKssLcjQLRfOYJ7C8zqdbCGiaiRBUffmQ pobou+8JLK9KoucuE5U2udAs4Aksr6bSzA21VSQg0MzNcJig1Vd9aQqFfEIP emOcqgEWa0ujh3VCqDt65+iJ9Cg3QaV7pIPhAz8Ro8gYPwUVzSXe/DPBjBh9 LkY0r3qjL8SIlg9v9CWoKI/uzb8SzIjR12K0NWz0DagiM9u3ghkx+k6MyG/1 Rt+LEXnP3ugHUEVWwR8FM2L0kxhFFuyfxYgKcbzRL6CKeEy/CmbE6Dcxijh3 v4sROTre6A9Q1cLmfwpmxOgvMYpsBP4GVWRj8o9gRoz+FaPIdq380CaWkZ1j +YGmaHKRm4/RHteJLHVij+zByw+6xkQiD+UHiq1QnUTzMbpETmSpJR2RGE75 gcZJ7kfzMdpiOZGl1uGQG9Bsqc4Y3ctmS/cs3JGo72oyKZ3I9vFS2o03Ayd4 N2nR9h/yBryU\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {275.5, 0.}} -> \ {0., -1., 0., 0.}},ExpressionUUID->"dd238743-5566-4a85-b404-d02cc48b0392"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(27\\). \\!\\(\\\"triangular orthobicupola \ (J27)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"9ada0d3a-34ad-43ea-993c-\ e43c1eb5e9bd"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .47663 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.416925 0.16615 0.238314 0.16615 [ [ 0 0 0 0 ] [ 1 .47663 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .47663 L 0 .47663 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .33385 .15524 m .33385 .32139 L .18996 .23831 L .33385 .15524 L s .33385 .32139 m .33385 .15524 L .5 .15524 L .5 .32139 L .33385 .32139 L s .33385 .32139 m .5 .32139 L .41692 .46528 L .33385 .32139 L s .18996 .23831 m .33385 .32139 L .25077 .46528 L .10688 .3822 L .18996 .23831 L s .18996 .23831 m .10688 .3822 L .02381 .23831 L .18996 .23831 L s .33385 .15524 m .18996 .23831 L .10688 .09442 L .25077 .01135 L .33385 .15524 L s .33385 .15524 m .25077 .01135 L .41692 .01135 L .33385 .15524 L s .66615 .32139 m .66615 .15524 L .81004 .23831 L .66615 .32139 L s .66615 .15524 m .66615 .32139 L .5 .32139 L .5 .15524 L .66615 .15524 L s .66615 .15524 m .5 .15524 L .58308 .01135 L .66615 .15524 L s .81004 .23831 m .66615 .15524 L .74923 .01135 L .89312 .09442 L .81004 .23831 L s .81004 .23831 m .89312 .09442 L .97619 .23831 L .81004 .23831 L s .66615 .32139 m .81004 .23831 L .89312 .3822 L .74923 .46528 L .66615 .32139 L s .66615 .32139 m .74923 .46528 L .58308 .46528 L .66615 .32139 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 137.25}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNnOtuFEcQhcesDcbcbw7G4F3b4DtgB5t7wi2xyY88A7JQJPgRJSK8RJ7a 8Uy3q5b11z1nMusVErCroqvPmb5UV1XX7O/7Xz/98ef+188f93t7X/b//vT5 4z+93b++HIo6Y0Ux1iuK4t9eUX4/OPwa/zk4/HMwX/5TSvj7XvmxVbZ/WAk6 UbVqU2yU/54qRe9D819NUHTKr9b6PmiTrOqxGD+SHUSyu6H7X0DjFMjW6tGq zw2xv3cB/q093cSQQTvWc4R6bYJJaL6ShJr4RnYESdROG8KbAPkKGp0F2XJy 2uoHknQJ4+dA6SfjeB4aLYlrqiPqThlahH9hgkvQ/K4IT2uFdC8Y2ssA/8wE V0YAf8nQngf4p9DoKsgWRCJnRF3CeBIoPTaON0ZA5JqhRfhtE9yE5j0RntY7 6U4b2k6AfwSNZkDWBRlt0ClRlzB+DJS2jONtaDQnjsg5UfeWoUX4hyYg3nfE cSDbQrp3DG0zwD8QB5DGhsbhgqhLGKG/vhN5ERrNiiNyUdSdN7QIv2aCe6n5 E8aBrC3pLhraeoBfMQGdkLRpCZ6sLekuGdpqgKfTbRVkP4jTQJaQdAkjHHBh GiqOBDAtjsg1UdenP8L7DJH7SEacaF4Xde8bWjjg0KoTEQKgcSBQ0iWM6FD3 jCOZcxpodeJI1+1zhCfTQURo6dGI0HIkXcKYS1PaBhltSxob2qqkSxhzfZMk NCdDRZTIeJHuAEb12W1GiUw3TRyZc9LNUJoXKdGxRqNERx3pBgyOdOIE0san JUhHP40WuQOkSxgUfsymadIIkoNEI0hOE+kSRoYmuRL0pORQ0mjSjiddwqBw 5laaJj0pOeA0mrTlSJcwMjQp+KIuKEwhmrSISFfFmPn+aFIOJJh59DPVCSGa 9Nikqy6s75AmbbVwjmNaRDUWRJP6I13V6EWa5GiTsaAUFBkk6o90CYNOqOk0 zdzhRfHkSqb942Z0KCai451orEE7giev5sbo4C+DLDjoGCRV87lfinbgf8lp zHTmvraQ+07kuVVXPPj6mNd9YDTUTTrA5ehvX6aDwJHQugjZjNr/06Vg7Wqa pseup1uQG7de1LAtrDJsvmyd0QGoUvJEv5qLyFDyfAKdIiqlSeuFTCQFcGFj 41ZasM7II1cpefKfjlZKgWYo9awzCqlUSuetF/Kd0jElWlAKDdqQI13CoKDu YprmbXtmNdwnmd9lNKREiZsZ60zNzpDsivVCkTfRDCc5WmC/GlBTaCTz+w3a cd1mlK5bZ2p2M2mzq17IVPZSmyReRAgHZxtyaq6L8iIZmpftmWlLq+RuWi/q HV3wr+NVCsxz8lpHpeTXNer16VSa0jnrjPaKSsnNC/nJGUrkmPkpRgtTpTRn vdCJSgHU2TQlP+tpxlVKfnyR35GhRGHcuLgcVXKkSxgUboTHic4+O7wUqKvU /LaDfFRy1s8gofKz/KtWWuQdtYFohHzfSKP6qIp9aPBU5CXrZbKvW1Q89sS0 tlTcu6knDoEirmWaEwr8KbXYaFUIGNvNaHrJUBtyfoObzh5hXotWiFsfOgJV Sl3rhYYiWD20lbRd3EaTP6NS8pv/dJpaNt+U12pzzJIuYcSaCfqvfDnSyfkA W80ouVs/HE+JQoxIiULJZLFS0odWKbk/T7fJm80oqbfljXxyASPSJMeK/KNR xDAhnMNYlcyBr4zhRHq0SjOUyLGdzS7W5vEwXWSGOBw3aLIMakA27ExCQ5rJ Iqkh5mDoSItVT5R1zpdLDSdTRQd/hhItR3eahpPPSztwclkVHePqJSPJSJcw Yg2ZmjXwWrM25CasF/LxMpQoP7JunanXiPladEptBppoIPMlWcO4jaD0XIZQ +pT6pvvyO+UigUn5nbITsQCQAJNlWZ0sbiWiED8DReukcuE/lCK6LwtePM6c WjKlLivSjfC0ltXyKAG++qSnX07D05mx0wL+CbSLNZJkXJqWPZHx2Mi0p9HI 0KHjSi0LUEN6tSwgJGjw5GhT6jRCmnTSqrUgFBYlzxUBIxbK0v1Wm1KnE6JJ HkybUic1D6liLDajmUwqk9+Ifl69LmFEmuSitil16omjqS6shWY01YrErjia akVipEkxSJtSJ/WaQzV682ma6Wxk/amkJofSJxotohgAtit7OiFqAxOTpKS+ xZIM2AVK3TQlqmiiqJBMP20H0qXtEClVH31vr9U7l2oCjXQfGVqcJA+1yV1X YzwaB9LdNLRoDCgyp+BFfbEmmfoSMCIlj/Qp5lCTfGqCcMPQoiPkL0vRBZT6 PgtNCOmuGlr08T1aV4ugaJ7VqoDlAbRjL0bVr3xa5fT0pOtTHRMI6rVUusyp fhxIlzAiJU8MNCtuqh8R0u0NLP6aN0fVN1EInnSPvTnqtaKU6Rw2vCeR4x2Q m0saLPUtEoInXU+rx/tEOhFoG9HUqGlK0iWMSMnfLFcLj8iLTdYCkmXtf7P8 qQnI6JL/r1aEkq5fWj0L8M9NQGZHfXMjWZxJG7lCexHgX4rrXX3pgYgkrzgH ZJGS//LEKIh4cVP85YlXJlBvlSnUIHjS9fT96wD/xgRqAVAbeC8beBvg35mA BjX3RgT5P1Sp4Dnu8JMy4YdrEp1SPi+dieY+4g/Y7BpuviqnBuNY3cxe6P49 aJBRqGZmsxT9FhQrcc1PARVj/wFwSqQZ\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {136.25, 0.}} -> \ {-2., -1., 0., 0.}},ExpressionUUID->"f74a3d79-6a48-49f4-a628-b664515d6301"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(28\\). \\!\\(\\\"square orthobicupola (J28)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"617494cf-be75-4f4c-a5a0-8e7f5798185e"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .5 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.420635 0.15873 0.25 0.15873 [ [ 0 0 0 0 ] [ 1 .5 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .5 L 0 .5 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .34127 .17063 m .34127 .32937 L .18254 .32937 L .18254 .17063 L .34127 .17063 L s .34127 .32937 m .34127 .17063 L .5 .17063 L .5 .32937 L .34127 .32937 L s .34127 .32937 m .5 .32937 L .42063 .46683 L .34127 .32937 L s .18254 .32937 m .34127 .32937 L .34127 .4881 L .18254 .4881 L .18254 .32937 L s .18254 .32937 m .18254 .4881 L .04508 .40873 L .18254 .32937 L s .18254 .17063 m .18254 .32937 L .02381 .32937 L .02381 .17063 L .18254 .17063 L s .18254 .17063 m .02381 .17063 L .10317 .03317 L .18254 .17063 L s .34127 .17063 m .18254 .17063 L .18254 .0119 L .34127 .0119 L .34127 .17063 L s .34127 .17063 m .34127 .0119 L .47873 .09127 L .34127 .17063 L s .65873 .32937 m .65873 .17063 L .81746 .17063 L .81746 .32937 L .65873 .32937 L s .65873 .17063 m .65873 .32937 L .5 .32937 L .5 .17063 L .65873 .17063 L s .65873 .17063 m .5 .17063 L .57937 .03317 L .65873 .17063 L s .81746 .17063 m .65873 .17063 L .65873 .0119 L .81746 .0119 L .81746 .17063 L s .81746 .17063 m .81746 .0119 L .95492 .09127 L .81746 .17063 L s .81746 .32937 m .81746 .17063 L .97619 .17063 L .97619 .32937 L .81746 .32937 L s .81746 .32937 m .97619 .32937 L .89683 .46683 L .81746 .32937 L s .65873 .32937 m .81746 .32937 L .81746 .4881 L .65873 .4881 L .65873 .32937 L s .65873 .32937 m .65873 .4881 L .52127 .40873 L .65873 .32937 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 144}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnNtSFDEQhgd2EUUFBRTPu4gIKori8Qn0yvOh9JKyrNILS0t9EN9YmUmb DOuX2Z6dDlfhYnfIJP//J5NMOkn3Pt399fnT191fXz7uDp/82P3++cvHn8PH 337sJfWmimJqWBTF72FRXv/Zu5SP6m+1/JB/xlzfK79ul2Xf+6t7tVtF74+H 3fvvRvXZ92nC+06fdWcc+Ew97V/J4m3L/HfG0exPmy4/p8uk161LbLej6vuC L1uXuNmO6hCkPetQ9rqjvwS3lpSws74uj0xQDCQd8WAPTFA2naSLI5nKXrms BDsKaTvGeOvdZR7zde4iLqCIpAvVF49r7eOY96Dbpmhrruh5yNSDtBNKghOe YCsZ8moa6YuQdu0AONyQL87BrRlIW1BSLfn22kyGnEj6KU9wNRmyG5vFWcg0 C2nzSoIVSLt8AByuHsUZuHW4A9UZ316ryZAbpB+BtONKgnOeYJAM2T0JfCBz HQguQBq97aw5luPVoYn3mJLqom8vqoQNskg/rWwRIiWCgSeg7mmD7OYE92pS DCYtAQ1YsmSsORbi1aG3NPVhorrs24sqYYMs0omAJngtwZonoOnfBnk+Lv0k pNHrL/qAo61ug+waAE1Yai8twRDSDoJDqkOw1IY0hxLVJd9eNLJskJfi0omU bJjoVFObL1MgOxTskTQnaAnCVE/vfxvklbh0ai/az2g2sMg8t0EW041eYdRe WoK4gXsQHFgdoqeFiGbRkQ4Z50Ht6qx5qTe6vWKHLItIskOovfpKgpMjBCmQ h3Hp1F60cxDd6qC3dGIOqQ6ZtUSvpQqbTjRf2iCvxaUPIG1aSRC29GgRb4Ms m4W05qH20hLMjbRNCuQNJ52WC669eLfyJuQnk4va3ALXUHbYwF83RZPjAFoI XKk++/tAI3gzHo820iYC2jIR1vN4tDk5EdAtl4ue92jlQ/P3Rx9NBUW7vm0x brtMZIRv+kwE4B9+y0I7asLqJg1synfXwc56nsXy43AtdQSExBMZ5etS9lCW lCVlSVlSlpQlZUlZUpaUJWVJWVKWlCVlSVlSlpQlZUlZUpaUJWVJWVKW1Cip vNh32FNFolWnQ0Xv3/3qiyI9CH2jK4DIc0drDaeqtRNUUDBRSfeU3CFjlSnq LBKFWO9QVui3fCaNm1NZq+jxamcU6RXXPVjc3/C/s0o6jV6zAnInwLXDzLlu eKtWQCJsA27FkbmzXonpTIDrMGrdNx5ioAcdmKKJxNCFtPFA5PIyhLTgI2uN 7JxQap2M/EC1BANICzES1sjOYwlrpaUiRy+tu541h1QnPGpt3CcRkGve+WTI bgzV3KHJM5kIaCaKOqkmQRbpzY7WRECOpuSQGryVrZEl5kLrmayl0uJZc0j0 y4pvL4rWIgKyIqLu8kmQ6zFHUW9lLUE0SCEJcj36JRqtSAS0bqDBmQ5ZpAd3 aLJAtAQUBrKYDNnNHegEraUiK1UbX5SGo+YOTUYSEZC3ZDRILQmySD/uCciP VktAJkGQbo0s4VILnoAcrYmArHLqiqH/WyOLdKoVmXNaKjKOafhZc0j0b2gv LcFRSKNojjB1WSOL9GVPQKaploDWUsF0s0aWmDuaGrQTPAU9EL02Ir4Lh6vH BPYPtQ313OY4+C7IIj08arLvtAT0+hsmQ5boR2oR7VKDhhXNnBROYs0h1Wm/ EiMCsmbC5p01sjOsJ1j/0huZFh1h/9caWQI3Qy8lS6MLwbVkyCKd+qZ2q4km eNo5oG12aw63Tp5gJ05LELbpE0nX7HOSbci7lTumaG7x2XIHudkGL2HvG+NJ RK9mB3482AMTFJGkOa0gS3l/2kMTFHmYNCq1QdTPO5SVwK4wnrQFX7QuIVTb vqA2vvdV6xJC5X41UxVB+EafVcCrMd2LZXrbeFcgqh++3C7vfPBXbhS6rGN+ 7LSY+gsgpnZB\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {143., 0.}} -> \ {-2., -1., 0., 0.}},ExpressionUUID->"e72c775f-608b-40b5-b965-f9553e5f3dcd"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(29\\). \\!\\(\\\"square gyrobicupola (J29)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"d698537b-ac3b-43ac-a1df-839510400ef6"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .53001 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.414253 0.156177 0.246885 0.156177 [ [ 0 0 0 0 ] [ 1 .53001 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .53001 L 0 .53001 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .33616 .1688 m .33616 .32497 L .17999 .32497 L .17999 .1688 L .33616 .1688 L s .33616 .32497 m .33616 .1688 L .49234 .1688 L .49234 .32497 L .33616 .32497 L s .33616 .32497 m .49234 .32497 L .41425 .46023 L .33616 .32497 L s .17999 .32497 m .33616 .32497 L .33616 .48115 L .17999 .48115 L .17999 .32497 L s .17999 .32497 m .17999 .48115 L .04473 .40306 L .17999 .32497 L s .17999 .1688 m .17999 .32497 L .02381 .32497 L .02381 .1688 L .17999 .1688 L s .17999 .1688 m .02381 .1688 L .1019 .03354 L .17999 .1688 L s .33616 .1688 m .17999 .1688 L .17999 .01262 L .33616 .01262 L .33616 .1688 L s .33616 .1688 m .33616 .01262 L .47142 .09071 L .33616 .1688 L s .70568 .38214 m .62759 .24689 L .76285 .1688 L .84094 .30405 L .70568 .38214 L s .62759 .24689 m .70568 .38214 L .57043 .46023 L .49234 .32497 L .62759 .24689 L s .62759 .24689 m .49234 .32497 L .49234 .1688 L .62759 .24689 L s .76285 .1688 m .62759 .24689 L .54951 .11163 L .68476 .03354 L .76285 .1688 L s .76285 .1688 m .68476 .03354 L .84094 .03354 L .76285 .1688 L s .84094 .30405 m .76285 .1688 L .8981 .09071 L .97619 .22596 L .84094 .30405 L s .84094 .30405 m .97619 .22596 L .97619 .38214 L .84094 .30405 L s .70568 .38214 m .84094 .30405 L .91903 .4393 L .78377 .51739 L .70568 .38214 L s .70568 .38214 m .78377 .51739 L .62759 .51739 L .70568 .38214 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 152.625}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzFnF1zFUUQhhfywYcgIAQQhE34RkISUEQtlKKswvKC8sIL1LsUZRVcWFrI f9Cf4A9RkdLyr2F2Z9LvyebpPb11zhxykWx6dmbf6Znpebt7dh9tvnj6w4+b L5492Vz+8vnmz0+fPfll+eFPz7dEc3uqas9yVVW/L1fN9euty/yr/VlpfuV/ 4PqD5s96c/9/I4Jq7rU1sPXf++3veZPlJ/w7rsbCqGy7ZvXPuGo7ZXub33sb 0athFeet4sthFRdB9kdq4hwUHQ82u8/wPG6uWqWvTd7sAWv2G7vauiU13N5W 3YBqq+mG9zpFTeUTwSe/BbKvQbYXZNdAdnNySIdMBY/samHY48+2f3jqRsfk bXv4V3a1H+67ArI8Jc5A0RzIjgYhHTUgD6H0AMgugWy9DLh3QPbAAB8aBu5d KKI5cCQI7rgBuW9XVPcCyDbKQFoyIPeCrfSAOw1F+0D2dhDcKZDdNcC0hJZB dqsMuNMG5I5dLcF9NchuJ0jUP1o/h4OQzhiQW3ZF3T4/O0hdE/zazCNosyOj vSztvNVJKKJNhBY8wTxn+rphVwSdZBkSjT1piWASpNqAXLWrGu4jC/phGUgr ILvoQe/IyHDdSTBpSybLczAI84Lpa8WuCCbNuUKQLhqQ83Z1Ge6j5XdyZ102 fMdARuvWHVZ3fhGzoOV3wlrpcMZzZVCTqdcyvg6ltBxooIllJi6H9II6RhSN OqHZoKvV4DPEJogAZMCkYdID7YSuPXfnCll2Utkxa4UUdaYMdO2OtV1teOBc zku2Mtk25Ki0oMkr7GcYPq0Zz5LlQZDpLwSd6kY7QXaWSBnJkknHJqLMuZ8l k7dAnSBwcilpihWCLitBhpyguwyhbYUMZhpt7PNZkM0HoctKkDUn6LQ4D1or tGtl6NRnop/kmro+cuA+6gRxCtoUXa4w/e7IhpCFp04Q4P3WCnHWDJ0Yew0y 2qT74zhk6wk6bUmL1gqpcakMdM3c20HotBUuWCtkgNNyxoWzkquPyFKBw1Fo yClQSsDJmpGscBcUWL0LpTSBCOSctUK7RaJyuMqTkzK/A66DVKP6CZSSimmt KyJOm8N0kEobFGEinTJSZxtI9BInX9fB0qjvBL6N73NXk4s0g6weBcUzLLIl cucJzNb1AxfHwmhfrE9rcP+x8PPbwi/gvo0OuuavY0bTdpeWz29NCe1NG/Zc MmejTXSKaNjJXjrJJdr2uypr1Ei26si0ULENIndm1dRE64C0PzWQnnEgznfd SskE+pR46jCVnCMn+SrIyIkhvRYCTI8nvnjZOkYWmAAfLgNYuyL5LYq2Ef+h iXCoDEylL8mHotgl0WTSayHAxFgIkkJDNE18P2jqgMWlCaZCQ7QQSa+FYMpb oRlJvgcZOAJ8sAzg/ujSKSt1d9XZwKRIHhEMRUtI1wT4QBnAin0QPaRZ+oYB S3PUsuIhlMAjmPvLwKR5SCxAC5GsLwHeVwawIqm0+ZKVeMOAFaumYJkCA5RD WrfSQsNPSVCKaYg3EAu7aaXVznxRIZUqN0RYaV7Q0Z7k6zGbL6Tu2lOUmC/5 3deslKbQYhms3WVTbau7BUKO6hUrpSEoBFOctaNSWuLK3bqRwekj1EPJWaYz ODMEp4RxR32EtbabidwUQrgMMlr2NN4yFMRyCwEWx4+605RZmSFgsX2aeARY mzC5MYVgaiOl2UfDr+MWxHcLwZRuaAhJm+K25LwUgknEj7J+pFfS5gyhi1pT EMPNQ7t+VyGY/cPqRlPaGpQmLgRTrsggn7StQYarEMzosYZoGnCG0OU70UNJ w8pRkntYCKZmHyVG3TyUm48sBFOzjx7aTa5YwdYPUa1CIClI4cPdleegI46F kMqzowxnOznnvNJCkJQQHeRstrIZjrFmP7VCflyirbuShBSgmBpmzo8Sum4a iGvWswNbsZuppCfZdbmoZMWmhbQVkeW+ZI8nkqopM277+bUpcf1Fl16Sx0Fn o/OjlMetxr8cFj30RHaOmKWWeQ/C9Xwr2XOlV7vQmlLKAcsfJOYoU0h55gxI 5sc9+zYI0lmrQSyRZjgFuzM4vfEQOd3ZQLrWo1+CK++GdKS8XQ9I2Rn/aPUu Q0CHWqJJdaKJJBOzoNmR0VMksUA/aGHpWD7lNkTfKGea0StE578owpOB9v9o fEMuBtlksmMUx89dkIX1X1yafhfkQZJ5O2ylPcCJ1EXfvaKAFwGhjS16MJja U7fp4ELumGKI0bOy1J0aZNF4lM400xgrJ9sTWK3tJopuuPyvIyN3jXwB10t1 T/ARKpq8uTva6aJvSVN3aLnSRKDuyId1z/q5QdLcCcpORbtDuzO1R3aw39cl biTTTGrM3VEAk3Yf1xPqyMj2+5FGtoREq5ey2jobVs6Ead+n0FQUO9Ulaui4 xbS5t7DnRpAq6EscO3qKiygp7av9JyF7oo10XnASwPQoMsdrBrgKJnyqkUgm 2Tc3qtCREWEkorWa+9iZiNt/e3CKZ9BeFsVJI+PuCbjmG+USec4vfdKwRAFH HQIyk3Kck3Fk20D6zcAVyCQuE42DkS5J53Qggqxr1A3IL6+KqxFXiHaCJi5N cCV/adFGmX/auMKHId2wacA+uK/7uWeZyNCT/nMnxMYmgU6qIJtdgyzaCT9V O0Jf6AHRE6K09dEWqQQtTUXqDuk/QyfLQMRokmOuxFH607dRxyW/UKwUYBQ6 OWYEhNrTsU1qhcaE9J+hqzHSEkEnDdOa8N9nG6+KqJOSXzKmWRoltdQdejxx DTERWjvRcwG5E8P5OD2UduQaZLJ7ZLui59fzq8WyCDTAUei06IiIEOBoJ2gS 5Td1aYCjzjc9nmw45YP6X952WT53orbGZgFdIUoiff0OSp46w6M1dB8xF+JT tDrcz0h0ZAq1Z9M5SQRtkk4olEGrzfdh0P5H4pf0AGbrFI5WqIIYKU0cheQz SY7EifsHtQHXF4wlk0vaFZI6VR0WgI+C3BVrIDJJ+DSc+eOZkfTG+BGJHtki WfdTSQPTQs1/3wcfRbtFfih9XiD6kYLvQEaUQ1HOFDIdiW5M+1HK06UJOCx3 +q3XIm3vI/nD5I27KfvHnk46MrID+QFtnGKtKSFNUGOKdeaPY76Cm2qQKTyz PqyishD5A4B/w03RtwIHNqHUQv4S20u4iTYmhfM/GlZRu83HqeJfcJMbHGkr fpoq/gk3pSM1bJPvjau2y0p+lq7bD+HebAT3k6C9Z8xXhqs9/wNfMh/F\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {151.625, 0.}} -> \ {-2., -1., 0., 0.}},ExpressionUUID->"009c2f17-e1dd-4e6d-a1ca-7488bb3cff3d"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(30\\). \\!\\(\\\"pentagonal orthobicupola \ (J30)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"6f83b5b2-3ad9-462c-babb-\ 5ef6271897c6"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .5224 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.431035 0.137931 0.261202 0.137931 [ [ 0 0 0 0 ] [ 1 .5224 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .5224 L 0 .5224 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .36207 .19224 m .36207 .33017 L .23089 .37279 L .14982 .2612 L .23089 .14961 L .36207 .19224 L s .36207 .33017 m .36207 .19224 L .5 .19224 L .5 .33017 L .36207 .33017 L s .36207 .33017 m .5 .33017 L .43103 .44962 L .36207 .33017 L s .23089 .37279 m .36207 .33017 L .40469 .46135 L .27351 .50397 L .23089 .37279 L s .23089 .37279 m .27351 .50397 L .1386 .47529 L .23089 .37279 L s .14982 .2612 m .23089 .37279 L .1193 .45386 L .03823 .34228 L .14982 .2612 L s .14982 .2612 m .03823 .34228 L .02381 .2051 L .14982 .2612 L s .23089 .14961 m .14982 .2612 L .03823 .18013 L .1193 .06854 L .23089 .14961 L s .23089 .14961 m .1193 .06854 L .24531 .01244 L .23089 .14961 L s .36207 .19224 m .23089 .14961 L .27351 .01843 L .40469 .06106 L .36207 .19224 L s .36207 .19224 m .40469 .06106 L .49699 .16356 L .36207 .19224 L s .63793 .33017 m .63793 .19224 L .76911 .14961 L .85018 .2612 L .76911 .37279 L .63793 .33017 L s .63793 .19224 m .63793 .33017 L .5 .33017 L .5 .19224 L .63793 .19224 L s .63793 .19224 m .5 .19224 L .56897 .07278 L .63793 .19224 L s .76911 .14961 m .63793 .19224 L .59531 .06106 L .72649 .01843 L .76911 .14961 L s .76911 .14961 m .72649 .01843 L .8614 .04711 L .76911 .14961 L s .85018 .2612 m .76911 .14961 L .8807 .06854 L .96177 .18013 L .85018 .2612 L s .85018 .2612 m .96177 .18013 L .97619 .3173 L .85018 .2612 L s .76911 .37279 m .85018 .2612 L .96177 .34228 L .8807 .45386 L .76911 .37279 L s .76911 .37279 m .8807 .45386 L .75469 .50997 L .76911 .37279 L s .63793 .33017 m .76911 .37279 L .72649 .50397 L .59531 .46135 L .63793 .33017 L s .63793 .33017 m .59531 .46135 L .50301 .35884 L .63793 .33017 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 150.438}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy9nEtzFDcQxwevFxtiY+MnNoZZMMRgXiFAeCZFQgjhQKVSVA6pnFxUKnCg kgIuOfEt8tmST+N4JG33rvxruZcd8ME72yup/y2pH5J69Gzn3cvfX++8e/Vi p/fkzc5fL1+9eNv74c83e6TOoao61Kuq6p9e1Tzv7j2mf+HvTPMvfTng+XHz MdHU/S8SHgmh6uxGUqhQHZYf3jdPk83Ts1jgYfPR2e1XqTq7AmXvWzejNU2H dv6WatXkICtp/mkkfiOcDzuab75NSMtv5WkSygVatyF9H1k9EFbTVvGMdlgY vJYnqjstUj2MrO4Jq6NOVkeEwR/y9BmUmxFWDyKr28Xi1IEzUmNHno5BuXlh dSeyuiVSUXGSal4Y/CZPC1BuUVjdjKxuCKt5J6tFYfCLPC1DudXmf5gW1yKr 68KKkBGrFWHwkzydgHIbItWlyOqqFF+C4qRf61LjqTxtQLlahLgYWV0WwqqT 1Slh8EieaijXA9pWZLotTNecTHvC6mt5OmvJl9EuRKYXhOlJKDQBtHPCSpXn c6tHMlrq3vNSkQoR0y2g3XCWoxHfjkA2RXoal7aBUA+nuX12ZCA6cDetXzMa zaopaWVzAEjmkuqR+mZykNY8X4aiZFmpy8gwTAHEhP5ManwQQb/I6ZGk4DYu jSEKWZKpAq84Ejgfgi2YUGvGDWyPJPBwf1I4QXOKfISGQ9Q1dWRRWxVx0rKA F6E8eZzcOjV180lEHdF8I1dDOIl22hZV9W5UAalPzxXaIGBeQScF5RFbPNIr ittWRhSUgJNzI8dINBJ60RLaIU90XejBZoC2nBrPjCNJTkHyGaeUhJ4kP+6s S6Js2JLPNv/DjBlBXppcNdBo6ntHmgJhNaNztpQUPVBjxxNE7/T+FEKTWFSX 5InBCsYsC9JvUWjXINP6imYQGWavvLNAmxCwZOHWI+J1+Ilc2zG/vKQ41Jmk 7F55iQd5eBJlzZZ8BWizfslpFIgNaYA35KbZRHVJlCQ5hcMh3AyTJRfCUmNS MQpayYN4hzl21HDf93FSx0b+CINmYA7NEpWsBAW13rHxilqxq1m1pdyQ7vHK Ru6QtCZOC7+Vn87kaT4rjpmSPNSjNdA0giS+FNgQjbaivGOVB2hNH1CYEnUQ VZGK6/KBBCMjTjtPUS8/PKxuym1CuTgpcG7oZsLoItD8mx9RhBC+BdJ5kysC p+LqNokVjWUbQZFytZco2H9bUrEMnLSLdGDhQOBsjm1dRPXbzppK5oFaITtH nnYR0BmgK96bWbDxXioKSr6InEEcwELnBg5XbGik8KF4x5o65Pco/ljhbtqS xq9BpTjLUYevAi18Owc/0FKDwsN8Elf99jqiAA4YUV9Rbam4Wpce/EoOjRbw J7h/e9I4VSI4czZ6mjjTwoBCiRpotO7KQ8aq314gUYhHWBJ0ihypuB44kX6d ll8JcF6j6rcSSGT4CEEsh8XNoQkkchOBfdB9WunlKlD1Wwkkr4bN2oBJPj0/ I8OyLIDtvZBhwAvSHnlbQpAAkz2n4iekR2gSzQtg0o4wYXTTw5xY5lTkfqBh OCkMyAvMFnspNyhVvxVTiQlB5Bs/JizzXUuz5ul06E3ywD1pWS0MBbVXpFzq QxpqOl3YlGbNjaAAjnyHuVtqBok5gkoBkzJREKCushrOkuhafaNnXwPJDpUd CRmhTMI5J61R3RBw/dyQKPLRKJKW5tG+oxGiviQG5PWJRnWJRwGmbtIRA9Ju Lziqq2NIDjxBosDdVJYWwREPcj4xIBxYWZOhq4FGpscLmOoSD7JNg4D3ryLU 6lF0RpbQi5nq6p4LGXsDafozwydyTF+MAZzqelctQyIM/5Sdk5kbc21D1+1K ss4FwLpBYS+ChmnXx4BOdYnHiEJMixCkG2RsvhxDCKpLPCgiS0KYKtwRw2ke VLQNXd0DxbwFwDNSkSw9RZyUHuOFTnWJx4hCHBMhuvJEA0epNV7oVDc/HnUD nh8G7DBXt8aATnWJBynxtC1EGKRAsuOWjysE8aAtwYIQYeCynUYyol+NAZ3q alRCnqUAeHUYcPYrTafbY0Cnup6diQOEWBMhKl1VVIY6tI1f8wRo3VlAHRbA k9aEvzMGzDupYwdo/W4pRI8IUjcEquEF270x8N3NaE3rPRuXmV4UcD0YA4jm ko/IPh/qqg0gvpPAAqpSvt/9MdDdzdClv0CgrYUpG2LQbNNVjT/pLd3MDAMZ mAJqygagAKdt20I8gjh25iviVytPv7aNWp2ROkEKBgqAqTi557b9aOTBS1A6 8iqIQDEcbRm0HcUQD9UD2p8qCLEoFSkAbhu6BsDlwDsBpglhH5V/3NjdfJUG 84UOEEJ3KWmx1/aKSRd7+k4WoSoAprU5zf+216nlBHOKZwpC0CCRHWpbCNM0 BiHMDRoWQrf1yMW1vU+jW0y6tUV+vQCYaHQe3/bumJlt2RHH5RdCN5soYmsb eraZ2tG5XtDbYVoNtLb3fIkH4Sv0K8U/tF/f9hY78ViwYaqhp2OYtg8sNJMs QfKmVH4KcMRjrgSzKhzFPW9I5aM4o+3KqBhe9jE1nIQMK72uVSN8o1ef6PWq mQGsZhJTdqRrntGtCS4zJ75jzUg6Sh48DHeMcy0MKGyks+UlAUw8pqQ975nf URtwOd1A96gJZgggwwKAQrqj0oo3ySDB9GZFrAqDPPBtpnQPasxKv1KwOCvt 0Rq2kBXhzTbR9BhdKxDMcqaE9ro3KaaQeGCmVQUS5ceR19Y7Dmiol6U9WnEU sni8eVLq2ilNy3xd1ZzXmhVEI1vIk/JmomnwRNk5tE1kvrRO8U4geZPoUk6a N/9Psxdz49NAp0jRfnfVMpMUyhTy/7yJlx31D/tyXmgFYL+JChbcdJSFnEtT HdBVVoZhoqUbTSH15xSBpiRWOv6jXCYjdYjsFTk9mif09jSNekoSpi2mHFXz KWB5r5dWlOQnaYIYr+lTyFBIBdcALapK3pzV1/ZbNWDNTJ663UWhZYJN3vI8 o7JfxeL+p6bJ7tPhokpBNoaiufQGAXWdJl6RFo96vwENNNkpmn4qlu7PUFhb eBGldH2D/R47lyeTQJar/DYJWQEKX5NQ1C91AaR9CwGXJwFI0LJQ5GNroKV3 nWgO6wYFaY73zgGanqRF3rfZVMRy7lt6I41MDBlMgknuqzRyFGORCtAIk4vx vmRbeEtSt/bMK7U+cAzJE9EsItNCwmq6TkFECjJIH8cR1pu3Qt1NM4CE9drb 9JYv9Yh5l4djnLxjbB79Ony7EYF4zXPh1fXspCP7lZbo3mE28zvcPPbJq2AL UhIPmiIUS9h9f7C85JpomWzPoX3ykpQkSrqUgVYDen5I+DwqZsnrXe/ZpoIN v+aLEbp0y4a3Y70pl59OaNdaikQpXCLjPSfw+Mpdw/RRb1BgZ/v5fZKTAyJR kuQUmOihIPE1Qx6HbESjTaRRw2zN9rGTqNzvV5JOm6EsDjKDpOsJ7WvbuA2y RtRG4dIvXbTStPAKSjcV0PmEfRMUC3hK0BXE6hUa8GYIe1S0ac+8IOADI5ZT Bezpzl/aHPQGs56xar6VtnW8ItP+a7ovkJSaVNPcX8loMZ/BdfGPiXTwgkna G7N3qQCLuetDJk7XqXFfBY8MKcTSK0pvyZN3oq1nNXBrzXxhM5DuyxNtoRBT Xc2lu03pfJJ8jr5B/q089ZzduyJMY7/iuNRA07O6J/JEoQAxXRKmcZM6Wj8T tx6LPJMnmnDE6rjUiFkacSTNF26XpPhzefIuQTUjLGZwRY6Blbl0Dlr5qzx5 b2DWIDqm6MWPrtWEHjDqjdcUy5orzMAqppHGNOhJqwnvPd5kV/V0KiYzx8vR g1RmQBlI5dvJzWSngdT0eOdz1/KdelSvd65TOepATRH4JrL6UVhVw+n6od7A xfFwR70ZjzyMRVVB3stPnHuw9+27WOdfqfN4gJBVSD+FLwdcu18d+h8zpgjQ \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {149.438, 0.}} -> \ {-3., -1., 0., 0.}},ExpressionUUID->"05a79d5c-c819-4975-bf3a-ab157af61b20"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(31\\). \\!\\(\\\"pentagonal gyrobicupola \ (J31)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"cdfc148c-6952-41cc-bb28-\ 90e0e72a0da5"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .52899 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.431576 0.138114 0.261689 0.138114 [ [ 0 0 0 0 ] [ 1 .52899 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .52899 L 0 .52899 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .36252 .19263 m .36252 .33075 L .23116 .37343 L .14998 .26169 L .23116 .14995 L .36252 .19263 L s .36252 .33075 m .36252 .19263 L .50063 .19263 L .50063 .33075 L .36252 .33075 L s .36252 .33075 m .50063 .33075 L .43158 .45036 L .36252 .33075 L s .23116 .37343 m .36252 .33075 L .4052 .4621 L .27384 .50478 L .23116 .37343 L s .23116 .37343 m .27384 .50478 L .13875 .47606 L .23116 .37343 L s .14998 .26169 m .23116 .37343 L .11943 .45461 L .03825 .34287 L .14998 .26169 L s .14998 .26169 m .03825 .34287 L .02381 .20551 L .14998 .26169 L s .23116 .14995 m .14998 .26169 L .03825 .18051 L .11943 .06877 L .23116 .14995 L s .23116 .14995 m .11943 .06877 L .2456 .0126 L .23116 .14995 L s .36252 .19263 m .23116 .14995 L .27384 .0186 L .4052 .06128 L .36252 .19263 L s .36252 .19263 m .4052 .06128 L .49761 .16392 L .36252 .19263 L s .6893 .3813 m .62024 .26169 L .71266 .15905 L .83883 .21523 L .8244 .35258 L .6893 .3813 L s .62024 .26169 m .6893 .3813 L .56969 .45036 L .50063 .33075 L .62024 .26169 L s .62024 .26169 m .50063 .33075 L .50063 .19263 L .62024 .26169 L s .71266 .15905 m .62024 .26169 L .5176 .16927 L .61002 .06663 L .71266 .15905 L s .71266 .15905 m .61002 .06663 L .74138 .02395 L .71266 .15905 L s .83883 .21523 m .71266 .15905 L .76884 .03288 L .89501 .08905 L .83883 .21523 L s .83883 .21523 m .89501 .08905 L .97619 .20079 L .83883 .21523 L s .8244 .35258 m .83883 .21523 L .97619 .22966 L .96175 .36702 L .8244 .35258 L s .8244 .35258 m .96175 .36702 L .88057 .47876 L .8244 .35258 L s .6893 .3813 m .8244 .35258 L .85311 .48768 L .71802 .5164 L .6893 .3813 L s .6893 .3813 m .71802 .5164 L .58666 .47372 L .6893 .3813 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 152.312}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy1nVlvHVUMx6fZ1yZpm6TpNrcpSdt0oXu6ooqlFdBKwAPiAQmFCtRKbCp9 4InPwSdCQkLiFT5N6PhM7Xvn/nyuJ7nloZk4M/bfPj62j8+Z4enOq+ff/bjz 6sWznc7jlzu/PH/x7NfOo59fviaNHiiKA52iKP7oFNX17uvL+h/573T1T/3L gOuPqh8j1bP/JcIHSihGdxNJHij+Tb88rH6M7r75czG6q2Jf/zauf/0n3f6e spvwbm/Q5Lfflc+nic995TMV5vOGxW96NQL3fZwE3FUBM3DTGNAmle1LvSIg tYBtvWk2qMGMPvGDXk3CfRMK/f0k6qYSDgZFzauA7/WK7DBRW+MNrfa7h+n6 uspdDNpwqfpX2H2jcueDmEf0iQdJ/FUVfygofllZfKVACDqJH1dp95L4y8rs SFD8UX3ii9bPTqn4O0n8RSWswu00WU+o0Cd6tRLUfkalbSfxW0pYC4ovVegj vaJnSfycPnEjiT+n4o8Hxa8rCwtpJ4LGX1Rp15L4DWVxEm6nsLOpLO7ps2VQ /CF99koSf0YJnaD4s0DbVi7rQRsu6xOXE5D1LBBicVafuN34a+FwIYusqg0v dAFpMCPz+rYZ66ZV17fk53gPOceatD2u2p5Pj57OMD3VCi/zuBEERp5P951U BZJUf5xHvAkVdUe67wrQKD5QECB+HUW6kdQp4SaqXNZq0WTz83A/Oe1loFF+ PxZUxiLauq/MpGrcVgWy80WgTQPtKNDIvTYUXfIrnANUmKy0VIbGdAtoVKtR fqXxOAe0lB4wS8wBTQJsfygijaguJgRUXlHWH4JGIkpGs4Ue5D4UHg4q89zY N8fU4irGJir+ljLsowpsunx7aYcHqtJnw9r+FPGsTljiZwk+efw7LtS4qWh2 kY+laIdBbxloB+Oa0QSjSofELL5dzWgCzsc1ozlNiZki1wKLuQC3UsROWQQL dwn64n5NfN7UWQAaZQCS5jgCDQ5lspShMFHR1GrmIE8jCigUeEiG4wBD0EgQ YLPD04OCFWEm3WbjelD5k5wWfbf0WHSV2IOjFnmTX3eE9KBknOY4TvXTQLOu DulBbQKykBW4NNIEnaqrFBExMNrSsz1gMsUZoDW9YkjQN4A2klWCAJNixNnM Q9ApNyXOKMBWzXnA5BLUHKMCq7lk8axOySdNM5xtzTKm+umgp9BFAZWetTUo ZbKWmC8oMxJFCZ0arwTEho9MS/kwDR+O4qXqXyHRePopppeW1nS9YS4H0q+Z MWvQqld+oyLTTyfENBSayXBJBdSE4MrMEBIVWZQ6aE1wRbkMAeYloE2pAFqc lUCj9CsdzlZhPXktOi/BtF4uTaRT+lcCJzsO/cGE3N9fPOBkpXFfUCyUCAS9 rBBotK8DzXYwKOuRjAxgMq3EMrEOudOyAraFOvULLXNRnUIpJoUVjC4E0/ZB yGcWFSY5G3UEpxVw6UnD9ItZmBzhuAKmYCRqj3kOTfzmFDAFPOKS5KYf8uC7 cFOpMKkenVK7kpWos2f+TyVzBiY5AmXDMyrA3dEVwFRfURA9rOahyUS2TiUk TjAKf2cVcNG7Wy4wSUVqoa0oTPJwCt4pwqQBcWOzWGSrIlFhTC2pNeVHmdtP bHg7DRJ5Vcr7fTGcgqhbIgiJBq0EWpoMXd0xYktxKt3HTSCCS82ljkql0EEB NuU9dA263QfuVZ62lUz8bIFHKopzTliI6Vp+UzAtgUYBkQCP9QIOzBLbY6Xa QYLDjDlOfVOfI1qMpQlAcZfQ04YD0ahKl8ktJOrACb7pinSU9aj/G/UiAQVu Squklg03mZjSxCV9ohEyxSFnzA2RozmBJfn94DcuNBhUKsiAi8dv+TCtZKJJ Q8noahAwRQ3aXCQZZBQZA7F6x1fHIgRNPYpM14LqWOVDGZ84k6GkvpApUDcL CaaMxKgOtZtvo9BtA8o9oxHgLOMk9p/3oZuVyEtpPUjLDVLCTrJYw4SSOfET hxnviv0E3axkB6aoyqeFBwEmu9JmC5WcURkTvjpmL/JXmpw3g0KtVnWDfEAd t/PI6og13cxCySKqjh0NotGhqEicW6rTEOoG4FtBJVI06WsrRVm2RL+aNRn5 23ZQD9uJa+RcCifEtKUmto7oklc4kyaqhKT5UW/qNU+PeVwmfdRSeo15kyEq wPbWiMud/cM8RcatftwN8j7pMbjXDhxNAwN3P8jMnniwf/HNVUDRAogNXMMs UQYZXKnVwCvHqNWjZ9qibpCBe0xNsZ+ptpblQjOBwkwGJi0vohHNDfdumUtq twRsAuivUZhU2kf5tQRMoqgqiCbUI2oA6g4MATB1+UlUtIyxJhEVrVG1p3zA VvaRgChMKtmHAJiGmkTRCiRabFsPk3ZeowbIADYBtNqLLpRsi4TmRFTZDEzq XpI3R5en1raiLsYQAEcPkkYBkwyK8MSPokQGutmGekfRVox1RWgnYQgwiUZV QLTZZX2PMqh2S8BmEWqVRmFStdAJ8msJmJpdZJtol9eaKLSj26opmXsBr5dG XXu/qc4HO2g3KKp0Bq61a2lg/K2KviU3bZu1xEctFKqfWyEVEm09Rnc1suCK QRt7tJ+2T8mFw3ZT1SWjkQDa/ozuTnWDEzvQg43tYtzLK5xnCRyNfGZ8iG2p kCIbgm8RXP7YgjWUEyRemRI08vUMtOiJCnuBr1m2VkAo+lN3hcC1BBw9s2JH a6yCj8Kk4ZWTBFMVicJ55lgCgbODGs3TOYWTmynnEkwBN+5FAdtMolNBGSXI JWZViWaRtl8lTqgStn0pqKb1iqFHj7TZybsmzAo6VYtUiBD0FYVOjirrBbE/ bUnVSkSPD9opx6ZHVkpQHUohj6bfkiphy+uO0uZ8mAPOjvZVDVTdE0iy9KwC sq6Nv2zBZbGdx22WL5UFaW1DkZzAjSs461pSxVmfv6JNsybbCtJ5NiMtIONI HQeiMFcPPTUCmtCqn4qY05f/UhW4qJDsWD2F8nkfnT2YhqZpQc+ytMCnINPF v7c33TzpWt1R+tj9lxX6oLkv6zvW9k8CQx3p7nI11yFeqK+P7JD97BsEJKDt C/T+a45eLUqh17ExZYIFX7PcxwJoYZjTi0IC6SUyyfOGoybN0TIDm/JkTk3/ JVuS2YecrLrJt1KuqQ/sUzGU3yb0R3OwN1P9QirbNmB0u9nRnBJZ/QIIZY7o 5wxoDyY31BRsaBbZ5lbU8o7epNwhX2/bhKepE33tnSwV/UgBoYpaPk1ttrz/ lhn6Bs35/ZgkenSFYNrR6yiCnCFIs/q1MvL66LeeaHyjvhHdN7VVrPu5J5wV 8WLgiG8IWwbQ9KMeQtQP3NMpFK9cBDQAe1Sf1k3RT45R8Ro1BCVOwkJR1P0C 14DibdfxSdK3fk+XSgXbeiMl3HI5YBRSzP00S+MlZ1LCfaM4gLl+PZzEk/tF D4IO2xT24TcajKhRCAF596pvlOjuCFWAkdedPZgl0CjKRLFEJ03GPLRAss4W gXPXsAEDRI1iU8U9ebpHU1Dsqd99ICDk2uS87ov26Ckc+akJY5uC7gGQgCGi Vc6abwgDQg9G1W+as1I7VxT5X2XYW5zIKN3JwKAgSjBop5E+hdBc61Y/HW2p LCRt3e98Nmj1h4SoqxZdCkQG1oPpnmzboxf7pQm+QRf9vhypSGf46FmCTqND JkslDLbUqfIkf6NjWvTsEGDSVi/Vhda2o1N69AS5jvtaL1Ye/uZNg2bNNxpg eiIKjtJP/f042tmgQqWj4OhkrvveYmBYM+Do2EDp2UZIdMqZCgsCN15D7I67 hb7Hd05ldODZNf3re3pFSH25vRGw/valuI4gouFfUVEf6hWNhP/eQy+t1lRO pEj6cXtDQvpEr2g17L/dno7tiVZuu11In+lVNDDX36O9rQKolLdPdXypVwTE jsbUn+O9r2ypjLXt0q/1ikrlUs1bf274obKlpGAfo/9Wr2jltaZs02HQ5BNC cGedkJ7rlfv5pnELSulD8IK26H0rRsLqT8qMdFlQZvXHzp9WP+TBV/ogeeaM Plh/HP5Pvd1dBsrtj9Ptf+ntRW//X256kih/602fJ4LcOeB/PVAc+B8p2Lpi \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {151.312, 0.}} -> \ {-3., -1., 0., 0.}},ExpressionUUID->"4b205a2d-1344-4de9-ba48-01277fa7de13"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(32\\). \\!\\(\\\"pentagonal orthocupolarontunda \ (J32)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"a38625cd-38bd-4fd6-b8c1-\ 01903021594c"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .81105 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.387289 0.123114 0.241351 0.123114 [ [ 0 0 0 0 ] [ 1 .81105 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .81105 L 0 .81105 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .20864 .34095 m .13628 .24135 L .20864 .14175 L .32573 .17979 L .32573 .30291 L .20864 .34095 L s .13628 .24135 m .20864 .34095 L .10904 .41332 L .03668 .31372 L .13628 .24135 L s .13628 .24135 m .03668 .31372 L .02381 .19128 L .13628 .24135 L s .20864 .14175 m .13628 .24135 L .03668 .16899 L .10904 .06939 L .20864 .14175 L s .20864 .14175 m .10904 .06939 L .22151 .01931 L .20864 .14175 L s .32573 .17979 m .20864 .14175 L .24669 .02466 L .36378 .06271 L .32573 .17979 L s .32573 .17979 m .36378 .06271 L .44616 .1542 L .32573 .17979 L s .32573 .30291 m .32573 .17979 L .44885 .17979 L .44885 .30291 L .32573 .30291 L s .32573 .30291 m .44885 .30291 L .38729 .40953 L .32573 .30291 L s .20864 .34095 m .32573 .30291 L .36378 .42 L .24669 .45804 L .20864 .34095 L s .20864 .34095 m .24669 .45804 L .12626 .43244 L .20864 .34095 L s .58214 .45094 m .68174 .37858 L .78134 .45094 L .7433 .56803 L .62018 .56803 L .58214 .45094 L s .58214 .45094 m .46967 .50102 L .38729 .40953 L .44885 .30291 L .56927 .32851 L .58214 .45094 L s .58214 .45094 m .56927 .32851 L .68174 .37858 L .58214 .45094 L s .56927 .32851 m .44885 .30291 L .53123 .21142 L .56927 .32851 L s .68174 .37858 m .59936 .28709 L .66092 .18047 L .78134 .20607 L .79421 .32851 L .68174 .37858 L s .68174 .37858 m .79421 .32851 L .78134 .45094 L .68174 .37858 L s .79421 .32851 m .78134 .20607 L .89381 .25614 L .79421 .32851 L s .78134 .45094 m .8429 .34432 L .96332 .36992 L .97619 .49236 L .86372 .54244 L .78134 .45094 L s .78134 .45094 m .86372 .54244 L .7433 .56803 L .78134 .45094 L s .86372 .54244 m .97619 .49236 L .96332 .6148 L .86372 .54244 L s .7433 .56803 m .86372 .59363 L .87659 .71607 L .76412 .76614 L .68174 .67465 L .7433 .56803 L s .7433 .56803 m .68174 .67465 L .62018 .56803 L .7433 .56803 L s .68174 .67465 m .76412 .76614 L .6437 .79174 L .68174 .67465 L s .62018 .56803 m .63305 .69047 L .52058 .74055 L .4382 .64906 L .49976 .54244 L .62018 .56803 L s .62018 .56803 m .49976 .54244 L .58214 .45094 L .62018 .56803 L s .49976 .54244 m .4382 .64906 L .37665 .54244 L .49976 .54244 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 233.562}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzFndtv3UcRxze2EydxEseOc7fj4zh2Lk3aJiVO00ZRqaB9ACR4gIfyUKKq UitRWtJwv7Rcyv1+KfDScmm53ypxaWkrJCQkJCQkJCQe4ZW/4uDf7mTm5Hc+ s57jY0Eeknh3fzPf2Z2dmZ3Z389vunLtoQcfuXLt4QeudO69euWxhx5+4PHO PY9eXW0a3ZTSpk5K6T+d1Py/u/pf+Sv/WWj+kh8G+P/l5p+Rhs6/S8MlbUij 3dKUH0j/Kj/cof25e/VvhbD601jzd276Zxl+uw7f7A1vteWf/lGePq/kxsNP X3/i74XEbQpgW5DEuJL4WyFxVklMBElsVxJ/LSRuURI7gyR2Kom/FBJnlMSk J3erbUpJ/LmQuElJTAVJzCiJPxUSJ5XEniCJ/Urij4XEsjbsheEj0HZYn3il kDimKA4ESRxREi8VEkeVxKEgiQV94veFREcbDgdJLELbbwuxeSU2GyR2tNXW bNnf9RBrdUUxFrJjvW3N/wVmnsfVvdzbe53DoUrfUqXvN+U/cwBmVGflQIXA Me/JVtsL5QGa4C3QtndAlrSNf+2zJJM2I4Rak78EQ8me/qqMp6XO1i/PpMOD JCKIvyzjadfsgLapOLet0PaLMv4gdO2Ctsn4/JE7+LnPbVLnz+FBEpG/+FkZ T4ZrGtp2xLnR9P+0jN8PXTMBwMmZPPJiPykP7IOufTp5xIBkocWtMKDZbKuT x4rc6Y/LA+SgSPHHVT6arN3Q9qPCgNZgVokZWcJN2vLDQpZ88zy0jVUZEJXn fQYdaBupTgxJ/1xhQMKZyzayhJsU5AeFLMU9SzIVPXriUaZt9P3yDC3y8ar0 pLPf84mdaP7OTW3H33W08ruFGOn3SWjLP81DB7mTZwtt2qZEOytanmIiRt7x mcKADA0x2KazQ2s0q73P+mRPQJtF4aSrmVWOD0QJyAIT2t06HbTS00pWrAS5 ESK7V9ESkF1KVtxcPqVk9TwFww8qRvLL25TYC77ox6FtTjG6B8JMViJZWija TAtKttDo7cz0Xi6Nu1Rm2t+Z8lKPntDykJ0jSWncHTqp9xcGU4pnaLKtIOG6 4PcVRmSxad/RLiCWF6FtXJm+tTDdotKRepDNIrUm9rdD205l/+Ye9q0IIKMx zd9oDLZ338AYmp/MfW2HXnJftEEJ0gVoO6CQ7vEhWSRgBwWKfm4aAsicAnmt DyS3jXpmh/z36SCkFWhbVG6XCyQ68WzVGaFeMhFRSOehzQlHLvn4TJttv5HT PxNERetOh/M2UvmTB1304e7QQeQByNfdPARwsnHL0GYb4IIP3Q6BbtZvndDb 4UVjqmjOCbqt+nkfujkay6nQEfiWIOA9Mmu9i5840UFeLO+p3HTOx7xHB1Gi irTn1iD6aaHQUt087RShklec0Hm81RfBTr7J0unJUaCzQfTR7C2dMMi57VCQ N/uSHCBJmn9obaKSkPGkmaGgnnyihXenfUmyzx8FSW4LoibjStoYRb1bAZXV Qdd3WEUjr0Ew6XBG8xH183sUwXEfZjugSgMApmCfeNBZjFzuXgW85AMuyT42 Ba8JAqfoloxrFLjVTI76wPerdKR70R1I/pbaKCFDAcUhRdXxoVOIO4wQ5Hlp TaJC2F6b94WY0UG01FFPRM/SPiCbT8EFHWgqQtCxkGYzGhaQOH6ifm0elIqv KBYtMGlzVBziQdCj4tieXfSF2K2DiGw0ooyeVWh1aN+RlxAhootO7KOHEjor 0mrT3iFxzJkt+0JYYBS13ASdLBvtO7JY54JiV4Qg/R9GHIrPIrWk5ieKsMiy HffFiaZMopkKCpyJHvElceyMeMoXwlIKZK+j2R6KvCnmJAQU2tCerQjhxtZh cWr3CNYngu3YMz5wsiV0cPUTgaFzL7EmjaGNUkFvmQrSiUj+tplkSi6QipMB 8hMdCJh22EDQs7BHgjNHxt62W+lFCepVgZNdZ9IIAwV/tFscNM36UNLEihy0 80kzu5JwpUwAuRuKWWi3nOsBnueN1s7uXBEJWk8rIJB/JNdOgC3BdZ7nt+so myUGLAk+781chkkBGsGkoI3WsAKYjNE+BWx2j+bVqhJEmcw+hWWZfCl6hEuS 04rQolqylVakoGiJprkdrjSbptTBULNpvScVnEWDBM4KF+nGhBEFtHbJ8s4y NFprnlA07fDDc4pWvaAYyq5qXvKB0JrZBVhK5tCJrFjNvpoFTc+yomrNpcwW KSPNlt00bhvl5Ni7WrmCpsZmlxyYqBppJsHNPzmxA4VsVOM2x08Kbp6SrK3A dW+pjJLzS6CL3e5aRQgyDXPaSwfeCrg2qwYSLWTiIxothak3BSsHtZdMZZYt cy7HC9x4iyps6y6CTjHHveTzSADzum5uzb1qPgFz1xXjJmdIOl4uwGOJw5BF HkpU67UItyKUe8lOkOZZSCFvPPh34/ow074v4vECulaYHK67Vc1R0oYgGS0e mfVltC1Iq0aiHq2IStDqpQ1KG1gpmNSDNqBFMsVq4q4/XAFOM15bUzLwJKhp Jk1l/VIF2SELiMrU4INWkyOmFEnRGwikD6RmlFGxEgtRMacQTUtYqFWsl3+d OCAEWRC6PDnMBGTBxlTBcyeFSGSqzVFM+MJGX5JxGQSepZWgdKAVd9KN1WyK mgkQHa8Lc9SQaeVHujyMxPSsW07BMLPrKJj/rgFGpdEKOBlD0mUyBASThK2V QqNvsFTEp22Rd7nrCmkT0gpHrR9lC2hRiB6hJ8wUHFcmgEJ5gk7jNnoqLHS0 Nw8IM9GjQLVsMjy6kjoTWQrzSO3dd0FbbZSZi7pkGkcaUJkKultkc+1eOVvn ukcnwK3euBELLRVFuiI2GQ8i4YbDgQkYE6pkvCjrbr7FvYO/8UJbajJavSZl bwNpRKRiCJ1Hom20oSjuFWHnBBjNvhvHh1d1bVFpDS0k3wAB22lVTzA6epFg pEwkmDlIclRkHmnXU+Qqgs27XWtbv4hyeoKRQzuowm6AYG7CfJ2rEy3d0b6n cRSWUtAt4pBXoZjZikS0ilTOs8NpB3q3y4TQzvbrXFi/oljC3gcihXCLeSR0 zxsVA8OlqI3iFjsPkMWJ1v38d637clA0A4KZQm0KMOw2ITl6CgQ363SS1m0Z GOkxRUCnKLvmTSaODipku63csZnxker3KqtbKLUcFs0u4SNLRVt7ZGCkpxWp WyHNTfNBpHZ/HZM4za4huydozioaClPtnUwyse0Ko3n2vjoSuQ9BsKIIyBnb y0Rkjk6r2Cs6rsLqTmVF3sE+PEMu6ZSyopfGiGnZZOkuZZpuLJfl0bR37aXj 1hP0SlaF8+tVIFIAK47Zy2z2rR+68C1kPwRdZr3Lxu7bECvcXEH/Yeg6omzK ArKTWKn00UwIw49Al10jdt8CDKwHjSNHI0A+Cl2WJ45+R4lMEI3zL4ykJ6DL vidEXpz2FQGhcWTcBMiT0GWvQ7l2IwCExtHNiQoQuy5IMSLNEq09jSMgZebS x6DLCm/Rtxk2AMjHPVZuAZOWi4BEU9oC5BNeV26KFhtpN9A4cwfiWz4Jg8yw UqgZvWVEi2lf4Gq5CNHTp/I/fW44et2aYLgXLNy3KWVhPgVddJyPXmKiQKWj QGhDC5DvQFf03V8aZ9+k8E1h+nZQemJK4+yA7Zu99C3oorWnQIfG2UsPpIzC 9GnoohDXfTHNPVSQZgjTb0IX5TkoL0RnKSvd0+QL029AF+UlovkLyxDRPAjT r0MXZQ+IqVu7zU1+Vjx9DbooB0CHTDqIWTnZ7U3pq9BFJ3k6EdA4S9lSrzD9 CnTRYZGYtsc1Ztm9iij83tn8s9z0RF8Sz+DHvCfGe8iSceyLBBNXhigl0aqQ B6Zc0DwCXXS7NdvKHLDTniRIdovEvQI2HKTtKjOZfoK0S5+wiLAC5F3QRfoy qWRdD0zxypi3s8kAVSDRHphRBjT5BGlcn7ALCBUgj0IXqZldsSHFdG8S5Cdo V5D5FUiPeexJl7KkrciMPvaZf6K9Tk54QCCZ34mmyWLVCtl3QxetECU+F6At zzEZS3LmW30MpMJLKhBxzgY2s7fwtML0KnRFrFCzfvMwzq7ykYb5R0QEQgpJ F2oJyJQCIbNC0aMAeRy6SHPaq5sc12QfWbMsxoDsKRhrxxwe+1llT7rkfi4o pWvQ5X7Xrz+3RZbTPoBIKkZnF8HyHujyP93HuS//3j8onXuYqgAiB3VqAwDR ulGCXqC9F7ro3EJnAkrVuSaIzKV7k3KbDy56U3EYcG0X0cy/3Fl8Hwyn/UmQ aBnIaJEnMGtQARLNAlEAELEazU+kh7Jc74euaIbM/aJ7ANKSzz56F5BmJPol UWH/AeiKXkX7P7Oncb59QvYfhK7ohazoXUjaU8Ke6iyDVRI2gH28ikJqGd28 wrJd8mlY+eW8tVnRpjw2GCva69ENKKyorhRlFdX2/z0rKlKRWkRfJyctFlZP QJd7C2Y4Vk9CF92KqN1RoVkQ8lS1ITT0jXVaRyFLNZhIIWMNslRRiRYoiKx8 a4YqJbRTByT7VJCsXYulGrcQo5oFGa6iB6GytlD+NHSRFR5Uw4T8Z6DL7tXQ lEZdijD4LHTZG8HR341D2llhYHcVoh/uIz0VBp+Dro5KQAfdaJFYGHweuuzd PYqOoxGlfEvuC9Blb73SiWBABl+ELjvdULYp6umFwZegy46dFI/Xi7Bisb4M g6yiQwdy96PnvR+WotqAvfhIOQfaB/Yrj0rAj3WO+mcrSPvt6o186IdqNlZ3 oYwZJTXsVqd8h5PqTyM6iHKtdNax9G8xAVJL66tU0xGWdo5VJuVLLFQQjBKz VyGLhU2vwiBK3NibCPL5j1dgEGVTrVJwwX+Qqnd21+Oi/6D7O1Vyk3yu4WUY RLl2u1F62X/Q/RVV+cG7/AdLirJPDe4u//+D90Ruep0/yFKP9/qDrJb0xjLo JRhkv3vhLf4g+50Kb/MH2W9IeHsZ9CLO9upP7+jpz90PloY8ZJ2/LjBt+i9p Z+uK\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {232.562, 0.}} -> \ {-3., -1., 0., 0.}},ExpressionUUID->"3b34f80e-37ea-4227-90b8-eba8d0b845f2"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(33\\). \\!\\(\\\"pentagonal gyrocupolarotunda \ (J33)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"165cd2ae-6343-4f2f-8dff-\ 85a90eb198ec"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .59046 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.361034 0.114221 0.315157 0.114221 [ [ 0 0 0 0 ] [ 1 .59046 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .59046 L 0 .59046 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .19529 .40756 m .12816 .31516 L .19529 .22275 L .30392 .25805 L .30392 .37227 L .19529 .40756 L s .12816 .31516 m .19529 .40756 L .10289 .4747 L .03575 .38229 L .12816 .31516 L s .12816 .31516 m .03575 .38229 L .02381 .2687 L .12816 .31516 L s .19529 .22275 m .12816 .31516 L .03575 .24802 L .10289 .15561 L .19529 .22275 L s .19529 .22275 m .10289 .15561 L .20723 .10916 L .19529 .22275 L s .30392 .25805 m .19529 .22275 L .23059 .11412 L .33922 .14942 L .30392 .25805 L s .30392 .25805 m .33922 .14942 L .41565 .2343 L .30392 .25805 L s .30392 .37227 m .30392 .25805 L .41814 .25805 L .41814 .37227 L .30392 .37227 L s .30392 .37227 m .41814 .37227 L .36103 .47119 L .30392 .37227 L s .19529 .40756 m .30392 .37227 L .33922 .4809 L .23059 .51619 L .19529 .40756 L s .19529 .40756 m .23059 .51619 L .11886 .49245 L .19529 .40756 L s .59391 .31516 m .64037 .21081 L .75396 .22275 L .77771 .33448 L .67879 .39159 L .59391 .31516 L s .59391 .31516 m .52677 .40756 L .41814 .37227 L .41814 .25805 L .52677 .22275 L .59391 .31516 L s .59391 .31516 m .52677 .22275 L .64037 .21081 L .59391 .31516 L s .52677 .22275 m .41814 .25805 L .44189 .14632 L .52677 .22275 L s .64037 .21081 m .53174 .17551 L .53174 .06129 L .64037 .026 L .70751 .1184 L .64037 .21081 L s .64037 .21081 m .70751 .1184 L .75396 .22275 L .64037 .21081 L s .70751 .1184 m .64037 .026 L .75396 .01406 L .70751 .1184 L s .75396 .22275 m .75396 .10853 L .8626 .07323 L .92973 .16564 L .8626 .25805 L .75396 .22275 L s .75396 .22275 m .8626 .25805 L .77771 .33448 L .75396 .22275 L s .8626 .25805 m .92973 .16564 L .97619 .26999 L .8626 .25805 L s .77771 .33448 m .88634 .29918 L .95348 .39159 L .88634 .48399 L .77771 .4487 L .77771 .33448 L s .77771 .33448 m .77771 .4487 L .67879 .39159 L .77771 .33448 L s .77771 .4487 m .88634 .48399 L .80146 .56042 L .77771 .4487 L s .67879 .39159 m .74593 .48399 L .67879 .5764 L .57016 .5411 L .57016 .42688 L .67879 .39159 L s .67879 .39159 m .57016 .42688 L .59391 .31516 L .67879 .39159 L s .57016 .42688 m .57016 .5411 L .47125 .48399 L .57016 .42688 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 170}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzFnVuLHMcVx1u7s6uVV6vVarUraVfSjNaSJV8kWVYudhxCDLHlawj4xQ7J gzAB+8E4OP4wSYhNQiBgYzAEDIGQQN7yng80VleVzunp+f1rTmdkrAfNTl3P v+pcq073vHX/k/d/8+H9Tz547/7k3sf3f/v+B+/9bvLKRx8/KFo91jTHJk3T fDFp2r+nD/4s/6V/V9r/ypcBf/+v/Vhvx7mXC/7bfmy2BWupYHVqUzz49nJu 9C9rtA2NXsmNvm4/NtqaA93o7+1HqlmBRhehrND5lXVch0aHuuOX1vExaHQB yl7NHT+3jqeg0Xnd8W/WcQcanYOy13LHv1rHPWi0rzv+2ToSnrNQ9nru+Kl1 pKWvdPyjdZxAozNQ9kbu+Pv2Y6WtuQqNaMG6HXtVNARx6Jvf6hDXoIxY5sig 39CDPQFlJ6EsLXsqelCRh0uVzXU99nUo24SySzY26YRrwyYgqTu0CU5A7VU9 wQ0ooyHO2wS0dpUJnoSy41C2bxOchtrH9QRPQRlptCR7iVlICo+GTUDbeMYQ kEa6oid4GspGULZtE5A9qEzwDJSRtdiyCS5D7WT5CR6zCY6gdpwn+FH7kTbq V9DoZlmeTpniysf1HM/bHD1hXzMK34bet3plTVUeZsvykjbftwlWoRFte/r2 C6i4DWWkfUidXsrU3LV1IJFhah7S/9YSJJFSzgazuWMkbajpSZ2kotehNrpn FZJu2QSke4kkZ/R7UDuAh8kAZN8sC92K6kh75/L9M0nV2gxVDxeM9pBMR1ZM WWUm0shs04LtGGkvQW1Uv5DlqpB53SYlm0NknrUeP4HaqCInxiY7mX3PLL9p NXeDZJ4zMl+E2qhBIzKpb/bcs7pNZJKzTdvlXstl60thQNTEk19RIdg9PjLY RLCT2ffuGzFK1P2hMmKnPEeHEHIFiPQxlOW+c3qI4iKSIuIPwkHSm+fIZijh yEqNtc9RqBVxXdS9JW66CWV7HbJ7u39QIS37ZnMLTbEliTNFf9HIYCCyi0Dp dEY0awi5jkSa1CLFqtHojfRX3/K337Lvj8cbRNIeLEfD3isJHbEkUUrmh7y2 reB45IZl24H6gnhktwyuN3vx6lGgleZaUTY3GvnTbANBHzdChkKlFSfLTPqR djB6YkKgybstPE7ahTTE6TJ4gMeJUUhqaZoktamI4jIahVShcJ0LZNI0ad4O w831pS0mM0Ykkl98yoBOlgAadXl3NHISnK34GhD7ksySOj5ta0DHoCQshG3g GpD/lQhJu9+XvEbwOLkHJI0kyX4ERPtB6pDgkN8nYyZ212iF+0Kp1Jvk6UCZ x0dk+nIZK1raa20qK8PXd1OBJiaWjE2+bCoi4d7/dkGn4RODn7C/iK2JXWmn d2yUCwaL+mYGn1MkxLukTLNEoUiQ3XKvgTaPxJNMEEmFoyTBv8AoKagkdVlQ 0ryHhqiOjRiOKKWV9PiaDLfARhErLWYWf4xN6PR4xVASd5Lg0IKSBPjlijxj 6CmARwBxDIs3rWwjjUEASZknCCfJqrRgKMTVKhxX+oqR3vhpuNKUxMzEXmQB kzzIu/GR1Z4ygijMJXWUy1BartpgxHkkN0ScjNXlLf5pq101Ciic1W4aDpuG SEVjqCX+obgh7c7xtohio0OrjcYmJxcQPLdyDbuG5MOR77NnqxAR+vYbOePp G1VoPxe3iyCOjEJiHZIOQuIeJckY7R3jnFbccdJNWYOgqBHYDZuANLQ4Z3Rs 0UQSwrZuo9CakrYaiG3TJqCFSpOOerpzOu2Ggdp9mi0j9VRf2Aq66BWXXyqT 7KYJ1pTC9luuaF4OQdysjkKwM7uELxZ3bQLqsW0QiQv9bjEacdDpRp0XSGcX iOlDGkK/5iFXInmJ62pn6+qJrKI8tpEiTByQfdfwrfmBTSA9hrR3MraWWo9k hyjwkDbq5RSItNXE/5dtgoynW7lGG9QkqycsF+koOlX1oJXMDhmWzGMd34y8 wwTw6lR4DiTgRFxCvK6YsxBCNpoiD+LbaDuag1SMvOLYUHqtgKAq4ladUbK4 XdQpI3HdMhBSOzado3Q/gyAXjLaaQESvPkgnkjLdNxDE610QHSel/Wz4VIAW ihaUsEUvtCisIyU3bv8fuQ2Yw1H+yYwaWrBlwJCNpYCb9O8zXQizVe7C+nkJ mV/iCSI9en9KpJOOvalJd4Kj9ye0+QQier1NIPxk/FlN+oY1WrO/HjXB0TQT UmOFdOn+OOkBdUKrRCCiOR0EgqLHOxrEpoGgIJ5EjSYlENEkIDqiJn31nAax ZSD8IOS7Ip3mvatJ354lPbDpdABOIKKXPJSrIW9xU9EVDcfd9WY2WCXFRMtH SKK3dISElJUHSzqPCdEl8zhSwkLTE5xaGiSlGBAlftdNC3tZQ3CvPMoLGsLc ecsdaOpq3Wkm9rqkaT5vQ/SYilaLyKUcBqKVdvWEUU0avUL1BaOapiIyb1d7 0H6lzR8pm3lxwZIGVkSS2ev7LLQj4fJDAXkPUeFbqScpEUsywoqS/JpgOuEU uZZ03+i12dLaQxrs/ijNQ6ipqJ9VuID06EXM/6vHW+KkWV1zSwNyxQT71TLV LkMmwX7K1pXCyfOaTIr5SSUOs/Rz2pich7573GLTxw3aesrU+2EuFssayb+n qJPk0gac0xBIky8PZm4DaE8905jEl7ZiX+Nw550CxmHRRvyxjAmUERgKgPc0 mGg+xTKRoHxkjMz6ihKigcCo7FEfLJBRdO7wVJDo8ytnNRw/i6MzyWVA0O6Q WOpT/8UCsKuB6RSWxUIaPbuifaJjB3+WlELhCjD5/NiKcgCWOTMlsSfr5oY5 qmbPaDjyuZle2TIn2uSWkItNe0cQyZTvdCHGk8OTBXmiLYoSTsbBk5YJ1kJy 506x5R3IqrLZtBXpG9kXgkWetZ/J6dNfYtfOPSiJbe+SMLUj+j1KoCsWUjBk CMjmEBwKGbY7cKLOxaqyDHTF4vkCpP7lg/e0UGkZqZbCuVPDgPmVvHM67Ynn BkR34lwB0JNXaRErYKL5BTqFolUSFJB6j2jiI50I0Mh05lKSyaIZIb7mu7Zy NJWn75DDLkGM1Hh0SFFyrmgCMnjO/X2+bcT2u4QR68oU1I7anNO1NM1AbMPy yVps5HS5WiTVRhqln202FzPRNBWWi+bKpW/0UCWpn3q+L22jixs7LEK9VFQD ORbXbJa+iWzEBJ53S7LpT+vnSVmnDbQ8RHjfUWnJFU+sklGn/a9nhrnHS7UV 6sl5lcnLRwyB3C0Sz3rmF7nWxO0Vn4awj5lmfREy15RGlYfpqE6sVkYEFf+T VvcSU0rBVgbF3jZt/h0YerrIx5MSNxCXx+20P1Q24ZUgoezvWdNUkr486CcF Vwng5BMxYg/IkIwr7Yl7krClIoqQoi8VqATZpKTqFxQUv9Rgkc3266Fm9hpM OiryBKty5EO6KPpcIW3epIKS/N/blfZk2T1wozUeCPSMDRZ9q8o4uDTUt36V Q7vqR3rEZJVzSXJzoq+kIT8uClu+rUNmK+n0tTmtRptbTsvJjYy+KYg0HOnE qAT4u4qICWjT/KZcJmVzFOD8QcJAFmkcBEbjRR9SJBCeg1G5uyGItDvLgCUO oLJkDmRmEbEi6fD0jU71yoUbuUpue0maaJYot0olgs+z2yoEVtqTKenIuVzh UoxOW0lCRR7NWEJkc3LDoNJoxN3yxTDSzz3QUEnpE1TS0wR1VP7vaUmSvmXw 6iOQDt5DoGVa0YIUVBAX9znWvAJ5C0ouN0lwKpOpNCUzhV7KFc2cGEMZsYC/ 5YzcLgr36icSJMYlM4hkk3SMTAsnLShPdaOk15/aK6STm0AeHTGRvmUH/yxA cP0BnpIips0cNE9FztekWOjsSD5KkIr0JQzGSWR8/cDPtzp6SExif2CjlJxS ukYi9I7KnWgiOEoIzVFIOrKp6DrE7xmeg9rooV/02bbyEuHES2tKzjxR9we2 NkQIsTdpRpqjvC452YyRUr1+vviiERK9liPLQyDKi6Fv2YqQl+85nD81QkjL RwkhfVjesX3XCJEpBqnoZaiNnoSRRqd1zXouv4o4bRI5V+6pvWZrE72kly8l SKNkX7H5sa1IM3tskfr93JrTQkcnpbIy/UuG722bKvoYDnleem2aP0BV9PSF 2JH2OfNDfpn/oAQlmQSAMtD8ySYgpqEJIm+EmpraaT6zCSgKIRMt7/tRweZf WIi5w6RYyEpka9L8pf1wEx1Ql34qXJ5i8d+NINNLqp9cxTKY/3oFeTtkFmnJ y0Mq/hsadLxNdpL8iu/lwfyXPKQ3IWKzH+Y//DdEBrz24fn86T9cIpPj05a8 kJt/bc11ov9sWZnnH9aR2P2d3Oif1oh8xHdzo39bI1rTX+ZG/zHCf50LUu2A H5Rpjn0Dv6SbIA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {169., 0.}} -> \ {-3., -2., 0., 0.}},ExpressionUUID->"621db71f-ec35-4212-96b8-21d2922e7dc7"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(34\\). \\!\\(\\\"pentagonal orthobirotunda \ (J34)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"1611607b-4379-4cfc-a340-\ faac148d0d0a"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .5756 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.269223 0.0979586 0.256461 0.0979586 [ [ 0 0 0 0 ] [ 1 .5756 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .5756 L 0 .5756 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .35255 .25646 m .29497 .33571 L .20181 .30544 L .20181 .20748 L .29497 .17721 L .35255 .25646 L s .35255 .25646 m .42535 .19091 L .51018 .23989 L .48982 .33571 L .39239 .34595 L .35255 .25646 L s .35255 .25646 m .39239 .34595 L .29497 .33571 L .35255 .25646 L s .39239 .34595 m .48982 .33571 L .44997 .4252 L .39239 .34595 L s .29497 .33571 m .37981 .38469 L .35944 .48051 L .26202 .49075 L .22218 .40126 L .29497 .33571 L s .29497 .33571 m .22218 .40126 L .20181 .30544 L .29497 .33571 L s .22218 .40126 m .26202 .49075 L .1646 .48051 L .22218 .40126 L s .20181 .30544 m .18144 .40126 L .08402 .4115 L .04418 .32201 L .11697 .25646 L .20181 .30544 L s .20181 .30544 m .11697 .25646 L .20181 .20748 L .20181 .30544 L s .11697 .25646 m .04418 .32201 L .02381 .22619 L .11697 .25646 L s .20181 .20748 m .10439 .21772 L .06454 .12823 L .13734 .06268 L .22218 .11166 L .20181 .20748 L s .20181 .20748 m .22218 .11166 L .29497 .17721 L .20181 .20748 L s .22218 .11166 m .13734 .06268 L .22218 .0137 L .22218 .11166 L s .29497 .17721 m .25513 .08772 L .32793 .02217 L .41276 .07115 L .39239 .16697 L .29497 .17721 L s .29497 .17721 m .39239 .16697 L .35255 .25646 L .29497 .17721 L s .39239 .16697 m .41276 .07115 L .48556 .1367 L .39239 .16697 L s .64745 .31914 m .70503 .23989 L .79819 .27016 L .79819 .36812 L .70503 .39839 L .64745 .31914 L s .64745 .31914 m .57465 .38469 L .48982 .33571 L .51018 .23989 L .60761 .22965 L .64745 .31914 L s .64745 .31914 m .60761 .22965 L .70503 .23989 L .64745 .31914 L s .60761 .22965 m .51018 .23989 L .55003 .1504 L .60761 .22965 L s .70503 .23989 m .62019 .19091 L .64056 .0951 L .73798 .08486 L .77782 .17435 L .70503 .23989 L s .70503 .23989 m .77782 .17435 L .79819 .27016 L .70503 .23989 L s .77782 .17435 m .73798 .08486 L .8354 .0951 L .77782 .17435 L s .79819 .27016 m .81856 .17435 L .91598 .16411 L .95582 .2536 L .88303 .31914 L .79819 .27016 L s .79819 .27016 m .88303 .31914 L .79819 .36812 L .79819 .27016 L s .88303 .31914 m .95582 .2536 L .97619 .34941 L .88303 .31914 L s .79819 .36812 m .89561 .35788 L .93546 .44737 L .86266 .51292 L .77782 .46394 L .79819 .36812 L s .79819 .36812 m .77782 .46394 L .70503 .39839 L .79819 .36812 L s .77782 .46394 m .86266 .51292 L .77782 .5619 L .77782 .46394 L s .70503 .39839 m .74487 .48788 L .67207 .55343 L .58724 .50445 L .60761 .40863 L .70503 .39839 L s .70503 .39839 m .60761 .40863 L .64745 .31914 L .70503 .39839 L s .60761 .40863 m .58724 .50445 L .51444 .4389 L .60761 .40863 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 165.75}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy1nVuPFUUQx5s9y15Y2IW9cWcW5KYIIheRi8QnSExMfPALbIgJPBgN8o0M YozGaAyREAnfBL/Jkaluq87O+VWfGhZ42HOomemuf3V1VXV1TZ8vNx/d/+bb zUcP7m1u3H24+f39B/d+2Ljz3cPXpMGOlHZspJQeb6T2+/D11/JH/h1v/5T/ TPh+u/2Yap/9NxNuKSENhpkkD6RX+T835WPnUDsr/9oHjrZfBu3Xl5l0XRub FsJg9LF0SP5Od5uS+1/kBq4pYQYaOAg06uh5buwTuETNHvDuE0ZKY1eUMA+3 7wfavD7xLDdxSQkLcPs60HYD7Wlu7KI2tgduWgPaoj5RmvgIbqLGVoG2Txv7 Kzd2Xgl74fYVr1l54s/cxDklLFd7JDX4PTfxAVyixojHQ9pBaeysEkicS0A7 qk/8lps43X7IPTS8i0DbANovubFT8sHzh8aIxvKEPlEaPQk30ZzaBzRSz1Pa wc+5g/fgJptd1CzNjtMdWmt+nuQvJ+B2m3s0TLuAdgaE+/r7T/nzeBA90che nAHaFNB+zN03CmevfqOu5oB2FmgDoH3V/l1oSXdzp8fgpmXtnmQ4C7T3gUb6 daf9O9+SdnoMy9XbmbmjcNOaMkdyiDJH3d/S7kmdFvTq1czcEbiJnAx1FR1C cmTi8MRVU2+revViZvMw3GRGMMocqTLddxVoxAG50guZ4UNwyUwuKTXNva4p 0fumbAgns0n2PDvULHxpLJumMaMSMXBDxxB+7Mkg4LTLuJOExUoP+jBH9ufi 9pkjuUr3buB0Cmjk+ijcIeYoVslSxzigq//JMY7kaMmaXAAamWLynJcyAyTe bEPGVJE4JY9NAdP5IKf07OXcP8k6G2VecdB8JnZJOOeARtEWDUphl0JJ8iFk isj/UOhCfVBYS6xTQHmlH+vkm8nXUEREekd9RKOp4k5JScgliscSM0GyJnnR fKaW3xHDxCbJ32VdwFLLNCdoquclMg5c1K+TrhPDooBCIm0mhmmyX/MZJidF mInhBmhLyjAZOjLnJJ7CMGkaOS5ycLQwIDu7RxkmP0wMkwJ+2o9hmgbEMHna XcowRcw0xsQBBarX+4EQyclkirI+q6w3cJUMAKlnhXWKg/wQYsyvk35MK89d e9a61uiUIgN1w+c54p2TMjyW3JCbTjJGknJ0YZ3TmhgKu05ZFKSrDEmUJiWU FfVM0VDmmkOepv0y03492I/nFeVZpoEsUMkbE5MUA+Vnx0ZhXRsnbc7M4no0 GkFIs4ueW4+mNyg06kqjFfeiwiEZrL8BnLmhM7vcGIasE7FuiRh30V8YppQp OWmZmUJKW3cDqIFoWoJcRPfZlHgtQkvvNR9TAzTz4yRcslkEjHw7OWsnj9gT G2U6yKTvVmwULEXDW8Lm50jjKzPy6j0BzivA6M7EnD5B3RMsS/6Q9yBjQlru 5zlwoOn2GWU9uoeSR463BEjEpLG79InoXsA7gj9Q+DSutICNLqBokpM+kXga FQ/1RqIgPV7xRXGksN0Zw4Fn0kk3XNam1EUH4O/WJwjCW4BPM1JEMu3NV3LC 1KnNYdIdcv4W89OgkEkk90FOdNkHKyMhwVwTZDPqUEkriGa7wKRbZB6jGYkC m2a2MCxB1ZR23wkwSB6kozQIhokQUy5wSZ8gH0lmgKRAId8+Xwq2ibWrQCFH So0SQyQI2yMn0ZEDiQqMVK6nSMQuCGZjM6pbUb20mgISGQnAeFna+i0QBtCq q4C1Wg+awFGINlso2CWDTOpsi1caxShYf1cgM2IBlLsFS8pB99GK1DYmCTZ5 OFv/UmxKSk79ToI9cimlkgqwIgsaVNKa3FQlAeBuycrgLmydVaRyFD4RXj/H hIKXJgZeyBCFP1OBf6JyzfxKvWjAnVsBA9FTSKTPlniTaewaaNK1naWFUfip hOrkR6cUdL1UwXXEa6VbkjctHhd93JYkNbtMXJE4B4xbDEy9xEHCq/W3h8Ky 1OYhyHpQYrmrPF73tFbrAlTzsvL2sNmWga0CaRK42OQJyipGayZs0ZdlOjbi 1PgeH9FebY+sYDQx78LyUxqe6neD+naUaAesYCJfZVtnI3M1JV7YUT0C9Rct fVjQzrshlbY8ZTiR/1VtgnLXpLIk+ijDi9pbVz8SDGqqs5474ARLNL1GYKIV HTb0XQ9ns31sylTwUBhAgTTdF9WsaA3IumIbqEyj+zcLPkQSo+VCCNhpFiON WwM0cmli0Kc9RBRfF0QUqlAHlvAg0WZ7zS6CYG0AjbIRVm1HHoEUqQKLOrAU FF2NuNjhkE06QaQgrLsRWWwtha0UdFbwUm8WUtDazA+MJuON5hGaAoVUhWRG brUCmmDRHIxWdpHMSS0IPvFHEC2yIZ/j75b46XVyiO7S1F8hTdaOaB0NwZ5W rigcpVYqsN23ZNw1vL8ungyRaNEMhPkGik5o+CqwqdN6TXU0KRKFHRXtnHJF GXNfk/ESdVqvzCYFjNoAUnyaIASbxpM8KNmtigD8LN9YWBE1zHRftP6JpCZ9 uGtwcrd5PMK5XxH3YLsQyZeRApES2J5ONNNZgUid2ttNjdd9QM+jpUI02hYw 0GwhTa5AjMRObRzgbpNF32CrVQ5QgFzPZVKEvwVlPPC1/CXlk0hjGhfe2Eyn xWA0xejv9heMvFwx7zrwTDvpCC3ZqESHRGjBTKJMIkKwidpdQKb/NVtI0e0p l3/sQ5kTEiVRRtnsXKIEgpXh0CyjoaTAMrq+to0NS55V1CUKwuqk/ETIZBDZ fOwcbVl7IO2htUC9DqbAItNDKutnUIaOjlKOj969TVwuTNa989qmXCQAsz42 x8aYHndmHwWzZMJrqQLXBZIbsMS4XPTDxAo8ZkNm6KyipSGUqzUoFLC49exW NSMX/ddJ0UN0p8AoGxkA5xNt68Z9tXhkryuUoSD9jAZTtiNwWCVBU+gNJUGu iQZpTnET47bHR2Yu+uYE3RcNq8lYHlOBUctFYH3zdmSBOy/Sz3v+zBKsbmFK YEHjrtCtenDa5gsCJEWLVslbypNEQfbOxGMbr74KTwZrb5iRK8siw/iEFCda d28WiXylH71MdnTRV7xpmWYadaUfbFK2emaUWiY49RpAt2oQly9soYWTkfK9 bYGOZkZJJ2gCmJ64OyAdmp8O5vp1t9IiGxXknnTH3yfwVhZRGVgg4kdXQRmY +XarKY5sH7bprFkoYp2GlGjRYzloxskoinbTWriAJalvBMGSbTmssIklcgNW zkbTl/oggYq4KW52a5S3h50G4ZgiIVtAXNtbvzSfCbv7FpOQiFNaJBQBkF1t gEY2Ipr7ju6ckb8nlxpNk9k6kYaKtOKQLxQKMmnESP7iP9zqQdIUMx0dXSbj RlbDSiZIWhQyvgXs0Y3M6JtXpLckQZrFVuNF8q0IgOIQ99WegLZSMtTfedtK i6YbLT1IxoGG7+CbgOVVDCW0CEz0HCTiydJi5JorACmYpplPlb8ELLpDSMC6 vKRU8vCEuAHaAR+T+8aLdEAHpdC0IJ12dVASNMQLOdDCOpl4QT/jWUe/sG6y MyLW/bA3OSNBLm2/D8eyOuSTCA6FBWRK6XXtoRPMtmDIlPcEY8kYql0ltSID 5OZUZ63l0FkAtIIffYFbDNQGt0eSpxFyXxkQEl09zB2SpaoAuBXkxd1cG+fA 2KbZkdlmmx5dBa9tn/eumNrum/aLwIlGbtQbmQnKVhUQN+ESRXMU0ZCyWo6V nAZ5WQLhnsjZoZU3c2/ApWiBlZxTJlJ3CwUDVip6oFuF4WhplNifXlGB5bh6 snkdLpFuEptnlU1yL8RmNI3nq2I59Gdy2Emz2k7nI59A7j2agq0wfA0uRc+y I0dP3o9YJ2WLBhPLPuvR4hh3OzjwbHT9WWGdTtQmk0Pdk/uPZs5IOcia2JZ/ URM6zZMMPXX6IdAoBHCL697QxRXWr8AlCpdIS+nAMnrWL5uMv1202o/dBmh0 Mic5lcj2m8dmcduX4VK0oIROVYtGDfUzRkpQdwkuRX0VnQsbLSm3nV7yaft9 5qJFIfWT790DeWN73GWxSAIgq078kfJGPWjmNF4/X1INpEzRpTqZ4aj/JK9e r3cvmS6ZpLLwJqnawRYU+5DriZ4vaVXpluYs+01i3QMFE597zQY8H7FEcPzc WD6yPFDB8IV31fVyNJi2Ie8nZ/MR79Lp13DTdhKTZujIrDa5+8fyEfcxFNlZ ObNfhFqO7+e3iAMhGFl34qX8uMoTZYk6cPd4JrwIkn9IwTXP7raZu02U3Wj+ AYiRY8on+99+ZwikX+ESuS53c5e2NLJNy7+v4ZosCtNsMzlrWP6Vj45hIYdm +405+k5/wE00/d3jRjCoz7+C4k5colmJRA748m+x9KqZsELccnj9UyWQBkR/ pKY09jdcovnjvngjjJRTzZ8pgeYKbVlbSrvUqDxXQvTnhayCqByV/A/c5J5X 0qHRQrE0+0L7SZO3oy0vUQ6LfQk3OceKyWPl9NNXcMvr75+NXJU2b4/evrWX ckn+M+Gnp9KO/wDFxUvv\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {164.75, 0.}} -> \ {-2., -2., 0., 0.}},ExpressionUUID->"6756bd2f-8adb-471c-a30d-0d51a8d02b65"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(35\\). \\!\\(\\\"elongated triangular orthobicupola (J35)\\\ \"\\)\"\>"}]], "Message",ExpressionUUID->"ee831ab8-864c-4093-902b-\ bd9ed5fa6bb4"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.12201 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103175 0.15873 0.561004 0.15873 [ [ 0 0 0 0 ] [ 1 1.12201 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.12201 L 0 1.12201 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .34127 .7991 m .5 .7991 L .42063 .93656 L .34127 .7991 L s .5 .7991 m .34127 .7991 L .34127 .64037 L .5 .64037 L .5 .7991 L s .5 .7991 m .5 .64037 L .63746 .71973 L .5 .7991 L s .42063 .93656 m .5 .7991 L .63746 .87846 L .5581 1.01593 L .42063 .93656 L s .42063 .93656 m .5581 1.01593 L .42063 1.09529 L .42063 .93656 L s .34127 .7991 m .42063 .93656 L .28317 1.01593 L .20381 .87846 L .34127 .7991 L s .34127 .7991 m .20381 .87846 L .20381 .71973 L .34127 .7991 L s .5 .32291 m .34127 .32291 L .42063 .18544 L .5 .32291 L s .34127 .32291 m .5 .32291 L .5 .48164 L .34127 .48164 L .34127 .32291 L s .34127 .32291 m .34127 .48164 L .20381 .40227 L .34127 .32291 L s .42063 .18544 m .34127 .32291 L .20381 .24354 L .28317 .10608 L .42063 .18544 L s .42063 .18544 m .28317 .10608 L .42063 .02671 L .42063 .18544 L s .5 .32291 m .42063 .18544 L .5581 .10608 L .63746 .24354 L .5 .32291 L s .5 .32291 m .63746 .24354 L .63746 .40227 L .5 .32291 L s .02381 .64037 m .02381 .48164 L .18254 .48164 L .18254 .64037 L .02381 .64037 L s .18254 .64037 m .18254 .48164 L .34127 .48164 L .34127 .64037 L .18254 .64037 L s .34127 .64037 m .34127 .48164 L .5 .48164 L .5 .64037 L .34127 .64037 L s .5 .64037 m .5 .48164 L .65873 .48164 L .65873 .64037 L .5 .64037 L s .65873 .64037 m .65873 .48164 L .81746 .48164 L .81746 .64037 L .65873 .64037 L s .81746 .64037 m .81746 .48164 L .97619 .48164 L .97619 .64037 L .81746 .64037 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{256.625, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnPlvXEUMxzdJ0/u+D9pNoQehwE8cve8T2kIpp0KPbZo26X1RSksLQkJI CAlB+VP5PWTfM/bL5mNnRmR/QHpRlSbjr7/2bt6Mx7P2nGk9Gh253Xo0Ntwa OPGgdW90bPjhwPG7DyaG+noajYl/jZ6BgUb75/GJn+Vb8dXT/ia/zMDPN9r/ 9bb5/yoHRnWg0TdeDhUKjZflL9eL//rH1SH5ahjFiFLMKgb6quDGnyVoWEGz fdAVEAXwy8o5zwddVNACH3QBRAF8SDkX+6CvFLTUB30JogD+uXKu8EGfKmiV DzoPogB+TjnX+qCPFLTeB50FUQA/rZwbfdAHCmr6oFMgCuAnlXOzp1hI71fg ExPgX5DMYjKwUXU7pty98pcToNMLY68kjpHuHd9Un7pHZOtV2u/THgfRbFWk v/Zalc4F6e2S9hiI5qkiPZirVUqz+ZZPS3CaHjQWmDoKokXqI5GtUOkSkN70 aZeoIi0Vy1S6zKc9AqLloaIZXQnSGz4twWltpbHA1GEQ2TNBZAtVSs/TWEl7 CETrVHEhSOerdANIR33aDao4H6RzVUqro9AeBNEmGJuTOEa6131TTfWRyPpV Ssus0B4A0auqSAuRLWJbQHrNp92iigVFZUWXr0K2zSfdD6LtQDXxMy3M22Fs pMTvA9Fg+3uxO9sB0qu+IsEDir0gejNxbNin6LTYjolv+RR7Eiy2Kd4G3BWf ovSC97jkjVDtTnwL+xJxrZJ2V8KL9GgJd9mnJS9oNhFOaHcmekG0hLvk05IX tKQQTmjfT/SCaAl30aclLyhNIZzQvpcIpw0H4cosp/Fu4osjWsJ97dOSF4sS cUL7Tvu/YtGlqeiSFRoXKu9jMfAGwGlf9bpqdGzRxSl6PGnlJu4Sx6uNOLxL zVOgoY2XhS3KwYdK2j0Keg1AtE3crBqUhgvtPgVRCCfapmrQbl9oD4CIdjm0 ayZcYOqg+pNqwLZlNEuE9rCCKOVZA2OWBtGDLbRHFURbVKK1LS89kEJLSRtt rdcl4gJTJ9Qfejpoh2z5ynKf9pSCaIoQbZyvCO2HCqKEgZ4YSyJW+7RnQEQP ExkgXGDqrPpDSUQTxiyxoD+30H6sIJpbRGuHAPTXENpPFESbBlpjbLdPb5bQ Fsdizrq7NZDR6xDKz9RuR5gok44pp0EDPlVxsrfDW0SrL4HsbWN7gevng1cc RShK/oTSzggpBm2FsV7VoKMmobVTRYpBRDtLNWjdrU4/9+ElWnt4ad0V2tMg SjVAOAo+YspOPWk5IAN2WBbQ2sEnxSCiXaAatJxXw4sbg4jWDsZoORdaOrxL NUA4WuLF1BH1h2IQGViqGgHtIQVRDCJaO4Ojo6bq9smNQUS7UjUoSggtHW+k GiAcZVpiaq/6QzGIDKxRjYB2t4IoBhGtHe1RQBLanQqiGES0toekVF5oKbVM NVDiphw7VdPAXi8sEV+x9vdVKCw3o6BFFEEEtCytmUj2olSkZIziSUBhCVem oqVUFGoCRTqTo617QLFfbWcqWrpDYSBQpOP01LVQKPIXUVE8por0+WigSJ9x pUY2ocgPiaKYH6JF8b9sI4Qif4MjivkbLlE8ByJa2gIK2/tnKk6zNUYd+zSd zm4EVLwHf9u7kfymkOGZxs2qXapdql2qXapdql2qXapdql2qXapdql2qXapd ql2qXapdql2qXapdql36H7pUPXX+wuWcUvXxfDoNruz4fjq1yWNWu/E0T9Gq M57kKdKf6Zs8ijlqO1PRKice5inS5z738iismixTcbEq3slTpE/YbuZRWMFe pqI1PI3lKdJnmdfyKKxOMlPR6jav5inSp8atPAorI8hUtD7ES3mKTRibUq2d WhHQVI1qUUFaLVvSqyr50qvZiJSqAibRe2tjajmBtVVe8Wnjurak55JoZyuI 6tqS5gnRplazZc5lMhXXtSWtMkQb17UlrXpEG9e1Ea2VKd/2aVOr2dxI0TEW mIrr2pJiGNHGdW1Ea22VD3zauK6NaK36+ZFPm1rN5u5DOsYCU3FdGxnoV41v fdq4ro1ordD6O582rmvr3LTKV4F/5pM6tWxOZ+Vzn8iK2LbrTy98eLP9vajL /mEa5zLqsgP3Uhv4qYOHcE99U3ErPxmwP39AG7fy07bAAtATnzZu5W/CmEWF xz5tagM/GSDcQ99U3MpPRZ0WKQLauJWfaC2c3Pdp49YYKp215fuuT5vawE8G CHfLNxW38lNNsT1jAW3cyk+lmLbO3vBp41Z+orV1dtSnTW3gp3lAuBHflMUc muRkoKkaAW3cyk87M7saYLhKm97KT6TWYdnySSd+HgRdmphUcnixwlxIqC+W Fo9Bda5K0QFKJSPckE9LLcFUJks4oe1S63CXGp271JbdpSbyLrW8d6lBv0vX CXTp8oMuXdXQpYslZvDqixm4iGMGrgNxKYqhQJGaL9yW/2KMLg4IbleJOijp r0bBQOip4Sru9rfTJ4ptEmkPgCju9rfTJ0oNrvm0TVWkhMA2/7RrENqDIErt 8acx0g2uMIq7/S3PCGjpbqe4299On+i0L7gyKu72t5yCdsVCS40+qT3+NEa6 cvBGt4HF3f52+kT7tOCSsTiliW82E1q6aS3u9rfTJ0p9ggvcUnv8aYx0xdQx EMXd/nb6ROdnwSV6NrUpU7KsiGao0B4HUdztb3OVgrkcapY9Yen9/hsD/KRb G5Na/jepix2hRvLmk6BDPE3lkTz+pud69QyBQHTqFMDt5OixD7LV7YkPorw2 gK9Szmc+yM5ZnvsgWlgCuK05P/og+7z1Jx9ES30Atyjwsw+yCPSLD6JZFsBt 8v7qg2xP8JsPog3PJDgn5r8zRObVHxVpAX/pOyA3uha/zMAdyo2efwAR/xa6 \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 255.625}, {287., 0.}} -> \ {0., -3., 0., 0.}},ExpressionUUID->"fb06747c-fcd5-420e-bb9d-3a27deb15f6c"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(36\\). \\!\\(\\\"elongated triangular gyrobicupola \ (J36)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"f42b8586-da52-4ce3-88d1-\ 36a6cb7e919c"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.12201 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.103175 0.15873 0.561004 0.15873 [ [ 0 0 0 0 ] [ 1 1.12201 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.12201 L 0 1.12201 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .34127 .7991 m .5 .7991 L .42063 .93656 L .34127 .7991 L s .5 .7991 m .34127 .7991 L .34127 .64037 L .5 .64037 L .5 .7991 L s .5 .7991 m .5 .64037 L .63746 .71973 L .5 .7991 L s .42063 .93656 m .5 .7991 L .63746 .87846 L .5581 1.01593 L .42063 .93656 L s .42063 .93656 m .5581 1.01593 L .42063 1.09529 L .42063 .93656 L s .34127 .7991 m .42063 .93656 L .28317 1.01593 L .20381 .87846 L .34127 .7991 L s .34127 .7991 m .20381 .87846 L .20381 .71973 L .34127 .7991 L s .65873 .32291 m .5 .32291 L .57937 .18544 L .65873 .32291 L s .5 .32291 m .65873 .32291 L .65873 .48164 L .5 .48164 L .5 .32291 L s .5 .32291 m .5 .48164 L .36254 .40227 L .5 .32291 L s .57937 .18544 m .5 .32291 L .36254 .24354 L .4419 .10608 L .57937 .18544 L s .57937 .18544 m .4419 .10608 L .57937 .02671 L .57937 .18544 L s .65873 .32291 m .57937 .18544 L .71683 .10608 L .79619 .24354 L .65873 .32291 L s .65873 .32291 m .79619 .24354 L .79619 .40227 L .65873 .32291 L s .02381 .64037 m .02381 .48164 L .18254 .48164 L .18254 .64037 L .02381 .64037 L s .18254 .64037 m .18254 .48164 L .34127 .48164 L .34127 .64037 L .18254 .64037 L s .34127 .64037 m .34127 .48164 L .5 .48164 L .5 .64037 L .34127 .64037 L s .5 .64037 m .5 .48164 L .65873 .48164 L .65873 .64037 L .5 .64037 L s .65873 .64037 m .65873 .48164 L .81746 .48164 L .81746 .64037 L .65873 .64037 L s .81746 .64037 m .81746 .48164 L .97619 .48164 L .97619 .64037 L .81746 .64037 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{256.625, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnMlvVEcQh8c2Zl/DDiFjdrMkh4R93+GSY5RDAO/GKza2AYMxIBSEkqAk hH81d+J5r1L1GL4q91O4RHoWwuOuX31VHk93dfd0z/c9M0MD4z0zw309HTen eiaHhvumO25MTC00tbXUagv/ai0dHbXG4w8Lj+W/7Kul8Z/88Bkev298a23w R/OGd9pQa/uQN2UOtZH8hz+zb+0fNCH5qhnid0UsyRraiuLacC56q6Klvug3 MAXyX5S5whe9UdEqX/RaRWt80c9gCuSvlLneF71U0Re+6AWYAvm8Mjf7ojkV bfVFT1S03RfNgimQP1Lml75oRkVf+aJpMAXyB8rc7YsmVbQHRHW13irIF172 /4qk73aA7y71bepoN/MfJsCnNXwa6PlrhbbrfgDqsDuhbYcm0u4HuA+mpepI 2G1qXQ7Wazl2HEwr1JFeaVvUSl3+qo9dpY7UKag3BQHGwLRWAxBso1rXgfWK j6UBhgaIDRpggx9g1IO5w9Q6tW4C62Ufu0kd6TdY63lwgBEwbdUABFut1m1g vZRjh8Fk3WE1WFeqlV7zF30sdWiqbMs1wC4/wBCYvlJHwi7zPJraLvgBOjQA wdrVSiOwYO+Baa860vDTptZ9YD3vY/erY4YojOPyldkO+NBBMHUCauExDcwH oe1crh8A0+HG/9lM7AhYz/qOR6EtQPSD6etE7Bkf0SxvVELCCqLPRXzy3H4D 0tOLUXhKSwkJqjfxKWiDNnq2T+XYHjBRFoSl8Cd9LMmpQ1G2gu1OxNKsnXQn ymFpVKFsBduViKXZB+mOl8PSIEvZCvZuIpbmHIQ9lmPvJGKplJHuu3JYWiFR toK93fiWjbvUCaiKH1GPY4XnsdUbJ2lq1akeTXNzSYpenjR40ywm1/FoIwn3 aHiqNTTj2qceNIP/Nsf2qYjq4kZo260e1H8FO6AiquI0QaurB3U0wVKBptkH TZxpGhSEGtJ8yHELtO1UD+p8gh1R0Q4Q0RTT1j/USwQ7piIXQb+Bu44QLK3W 6I9HvwvpglATmg850iTZFir06hesLehpNUOT6XihIthpFdFoQy9JW0fQa0ew D8FELyYKQLoglG2xrARRB7TZioLW04KdVRH1LcLGq3/BPlURzUVoG8Ym/NR/ Bfss+8bj7oHAVveRtrHWVCayhUTaNpCgnje+HfUG0eKvQPEOcrwg9bngN+4M bPRqFKRtDlINokpm21nUOQX7WEVUgwi7RD1orCp2P/fFS1h78dIYK9gZMKUG IB1VNwk1pfnQcEABbJcswNqOJ9UgwtouGc0hiuXFrUGEXaMeNJwLlnbtUgOQ joZ4CTWq+VANogDr1SPADquIapA7AXR3m4rTJ7cGEdY236hKCJZ2OFIDkI4W cBKqX/OhGkQBbHcvwPaqiGoQYberBxUkwXariGoQYW0OSUt5wXaBKTVArvtk d6S4DGz1yhLxsrG/rYCwtRkVLUIEFdBWafVE2A+5YzeYqJ4ECFtwlXS0JRWV msCRtuXoPYYAMaixSzracofKQOBIO+qpY6Egyg+i4jiujrSoDhzpba7UyiaI 8iVRHMuXaHH8L9MIQZSf4Ihj+QmXOD4BEw1tAcLm/iUdF5kao89z9en0Rdlz 8Lc9G/ik7E9M9nPrllQpVSlVKVUpVSlVKVUpVSlVKVUpVSlVKVUpVSlVKVUp VSlVKVUpVSlVKf0PUyruOv/oMj859TG/mAef7Hi2mNvHbXZ242k5RzudMVvO kf5MD8shlmnsko52cmK6nCO97zNZDmGnyUo62uWi++Uc6R220XIIO7BX0tHu PA2Xc6T3MgfLIeycZElHO7fZX86R3jXuKYewYwQlHe0CYlc5xzq03c4Rx5RJ JwJcWOZxp4BIO8uW9FvlvPTTbASlUwEf4b2xkRzd10Hm0etj43NtSa9Lwi5V EZ1rS+onhE09zVayL1Oo+Fxb0ihD2PhcW9KoR9j4XBth7ZjyuI9NPc3mVoqm tiBUfK4tqYYRNj7XRli7WTnlY+NzbYS1088zPjb1NJs7D2lqC0LF59ooQLt6 PPax8bk2wtpB6yc+Nj7X1jxpla9MP+dDnbNszQefpXneB9khtoP66Lkvrzf+ P9JoerFIcnT45EBTerWPZuiESr3DvzdR99QPFd/hpwD25w+w8R1+mhZYAZr1 sfEd/jq0WVV45GNT7/BTANJN+6Hi2/x0qNMqRYCN7/AT1srJAx8bX42ho7M2 fE/42NQ7/BSAdGN+qPg2f/w5EQE2vs1PRzFtnB3xsfEdfsLaODvkY1Pv8FM/ IN2AH8pqDnVyClBXjwAb3+anmdke9egrYtNv8xPUblj2+NCFx4fAlzomnUu8 WyBnltT7qoc0uSKiSZQKI91PPjb1ji/pBHs8MYvUq8O3fWzq/WnSCfZEYhap 17Jl3XsyUZ56ifyuj029SU86wZ5KzCL1gn6Xj039lALSCfZ0YhaEJV23j039 BAjSCfZMYhapHywhA9ZZV57+0Re9Poo+zoM+iEMQ5xKS97LoWwSRNQWO58Hk XvnP2g6DR78Pi+7401+NioHgL4Apvu1vu09U26TSXgRTfNvfdp9oaTDoY+vq SAsCm/zTrEGwl8CUesef2sj3nh8qvu1v64wAexlM8W1/232i3b4hHxvf9rc1 Bc2KBXsFTKl3/KmNfGXj7SqY4tv+tvtE87QRHxsvaWz5QtM1wV4DU3zb33af aOkz6mNT7/hTG/lKqOtgim/72+4T7Z+N+Vjr2rRSslUR9VDB3gBTfNvf+ioV c9nUzD9iMf2+/65AP1lEJl35t09dayo1sm6+BT7EqStH1vH0kXq2NzXti2jX KZDbztEjX2Sj26wvonVtIN+szDlfZPss876IBpZAbmPOS19k77e+8kU01Ady qwKvfZFVoDe+iHpZILfO+6svsjnBW19EE56P5Lww/4Ml0q/eFayZ/L2fwF+5 KfvhM3xkcq3lH6a9CsY=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 255.625}, {287., 0.}} -> \ {0., -3., 0., 0.}},ExpressionUUID->"f8112d1f-088b-413e-ac4d-10ab541a6158"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(37\\). \\!\\(\\\"elongated square gyrobicupola (J37)\\\"\\)\ \"\>"}]], "Message",ExpressionUUID->"8beb10ee-c7a5-4fe4-8737-cbc5646e2a79"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .88726 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0833333 0.119048 0.449468 0.119048 [ [ 0 0 0 0 ] [ 1 .88726 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .88726 L 0 .88726 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .38095 .62804 m .5 .62804 L .5 .74709 L .38095 .74709 L .38095 .62804 L s .5 .62804 m .38095 .62804 L .38095 .50899 L .5 .50899 L .5 .62804 L s .5 .62804 m .5 .50899 L .6031 .56852 L .5 .62804 L s .5 .74709 m .5 .62804 L .61905 .62804 L .61905 .74709 L .5 .74709 L s .5 .74709 m .61905 .74709 L .55952 .85018 L .5 .74709 L s .38095 .74709 m .5 .74709 L .5 .86613 L .38095 .86613 L .38095 .74709 L s .38095 .74709 m .38095 .86613 L .27785 .80661 L .38095 .74709 L s .38095 .62804 m .38095 .74709 L .2619 .74709 L .2619 .62804 L .38095 .62804 L s .38095 .62804 m .2619 .62804 L .32143 .52494 L .38095 .62804 L s .02381 .50899 m .02381 .38994 L .14286 .38994 L .14286 .50899 L .02381 .50899 L s .14286 .50899 m .14286 .38994 L .2619 .38994 L .2619 .50899 L .14286 .50899 L s .2619 .50899 m .2619 .38994 L .38095 .38994 L .38095 .50899 L .2619 .50899 L s .38095 .50899 m .38095 .38994 L .5 .38994 L .5 .50899 L .38095 .50899 L s .5 .50899 m .5 .38994 L .61905 .38994 L .61905 .50899 L .5 .50899 L s .61905 .50899 m .61905 .38994 L .7381 .38994 L .7381 .50899 L .61905 .50899 L s .7381 .50899 m .7381 .38994 L .85714 .38994 L .85714 .50899 L .7381 .50899 L s .85714 .50899 m .85714 .38994 L .97619 .38994 L .97619 .50899 L .85714 .50899 L s .32143 .08065 m .42453 .02113 L .48405 .12422 L .38095 .18375 L .32143 .08065 L s .42453 .02113 m .54357 .02199 L .48405 .12422 L .42453 .02113 L s .48405 .12422 m .58715 .0647 L .64667 .1678 L .54357 .22732 L .48405 .12422 L s .64667 .1678 m .64667 .28685 L .54357 .22732 L .64667 .1678 L s .38095 .18375 m .48405 .12422 L .54357 .22732 L .44048 .28685 L .38095 .18375 L s .54357 .22732 m .6031 .33042 L .5 .38994 L .44048 .28685 L .54357 .22732 L s .38095 .38994 m .5 .38994 L .44048 .28685 L .38095 .38994 L s .27785 .24327 m .38095 .18375 L .27785 .12422 L .27785 .24327 L s .38095 .18375 m .44048 .28685 L .33738 .34637 L .27785 .24327 L .38095 .18375 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 255.5}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnPtzFEUQxy+5JDyMIBAiz8qFRP1P9AdFQRAQkOTIG/O8hIBSImokvrD8 j+PtTtN92fvM3CzslVXWUEXubh7fb8/sTPf0TO9cbe4sL6w1d1bmmo1PWs3N 5ZW57cbHG612Un2gVhto1Gq1g0Yt+35Qq73+k/+bzP7Ijzf8/jT7mM4w91zC bvYxmJPUD1xSXqHWyP/WD5S9/etnV+AxZA1C2mVI+8VBbCvtcLmKW1rxKBS6 CGnS0E3IOgZp5yHtVwexrtyj5SquasWTUOh9SHvpKj7SiqfKVVyBrNOQdhbS 9h3EknJToUDFBa14DgqdgbTfXMX5yF6lvvjdQTxU7kuRFd/TGk8cxKwmTEBx eoAntUZhDu26HzNQJxb7BKTRXNtxVN+oKFNQ6F1fmncmCux9yIoleEcJaMZu +wmmfWCFtONKQLmtjo6JaAFBkJooSUVtIdij2hYaDFuO4EEkwRFfmlejCMFM ZGcRwbASjEHupp+AWkBDckgJSP9tOILZyBYQQR3SSlJRWwh2UNtClmvdETQj 28IE7V9kTgPYTviRzjSX4X7nkLQ6WHOFHnohhzWt4xObsuoy57wtHzoE1f5P PS4oX6jUZAGnNPcjyP22A6KblKZQQ/EKxuDDXvDD1OPOPkUYDzIKH0Dao05K 32gk5XNJc2nSlKSySUwm44LmkskgqhU/1YiC0aqNliikmIl02U9KchPseFC4 kqTHFOw45J7RXHq6RLXkpzKjTq2yNRXNkJJUtkAhc0NtoWlOpIt+UlvSjUDu qOaOR1It+Kmoi0iV2zKHxmxJ0tMKNgS5NHppIT6tKIGuHNNCpKJsdtKC/Yrm FpRpoGnjvjqmcyagmrNorIMDrSs+C6VF+MNpl1UgegjzftLz1ESfLb2ohWko B1hMC5PpOqe5NFoCsFax8HxoCNO6qyQfQdBIpBWEjV1a7wdIz2pFMpZEZTOS LGKAyvQ6dQxRmXIj7RmgOhXsDqIyTUlqLkBFy55YUipXkv5EsIuI1Dw38nsC VOEuIirTmWR+AlRmQkhGr9PiNToBKusOmn9Ff0Az2v8ulCOiRYGfsmsJT35X gM28W6qYq9+6z5gFYK2byVeb1NyCxszTevbXULGbvR7cBKQNAkb7Oy0HAqwe 22Q+Bdkm7/DpJMpzaOiGnQjzdWgnM/CoyErFOhH2mGkXtCRp2HUgs0M6VUiv RZKGnQibHRVQmbGh9bzpQNohFarrkVSxToQpNepyIf0ykjTsRIR9uZJUYdeB zCVpVSG9EUka60SYK1kBqQ0LUqTW5TQ9hOpmJJVN5gnItQUEeQNC9ZWXik3j FSjvxm6Xtl3sxdBlCUk/59O43oF3CwqZF0h+QmDhRWBej4+w5cTmNmQ58zZS 7JbXnwG0O5BlnlrxaWaC0sbhrh/MHDLn9vGzJgkF9GvIMq8qdkubbOZjPwHZ 4Vgqmj5ysnQXsszr8h4wRLQlQGC+Flnp2O1NObq6B1nmYZH2plZRCwJnY6bJ yBIRAbWg5ScgoxB7NkZUcrJEZ2NmVb3HhxGdFSAwo0CG3kuQ15AuoiM3MwC0 2qG22EJeBudM/sEKgBYgBEoL+UPwXZqekKlnTOt1Ho1HrJMIzLTedw5sBwqR sTDN9qxcRdJYArENWbQkN0303FVsQSFyIGzx+qJcRdMcEmyzFdky0wh75SrS +A/EzNASzmbwfrmKNjMlfmMDCpGnbXPvT1dxHQq5JSDPrle9qnXNmr/d9xHF GDMLhe4rTcyJ/yiNZBlOoifRk+hJ9CR6Ej2JnkRPoifRk+hJ9CR6Ej2JnkRP oifRk+hJ9CR6Ej2J/laiZ18OHRiseYG7Dh5e9arBJxx/9ap2OM0C4v4oV9HC 6uU1XjpOpiAtArMDoZdvD0YRSPIaefHQPuswOrUkWAvNqgDMop9+clVdvAI/ 0tiG2yszP7qqFNBBgRp0FkgEdkr5Q38I6Dz3e0dFITUUskGRF0RlwSB9IrBD 5KeOgOKVjkAaxVYQgUWCSoAQBVZ53zaOIKCowe3+UNmrLUJAEWyxEYtEYGHB rf4QWLyCRGFQQCEFcpCNIwI6xBcqCpP0BupGUNlrLE/6Q2DxxBIVQiGtpAzo jSkisECMZ/0hoNgfoaLwY4oyIUVJVBZT+rw/BBZD8sIRUKw2Ra3Q+1REYIHI Et3if2GLLeAklLfok73qQGm2C/znkOWCW7qicAnZguT3K8GzUBiJobkKhYox NNZsfjtEomo+AyiLCiOAmq5XI+rmmRJX82n2sZQlrHckVLhEX02wCTbBJtgE m2ATbIJNsAn2fwrbuY62OyRrvW/4DAC7K5YCHpT3XUi5GGxJC3l9614QdrVk zGZJJlng7rM5BfNvTnU5N/QyglwERxefVYM8q5L690/5wdBLF3IH3wMFpc2o NwS9r6CxG+C0dUBbDPJ+110loE2bCghoJzuWivZZaD9Gdh5va1voOg4ioIlD wnXunXpfMa+A4IYS0BYxEdDGIA0V2dCk3bo+UV3TttBMJALSQTSX5K1au4eQ bgepgOC6EtCdIERAu1ykYuRcgXZ/aTe6Aqqb2pZYgtgr92Qn+5YSkDIgAgKj Vskpzx0lIBVQAQG92Rx7WySdXdF8kV35e9qWPhHYvcWxZ5w0dkj/yqHejBLQ C9MVEDSVIPZccFQ6hUysHKvSBag0Igi+qCgyWDk3mFdZKwBbVLDYQx96xNLg ZQWLPbOQ7WN312jUhrnUyO9erfcolK87p7Kcf1xCnlvBRfy1gX8BWSpeiA== \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {254.5, 0.}} -> \ {0., -3., 0., 0.}},ExpressionUUID->"c5f712cb-fa51-4040-845f-caf1b01ff1b1"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(38\\). \\!\\(\\\"elongated pentagonal orthobicupola (J38)\\\ \"\\)\"\>"}]], "Message",ExpressionUUID->"7d8db4f1-24be-4ad5-a028-\ 187f27f37b5c"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .79048 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0714286 0.0952381 0.395239 0.0952381 [ [ 0 0 0 0 ] [ 1 .79048 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .79048 L 0 .79048 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .40476 .5381 m .5 .5381 L .52943 .62867 L .45238 .68465 L .37533 .62867 L .40476 .5381 L s .5 .5381 m .40476 .5381 L .40476 .44286 L .5 .44286 L .5 .5381 L s .5 .5381 m .5 .44286 L .58248 .49048 L .5 .5381 L s .52943 .62867 m .5 .5381 L .59058 .50867 L .62001 .59924 L .52943 .62867 L s .52943 .62867 m .62001 .59924 L .60021 .6924 L .52943 .62867 L s .45238 .68465 m .52943 .62867 L .58541 .70572 L .50836 .7617 L .45238 .68465 L s .45238 .68465 m .50836 .7617 L .41364 .77166 L .45238 .68465 L s .37533 .62867 m .45238 .68465 L .3964 .7617 L .31935 .70572 L .37533 .62867 L s .37533 .62867 m .31935 .70572 L .28062 .61872 L .37533 .62867 L s .40476 .5381 m .37533 .62867 L .28475 .59924 L .31419 .50867 L .40476 .5381 L s .40476 .5381 m .31419 .50867 L .38496 .44494 L .40476 .5381 L s .5 .25238 m .40476 .25238 L .37533 .1618 L .45238 .10583 L .52943 .1618 L .5 .25238 L s .40476 .25238 m .5 .25238 L .5 .34762 L .40476 .34762 L .40476 .25238 L s .40476 .25238 m .40476 .34762 L .32228 .3 L .40476 .25238 L s .37533 .1618 m .40476 .25238 L .31419 .28181 L .28475 .19123 L .37533 .1618 L s .37533 .1618 m .28475 .19123 L .30456 .09808 L .37533 .1618 L s .45238 .10583 m .37533 .1618 L .31935 .08476 L .3964 .02878 L .45238 .10583 L s .45238 .10583 m .3964 .02878 L .49112 .01882 L .45238 .10583 L s .52943 .1618 m .45238 .10583 L .50836 .02878 L .58541 .08476 L .52943 .1618 L s .52943 .1618 m .58541 .08476 L .62415 .17176 L .52943 .1618 L s .5 .25238 m .52943 .1618 L .62001 .19123 L .59058 .28181 L .5 .25238 L s .5 .25238 m .59058 .28181 L .5198 .34554 L .5 .25238 L s .02381 .44286 m .02381 .34762 L .11905 .34762 L .11905 .44286 L .02381 .44286 L s .11905 .44286 m .11905 .34762 L .21429 .34762 L .21429 .44286 L .11905 .44286 L s .21429 .44286 m .21429 .34762 L .30952 .34762 L .30952 .44286 L .21429 .44286 L s .30952 .44286 m .30952 .34762 L .40476 .34762 L .40476 .44286 L .30952 .44286 L s .40476 .44286 m .40476 .34762 L .5 .34762 L .5 .44286 L .40476 .44286 L s .5 .44286 m .5 .34762 L .59524 .34762 L .59524 .44286 L .5 .44286 L s .59524 .44286 m .59524 .34762 L .69048 .34762 L .69048 .44286 L .59524 .44286 L s .69048 .44286 m .69048 .34762 L .78571 .34762 L .78571 .44286 L .69048 .44286 L s .78571 .44286 m .78571 .34762 L .88095 .34762 L .88095 .44286 L .78571 .44286 L s .88095 .44286 m .88095 .34762 L .97619 .34762 L .97619 .44286 L .88095 .44286 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 227.625}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnGtzVEUQhg/ZXAkQCAliuCSIiuj/0E9WeQcVJCGCCeQKCFHU4KUUr1XK V7/6y/whmJlpujezz8zOCQS2ypOq7J6d6Xnf7jlzZnoufd6cu7VwZXnu1uL8 3MwbN+bWFhbnb868vnpjK6m1p6r2zFRV9e9M5a4fbl3Kh/875T7kR43r++5r wOE8CAmb7mvEJfT7hNZDpdj69WcQuq1C+0DoryC05r4GXc4kCLXcZ59L+j2I r0ZCzrSjUDBWy8n9Fi5W/NdAu7iKPJfSISH/a7hYUjUHAGAC0vqyxv4cYK+D 0CCkjRcSUNkfA9Wico88BsGQogjsAgjthbSDhQRU9vtA9RlkUbsb8598Ow+A /Hch84qaNgZCVJD0368oAvtpYWXsz2hNd2czZM5DFomPZuCp+X4TMufUnCMg FG5W/zbQR6K+kKDMQtkaePT43w15nyjVFAgNM96UFhKUi1D2GKQNRWmu8k6A 3EbIvABZJB53KQ52GuTuhMyPIetkIewMyN1Ow5IWLYA9lYalSiBY/zD5mxKD OQIxnW4UmW5gweCOJiB451SOunVGTtQidQa32lgig2hUjaslVbNdqTrMJTZv XStlDpW4GdA+KFSJ0o77T+6GStpwFzVyIzk9eXFbfph48GlcvZFWoz+jhnU+ NpZS3xX3NV0oBzKU1H+SE0BdMsmtp9UYzKgxqfbaIEkuIbkAQvk+ZCU6eRrU aGBPD5bb09bSGoyoOaFBPcqsDoEwpZE/QJ5NRodYZafMmOplVU9VsL8eVaxZ 9eiORnLkalPNkkphFlC9B1kH1BaqouchjRpUTVKrSrvZJ7anFdznlTTBQQWj B38a0qhrpMacISUdbY5yWq+I6jCkLaepxkVn6hjOZPKoTxKadyErfuodxFlI oy5xqQusr4rX3NVgqoPJQPi6bkEn8SqoF3cmlW8XiSZ/PU16QEnpFr4CaX1a wrdDP7mnUVJI34GsfQoxDLlnIG1QS/h+xLeEpTTBiIpTd0IEVuJuGta0oM7h 5aylG2nYlgrR0/kSpB3UEp/nYBPDJyEeVkRxId52X37MpA7zRUg7ohCrbRCR EDkypwvllnYVlqqQxF/YHVhy40lueVdhqYsgcZoQ7BIsNb+VerDThXKZgZDE aTqyS7BUCRlnhGBpdkNyAkt+HYkff3qwVAkZL5RgaepGcgJLExgSL03rDViq R5KTKVW8OKEQJ10S1WimoA0SkZMTK6VODjliGQI/kPlxi5wSAjOHhhw2GQ7P Q9YY2eJ+0dKIZ/YGmRdB3nWGz5yJvu1gSSrzamh1OkNlBcmWPKmpSdMqWZv5 ELIGtODAdguSVHYHaE6UobJ7Pqhg5Coa1Xi2RhJU2ohtJYfmwXGrrB61Rd+O ZZn0IyhIVpcS2Bq8EFzWBFptIAhyLgVsdnvFlRocycki7CXISsN2LPSQqLjj F1VNsiWBR4/tFyHvguLRtDSBR9X9Zciz3QuqngQeTU5kVjMLWWROApl6ka9C nu0DpfF4Ak8z1q9D5ryCkk050L1a8l5IugIAxJwDpc5I4K8qX11QmgJ/GzIX FJR60uRYFqVRfyVbj9eUgLQoJaCBVnZklyCLFhpKqSjth0C1rLbUI+C78lO4 WFXQWt5E55NzP3yvcy55Xx1HAfxw3cqKR2lCOqg8EzoWsedAniEZSWm9VHag MbFH1GxMbExsTOwNNRsTGxMbE3tDzcbExsTGxN5QszGxMbExsTfUbExsTGxM 7A01GxMbE/9XJrqLbWvk8fbF1ndmd6G/Xc79S8Di9ShXJEqA5M9vA0ig4TUo VrpVQpWS2ThYLBQvpepXW4SAYgNpu6qUwDbzJfiQIgKp3ksJhpVAdp2uprTY IYHtW7YHHZIWueiRSH6fgt4LYhRyOFIT1E7ZSwwfBRrurQlKW+GydX0ZsnIx iwR/SHUW0DkQCgcoivboDiue7P/PpiqqDM9OkW8EqUsgNFaON6547ecJsM6L 8GhrX5Ap8O5QObKFT8jWP0UFxhEFqdts0UObQYwiFykQIPnwRGkC64/k+Jz4 9EgKzB5vO2GVOd/jf8XHV1LY1jcNK3YmEJCORfVrQYs2ISrrZ4e0BHWrGSor aHeLqAjW1KQTGZljX776+7VgktT23ltagtqBUJ2HLDuaZpU1JdrT6G4n0qgP zBDZwTTTekqqLnrwrHTNk46TylHBqU3PQ7Fcgpg/QEr1nylI4jSQ7uRAa0Fa BvZxTvUS1ROArXlYmLSoeWL6GZ/vfgKwJF7z7PwzPun/BGBJfLqQvmZwxkwh /dOHJfHeCNN5nFglsioDS+I7Cdhqpfp6AjuqJdpjZ1qpcYai0Sa0BPlAotk5 FaJgVYqTsyBNckwE1vxCGssJ1sIw6SCmwHoXO+mLUPjhiJagA6Ry199yXz5g dTSrRT4uk44GtxOQhzWi9ZisUSK1eEmajwgpRQl6+0ZTbSIOdq0qObxPzlKG xYt7n+isKkqtNvPQxYfHnSpxDHR7Hh1eX0nDT0ZQmrH1F1rnEOWpDFVIho7E zVc9pVf0Ohp6LjNdNh31p+UYGtBjOUefCZcvpbfQj2N6FaYtRYEF3d4IEKXR c06Nj+T6Us9xt9ceRGnUO1ELDXLcDCmKJRNCSFrbvNKWaUjd0peMZehJW7o7 RF/63jOa6opK5MtTNBM1T1K99F1vNEpkVKJKtRWvUb2i0JnSd9llZjdET1QU VEVy1oVlFKG5ZjLWwnrB5MoErY7TknyGnuwLs7zy1yKVLtKLGrSmQKN9TOXo p5P0rG5mGaP0FV6l70rLrDTRPSFLKM1aQLcIxi5gVcWvB6N6WK9HdVJ1TOZG abJCHpY5O4a+GcVLvoksSttoxwObk2BxLblf7S/Owxe4VVXmDXDtK/a0Dh6v Sjgwegpp9UJgaeE+XppJwdISjtyNS6p+3Nk4sHzwbXvgH3aXHTe5tAcWZAtI nWQ8cjRsrN8MUrTXNV6Ol3mzJm3NJTZTyD+hgf9ekLdowtyrSpNv6vIlJQKP tljJN6DHmLSmskJF28W5DUByd6mJyFarBStSuyT9qYbNHZcQv9IQRSKgxkFl hSofolhKYH7HLwF2VXipjqkDnMjIywuS16Jiqe6P9r3k1MM6iJM23kSvzB+h 4B0Q8s3CLxc8aBfq2ErxIn8HkdsK/E9I8BI7fP11tec/9fjkDg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {226.625, 0.}} -> \ {0., -4., 0., 0.}},ExpressionUUID->"0a8e67f7-201d-4609-a41d-87d687de4257"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(39\\). \\!\\(\\\"elongated pentagonal gyrobicupola \ (J39)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"2da2aa59-41ad-49eb-abd2-\ c9a1e2791e60"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .79048 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0714286 0.0952381 0.395239 0.0952381 [ [ 0 0 0 0 ] [ 1 .79048 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .79048 L 0 .79048 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .40476 .5381 m .5 .5381 L .52943 .62867 L .45238 .68465 L .37533 .62867 L .40476 .5381 L s .5 .5381 m .40476 .5381 L .40476 .44286 L .5 .44286 L .5 .5381 L s .5 .5381 m .5 .44286 L .58248 .49048 L .5 .5381 L s .52943 .62867 m .5 .5381 L .59058 .50867 L .62001 .59924 L .52943 .62867 L s .52943 .62867 m .62001 .59924 L .60021 .6924 L .52943 .62867 L s .45238 .68465 m .52943 .62867 L .58541 .70572 L .50836 .7617 L .45238 .68465 L s .45238 .68465 m .50836 .7617 L .41364 .77166 L .45238 .68465 L s .37533 .62867 m .45238 .68465 L .3964 .7617 L .31935 .70572 L .37533 .62867 L s .37533 .62867 m .31935 .70572 L .28062 .61872 L .37533 .62867 L s .40476 .5381 m .37533 .62867 L .28475 .59924 L .31419 .50867 L .40476 .5381 L s .40476 .5381 m .31419 .50867 L .38496 .44494 L .40476 .5381 L s .59524 .25238 m .5 .25238 L .47057 .1618 L .54762 .10583 L .62467 .1618 L .59524 .25238 L s .5 .25238 m .59524 .25238 L .59524 .34762 L .5 .34762 L .5 .25238 L s .5 .25238 m .5 .34762 L .41752 .3 L .5 .25238 L s .47057 .1618 m .5 .25238 L .40942 .28181 L .37999 .19123 L .47057 .1618 L s .47057 .1618 m .37999 .19123 L .39979 .09808 L .47057 .1618 L s .54762 .10583 m .47057 .1618 L .41459 .08476 L .49164 .02878 L .54762 .10583 L s .54762 .10583 m .49164 .02878 L .58636 .01882 L .54762 .10583 L s .62467 .1618 m .54762 .10583 L .6036 .02878 L .68065 .08476 L .62467 .1618 L s .62467 .1618 m .68065 .08476 L .71938 .17176 L .62467 .1618 L s .59524 .25238 m .62467 .1618 L .71525 .19123 L .68581 .28181 L .59524 .25238 L s .59524 .25238 m .68581 .28181 L .61504 .34554 L .59524 .25238 L s .02381 .44286 m .02381 .34762 L .11905 .34762 L .11905 .44286 L .02381 .44286 L s .11905 .44286 m .11905 .34762 L .21429 .34762 L .21429 .44286 L .11905 .44286 L s .21429 .44286 m .21429 .34762 L .30952 .34762 L .30952 .44286 L .21429 .44286 L s .30952 .44286 m .30952 .34762 L .40476 .34762 L .40476 .44286 L .30952 .44286 L s .40476 .44286 m .40476 .34762 L .5 .34762 L .5 .44286 L .40476 .44286 L s .5 .44286 m .5 .34762 L .59524 .34762 L .59524 .44286 L .5 .44286 L s .59524 .44286 m .59524 .34762 L .69048 .34762 L .69048 .44286 L .59524 .44286 L s .69048 .44286 m .69048 .34762 L .78571 .34762 L .78571 .44286 L .69048 .44286 L s .78571 .44286 m .78571 .34762 L .88095 .34762 L .88095 .44286 L .78571 .44286 L s .88095 .44286 m .88095 .34762 L .97619 .34762 L .97619 .44286 L .88095 .44286 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 227.625}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnFl3VEUQx4dMVhIIZBEEJIOoiH4PffIc1gACxoCssgaEsKO4cBB80Ed9 1E/mB8HcrqJqpufXTQ8EzpzjzTmZudNd/f9X9Vq93S8Wr589dXHx+rmTi63P lxavnD138lrrs8tLK0HNNY3Gmlaj0fi31aien6886kf421F96I8env+uvoYq nJsS8Gf1NVYFDIaA5nOjWPn1nQj9bkITIHRDhJ5WX8NVzCwINavPgSroqoj/ GglVpm2GhLFaldwVeXgSvobaxU1kU0qHhPxleXhsag4BwAyEDWSNvSiwv4DQ MIRNFRJQ2vNC9ZNxj70GwYihKOyPILQWwjYUElDaM0L1CKKo3k2GTy7O9SB/ WiK/N9MmQYgSkv7rDEVhHxZmxrqM1lQ6JyXyAUSR+HgGnqrvCYm8Z+a8A0JS WIMdoC9EQyJFuQtpe8Cj5r8gcbeNagsIjTLeFkukKLcg7VYIG4nCqsx7D+SO SeQyRJF43KVUsHMgd1Qib0LU9kLYFsh9mYYlLZoAuyMNS5lAsKExhUKJwSoC NZ0Kikx3MDG4qwoo3pLJUc/JyIlcpM7gcBtLZBANI3G2pHL2pVRd5hJbsK6Z Micu5S4O7kqIaFtGvqTeVr8OSYKrhZpSDlGDprQk16NK5DKRSqFjCzXKx1Xq x+J+p/o1n6YfMjCyjzpecglIbrQ3RUZUHSr5WVPSh0xyEMkhOJimTHT5NMTR ME9DZ0aDK0nxLg0IeSOEkW9AXs6BtAbjrEGw1/M56eqs641tgtkIhZzvcQgj ZyujQaAKQZRR70IYFSllxf40qefmmD291xlWULJKcBmiNhoYNf85CKNeiqrd vjQpifusZac9rQLVtOpMncOuTBz1S3vTNHHLryB2QxjVzZfBhqz4tHoK89vp 3iBCAYcgyeIXkY1PQL2BSK4R6sXKB7WfPSJ1CaImjZQGqY8hrGkpQj0M030a zDKkEwZBA8guCBu2FKFxh95lb5pgzMQpO4jAUyykYV0L6pE+gjDvio6lYT1H qcl8CGEbLMURgZX1g85O94UIjaIEOm0p5ttAAybNuD6AsE0Gsb9dr04h8mh2 Fsrt6QvY9wvlMjWUxMm3719YmiWQXKbLp6F4FWBJfO7NwNJ8heQyjgNlwirA kjgtNqwC7LZCOXXZyE2nTFgFWBKn+dwqwJaGZeYqqwAbLy2kxCm/e4QNENur IMrR+XTC4LCRnxMrZX4ODT9KcA2iwigaxi2a7xLYgKlEg2WGyt2nyBcjb8qn 9+5I0JTvUJrPPaeBTrAklTs25LMo1XWIGrWEZEue1NUk/ytDOmQJfdGC5k5O 5SVA06LDaSov82EDI22daiqbI0oVtsIGTR9f0XhJNawqzYwRRC3jSBt2hENW l/L5wryuf/ryPk1OCYLai4Ld6cy4UvsjOfWbb0NUGrZoteW4xC2bmmRLAo+a 7VcSd9PwaGaawKPsXpC4W4ZH2ZPAo8WLryXuDkSROQlk6kUWJe6uaZrG4zk8 rdPoXtF9AyWbcqBrLeUpCXoIAMScA6XOSOF9w7BXUJoF63bhIwOlNarkWBaF UX+lu6i+D0xalBLQQHtWCGhPm5aLSqko7JxQ5Xfl0wRcKhfk4YmB9uRNdLcc 3eN/yrHkfflKm0zKGs+qr2ZWPApT0mHjmbGhiT0H8gzJSArrp7RDtYl9omZt Ym1ibWJ/qFmbWJtYm9gfatYm1ibWJvaHmrWJtYm1if2hZm1ibWJtYn+oWZtY m/i/MrF66FgjvxAlWPnO7C4MtstV/8/k+dsoViVKgPQvbAPIZUi9a9eZrHSr hDKFNg4eC9W5QvFSqkGzRQnOpoRekcA3838WgjMgRPleSjBqBHLXUXfqQItX JPB9yx+E4FRKi8TGFe0NTRjoQxH7BoTGegRdb6D3RexkypweQGkrXPasdUu4 Myp3kZHg/Ri9gi6CkBygKNqjmzY8uYym2+yQUWV4fpB8WaQWQGiyHG/K8OQI hR5ToDwvwqOtfUU+nhQvQvYbFPdE6hgIxWfqU8Xsl4geiNhREKK7AMnGE4Up bLjVGGLi0yMpMG/efjTrRhtYV2fb6D6+ksL2vslPb1G3I+eh9FgR9L0haIOB EZX3syOWgrrVDJUn9NIiKoJ1NelExrU0acj+QUuYJPW996aloHqgVIchyo+m eWZtUe1pdPcTadQHZoj8YJprvUWzLmp4nppOEy2lOWaNowGnNgMPXZlRxEMQ 5QdIKf8zCUmcBlKSu/oSfQrCMrDzheKlR3JXAZbCrqRhSYvSE9MKe7BQnM53 E/3bhyXx0rPz+oKQA4XidNKf6N8+LInPFdLrcaX9heKtQvq3D0vipfdp9OjV vkLxNwRLd5XIqgwsiZferNJDdOFuUTPV1xPYZkuhxXPAAmicodtofpyafCDV 7JAJ0XVNuifn9zTJMVFY9wtpLCfY9ZaCDmIqbHCxk74I3UAcsxR0gFRLPdx/ C3dWx7Na5K9m0tHgdgLysMYsH5M5SqR+ZZLmI0q6F6KCfeOpOhHfd2009AYK OUsZliAefKLdpijV2kyjiw+PV6rE16Db4+jw+qU0/GwEZRErf1I7RyjOZChD MnQk7r7qDnuid9RQu8x02XTUn5ZjaECP5Sp6wuuR3m+CbLUnmbYUXSxo7wCj KOpcqJ1T5SO5gVQ7zjgKdC6feieqoSLH1ZBusaga5LSR1j6v9GUaUrf0zWMZ etKWSofoS1+GRlNdVYl8ebrNRNWTVC99ARyNEhmVKFN9xWvcnujqTOkL7jKz G6InKrpURXLehWUUoblm8q6F94LJlQlaHacl+Qw92SezPG6K1FeWLtKrGrSm QKN9TFXRzyXpWd3MMkbyzVcFYTQ4ZVaaqEzIEgrzGpAhoNyOwRoNfmcY5cPV 3qi2m47J2ChMV8hlmbNr6GsZHlUtwltuxwObk2BxLlW/9EWnRy1hC2CT1ad9 xZ7WweNViQqMWiGtXigsLdzHSzMpWFrC0dJYMPXjzqYCy1++lRc54haKdJdd hVzaAyvyCaOaZTxyNHysfyBStNc1VY5HY6Ei09ZcYjOF/BMa+B+K/GkzIvf+ 0uT7ukJKeUMqbrGSb0DNmLSmtEpF28W5DUByd6mK6FbreTON6iXpTzns7rjc Teza43+e6CCJgCoHpVWqi8b9OgTud8i7jdXl4jymDnAmIy8XFLve/pHq/mjf S089lL4LMZgYlPlNEtK7R0O1CMsFf7QLdW2lBJG/ROSGAf8jAUHiFd+J3Vjz H7Tj+vc=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {226.625, 0.}} -> \ {0., -4., 0., 0.}},ExpressionUUID->"b7df22d8-63da-4692-98d1-a12ea3ad8085"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(40\\). \\!\\(\\\"elongated pentagonal orthocupolarotunda \ (J40)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"8603dc25-6deb-4c7c-a243-\ d2aef7a6f28d"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .93381 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0714286 0.0952381 0.535155 0.0952381 [ [ 0 0 0 0 ] [ 1 .93381 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .93381 L 0 .93381 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .40476 .67801 m .5 .67801 L .52943 .76859 L .45238 .82457 L .37533 .76859 L .40476 .67801 L s .5 .67801 m .40476 .67801 L .40476 .58277 L .5 .58277 L .5 .67801 L s .5 .67801 m .5 .58277 L .58248 .63039 L .5 .67801 L s .52943 .76859 m .5 .67801 L .59058 .64858 L .62001 .73916 L .52943 .76859 L s .52943 .76859 m .62001 .73916 L .60021 .83232 L .52943 .76859 L s .45238 .82457 m .52943 .76859 L .58541 .84564 L .50836 .90162 L .45238 .82457 L s .45238 .82457 m .50836 .90162 L .41364 .91157 L .45238 .82457 L s .37533 .76859 m .45238 .82457 L .3964 .90162 L .31935 .84564 L .37533 .76859 L s .37533 .76859 m .31935 .84564 L .28062 .75863 L .37533 .76859 L s .40476 .67801 m .37533 .76859 L .28475 .73916 L .31419 .64858 L .40476 .67801 L s .40476 .67801 m .31419 .64858 L .38496 .58486 L .40476 .67801 L s .54762 .34098 m .46061 .30224 L .47057 .20753 L .56373 .18773 L .61135 .2702 L .54762 .34098 L s .54762 .34098 m .62467 .39696 L .59524 .48754 L .5 .48754 L .47057 .39696 L .54762 .34098 L s .54762 .34098 m .47057 .39696 L .46061 .30224 L .54762 .34098 L s .47057 .39696 m .5 .48754 L .40684 .46774 L .47057 .39696 L s .46061 .30224 m .43118 .39282 L .33595 .39282 L .30652 .30224 L .38357 .24626 L .46061 .30224 L s .46061 .30224 m .38357 .24626 L .47057 .20753 L .46061 .30224 L s .38357 .24626 m .30652 .30224 L .29656 .20753 L .38357 .24626 L s .47057 .20753 m .37533 .20753 L .3459 .11695 L .42295 .06097 L .5 .11695 L .47057 .20753 L s .47057 .20753 m .5 .11695 L .56373 .18773 L .47057 .20753 L s .5 .11695 m .42295 .06097 L .50996 .02223 L .5 .11695 L s .56373 .18773 m .5343 .09715 L .61135 .04117 L .6884 .09715 L .65896 .18773 L .56373 .18773 L s .56373 .18773 m .65896 .18773 L .61135 .2702 L .56373 .18773 L s .65896 .18773 m .6884 .09715 L .75212 .16792 L .65896 .18773 L s .61135 .2702 m .6884 .21422 L .76544 .2702 L .73601 .36078 L .64078 .36078 L .61135 .2702 L s .61135 .2702 m .64078 .36078 L .54762 .34098 L .61135 .2702 L s .64078 .36078 m .73601 .36078 L .6884 .44326 L .64078 .36078 L s .02381 .58277 m .02381 .48754 L .11905 .48754 L .11905 .58277 L .02381 .58277 L s .11905 .58277 m .11905 .48754 L .21429 .48754 L .21429 .58277 L .11905 .58277 L s .21429 .58277 m .21429 .48754 L .30952 .48754 L .30952 .58277 L .21429 .58277 L s .30952 .58277 m .30952 .48754 L .40476 .48754 L .40476 .58277 L .30952 .58277 L s .40476 .58277 m .40476 .48754 L .5 .48754 L .5 .58277 L .40476 .58277 L s .5 .58277 m .5 .48754 L .59524 .48754 L .59524 .58277 L .5 .58277 L s .59524 .58277 m .59524 .48754 L .69048 .48754 L .69048 .58277 L .59524 .58277 L s .69048 .58277 m .69048 .48754 L .78571 .48754 L .78571 .58277 L .69048 .58277 L s .78571 .58277 m .78571 .48754 L .88095 .48754 L .88095 .58277 L .78571 .58277 L s .88095 .58277 m .88095 .48754 L .97619 .48754 L .97619 .58277 L .88095 .58277 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 268.875}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnW2XVMURxy/7hAsIrIJRVHZWIpH4LdSIIqggCQuosEEMSBAWCBJjgobE cPJ4cvI2b/M5N3u7i6qZnl/11JVdzr64ew7MnX6of3Xf6urq6uqeEyt3rly+ vnLn6qWVwdFbKzevXL10e/D2jVvrSdPbmmbbYP3frkHTPq81zaP/0t9S+598 +YHP/24/plqa/8gJ/9KEZnotJ6UKzd/zl/QxvfYou5leU3bWv/0tF/qrEpnz Cz3UQk/5hf6scPNQ6IDm3sjFHyjNXVD8hfT/7HDaoyY2X+aH75TAbiDwPKRR N1zLxO4rsb1Q6DnN3a5PUvEbbdczUHE/pFHvXMnEvlbqVPFZzX1an6TiPeXi OahInO2BtMuZ2Ffpg/ue+FoIpn2WidyFLHozLtfWQelJyN7RBHtHxAU1/EeQ tpLJ3oYseoMkg5T2AqRdzFCryre9XyKxS3Nf1ichcTPY4J3BtEVI+yRD3YAs 6u8dXgcmvg/pk5C9rgn2hokEKaJXIe1cJvtryKK3vj2Y9hNIO5uhrkEWvXXS t5R2BNKWM9RV7SKThA0gewWyFiFtKthZR5Q56aLPNcHePxGjl5x7fmZEO60/ C+uXoUYpFo0jUpky670z+eEzr5orpyQo1NTTGeCS130BFUTiPwNpH20O1Cyk nZoA5XZbRwD3vYwLCqEdgjQS5JOT0Fh4qAcJksT9w0mQk0WLRj/BE5sfZPjI sFpzxI3glyCN5p/3u8GThFAawZMVeqIbPLWUeoTgn4a04xn+c8iKig8ZVpsE T+JD8IuQRjbKe08Onmz+Yxn+V8EOJOmlwUjwZDa92w2epJfgX4a0ZyHtnW7w WXxY+1GL90Ha0W6Q2TIeU++EllYSqaQ0K2rg7GUM6sTETuqA490wypffOADz CnCyG0Bq/ZTH94yS/UUmexUKUcV9SvZFyE0Uz3ejmORwqU262K2i9T2JfGXF 9QVkUWvS4E5iQDq2snqMAmxXABrIGwAwpV1EyoZW9b/MAJHVTCuy6RsxStol 24PNz9uPJEJJmA56wjSJxNAIbT/X/72ulJtR19hLQKriqyjJy18q+6o+0TRD 7SCgp5TK2WFIGKSpOUv6RMYGtY6m1izFrK6XfTbmFNyWmzQgaIySgRE1WDIv oqBg4JjspSeyBA4GWbImmhepAr9DC5lzjkbwIqSRxUAvlZpzymfJvEPmLCMv UpQlkz3zSlXgd2uhnfpE5tUg2FKyn0mkP/BZSvApaVafyLkYZYlElIb2+z5L Ji1D+qn9RpqYrB9anU4pUXOdVXjYp51BPuNXII2WUjTj0jTw3oTO6OBv9llj GqSKj/nskGhE/dO0MKG6hRIVbs5ASRvEdbf2jwPIzaMJhC1vgifNEXV/5yUy T57m96uAmyqrO8QPF0AymMg/8paPRsov6js/XKS1PU2+tDd9ePJLRf3p1FKC f8OHT3NxwO++AVCku6K++MPK3OvdQGlmjXrlSZC7v2CbSOvO+jySWZVVIJch K+qAoHKkUKgcCUSVpWaS15+UKJkB5IJ7i5EbUAdtGjWSZrlJUFMqD9a+sGCF WrC2NuwyJy1O1jQx8rMJAOOKlIznqE+7gvaaNidNVCmT5uqOUGchy/ZozMCn CAHS7dTXb0egCpVKk9vjQZXzXi6Z+yuVpPmDVj0V3HOQ5ehDm66jm+Ebg1ss Ocj6D+jAoz5uTSPvVXAaf/QCKuDnIetQBTyZoKk46UcyUDcQ3OyEZtTHQtJO LoF3fFwy8WmqSGuYGW+IVUA/hiySRgLN65Uxu3ZureGl7iaxEV2nTGkf0dAn hfuuz9wA0twlerFsmVNGSKNvEiPRBUxic9YbShXmPoGsxSBztMDZpb1UDKsD QOCYzwNN2mTaRJc9icPkoj3++KDRxQ5JLFnt0g+fQhaNPmKJFkAkPBXnBsGT S5ZMweiiiF7XJrEUXTIRS6SORW4uQBaNL3c3vVhDkSFFOwYnfHgaWjSdR9dT pGA2jaVmeD0VHVjiF7wIWfSKS+RWO9HCj6R4EvxLbY45i2mJS2QrTuC/QFaU LGmcDzeV7Pfa9J9CIRIlGnCyKZyCsGOuio6U/5Q+4m4JN+6zSJO9hAeQRcOt 9LR5XFeg/ghZUf8CKRt63xJj9x1kRf0LJDJUVyIHv4Us37002UiqQN2HrKj3 gYZtZc/vD5AV9Qd0hPo9ZJEQ09pkQbqMBseyTz7qbihN/ZasbBd/A8WjroUK 2d9BcRLIAaRRcI90wteQRcJHZOXcyG8hK7rGFxL3IItmKbJmc4S9nJGod+cE EnQOgrqODFgh8RvIIsuLLL7VTCIdm3BX0JWKqRPdiBIy6KRiGghzOukH7J5b ueIDRSS9Vqn4UCtG44Ok4px8bQNUGlnKMjoRIQcjpW2lurN9E7cIm30T+yb2 TdwabPZN7JvYN3FrsNk3sW9i38StwWbfxL6JfRO3Bpt9E/sm9k3cGmz2Teyb 2Ddxa7C5UU1sH0a2AcorhdY/cdM0g40FVcslbteKXCkRISR/KXRA7mCj48C0 50Fp1Cm0XfowQ9HhbDf8MABloT0CQOfbaZs+CmCR399nALppIHrEjQAsgizH SuDVFTRcogB22jSHMODFJLWzvbRHZjGI3+ZidNXMfEeiFpKdN/DxBqAdHYnS Lm/ep5bD6qNZOzuSX1CehegKFMp74GPDlejZGc+8ZY3BVs4tFkTPLly4l0td gEJ74vTsXoi8K4+xgs4NGG7/FWlCmUJFF+KULZg4B1FgQHAZX+e9Zou0vZ+L Ufx5uQ9fHTxFmpBNBwlSTrmx7hGz4W0nOO4OERtTts34OWaPtukmu3CA1M6d TIROm8xoRTvzQFDFEfppbzqrQFlFe1sERWSNTYoTuu2Dpu638HQXdFpzp7UG yYFALUPWHuXROuuAcE+z+9Ro18eB7ICIcX1Auq4YeFabglBu+Rj7FaMZDVhP FlXCoQBloUgnJVPFg17/VypScZpIqdzqBH4CaRWydNCcilMaQW0AWUq76ZMl LijKp0KW7hSh4hR1RPBPniwVp/gsgpfgs9PB4hQ5RvBPniwVXwzCy93NHwWL D4LwT54sFacYS4K/nsmeChbfJLIUx0qtqpCl4hSJS/B5+Zyjy6c9XU/Entca 8npOawLNMxTvbFefkA0knJ3RQnR0gyK2F7QGGSZC1uxCmsuJ7G6tQUHWQjaZ 2K4tQlHz81qDopzlraczChas6XJBh0HmtAaF+A4DkIU1r/3o9iiB2lFyWo8I 6EnISu3b6cnEa0Vak8o5xlIFJRVPNtERZZSktjLoytt6WlbK22eH8yiu90uf /P6ClGY0cuXZunUOeVqGOqQCR8XNVrXrzsr33zjjsqKyKT6b3DE0oZflWnii 1xHeDse+qE952TK2MCZxHlaARRYpFxrnJHxUzj0PWTEU6AAGaSf/egQWQzqI IGyQ0UZc27rS3DR7K5DEdgWSOKQ3Qj1UO0tCEfPCBtnsVJzEkNilctE72iss kWyZZ8uOAdKdZNHLrSurGIInqOhxXLtzrcKIe98SWTam7dzLVcnNTmkVeGpf hmLBc6+ODbwiYYN8BzSrl1At/KILz+xW3BUESYsiH3KUtYpHKXr99MCDShJQ AYicR255JFOf3t5qN6iDymP0YLR4rs8JB8UUN1B6xBzR+2qY3mibl6rEqMvF 13peK5aFmobt0EWtIfyQv7v0PrTEaBTSSBOy5KAv9YNH1uwL8clf0IRy4dWS IN8prfaEGG2VZLUa+v0F0qzDOztDlyjxrUPuhCLbT7Sn9UycHhmaQpm24JxN E7JDzJWejwoP/TRKtg1Yv5HdQOSFKG2lRi+sJ7I2TctOJ20G17b3ohcbCvkv FI/kkrgmY8uM7XySH38UKLoBTOYR1RUo+1mjxwEgTSa75TeEA+ptqrZPCBbl h4MJyh+T8tQf7W9JdMNqsBGpsYn5f+aKdL42CUhyC/xnuNBYG1KR/+Yid5Xw /3JCKrEBv8bXbPs/F8A98Q==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {267.875, 0.}} -> \ {0., -5., 0., 0.}},ExpressionUUID->"a3dee612-2823-4a88-9c34-61c932a8cf0a"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(41\\). \\!\\(\\\"elongated pentagonal gyrocupolarotunda \ (J41)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"a1b499e9-d8ef-42ba-83cd-\ 35323ce81223"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .93381 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0714286 0.0952381 0.535155 0.0952381 [ [ 0 0 0 0 ] [ 1 .93381 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .93381 L 0 .93381 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .40476 .67801 m .5 .67801 L .52943 .76859 L .45238 .82457 L .37533 .76859 L .40476 .67801 L s .5 .67801 m .40476 .67801 L .40476 .58277 L .5 .58277 L .5 .67801 L s .5 .67801 m .5 .58277 L .58248 .63039 L .5 .67801 L s .52943 .76859 m .5 .67801 L .59058 .64858 L .62001 .73916 L .52943 .76859 L s .52943 .76859 m .62001 .73916 L .60021 .83232 L .52943 .76859 L s .45238 .82457 m .52943 .76859 L .58541 .84564 L .50836 .90162 L .45238 .82457 L s .45238 .82457 m .50836 .90162 L .41364 .91157 L .45238 .82457 L s .37533 .76859 m .45238 .82457 L .3964 .90162 L .31935 .84564 L .37533 .76859 L s .37533 .76859 m .31935 .84564 L .28062 .75863 L .37533 .76859 L s .40476 .67801 m .37533 .76859 L .28475 .73916 L .31419 .64858 L .40476 .67801 L s .40476 .67801 m .31419 .64858 L .38496 .58486 L .40476 .67801 L s .45238 .34098 m .36538 .30224 L .37533 .20753 L .46849 .18773 L .51611 .2702 L .45238 .34098 L s .45238 .34098 m .52943 .39696 L .5 .48754 L .40476 .48754 L .37533 .39696 L .45238 .34098 L s .45238 .34098 m .37533 .39696 L .36538 .30224 L .45238 .34098 L s .37533 .39696 m .40476 .48754 L .3116 .46774 L .37533 .39696 L s .36538 .30224 m .33595 .39282 L .24071 .39282 L .21128 .30224 L .28833 .24626 L .36538 .30224 L s .36538 .30224 m .28833 .24626 L .37533 .20753 L .36538 .30224 L s .28833 .24626 m .21128 .30224 L .20132 .20753 L .28833 .24626 L s .37533 .20753 m .28009 .20753 L .25066 .11695 L .32771 .06097 L .40476 .11695 L .37533 .20753 L s .37533 .20753 m .40476 .11695 L .46849 .18773 L .37533 .20753 L s .40476 .11695 m .32771 .06097 L .41472 .02223 L .40476 .11695 L s .46849 .18773 m .43906 .09715 L .51611 .04117 L .59316 .09715 L .56373 .18773 L .46849 .18773 L s .46849 .18773 m .56373 .18773 L .51611 .2702 L .46849 .18773 L s .56373 .18773 m .59316 .09715 L .65688 .16792 L .56373 .18773 L s .51611 .2702 m .59316 .21422 L .67021 .2702 L .64078 .36078 L .54554 .36078 L .51611 .2702 L s .51611 .2702 m .54554 .36078 L .45238 .34098 L .51611 .2702 L s .54554 .36078 m .64078 .36078 L .59316 .44326 L .54554 .36078 L s .02381 .58277 m .02381 .48754 L .11905 .48754 L .11905 .58277 L .02381 .58277 L s .11905 .58277 m .11905 .48754 L .21429 .48754 L .21429 .58277 L .11905 .58277 L s .21429 .58277 m .21429 .48754 L .30952 .48754 L .30952 .58277 L .21429 .58277 L s .30952 .58277 m .30952 .48754 L .40476 .48754 L .40476 .58277 L .30952 .58277 L s .40476 .58277 m .40476 .48754 L .5 .48754 L .5 .58277 L .40476 .58277 L s .5 .58277 m .5 .48754 L .59524 .48754 L .59524 .58277 L .5 .58277 L s .59524 .58277 m .59524 .48754 L .69048 .48754 L .69048 .58277 L .59524 .58277 L s .69048 .58277 m .69048 .48754 L .78571 .48754 L .78571 .58277 L .69048 .58277 L s .78571 .58277 m .78571 .48754 L .88095 .48754 L .88095 .58277 L .78571 .58277 L s .88095 .58277 m .88095 .48754 L .97619 .48754 L .97619 .58277 L .88095 .58277 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 268.875}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnVl3XMURx681WryBF2QwBnvGZklIPkECSSCQEJI4CYEAMRhZliUk2ULW EpskgJ3lZE9e8prXLN9S0e0uVc30/LqnLh756OH6HFtX1dX1r+5bXV1d3bd9 eX57eXFtfntlYb73+ub87eWVha3ed9c3d0mdQ1V1qLf793ivqp93qmrvn/Dn Yv2P/PIFn+/UPyZqmf+LhG0lVJ2dSAoVqv/GXzbqH52dveKqs6Pq7P72n8i0 rkKm80xrynQ4z7SqcEeA6ZyW/iWyL6vM48D+ZPh3qp+218Tqz/FhSQU8CgLO Ao264Q9R2A0VdhKYHtfSGX2SivPartNQ8QzQqHd+F4XNqXSq+JiWPqJPUvGq avE4VCTNTgDtfhT2QfjBfU96nXLS7kUhV1T5qSa6WreEJxH2c2CfVibSghr+ BNA+jQDvQRG9QbJBoj0JtF9HqHdUb3u/JOK4lp7XJxHxM2eDjzlpXaB9EqHe UuzHgOlorttCjWf0SYT9FNhnlYmEkSN6Dmi/iAA/UWH0AmactC8BbTsC/BiK zgGNvCzRXgDaVoS6rG25oE9jEPtDKOoBbcLZWV9OaLX7kM76AbBf0rYQAL3u +DYmB/zU7rM05w2Vl761KmNSkY/93mZ8+F6unVk7fR5oNA+tR4DXoegrQCMX ROY/CbSP9weKvPnaiG5zvJVngUaWPRJqyFAI7RmgkXHfGoXGZkR9SZBk7jej kDegyGtk1G+XgEY9s9oMngyP4C8CjWailWbwZIxEI3iKR5cj/PehiAyUTIZ6 hPwrTfkfNYMn8yF72Cd4snKC7wKNopWlCJ+dNRzWS/AXgEYR42IzeLJemtII nqLfG83gyXoJ/jzQKJJbiPDe6CCaD3s/ajEtKK43g4wmM+TeCS00MHA2bNZJ xqBODD0QOkCGzWVg8rz8usueBr4wvKZr0q1mALaAJLGTqvdmM7EWqD8FLQh9 djf+9iOoTaoEib2a9Gmziie0DWTylBNoCBAGd2gS+VhafH8WAbzrgxltAQ3k MQB0tAXkbGaB9vkIgGCKtIQmdyLCvlb/sCX9+ZxRko73+kT0Dcn65+7fr6rk ajArRmOVkj33Wbz8CbzP6RPNK9QOAjqiUrb7IWFUhuZc1CeKo7KeCOdm9s9b eTUsp2I5BxoB5B8eAZo3QrkdVfo6FM1o9z2hTxR5dIFGY8tSe/ZUgD+qTOZW SSzNJhQi0Eul5qzlVbLEkGXMyAZIJQqaplSKJaQK8I8q0zF9IrunmJtaSgEz hYereZUCfCBN6RO5FFKJTJRUopBxJa+SWUuff6oqTq1SgEdriwkVahnSgg6z 2hk0odCClNZONMXSNLA0ojMapJrzqrGMNCCpf1vMq0OmQV6J+GghRHUTJyra vAicNojNIZGxUTImvpuheJXs/Hpeg/wEMprvedBgR6zO8r8FcPNm5XR4mgaU 8US52rk8Grlkb+acEoyUaP0wD0/ul9418aWZtPo3gr+ahw++LvEf+wRF7ou8 Rjb/HpSjRGWhe2lypY0A4iNDbv6CLY6zsU9ocTCzNytAvgRF5J+7Tr68T6HO wVHGKg2MfpJIfpSmXdIwg1yBO6hp3iz2KKgJtYfw5M1YE9+1fN8ZAEUFFK3Q bDkKYNiRdoHVm8cWtG9AESXld2R+oGmb3BF1xHwe0tyHLWcoJ0BhPM2cLqjE tSZ8tDYqQH0TitIhWFu2LS1pEvGuCa7nQeOQGHKKNmcTBs2n48FNlh6OibSb x/0WFD3LuCcVl8YfhYm0QF7I48ZBxdNBEB/YyT9S8mWM4BYnVINpFlpRUHJC cF+GoksF3CA+vAcCotTLjTwQjTSak2JfDvmq6dwA2yc1vMuTCe0jGoXkXEW5 V6CIBiiB0moluNnwHrNHwhLa4oMr4l20HNZeojm/oXJdoNGopEXNce2lZCgV dPg2FNHoJh28S53QkSEzu/zgoN4Fjvcs31JeJfI29Ipp0UP9QI5GtnZehSIa /ATvXQh59wHGoJJ3mUQq0c7Bcl4l8kIET+smCppouhP416Aou/XicMNdoJF5 k7teGYdKVf8aikYzZV1X88j0itN4pvZOlFKhuKcA/536x9N1ieXPaVlLYsk1 yKGYm1DkFUvWNAaxNEZkv3Y1Kar71nvyil63iI225UpUkLkSTbL9cSD5kxKk ZGEv4yMoopmdkg0ERa9DDr0tQZE3u0CGQgNUoBahyJtdIFOnuut5KG/GoSHU DWcnUDaA/EJh028BirxpDoIiX74Roa5DkTfhcEq6jAaH7KjOQzUyXFoIpBNb LVb2i68Buzd3URA7B+zelAFFAVsPLla+GfkQiihi6wLtr1HEVSiiOJTiWhHx ARR5l/oi4n0oogiGQtm/RRFXoIgyTBT7iYjw8USYLxpWDJ0YLJ7GGYV2f48V wzgLy2Yyf4qApOKyIpJfK1Rc04rV6MXVPyLD9M4e52z9z0wf1RE50WqFaAep 7lTbxAOiZtvEtoltEw+Gmm0T2ya2TTwYarZNbJvYNvFgqNk2sW1i28SDoWbb xLaJbRMPhpptE9smtk08GGqOq4n1w8A2wK2kwu5P3C+NYEOnqWVb4mZSKhwe QfInHJ2Q7aT0QEH9G+12ej+Kpk3ZP0WoFSe7F8rO9wjAco7pCwLYUW+5sY1O G3g/byMAO0b2+whAZwxouHgB7KTMbyMAbfcflnYkVhLMk7a67CDi/chGG/ul j4VJqB3Dls+8aQv/aEOhtMUo153Rtv2xhuJPqc4ilDbr49GPoeFK8uz7zl9G rmu5jvLJs9sVPolcc8CUuQKD5J1Web+KXLSpnrnuItt/CU0k5/faXZLtRLFc cUAb73SOgYTZcdt7kY224NPTC8XBk9BEbNiWDyXpnnpOmA1v+2rjTp+wIWdb DX/DnJNtvumwyia3Iyc/6DbFSa1oHztkL7az89+d3HRWgLKK9rYIisSamnTQ bCsPGrp/UitmQTtaajdokB0I1HtQdEJ1tM46J9rT7D4x2PV+IPsyxLQ+J12X DDyrTUd3NvMYZxSjGjxYESKqgEOnmUXiu1AUKl7I9X+hIrHTREp8GyP0cdAK Yt9xshONoMYglmi382JJCzrgUxBLl5ISOx04IviHL5bY6WgWwcu5ybed7HRo jOAfvlhi7zrh5UjsW072nhP+4YsldjpeSfBy2pnuuiX2fRJLR1ipVQWxxE6H cAlezqq/Wf/o5Hw9CTurNeT1vK0EmmfoqLNde0IxkGj2rjLRgUw6rH1Ka1Bg ImItLqS5PHsGPJDo0LOIDSF2NhahA/NHtEbhwH+4LtnOaWa1oC9CprUGne7t B6AI64j2Y7ZHCbSjNWg9IqBvQlFo37GcTdAltSGaomCpgBLYQ0z0gipKVlsY dOknX7Uq6Y3F/WV0pPfjvPgziSgtqPbuSZihMuWhDinAEbvFqnbVWfr+q8y4 LLhsOprtvUEt5avhSV5DePtC9il9isuWoYUxmXO/A0yKyLnQOCfjI77st/yF QIFO5JN3IguNfGyG9P2NqEFBG2lt60pL05wsQJLaBUjSkN4I9VDpMxI6LC9q UMxO7GSGpC7xeS9kL6hEtmWZLbsvjj5sJXgawIVVDMETlPebXLtvraAIrSmp 286qMLtwj5ZYlGYvfD5F8NS+CMWGRz7Rm4wXNSh3QLN6ClXDd7PwxVv6vZC0 KMpDDqpWyCh5r7ru5aCCBRQAPB8l1zpSqE9vb6MZlP2vE96voyVzfUU0SKa4 nsoj5Uje3X55g22+WBRGXS651ve1YspUVRyHdrWG6EP57jT7UAujUUgjTcRS gp5uWs4O7v5s/5wS0oVXLYJyp7TaE2G0VRLdqus/WyDP2r+z03drEt80lJ1Q ZPuJ9rRO++UV7i+mLbjMpgnFIZZK/03ksv/MKsYG7N+yt3QkNBFKW6ne2+lJ rE3TstNJm8Gl7T3vjYYiflXxyC5Jawq2LNj+YxSb7uBHfX0AFB5RXYGy/zjt QQDIk8lu+bpoQL1N1WZFYMLff5jgdlIt5/5of0tON2w4GxEaG5SXLy/vAlMw kJAW+Gc/01AbAsu/IssdFfzvSAgcY/hP+KpD/wd0XzP7\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {267.875, 0.}} -> \ {0., -5., 0., 0.}},ExpressionUUID->"9b201da7-0d0d-4761-98f1-fe5486ff3d16"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(42\\). \\!\\(\\\"elongated pentagonal orthobirotunda \ (J42)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"6c832bd4-f597-42ea-b6fc-\ d0b17148dfcf"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.07714 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0714286 0.0952381 0.538568 0.0952381 [ [ 0 0 0 0 ] [ 1 1.07714 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.07714 L 0 1.07714 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .45238 .73274 m .53939 .77148 L .52943 .8662 L .43627 .886 L .38865 .80352 L .45238 .73274 L s .45238 .73274 m .37533 .67676 L .40476 .58619 L .5 .58619 L .52943 .67676 L .45238 .73274 L s .45238 .73274 m .52943 .67676 L .53939 .77148 L .45238 .73274 L s .52943 .67676 m .5 .58619 L .59316 .60599 L .52943 .67676 L s .53939 .77148 m .56882 .6809 L .66405 .6809 L .69348 .77148 L .61643 .82746 L .53939 .77148 L s .53939 .77148 m .61643 .82746 L .52943 .8662 L .53939 .77148 L s .61643 .82746 m .69348 .77148 L .70344 .8662 L .61643 .82746 L s .52943 .8662 m .62467 .8662 L .6541 .95677 L .57705 1.01275 L .5 .95677 L .52943 .8662 L s .52943 .8662 m .5 .95677 L .43627 .886 L .52943 .8662 L s .5 .95677 m .57705 1.01275 L .49004 1.05149 L .5 .95677 L s .43627 .886 m .4657 .97657 L .38865 1.03255 L .3116 .97657 L .34104 .886 L .43627 .886 L s .43627 .886 m .34104 .886 L .38865 .80352 L .43627 .886 L s .34104 .886 m .3116 .97657 L .24788 .9058 L .34104 .886 L s .38865 .80352 m .3116 .8595 L .23456 .80352 L .26399 .71294 L .35922 .71294 L .38865 .80352 L s .38865 .80352 m .35922 .71294 L .45238 .73274 L .38865 .80352 L s .35922 .71294 m .26399 .71294 L .3116 .63046 L .35922 .71294 L s .45238 .34439 m .36538 .30566 L .37533 .21094 L .46849 .19114 L .51611 .27362 L .45238 .34439 L s .45238 .34439 m .52943 .40037 L .5 .49095 L .40476 .49095 L .37533 .40037 L .45238 .34439 L s .45238 .34439 m .37533 .40037 L .36538 .30566 L .45238 .34439 L s .37533 .40037 m .40476 .49095 L .3116 .47115 L .37533 .40037 L s .36538 .30566 m .33595 .39623 L .24071 .39623 L .21128 .30566 L .28833 .24968 L .36538 .30566 L s .36538 .30566 m .28833 .24968 L .37533 .21094 L .36538 .30566 L s .28833 .24968 m .21128 .30566 L .20132 .21094 L .28833 .24968 L s .37533 .21094 m .28009 .21094 L .25066 .12036 L .32771 .06438 L .40476 .12036 L .37533 .21094 L s .37533 .21094 m .40476 .12036 L .46849 .19114 L .37533 .21094 L s .40476 .12036 m .32771 .06438 L .41472 .02565 L .40476 .12036 L s .46849 .19114 m .43906 .10056 L .51611 .04458 L .59316 .10056 L .56373 .19114 L .46849 .19114 L s .46849 .19114 m .56373 .19114 L .51611 .27362 L .46849 .19114 L s .56373 .19114 m .59316 .10056 L .65688 .17134 L .56373 .19114 L s .51611 .27362 m .59316 .21764 L .67021 .27362 L .64078 .36419 L .54554 .36419 L .51611 .27362 L s .51611 .27362 m .54554 .36419 L .45238 .34439 L .51611 .27362 L s .54554 .36419 m .64078 .36419 L .59316 .44667 L .54554 .36419 L s .02381 .58619 m .02381 .49095 L .11905 .49095 L .11905 .58619 L .02381 .58619 L s .11905 .58619 m .11905 .49095 L .21429 .49095 L .21429 .58619 L .11905 .58619 L s .21429 .58619 m .21429 .49095 L .30952 .49095 L .30952 .58619 L .21429 .58619 L s .30952 .58619 m .30952 .49095 L .40476 .49095 L .40476 .58619 L .30952 .58619 L s .40476 .58619 m .40476 .49095 L .5 .49095 L .5 .58619 L .40476 .58619 L s .5 .58619 m .5 .49095 L .59524 .49095 L .59524 .58619 L .5 .58619 L s .59524 .58619 m .59524 .49095 L .69048 .49095 L .69048 .58619 L .59524 .58619 L s .69048 .58619 m .69048 .49095 L .78571 .49095 L .78571 .58619 L .69048 .58619 L s .78571 .58619 m .78571 .49095 L .88095 .49095 L .88095 .58619 L .78571 .58619 L s .88095 .58619 m .88095 .49095 L .97619 .49095 L .97619 .58619 L .88095 .58619 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{267.312, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnfl3FMcRxwfJQoAwt40NBgmMrz8g8ZHDR3zGB5fBHEKnOWRZNgHFsV8c h+C8/BFJ/tYomu5S1Wj0qd6a7CpPPyzvoZ3t7qlvdXd1dVUftZ/Or967vTK/ urQ4P/XBg/n795YWH069/+2D9aTRXVW1a2L9/9RUVT+vVdXGn/Rvf/1Hvgzg eaX+GKnp/zsnLGtCNbqWk9IL1b/ylyXNT9nrf5W19W//zIXuaqExv9BtLTTu F1qoP1LOHij0jOY+ysXnlOYEFD+e/o410zaqWP01P8wogSeBwFPFev2YSUxr oYNQ6Bik7dY3hMQNTTgMxY9C2l5I+yETu6bE6MXDxQp/n0lc1XYm9g9B2gEl KySupA9ue+LLCFDuH/Orl7UQ9QfxRZWkOq1mgEuQZb1F/UsAT+sbQvYiFKIe 3A9pE0rsJOT+IQOc10LED42NfZD2HKTdzwCfQZZ1GQHs0dwpfRJin2gC9TUN fNIYZyFtJQN8DFnU60R2N6Sdg7SvM9TvIcv6nwBIdF+EtOUM8KESo/5/on+A DyCLJIH0PzXWC8qwNNF7mmCSMAIvUmOdk1o21UhVbbD+LrzRFota4dBYOydt RQrqq/zwO++1VAUaQc9DGlX1bgZ4B7Kop2hIkPiTNNzZHigSsts9mq3VK9SA ZyCNhOzLXlBbRIZkgNBIChd7obEYUVtOQRqxtpCJRCR8rcPgnNwe+KgaIngS g/lu8ARFLJ2GNJpz5zL8e5BF/UciQ/CnII3m69lu8CRmJA8EfwDSZrrBk/iQ zqM5hUy2Wxn+fcii/iPbg+Bp9iRre7obfBYfHv/U4Ecg7WY3yCwyWxQcoaUK piSpVnSyP8gY1IiJndQAs90w2p1fOQB7FODLbgDm6xDZUSW7lMl+CIVOQNpR Jfss1CC12TfdKCahOF0nPez2Yhq+CZFE/jikPcgAH0HWM5A2oQCk5J6CtIfd ANIklXqBBvIAAEa0BlHfWpw217JvdXj61s5Yc7SLOLK/qD/MAzpZP1H/9iLR GKH15/r/l5RytXk9h4YAObTfMXn5l8qe0SeaZqgeBDSuVL5uQsI0OqLqLT2R XeMqJpyqWV0v+2zYGsCz+kTTLmkhkmujN6ZPooV+WWyqo/oUdeAJnuwlGt93 fJb2Kd8H9YkanGYlshiIpb1KucDIfi1kKyVk1dBMSoyMFqks+oyk4qPap+mJ 7JtJSKPGp7FlbV1gxKa9hgqoKl5tIYuO+mJEidJCypzPzRFtDHrRh+cxelzZ KEAeLhCgNiA3kFp/xFPTt3xeSAJMxEi/R7ipNilEgX8VXnxSC5G6IgnP/tU4 NZ5CU6/d8JkgF4uGHumP9opKDZ/qc1ZrVkAm5WdqIopH6yRf+KCmtqjzSW/T +iKBXvVBqXtNEWwTKKmt6Drr88rcy91AbcZ07UkU6S3OTMduJY/erAHSmWeF X9JDHcFJHdFsT24AKRQqRwIhLL2GJKpeK7qkJ6gZaU3nGiPXbUeLiVRJv098 qBGVDKtfWMRCNVjbGGcJgMyS6Lrh9R4AW70DMpNJExfQXocsWxRPcjrqDc6B QpkNTV4iaX5q6xsRKNvLouUbmt4KUG9AFm1a7NOmpGma5q4BgJq9QA1Ibhxp oZu9QLfoYttLJOGnebSA+yvIymLGujiRT8VJOZGNNkBwW02qNjvsNJGS8Tn9 v+Em8qkfOgL9GrJI8mhCyG25ZVUhcUidvE1smBs1xgylBBpipNVu9c8QjfDW GsGYNzgKLP0GsqJbu1R70t/j2l40eLaJubINv09Zag0pWhCd6Z8bsq5NoaWn tMI3l6F+C8VJ0Kk9bSYiR5ZmIlqZnOmfkajpTyxRudn+WSK7zI5idGTkTciK +hvm35O9RdJCZsVc/4xEt+FoXNO0Nz8Ilqqm10CNQROBIL8FWSTgbemsVQG5 N9FFkYUG/Ik6x3x8cuRocBTILkJWlCyJ9WL/ZMn6k923hVZW3bYvQXFqW+pu IZt7OOSkk7hSmpxHyQMp7oYTk1QZIT8LWTRL0NkggiosxM9AVtSfJkEhB1mO Jt0KFh8A1HSwEcjFp+mfGv9ehroJWdS1BEUDmBSsQN2ArKj/e1CajCR22SdP 0jQJabTxLntw16E46YKOZK9B8ajbTHOjNMIXkEXdRJtQjzKJq5BFbm6BxJVA W9TfaOb9WybxebDeZE8IicuQRTZigUQ6/Zw0cMcXUyMmcaWma5+SqL89zi/e 1BdJdgsvzumLpFgKL97WF6vNvgEZMD/nAsmO+U+dM95ICJgh5G9QuZ307tiw ijuEzWEVh1UcVnFnsDms4rCKwyruDDaHVRxWcVjFncHmsIrDKg6ruDPYHFZx WMVhFXcGm8MqDqtoVWyuHS8HcdIa9U/5na8gn9ar7aDQD/6LtDi+V19c7fbi AX3x2/ziEhQqX6Jc8V+kLQfamljuRoJ2VmSj6h5kuVdLW2kr3UjQFtE3Pono 7W3pB4pkQ/X2LxhvTrvfP1na8JP4Ne0AOeuf2NGTkEY7Rw98ssTtFKTRXq1c Pb2QPnh7lgSDyNOu82qT/Oas6KHBaEQLgToPWdHDgLTzTwpd7qtSBCHauyMp icZ8+G57oOiIxZ8y1KeQRe0dvYBD/fy9D0VS1DXYzZ/zwydBUj75LWd3fvQp Rw++2EWJv2RiFNqJDiiM64tG4iefBIlCJBRO3YCpLulUmBy2p5vjNFjtMOcZ bkBqJbI1rnXDda8Ou3H+qGvIAJHrQnQ3P3oXjoyFAbBEERVIV9vJYjJ3SIuQ zuvISPRWyTFljmSTmKPWvJoZoSga7gneTtHatokREmU6bxK9Xl5gKYViea7O IVBrEeokmi3I/rvSgAqM8aQcTDpJ5/1fuVmTo0LunYCACdGROYpIRCMtwdvh oFacBfdGdsCE/bwbI/u1lTJA/Eo62QEDYOiQtky1+fTTAHigYF2u55eSjhUa heywy92AMvktdyCPbC+q25IpqXSyswBOkeeibqndI3ICR5EdeqkbLo0pOyI/ sW24pP7ToBu1SbILLkVJjHrIh7S+bYug7lw6aH6xGyipd1tGMQU3ACiaXZ7W drVYIAWotyFrCtJo/jihUBQb4EI3ALJQLHaGeQeXBkS21fF0WV2g3gISUa+a bxZWrivRETIavNG9YeS6Ehe6MUImAnVHNBJVgaU3ISvqoxNLNiKjrsT5Xozw xEE3S9z7ea770BM8pEjLFxQLuHTzzwbnC5BL3mPUH2iCtvQA6TTX2na9AAGI iLk3PbQiWwVmAwF9W1+c0qc8kJqY1KTk7USNeQH3p+5yTCFip3VP2zXfBZpM NIvQUjLBaQSV7ESS7bzq2Ih27UYjDKgk0idt0JoR8pOFEXKrW+ZCP4w0LHiE t7jltLrRT8BgC9dgF20JQxihVTELcxGN0E6MtIJWNAx8ZORjLU5jlyZ5Ys61 DM3Edy/GCyPuorU7N5AKdSP7pSSLPUXKSxiJLtT3w5JVzAxYoics2S8pmHDR REO1Ig/lCQU9qfSoqwWedqzcX4VopblBbltTAbVwFgnc3qPak3CdkPq29GWC PKetQApQwOl2q3ufLOG8omTPdyORNtxPeRpM+KErsORgH1F+okF4F7oBWJTf 6FqzXJenm7Xur8m4q3lkvQoA3aelaEy2XEiSMxCAivdeyQeYy7TTrslpTwho NMmLaVFmrEuHR+9TCsBnCkAdTs1F8x+po9kM8JECkCIxm4n4LpB9V8mSlUbR sqnLSIsLwDvKWaTLKocRmkJnGgDhztviEZGuKaCRrexf+2VTlAbUpA9JNjK1 0akCJE1IZCdKoB9anI5esaYBFr1FX/ghgegl8ejGIx27EHgyw6kBJ4Pw0eiD hYD/UfiokV6Ap93OaDyB6K96FOBpIzr6QzBuFORWGq2CSCw4cj2i4SZ2CxM0 AGm1QCDpcENUYnO5UAgWQaOjHdRu7gqVGwBWjlKQq0IyQAC2FGWLO9MDItua ZUgGBIp8HBIjWv9wOuSMVmc2p2Trl2WFQvMQ3Q2SNF0JzAVmx0forc0K5tlF ZekVKERSRmkWMFyiIl3SBPupBPd34MxvbOUKMYrbEV2NLUdslog/VzTBOp0c MlJqNMcKWQqcQvMfQVnkf5pFJaYPBXwhgze6smmbifLbbNc1wazVaJxU6g0h G/U3CMqWg2y1Us4E22+E2gocmb7ZEuOBLAd7oy4uGXVt27ImKwd7Z4Nt5zrA qU5ynHdOE+zAivtLoilXTta2Y4utOb3lHg9KxOTE6aImWH+Qc2arZ3KoMwf2 4l4g58tGhBy7vwPtTJrOftdDDmHehULu5lHzTOPPUMjWfh7lQo+hkO3lPi4V Wv/290Z+yv6H/4JkpS8D+NXiatd/AXAUBF0=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 266.312}, {287., 0.}} -> \ {0., -5., 0., 0.}},ExpressionUUID->"2b5c5cb2-c791-4622-a352-70ae8e219895"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(43\\). \\!\\(\\\"elongated pentagonal gyrobirotunda (J43)\\\ \"\\)\"\>"}]], "Message",ExpressionUUID->"21cb342a-4910-47be-bbc1-\ 67b393ddae3c"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.07714 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0714286 0.0952381 0.538568 0.0952381 [ [ 0 0 0 0 ] [ 1 1.07714 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.07714 L 0 1.07714 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .45238 .73274 m .53939 .77148 L .52943 .8662 L .43627 .886 L .38865 .80352 L .45238 .73274 L s .45238 .73274 m .37533 .67676 L .40476 .58619 L .5 .58619 L .52943 .67676 L .45238 .73274 L s .45238 .73274 m .52943 .67676 L .53939 .77148 L .45238 .73274 L s .52943 .67676 m .5 .58619 L .59316 .60599 L .52943 .67676 L s .53939 .77148 m .56882 .6809 L .66405 .6809 L .69348 .77148 L .61643 .82746 L .53939 .77148 L s .53939 .77148 m .61643 .82746 L .52943 .8662 L .53939 .77148 L s .61643 .82746 m .69348 .77148 L .70344 .8662 L .61643 .82746 L s .52943 .8662 m .62467 .8662 L .6541 .95677 L .57705 1.01275 L .5 .95677 L .52943 .8662 L s .52943 .8662 m .5 .95677 L .43627 .886 L .52943 .8662 L s .5 .95677 m .57705 1.01275 L .49004 1.05149 L .5 .95677 L s .43627 .886 m .4657 .97657 L .38865 1.03255 L .3116 .97657 L .34104 .886 L .43627 .886 L s .43627 .886 m .34104 .886 L .38865 .80352 L .43627 .886 L s .34104 .886 m .3116 .97657 L .24788 .9058 L .34104 .886 L s .38865 .80352 m .3116 .8595 L .23456 .80352 L .26399 .71294 L .35922 .71294 L .38865 .80352 L s .38865 .80352 m .35922 .71294 L .45238 .73274 L .38865 .80352 L s .35922 .71294 m .26399 .71294 L .3116 .63046 L .35922 .71294 L s .54762 .34439 m .46061 .30566 L .47057 .21094 L .56373 .19114 L .61135 .27362 L .54762 .34439 L s .54762 .34439 m .62467 .40037 L .59524 .49095 L .5 .49095 L .47057 .40037 L .54762 .34439 L s .54762 .34439 m .47057 .40037 L .46061 .30566 L .54762 .34439 L s .47057 .40037 m .5 .49095 L .40684 .47115 L .47057 .40037 L s .46061 .30566 m .43118 .39623 L .33595 .39623 L .30652 .30566 L .38357 .24968 L .46061 .30566 L s .46061 .30566 m .38357 .24968 L .47057 .21094 L .46061 .30566 L s .38357 .24968 m .30652 .30566 L .29656 .21094 L .38357 .24968 L s .47057 .21094 m .37533 .21094 L .3459 .12036 L .42295 .06438 L .5 .12036 L .47057 .21094 L s .47057 .21094 m .5 .12036 L .56373 .19114 L .47057 .21094 L s .5 .12036 m .42295 .06438 L .50996 .02565 L .5 .12036 L s .56373 .19114 m .5343 .10056 L .61135 .04458 L .6884 .10056 L .65896 .19114 L .56373 .19114 L s .56373 .19114 m .65896 .19114 L .61135 .27362 L .56373 .19114 L s .65896 .19114 m .6884 .10056 L .75212 .17134 L .65896 .19114 L s .61135 .27362 m .6884 .21764 L .76544 .27362 L .73601 .36419 L .64078 .36419 L .61135 .27362 L s .61135 .27362 m .64078 .36419 L .54762 .34439 L .61135 .27362 L s .64078 .36419 m .73601 .36419 L .6884 .44667 L .64078 .36419 L s .02381 .58619 m .02381 .49095 L .11905 .49095 L .11905 .58619 L .02381 .58619 L s .11905 .58619 m .11905 .49095 L .21429 .49095 L .21429 .58619 L .11905 .58619 L s .21429 .58619 m .21429 .49095 L .30952 .49095 L .30952 .58619 L .21429 .58619 L s .30952 .58619 m .30952 .49095 L .40476 .49095 L .40476 .58619 L .30952 .58619 L s .40476 .58619 m .40476 .49095 L .5 .49095 L .5 .58619 L .40476 .58619 L s .5 .58619 m .5 .49095 L .59524 .49095 L .59524 .58619 L .5 .58619 L s .59524 .58619 m .59524 .49095 L .69048 .49095 L .69048 .58619 L .59524 .58619 L s .69048 .58619 m .69048 .49095 L .78571 .49095 L .78571 .58619 L .69048 .58619 L s .78571 .58619 m .78571 .49095 L .88095 .49095 L .88095 .58619 L .78571 .58619 L s .88095 .58619 m .88095 .49095 L .97619 .49095 L .97619 .58619 L .88095 .58619 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{267.312, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnft3VEUSxy8JIfJQnou7UUhQV9c/YlVCAkHUBASUFQwRFVjkIWRVXJd1 cY9/9mZzuytVMzef6qkmk3Pyw3AOmZnuvvWt7q6urupH3Y9XVu98c39l9e6t lZlzj1ce3bl768nM2YeP15PGdzXNrv3r/2dmmvb7WtNs/En/DrR/5McQvv/e foy19H/LCf/VhGZ8LSelB5rn+cdzzU/Z63+VtfVf/8mFftVCE36hZ1po0i/0 z/Yj5eyFQq9q7u1c/KnSPADFj6e/E71pG1Vsvs1fflQCL7sE+tPG9YmvM4l/ aMJBKH5Mc1+C3JVM4okWOgyFjkIatc7NTOx7JUYPHoG0/fqEkHio7XwMih/S 4ocg90Ym8SB9cNsTX9R2hxVIiN6HQtYf1HavQBrV6W8Z4J4So94iYgf0iT9C 7rVM9u+QRT1IMrgf0v6koAJw13vQFe19kPY6pF3NALeVGPU5EXtJn5jRb0Ls WyhufU3ESGO8AWmfZoBvIIt6ncjugbS3IO1ShrqlfFP/kzokgLch7WIG+Aqy rP+HALACWSQJY8EG7DZWO+KlsZaVb5OJOrK7+xTK+nepxJfwRFdAGmdWyZRZ VS3lLze8x1yJJemkGfTjDHAdsqjPSC0R1G5I+2h7oEgEL/hQf+6kNU4DzkAa ycWHmYjbQ5tFhmSA0KgBzg9CYzEiUgRJrC34kG9CGgkZaYSTkEb9IPCRAbbm CB5JCMHTVHeuDp6giCWCJxPyrA9/CtJIQAme9CtZF/N18CRmJA8ETwbYXIZf hqyo9JJ6J3gyK8748NOQRuJD8FOQRmbxbB18Fh8e/1RjsoJP5wduQhZJbDbs Nik4QksVTEmzPsYJSDvIGNSISYJTA8zXYXQ7v3EA9iqAaP2o7WLWJZHdrWQX fbKvQdpRJcvG3/qvy3UUUzedbJOu1T2Y2j71Eok8ObIC4NqXNLoSACm5gk8V BUiTVGozGshDABjTGpCnSBrgiwxwC7Je7aS1Ipt+/QEKE162jZpP2g/z1l/3 ZJT0Yy+JDiuJ4jtKu+lf23EFqJN2gwG0MRPtNA2nTJpqXD1BU1dKuuSD7lbQ k/qNbBuqH83ueb5klX3RZ2OP8mqOGE29xAbJ9qRSmdBvookWPa5ToWPKCE29 pGnJwqMWpDH+kc/SPmXkoDJHDU4sEevWDtReF3xGXu5/MH0jcaPZlLqQjDdb 8ikwYu1g0kJjmBihxi8vcy34jBxW+B4l0DS8CjcNaWRS00g/ohwWuDmq3JBC 9+H77Y8NoK4Sbn/N++BHhCANd2oNsnHHCzSmlLECE7Z6Sg1LIkKW/linVaRT aXyJvbcEWTQy9ih/5BFkn2uSqq/NQM122meCVidJJ5A+6TrAOvW9obUoIJdX SEnzEB6tnbzng5IGfkUZIVBafSTQv/qgNmWQnJPiGwJo1E6kcm8qw3+pA6XJ 7LgS89eRNzk4ld1qpgnN+jSN5GHNmqQSPOrjUzkareRCkEAISxeRRDNolZeQ qaFoned9Rm7bjtafSYWS+h0ENaaSYfULCGBFDdY2xpmZuYHRSvUbBLB59iDJ jS6WfpDpXIIsWyhP8pcyyV8eKpRNY+SQkZqdflEoU67kQ9K0Rd0q89SnkOVo qL3amjSP05Q2HFyzf6kZyWogs6Qe12ZJGgJkORVwL0NWFjbWyIl8Kk4qimxy UsCzLwZu60xNvyNP0ymN4hfETeRTP1QCXYEsEj6aFnJbbjL4E4fUydvEBkGZ E2ZrSTTOaPXpTB1LNFWbc+su9E94uQWWrkIWCa/rCwf0+KS2F1HZJuZIPZnN bwuanUFFc9Pc1rnZq8gkWqkh0+qfbDl9BoVoMY3MGBIAWwIniSVPem7rjERd AOopmrfnt86SLS1RP5N3VmDkc8gismQUugPBnVrJdzu7dUai3gONa5r4ztWx RDLS8R4qka9BFu2AdIdJqwrIzSEOycxZ6IGfanP2aQ3IoaO+KJD9F2RFydKQ P19HlhqBhFR25n7pZDVOI5CqKpBN50NjzjoJDaXJIu7P6SPujleSfwpZNPDI VXT3DDppskD/E2RF/Wqaz0mLyrGlH4PFhwD1Q7ARZiCN/CNq/LzZk0/0BuR0 CFCrkBX1gw9Kk5HEXvTJ0xRHFmhXwbZkZW/uCRQnIa0k+xiKR91ncr2lEb6H LOommvPknPkjyCJVXSDxELLIECyQeBCsN5lCdzIJOkFNZkWBxHftR9LAlQ+m RkziSk1HpkE+1pzH44ROqPEHf9YHSbEUHvy3Ptj0+wZkJ+fT3Xne/V+bM9mT EDBDiCaV20nPToyquEPYHFVxVMVRFXcGm6Mqjqo4quLOYHNUxVEVR1XcGWyO qjiq4qiKO4PNURVHVRxVcWewOariqIpWxd6143tBnLRG/Sw/Q1FG3KAU6cGn /oN0JMeuX67WPWgXQ/MuCMYroZ0DO/h233/QvZnZSbtXR4J2Vr7LJO5Alnvt tJN2v44EbRE98EnQiUfa65J+oIOtVG//8nF/2qOtk6UNv7yDh6e9o7eYaOfo sU+WuJ2BNNqrzbujclCft2dJMIg87Tqv9pLvz6JzjNT70dAFAkXXmNzziZ00 2vknhZ733PG6Je3dkZRE40H8sD1QdMQin4+QIwyD25uElA4kUT//5EORFNUG wskHb+SIyWBSPvlNZ3d+8SlHQ0HZhYl8mkkO3fQXKt+8NRLPfBL+HeKyeLQN mOqSToXJtfUP4UH3ZnTi7BQ3ILUS2Rqf1+G6EcLcaIDUNWSA5OObcgBt8HRH jJCxMASWFiCLdLWdIiZzJxqUq5KR6O2ScshBYo5a82pm5JwHQIxU3TDcJkZI lOm8iXvtPM5SOnubzmyXIwNSJ0WjAl3pgQqM8aQcOmfcAyKzbdysyVEh905A wISoZG4estxzx3Y4qBN/wb3+ETBhL9cxckBbqXS5nIYV2QFDYOiQtkzTf/pp CDzMQZbr+aWkY4VGKcSAjAJl8pvuQpZiBQwB1W3JlFQ62VkAPwNZUbfU7ks6 QaUKMTCjuDSm7FbM/m3DJfWfBt24TZI1uLOQFfWQLfxD1yJoO7cQpjMKSurd llFMwQ0BimaX49quFiGoAHUasmYgjeaPKYWiGAFLdQBkoZzor0H6dmlIZDsd Xwia+gGQiHrVfNmxcV2JSkiyl6YRcnNa2ZVYqmOETATqjmiEqgJL70NW1Ecn lmxERl2JxUGM8MRBwULd+3mu+zAQPKRI6+ORCO57kGWDsxtbtv1F3mPUH+gF 7egB0mmute16AQIQEXNveijfxi+AntYHZ/RbHki9mNSk5O1EjXkB96fucmwh YsdCbZXNd4EmE83uXZZMcBpBtTGl5N7PvAKSAU66Ixq7pQvaMkJ+sjBCbnXH XNgKIz0WPMIvKBStbkSDCU9DmgVssFv7hCGM0KqY3bcn6Y4y0glb0WPgIyMX tDiN3WisPtcyNBPfvQsujLiL1u7cEA1CaIFL7FI6KS9hJLpQvxWWrGJmwBI9 YWlRi5tw0URDtXLjBaSk15QedbXA044VSQvB01anVcKmgsJVTNreo9qTcE1J fTv6MkG+pa1AClDAKRY2Daek0hPOu0p2sY5E2nA/4Wkw4YfisrvxZd0AvbS3 /1UdgEUAjq41y9tnKEq/+84ZdzWPrFcB+AKyKKiCLRdGg6pUAzS890o+wM1M O+2anPSEgEaTPJgWZSZqOpwavQDwiQJQh1Nz0fxH6mg5A5xXgPJLaIjvAtk5 JUtWWpfvxuky0uICMKucRbqscRihKfTLHoBw523yiEjXFNDIVqaezGhsitKA mvYhyUb2A2wxJE1IZCdKkGlanI7GEqMBFr1FL/C0pUF+DsFHNx7p2IXAkxlO DTgdhI9GIby+dfiokV6Ap93OaIi+6Bs/CvC0EU3iE40iGQ2fKeHlyfWIBnnc I0zQAKTVAoGkww1Ric3lQiFYBI2OdlC7uStUbiBYOUpBrgrJAAHYUpQt7lwf EtnOLEMy4MTwX3PEiNY/nA45pdVZzinZ+mVZeSdId4MkTVcCs8Ts+AiDtVnB PLOwrO9CITcAGFljiUp+10N2cTovUXDfFmd+YydXiFHYxehqbDmUm7zF8oom WKeTQ0ZKjeZYIUth1qIvFbDQVzSLSkATChEWfWmCG3kwgUpMjmuaYNZqNFgq 9YaQjfobBGXLQbZaKWeCr2uCrcCR6ZstMR7IcrA36uKSUde1LVuycrB3Odh2 rgOc6iTHeW9qgh1YKb9vVE7W0gtfopEGrfnlxKm9wNH6g5wzWz2TQ535JZPc C+R82YiQY/fd12C2D5KmS1VLSXII8zYUcjePes80/gaFbO3n11zoORSyvdzn pUKNvE9Y8lP27/4DkpV+DOHdxs2u/wPyqSFA\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 266.312}, {287., 0.}} -> \ {0., -5., 0., 0.}},ExpressionUUID->"2764993d-8096-44a4-a539-538781b1d8c2"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(44\\). \\!\\(\\\"gyroelongated triangular bicupola \ (J44)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"51ea91bc-746b-49f1-9074-\ d6934b992386"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.01509 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0970696 0.14652 0.528693 0.14652 [ [ 0 0 0 0 ] [ 1 1.01509 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.01509 L 0 1.01509 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .46337 .71751 m .60989 .71751 L .53663 .8444 L .46337 .71751 L s .60989 .71751 m .46337 .71751 L .46337 .57099 L .60989 .57099 L .60989 .71751 L s .60989 .71751 m .60989 .57099 L .73678 .64425 L .60989 .71751 L s .53663 .8444 m .60989 .71751 L .73678 .79077 L .66352 .91766 L .53663 .8444 L s .53663 .8444 m .66352 .91766 L .53663 .99092 L .53663 .8444 L s .46337 .71751 m .53663 .8444 L .40974 .91766 L .33648 .79077 L .46337 .71751 L s .46337 .71751 m .33648 .79077 L .33648 .64425 L .46337 .71751 L s .68315 .29758 m .53663 .29758 L .60989 .17069 L .68315 .29758 L s .53663 .29758 m .68315 .29758 L .68315 .4441 L .53663 .4441 L .53663 .29758 L s .53663 .29758 m .53663 .4441 L .40974 .37084 L .53663 .29758 L s .60989 .17069 m .53663 .29758 L .40974 .22432 L .483 .09743 L .60989 .17069 L s .60989 .17069 m .483 .09743 L .60989 .02417 L .60989 .17069 L s .68315 .29758 m .60989 .17069 L .73678 .09743 L .81004 .22432 L .68315 .29758 L s .68315 .29758 m .81004 .22432 L .81004 .37084 L .68315 .29758 L s .02381 .57099 m .09707 .4441 L .17033 .57099 L .02381 .57099 L s .17033 .57099 m .09707 .4441 L .24359 .4441 L .17033 .57099 L s .17033 .57099 m .24359 .4441 L .31685 .57099 L .17033 .57099 L s .31685 .57099 m .24359 .4441 L .39011 .4441 L .31685 .57099 L s .31685 .57099 m .39011 .4441 L .46337 .57099 L .31685 .57099 L s .46337 .57099 m .39011 .4441 L .53663 .4441 L .46337 .57099 L s .46337 .57099 m .53663 .4441 L .60989 .57099 L .46337 .57099 L s .60989 .57099 m .53663 .4441 L .68315 .4441 L .60989 .57099 L s .60989 .57099 m .68315 .4441 L .75641 .57099 L .60989 .57099 L s .75641 .57099 m .68315 .4441 L .82967 .4441 L .75641 .57099 L s .75641 .57099 m .82967 .4441 L .90293 .57099 L .75641 .57099 L s .90293 .57099 m .82967 .4441 L .97619 .4441 L .90293 .57099 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{283.688, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnfeTVEUQxxdOohEVlKC7KqhQph/MOWLAgDlznAjeCacIKGJCFBELA5jL 0rIsLUvLv1B/wds3Q/fy9tN9Pex5vh+4Ki5Mf/vbs/PedJj3ZnhgZMfoxvGR HWMbRjp3bxvZOjq2YXtn9avbJpqGZrRaM5ZO/Ot0Wt3fD7daR75VX8u63/If U/D7X90fM7v8r6SGP6WhNXQ4NVUKrfH0xx/Vj1mHpUP5q6UUvwvFCVXDUC+4 tSWBfhPQbBv0K4gc+C/COc8G/SygE23QTwI62Qb9CCIH/oNwnmaDvhfQ6Tbo OxA58G+Ec6EN+kpAZ9mgQwJabIMOgsiBfy6cy2zQpwI61wYdAJED/0Q4z7NB +wV0PoA6Ir2vBz5x2x8B5bnbsXpGE+3e9MfHoDMT2s4JtpHu3bapIekekS0V 6Sybdh+IZoviUpAuFulckK5OtB+BiOb72cE20r3LNjVf+khki0R6kk27F0Qn i+IikJ4p0lNBeqdNe6oongnS00W6wKb90FKstREFtZHuHcnUB+5HJzL9fOTb HFq9UDSiejXoIt+eaPeAiBwd3QnUVmhqifSRyPQ2Jbd6W6J9H0TniOJ8kM4V aRukt9q0bVGkqa1ugXxxpt0NIvLK5JKojXRvSabeA9Fy6SORqb9cUUZ7oShW FD3BI39VsotB8+ZE+i6IVgLVxO8UAwqZV3W/V+nfJSC9KSm+A6JLoc2heBtE lwVpb7Qp6vBu+L0ccDck4VuBXhwDReoFJ9FEdX0S7gp+/iFoo6GeAlrCXZdo 3wzCaTZRbzPtThDRjUG0ZP5am5bgc4K9zbRvBGkpCSHaawanJdzVifb1IJwq J+ptpt0BIrpkREvmr7JpCU41GfU2027v/qicLk1Fk6zS6B3HmZaTpIRjpWi0 jq4Gcqfo9iTPTTnSRdV39ja5w2+K+SjpCtGgIv/KRPuWgCgongFt54sG1fmZ lsILBXMyQPmFY+pd6Q8pUs6pdR1Nvky7W0BUoFIFrhUXzZJMu0dAlPQR7RJo cwxQLUBpK6XBZ0nnTrEN7BVQlHahaNCySqbdJyC6ZFSK0r3jGNgPIip0yNQC 6RwZzQZ0tYJmI9Xop7ifOdMeEBBdlDa0UbHhGPhMDJAiGfAL7Ez7BYiosKBZ O0cM0N2fDRwUUJSWvIhj4EsxQJnKBdDmL8lk2q+rH+zsLwI1s5bLfLp4WAtM F9Z0WoaPzDzfdn9cajnS3s6TsRSV+tbVnH7r8FLa6oVE8siZ9BCIbPr6QB92 fHPvbW2GP6I9QTSce00nId3MRKsFuTMJ1XnQUgHRknnHeajTI+dBBuaJhkNL zjpq4EQx4DhrDTeU6xGtLjiRe+8LjnaaN3mq6UTfD9wPRwZOEw2H9n0B0UUh Wl2YpOvSm0QFbiYyoKuKdOv2JX80CYiW1m6pYswG3hYDNHnJgCZRDu0uAZGr IVpdeKdglGl3CohcJNFq0kpeMtNSLRs1kAJh3zpXb91pJu/EV9kd6qHQYpAK DKLo2J9Uy0ICEdmTSZGqP8oBHAqt8AoVtYaj3NVRpCotOo8yRfkEzIq7RZFm pKOoFRQ9L3EUqTKKeulMUe7es2J5uMmKgwTCTFEeorNiefKQFcuTmaxINQO5 O4dCq4JCxUg6ioopn+/zcCttjSpjH5oEVM3lvzWO4OSup/hWVwfBUVsa276Y OPETq466qUFx1KXZje3S4jxkvTfIEbXljmzFNOsth4+Q7z1y7jRNKGoSjqJ9 k/gIN/f4UNSGgpYryetSrki4dsP5CDfv+FDUhiJaYVHlQzjKhpvER7iUMGGt S88cKLRT6jQIbqrtRvkKh4LK7KipJvHZj22wbqEnOvQshTLxQXBTbTfKVzgU FHTLTDWDj3CpKsP1PHqUTe6VcBSRmsRn444PhQ4FPaGkJQSaSIQjN9wkPsKl devw26vR58KD4KbabpSvcCiiLwFHu/R/8dmzYKARHsR8k4axcCiafpMP8jlS 2//mqprkcvNQ0FO/6QtgzQjEC8qGgtbJo6aaxEe45HvQ1HQku01K2guHoukl 1SClYXKveMNMR2HcpAK/cCiavvwyyDJSikh4A07HIlqTFgPzUNDcaUPbVC+t NmmJeOHxoagNBc3F6XgM06THSYvKhoL2uUVNNYmPcCkVQ4+aXho+1kez0/eY OOUN6Anr+0S68MgD8W7bIA/dlzS2S9Vj/n+6LSmw4m7mpN/3fvTmyTT4+rw8 mRrcpdW7LaNlivru8qYyRXo5ekMZhW4CKFTUN4xHyhT1zeHhMkUqIZ4ro9C9 IIWK+n7vM2WKtAr1ZBnFGWK7UFG3BD1epqhv1z5apkiV0NoyCt3OX6i4TBQf LFOkfGVNGUVbbGfFYWmIvnLbEY37eihiez3MT1Xx3d/LF9/rERrjYQD5OzzM 96NrbY4Bf6+H/173wzatv9cjNE+INrrXIzSDyYC/1yPkUYjW3+FR6OvIgL/X I+SFiTa61yMUH8iAv9eDaE8SjXU2rb/Xg2h1h+B6m9bf4WFG9lqbYyD6JlIo +yAD/l4Pop0lGhttWn+vB9HqxsOXbFp/r0c9Qc1fFX7MJjX2dxjHm2y2iXRj x0r5bYsNb3e/V7sVxyfpXMFuRad7FDCo+KNt9IQbtU1pnkGXnwzo5XdozxaQ XZlaYWeTTUsPHqKrAIRzppvGHPJDZED9kEOrMYccdBvaND6M2LTRVzfIgB6a NWwbUG9PYZBWNqlLTjjRmEOelFIjdekObfSJHxnQQ8GcOKv5AWVhVAlQm5Mf aF5DboHIdE47tDQv6TLSlFNX5+RjOqE7Qdq2aDh5pGa95EUo9aOtemttAxSv aLcCzQM9FOwoAxzozJS01qZHgh1VDPQFlFWgSykl7QPqq9fopBoiWyUavRQ1 UPTYGzqu5x6bNnq6Dx0ulGnXB3tLtGT+Xps2enIS9TbTjgR7Gz05KZfYLwRp o8dHrflPaTcEaSlLJtr7bdro+WR0yTLti8HeRs8ne8CmHeSQtuxZNgZ7OwW0 pYfePZSEmwKWuxRX2BQvBT6k1Yu1k1BUTY7iKIjMw75MR/ywTXaxM6x01eiA r0eSwhiI/HO+dMmrkPYCUaS1fA35VI/kXOFlEEXP5aE2yhocU23pI7kzLfCp S48l2s0g0pVG8umaGtLKZc7NtoBIi34KbJrSUsbp0NKCIRmgNtJ9IpkaB5F/ zpcWE4W0Wp5R+aJFEOWZOdl+BUTRF3OjbY4p/whk/XzUpacS7asg0rU7ytz1 atBa4NM2rdbM/hlxVINn2q0gouImWoqRbq7/XgORLrLRZNFSrJBWV1loaqtb oLzh2US7LfePQkEH1M518Ot6KfsqD3JqbeliLao9n/7YDjrE0xGe4aRI/92B PuUZsUFU3TpwXcF80QapI91kg8gHOXBddhizQbr4sdkG6Vr6uA0iR+DA1b9s tUG6ZrXNBtGcduDqKl63QXog+U4bpCsTu2wQTSwHrvP1nV4QV/7v2ZDWkfPS k7Qyssc2m0XVH1Pw/7+0ZvwLwPEktg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 282.688}, {287., 0.}} -> \ {0., -3., 0., 0.}},ExpressionUUID->"e2c10d44-fa9e-4dd3-a2d1-0c10e2b217f4"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(45\\). \\!\\(\\\"gyroelongated square bicupola (J45)\\\"\\)\ \"\>"}]], "Message",ExpressionUUID->"6c050ca1-8f7b-484b-ba3d-692036e24577"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .80777 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0798319 0.112045 0.420056 0.112045 [ [ 0 0 0 0 ] [ 1 .80777 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .80777 L 0 .80777 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .47199 .56445 m .58403 .56445 L .58403 .67649 L .47199 .67649 L .47199 .56445 L s .58403 .56445 m .47199 .56445 L .47199 .4524 L .58403 .4524 L .58403 .56445 L s .58403 .56445 m .58403 .4524 L .68107 .50842 L .58403 .56445 L s .58403 .67649 m .58403 .56445 L .69608 .56445 L .69608 .67649 L .58403 .67649 L s .58403 .67649 m .69608 .67649 L .64006 .77352 L .58403 .67649 L s .47199 .67649 m .58403 .67649 L .58403 .78854 L .47199 .78854 L .47199 .67649 L s .47199 .67649 m .47199 .78854 L .37496 .73251 L .47199 .67649 L s .47199 .56445 m .47199 .67649 L .35994 .67649 L .35994 .56445 L .47199 .56445 L s .47199 .56445 m .35994 .56445 L .41597 .46741 L .47199 .56445 L s .64006 .24332 m .52801 .24332 L .52801 .13128 L .64006 .13128 L .64006 .24332 L s .52801 .24332 m .64006 .24332 L .64006 .35537 L .52801 .35537 L .52801 .24332 L s .52801 .24332 m .52801 .35537 L .43098 .29934 L .52801 .24332 L s .52801 .13128 m .52801 .24332 L .41597 .24332 L .41597 .13128 L .52801 .13128 L s .52801 .13128 m .41597 .13128 L .47199 .03424 L .52801 .13128 L s .64006 .13128 m .52801 .13128 L .52801 .01923 L .64006 .01923 L .64006 .13128 L s .64006 .13128 m .64006 .01923 L .73709 .07525 L .64006 .13128 L s .64006 .24332 m .64006 .13128 L .7521 .13128 L .7521 .24332 L .64006 .24332 L s .64006 .24332 m .7521 .24332 L .69608 .34036 L .64006 .24332 L s .02381 .4524 m .07983 .35537 L .13585 .4524 L .02381 .4524 L s .13585 .4524 m .07983 .35537 L .19188 .35537 L .13585 .4524 L s .13585 .4524 m .19188 .35537 L .2479 .4524 L .13585 .4524 L s .2479 .4524 m .19188 .35537 L .30392 .35537 L .2479 .4524 L s .2479 .4524 m .30392 .35537 L .35994 .4524 L .2479 .4524 L s .35994 .4524 m .30392 .35537 L .41597 .35537 L .35994 .4524 L s .35994 .4524 m .41597 .35537 L .47199 .4524 L .35994 .4524 L s .47199 .4524 m .41597 .35537 L .52801 .35537 L .47199 .4524 L s .47199 .4524 m .52801 .35537 L .58403 .4524 L .47199 .4524 L s .58403 .4524 m .52801 .35537 L .64006 .35537 L .58403 .4524 L s .58403 .4524 m .64006 .35537 L .69608 .4524 L .58403 .4524 L s .69608 .4524 m .64006 .35537 L .7521 .35537 L .69608 .4524 L s .69608 .4524 m .7521 .35537 L .80812 .4524 L .69608 .4524 L s .80812 .4524 m .7521 .35537 L .86415 .35537 L .80812 .4524 L s .80812 .4524 m .86415 .35537 L .92017 .4524 L .80812 .4524 L s .92017 .4524 m .86415 .35537 L .97619 .35537 L .92017 .4524 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 232.625}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztXQl3EzcQ3sQOFMJ9BNr0CP0xQA96P3q3cQMlIQkJjsMdEu5e9O7rX+y/ cCPNdGTvfruezUoven3ivXjt0ej7VmOtNBpZw4VOb/7ycqe3MNeZOdftrM4v zK3NnF3pbotaY1k2NpNl2T8zmXnf337LL/bfGfPCH2q8/9tcXjc4VwYEWasv wNufXrGvbZEx8+VRNSYGZf/VzC6NqjYsGzev40b0Tb2Kbak4SxWfAaWDSrA9 AvZVc7AXgOxzgn2aKzIGO6SE3Sf36AFsUsA+papP7AV/pdqGHxTQj6nqY6DU ArL9SoLDQPZRGKoj0hYmeASUJoBsn5LgmBB8EIbghBC8RwQPgdJeIEP9FxFM AdmFMFSnpC1M8EBpGESKCE4LwdtEsAWUJoFsT50W5GSBqE5KW94lgk2ghJ5p 1NsQwXEheD8MwTEgY6r7oAgNC20lVeE5901wSAguEsEGUDoKZGj0Kh11czKm ugeKjgPZuJKqMGv4JijMcXeBku3fJVPVa0C/Yj72AV/wHe4AJXr820OgJXgF x6YhHupHjHwbFL2Yk7lmt/MmsTc5R0q3ANS0KOUBsiEXU1HXvmMf9qa5dIzg /IBA0bu0srMJNsEm2ASbYBNsgk2wCTbBqmEHPdM/zcX6rlmLNKlS9mo94D/s pWJNYjkQwDlS+02UStetoyB+ESVNIMLc2TTQY8M8F7DyEFBhdZNfmphPb1DZ T6DID/IPcqcoJlMVCUchnzep8DsBLY+t1gZ9KqAoXlEafM/J0PL9LSJ4Aoq0 VGgViqIeHBN7JG1BsSAPBA+E4ISSAD04qPUcodwUAhQn9UCAAlVaKhSIQz3x HaK6J21BDwoiQEMEen44QnlXCF4KQ7AhBKeVBChyjCLMHFzfBEUnw1BtSVu0 BGgkRKQcY30oBGgwKI3bKfoYb3U8FgL0hHogyG+NmU/arTG0Q4QGlw+J6pm0 JRDB90JwQEkwyeZB8wdHhn8UUO2GWJ7cgPE233Ogrt14qYD9We5RC1YRCv9V wLSbEN9Sxd+lojYgzxWt76cL0XKNv8ylNULplCC1nGmgW9DEofUtQ/4ufRGF Ocv0AORN7pYM3TrNPjz+Fr7imO6+fL6p3OiY/h+UvVzedOTzoccbPVZJrw+d KHIykmnDmRZ5Y2g2Q25h0sOrI3Is4SoTLTFib2JMeuRZQtMihw717qTXhwMq mxatntBaL/YmxqRHiydoWrQITXpYDz31bNojpUXDMhT7Snp9aD9aRkMIFDWI vYkx6VFQoaIoyTQyFB1j06KicvUk05sbmjGmhyt2PTR4smmR1dPU5kMPWh05 FDE5PLHrUdeEpo3J/Y5dDy2v2LSoQ6PFW+xNjEmPejc0bUyhjtj1UCiLTYv2 /1CgLPYmxqRHcxUchlF4N6bwc+x6NHAk04YzLZrh6Fc5cWzrhSibKm96/keM Rn13N3ML+81892j+zO+B7v7dD8uob9L8ZCW2mJ5keAg/bwJz3f5bH1UDf++9 UdWGZS5ZQZcqot8Ra0/Lu3N+q83B3CHEawR2Axhb+wMl9BgsNod1hzsZjL60 ZjkH3JHUBaraA0pNEgG4pAZXwhCgtTEn0VgDRU1SArjDzoEIXFIDzubRBUpN EgG4pAazYQiQ6/slUV1XGkb7azWX1IAJVoFSk0QALqnBF2EIpoSAjz6vAKUm iQCQwx2IyiU16BDBNaDUJBHAUSGYC0NwWAj4XPVy2V0oRi9EgAZ6ploqsyia QRVUB6Qt82EI9gvBVSJYBEo7yjRgQZf8gaLhhOGvgqIamQEm5HZXvOC1BI+G Sp6Sh5Xq5hegKYq7AXDNYX4BBl5X17WF5NzQPG9PcX0yIFD0Ka3sYoJNsAk2 wSbYBJtgE2yCTbBq2EHP1B2kzHaWX4CBKffkTvIL8Fk9d5y6fn4BhtgUpSb5 BdgwGwLWMAtARaI7P8h35E595Bf4jApvCaiP/AIMekNAfecX4Gx866AoENWa tMV3fgEOtV0XAt/5BThYuCIEvvMLMAEKT/nOL8CxvCVpiza/QE2CRSHwnV/g ayJYFgJtfoGaBCjc6Tu/wCxRrUpbfOcX4MhqVwi0+QVqEvSEwHd+Ad7WyG+D mU+1tsH0VDelLb7zC3AY+rYQaPML1CRwyT20W2JVCQz4GPwGqNYk5wBv7t2X e/UAtiVg2k0INIRxg11SDm24nsOZlBldFcDlGjbPT2uEkt0zP2NKKH0rKezw /ynIxv4FKKcexQ==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {231.625, 0.}} -> \ {0., -3., 0., 0.}},ExpressionUUID->"2b22c3f8-61f6-4275-b477-63bd4b9cd68d"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(46\\). \\!\\(\\\"gyroelongated pentagonal bicupola \ (J46)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"87f83890-af2a-4681-a9f7-\ 01f88b5a20f1"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .74008 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.069161 0.0907029 0.38313 0.0907029 [ [ 0 0 0 0 ] [ 1 .74008 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .74008 L 0 .74008 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .47732 .50002 m .56803 .50002 L .59606 .58628 L .52268 .63959 L .4493 .58628 L .47732 .50002 L s .56803 .50002 m .47732 .50002 L .47732 .40931 L .56803 .40931 L .56803 .50002 L s .56803 .50002 m .56803 .40931 L .64658 .45467 L .56803 .50002 L s .59606 .58628 m .56803 .50002 L .65429 .47199 L .68232 .55825 L .59606 .58628 L s .59606 .58628 m .68232 .55825 L .66346 .64697 L .59606 .58628 L s .52268 .63959 m .59606 .58628 L .64937 .65966 L .57599 .71297 L .52268 .63959 L s .52268 .63959 m .57599 .71297 L .48578 .72246 L .52268 .63959 L s .4493 .58628 m .52268 .63959 L .46936 .71297 L .39598 .65966 L .4493 .58628 L s .4493 .58628 m .39598 .65966 L .35909 .5768 L .4493 .58628 L s .47732 .50002 m .4493 .58628 L .36303 .55825 L .39106 .47199 L .47732 .50002 L s .47732 .50002 m .39106 .47199 L .45847 .4113 L .47732 .50002 L s .61338 .24006 m .52268 .24006 L .49465 .1538 L .56803 .10048 L .64141 .1538 L .61338 .24006 L s .52268 .24006 m .61338 .24006 L .61338 .33076 L .52268 .33076 L .52268 .24006 L s .52268 .24006 m .52268 .33076 L .44412 .28541 L .52268 .24006 L s .49465 .1538 m .52268 .24006 L .43641 .26809 L .40838 .18182 L .49465 .1538 L s .49465 .1538 m .40838 .18182 L .42724 .0931 L .49465 .1538 L s .56803 .10048 m .49465 .1538 L .44133 .08042 L .51471 .0271 L .56803 .10048 L s .56803 .10048 m .51471 .0271 L .60492 .01762 L .56803 .10048 L s .64141 .1538 m .56803 .10048 L .62134 .0271 L .69472 .08042 L .64141 .1538 L s .64141 .1538 m .69472 .08042 L .73161 .16328 L .64141 .1538 L s .61338 .24006 m .64141 .1538 L .72767 .18182 L .69964 .26809 L .61338 .24006 L s .61338 .24006 m .69964 .26809 L .63224 .32878 L .61338 .24006 L s .02381 .40931 m .06916 .33076 L .11451 .40931 L .02381 .40931 L s .11451 .40931 m .06916 .33076 L .15986 .33076 L .11451 .40931 L s .11451 .40931 m .15986 .33076 L .20522 .40931 L .11451 .40931 L s .20522 .40931 m .15986 .33076 L .25057 .33076 L .20522 .40931 L s .20522 .40931 m .25057 .33076 L .29592 .40931 L .20522 .40931 L s .29592 .40931 m .25057 .33076 L .34127 .33076 L .29592 .40931 L s .29592 .40931 m .34127 .33076 L .38662 .40931 L .29592 .40931 L s .38662 .40931 m .34127 .33076 L .43197 .33076 L .38662 .40931 L s .38662 .40931 m .43197 .33076 L .47732 .40931 L .38662 .40931 L s .47732 .40931 m .43197 .33076 L .52268 .33076 L .47732 .40931 L s .47732 .40931 m .52268 .33076 L .56803 .40931 L .47732 .40931 L s .56803 .40931 m .52268 .33076 L .61338 .33076 L .56803 .40931 L s .56803 .40931 m .61338 .33076 L .65873 .40931 L .56803 .40931 L s .65873 .40931 m .61338 .33076 L .70408 .33076 L .65873 .40931 L s .65873 .40931 m .70408 .33076 L .74943 .40931 L .65873 .40931 L s .74943 .40931 m .70408 .33076 L .79478 .33076 L .74943 .40931 L s .74943 .40931 m .79478 .33076 L .84014 .40931 L .74943 .40931 L s .84014 .40931 m .79478 .33076 L .88549 .33076 L .84014 .40931 L s .84014 .40931 m .88549 .33076 L .93084 .40931 L .84014 .40931 L s .93084 .40931 m .88549 .33076 L .97619 .33076 L .93084 .40931 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 213.125}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnFlzlUUQhg85WQkhAQKySYKKhf4QvQLZCpU9ApKwJ0QRF0BZtFC0UKu8 9dYf5O+JfNOd7nPmPDPOISR+JlBF8mWm5317tp6e9cDU/PTFa1PzM+enJt+f m7o5PXP+1uR7N+aeBzXXNRrrJhuNxt+Tjep74fmn/gj/9lY/9I8uvv+qfvVV OHMS8Gf1a6gK6A0BzQWjeP7XTRH6w4Q2gNCsCP1q0FtBqFn97KmCror4s0io ytr2VMJI7op8/GKYsVD113gSrLc1zDBmBPRnSEZFswXCegrTfipUTyGqH8I2 FVJR2otC9aNlc2gJBAOGorBPQGg9hI0WElDaT4TqB+PeCEIS1hdXbGgtGy2l Qn1fqOFIBnQM5M9K5GOIIvENGfjNIH9GIh9adqiFD4ef7S18UTQkUpQHkJb6 7RDjvQaiJyXuW6PaAUKDjLfdEinKfUi7E8IGorCq8HaB3EcSeQ+iSDzuShXs 6yD3oUTehSgS7wPYPSB3PA1L4mQjJ9KwVAgEG3poqJQYrCLQrFNFSdbZzE5A nKN9aXJxUaWKNAjv0dKlrtSKHGWBbHNcEKmyJPN1rJWqI4vEFnLU9Czk67WF 406hShS2K1Nau0GequJoWo1mBj5Qe/2GL+rWXVL2ZijJCsVWo/prW6HckbQa fRk1tll+hyElmfLB7sj7M+QEv8EUIleG3AQl/yKlawCT6l+MFNciRJCTQcMi +QCH08yxeKUCwW42RWiopzrJkMbiFSm5JTSiEtUIhB1K03vV+Rc1cyrKLqlG jIDAdlostRcqEaW6DVGjBuZ+5gTIkW2gGv8gTTVmBAQ2abFksqkdZ6hEnMfC fZqf0i57ME0TO4wVxH4Ioxb5b7BB13err76UuTggEJ9DVCjrJpiGd0B4ONXS MgQjRkCV+TaE9banGKy+aKDMkK43CDLTRDpgKULa0CIOpglcnAwGEbhKH6dh PetkBt+CsI2WQt3Hz0Cox4Ro5kKwmyzFUYZthEpJNFlCHDfEQy2ISeP4BoTR AsSBdK5JvB6wVPUkPlkol2moywRLVUY+MsllDBppQbAkl7HyywRLmSMPneQU lgZ10oJgSS7jKywTLGWO5gwkp7DkL5MWBEtyh1ccljJHECSnsPEMOAVRGnZk xWHDqtOelEHXhF9BVHBZwogb+SC0jtVMDTpH0wRJJ4fcCpppNg2ABtAMs3s/ vlxDbqvPP92zIBdAqb6GqCFL6Kv5tObsVO6SkBNzLE3Vbwl7DYwcLafyciC5 DJWXvC9JkAfqVGPtKZjqmyjK3BlaU0jyRQCbjTlqZsdbSL2wvGAKsLdaCl0x e2QB1E4IguYsCvbAwGj+RGA0zdBV3O8gqhSWupf6y/dNR8qIgHWs6tHM84TE 3TM8siYJPCrrjpV1KpsEHk3CT0kc7QFQdhLI1LBOS5zvUaTxeNpLdkK3LB4b KOUpB0rd66xE+rYSbW3mQGnF45xEPjHQdMdmULJdUxL5E0SVrmOWbkzqBtlT 038pBLR6fV4IfOeWLGgpAYVdEIJnRkBapAm4Vi7Jx29ablE/ICemh0Wn5ffv 1a9mKq0PrrolPW7p+8y0s40id+Zlh1HhvWwO8So6zFxVF7H4coTRuPEyORas 666FLMqIyz1ra43ixv8TXdqLTPs2OTNkyFazHFn3Oukn43+tVFoJOXLo6qRf pqpIdfI/yAVfLXLk9dVJP3GY11xV0YymTvplqoqiaNpA08XVIkerYHXST2bV a66qaEpfJ/0yVUUGgVYcaL1ktcjRYkid9JPmlanFeqi5EnK0zlUn/aSO1lxV 1b0HZaqKbHed7PSr8WvRa11zVVV3by9TVdQJ6zSneDXXWpRbc1VV95WJTFWR 91On9a9X64KL+q25qqr7Knqmqsg5lO2yeuwX1WkvScoF/f14m6kS/z/uMI6v mSwOWL22XKeX0z9RAhqTBLi3Va76L4dK9bpmx8GENBC3NzmnizdJS09q0I6x H2GUI+F4A5ZMRimBnyacF4L4mJ4JvSABzQ30gQQ6fEjlXkrlt6SUgI6HDigN VSIdoh0y0BsiRudwB7sEJVdWn4Ggs85DXcL7JTgFTd8TLAf1VwMuixidzx/u EpScJD1clLzZ1NlZCdnvWSoeXSzZWI7nF7/0sYp5EBotx/Mbd3oG6layeIrw yENX5LlUdiLjSbB+3VHfGJkFITqzk2z2AeyaiIXnVIJMfHgrBUHuqvf7Cy2w HUay0Xk2IcXih4X9bHij/YCxHty7AamjK2XJC1f9Fuunu8n+TaWpXL38xVeC 9XPemUOWROqH2N04Eqmf23MqsnxKdR2i/K6dF9YOLeTIxoQ4v3ZH/eFcmshv 37nWO7Toot7nqenodIbD7+NFbSkceky+FKSI1yAqJHw9Vf5n0wlJnIZUOo6Z gS29gENUCnu1EKL0/s+ZFYclcXpShQpBYa8UakawRH96xWFJnF4roUJQ2MuF 2hIs0Z9Kwy7ltmKXsBOFhaCwM4WFQLBEfzINu5R7q13C7i0sBIWdLiwEgiX6 Ey2wIab0gnHQMYwNWj1XDIIs95sQtsVSRIOA5vW6xdPqEF3z9ttXNE/TvM6a EK32E6zfH6PtE4WdNyEa2PdBmN+Zo+UsLYTbWW666+8eFG2+KWyYCQyYULLM iMBdmMyFpEsQFQhGFtqck6jq6V2K0MrIwcj0iTHL336jonaZgaCVIymOvtYw i6OLVxnTlVuulEY4QHEmQwWSoSNx9+8m7YueIaPul6EicVr7oPvf9LgazYwz Qw2J+7yIBnTpWUXX7TK86XOQ7WHxa0/dXJ4j/4LEqecnH3rq1ICSd6mBz5ap X+SeTyTzqeTkY5I4NQGqntGMGlR1GTVInPpc/LRW+QXCDDmJ+7OO6UfFmJwG GvXGaaaTvHuNvSxvY6u/Si8kZlQiKn9G0u9yk+dUel1R6Wl2S0sM3T6sV7pU 3qUaMVVFT7OG3EN95+SD1kOooGj2kKZsVy2z9EKFMVFI7wNfGwFnN3alG4vj ZUHez0oCWYXrMLM+6lJmqIwutuKBSsknHghMlwhnLWEBROsLv7RMu9uEaMSn wVfBaA05fhslZZyoG+vSdPqdpwqMTJdPbPSKLS3u0+4eGWGybwpLGxG09EvW m4ZU3Yq4Y+qLUNHY7ivwuhpN20WJFX0a/GmsVWTa6cp5AzRHI0oxgLhnl3tM ufTBR93xumsFldveIffD14f1dfX7IESNm0xD6WUNpYq3h0XzMipy5imtGAN5 fiN5e58IyEnq2Ot9qLxU2ukX2LP704+iZI2EztQndcOcXvNOHloJsznZMcX3 GkLCMDmW6pJ32UMqeXdeRF/wcf/Gun8A2bOeoA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {212.125, 0.}} -> \ {0., -4., 0., 0.}},ExpressionUUID->"bb56f36e-53b9-41ad-98b9-cf16c8701789"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(47\\). \\!\\(\\\"gyroelongated pentagonal cupolarotunda \ (J47)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"68527330-a106-4733-bce1-\ cd346c85f0c3"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .87658 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.069161 0.0907029 0.516384 0.0907029 [ [ 0 0 0 0 ] [ 1 .87658 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .87658 L 0 .87658 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .47732 .63327 m .56803 .63327 L .59606 .71953 L .52268 .77285 L .4493 .71953 L .47732 .63327 L s .56803 .63327 m .47732 .63327 L .47732 .54257 L .56803 .54257 L .56803 .63327 L s .56803 .63327 m .56803 .54257 L .64658 .58792 L .56803 .63327 L s .59606 .71953 m .56803 .63327 L .65429 .60524 L .68232 .69151 L .59606 .71953 L s .59606 .71953 m .68232 .69151 L .66346 .78023 L .59606 .71953 L s .52268 .77285 m .59606 .71953 L .64937 .79291 L .57599 .84623 L .52268 .77285 L s .52268 .77285 m .57599 .84623 L .48578 .85571 L .52268 .77285 L s .4493 .71953 m .52268 .77285 L .46936 .84623 L .39598 .79291 L .4493 .71953 L s .4493 .71953 m .39598 .79291 L .35909 .71005 L .4493 .71953 L s .47732 .63327 m .4493 .71953 L .36303 .69151 L .39106 .60524 L .47732 .63327 L s .47732 .63327 m .39106 .60524 L .45847 .54455 L .47732 .63327 L s .56803 .32444 m .48517 .28755 L .49465 .19734 L .58337 .17848 L .62872 .25703 L .56803 .32444 L s .56803 .32444 m .64141 .37775 L .61338 .46402 L .52268 .46402 L .49465 .37775 L .56803 .32444 L s .56803 .32444 m .49465 .37775 L .48517 .28755 L .56803 .32444 L s .49465 .37775 m .52268 .46402 L .43395 .44516 L .49465 .37775 L s .48517 .28755 m .45714 .37381 L .36643 .37381 L .33841 .28755 L .41179 .23423 L .48517 .28755 L s .48517 .28755 m .41179 .23423 L .49465 .19734 L .48517 .28755 L s .41179 .23423 m .33841 .28755 L .32892 .19734 L .41179 .23423 L s .49465 .19734 m .40394 .19734 L .37592 .11108 L .4493 .05776 L .52268 .11108 L .49465 .19734 L s .49465 .19734 m .52268 .11108 L .58337 .17848 L .49465 .19734 L s .52268 .11108 m .4493 .05776 L .53216 .02087 L .52268 .11108 L s .58337 .17848 m .55534 .09222 L .62872 .0389 L .7021 .09222 L .67407 .17848 L .58337 .17848 L s .58337 .17848 m .67407 .17848 L .62872 .25703 L .58337 .17848 L s .67407 .17848 m .7021 .09222 L .76279 .15962 L .67407 .17848 L s .62872 .25703 m .7021 .20372 L .77548 .25703 L .74745 .3433 L .65675 .3433 L .62872 .25703 L s .62872 .25703 m .65675 .3433 L .56803 .32444 L .62872 .25703 L s .65675 .3433 m .74745 .3433 L .7021 .42185 L .65675 .3433 L s .02381 .54257 m .06916 .46402 L .11451 .54257 L .02381 .54257 L s .11451 .54257 m .06916 .46402 L .15986 .46402 L .11451 .54257 L s .11451 .54257 m .15986 .46402 L .20522 .54257 L .11451 .54257 L s .20522 .54257 m .15986 .46402 L .25057 .46402 L .20522 .54257 L s .20522 .54257 m .25057 .46402 L .29592 .54257 L .20522 .54257 L s .29592 .54257 m .25057 .46402 L .34127 .46402 L .29592 .54257 L s .29592 .54257 m .34127 .46402 L .38662 .54257 L .29592 .54257 L s .38662 .54257 m .34127 .46402 L .43197 .46402 L .38662 .54257 L s .38662 .54257 m .43197 .46402 L .47732 .54257 L .38662 .54257 L s .47732 .54257 m .43197 .46402 L .52268 .46402 L .47732 .54257 L s .47732 .54257 m .52268 .46402 L .56803 .54257 L .47732 .54257 L s .56803 .54257 m .52268 .46402 L .61338 .46402 L .56803 .54257 L s .56803 .54257 m .61338 .46402 L .65873 .54257 L .56803 .54257 L s .65873 .54257 m .61338 .46402 L .70408 .46402 L .65873 .54257 L s .65873 .54257 m .70408 .46402 L .74943 .54257 L .65873 .54257 L s .74943 .54257 m .70408 .46402 L .79478 .46402 L .74943 .54257 L s .74943 .54257 m .79478 .46402 L .84014 .54257 L .74943 .54257 L s .84014 .54257 m .79478 .46402 L .88549 .46402 L .84014 .54257 L s .84014 .54257 m .88549 .46402 L .93084 .54257 L .84014 .54257 L s .93084 .54257 m .88549 .46402 L .97619 .46402 L .93084 .54257 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 252.438}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnQl3VTUQxy9taWlL2VqwsvgKiKBfQlFZFVfUo4JQNllkBwUXFgFF3I/H 45f1nNqbmU7ey/slze0rz8tTz7G9TCbznySTZGZubnpg+trpk+enr505Pj21 58r0pdNnjl+d2n3xyiypf0lRLJkqiuLvqaJ8npl91B/uv83lD/3HAp//Kn/1 lTK/F8KfRij6Z4TkKhTfyT/+sHJXPPvT1Jn91wNh+q385UqWxpl+MUnL4kw/ GdMIME0azllhf2Tsy4H9KfdzaTNtronFGXl4aALGogJaadQNp0TYA1NvJTCt Naghe9KK94ywBipOAG0YaMdF2F0TRhXHgTYKtGMi7LY1aS0wrTaolfakFW+5 X9z3pNeqmPiAdkSEfG14S5N9RwNBXfCJiP0KioYyxa4AGnXaYYH6EoqGW/sz KF1upU/bkwq7YQTSguYGjfkGoH0kAF/EOiE6+Wj+bgLahwJw3YTlmvsyq7HZ nlTYNWCnoaCFiIZ7K9DeF6irUPSU6UPCiLYNaO8JwGUTthGYBoA2CLTtQDso AJegaJOBLgLABRO2xRF4UaAhDrul5NNuOQ/sWw0o2MtonLdp/zXrMvusOn8G NZ4z8XFduW3vysM5qLYDaKQumSBtRW89HigygzfjUKE1xAaYoMiFeEOEREel fRwJbTPQaDYemA+NR5n6kiCJ7/U4JK0NNPLUbwRPPfOawNOkehZoZA0E3wAa 7QsV4QmKVCJ42vf2x+HJQMlkaEAInnbKfQJ/AYq2AI3Mh+BpsyXvYG81eDKf vkx48mr2xOHJesl8cuHJx9wt8BehaApoZD4ET64U+ae74vANoEmQwssPtZhc 3VerQYrJtK2vhOYa6EjaLHItngHaSsagTnTquA7YG8cg5cJgoogADBvAgWoA rvV9Mb0HTOw7IvYyMJGHN25in4ZSJ/GDuERSxUlslKRD1Sr6vieTp2BZAa5A 0XqgucntzIAWuUQwRQDUXUMGQAvxIgD0WRdR8JqIPCmOmDRh1LeJ6NjJdDbj EDfGjHI+EcF0cRK3m+zAySbjpQXfDa0jvcdQ1o8+ZnCFtMlRqwhU9mxeOA/G 1RgwNZ6xJ4p+qO2UUMp1Hd6OqzRo/eGzADRbclXy+ROfllL4I8Duo+4JUyQ3 1KfNk3w5cjHeiKs0Yor4jAS1lHYegiKVSPUDcZXGTJFReyLfq5GpUr9J8U1M wHsmby3k/JCHk2uitHbsj6u02hRpWjaKuRVqgXrRNkTy9sX1Gje9KO9EHiiZ BylCu8neuCJrVDitUNSmfNValoqEBjSiNPJkSRQpSN0sz3FXXCtvy359qqZB 6ybWAD51iY9CES0kNEOJbyt0wIxam89ZJsBzE7fE92wArvONsgk74xqMmJrp bG8Yppc9TSnBl+JQ1KtkkjmJwvJfBP9iHJ72UJp38VxiR/C0vNEKQnyu893Q PF8N1O/9foEg9ya0JZFYdYApRUP+G605W1VfWh0rqpGbK6E1nRYZ4iODUJWm UUTLikASabmnDqWE1U5GLmA5KGnUSNpZ5oMKwgVqARlbhRbMzM0zB9CA0tyc 7MvzAARdFA3zc9POincMirZZg3z0QaHmokIN2tM64KM9pwG0V3KgfPxHCTHa XBJQx6EoNKBywLwbTtEhbd6LADpmLaUOJEVoHXp1PtC2ddlv1WT+5DwlcE9A kZgZr8b+TACtGbShLyK49+aL1uQEOfc0f3ctDNft1G4cKgKdhKIG0GhLkOnT 5l46DWmQH5MaDio4itFn/UFTi1az3Z0rEs/7gAOwNDY9EsqdgiIyXvIwgowA qTlga353VKKl1p8xGTWVgqk0CdX2dK6NjzRojXB6uTymxvKfAlM0756xc/rs fe5BsD2dK5Kb5SaTSaQXOlHJOwJkdZTpSyhyGopILLmBpNx6U456JJH56UQR n4puQGlu1Lp/IYrwZrPFFKoIfgaKyLJl0cxKHeQejnutSYMNprprBB1LoXFI iP0ZinLF0nR/vZpY6oREwvinoKgcUwrcK4r90f1qcwZJYbKbRNLdnbKNGOMi iP8BimiHIPujBYn6Tc8qPYQiWmjo1Altl+Ti6gms7zPZHxNUbmRN5p94I/Ud FFF/Uw6BXoAkoB5AEW2YBLVSu4wsVl/33YdqZE0UUofedSlWX2beA3aatFNA oyMKKvZbYM+NWinMPti5WD1BfxeKaKTp7Zue4r8DRblRqoq4DUW5saaKuJXZ dfRiVc5AFt9AUW5AqCLcwfZKkeS5pk50Fk8bJZ22kMOGMs9cRbJTck604iOr SItNouKvVrFoDS2ojpzKE+fOcQ7JD0/N8Gg6oVG8s9gYRJMFv80Ey14L2Tul hU18HBjUxMHuNVFobd5RF1u5WkeV9qS1XS5bVyNd4m+5cBPIPYtQJz7aRuqk Xyd84pL9P1RPAJ8OFfkHFF3UnY9Mrk76dcIn4XKtVFpsvtwcT93boUNFMQ9F xrnHQv8tvl5pB/FJfN/TTaQMSZ30qzhUucfvKHStEx9l9OqkXyd8Qss+rFj3 5lASsE76dW6GPTNUvTzTdKiIvU7r9H9tX4rz9cxQ9b5XiGt8nWKK/1oMRXxi cj0zVL2cwdChyj2OUvc8WS/nBWVI/x+qJ6AdOlTxD5Pq8f6mTu+SZOizPqYq 2Z/AF4olbbzbrWyldeNtsTZx0PrVvfWXIxFtR07KCnSKazIYovL37P835fkO D2BcEJvcDXm4nWCJi2yl+ZOmn0tVOpLSnwCiUx7+IyK5FQ8PqQxUFEp+p9wi IgdY0GfIF++/9FWhdC9j6ogsCfUnTuXqG7yBMXVPBAmlmE9PudyM6dBucyTZ n8RXeTeAaSRf3gqTp+ed6ErH0Xx55LvKwXO1XmhOnmT/BZHKuw5MY/ny/NF+ vW6VrocMXd3YgPuvXeQoN17cQucDSRj51yqWLpyh84Ek1n9romfD6IIfOnQT tXAnTE9iufuQHE94+iomInpI14k90SS2ba0rmj8oI9n+PpIh06toPVWm9+LS hVcDVmdFEsV/FeEv1KBAaDoO5dXzPUpQJLbf6pIzmAAdaa0YBfX3i3goWtoU ii5rW9HaMU1QbV+o+U/EHD/NgqNxIH+TCDnNtFXPGYLjpOgggeZcjgFrjBNM J5ZUBN0h6FTaVJLofOOReSoukJYQS2fUyCiIT8XSPZWkBYklvk+6LpYaRyd7 iU/F0sWnpAWJJb7DXRdLjaNz2sSnYs9makFiie9Q18VS46Yy+VQsfVhFWpBY 4vu462KpcfRhBfGpWPq0jbQgscT3UZNYV5IrzF+/rcNzzkTQmXr6ACf6Hbm2 9YKVUzKHJK6yGhQNalsvGxO9byGx/ooBygao2GvGRJ7Yc0AbthqUKNRO+CKJ TWK980RvaVWsc/qHjCnaZwTgvRdyKpoByBEcmymaP11/IeArCr34g1yIxCRY ZQ3aYeqRC5EQQWmd8Crq5jL6LiKxVqXSiWJ1Q1RmPNQhCbhogtb17pQ9ha5w EZlvCShiz73AMeQr4SnqTewtxO4jH/qaJ/z2VoHJnBO4xE5zf53pEon86b1q wqEgdprqtA5HMgRUvaIGPh6meZG6U5liIAUnp5LYyQRoeFKfLNLQJdQg9uhd O039kv+HGRLgxD5hQNRDEwlw2lnU/abQhsJjutAo97Y1umaE9qKESgQ1af0R 3MCWAU9Br8JT/ErphA1aQh1OCyGpQbSKaoRQJXz8thBW96g8UO6DOorChZwL SkqoRJqFOqORCe83vhYAbm74MXIxt19mtP2IVJA8W9sy63fd3Nv0TzbLA5Wi fz6GhGkS0P+xmwwRrlS1oCzsRmOiHZ82XxVG+eEw5RBbnGgaa9rZ/4kjYWob A5Lngxn93prS9uESF1u2aYlTsfR2YYLVpO2FNlZ9z3DTWjDO8miH92l2zTrT G6DUlklCadtV8fTWKuUYUHxGroeshfjObXlCPGlKW6e+ybplvTWaEEqeiH8p Ji8c8Fv83KuXcy/gUii6OSD3cmXy66murAtyz0H0Urr45WrA1/x+9r7iUm8T UOqOZ32PHN56ERMVetAln77Ypjs6aBF1feiUkTehbRfTzMwZyHBJup1iKubu VpFraNwc/10IjmWBf66yWPIPvMXPSw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {251.438, 0.}} -> \ {0., -5., 0., 0.}},ExpressionUUID->"252242c9-6b8e-4136-baf9-7ebd8dcd14f6"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(48\\). \\!\\(\\\"gyroelongated pentagonal birotunda (J48)\\\ \"\\)\"\>"}]], "Message",ExpressionUUID->"d0f536fb-5616-4470-bfae-\ 0ba6e2cb7b12"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.01308 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.069161 0.0907029 0.519634 0.0907029 [ [ 0 0 0 0 ] [ 1 1.01308 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.01308 L 0 1.01308 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .52268 .6854 m .60554 .72229 L .59606 .81249 L .50734 .83135 L .46198 .7528 L .52268 .6854 L s .52268 .6854 m .4493 .63208 L .47732 .54582 L .56803 .54582 L .59606 .63208 L .52268 .6854 L s .52268 .6854 m .59606 .63208 L .60554 .72229 L .52268 .6854 L s .59606 .63208 m .56803 .54582 L .65675 .56468 L .59606 .63208 L s .60554 .72229 m .63357 .63602 L .72427 .63602 L .7523 .72229 L .67892 .7756 L .60554 .72229 L s .60554 .72229 m .67892 .7756 L .59606 .81249 L .60554 .72229 L s .67892 .7756 m .7523 .72229 L .76178 .81249 L .67892 .7756 L s .59606 .81249 m .68676 .81249 L .71479 .89876 L .64141 .95207 L .56803 .89876 L .59606 .81249 L s .59606 .81249 m .56803 .89876 L .50734 .83135 L .59606 .81249 L s .56803 .89876 m .64141 .95207 L .55855 .98896 L .56803 .89876 L s .50734 .83135 m .53536 .91762 L .46198 .97093 L .3886 .91762 L .41663 .83135 L .50734 .83135 L s .50734 .83135 m .41663 .83135 L .46198 .7528 L .50734 .83135 L s .41663 .83135 m .3886 .91762 L .32791 .85021 L .41663 .83135 L s .46198 .7528 m .3886 .80611 L .31522 .7528 L .34325 .66654 L .43395 .66654 L .46198 .7528 L s .46198 .7528 m .43395 .66654 L .52268 .6854 L .46198 .7528 L s .43395 .66654 m .34325 .66654 L .3886 .58799 L .43395 .66654 L s .56803 .32769 m .48517 .2908 L .49465 .20059 L .58337 .18173 L .62872 .26028 L .56803 .32769 L s .56803 .32769 m .64141 .381 L .61338 .46727 L .52268 .46727 L .49465 .381 L .56803 .32769 L s .56803 .32769 m .49465 .381 L .48517 .2908 L .56803 .32769 L s .49465 .381 m .52268 .46727 L .43395 .44841 L .49465 .381 L s .48517 .2908 m .45714 .37706 L .36643 .37706 L .33841 .2908 L .41179 .23748 L .48517 .2908 L s .48517 .2908 m .41179 .23748 L .49465 .20059 L .48517 .2908 L s .41179 .23748 m .33841 .2908 L .32892 .20059 L .41179 .23748 L s .49465 .20059 m .40394 .20059 L .37592 .11433 L .4493 .06101 L .52268 .11433 L .49465 .20059 L s .49465 .20059 m .52268 .11433 L .58337 .18173 L .49465 .20059 L s .52268 .11433 m .4493 .06101 L .53216 .02412 L .52268 .11433 L s .58337 .18173 m .55534 .09547 L .62872 .04216 L .7021 .09547 L .67407 .18173 L .58337 .18173 L s .58337 .18173 m .67407 .18173 L .62872 .26028 L .58337 .18173 L s .67407 .18173 m .7021 .09547 L .76279 .16287 L .67407 .18173 L s .62872 .26028 m .7021 .20697 L .77548 .26028 L .74745 .34655 L .65675 .34655 L .62872 .26028 L s .62872 .26028 m .65675 .34655 L .56803 .32769 L .62872 .26028 L s .65675 .34655 m .74745 .34655 L .7021 .4251 L .65675 .34655 L s .02381 .54582 m .06916 .46727 L .11451 .54582 L .02381 .54582 L s .11451 .54582 m .06916 .46727 L .15986 .46727 L .11451 .54582 L s .11451 .54582 m .15986 .46727 L .20522 .54582 L .11451 .54582 L s .20522 .54582 m .15986 .46727 L .25057 .46727 L .20522 .54582 L s .20522 .54582 m .25057 .46727 L .29592 .54582 L .20522 .54582 L s .29592 .54582 m .25057 .46727 L .34127 .46727 L .29592 .54582 L s .29592 .54582 m .34127 .46727 L .38662 .54582 L .29592 .54582 L s .38662 .54582 m .34127 .46727 L .43197 .46727 L .38662 .54582 L s .38662 .54582 m .43197 .46727 L .47732 .54582 L .38662 .54582 L s .47732 .54582 m .43197 .46727 L .52268 .46727 L .47732 .54582 L s .47732 .54582 m .52268 .46727 L .56803 .54582 L .47732 .54582 L s .56803 .54582 m .52268 .46727 L .61338 .46727 L .56803 .54582 L s .56803 .54582 m .61338 .46727 L .65873 .54582 L .56803 .54582 L s .65873 .54582 m .61338 .46727 L .70408 .46727 L .65873 .54582 L s .65873 .54582 m .70408 .46727 L .74943 .54582 L .65873 .54582 L s .74943 .54582 m .70408 .46727 L .79478 .46727 L .74943 .54582 L s .74943 .54582 m .79478 .46727 L .84014 .54582 L .74943 .54582 L s .84014 .54582 m .79478 .46727 L .88549 .46727 L .84014 .54582 L s .84014 .54582 m .88549 .46727 L .93084 .54582 L .84014 .54582 L s .93084 .54582 m .88549 .46727 L .97619 .46727 L .93084 .54582 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{284.25, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnft3VdURxw95AYpGnlUgJviotn9EawUSwEcfWFsVTWKgEClKAYutRami pQ9XV1dXf+2/mubsPZm5Ofcz+87JuSGhgbXIvXfPPvOdsx+zZ+bsPeeNxVtX Ll1bvLW8tDgzd2Px+pXlpZszs5/cWC0a3VVVu46v/p+ZqervK1W19if9m6r/ yI8hfP9P/TFS8/8mF/xbC6rRlVyULqju5R//Unoir/5V0VZ/fZ0r/VMrjfuV vtNKu/1Kf6s/EmUvVHpaqVdy9fvKcx9U/176O95btnaL1eX85Vtl8ITLYH0Z NcPFzOyeMpuESoeL97+UWXyllfZDpUNQtkevEBZ3teAgVKeyx6FsITP7ov5I FMLeX7zh+cziTvrgXiBpngqWfZCZfK4yjBfbjiQ8oFcIsz9CJeqtJ4Nlh6Hs vQz1ByDRmKdxuU/lfgao72aA21rpifXfAr1/FMreyWx/H2zbx4Jlx1U4Abil BQf1G11oA/8EUN/OzG4CiTqFOpnKnoOyX2aoG0AiBUIqkqBegLK3MtR1vfVj +o3YTkDZ96HsfGb7CZCmoGykO9Q1lfuEfiO2kYapFYk0zG+h+vNQnSZaZju2 Tk+tfheBr8IVL6roPj/We7/IXz6Cy16Csj1QRiOR1qafbg7UGJS9OaCpAp1A UDSy3xgE1dePhDYDZTTiXh+Exr1MbUmQVO+1zCQyoFecnqd2I3hqmXPt4Gk0 EPyzUEbrz9l28ARFIhE8GY5nMvw1INFaQ0OGOoTgaUWeawdPw4fgj0MZrdyz 7eBp+JAqJ3iy605n+I+BNA1lZBpE4clOPNUOnkYvwZNFRdbvyXbwefSy+qE7 Jiv+1XxBdPXPdm6ffiW0ZF+nmifbYUwyBjViEic1wFw7jObYqxyAvQogy8B1 qHTMu/sRT+4xZfvzdmzNKn4aqInj2xsQ9Nm6SHyT30El8jSs7WnIH4GylgDW 9qTkaDBfaAdgvUCKuAAQt/YrdnMPQNn7mXf6MA9oqv5GwpP66mXRM4Hqz9X/ Lyvnan20h0Zoweluspd/ifML+o0WIXcK06KWit7qhYRVLkFNa3WyBaKgeSFn bXreF8MCD+aO0XiluUfmh2tPjPSoCxJkt7bCEa1OyzOpQ1rI7Mbodt70BXlM LzQlSAAkCC3o1Kl0Y+IWfODdXxLkSf1Gc56MNIIi+9IwCoJYNCaxTUQyw0gQ 19RL/GjCnvMFmdQLrZ9JK01DGQ1RWgMsQlgQxCr1aKX6F+nfGSij4UHSEL85 X67UGKmIQkZxQZylenZAiziKiG6C7PKsfftsKFNRBfzo0CDcEcal4XzSl8BX z4PrPQ8SrEhPzuj9FMBJL0Rjs80wkoxliua94ktgmqQcvKVYGIXdfuxDkb6N BnSbYZ36F8H/yIe3MG453DsEKBo/0WCwWTUv+6DzQCKVQIYiBVBpIJc7mCSw BcLmPqE9J/KS0mkJScqX1nqyEH2dUh76A0WqBgWbCZmWeQpSvsLIddtR7DMa 5xwEle7lJf1Gd+B3degO6l8GMA3UaJjzJwMA+pUmxRSicVxBWwCSxe3T+EtE WqBJDW0YakK/kcohN4BWzFcjUKZSac2OGr0CtQgkRy+ZPRt9PjocXHscSj4G WcU0sE62xjVHgqYAeecF3A+BlKcza+R0W6k6qSjq+CGC21JdrY8j0Ngm7/vU xnCT7TvmTaIC0BKQpqHM9WH6zcmJlYpdrk0Sg6BsaR/VlqH5TdrtdDuRaKk2 25QmwJiK5O7lYZEuAomsBxr4pEgJPtl449702SThSD2Zpb9P26sxqchcnO0u zV5FpqGV+vZYXSRPwy5BJYpokRnj6kcLyDSoFDye7S4ImfbkUNMwKkQPuohk HjaNOhoyBUF+AyQKHZNRSGPkGRWOWoRWmTPdBYk+vKR5Tavu2XYicWyr6o0d kGVIk0iQLwOJJnVzmtSqgNwcmk40ic71wB9TudMdkEMXja8I238AKcqWRtNr 3dnSbJGndn/XWycHnlqUOlmYpW2qMcecBmkhdP3X9BF3wt2dccz+PpCizjVB USfIc4G/ACnqTdPwIN0pm5u+DVYfAtQ3QIp62GSZka77WYa6B6Sor00BPOpn gfoaSFFHe1KajEbs+e7s6TG9PBL8CqqTBiAvs7lO9LD9M1SP+ue0Ikoj3AVS 1BeX7e5fAol6mhbL5cziCyBFPWRhcSfQnANY/AlI9JCcXKm8kzHv+w4YRgUW abd3UuItL0yNmEY8NR2ZcXnrYJ4I6UIap4UL7+uFpGwKF36nF0a3aORNd7k7 0rxI5N09pQFLhhhTvWhZF37Ra7PW75vCtWZoVq/Lmmy9etGyLvwi19a/JnbM LZaeoB4u0A5t8LqN0jYDbzBPMuL8AFNA10fr+fG1R7iRetn+G3pXPYiufxjl 64IrXUX2GfkX0XrkkHfh9/8iXxfc7ItsK5G2e5NtcVdFtweRgxWNR3XhN+x6 WyVfF9wcLwpvpiKPKFqPwiJd+O003Fw29K6iiOGwm+JhlK8LrnQVTcztJOYj 3DXlOfSu2iqls93l64IrXUXVt9OS+gh3rV542/JOM5C3E27m96irHgJc6aro loqdFszZTri5S4feVVsVIt3u8nXBla4iyyQ/SXtYHhg8OJ752VTorE5dfSse M3W99uCOucUJ7ddEzmMCdwZlxn2brNMYuTnosvVlE3phzqKB24Pc8x7pwuV2 F07qhRfbXZgaJBXlYwe4vYg2ItBjvPl2LGjPw0I7FrQbQG6ENi9FU7B82I4F ra9L7ViQlSRdSZlYaJdPNLnPpe5syaPKm1v7kvbYXBzMlpzfyz5bknYGyshO kf1MeasJrwM0MFqyp3xdtJpT7xMULePLPpR7YqJRRlsFaZePbD6iTG5k0dMo iR47vLo5ULT9U7YbLQOJFkjyJWmzKvVzHsUyOgZ3rQ/FI/a6zz66CdjJQZiz 2eA28uj+37R3OG1/vuEzIw2wWy80FrIg04b66Pmb5vCoGzDdS9qnLluI6VgF Ob52kuUENyC1Em0eer0dLrWX5TOl+U9Dms4gyF54Ot5Dy100h+smiUS62s41 EbNottKCIHRwLXre9ZAKR3OFhKPTPHIOgg4xknFlp+VoRX6AgtB65z9r7yRS sgaP1xQCsIO7pDZotaCzbWd7oBokcg9s+617ZPiBSrNSOCQZjZO3FG4BSOSe 7FHh7PS6HVeLxrWmoexMO0FSh4ybUo1nEyc7YAgC7VeBqvVnNYcgwzyQXAcu FZViLZQvda4dUHY2+7IzHNhcVNJcI3rLpVMnBXBKC+NmrqT1qScTT5+VQSlq CkmWou6wWTePbxouzeU06UZtkWyDS0nhyOckq+opvd+mRVB3LiWtPt0OlDSo ZTQwBTcEKFpJjmi7jkSgLgBpBsrIxj2qUD8A6ql2AG4mwUYSmtl2bMnwaTZl BaOtMqj3gEXUq56GskCuoFPtkKO5uKOJk4YgEtkMfh65wRYf1ROR3gVS1Gkn kWyK2vl06tuB8Lx+kGjR3GEbEiOkWaOJ0iSlyztAMg8+epQ4mgiuF7QRLCDV Ft1nQ/UEKjLMvfWikTDITUIhUBe0UjM3TS8QNWmXLIaF/IQWY2jOGE8QSuhI toaAzgPpaOPelVBxqIOssNKprEI29AWVmeIBpDWimqQJWgtChmchT5LFEkij RjPcJUF6jHmEX1Ioaqwu74CwZCyWUohsYBGEAmSkKqLvhSCRbMhaCJLMVBHJ DUa6qwNNxGmPy2hYW1zWSqS9SJCIBbSy0ptV2UxkMjBFkGhInUQiW89NSDyi w3bUW5QkqdtHWt3UUHQnLplB5pKZIUCtKfCl500EGU1ZPabgZg9Tq4oY9DQt GoYiy8u8YrNZaeYJPD16pE6gMU6OemO9J9UryPR6NRclFf1Qv4kRRa9NI62Q ovtTnj4VeT4DEq2KSRO6h+jpQcKvfABSqxbfigbB5RUPt4FEN2x7ImigbQiA 92pQXxTYpydJ01430WCXt619rIi07FGktSXAsgKQzqSYIK3JBYCLCkDzPAG4 Sz0pIcleMq9saSQ35a6cdb4AkKzhRInkYKwcQQYBNEg+VJ/vRHbINJQVXujg pwPhtYN0WAHSzTVPZr4DSd5SAXIeSNGcLaTzaL0gs1ZedLcApGjWGZrftMYX 4OlhTDQdLd19S3jyGqKZf+ju/VTh68vkTSH0oDSazyhqwBfg6YFxNLMywVNZ AZ5clWjuqeh7JShcI5m1yC2JJvGaECFo/lNYQyBpZ0c0RVmu16dTC2i03SWa e80cOwpPS8Y1cmOieeTMPbHwtIwL2tsUzYTXtAjqDqExIFBXpVGoH6OZDRsh 6XXvOw3lIYy+saWwMNtLWymFYjST5yCjruFOuJmFG27frzMLeueZOzICd0CG h0DRO8ZoGhMUBXPl3Wj0ZjFzK8l8jwZuBeCmMqPl1j9zPHgBk3ejfQok96k+ lTVCs/OZLb152l6qTjccDb8KAPk6ZH27+2cakQ3Zx/yZFpCRR2ZQKUwq25Kj rrTrzjbUl2xLpqx61hFkF9sLvmQLMuX2owWXmFlcS7bw3tECmkU0OS0pv+yX /RIqWZDTHZeJKptT76YP7g+KiFigTk4gNFNKehfaW+9kMymluHTTKPfuzfwv VDK1+alfyZ5J3y5VqtZCMZmeyJ/7Fwgp/Zjq/r3a9T/NuirP\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 283.25}, {287., 0.}} -> \ {0., -5., 0., 0.}},ExpressionUUID->"2d51372e-e63f-4f21-8493-02e9ce09d820"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(49\\). \\!\\(\\\"augmented triangular prism \ (J49)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"85f9f31a-1b48-499f-a038-\ 9a9ab234248b"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .73205 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.372405 0.25519 0.366025 0.25519 [ [ 0 0 0 0 ] [ 1 .73205 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .73205 L 0 .73205 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .24481 .49362 m .24481 .23843 L .5 .23843 L .5 .49362 L .24481 .49362 L s .5 .49362 m .5 .23843 L .75519 .23843 L .75519 .49362 L .5 .49362 L s .02381 .62122 m .02381 .36603 L .24481 .49362 L .02381 .62122 L s .02381 .36603 m .24481 .23843 L .24481 .49362 L .02381 .36603 L s .24481 .23843 m .02381 .36603 L .02381 .11084 L .24481 .23843 L s .24481 .49362 m .5 .49362 L .37241 .71462 L .24481 .49362 L s .5 .23843 m .24481 .23843 L .37241 .01743 L .5 .23843 L s .75519 .49362 m .75519 .23843 L .97619 .36603 L .75519 .49362 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 210.812}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzFm/lSVFcQxi8MGEAWEUUEcQZFEBFEBBEwQtxIqpJUkn+z6ISokKpUUsbn yKrZ931PqpInyQsR5g7pntFfnzlnzs3EKpmhu8/3HWa5t78+3U8U72zceKV4 Z3O9WFi7XXxtY3P99cLVV29vm3JNSdJUSJLk70JSer61/XTnR/pvpPRj55eA 5y+nD7ktwdn+7c+ars37XKVt/FXTtZE+tFYCSsgO8C3gzIHtj7rCb4KrFWy/ 1xV+A1wPge03O7wNbL+Ww18CV7sdvg6u3WD7pa7wF8HVBbaf7fBusP1UDi+C qycsfA/YfiyHXwdXrx1+DVx9YPuhrvAXwLUfbN/b4f1g+64c/jy4DoSFD4Dt 23L4c+A6aIenX4XmkucZCBoC2zcVC5OWyitK6f9TsOIQ2L6uROGLz5OwbLgW VLWrWf66x8F7GGxf2WAtAvYYePNhYLvAdhVsBbB9acPq23kFvEfA9oUN1i5g F8F7NAyMrlsrYBsF2+c2bKfs8QJ4j4WBdQvYefCOge0zG2yPgC2CdzwMbC/Y zoLtONg+tWH7ZI/z4D0Btk9ssP0CNgveyTAwuiCeAttJsH1sww7IHqfBOxUG NihgtAsi+MgGOyRgE+CdAduHNhhd2ejjGwiblz3SF4ve9Q9ssBEBo8vSmTAw uhjlwTYHtvdt2FHZI72i9J1xgI0JGN0Q6dv8ng1GX3TKCs6B7Z4NOyF7zABs UsAoeVoC210bbErA6Fq4HAZGVxLKZek28K4NOyN7pDyablDv2GCzAtYZD0af e5I1q2B724adlz1mALYgYCTnKAV5ywYr33M5saQ8600bakn2leT+xUgfKMVy 4KSf0XtbsgF730S2BsFlnAdy8Ms2/DnHy/KoycDxl2yas/JXtJigtW2avT9i U81JkG9KTTbN7VdsKronxZDS2vM2/WnZI1UYfElVITioTkkQpe2+VKoflmwq SpNiSGntgk1/UvZIl2xfUlUhDqoTEkR1EF8q1SjzNtVxCaKbpS+VKpgzNhUJ mRhSWjtj0x+TPVKO4UuqOshBdVSCSJz4UqlKmrapKCOOIaW1kzZ9QfY4GEGq WstBdViCKCn2pVIlNmFTqcKiZN6XSlHGbSqqm8WQ0tpRm/6g7HEkgjQvKA6q AxJEEsyX6n4tiFRUUo0htTUj0u+TPZKS9iVVRemg2itBJPN8qVRvDttUVGOP IaW1gzZ9j+yR6kO+pKpaHVRdEkRlHl8q1bQDNtVuCSKh6UulirffpuoAWwwp re2z6dtkj1T98SVV3eyg2iVBJGZ9qVRV99pUpD9jSGltt02fkz0uRJCqNq+i aqkMkhAqUfsSqW7vtIm2n1ONxpeD9tdewZZ6qFrjS6AivxI2NTwcAbssKG38 2pQes3htUo6OSg4W7VR18yWi8l8VZbVL5Tst9CXVUkKXTaXyncqoQV/TFKXH pmrgZYhqaqcjSGmtg17lewyplhL22VQNvGE2MA2gijKdqfmS0loHvcr3GFIt JQzZVA1MWBuYhv/PgqOB0qqBgnFIgvIRVMOCMmZTUbNITJWB1jroG1jaKEjQ f16wOSJBdELoS9UvKFM2FbWCxFT5aK2DvoGlxXEJoq40X6peQZm1qVQrk/T3 pVLdPmdTkaSPqbLTWgd9A0v70xJEZ7W+VB2CsmhTqVYm6e9Lpbp92aYiSU9x vqTmoajjuC3dYwxpq6BcsKlUK5P096VS3b5qU6lappZom4p1+0WbaBGWJa5T 3gdCHefIqYzMOfFS0xUbIn3n75ZMazX+CN/j8DdsHFKgzWC7DDbHkb6KU/rc BIKp/CThF9j/QGfVdGy8CjZHj4aeQdOFLhBMpSEppcAOFzpHzgBWbyJ0Zw7s D9ITYMooAsFUmFEiFthdRae4BEt1OEcHmKZQlAIHtpPp+WsevIH9c3TCmgGs JuKk2QK7D1VAULtlYIeknluSRA/s3aTzTYKlwpGjv1RlKDXUBjarqnymmlJg dy6VAjKA1WIGvZuBvc1ahKHG1MD+axIH9F0I7BFX3UBXEup8dnSvaymPLp2B rfBagqQ7BF0fHe36lJqvgI1KWA5YzdovgTdwckIL2dTHGDjd4Zs2B06gaEZN IzdUq6qajeGcmUaBCmFQCU8n5cFWOQOUemhCKnCs6WmwOYasngWXY7KLJsio rOQIdwycBY6zBQ7LZTC55wi/Bi7HGOF1cFF7myPcMQIZOGAZOL6ZwSypIzxw sJWmbOkS6wh3DOVmMCHsCL8Jruymm2+BK7vJbI/R8Ppmzh1D7OkvAaPySdM/ toGcIw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {209.812, 0.}} -> \ {-1., -1., 0., 0.}},ExpressionUUID->"7fac58e4-1339-458a-af3f-737303658d60"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(50\\). \\!\\(\\\"biaugmented triangular prism \ (J50)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"f957d94b-1b5b-4e66-be75-\ d80453b84038"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .60672 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.132346 0.303358 0.132346 [ [ 0 0 0 0 ] [ 1 .60672 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .60672 L 0 .60672 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .43383 .17101 m .63235 .23719 L .56617 .4357 L .36765 .36953 L .43383 .17101 L s .29499 .01445 m .43383 .17101 L .22882 .21296 L .29499 .01445 L s .22882 .21296 m .43383 .17101 L .36765 .36953 L .22882 .21296 L s .22882 .21296 m .36765 .36953 L .16265 .41148 L .22882 .21296 L s .63235 .23719 m .43383 .17101 L .59039 .03218 L .63235 .23719 L s .36765 .36953 m .56617 .4357 L .40961 .57454 L .36765 .36953 L s .63235 .23719 m .83735 .19523 L .77118 .39375 L .63235 .23719 L s .63235 .23719 m .77118 .39375 L .56617 .4357 L .63235 .23719 L s .56617 .4357 m .77118 .39375 L .70501 .59227 L .56617 .4357 L s .77118 .39375 m .83735 .19523 L .97619 .3518 L .77118 .39375 L s .22882 .21296 m .16265 .41148 L .02381 .25492 L .22882 .21296 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 174.688}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy9nH1TFEcQxpeXiwgRRQkBMeypqKiAURMtEo0mKkoU40u+AGWlSitBCZB8 rHyMJPqlCDs96T2OX/f1Fqn4x8n1sM/0dPc809Mzy+ra9uuf1te237xaaz/c XNt4/ebVVnv53eauaKCvKPraRVH80S6qn3d2f8wf6d/p6iN/6fHzj+m/gR19 dvfb+55NL7uaqq4/dDYNdj5V/bznwdae1n8B/pYfXkC3AyBbrT77K9Hv9oOD IHsMyjsQLZCt8CAzynN44hDIHoKsH2RbNuwQyB4EDdgQ9j7IyLwZ9hk0DYPs O5CRyR3YEZDdBdlHzWA/Btnt6jMFHY1lU8B+gKZRkH0dNJEDexRkS0ETObDH QHYzaKIM+xSajoPsS5AdaQZ7AmTXg8b6tRnstaCxMuwqNH0Css9BNtYMdgJk C9VnitbxZmCfguwyyBzYJ9A0BbKLwbFs2LAnQXYhOCoHdhpk50A2acN2LzXV t89AdjZoLAd2BmSng8ZqCNsG2SmQvRPY74MQyTApWstmYDRMcl5D2DMgI6fQ WDLsCjTNgowik0blwFJkEtVQqL21Yc+DjIiRRpVhH0HTHMiI8GhUDiyRCbE+ jaohbFqjUrRSawajDI94lJbnSyBbt2HnQXY42L0DuwAyymWp+wy7DE1XQEZZ H3XvwNI6SqnvYjPYq1m/Dpk07P6jjOAXaaREvDsvqSAoV3EgUo9JmYZ9L+iD tMtI38gvGZHy/4uKSLl12h0kEUWHAzursDQxDiksTZGfbdhSYSllG1ZYyh0y 7D1omlZYSodGFZYo0oGdUFhadMYUltYJB3ZMYWlpH1dYal3SVokT3Lwd0Q5o AZ1UCMoYruuzFKELdqdD+iA5b1o7JVMu6rPdQVxNzkW70wF9kOJ7RjuldLae ORLi+2oJebDfgkrpd4nqzmiX5hLdEf7MZzKU4k71X+qINmjntCOaSaV2RBOC +FiW0OIrfZDc/wXI5lQR2mBPKR75nYoXkpfImM2QIEXmVRGirHHFo2lFC5+E sXjZCxNaO66oLlTHOaqQND9pbZdsSTKHnvFDa9I1VYiGOqy4NHcdhc7rg9E4 o3X/hipHQdfSPmiOk30lZRXjDjaJPcp1lhRFxpMa5ZvBAVRAkpVHNlhpLLQH JdfQmG9Vn/0WM1D0y5ZDqL9lLVnkZ1rfb4OMJiSVpiTghRyTIrQPIJ9Sin+r S2YxAxFTLr6PqiKUlTdTJMQMtBdqy+8fVl0oB6Sootkq3okzg6NQCogUZ2RV ijPyZreXdhowA21Iyw7leqT2O0YU0p6W1IxyBFVVZZnBELoKMopRKhTQ5Ivy BqUkwkO4TyVuo2ihRYysGeUXqplIqoqTgCYL5UREeaRmdNJTTik1L5wa0bgp QUZOj6pJhS2pQOLUiMYNZVFkzSht0RItMjyLILY+iJpRMnPUpBlMDrHDu7fT o2RGJebJZmra4d3bmlEyo2FLvCLRUMnSDu/eakbJjHI1MQ8STTRu6NSCnB4l M4p1CbZwYZcsRxYma0bJrA0y2T0gBNVsKA4pXknNKEuQheVZhIjGDe2TyOn/ gZrUVTRuqHuyZpTMaPYf///UjJIZBZvMHRxpCTIKb5p+5PQomdHUFZbAkUbj hoiGrBklM1rnhXNxpDRdaFoRbZOaUTKjZUVWMBxVNG4obSGnR8nMPALj+kY0 biilIGtGyYwyM+kDVSLVaQGlBI3UjLKEoyY5JBo3tI8ip0fVpHR8pJmaFDe0 eSBrRsmM9u6S+eNqEA3vqJpRMqOtonjsQOFNJ2/k9CiZ0cZbTHGguKEyAVkz SmZUTZI9Pi6MlNzRppiKLqRmlMxStSWJsg0pqKPRQgVqcnWUwpKfOk4XMJTt GOEy3zfw+1GymlOFjjVTSIpa+2qgpEt0qp9VXfI2hiYQRWaqA6bC5Z0DdD+j 3ed6CSWxFHH19QCK2yiDnFSUUrqneWlWmvxLBnRBNUoZibyTn/OhBk1ECq36 wJUqgakknEQ3rDEFiKI+W8/niNHzhfpolgKqpcoR6UWJoj6Xz0fL0dO2Uh8k Eh1S5UgRjyjqcz8ZFrIExUB94YIyjhFViGLKIIr6mO9mM13qWxqUatSXPwiv JooCDvdk9iJf+LFHnFlfF6H5kuyfbCLXDbAw7scUBdMJ7ZSo0yeKu6LI5Wx4 P37I0RPaOWUt/sWlbIX5bGwzVugoZUr7Nbdq5s2m3G99bZviggjqlHZKe8ZS O6VEI3e6qJ3SawmldkBpqX8DSq7O5PtekDonEeX1/g0oB3ZWYakW7N+AcmAv KCydK/j3nu7ZsJcUltjXv9nkwC4oLNGFf3cpw65DU2L5RjcS7ttgdXZMdwmc B7v7KYyJ4UDIcsXUQifOD2wo2oDSITPxRYZ9C03RnIiM7sBSCkiRR6NatmET pfZb1EYplANGy2X0wNCBpSlEFEHrn9yOzlfw9zbZFVEwURyWUm5KwchYDixt JIi3KXl9ZMMS61HZ2oHdgKay+uy3FgGyvANGhE91QTLRig1L5RtKB8lEDixB RKvpDizlJW2QlSCT92TyO16Q+AQGTCNwYFOKn/xPgUOWd8Co9GdeGO6SPbZh KcxprlOoObDRCiBZPsNuQhNRCPEopZJPbNhoZZb2bA4s8SgteORaBzaxvnm7 jCy/aoPRpp0SGqqVZtgtaKJ1lN7CJYc6sJS8UkmGLP/UhqWiC20lqHznwFK5 hGqetIw7sGnbl/zffcO++kaphrwnXWxDEyXY9MIAOdSBpRSSXuloCEvbbXpd iBz6rBOWc2d6i5CcuAdq3yab3kWlJDWj/Fb9l9xJrzNT0vy840GcO71dnCH+ hCZyXf71vxzbyZ/cyH8JY59Ncuv7LuyOBz9At/InN+R7gz8MUvT9AzSqumI= \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {173.688, 0.}} -> \ {-3., -2., 0., 0.}},ExpressionUUID->"5fa109ac-419a-4aba-8a12-8e0521fd8923"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(51\\). \\!\\(\\\"triaugmented triangular prism (J51)\\\"\\)\ \"\>"}]], "Message",ExpressionUUID->"dc6ceb91-c425-4639-933b-537e43be2ca7"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .7698 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.87037 0.21164 0.140519 0.21164 [ [ 0 0 0 0 ] [ 1 .7698 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .7698 L 0 .7698 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .76455 .20161 m .87037 .01833 L .97619 .20161 L .76455 .20161 L s .65873 .75147 m .55291 .56819 L .76455 .56819 L .65873 .75147 L s .55291 .56819 m .65873 .3849 L .76455 .56819 L .55291 .56819 L s .55291 .56819 m .44709 .3849 L .65873 .3849 L .55291 .56819 L s .34127 .56819 m .44709 .3849 L .55291 .56819 L .34127 .56819 L s .02381 .3849 m .12963 .20161 L .23545 .3849 L .02381 .3849 L s .23545 .3849 m .12963 .20161 L .34127 .20161 L .23545 .3849 L s .23545 .3849 m .34127 .20161 L .44709 .3849 L .23545 .3849 L s .44709 .3849 m .34127 .20161 L .55291 .20161 L .44709 .3849 L s .34127 .20161 m .44709 .01833 L .55291 .20161 L .34127 .20161 L s .44709 .3849 m .55291 .20161 L .65873 .3849 L .44709 .3849 L s .65873 .3849 m .55291 .20161 L .76455 .20161 L .65873 .3849 L s .55291 .20161 m .65873 .01833 L .76455 .20161 L .55291 .20161 L s .76455 .20161 m .65873 .01833 L .87037 .01833 L .76455 .20161 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 221.688}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNnGlzVFUQhm8qhawCAoKsmSjgvluIVvlFJCwaFVdQqGKMaKIiGOKKir/E XXHfF9x+iv/C75g7p4uKU8/p9J3ue718SGb6fdP9zsydc8/p9xzGuzOTx453 Z6Ymup09092Tk1MTpzpjJ6ZnQ8NDRTHUKYri705RPj4/+1B+9P6Nlj/kSYXH 7/R+DZ+/kGf22Z3lz7vK0PZ5SH2xOyC2NaU40weVwvtTlLH+FGVsW1iKt3u/ FswVeIGyU8FuVzB5gW/Bax+G2G1G3q1G3mgryr8J0AKI3WLk3WzkdVpR/jRA CyF2k5F3o5E3ksq/AdAiY1oPb0u+/GKI3WDkXW/kSfnXAVoKseuMvGuNvM2t KP8aQBdD7Boj72ojb1Mryr8K0AqIXWXkXWnkbUzlXwFopTGth7chX/4SiG03 8rYZeVL+ZYBWGdN6eOvz5VdDbKuRd4WRJ+VnALoUYpcbeaNG3mWp/CmA1hrT enjr8uXXQaxj5I0YeVJ+OvvGzJ/Ww1ubL78eYluMvM1GnpR/CaANxrQeXroc i5MAbYLYxmDemnx5zyu1fiBS/gRA1s/Zw1udLz8CMetVbv0ySvkXAbJ+xz28 VfnynhHOOhBL+eMAWcd3Dy/dhIsXALLe3Ty8lfnynnu7dQoi5Z8HyDqz8fBW 5Mt75nXVpp/FcwBZZ7Ue3vJUfgog65zez/u/y08CZF3PeXjLWlH+WYCsa3kP b2m+vKeTYW24SPlnALL2cTy8Jan8MYCsXSwPb3Eryj8NkLWD6eEtakX5CYB2 yNs4J5aAQu9g74Rc6VIsngKon16moF47uQAX1Zq2N0P4p0QWzgn0ccmIoJwU uzul7Z8IlbLIWbDK31Vr2tS8qG5eVL1k7kkgTVI9LoLny7K7tZJoJeFxGzwD 6lhrJXUA8pginpvuniRpBKAmDBXiKZI85olnYrY3SaIuhcfR8ExV97VWErWS PM6HZzmzP0mi5tpyo6RoniLJY9B4lrz3JknUlvS4Jp4exH2tlURdVo+74ulT jSdJ1FFdY5QUzVMkeUwgTzPx/iQpb2/MLymap0jymEU0s7DyHkiSiO5xcDwO wINJEr2pTbg/xFMk0VhljXlcogNJEn0bmjCpiKdI8hhSng/zoSSJhrEmzCzi iSQa7D1fZA/v4bwkj5vkGT4fSZLIY2nCiSKeIsl614++FT+aJNFcpgnDjHgi ieyhJlws4j3WWknRU3oP7/G8JOuaLXohdTBJIqg5VwwlEdSEVUW8Q62VtAyg Jhw14j2Rl+RxzzxtsCeTJHoDm3DeiCeSlgDUhB1GvMOtlUSXWRO2GfGOtFYS Xfk+d4+xo+kBXdWD2nFlrFtr2p7Zd66MJBvRfARJXu2ZauUq0gc9RiTios/q HKk1bfTZmsO1po0+iiMDf/QRGyVtwM08+kzKoVrTRp8hOVhr2ugjJ7K8iD5K oqQNWJ9FH/1Q0gasuaOPakjDI/oIhpI2oIkVfWRCSRvQBYw+4iBpo48uHMin DWirRx81UNKOQMx6dYhVEn00QEkb4DVFb+WXtNFb9MfzaT1b78W8jd5Sr6T1 bJUXQz56C7ykjd5bvr/WtNF7wffVmjZ66/jefNqAPVbRW70lbfQe6rFa00bv ed5da9rBtkj/ly97Wgfdr1w+2xWWotdhOF0iIutd4Crblt8zSJhTriL9fYB2 5N/SDwBSPsyK9A8BUi7sivSPAFK+5B8DpAw1RFcGvE8AUobdivRPAVJuQWcB Urb2EV25HX8GkDLXqEj/HCBl3vUFQMo2L6Irk8UvAVKmrETvQEwmzl8BpKwK vgZIWZsQXVkhfQOQslWG6Mqy7luAlMXldwApK2eiK+v37wFSughEV7Y0/ACQ 0vr4ESClr1OR/hNASo+L6Iq9/TNASmPuF4CUrmNF+q8AKR1Yoit94HMAKd3o 3wBSeuIV6b8DpPgDFel/SHmanR1ND/7s++sS6s4L/QU1JWHvyYD/QV4x9C9S qpg5\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {220.688, 0.}} -> \ {-4., 0., 0., 0.}},ExpressionUUID->"c017b6b9-6656-488c-99e7-47d7c8b690c7"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(52\\). \\!\\(\\\"augmented pentagonal prism \ (J52)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"e82ab35d-e9ce-4b59-8a42-\ de0e71e835df"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.18364 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.411229 0.233432 0.439039 0.233432 [ [ 0 0 0 0 ] [ 1 1.18364 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.18364 L 0 1.18364 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .21266 .43904 m .34987 .25019 L .57187 .32232 L .57187 .55576 L .34987 .62789 L .21266 .43904 L s .422 .8499 m .64401 .77776 L .78122 .96661 L .64401 1.15546 L .422 1.08333 L .422 .8499 L s .34987 .25019 m .21266 .43904 L .02381 .30183 L .16102 .11298 L .34987 .25019 L s .57187 .32232 m .34987 .25019 L .422 .02818 L .64401 .10032 L .57187 .32232 L s .34987 .62789 m .57187 .55576 L .64401 .77776 L .422 .8499 L .34987 .62789 L s .21266 .43904 m .34987 .62789 L .16102 .7651 L .02381 .57625 L .21266 .43904 L s .57187 .32232 m .77403 .43904 L .57187 .55576 L .57187 .32232 L s .57187 .32232 m .77403 .20561 L .77403 .43904 L .57187 .32232 L s .57187 .55576 m .77403 .43904 L .77403 .67247 L .57187 .55576 L s .77403 .67247 m .77403 .43904 L .97619 .55576 L .77403 .67247 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{243.312, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy1nPlrlkcQxx+TGON938f7esX7iEfi2cTbWrXWqzeaWsWAxZIqCIIgCIJQ KBQKhf6X/gFpnmfWmSfJZ8ddfd7+YJrZmfnuPs/uzndm98m10WePH/42+mzs wWj70vjo74/HHvzRvvh0fFLUPasoivdFMavdLsr/n5j8NfzzfmLyv8nG5B+P yh/dpfG7mqCoJBPhP/ntrbQ/hPYedfImrjRHlV7Hleap0itR+hWUFqnSy7jS UlV6EVdaoUrPRekBKK1RpfG40npVehpX2qRKT0TpF1DaokpjcaXtqvQorrRT laQzxSgo7VWl+3GlA6r0c1zpkCr9IEr3QWlQlb6NKx0H2e1PUr+XqH5H1HeU P7rKlsFPMKw1lYvxaJ6L/urH7HqTujqc6OquGGyHpm4d2kCes23Q1Auy/Z/v do72cV+iszCJtkLTPJDtznO7BZoWgGxXntvN0LRIh74z0dl3cWdLQEZzwnHb hqZlIKPX6LhtQdMKHTq9RnL2vTjbBE2rQUZjyXS7BmQ0FsftRmhap0MnUHIW ttYN0EQA6z/f7SbtY6YzUqfZSq+M3P4obtdBE02cVXlu10LTdh16A86mh4iJ yIoitz+JW5qFtPcszXNLL2CPDj3V2Va1GBK39MwoSCxMBNiiABLMPjSGWI14 B0BGOzjhyVzlgByGuBLMBrSbqUAtteiBVqERsktOazoCsr5EUFvWFMwD6HJo GlTDVCjamDJBj4FsdiL8eu3w3DgorcQTIOtOBLWdfX4clJbWKTVMhaLNxgEl cjBc/dszZapP/v9JUF2t/VuUhzGihuR2lbaSbXC7GJrOlv9WIno2tEAdABrS OZBVv1GKsFyHQbM4oNCGRyiWVh+C1mUKRYN0oM6CrE+haMdcolAUKgIU7XYE tUCh9kIrvWIHlOY5PcrFCkr02sg3kQsHisa3XKGIci9QKOJaAYpSF4JarVCU qVCHHVDaHOlRrlNQ4qzzdHytOBQFDoKyeglxyT6FIlbpQNGjtKoLkaw5IHNA SZ1A+xWUonuvjo+SrABFcZQe5S6FoqDTo1D9cajZqnQelPYpAG2iFMscKHqA IyAbUFBaMl3aYSLJzgQZBtkRhaLOVSh74ihztStfgNIx9T2dAE7+xFqIsycR a6lIRW8pIgJe38C7YpHUwjdFCCd+UpiUd9lTH+aEP1KKC0R/z1T/MmmneFMn LNXoqNRGa9cmFxWVHFZ5MBHA1iSFrDpXjr4V2ghsV3HWHzEKmt20EdCCovw8 QFHWRsv1AshsVTkARlhT3c5XC2ePj9YLpskugmyhArTiAJZB0PZ/CWS0RpyA T000YIKy9eIAUN5HA74MMmO3DiWzHJaoyJcgs1ojhfngtg1N1IsrIKPp7PDz ze4wCcCms+M2tR72FcjWKoCTwtCUJA5zFWSWjxMVCQBWekt1S7PNSVGpHEeZ 4TWQ2bxzAHaqEq3L6yBrqwXlUsEtRRuiAV+DzCpoRJcCAO3zpE4A0UMdhtqr /aHk4wbIbFo4bonjULHoG5DZCSBZBIADrhK53aUWxISD24HQU+Iut8FM3tSM qk2oTU6vGZRe7oAXOwCuG1Z9vQvqxvMH672eikOGVlEuppZvK5lwuUCO+BFQ 53c7+vSkpbMyQ6Iv8CbIbDVTjdbIYAAgJkupGs2VfnVGFkYLhfHVnistIgLY phbE1YwgyiBwx6ENgdYrBSICJZngImuj/ZH2IwuvtEUafQxQtvhpyyaAllpQ pc2IpFB4pNwUdCg6bHQ7Z5RSMGovmQIoRTVicgRFMnnP+LqJplD8Nr5LWZMR zgBFFS+iOAS1xn02Rj2FDdfiMpE04lBWzaYuGQltCUALlKjiRXyQHi+Bkkze eG1mEY0mUEs7KQ0yihoAaGbRmImxL1Vn9ESMrMqrST50ppxjsTqLHqXXUoca NuV9lDURWyQoksl7xrQlFd4KPG1oNVIboGwS0xZMea0Vf2l12jKSxAKnLgUb ytGt+Euc04iupBi4zonoEhQxTQIlmbzx2pZCZRqqolixlRIVo8EBgDIpKjTx YdaE854tJkrQra0Sqr9JJWsqJ/2gTw/ciLFQClwjqUAFEy/ClZeKUZsKllVZ sRJRcmF5THBrgZ+qscPqjGbDPrUV+odcK1rkrUREsKMPpkYEa6vKL1MLa57x 8KnASgs6oNHCGgaZld77APdDjwnIWLvwP2TUZ0B2UCGJONqKodKs8XeZXZhj UMXXUiuiWJR30M5PMqcj/mERUTHbmgjKrgEJsU0+obIrzRQX7GoocUzj+dLh 5BM4O/YjIkNZCYVOkoWOpJ4/2lEnkSXLVJIid+r5qh3ltqDVNjGihRu0VY7n k8+PVykovUnK7IjTkSx0JPX03A7qKS2zhCqJd6beDrCLCBRsLbYm8erU2w/z FZSigH+7Y6W2yixIvudhV0qIiNDGQiSNZKEjqXdb7BoNne1ZKpOUCxI9IdDq t6HYgNLT3CheJSIaQIleZhpPTSPTZCXN8O+HJZUpqPoh3IOLegRp6XxSEYYg 7dYdhdnoBT/KfxJkoSNE2umNpnbJMlQCNW4nfBjn35AqpV7u3OBazCgmxs+U Ph56o9dYiaAkyJwuUcZBAc6/zkugxh1lW8Rtx+4Qp16ObquFlL2ZI8uZABIs SkWybmbPTAe6QDX0gDYpik20/UUvn1c7hnOtwNKd1Hv3zsUripUU0hu44k8V AJq0jluiE1YhzvwCg5wRl2vgww6b1tTqOCPSRntFAx/IpMoy3Vo9vJXnjKqH NK3aiW6dz6JolVG11XFLgzNOlvp5meOMFmADH8MRi6A8IvPTPSNIqR8VOs6I qjfwCaRlow18pkmZeqZbmiQUeinEZX6hatGbruR/9JNc5rRENhxX02dZ6eIz P1cuf8v8XPlenvr9RHXnM++q/Fi7l4BK1SgqUTG1CBr6QR+u2y1imjW34ob7 1ZC44c244R41JIolZ/b4Sf8ONaT9xzHcpobEN2/EDTerIcUQORPHP3awUQ0p xjqGflXqetzQPoegjUaOvPHPQFgliBbG1bjhEjWkbdUxXKiGdJ4gR8r4BzLm qiFtQFfihr1qSAvdMexWQ1qvcmQ746+GlOuvWqqnweZyzaZSogr8JXZc/jaS p07eL8bVqZpzoTF1Ks+dj6vT0eC5uDodX55tTJ2OfM/E1ekIeqQxdTrAH46r 09WCL+LqdOnhdGPqdGXkVFydrrCcbEydrgKdiKvT1aTjcXW6NHWsMXW6cjYU V6fLcIONqdO1waNx9VsgOxJXpwughxtTz+xM5lA7+9wzJ0FnZ2Tm8shcfJ3d CTK3pc7ukZkbdmY46GxsygyUnY3amRQik6B0li19jLpVLQ4dHFMl4qFB6Ykq EcENZPWpKhF9Dix4XJXob2wFjv1clYj6B6UXqkSJRcgPXqoSFZ5C9vFKlSgp CkqvVakFSiFzeqNKlNCFvOytKlH1N2R971SJktGg9KcqUaobMta/VIlqXSEf /luV4jfki39UKf5JQPGvKhVTqwuhbPEfmIam9D/JWMz6H+s3zPM=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 242.312}, {287., 0.}} -> \ {-1., -1., 0., 0.}},ExpressionUUID->"a7bd2d30-3825-4b03-9495-63292663777c"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(53\\). \\!\\(\\\"biaugmented pentagonal prism \ (J53)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"02aced50-a617-4c59-940c-\ e9d95e309101"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.03361 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.482843 0.203842 0.383387 0.203842 [ [ 0 0 0 0 ] [ 1 1.03361 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.03361 L 0 1.03361 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .30944 .38339 m .42926 .21847 L .62313 .28147 L .62313 .48531 L .42926 .5483 L .30944 .38339 L s .49225 .74216 m .68612 .67917 L .80593 .84408 L .68612 1.009 L .49225 .94601 L .49225 .74216 L s .42926 .21847 m .30944 .38339 L .14453 .26357 L .26435 .09866 L .42926 .21847 L s .62313 .28147 m .42926 .21847 L .49225 .02461 L .68612 .0876 L .62313 .28147 L s .42926 .5483 m .62313 .48531 L .68612 .67917 L .49225 .74216 L .42926 .5483 L s .62313 .28147 m .79966 .38339 L .62313 .48531 L .62313 .28147 L s .62313 .28147 m .79966 .17954 L .79966 .38339 L .62313 .28147 L s .62313 .48531 m .79966 .38339 L .79966 .58723 L .62313 .48531 L s .79966 .58723 m .79966 .38339 L .97619 .48531 L .79966 .58723 L s .42926 .5483 m .22653 .56961 L .30944 .38339 L .42926 .5483 L s .42926 .5483 m .34635 .73452 L .22653 .56961 L .42926 .5483 L s .30944 .38339 m .22653 .56961 L .10672 .40469 L .30944 .38339 L s .10672 .40469 m .22653 .56961 L .02381 .59091 L .10672 .40469 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{278.625, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy1nItrVUcQh4/moXn4SjTxfa+PaGJ8RmPUWJP4iI82rdZqa7WPYEu1IBWV QqFQsLUVhEKhUCgUCoVCoVAoFAqF/mvWs7uZObn3m82e5t5CE7M7OzO7Z2fm N7N7zszsozsf3pt9dPf2bPX8g9n7d+7eflid/uTBi6aWJVm2pO/F/9Vqlv/7 eZbN/XD/9ec/wh8N+PfT/FdLzv9ZoSFzLc/Df/6vp7H+OSZPPNE3QLRMiB7b RJ1C9IVNtEKIPvdEXwPRGiH6zCZaK0Sf2kT9QvTQEz0Bok1CdN8m2ipE92yi bUL0sSf6CogGhOgjm2hQiD6wiYaFaNYTfQlEB4ToXZtoRIhu2kSjQvSWJ3oM RMeh7VrDyI9B23VPfjH/tTTvGfsfAwtdub2OJqoaWFxwv9qKXcLqSKI2b/oB 56GrRaY2Uo7ZNHS1Q9v+xOlG2C4THYkZ6Rg20Tno6oS24XJsz0JXN7QNJU49 wnaFTJ2YkY43PLMz0LUa2naVY3saunpEx4HECQdmU9C1Dtq2J+r4ts22D9q2 lWM7CV3rZerVxKkHZhPQtQnatiTqeNNmu1l0LMnsFHRVoG1jObYvQRc9ivWJ bG95tieha4dMvQHMaHPTbo2wHYeu3aLj2kRm73hmJ6BrD7StWTxb8o/kTIjt Tpmfj51oFfuEaFUiW320PoTNdWZH/R805iC0kd+msd4HcRgOEyNsMCJqpgqq yohW6B21RREYWJ4otCJCKYQHoUehi9qWJQrdCm0R8YSbjoneqULVG3aUE0V2 0ZIodJMI7bKF0vM7KQNTRW2QEStsUYeha8L9bJ23wTN2B+RMI9IIWE6JmiSg X3rJy0TYnpaB5GXWSW+PzfYQdNWCqdzoHR/a/r0ihRx6kEKuiCCbptA03V5o KymUAJ2m5Aegd43Mr98WRQNJVJeI2gu9q0TUBlsU5QS0lCtF1KAlimyJhe5L FNojQgk+KLrfXE4ULWWfiCK83CWiyO0GUfQMSNRGEUXMOkUUgeIgiiAFLeAW EUXwmHx4SaE0P621kKvTdHSHLYqQGInSig0ZbruIou0TRFFmSKKGRBRBwlYR tdsWNShElKzuFQEroZciWEQULeAktB0UoZTZLxWFiV9kW1Dyc0REEdpYanmx onE5IuI9JrxrYV8ebMjHRdwfxVSXe7RbTr3ots34OSG9FEki8ZPwlH+WrcVp Po/PlCIggSbPmaE6OdMiKHKzI3hERQXdXLSDIlgyNTqqTZKNR2B5anhS/xKx xDEhSmW7XEZE3BbtMJomeRoydYp6QRTZA02Y6oUaOCMCxoWI6mlU09TQH4lX VCqhmEMCFDtFAv6p6OSoXqzoLwJZyE+TFhegjTBtBIiRXZJmtZX4/K+1MpeI AE0pUtn2yYgIQKZdTWDjkkXnBFD9KQigvUxV0JehjSp6kZRpOqrPK9CmCXGE Le0OIicBW0RAJIOkh0fkM9BWEQGEdYKAS0JE6cWr0LZNRlC9KLClCRM5CSD3 EamEzIg+VLl4Ddq03hdhSwMJU12Gtl0igEYEATSwDdquQJuCXBoRBFyJEhHb PTKCkHBgezVoStjlDRjm8WZd1SZUJGtH5FyuARcX11sKA93yObB4Hcj3C3ko trpA0WEthqk3lW9dm0d1Pjo5trXVJWsiw5Hlo1X3YNXL68x7+ng9aQpDMgUq 1Co2DDKGZTIVizxhE+lpAVVKFS96hOmjuhNKNY9UoQPClurJiiE9PPS+t02n Pp+cHgNZqxb4CeyRInsK4mu6KHWgrUp+iZARqdQhCgdFavFCvgkptaAnSa67 KgKo2Ko4dbAovm4r0zMhR0oabBUZFM8U0noQjBUb2nOU89EDpjis9XwqapCa O8opRzkPPX4KyhtFOUK1q6U3ohKZCxUZKDwTtCOkS8rpob4/m0VMSCZEdRYC J6Sc1v0JqSpcryxeJTIhwtp6ZkDonNT0docLTXZGKS9BSgKretRAS6GrGVGJ 7IxSY7IkUokAOimn51S+F5eX7IwSbALtlD2oxVGQ0KRkfTmVqMhB60D59EoR WoFeUtPnWJhbkp3thDYyeKohdItydEFDo0FEJbIziqhU/SaV9HCBMhkNkb2L V4mSWcqqKc8h5baLcj5UofcgO6tCG02Magp6WEGGQ5tjpa0c2VkF2shwqE7Y JsoRPFXYGVSiB0J2RqWmVJX0PiRFDYXf3eVUIkMmt+irwPNB25xICvuahHjH hHZEbVTMIvwxBQplXKanIvgyWytaOloSWrrJ/KdrolK6JpdBPPk72t+p4idE PB2E6GWmdls82S/t0Qq0jYv4DJJn89EUMjhUicSTmuSO9PjKA7C6DUMwmiws 6JcKI1LvdR4W/ZaDfnOLQztYq0Fd5VRLvcmqB5iE4dUfEVDUWpgPapgEkamT QVLM0iNdCkxU+KAwY959YIXJ5GjVia2+3EAjNOCQmlpy8IEO4x0FFxJlhlvX RJtDQzWFZa0M99jKVaCN6Ajh66UHM08wT4rIJUTUJHLaX4QK9EII7WuC57Qo ddiVxNNMCTySH9sgapJ4LdZQr9Y0+pujnF4VIptX1G9mSRglMG2lrUxpCrle vTxFxqSZE6lUl1+ScuRAaAdR8NLrZOSYadeb8bWYo9MjpNmTmhT59c05moQm xKSc1j622sqRK6GiAgE1vWhIOEpLUGY1CH1z8rs4VI4hRfQSJpVvSZGkihqp SdZKJa3agvaL31nhkj1omF6GXIxebgu6gyO6c6En4yWLtYSMKB2iaqmzHvNw iu5Q6/l6UpmblCNjo+qys3p38qRs6S0RCsn0nOpOAVL9BCnXKytXmwZkxgPW gjcpR7pE1PQeoy6T6JYlqzABKaYh1TxNKmQAWNKpPTjJ16BFVmiIdaFnqXcT ko7TSJd9sgbeEfCJJy1EBdrILqgtKERaD8hC0EBym7Th4u/DEGdNjw7aym0W 5cie6WyQlKP7agrKvefhtHLEVs0FBfcgycIpGFHOZb4gVb8haWZBPwqHnbJ0 BOQopqfq5/i5fTtaFF+3gh1qCgt7Mdoi9Nwi1xLbRS8KpaQInd9GXrCjqqNd OktmS8VfitrElpbols2WsBR5qcibkFRHp2yvJFs6MSCASmxpEcIrq3RwQ1uI kEDkTdgmsaWTLzPPS1iE8MoynfZRElqSLR26VqGN8rfI29qLYRt5ZZ1Oraki RIEmwta8wkhYPWERAlu6MEHJMqHxyIcKmsSWbpyk3kSNfK2B7vRQtku5UeRD FXRniarlJdnS/SsqFqa+ed4AtpGPk7yeOGFK4CNsr0IXPXVa78jXWOgWX2qh JvIxmcWw1ReYw4OiW43kTIiZfkQnm38uFOZPdzmppENGd0h421c8wxwWDgck QC+VUnC+agug6EjeSL9oRHP2Ozn4DMDANW1Ue94tAujpBwE3oIsSA/L+enxA NSdv4iH+LYz5SED8vcfLtgCCwBVLqGuiJxQE3IQu2nQkQN9MpV4fCgJYnN9F lSPCC/rVL4JUPoQFSD6/ixIvOqnsFQEEXGcWL2C1CKD0IAjw3/Oqyx4pCdTP rlFG5pFN9l5NV+6jCOp2CDNKyz36yt6HLtKsXZjRS3iBGX1JTgu+5PY9tKz7 4l0+JefJ6a2ti4UxjojeW7rAjPO/JsuRE/fzNjm9ezjdMHJKeM/Z5JRxnrXJ KZM80zBySihP2+SU0U01jJwSu0mbnBK2CZucMqZTDSOnxOklm5wSopMNI6cE Ztwmp8TkhE1OCcfxhpFT3nHMJifgP9YwcsL/R21ywvWjNjkB6yMNIy+pTMmp NnfdS26C5u7IkuZR0via6wlKuqXm+siSDrtkOGhubCoZKJsbtUtCiJIApblo aSHo5noicPCZEBEODUTfChEB3ABWvxMigs8BBX8vRPRiWcDYPwgRpQiB6Ech orwk5BE/CRFdignJy89CRDlaIPpFiCpAFBK5X4WI8tWQTv4mRFSPCknt70JE uXsg+kOIqIIQEvw/hYhKK6HM8JcQUTUlEP0tRJReh5LLP0KUzS8qherXvzA0 dLk/GvAx8mzJf4HXH7w=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 277.625}, {287., 0.}} -> \ {-2., -1., 0., 0.}},ExpressionUUID->"bf6780ae-3597-4185-a7d5-ebeb030824fa"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(54\\). \\!\\(\\\"augmented hexagonal prism \ (J54)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"310a991c-5008-4855-b533-\ 2d254d2b46d5"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .70753 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.349054 0.174298 0.365442 0.174298 [ [ 0 0 0 0 ] [ 1 .70753 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .70753 L 0 .70753 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .19811 .45259 m .19811 .27829 L .34905 .19114 L .5 .27829 L .5 .45259 L .34905 .53974 L .19811 .45259 L s .6743 .45259 m .6743 .27829 L .82524 .19114 L .97619 .27829 L .97619 .45259 L .82524 .53974 L .6743 .45259 L s .19811 .27829 m .19811 .45259 L .02381 .45259 L .02381 .27829 L .19811 .27829 L s .34905 .19114 m .19811 .27829 L .11096 .12735 L .2619 .0402 L .34905 .19114 L s .5 .45259 m .5 .27829 L .6743 .27829 L .6743 .45259 L .5 .45259 L s .34905 .53974 m .5 .45259 L .58715 .60354 L .4362 .69069 L .34905 .53974 L s .19811 .45259 m .34905 .53974 L .2619 .69069 L .11096 .60354 L .19811 .45259 L s .34905 .19114 m .5 .10399 L .5 .27829 L .34905 .19114 L s .34905 .19114 m .34905 .01685 L .5 .10399 L .34905 .19114 L s .5 .27829 m .5 .10399 L .65095 .19114 L .5 .27829 L s .65095 .19114 m .5 .10399 L .65095 .01685 L .65095 .19114 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 203.75}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnOlvVkUUxi+8LVC2FiiLsrxvgVosFAplXywIUqE2qKjfGyCBD0aDRNyX GBNjTIyJMSbG6P/jH4XcO8N53nv7O+M00m+XhPZw5szzzJ31zMwZFhYf3b/3 /uKjB3cWe3MPFz+8/+DOR73rHzx8quqsKopVvaIo/ukVpfzkqRh/VH/Gyh/x H8uQ75a/Vpc4t02615dUDDx5RhH5bpld0TF9+etuf7ZBy/bsT5lhIZFWY+30 mxSrjfKGSQNgd8eHGLCMr5m0ZnkQZH4l0y7C3jTuXWC01lJnTRrywV43o0ZD 7IQ8Q2Z8waQNPvYcJK0G3XbQbTCCMyZt8qnUHoOZBAQ2k2kXSa8a6TowGgXd Zstx3KQRn+BVSKK23Aa6ESOYMmmrT3XZjDZmEmy1HC+bRN8cCV4xo2EPLKMC xzPtIulFI92SSbrdchwwiYZCJLiQCUv0O42ga9ILPtU5M6LuTAQEtjvTLpJq 8NFcQ133xfq3VNIen+CUGVHJqKvsqddDJe3zCU5mVgJR7TOCLSb1fKoTZtQF o82gIzCacBKk00Y6lkk6Zjk0yR7wCY5B0v7McmsMaVmiIRypppJGREB2nUy7 SHrYSA+BEc2GL1mOvjWzcAAii+bIw2BEi+hE+bNj8yvDEmMuwTh9Rvmr0k34 pPp+6hvrQXew+skuGzXXQZ/8oJEfzyTfbznI3ZNbmCCl4XECdLQ494yAfDq5 lDSmIr1G7KlM0i7oiJ50lDcWhOah06Ajf2ivfQQVWPPDCtHvNgIaC/Js9/r0 NMES/VrQaTGkaUwTMS1NCfozoKM2pdWbCkI6yhuLRH2WaoSKtMO+mdwIecoJ ehqWRE97glEjIH9N3vOOlaGX90zuazq1fybMoKdZj9xFoiId5X0ORRq2byZ/ W75egp5WeaKnJWeTEZA7LF+d/MQEPQ1Q2gOTn0EFIR3l7V+qM2qEirTevpn8 d/n5y6QPNcK+gCjJo5fnT8t8pCS/5XSCcp2B0uqiHQCtKQknLFAO1CiLApcG 4iUdTSPLL8GgfRFNX/I0EmzkjzY7VVm1HQOjkaG9AQ3HBJX2pNRriWqcqyIe Fk56n1NloKqtunUnB8L13yfsI6bNLniU6L/P1CvL9dDH67CNHNM+gc6jqIvS vE462g9QR5oKBTmSCaExSqTy7/XN8uci1RRkPGJGmvzJo+kBgXIc9gkmzSh9 frAPCJQjdJ/iKGRUL0qfhewBAuWY8AnUn3IPk0hHbUqLfGhd/8RBi5HrK8vP nq7b9XUfJCDvWu2S9glE1TUpdKQ45DzY9BnjdiBQjp5PoCpqdJCG3TYgUI7Q kXCbrVqmuYQcatJRM9BcGdoZN9zaRBw1Ke3P60t12pQg0DZBp3vp/YoINKeG 7oP3C1Tak5aRzu82ApWOUXf6VKoEnSWT87YeCJqnz3iuqknxEqTStp901C38 c3YsiPbTl01KnzroS2dNigR05qIV6ZpJtHAOAoGujUZ8gjVmpBs6Wkk7QDBn Uug+2Vsw3Sx2ok1fKhDNmxS6UfTtOdstSCvYh6MesAC6IWYtfz/9+3YpD9ZL /JZJMW/VaCdKxXulNFNK73rtwW1M6+Y7mV91u6VqqVqqlqqlaqlaqpaqpWqp WqqWqqVqqVqqlqqlaqlaqpYqUlXnkxXYqVLSc5sQnlCcrX4tOQp90+yKeqin LjX0IicEV2RHrryRaUe3K/OgS9DrsFsn1XQorttyPfUJkW1+dFpldL1Rn3U7 XcvoucmwD6s7gquQStcRdBFAj4MiKZlTcKOeXtBtz2lLnTUpcbWiOx49rqCY KEVp6K3QqA+r6K+zJlGkl+6hRBBC9PzbNd2QUWpDdx50hJwgpaC5xr17I1VV tOTOMPfWk8Ik1UJZd527zGiyYV63u2SpimoPYbN4Wazrd4pYIYJZ0FFcT4JU 0ca6Me96VPk36z3Q6TqfYgiu1On/KzZAAVgUiEzRKfRIjCo1ktKqo5h6XexT fV917bKjUyic6hrYJWJSKERAV9sUkKDpeklUDYXt6EUITWxEQC8dKZQ6QaoR qstraqs5sAtxVBhOpXlHd900Xm6A3VEflqYPCuMju5uZeSM91bdW4j5/pnBm +XnP+LhPQOs56cj5ibAUE0hODcF+40NQoOVZsPs6JLoBlA2Ic2D3VUikIZsK 4qXSJKByA7TJ7ssAS+uK6z/+P9jc+H6y+yLA+kHRzx0293UK2X0eYHOD2gmW 7D7zYakU5CaTXYTNfYBAbjLZfbqisLkPSGgpIbtPAix5CdQUzwGWzGnRJLvH ATb3WZO7yWjoPvZhqRS0ySC7CFs5gNp/NIzonbxC8x731aO7JyEI7WcT/ZFW ddprkF2EVbRvLtgxyxFnIfl85LpRlKuisOMiQUsWrdEERnYRVnsaWlYpwPeQ 5fg2QKiotJARhJ7KfhcgtGGjGZD8du1Lvg8Q7rahoaMNBNlFWO08c8G6luOH AKF+SkHoXdApUvnHAKHRQo+OCEIPkX4KEDQwaXdMn0l2EVbnErlg2qb/HCDO m4LGEq0GitD+JUBcBCOawqh3kV2E1ZY+F0wHNr8GiFlTUNAy+VIKZP4tQGiv TAdVBKFQ5d8DBB210VkeTTJkF2G1Rc0F06HiHwFCZ4vk2NHEpePOPwNEFQrs eN3HEml/BUF7vKJ+Chym6iWnxn8HmQ5paWcazat/LOM/jypW/Qvn7e42\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {202.75, 0.}} -> \ {-2., -2., 0., 0.}},ExpressionUUID->"1cbefa26-7f2b-4052-8eff-0c98436053df"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(55\\). \\!\\(\\\"parabiaugmented hexagonal prism \ (J55)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"e4072daa-d40f-48ba-9ace-\ cdc012ed5693"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .73205 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.349054 0.174298 0.366025 0.174298 [ [ 0 0 0 0 ] [ 1 .73205 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .73205 L 0 .73205 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .19811 .45317 m .19811 .27888 L .34905 .19173 L .5 .27888 L .5 .45317 L .34905 .54032 L .19811 .45317 L s .6743 .45317 m .6743 .27888 L .82524 .19173 L .97619 .27888 L .97619 .45317 L .82524 .54032 L .6743 .45317 L s .19811 .27888 m .19811 .45317 L .02381 .45317 L .02381 .27888 L .19811 .27888 L s .34905 .19173 m .19811 .27888 L .11096 .12793 L .2619 .04078 L .34905 .19173 L s .5 .45317 m .5 .27888 L .6743 .27888 L .6743 .45317 L .5 .45317 L s .34905 .54032 m .5 .45317 L .58715 .60412 L .4362 .69127 L .34905 .54032 L s .34905 .19173 m .5 .10458 L .5 .27888 L .34905 .19173 L s .34905 .19173 m .34905 .01743 L .5 .10458 L .34905 .19173 L s .5 .27888 m .5 .10458 L .65095 .19173 L .5 .27888 L s .65095 .19173 m .5 .10458 L .65095 .01743 L .65095 .19173 L s .34905 .54032 m .19811 .62747 L .19811 .45317 L .34905 .54032 L s .34905 .54032 m .34905 .71462 L .19811 .62747 L .34905 .54032 L s .19811 .45317 m .19811 .62747 L .04716 .54032 L .19811 .45317 L s .04716 .54032 m .19811 .62747 L .04716 .71462 L .04716 .54032 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 210.812}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnGmPVjUUxy/MDAybLMMmAzwPywCyOWzDprIJgywRQX0/ARJ4YTRI3JcY Y2KMiTExxsQY/RrGb+EXQu5tOf/7PPM7x06i7y4vZkpv21/b23v6b3s6N+ce P7j/ztzjh3fn+rOP5t578PDu+/0r7z56GjWyqKoW9auq+rtf1eEnT4P5R/Nv R/0j/2cB4Xv1r8V1OXcsdL/1qBp98gyRea9bumrE4utf99rZxizbs391hpvB swHqSDtJtdiQr1loFNLd9YsYtYyXLbRkYUVQ8guF6XKx14y9GRIttafnLLTM L+yqJRp6EZsgzzJLfNZCK/yyZ+HRYojbAHErDHDSQqt8lN7HWCGACjtWmC5D Lxl0HBKth7jnLMcRC63xARfhEb3LCYhbY4BDFlrno85bopWFgHWW4wULUZsz 4BVLtNorrKADpwrTZehLBl1bCN1gOXZZiD6FDDhbWCzhNxmgZ6HnfdRpS0TD mQBU2GRhugzVx0e2hobulsG2NKGtPuCEJaKa0VDZOtgPTWi7Dzhe2AmE2m6A tRbq+6ijlqgHiZ6DOCqMDE4AnTbojkLoDsshI7vLB7wIj3YW1lvfkKYl+oQz 6lCYiACUbqQwXYYeMOg+SETWcI/laM2ZlVNApshGHoBENInurX+OmH3lYolY CpiiZtS/mri9PlTtp7GxHOJ2Nz9ZstHr2u3Ddxv8SCF8p+UguSdZGEDp8zgK cTQ59w1Amk6Skr6pjNcXe6IQ2oM4wlMc5c0VITs0A3Gkh7ZZI6jCsg//E37S APQtSNlu8/FkYAm/FOI0GZIZkyGmqSnAn4Q4eqc0e1NFKI7y5irRmKUeoSpt tDaTjJBSXiCeeoTWBOsNQHpN6nmjjyerQK0nvNQzydf4adsSFuDJ6pFcJBTF Ud7/oEqrrc2kt6X1AjzN8oSnKWeVAUgOS6uTTgzwNBxpDUw6gypCcZS3PVUX 9AhVabm1mfS7dP4C8alHWAsISYpeyp+m+Ywk3TITIMetUJpdtAKgOSVAplaO DiCrCqcG4lIcmZFABs5wDcasRWS+pDQWSBse53XXjlhh9GVobUCfY1s2E6rJ SKOWUFPcFXmzcL/XeU0GamwzrEdKinD1+15rxLSlS4oS9fuxwc5yFfrUYLFD OaZ9AKlZGgJk4SmOVgZU3qFUpYNeERKMrkaXvp+GHAFAy00Zf5IUfQAoR+rN zBnMuN8S0aTVK4yjrqRZaJ9fERqB0hgElVpXmycslFGHIaMWh5ozSVNPAkA5 9vgALQAnB0Ou4p6GHGkgYd/KBlLHkBylOCqZ+iEfoUzDI8JrLBJUmnpoW6i1 QYQovW5ZEFK+6wGgHKnCuDCXXIh3i9cBQDm2+YDNlog+APr+KI7eGpnLLaki ZDWlVNUCQq2GdDJ5AYC6TVuPZBlkrITSjJIGEh5+aNuTdCwJP4qjTqWNjA1+ RdRZZyxEKAlItXR44xy3hFdaIh1UkMocB8DLFprwAbTrcN4ykrpcAqgLFkpD CvtRdbwMT2kWpjh6a5cgLm0x+wvfpiI6ZiTUkEJpQrMWCgDKeMNCSU0Oir35 xV+3UBpG4bLkFhRZsfykXrsJccva1HnH47fr8Nhgjd+wUM7brCWO1hFv16Fj degtQC1pJR96RPPrm4WtutOhOlSH6lAdqkN1qA7VoTpUh+pQHapDdagO1aE6 VIfqUBnV7E82hZ2oQ7oplPa+W57gFbij3vKe6uRDd4rSxn3ehi/3Or0BcbTH S4cy1yEuV0M1jP1Pda+H9sh1XqPrS8lbr7VHHHuYXhnq8sF0x+2pLtOkwyR8 3a43aZORDgrI7ZOOL+g6VK6ITuypMGqVTnPouGjGnp6zUHIHbLmFx/6iumJC J2/yVdGNqXR+1zrVjD1CT1mIThF1uCVUOrhFzxXX57PJSG+DvCPPQByd2uWK yCWAPD2p2zSi6RBaR4C6RZX84lrOAbFX52EL0TG63qkGXHIxaDmbxKfX+4cy DqbTieG8s23y8nU9M10/IIKegzjylsoV6RmA/DHlaSA/rp4HHUrXTwD5HJBT I70XeeNRL+lsVFVP7jzowOh6V7ouK+QbRFf0qPNzReQGQVWSe4oqQi6UFyFd epMtNwjyoFSXy0uBzMSrkC4Ns9aL70PGHsTpqyNPCk02cjZI7kp4z42gfctI toSgdDOVTGOuiByfyGdSJkFGm2bMWUiX3NJaTacPUkZNtyRIg1yFdEnRoeEl FI02kkqEv1aYN1dJHv40AuUf2dJ79f/IDeCalzg5CrVmOHKE22dPT8FTEoXt Yucf3pM9xitj9S9CftkunuUrvSfyco1aNoDxRCk5XMqSS1uehnRf+ID42pNc 1oZVZuWgPvdRpVecegYdh450+jDgxjeayDo7XGrvZz43vsokH/oka3l4UVMD ZHx9SXNeNKKplZ/6yNKLSpoPaW6g1R0ZmKAi8UUlkk5UEbKTVJFP/IrEV5Y0 j5MwJjx5/H3s4+MrSxPhU1oXU+sDfOlFJc201EtUEeqHj/yKxBeV5MdIo4XW /dQPAT6+qETXwUsrQv3woV+R0otKcrwk20HGmyrygV+R+KKSHEbJWtIeGb2Q AB9fWpKrZm8h+CZH0PnxtSUqlvCUV9tQwcdIIt11O3VVAOFJdwYVia8zyXuU VA7tMMk/O5gNhy82sSIjBUcj5KDlCOSUc8GJprdSLi2bgho0xTYzO0ls2kKT 7P7KL1Z/BIGuWFGxUtpf/0t/6RW5qxCyGHq93/gAGlA0BGkNRlD6PgK8lqRS g6V/UqNnOb71AX1LpLUVrY1pwpFF/M4H9CBOk2fpnzqR7f/eR2lThEQECXWa WmkaDaDa6tGMXYrSFswPPkA7Q0LRnhPtDEit/egDqMHqyi2FKFKjAVRNpy+C 1Haswn7yUdpglbUgALVAouZnH0B/QIu2vAgg2fKLD6Cm61iD/qYXxdE0HEDp WhNVhFA6P/rVB8jg0DUbsgL0Wcvu/+ajyBLrmJJQ6f3xCvd3H6TXGV9vSsXP 23H6wy9ZAjO+10SroaBYvSnaACeB+adfGE2M+tt6CyxMLza+czRQBEu04TtF xQVU7pWhv1qZmuJuW6j9aAhFR/AZ3/xnAX+qs1r0D8EbpsE=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {209.812, 0.}} -> \ {-2., -2., 0., 0.}},ExpressionUUID->"9a1f9e99-51a7-44cf-88d9-0628c1f8c6e6"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(56\\). \\!\\(\\\"metabiaugmented hexagonal prism \ (J56)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"dbacaf14-2d7a-462e-98ec-\ cc000e5798ab"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .82356 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.349054 0.174298 0.368204 0.174298 [ [ 0 0 0 0 ] [ 1 .82356 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .82356 L 0 .82356 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .19811 .45535 m .19811 .28106 L .34905 .19391 L .5 .28106 L .5 .45535 L .34905 .5425 L .19811 .45535 L s .6743 .45535 m .6743 .28106 L .82524 .19391 L .97619 .28106 L .97619 .45535 L .82524 .5425 L .6743 .45535 L s .19811 .28106 m .19811 .45535 L .02381 .45535 L .02381 .28106 L .19811 .28106 L s .34905 .19391 m .19811 .28106 L .11096 .13011 L .2619 .04296 L .34905 .19391 L s .5 .45535 m .5 .28106 L .6743 .28106 L .6743 .45535 L .5 .45535 L s .19811 .45535 m .34905 .5425 L .2619 .69345 L .11096 .6063 L .19811 .45535 L s .34905 .19391 m .5 .10676 L .5 .28106 L .34905 .19391 L s .34905 .19391 m .34905 .01961 L .5 .10676 L .34905 .19391 L s .5 .28106 m .5 .10676 L .65095 .19391 L .5 .28106 L s .65095 .19391 m .5 .10676 L .65095 .01961 L .65095 .19391 L s .5 .45535 m .5 .62965 L .34905 .5425 L .5 .45535 L s .5 .45535 m .65095 .5425 L .5 .62965 L .5 .45535 L s .34905 .5425 m .5 .62965 L .34905 .7168 L .34905 .5425 L s .34905 .7168 m .5 .62965 L .5 .80395 L .34905 .7168 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 237.125}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnGeXVEUQhi/sgqDEVVFhYYcMErwSzSAIGEA96PH7HkTBLGDOOYc/6m9A Zrqod2b2qbKX/ejdDzs93VX1drrd7+2umnOz1y5dfHv22uULs70zV2bfu3T5 wtXe6Xev3MiaWNQ0i3pN0/zTa/rp6zeS9m/wt7n/z77cYvrV/sfivs2XPHVx qKiZvH4TzrBfcLlmwvP7H68Oqy1xtZt/fYVzSdkI6sSwSLPYIZ/x1CTIXYhN TLriKU8tnZ8JEn+yUi4xe5vX55inlscmnnWhe0FouZc+6qk7YmNPu9DYWN4D One48FFPrYxtn4GixZB3N+SR2YOVcgavYV5SCbrKNR701JoY4KQLLQOhuyBv jWvs89RUDPCkC9EI3gl5U66x21NUEQM4DkW1UGR2e6WcwT/hdVwdtYVGbaCx 1VM0Uw3gMRdaWwlwj2vMeOq+GOCRtJcJlIxtqJQz0IejjqHZNpa3frRVg9R0 DKXnnNYaAph2DY3VphjgsAtRJ9C02OQaaz3ViwEOutDGSgAyRstMAqrlg4RW Qd5m19AiuzUGaCvrQ1B6crTx0INrUPtdaFtlx5CxiUo5A93roDtBaAXk7XCN oY2s/21XjHK/6+yuRBnUZiLSMLNUdD/k0Uq7nZrR/wg7w0B3uuK+SqgynEzF aLho+A1ctaaJeTvkbXENonGiewmo5jERAyJQPdcghiaCuCUGpaJa+BnIo4pQ HulaldSqoyBE1GSja1A1tSokoFRUC7/BAWhaisDSgp3APxS1hXbWkLtq+aUN abjLK1pP8LSRUkUoj3STKlGP0ORa522mHV2sOIHfXAlPVPwuByBGJs68Loan x5IGhODFmYnD5aUJPLWe1joiiQRVSzCHV8eKHqEqrfY2E7cWr5snPPUIbTQr HYBIsBg6kTeDp22DWk/wtO9TRSiPdIf3yIoq0Rvy7d5m4uri9POELwPCDECQ xN7F8mlzN8gdYYsZcpkbpcVMvJ/2lASytHJyBLJpcG0mXMqjZWSYh2Gj59Rg ibeInha9EcwTbfwx63fthBujeSAmRc+DQRGPfsgVadYS1HbuCjv6I+Y86LyB AtVgMOATNSZC1i7m3LrcgWKMWPuh0c4KefkYJx7TaGMAopM0BWiNo7wHKu2V 94ZmDxSpBWJnBCVWTxoGsDfCFicLWXgPAKSxJwbY40K0ac1U5lFXarMskwvf v2jeiVkQlDi6WkoUYEcMqomtPZM4tfh4CxoGsB8Ut7nQhtFUyLhb0NgWA2g+ URcRHaU8GjV1b5lmKBRuByEbFpNuxwBocuHbsmqmFYSYr1hzCxoJgHo+PyOe AgBplIlUTrpoDMKjCHr+KI8GRE/xhhiexoAAVoOcUoXd2Ubw30z8gCsSK10J AIeiqjOoRoNIIxE/yqNO1RGswdMGpM7SkTcBiDa2oFF6Dpu+woV0K0DcchkA SGMqBqCzhuOuSJxyKUCdiPrGjrLD2p6CUtqFKY9GTZdPCbxaoHs+AhjjJWMa 5SSiOZIqnvVU4ZCjFG+uecmXgUnfDF4Ekw2TTuqr5yFv2TDqnCvu8/30ktEa n/eU6Q5692A/45XRFA4pnrxQbV9egFwH1UF1UB1UB9VBdVAdVAfVQXVQHVQH 1UF1UB1UB9VBdVD/T6hD/ZKB0GFPyQ24meMn0f9s7Ow19EjV8ajkilNhtXPL WavpUN5NnIb8EajtZyEvqYaOrRVMk/uhtqBR7j/wXFwH76c9lfuctqBRvLfx ZF+36icj+Io86koFnayJ4ekyRbcwuVepWnoc5AyUbnB0i6a4jtyDtAWNO2MA XXLJsSX3EW1Bo4Ri4C2aLvGoU2u9QGnUFOZQXPbwDpGCRNSC3PdTcmQ5AdV1 rCIJcj/PFjTWFwC675V3gfz5a++zpTEdA+jCnPx8an01adR0X1+c7PC+Xo5v ecyT/DJb0OjFAL0UNPfBbMcAyDI2Xa4d5JJS629JljVcxa0OPUvU83kclHwr W9DYHgPI+SaPg5oGAGmUCYd+FOQ6pmcoH1NB0ZOYgMoBozZyivJo1LS4l4ah F5fWgzxKSr6TLWgUy+jopsCtPDZqKwBIY38MQLtCbWwU5VFXkj2rEk0a+X8M Ebz+t9DfcqzhY2oPxlAKJ8wdMWkVNrOkGDDX3Cvz9dieqlkbB0V5BpD7zYoA 5v6UbxRjtf6+4p+5F+VbsdnAaZkcZWYq8wxtHk7aonJkT65y78aWM78SrQm5 X+T7RWG+PvRa03KvyKux+dqXqNpoIcoz+IXETOQxQqKAHxaohUSH5PFA8or8 OIaqjYOpjQz6tEAtJAqoNrqH8hL42hioPKZH70VfFKiFRHvl8Tt6ZL4qUMQf auPaaiN0KC+Br430y+Ny5Cn5bYGa8QwK8CeAPApHvoffFwCxIjqyoIU9j7nR JvNjAaBnjQgPGaOOrvWPNHi5o9N7KB1K5DE2OiX6pQCI/BDtojEYj6xhr8jf ivldnkHUm8wH0TS0QRgGsTKiQHSuMmj+YKf7sxjT20CtCVG8v4sJBX7Q3k3P TRgh/1f58oCX04ZGFrNAeKsmEVKasbQN56Hu1pXyH58BIfoZB5E4WvrMrIKV iOCQWYJPAI44wHoQohU+Dz43syLIxCfIbB5UbmYfgaLwd3pCukaDbAD6zaVa s7Xh4AbwuAPUsoM8uNvMHnMhmhN0SJAHbZtZ+nEsGh4ykZMvAzjhQrQ80s8W 1YZbG8BTDkCbFgGILNEhnZnVGX8YEB8SI2I1Znbgsx+sZFSb2lBnM6/fXhtb eomJ5zHLZvE5KCJj4jJ0hmbGwp9sC0/EEkUal3maEH8gYjSiyLyAXggTtYZf 5Ic1BiV0IjEsFO7oJvSaCyVwl6CINmQTv+w2E6E3XYjedUzobSiaicXfcZuJ 0HsuRNuoCV1xIXrbN6FrUERbgIl/4DYToY9ciB4dE/rEhZLV7jMoogXTxD93 m4nQly5E27YJfQ1FtDiZ+DduMxH6zoVobzChH1yI1ncT+gmKaH0w8Z/dZiL0 qwvRIYcJ/T74mPOUGyn9o/8xMZTxV2xp8OUWfyG0WfQvc1oHCQ==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {236.125, 0.}} -> \ {-2., -2., 0., 0.}},ExpressionUUID->"3389be5e-ffce-4b1f-ad82-d345ef160e3e"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(57\\). \\!\\(\\\"triaugmented hexagonal prism \ (J57)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"ebe681f3-c484-404d-b7fe-\ ce5877845cb1"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .72626 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.423147 0.153705 0.324702 0.153705 [ [ 0 0 0 0 ] [ 1 .72626 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .72626 L 0 .72626 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .29003 .40155 m .29003 .24785 L .42315 .171 L .55626 .24785 L .55626 .40155 L .42315 .47841 L .29003 .40155 L s .70997 .40155 m .70997 .24785 L .84308 .171 L .97619 .24785 L .97619 .40155 L .84308 .47841 L .70997 .40155 L s .42315 .171 m .29003 .24785 L .21318 .11474 L .34629 .03788 L .42315 .171 L s .55626 .40155 m .55626 .24785 L .70997 .24785 L .70997 .40155 L .55626 .40155 L s .29003 .40155 m .42315 .47841 L .34629 .61152 L .21318 .53467 L .29003 .40155 L s .42315 .171 m .55626 .09414 L .55626 .24785 L .42315 .171 L s .42315 .171 m .42315 .01729 L .55626 .09414 L .42315 .171 L s .55626 .24785 m .55626 .09414 L .68937 .171 L .55626 .24785 L s .68937 .171 m .55626 .09414 L .68937 .01729 L .68937 .171 L s .55626 .40155 m .55626 .55526 L .42315 .47841 L .55626 .40155 L s .55626 .40155 m .68937 .47841 L .55626 .55526 L .55626 .40155 L s .42315 .47841 m .55626 .55526 L .42315 .63211 L .42315 .47841 L s .42315 .63211 m .55626 .55526 L .55626 .70897 L .42315 .63211 L s .29003 .40155 m .15692 .3247 L .29003 .24785 L .29003 .40155 L s .29003 .40155 m .15692 .47841 L .15692 .3247 L .29003 .40155 L s .29003 .24785 m .15692 .3247 L .15692 .171 L .29003 .24785 L s .15692 .171 m .15692 .3247 L .02381 .24785 L .15692 .171 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 209.125}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy1nPmPFFUQxxtmV265zwVmWORqQSD8YIyBRe5DPFG5FNaNBmIIBomJIRJi NEZjjMYYjdH4N/kXITP9qG/v7OcVNaF7f9h5815Vfatfv+Pb1fXmwvS9m5/c nr53a2a6d/ru9Oc3b8180Tt15+7jqs68opjXK4riv17RLz96XEz/Bn/b+v/S lxHKX/U/5vftnLXSlVpTMfboCUTCO2lyRcfq+x+X62rjpvbkr69w3Gmbhdqp ixTzDXLKSmMgdylvYswUX7XSc6OZeM4UX7bSwryJj01oLQiR4qGgXAK4YQBD N2IN6Cwy4YNWWpK3fR2a5kPdKqhbYgD7rLQsD/WhCY0HAcjYnqBcAr1qoNTB K6HuedPYZaUVeYDLbi+T4grT2G4luvoEcAmaolCrDKBrJRo0Cep9E1oOQlRH xiaCcgn0ooHS3SDQtaax0Urr8wDv5jqGbvxQ3XoDGAJlqLdNaB0I0TDVFay0 EnVgAnjThDYEAchYVC6BXnA9Wwp1m01Da8TWPMDrQX8IaqsBLLBSLw91zoS6 IETziox1gnIJ9IyBbguCbjON2pJfPFkyGOWU6bwAQouhbrL/v5PTSGZPQtMO qFuU6xPauQZ1k3nQ46a4OwjVHfxnxkG3q5sHf83AXwQh2ke2mAaxFbEaB/Qo NEXhJwyAmI4Y0ZY8/BET2g9CC6BOKxe5JA7lLCyHoSkKT+sfOUJ1pOu4dCB3 fUN16+yaaUqLmDnwR4LwxKDWGACt71qIaWtqAH411JEjVEe6yaWpoEs08bSl EjkS0XPgaVrSECX45QZAdEM0kHiPA09XTyvcMgMg9iVqSBSrvhIG4OmJgTZr coTqSLcBlxbbNRNdFMNz4I9l4XnrESTRRtFL2p7reyEOQYZcaEZp6fWXbQey usqxWZBFgWsz4VIdLSPJgxPZi57jwbhdEVFMUdER0YYHlRGJLMUUFaXp6NCp A6ZIo5agetwVV56CMVAgCjngm52aib1WQVNlv7UScZy0yylNbl9ltrQmIoS0 M+2d3alZ4iiqWYJGxaRS8CBOEmljIFJGQ6sbrKOABtmriHAtKOFTTVpWd1ur yAi5JDpbgkZyZIdV+KST9r6d1qpNisipiG0JGjsrRxRF8YkobbPbZ7cGVs0S NKpJgMMySkkp+ED2aEQSn6Q6GmlkL0WMNaN8Okv8oWut2uLIJVHmEjSSI1pX fWJLfajlX2OJlhmR5xI0upUjNESjFJf6kEYaYdBNojq6wWRvc3U5uj6fHhMd 2mCtClWQS5okJWgkRzS7fKJMJEkjSAtSNpA45Ig0NlWOaOj5lJkCEKutdY+V aGpo/SpBo5ok+SEaqCNGRj1CGxndaqqjkUb2qjcitdnlE29yXTduv5XIJTHt EjSSI7qFPh2nLW2ptR6yEo1I8e8SNKpJUhvU/nZDm7yu1H8/pa2vBI1qSOAQ jfJ3YqvkyCtQRxSH6mikkb1q8a/NLv9hgFxXfx22ErkkWlmCRnJE25L/qDDE g8WbFIXspJaaAfBA8tXswLGZf5aAB50huePgRqYn6abRM2W1jtZmTPbZZLiv +t9O97+Mz+6F01ZKtvVWwH9UOd8v7bMSDY06CfYfQYZu6rlgF53NIxN96Gbr +AmHLmxEN7QGErgfBiezI8KLk/hPC7R8NwAfXbRpDWwAnshRlPu35JJIj8/u afg2AC/m4HN6IuQNwBOZiXL1llwSL/fZODH+BuA3GYDPwWkoNwCv/d1n3kSb G4AnyhFl1C251LVr9jkzDeUG4LV3+0yZ2HgD8NHQEC3nDcDTa/Io723JJUXe fGZLQ7kBeEUgPVJLLLUB8BIgi3jMvQEPBo/IA3JGRLcBACXiEdttCmBurijR 4cbQmM1SKk1jkLOb/ASOlkD9tI2WQFtfEgk0mqLREryfmNESqJ+O0RJoNPWi JXg/4aIlUD/NoiVQP7miJdBoIkVL8H76REugfgJFS6CtP+gTaDR/oiV4P42i JVA/oaIl0Ir6zWGJDQTPCE2JFy0BKMd3oLjfSrUBnO8HimYO6rKHg4ai0pJb nIfqcpdTELFK/4pncFAPUgqZ452imgSgR6YpK/mZGSVoLMvDT7hmRdj8405i kyVoLM/Da7GjiS/u1MCrKIInSkaOUIAxesyK6mjckD3HdUU/6bWmglH+OS31 cAkaa/Lwin4uglaF4vyzW+KpJWisy8MTxaOOpkggdX40z4J0qc5xXVFSuiEK efvnw8R2S9DYmIfXrSEipVHlnx4T7y1BYyIPr4FJ+TSKL3et5OdKlKCxJQ9P 1xw9rxQ9eUZ1NEby+TnouqKpxPq1jfin1sSjS9Do5eEVTaUnna61+ifZxKhL 0JjMw2uJp+GoF60NJNoRfPRMKcXFnmV8Rdcqx3VRCBqYitj6Z+nE0EvQ2FWH 56grBSIUr/VP14mpl6CxJw+emQSUSxQ9dEd1dJfydLHytJNzTvtfMTshwc9e wNzn/re99e6B2ThUp6QmP6OB+jBBnYKm4fz+5J2f6HAtb09uRo/fUV0C8LPm RW7JhBbe63ljw2d6+vdFK5qfbTBdKYxwZCF6RGOmkh/hOAaFQaI5Ag6ad95E i4yfA/BppTDqCRrxEf8d/828eTqwRW99ovFRqkvwz3I8yY+Pahf8LA9FV0rT z4+KioHerqCOBq+KoPxYqO7unTxU9MBdNAJKdQl+KghPdMOPgIod3q2gnuWw pR/31PJyLw9FV0WRg+g53y8rKCVCHgwCRCObVJdApwz0JRCix28/nilGVv0+ DM412l8JajiKyezrfgV0zCpKMEV3oAdGC36rnTBOGMYuEKJowYDEDJbnB5UJ /dZA9KcAxEseVibO5HBo3jxFrpBZxTajxrqmQX2WLvi8CRH3pjiBnwyZzF6A JpoPBLAZ6hyoN8yfTSBEK5aSuWhYJ7NvmRBxVdpRFUKgcZLMvmNC9KNKZJbg HYCL0JT9OaCRFvoE8J4JRc0qskStyewHrhBtsdHfukkA+kEjujgC8MlEMnsV mmg5G/2kfgK4ZkJRs1G6lwA+MgDaMujS/Zf8yeyNwQdzX/8HvohuJ6PTJlTM fj0TDcs6tmeC3ebnkiRj/k+40XOXo0j086km4iloGbX+Z8EPynWN7BP7KEL3 TciB+xqaunnxB2bTEXpoQk6HfmNCzh3/Fpqc0fad2XSEvjchZ6L9AE3OdP/R bDpCP5mQs/T9bEK0eiahX6DJ2V1+NZuO0G8mRLwnCf1uQrQOJKE/oIlWwST+ p9l0hP4yIZq3SejvwcccdpvI3j/9j06t4t+8pcGXEX4ws5j3Pz18AEY=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {208.125, 0.}} -> \ {-2., -2., 0., 0.}},ExpressionUUID->"df36aa04-5166-44c3-95ae-d3de2d91f083"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(58\\). \\!\\(\\\"augmented dodecahedron \ (J58)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"d58a3e62-51f8-4533-8180-\ a84d822831c9"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .47389 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.261086 0.112027 0.213122 0.112027 [ [ 0 0 0 0 ] [ 1 .47389 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .47389 L 0 .47389 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .26109 .11783 m .35172 .18367 L .3171 .29022 L .20507 .29022 L .17045 .18367 L .26109 .11783 L s .26109 .46261 m .17045 .39676 L .20507 .29022 L .3171 .29022 L .35172 .39676 L .26109 .46261 L s .02381 .29022 m .05843 .18367 L .17045 .18367 L .20507 .29022 L .11444 .35607 L .02381 .29022 L s .11444 .01128 m .22647 .01128 L .26109 .11783 L .17045 .18367 L .07982 .11783 L .11444 .01128 L s .40773 .01128 m .44235 .11783 L .35172 .18367 L .26109 .11783 L .2957 .01128 L .40773 .01128 L s .49836 .29022 m .40773 .35607 L .3171 .29022 L .35172 .18367 L .46374 .18367 L .49836 .29022 L s .46374 .18367 m .55438 .11783 L .64501 .18367 L .61039 .29022 L .49836 .29022 L .46374 .18367 L s .70102 .01128 m .79165 .07713 L .75703 .18367 L .64501 .18367 L .61039 .07713 L .70102 .01128 L s .84766 .46261 m .73564 .46261 L .70102 .35607 L .79165 .29022 L .88228 .35607 L .84766 .46261 L s .55438 .46261 m .51976 .35607 L .61039 .29022 L .70102 .35607 L .6664 .46261 L .55438 .46261 L s .70102 .35607 m .61039 .29022 L .64501 .18367 L .75703 .18367 L .79165 .29022 L .70102 .35607 L s .86661 .20697 m .79165 .29022 L .75703 .18367 L .86661 .20697 L s .86661 .20697 m .75703 .18367 L .83199 .10042 L .86661 .20697 L s .86661 .20697 m .90123 .31351 L .79165 .29022 L .86661 .20697 L s .86661 .20697 m .97619 .23026 L .90123 .31351 L .86661 .20697 L s .97619 .23026 m .86661 .20697 L .94157 .12371 L .97619 .23026 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 136.438}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNnOtzFEUQwDfkkgsJSUyikYi5vTMBeQRE0RJ5aJRHEASVKv2eoqyCD5YW 8kf4X5/Z7mFmb+83mz72Jms+HENP73T3PPo1vfv08M3LP/48fPPqxWH/4PXh 3y9fvfin//Cv10eg2Zksm+lnWfZvPyvaw6Om+5G/QfHj/gPtgbaP0Dd869ei NVu0fi8hZQIZur9sG2BrRrxn8jtXhmnH0d9vaUg+BdgswJ4r+T505QBbNeI9 Ln5PFaCubyUi9SPATgPs5zTkHwFsycvsiNKDtOLLRrwHnsB70PtTGqL3AUbb 8Uka8vcAtuHnwRHtAdIOwJaMePuewFnofZSG6HcA2wLYQRry3wLsnJ8HR5R0 znmA0UkkvDsAI8HupyF/y8v3CfTeS0P0G4DteEYc0Y8B6VOAdY14XwPsAsD2 05D/yst32bcSkfoSYHsAu6vkz0HXJYDNGfG+ANg1gN1JQ/5zgF0H2O3/BfmP oOsKwMiFITwidYLkSfqatW+ZPNmWq/LLLutngE+Tm5gkSVlzvk+SJJlaHQ/9 iCqpgrz1ALVMnrZflXwx3vXm5Al2GWCL8tsZWdTAwYfGka0TQByoA8DbqsyG WD8hNOtbAut5GDnYpG/J5yB1oTt+Kodhuwaf2L4IsAWAdQBGGlJDn6krT/Ly 6NkVo4jkrpAVrRExeN+XfKsLsB70EptWr4pgZ/3I68rctL1iGo+ePQMwcmTn AUbbThXDmNrQnVya2uChLwOsN9prUMzEM+0PmoNNhx0/glPPd9DyrHihSUBa ZBKQnn0fYKei3E89i2Z9lvYTiU2qjfbxhvFZPdwas8r8B03xAcB6o70GIXYb CLEOMFp3JwSRImNthdHabfoJIGEpGRKfddLUx2seJyxtDloTstOER8LSszT/ JDYZPNIQJDZZDVWGqutk/kPmbhtgvdFegxCUtiFFQQyTYLQ/nBBk5K3ak/BI REp90VYkhUdi01kkA0VGxolNXqc1d0t4JLYYK1n3uLBs7ehQkFIiI6N4pYRU yN+fB1hvtDfCkJ6qMXdicyKekE+K+Kw5McKjhbhQI9mAJaPQLr6dUDKJQGRm 53zrCsDCCoQ1U5X1dtQxt6fAIIVI55wOqa6Ri4PqYiTuy2HIPc/7wLcoCKA1 IzXmWKwGqQX5ajAbY+maZyT3LUrLkmWrYUlcJrlqveFbkh7djclMKp502GKJ gGFbU1BPeBToK16nuryy3qR9SIORX+dEoOnLAUaRuBWPrMqcF4ImkWwJ+eSJ hKAMIuEJ+XmvpiOHMK6hWmNc6Aq3eqTGtCrpLMczqSkyvlcb4FXV6PDt+gvP sjuieisRm2T+CG/Ls0nMLbTLHF23RDWJ45XCDvLdKallxSM3WiYyZJU6MV2R iE1KsBKenu6xAySqQaaWHI9uuzxr3MraSramiENelGOcZKLYkpx3Kx4F5rRN yVaseSHIorcsBBkystpB4VWczET8U4BJeORN0DSHA+yOKAUXFC00gVFak7QG uZKksOfbZZ0cBIodyMfopmGd2CQ8snGkUiiJ5jYMRahNTqN119PJWgQYRdWn 22U9HsCbvelps046kPCsrJP+cREfLVITv8RqZIkubSKKJc+0yzodSWvKdbld 1kkREps1rJP0TQIXq3NO5ofMFK3ESrusk6mnI0n7f7Vd1qNelkHruDtx2nNN ciOER1E8ebnkDZPyXjtp1jmyiOcUSEmeILtjwVs8cqdtj5lSa8pvotRguFdF V482dqkkQ0jtjLZk2E5sWNJSbljLES4WPQfYpFU9tEpDl3gjF4w0lJ4Vk6kq SFY1SgEjzWOt2iHzRXhyzEVSchVIf+kElO6JQl0O6YwciWbHlfNcBJjsDlkx ymMQcXX1zYGrnX/beNYSH3JYCW/BT0Bd5Z0qk1KxSqjamehqdaKKn8Fob2iV kiJjak9VgDkpbeWe8Gi8+hKfPvRGvaNq1qT4n14ome9sSImQdITXpKaH7r0I b93PjI5cAoTKG7IL5F3PwbP1VTtbo73BwGToUVGQb2WO8CavvKEMCY2ixgZl tlYvkRCE16SihiY5Xl1bmodQ7UK2kNTmAjxbXymzNtorLccILQMdYytzhNek 2sVaUaMGHafcWoFJ4hDe5FUsZI9Jd2kWRi1UpdqEiFKWbwmerVaqgCWtVLk4 Rkj3xcu6jmcufvVy/GxSmtNa7qLPljZ/0K9kXGmIFXiW6k+oYsWRz+Ufe6E8 5eRWa8bIAX+vBp/cflWVWDZDDjCxWJ3RGGvVqDrL+H0PvYvE82KdNauPQfUe xJL7iAC9WdjkLbQpkKIhZJ1LDgFObxMCE67kDeiiWM7yLtmUSNEQijfmlNec mibU3vGg0tul1vfyEpMkKWlHUbRIeLvNyVuj/hry035H7F3Ih7MsLdp2pAUp 7ovfI5l3cyLyVoVEeHQRZ31j2ZEPL6iHRMxNQCdfgdJ0NW4JvYpPjloi8je9 fCGZcTuK3sgBuwVdOcDoKxDRSMiApyyhVOQG3E1DXqSqBPX7gG5Nd9WQom93 UHD9PcAoWqaojvD04OGXSyi4/iENeZnUSoD8IA0pkoBC1ocAI4+WbrpqIkX6 GA4FWQdpyMtXWCrB5uM0pGgCSfs8AVgOMArJCc/lFQ68fCHAe5aGlH7Iit2y X9KQrK5ZQeo5oJOypACa8NR24/rIh9fkbYB133LpqaECatvZzH/oQrKt\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {135.438, 0.}} -> \ {-2., -1., 0., 0.}},ExpressionUUID->"01ea9e3c-eb29-42f5-97fd-8b3988684cf3"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(59\\). \\!\\(\\\"parabiaugmented dodecahedron \ (J59)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"d390917d-3069-4b06-aa6e-\ 3f6db25e0858"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .54087 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.270918 0.116669 0.245622 0.116669 [ [ 0 0 0 0 ] [ 1 .54087 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .54087 L 0 .54087 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .27092 .14638 m .3653 .21495 L .32925 .32591 L .21258 .32591 L .17653 .21495 L .27092 .14638 L s .02381 .32591 m .05986 .21495 L .17653 .21495 L .21258 .32591 L .1182 .39449 L .02381 .32591 L s .1182 .03542 m .23487 .03542 L .27092 .14638 L .17653 .21495 L .08214 .14638 L .1182 .03542 L s .42364 .03542 m .45969 .14638 L .3653 .21495 L .27092 .14638 L .30697 .03542 L .42364 .03542 L s .51803 .32591 m .42364 .39449 L .32925 .32591 L .3653 .21495 L .48197 .21495 L .51803 .32591 L s .48197 .21495 m .57636 .14638 L .67075 .21495 L .6347 .32591 L .51803 .32591 L .48197 .21495 L s .97619 .21495 m .94014 .32591 L .82347 .32591 L .78742 .21495 L .8818 .14638 L .97619 .21495 L s .8818 .50545 m .76513 .50545 L .72908 .39449 L .82347 .32591 L .91786 .39449 L .8818 .50545 L s .57636 .50545 m .54031 .39449 L .6347 .32591 L .72908 .39449 L .69303 .50545 L .57636 .50545 L s .72908 .39449 m .6347 .32591 L .67075 .21495 L .78742 .21495 L .82347 .32591 L .72908 .39449 L s .72908 .11392 m .78742 .21495 L .67075 .21495 L .72908 .11392 L s .72908 .11392 m .67075 .21495 L .61241 .11392 L .72908 .11392 L s .72908 .11392 m .84575 .11392 L .78742 .21495 L .72908 .11392 L s .72908 .11392 m .78742 .01288 L .84575 .11392 L .72908 .11392 L s .78742 .01288 m .72908 .11392 L .67075 .01288 L .78742 .01288 L s .27092 .42695 m .21258 .32591 L .32925 .32591 L .27092 .42695 L s .27092 .42695 m .32925 .32591 L .38759 .42695 L .27092 .42695 L s .27092 .42695 m .15425 .42695 L .21258 .32591 L .27092 .42695 L s .27092 .42695 m .21258 .52799 L .15425 .42695 L .27092 .42695 L s .21258 .52799 m .27092 .42695 L .32925 .52799 L .21258 .52799 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 155.75}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzVnNtyFDcQhse7NjbYJhBIHGzMjFkcknA0EA45XaVygJDkFVxUquAilRTh bfIyhDyYsyMp0nj8Sf7Hmt3a9YUtt1rd//RopO5Wzzzff/Pyt9/337x6sV99 /3r/z5evXvxVfffH6zFpuFAUC1VRFH9XRd0+GDfdL/OzU/9y/0D7bf3nas3/ TYNQDA+8gPF/V4D2lWX/B7out2g1mK9PxP4O2DfN76UmzQ9zoP6FYZeANgDa k7iIj4A2jIu46k170beeAvuHQFsC2uOGWOEGvS/y/ZAPaQe6SqCdF/l+BNpF oC0D7VEcUgW0cyIfQboAtBWgPZweJLrpp+OQSCzBfE/ko+lNN/0M0D6PQ6Ip f1bkIyuRhVenB4msRBZeA9oDC6mErhHQ1kW+Z+JYusT7cUjXxKsiPrISjSXL TQgSWYnmDc2vexYSrcC7oljiI0j0dNFTmID0sSiW+AgSrUG0Vu1NDxKt1LSi O0jb0HVdvFLi+wlotJ/Rvnc3DukT8UqJjyDRrk/ewZ2ZhdR2L+v/PgUaGZ/4 ngONvEDyFm9PDxL5tuQDJyB9BrRTIp+FxF466bplO7eg6wbQaA4Q388tWq2e FpebM6v+JtAWRT5D+7YmOfNuAtMtoNF8Jj5SWgKNrvnGZCARrb0qHXMbCNJt oNEjRnxkpY6Q6Mm16xs/YnuiZbYSMhKPaR9wyFJqkJ5YyKjL7peLh6CN2/dE I5HIjis+dbWNUhvqvmioDaB13BfnBJK5SYOa9EAE8gHQOnpWG16pufqhbxla 5WkUDqlZAeJb85Jt3NjLg1Ym+CnGI2Cq/76a0OUyjmZ1HfhNybSWgFZBLwVq an4hytfSYc3Vu49WimPJ0gRdjTtJHum119t7mEOXTWOJpuZEiE/VYTdAu/Wa 27/rW+tAq6CXJpuaOyG+FdDhYFbAnpOvK8WxNGEIunrHSB6NtRuChR4eTtO6 ALQKemnpVZ8d4jsFOhxMSqyRS08bFPGV4ljaZQm6ulKSPNJraTZTZuxwKdmq gEbhpLrXEN8i6HAwKS+k3gniK8Wx5CkSdNVvIHmk15oMF2VSRQs/8dFl01iC qXphxEfySK+d5DaZZG7/ed/aAVoFvRReq54s8Q1iCApMnag5e+Iro2PZJyNL xy+LZVBa2u51NsY317vqW9eBVkEvxX1q1EV8LfEOIcV7qktHfKUwtjYazRMl +q3HUqbJrvcYD6nJKuKjy2mPrSGRwTedkWDO+HFkfrsl2TDH3KqhbxGtOtw7 DHj+l4rJlpY8p1QJgIuCz3JpbDulQ/IO/FSyq4IpFDBHjyPfCjRyRwrc2imd RLpLkU+Vl4BEqigLo0JS5TlI6sk6RdHKHe8ib3muIJGquxmQVHkOEsUGdLJ+ B2i0dRKfKm9lriCRKtokVEiqPAeJYl46Wad9gPwK4lPlnZ4rSKSKDhJUSKo8 B4mcS4qgyJGgkIP4VHln5goSqSI3X4WkynOQKN1CJ+vk0Ko0Vd7qXEHKEZsD c3YhURJpGlOZ+NbikHIe5JyFYXYhUVZvGpsH8a3HIeVsnTlb8exCosTgNNw1 4jsbh5TjrOY4v7MLiTK10wiQ4qc/CCknPMwJN2cXEiXxppGSIL5zDUih+uCa b+361qhuuQy/8jSM/x4xQk3rWi+wd2xfYlVdaqr2w64k+ughJMOpxWHE5yp0 QjI6JK0p+UoZvQGMrXxrGXoDzamPRxJs7HjCVefPOa9XawJclV88wmW4dAQT L8NiGerlqaX2cW/YriXmdo58iy4h7/ziqI4wyQhBoDmYakqW1OccgJE80ks0 FTPx2RmAh8d0dNj3uR/JI710OTlHtDYwaNQnbPkWnbfnnMqG8/agI0zKDegN NAeTztbVWkK1ro5WJpJHekug0VJEY4nPOpt2EoX6hGitSk41RKhVCTrC3dmG 3kBzMGl1okeNJodahUcLK8lTlwKiqWOtk4Q3jtLrfVcXkTzSS9DzC8EatZnp 8ja1Ck8tbwuTMl1+52BSbaZa8KdW4eUUFZZAyymiTNRmqs9dTi0lyTtp7UNs LPEdqc1MFwKrz5haCBwmZbpQ+VBtJruiNOly6pbXErro8e5aMt6su2x0xS5F 3Y+iJe8tHWp1BcXfdhvGVI1a7K56FWoBFsEkmvUr8Yao/hg5U5Tv6wiJMk+q F0x+EcXm6Rc9NiYDhGzTcaZRjkKN6cjNINv0ACnn1SqC1OGdKreakK1TKQva 7gjJCRc3EkWfoimBj84+ZgRGzouK9t43XhslppyXM5sKWl1UXdZ+fbYn9arJ fwG+nNdxN7up/xX4cl5Gduq7PoZkhR5g5KxR9FWAnJfVt+KQ1JWcXsHvwffN 2e/ISjnfYrg8s5ByPCaC1EOsRvug6mvS10pyvn6yHYekeu4TgkQ+jBoXEaSc L+kkIKmRJUHK+d6Q3RPRH1bjefqKUg+QqBRdfeeRIOV8uyoBSc1wEKScL3yV FtJD6FKzg/TdsglBUrMOZKUeko6PoEvNepOVKqCpZfZVHJKaFZgQpMfQpZ7c EKQSaB2T5E+gSz0vM1+dbH0cc5Qv1n62s/gCutSz13dxEWq87ER86aA3umx/ wSls+3FU9xHT0FWzU3T09kTs5suqxtxOnek95iuxxcJ/Ma4lGA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {154.75, 0.}} -> \ {-2., -2., 0., 0.}},ExpressionUUID->"13064dc4-230a-42bc-942d-56ce9f158ca5"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(60\\). \\!\\(\\\"metabiaugmented dodecahedron \ (J60)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"f0091c8e-d8a8-4567-b190-\ f24c928c58d2"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .49662 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.29898 0.112027 0.235308 0.112027 [ [ 0 0 0 0 ] [ 1 .49662 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .49662 L 0 .49662 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .29898 .14001 m .38961 .20586 L .35499 .3124 L .24297 .3124 L .20835 .20586 L .29898 .14001 L s .29898 .48479 m .20835 .41895 L .24297 .3124 L .35499 .3124 L .38961 .41895 L .29898 .48479 L s .15234 .03347 m .26436 .03347 L .29898 .14001 L .20835 .20586 L .11772 .14001 L .15234 .03347 L s .44562 .03347 m .48024 .14001 L .38961 .20586 L .29898 .14001 L .3336 .03347 L .44562 .03347 L s .53626 .3124 m .44562 .37825 L .35499 .3124 L .38961 .20586 L .50164 .20586 L .53626 .3124 L s .50164 .20586 m .59227 .14001 L .6829 .20586 L .64828 .3124 L .53626 .3124 L .50164 .20586 L s .97619 .20586 m .94157 .3124 L .82955 .3124 L .79493 .20586 L .88556 .14001 L .97619 .20586 L s .88556 .48479 m .77353 .48479 L .73891 .37825 L .82955 .3124 L .92018 .37825 L .88556 .48479 L s .59227 .48479 m .55765 .37825 L .64828 .3124 L .73891 .37825 L .7043 .48479 L .59227 .48479 L s .73891 .37825 m .64828 .3124 L .6829 .20586 L .79493 .20586 L .82955 .3124 L .73891 .37825 L s .73891 .10884 m .79493 .20586 L .6829 .20586 L .73891 .10884 L s .73891 .10884 m .6829 .20586 L .62689 .10884 L .73891 .10884 L s .73891 .10884 m .85094 .10884 L .79493 .20586 L .73891 .10884 L s .73891 .10884 m .79493 .01182 L .85094 .10884 L .73891 .10884 L s .79493 .01182 m .73891 .10884 L .6829 .01182 L .79493 .01182 L s .13339 .28911 m .20835 .20586 L .24297 .3124 L .13339 .28911 L s .13339 .28911 m .24297 .3124 L .16801 .39566 L .13339 .28911 L s .13339 .28911 m .09877 .18257 L .20835 .20586 L .13339 .28911 L s .13339 .28911 m .02381 .26582 L .09877 .18257 L .13339 .28911 L s .02381 .26582 m .13339 .28911 L .05843 .37236 L .02381 .26582 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 143}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzlnPtTFEcQx5eXRJGHigYk3B1gTFAQfORtnlYkahmTVJLfKStV+kMqKeP/ kT8qj3+L3HZPZm7nPrP0HrsLpfwAQ0/vzLd7enq6e+fu8f7LZ7/8uv/y+dP9 3t6L/d+fPX/6R+/+by/6pImxLBvrZVn2Zy/L2wf9pvslP2v5L/fPIe2/tN1/ 9O4AIZs48IP1/1sF2sfK/jd0rUS0HNgnI7H/A+zL8ntqkOYfc6D+hcfeBNoE 0D7QIba8Xs771v2ahjVod8HI9zXQLgJtCmjvn1hI16GrC7Q5Ix9BugC0aaC9 99pAIvM+B7TTQLujkK5B1xrQzhr5CNI80GaAdvu1gbQHtFkj7ZZC2oSuDaNU 60YtNQTpjJGPtETi0GLePLGQ3oWut4FGm/aKERI9S45htxqkN4x83wCN3CK5 z50TC+kd6CIaDXvVCImOWDqKb1SDdMrIdwIhPQAahWsU1m0rJFI+OQaSlOyQ tHTMkB447gGadvR/4mg9/2+rGoxJI9/DiJZPTxGnBkK4USlGIuXSkRzbSsvT C+3LnLRVbYJxIx9NSvIRTZ/FE0Rtko3nhhEGpYQlqn+FYNBClWW8JduRIo4d kGjXCMOa6pY4qlcMEqXO1lS35NCjgPom0KxaqgvSeN4jQIRn19M6nkbxvDWt Jb4ZP7KrV9Wxx1ZL+EkAaxJMfDMlc/W0IX5d9Hjdt2h5Nn1vp8gnLcobjgL8 NMzRUcCVgjJ5kIIMcqRkFgTYmnATH41H86pnVegiRFgnmmqjqKXAJ626hZiG ORzgStUFeZD8Da0O7Q3SnDXRP8p4SyqstQZGOuwYxU7qf8S1Iz4aj57Vg0wP Hlm7Vd8i97nieztFPmnVLURwFGEOB5jc8DLQFv2Dl6GXVsd6uFXyeyMelosq 7E5RemmRsBd9b6fIlzwCjiLEBMzhAFNwQeZ0OXrw8NWh8JQCNGs8QHw0Hs2r itLyoghxzre6wD7veztFPmlRDms1E+Ibhzkc4LfyP5MprZNz7Bn5aMXWHMQB mnYkHEZaQB6D4u25AUGzyfgxGWfBayUceFeAFtYqHNeUEFuzBOKLhnfoKVmc 9vitZx3VUIiPli6OwbKEF7HImT9LNRn1+847F5eq35aY4lTeokpqsvwkaqQS HkkZo8qR0iotO92BEfrnKHzQ4n1p0i2vhKe8GxD4wb1ug24OhsxTuCYC+v/Z 3S4oyheekJaDuAToSROLHq7iHRw6ziGzhDeklDhenZxGR4naL5odudFlrxlx 1fLq/XaxRYlGll2CLrI5OhwolybrI/msfA4meUza4uGYvnXywKntDTkAUmMX aLE5VeFz5kSHIXkdNTveyC3CpWiG3hPSAtABRhF1Q9DPQxfF/7QitMGpbEYZ 6vYR+NQSMDim1+q0OuQ6WoRO923oKgeJSGdpi9ApYSQaiUhbmI5pKloQH8Wb xKcpE2qYYForS1SNsUKqAToZB4Wi5IlahE6QyOvQ1iUaRa5UOSY+es1GfC4I s3oTK3TrVYUaoJMPp+OHjINWrEXoBInCP2vdlcrXlIpZS99Ec6kTQaLQmBwh eaK6YZZAJ0hU2KLjhzxRi9AllJFwlQDTUU+bmKy0bqs/OwA4UQyxBlrE16II yRpAqOhEvRTokkeq25dXFOKMF6Ls9R4ZGp2LdZ+zs2ng8x64btGh/I2q7i1i Jt94wWMONVLK4OsOCCvCXPIwCRwF0HUH5HNpcLSsgpXOzBax0jEuigzvp8RE KRY8Zph6ZA9toOAarNfu607k59OYdbXZWwXXQAbUInBrZYHOCrETWRM60Y9Z CAoo6NSWA0/LtcXKML2wrrtuuZDGT5uQ1CzOZiMn7fqWTL8etjKmPhQRUChJ DpZq0VXv/uyU9O1Wg52s50Y0XdIhL2L9TBZV+613TrfTElGGROFEcNXkPMPN n+jVR7i8sgk0h8t6YcSSTmVJhMM0Ci1J9TSv9YMX19Ii0nJY8vRcRIqAaOVF FdGazPrWBtBKABM4EkJd+JClU5QVXqX1oNd6Radr5NOkEY9rWrv0DUf7+27y mvFrv5SolEdb+a6mRU1mCzgsi0pbh/x3eLEV7C/chVkBWglw8rTkka3pJq1X uMhIr1xJ+1TQsdIUAWqftGmtTpMnIGHJEqzXfZK3nAx862mxab9QNEJ7k8Qm Q01erYoMNbpwF9FKhKBQz1oopmdJCAr6CQutXdf4LPEpzbzHyJysYtMZK2IP 3MU5XFiKBsh6iK8zKCx7QnITtDYkIBVFSTnhgjbdeZoBWgH40ElMe9J6GZIw W288WW4ypZ4lPncNOuxdKn6Qk7N+hjCERdHNeLrDH9EGwUXDEkyCRDQq4Ore ZfvsAn/Zpygo+3U3sCnJIhOh5SPYsQ9JwaULSZTkllxApt1HhkEVY+u3YRAk omlpBhVNHpRgUk2WygMjQWK7oOCfYNDwFRdQ2fnGYTsIwuedaFJK2Un7o0wa dZHWaXoadsRd/ln7U34KXbSLSUMNT0lSWssu6Q94Hvf0d6GLlGv92OEo08v2 ChuNLntaP9hOfHrGmq25oek/hy7yWXeamf6L/E9UnPsQ2GsIwr6CLspbGpr+ npePEt2PmpmUvtkphIe0x61lQ+LTshF+3w5VlBqafs/LR7V52m41TErf5XHJ AyHTs36jEfFpcDf0nRT5f5TONjT9Iy8flQ7uNTPpY+iiygBZfg2J9rfQFT68 Sl+fUsOkT/wEpKyGJv0eusj7kBF2gVaxfPODlzmkrrT2NUz1o/zhAO1JM1P+ FHXlU5HCj1J07+nAP0PXd/nvNb9zpeWqhQdKKG1nY/8BBPN8Cw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {142., 0.}} -> \ {-2., -2., 0., 0.}},ExpressionUUID->"902e9a42-5e01-474c-872e-a6496df6549c"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(61\\). \\!\\(\\\"triaugmented dodecahedron \ (J61)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"47ab8eb2-46a6-4613-82f2-\ c60f454aebfb"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .54958 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.29898 0.112027 0.236569 0.112027 [ [ 0 0 0 0 ] [ 1 .54958 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .54958 L 0 .54958 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .29898 .14127 m .38961 .20712 L .35499 .31366 L .24297 .31366 L .20835 .20712 L .29898 .14127 L s .29898 .48606 m .20835 .42021 L .24297 .31366 L .35499 .31366 L .38961 .42021 L .29898 .48606 L s .15234 .03473 m .26436 .03473 L .29898 .14127 L .20835 .20712 L .11772 .14127 L .15234 .03473 L s .44562 .03473 m .48024 .14127 L .38961 .20712 L .29898 .14127 L .3336 .03473 L .44562 .03473 L s .53626 .31366 m .44562 .37951 L .35499 .31366 L .38961 .20712 L .50164 .20712 L .53626 .31366 L s .50164 .20712 m .59227 .14127 L .6829 .20712 L .64828 .31366 L .53626 .31366 L .50164 .20712 L s .97619 .20712 m .94157 .31366 L .82955 .31366 L .79493 .20712 L .88556 .14127 L .97619 .20712 L s .88556 .48606 m .77353 .48606 L .73891 .37951 L .82955 .31366 L .92018 .37951 L .88556 .48606 L s .73891 .37951 m .64828 .31366 L .6829 .20712 L .79493 .20712 L .82955 .31366 L .73891 .37951 L s .73891 .1101 m .79493 .20712 L .6829 .20712 L .73891 .1101 L s .73891 .1101 m .6829 .20712 L .62689 .1101 L .73891 .1101 L s .73891 .1101 m .85094 .1101 L .79493 .20712 L .73891 .1101 L s .73891 .1101 m .79493 .01309 L .85094 .1101 L .73891 .1101 L s .79493 .01309 m .73891 .1101 L .6829 .01309 L .79493 .01309 L s .13339 .29037 m .20835 .20712 L .24297 .31366 L .13339 .29037 L s .13339 .29037 m .24297 .31366 L .16801 .39692 L .13339 .29037 L s .13339 .29037 m .09877 .18383 L .20835 .20712 L .13339 .29037 L s .13339 .29037 m .02381 .26708 L .09877 .18383 L .13339 .29037 L s .02381 .26708 m .13339 .29037 L .05843 .37362 L .02381 .26708 L s .63657 .42508 m .64828 .31366 L .73891 .37951 L .63657 .42508 L s .63657 .42508 m .73891 .37951 L .7272 .49093 L .63657 .42508 L s .63657 .42508 m .54594 .35923 L .64828 .31366 L .63657 .42508 L s .63657 .42508 m .53423 .47064 L .54594 .35923 L .63657 .42508 L s .53423 .47064 m .63657 .42508 L .62486 .53649 L .53423 .47064 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 158.25}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzlnAtvVEUUxy90C0KBQnmUgnS35SGPAkUEXyiiWEBt1KgfoCEm1Gg0yOcx Ro0aNRr1I/j4Wth7Zjrn3tnfTM/dvdkiNIHePXPuzP/MnDmvme3yyoN7H3+2 8mD17krv1v2VL+6t3v2yt/T5/TXS2Jai2NIriuKrXlE+P1x79P/Jz1z5n/+w wfNf7nnt1WsVQjH2MHS29ukY0F5y7H9D09GIVgJ7eSD2f4B9Rv4fr9LCax7U v/DaNNDGgPa862IhzMtUeFpqqVvD7O418r0JtINAGwfa1UcW0jlo6gJtj5GP IO0H2nagXXliIJF67wPaDqA95yCdhaY5oO0y8hGkSaBNAO3yEwPpFtB2G2nP OkhnoGneKNVx4yy1AImG2mnko1kicWgxLz2ykE5D0wmg0aY9aYRE75JhWExD oqGeMvLdBhqZRTKfFx9ZSM9A0yljt/QuQSIXS674QhoS0bb9fyHdARqFaxTW nXeQaJFIv0hSMiA0S5sM6Y7nrtBcw9pPHK2XnxbSMKj7jpHvrYhWDk8RpwuE cKOSq6XJpVgq1pURDy/v3ihJC+kB6MWtTQaIaCQf0dy76GkcWlaei0YYlBJm pv4xgkELlct4M9uRIo4LINElIwxrqpsxVI8ZJEqdraluxulR4L0INOsstQVp a9kiQITnUqDNBhrF89a0lvgmQs++XtXGHjuW4aecaxgBdmbG6rmHth0HWSh6 l7IUa75PfNQfjevwuWhB1Od0eNoens6Ep1lotSZJVr4dMIaH2XaCRatD71Iq MoyI1B+Ne8SJrfNPBnKi3hqt0+7wRANYywBE09XRMTxg2gkKiYqXXaDR6tBs Ur4xjGDUH43rHBk6nqeBRtvUGuLRuwRzmL1I/dG4h5zY4rJlPSns2V9vjZTy YHhqW4gOjOEBk/c5FJgOQytFKrQ6xEd5ldV4Ex/1R+M6v4chygGgzQCNQg8S m94lmFb3THzUH4075cTWMIgGOFpvjZTyWHhqW4itMIYHLIZCuGl1SOtnjXy0 Yt0UuAEDUuKj/mjcycoE9HWb8BK7wvRRWE62nGZhTgd5WP0p1kMOs+TcBzlp d+6DSayYwE7djyZL+9oaae/J8EQLYM3DiC/q3kviPH2nNgFrzxJ3jocnw+aw 1llpJeOqYjmdpJMWUct3qfDlliKb908GobeFaRoPT2eBpusmoZKMSHM/A7O8 zn8u9OEhkgujTsXldNTQsVAXMm1d6FXjATfoeqPf4Z3qRJf/yB27uNjsT2Vj boMh475TmIkv1rOSRsm901EfXGxsFo+E6ZEjNbnDcLn+hPEYWh/aH0eARlEA 7SOSz8rXEOZMfR4Mzo0UpWvk84tEvpVyMLeD+owaTaMVQUOk6bIFBeG8O0cI dwqayHeRdpCfiot95ace0M4DjU7jic8bGQq8qeBEukPGiNJAK6SG0Ck0oosl tDpkm0YInSJVolkTXoJOsSFVJChOIz6XjuEM00oQjYwNlRWtkFqATjNMfJSM jhA6BfWk18RHhpOgUwmRQkEqIRKfG9dcviY+MqIjhG614TTDtBLWOx8tQE97 y431mvSfoFPOYr0dQTQfwBMkioWt5egRQidIVKexFhnbhpmBLqGMxHwEmPwl 2R/rtY9htH5XBXB/UijBoDVaITs0QhFIXcaDEORBKVoki9S2QWwohNY/JrxQ 0SqVnzFTJ+Bt+9ndaeBRDaM/CaLNMULMZBv3B8xaYaU0eJNhHg4wCRxFq20H 5HvS4AiSYKXNNUKs5MZlIvVkWFSUnMcmw3QuO1MapQipBzTKhrtAsybyk2nM uXqCvCbikAKNEDhFpeTwyFdo0ZM8+iYLQd6YvLYIK4tU1AueNF7bxb+9afzW QoP4kBMlScAdL59k+PnyyR+JUTpEEQGFkmTN4ppiOXu0tlKndgXsTnVyy98X vUi0PRabwaaiqBo2p4h9toOsl8gqpDF+iUwZnQecTwtgvbwyHQQg2xtdLNJj WAo11tv00oteNPFIrRc5yFzFqWCRxNxPozhC69k0LzTdFFGmiywomLVi4Ixj n2KQvIR0LsimpxfkPPTShZ5R6llmRg7CnK6a9MlB6zEWxiWbLnoqJBqatmYX aLQrXIJprqCly1psZEhUsrB0nK6XXAgdqa31CtKptNDWGoU11yOdJQ+g+1Ft Eo2htwzVHOmVoYxgpCTpMjCvJmXaenRM2aFCsx65UOGIaC6ZMV+sI1HpXav9 JD2hmO5AmABqJaNBCQwlsfPpCbAWf2g3k0G13lXdVxdWGqmGqUZWLzTpFaOM YNaSEM0rvUuCkacgLFMBMK2O9cCom6SZTQwpVvKOIVpCmICk3VWxKWglzKRl lJrOVsW2F6BIEWkDkKikJ2ph451YJNZa1V5vOOnFo5pYpvIU2RayaSRR8sYz Wpk+ODTB1uuCVKt2F8cqM0RKQ52RvFTUVVOit5ToOsR6G5mjA9CH3lKqihC9 SMIQcKswzkCw6tNYZKvJzk9n+qUygJtAzDZpZ9H6kXixcSgKvoStcTkJE6to 2QvVAqbTQlgvylKxlSwcbWLqjxyA5tB0mSpzB5xcgfW8nvJyepccgIblRb2Y QxejavhZAa1HxoRZbTUhFcMlJM2uMpriQPaZRPIRVnwkG9HUPmo4nUG6GJgI HAGh4wB6Nxn8aKnABM4gsxWmWvjkqT22bmDcXh0CEu1j2u8CSUhuAvp0K4Pv FWgiW2a1UeSDdD33jBRfpO6EtJIAs9mgKuHM8NAo2El+1aDioxqDvAZNtHXo cFcDluSl+UrKORg0/aJupRpGG76+4wSQkCjSIrgkoP8+nnWPEjhR0+T1iIZA rhsHJWNxOMwIhXANgbxW/orq0qTaFSfddyhA80GRZCaefx2aKJcmaJFXtuUg DfG9AU1aFSbnFZske/bQENrN0FkPmAha5H8HzAEocKeSvqvE4h/foiItBX15 j52P7hvCpD81paXUK9Aa++TBovaGMG8HSKTcBDN2zYPF6uRe6RaI/556/Mdy yk9UXbqaGspQtm4B5tvQpPv3BWiNvfVgUXpDmO9AE+kSAY59+GCRO2lzpvK2 HAalRXoRYSaMYt4ENMT1LjSpQkm0MpZybNZQvSGk94xdaChlrZYm4/SI1k3S ivfDoKr3N4CdjlXyoXlDIB/IL44/b8JrpEnWgJzKwBloH0ZNJaSlIHu+SkjD k5rTcaRz+sVH0ES+LF3Nq0MXiyBfyfOnJ18HtMkamrS6vVV8A0y0dWiLLbsu voUmsiOrjv27ACHD9D00kWX27D9AEy2MZ/8xQMgw/QRNtNM9+8/QRDvJs/8S IGSYfoUm0sFPHPtvoc8M0+9RU6lEn7qHP8L7nvBnuhv5sMGfBy+2/AemvKwh \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {157.25, 0.}} -> \ {-2., -2., 0., 0.}},ExpressionUUID->"1af8b967-fbf8-441b-bcb8-b85fb456b243"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(62\\). \\!\\(\\\"metabidiminished icosahedron \ (J62)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"d9110203-e662-41dc-9cae-\ 8d630ccf3d98"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.617 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.431113 0.323928 0.596486 0.323928 [ [ 0 0 0 0 ] [ 1 1.617 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.617 L 0 1.617 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .15556 .59649 m .34596 .33442 L .65404 .43452 L .65404 .75845 L .34596 .85855 L .15556 .59649 L s .34596 1.18248 m .34596 .85855 L .65404 .75845 L .84444 1.02051 L .65404 1.28258 L .34596 1.18248 L s .21421 .0385 m .34596 .33442 L .02381 .30056 L .21421 .0385 L s .02381 .30056 m .34596 .33442 L .15556 .59649 L .02381 .30056 L s .15556 .59649 m .34596 .85855 L .02381 .89241 L .15556 .59649 L s .10524 1.39923 m .34596 1.18248 L .41331 1.49933 L .10524 1.39923 L s .34596 1.18248 m .65404 1.28258 L .41331 1.49933 L .34596 1.18248 L s .65404 1.28258 m .84444 1.02051 L .97619 1.31644 L .65404 1.28258 L s .65404 1.28258 m .97619 1.31644 L .78579 1.5785 L .65404 1.28258 L s .65404 .75845 m .65404 .43452 L .93457 .59649 L .65404 .75845 L s .65404 .43452 m .93457 .27256 L .93457 .59649 L .65404 .43452 L s .65404 .43452 m .65404 .11059 L .93457 .27256 L .65404 .43452 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{178.062, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy1nNd2FEcQhgcWkREIoRxmlQMrEFkmmGTACWf7Xofjc+DCxz6YVyAY3oYX lLXdRdVq9VWrR7NwAaK65/97urti9+jp5qvnf/61+erFs83mk5eb/zx/8ezf 5uO/X26LGgeKovhYFAeazaL989b2f+Wvj1vbf7Ybq/6zEP5ptEG25E/xfs+m +a6m9hA+xB/mwj+HOp/astZZwDwIsnf76j4DTYdA9jZ2b0JTX8+6l9B0BGRv YvdpaDrqd5+CpuMge12t++P23wfbojvxwUnodBJkj8LftuyyMW/FnyfgiVMu St+OzSNoxU0fqh9kX4HsoL7dRgQbh06nM8EOKdj1CDYGnQZA9hBkh0F2JcKO QtPZTNgjOsYE2CDIHoDsmIJdimAj0OlcJtgJBbsYwYah01AmGG2llg9Lsvsg 69cxChiNhyaBwM4o2GoEo5miLXQPZGcVbDmC0RrS5iYwGsiCD0sKeBdkQzpG AaNNS+aFwEYULPoXVCwyoV+CjGa5WR92XMcoYGdcnp2yO97EBLBIj2aJ/B2B TStYnG80mHMgu535BmP1YWd0jAJGSt0dd3hgcwoW1RNd1iLIboFsQcGG6oMt gSwqRjSJXU3LILvp9QtjFDBy7iuZYKsKFndwtPxdnc6D7AuQtUB2qj7smo5R wChWWgPZBsguKFhcWozTLmSCtRRsuyHChUZZX8S+CLIb7uxwfCRDp0hiPRN+ RYdOUXPcUhjyXgbZdZAtKQENUwgC9+F2C42bYEn59iLoagpLdawtIg0l0nl9 F9rHickK++C4mfadrddANqtUZCMSVEP6VhS6EFVTqcj+ChXN7ZS+FZnHqyAr QVaRdEnfr5FJOqXvR945QRX24pG26Aq0TigsRTkCS5pPYA1v748pC8VsCRbS z6AFQURmkhKFBClZX3qDo0q6Cq3D+n4UVSeoyH6eVCrS6HNKRdGgUJFikxs4 rVQUoFAQXZGUVmhQSSkMHND3oxBbqChIIAc8olRksU4rFbUmqGgLTCiVWzPo CLFrUU0rFW12smIJ0tzgbVZJySIf1/ejsDlBRVt8UanIJh1VKqrzCRVNAnVf VSpKUw4rFQ2zItWaUtET5AQTpORuaOYvKSlpZ0Pfj7ZZgorKm9eUKnqhnZXU T0QUVQsRJWFkITaUqAFE2z+TpUtwkHKE3CyEcmShE2AlyO7p25NnETDaf1T8 vN/1zu1/0+9cDZljdLLjAk/hCJlAqn9ZXZOsd4KASkRUR7RaJ+WQQkC1E7Ks VEzNMhF1CLLMHRFQJPLIhdhbv4WKTDJ5hMcgs9ppRQIK4J6ALMvNUlhDMiLI ChkIjN7qa5BlhT80HaQl32S+aSKoIyoyKN+CLCtUpb1DhpUIssJuIiCf9h3I RpXADXq4iVz89yAjO5ZIxOgAgPT3KciyMr06BFkZKi0UJUY/gKxUAtogCQLK LH8EmZVyaf2EgAw35d1EQCFaoghDVBQo/gSyrCoP6SUVJH4G2aIS0PQmCOgc /BeQWWmY3rkHBFYupncWgqihu2LM3+GJFnc92QlkT7TDqj8ApTtPwGCK6HcV g3MftMJvf7WhUtC2AyJr2qx4G8OYWmtqhdrB+mBUnk3A5mqOqWY0t7X03Eqs o/XBmgoW16+WNS1BloDN9QLmZmIS0yOnWNYHsyrnjA9GRRCKDGgZBbZORGMh 03x9MAvwoqbUihYpME3A5sa7FlDHDLBWdG7h//n6YJasrPlguYkJBSwCWydj s7reug9G25wyTUtlY1m/VtpqifdVHyw3ySb7KLB1qg9WX7uxHzCuoMVDZVQr ShkfAFSh99sq1YaC6Lb/IKXEd3Xc8eZJdtHstjIWO0+j7/g4TZBZtZAWWaYh t8Z5VcEoqL7pg1Hgv65g9IQsM+k1ndVY1Eh7LAFGVaUVBSPLu+GDUcC0oGCk jaIYuUcDdgpBwW0CjI407BylhFa5HJl7KDOuYLTW13wwCqKHFYwmQSwTbUEq r9t5G407AUZFXzsxpIrzFR+Mup9QMDrnFSeRe2xqJ7R0PSABRkV5O2OmOzxy jTT3wDr8j663rfs4YbrCqT3dyZSrp1R2CCp4zLN396qBBYcS7kaQuaWRXfDB BnVkZAjoeEACGDf9DyOjIyJyxq1OsF2uNYyLVDEBFTZJOC+hCxsUZ0jUSHuB YpzVnnWn2G7F704R5rLfnaLbpZ51p6h+0e9OucWC353ymvmedafMbs7vTlnl bM+6UzY943ennL7pd6d6Qtmz7lRHmfa7UzVnqmfdfwXZpN/9N5BN+N2pRjbe s+7dgyk0lkq86q70IfEEzSUV3EY/KwTtF6rPJSBoh5IrGvEhSIXINVaEoIBh 2IcgvadAKAFBloaC2SEfgkwhReoVISgNOedDkP2m9CsBQQ6GwqOKEJRRD/oQ 5BUp9UtAkB+m+s5ZH4ICBb8mlg1BaeeAD0HRDVW4EhAUT1Ep6owPQQEfRbqf F4LiVf9rQYSgUJzS7QQEpQZUV5LTolDsCU6m4oPdX6q0vVnwFEFEIytBJl9i xPrNLl/Xp3iUCzZ9POpObswIKHOl/EYI6CsOcnKWGlN6SoUuOUGkby3oIwRL 5CnNp4KIEND3CeRj+5WAahhUw5KPVmhGyQMPKAHVsEgmBJT6kXO1KgxNR+Ly GF20pwKL1YxKaKX6lxCEaoZ762FMYckE0GrEwWFZhQgmlYAsXYKAikDkyksl ILdCOb8QuDfmSUODiBwwVdHiBsEmgphXAppAGqYQUDmQzkmWlIB2Fk10DEFx 9iiEsHvWpN20VYSA1p+WsaUExc7jAlKfaADwSiiFDVaLo4EKmF08oG3cvdLF p5kIdSdSzjhPaHmIoCUPdfquT0RBKdzvtoSIbChdcqAVJ6eW/oJLSOkkg8wM rRT5ofS3XPEJtL90cuavCiiP+y2XkJKTpbiGHIH74WWfKRSGCbTctKHIX/H3 XYGKQp4SZLSlyL64H3mxK6M3tVsw5AFIbWXaaIporfwobG9bKRbCvoyniaFJ JWdD1l4ISHOIqgRZrucSs0wZBW1d2uLkH8iqiA8jI0SqSSpMqWiCigwrmR6a aLJy9KzEFpRbuseKFOnlx3fUnSaBJppmJBEM0yTQLqK3J/oEFQUBpBv22zxo L5IDktSE9g5pNw2EqMjtSB4XNKLhBRg0EDJbCYIhJaDVIIUkc0Q2UPLwUSWg nUXGhcB8G9jxeSXtdDKUNB00bVJLCU0h96c9QfU96pcgsKsLub6Edj9ZOSlr 2UWLEjrl3rAg2ybVu2UloFHYb1miLeB/6BC7h5kna0OxSa71ktrnRR032SeK rnJtlpR4LysBqRKVG8hS+b9IquPbSlIlioTJkNDbC4HdkqKNSHHtJXc66K1i oS4sMkWAlEBQVEimUM5O7uobxPnmVIjqTbRmAvpAQZ1PTalA5l9EjFXm0FJY ltr+H5UKyajJrxgKlfuga/RrcMhYyYnga2iiFU90p8xKjgPfQBOdEk3uq/tb aCLrMOV3J12XU+R30ETZXtmz7qS20QMW/0ET6cjMvrq/F/quvTzf2WoPtren 3J/4AJjyVOXf31kc+B9MaWHQ\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 177.062}, {287., 0.}} -> \ {-1., -1., 0., 0.}},ExpressionUUID->"80457062-f442-4ffd-94b3-0e2e835e3547"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(63\\). \\!\\(\\\"tridiminished icosahedron \ (J63)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"c7a8055e-c679-475c-8dbc-\ ccad36ccd821"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.44296 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.540758 0.280162 0.62775 0.280162 [ [ 0 0 0 0 ] [ 1 1.44296 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.44296 L 0 1.44296 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .30244 .62775 m .46711 .40109 L .73356 .48767 L .73356 .76783 L .46711 .85441 L .30244 .62775 L s .46711 1.13457 m .46711 .85441 L .73356 .76783 L .89824 .99449 L .73356 1.22114 L .46711 1.13457 L s .02381 .59846 m .18848 .37181 L .30244 .62775 L .02381 .59846 L s .18848 .37181 m .46711 .40109 L .30244 .62775 L .18848 .37181 L s .30244 .62775 m .46711 .85441 L .18848 .88369 L .30244 .62775 L s .46711 1.13457 m .73356 1.22114 L .52536 1.40861 L .46711 1.13457 L s .73356 .48767 m .46711 .40109 L .46711 .12093 L .73356 .03436 L .89824 .26101 L .73356 .48767 L s .73356 .76783 m .73356 .48767 L .97619 .62775 L .73356 .76783 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{199.562, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnFlvFEcQx8f3sYCxMT5jdn2tje8DA8YkdjgDwRASckgJJI5DMJFQEKA8 RIoUKVKkSJHysfhYjqe7XbPe+VXTY4/Fy/ph1676d1XPTHddXePNrTc7T19s vXm+vVW6/Wrr5c7z7delW7++2iM11EVR9DaK6kqlKP59d+9P9/F2d+9nj5n1 67/4qyGWsWIJ/wqh3hDMr7vuJ1q2oH8E1AygJQv6W0DtAFq0oL8EdApACxb0 p4A6ddAfAjoLoHkL+l1A/QCas6Df4q/GmDMEoFkLei2ShnXQSwGNA2jGgl4I 6DyApi3oFwHN6KBnAloA0JQF/SSgCwCyU4i2BHQZQJMW9ERAazrou/irPuas A2iiAlTFInhZh28AbTw3+MdAG9Ph14A2qsOvA20kN/gNoA3r8JtAK+UGvwW0 og6/DbRzOvwToA3lBr8DtA90+F2gDerwT4E2kBv8HtD6dfgm0Pp0+H2g9eYG fwC0Hh3+GdDO5gZ/CLRuHf450M7o8C+A1pUbPONkMl7q8d73jIsg4xLLuN4z wjNuvuO1BBnNUkajd7wWOKM7yOhsjtfzedywCTxadpW4zePuKapsjD8Lu0rM 6YlMxqpYe9/RaRE2kE3YqJtLBSv+fVDkdcBYT5Q1AixKUEZFQSNwPVFfqAKT IzTHJJqtE0YpAc1nsYoW33ITK38IYBf8loDVBDRaSg3xpyGtAtcF40VgUZo3 D7QWUbAC3EldQQvQ5oDWLgqWdAXngNUKtFmgnRIFpN6lR5QXUpI7DbQuUTAF 3KlsCkhEjygoq1NyJvwg64R6weC6DGlUVzAIrJNAmwTakCgoAtelzWSQyKjQ TRgWBTTN2aMrGBMFvcB1dQYqQVCBo9owy20zpG5dQR+wuoBGj3FGFJwGriun 0MXRfMgeLogCWncLR1ewLAradAU9wKL6EVndS6KA7K8rcJEwuiqyWWuiwFru feZ+GY7uBD1zkv1R/Gl8zQVdGK1Qshzr5jPx9vG3mGiXYlCASlEoeeymStq+ hv07TCuaJkkXQz68Xu7M/PEoaBQFztLQpqdnRuuGYrBmUeCMMW3hItBoN1D4 2SoKnEMku0h7knYDKSBfV86mitYzxeAFuRangArRFB3Ssqac4KQocLEsuUGy 8bQsKKXpEAUuLSCDSslAqALCFXVV5BDpqVE21yXX4hQUADQBNHpqlF12iwKX Z9JSo6iHnhop6BEFLqsm70NxG91Kyr77REG/roAiT7pSqgaQbXalFoqi6UCC pkR1ikG5FqcgNA+giZCCIVHQnU0B4aiOUxQFrvBGqRLlYhQzUF2JbJvdTZ6w 43CqRuRanALjqUxhgm4RZbRUdxsTsXYP2T1dSCwi+N8qGlX/yiLW2gi7hArJ xuCogYqgkyLKLlx70yvqFKlCBkmhTW1Xg90jWJaIp0Rl3GmZkhNhok1TeHgE 8BmB24cdXQWQOmkz0K741FmeNkGykQdEBN2zCVFvrVN0xXyFP7pxEXCiUsDh lhQtR4/YBqDRBkjtK6q+hG7SkgjrPLqwcyLMnQPQcW+oKaSihUdsqAlP+YhL AAp1OP0irE8XFuooKddyYi8CK9TBpyIIEhYajqTiHSrMhQZPqeiMhIWGep6o ksRSDhMUDVObQ2jkm4rdSRjlh5QI0PN3YpeBFZrAtMscJ3RhoYlXKrOjMmto mpjKQ0lYaFJLJs2JpZgnNBlvkDnOHUbYQSe3L8oVlyjs04scKX+5pEtRizCG tKwPJBt9VQa6HjCq7FM9YlUGenrFSFgRaCsizNNTRmEoBciLIszTexYqbE6E eXrU6CyB6qpTIszTy0bCKDYpizBPzxvlZ5Sij4gwT29cqDCzXN7VQ0fCKLcf kJl5eu0o46UYNTke8fTkhQo7I8I8vXuUF5CCDhHm6fEjYQQviDBPLyBNWk2G DcnTMxgqrFGEeXoL6ViITzQjb/shyTG3y2S168B1TpTWodmCbTGJnBEJK+vC BkUYWZUNoI3rwrpEGLlTjzDau+0irARczyG9FZZyiW3a/vD0D5jpNSVe8N3B Rq1hMv6r1jCZE7zWMJkTvNYw+X7ue61hMid4rWFSg7+3hskcnHzGVzQywjO+ L+IJ0A4DN5x1AHnen1EDac8rOkk7IVVRXQT+GFhNMpDyCc/AVhlIycB5fWCS DlGyNKUPTPoBKZWY1gd2ykDKM93AJ8AyDsYE0RR+z+gDe0UjlYdm9YFJfk0V 7Tl9YNKoR/UHN/B7YBVlIFVB5vWBSZGCCuAL+sBxGUgVIc/ApNOO6lKL+sBp GUjVMVfQ+gFY5kmZOuKKDqJl7IFTveGiDqcqg93j9tVA3LEHaZd1OGWwqzqc ctQrOpy225oOp7qaPTyNfgSW8UAV7zMiiDauB14E2oYOp1KsdTjRNrDIGFzT 4VSgvq7DqVnkhg6n0uJNHU72yAYp9j1WCofNw7mjg+hcxQOnNq+7OpwOg2zA GT0FFp1q3dPhdLa2qcOpsnRfh5NJfaDD6TzLJinRz8Aiu/tQhycnUY90EB1N e+Bkwb+08GfAogaXr3Q4tQN8rcPJK3xTCecmiG8rIakzIxumRTty8x5XEKqU OWzm/xkQ1f0PNqEsKg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 198.562}, {287., 0.}} -> \ {-1., -2., 0., 0.}},ExpressionUUID->"d8fd33cf-4349-4a57-aa2c-3007855f36c2"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(64\\). \\!\\(\\\"augmented tridiminished icosahedron \ (J64)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"2b5346ee-5f82-472f-9f8a-\ 37621354cdc1"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.39041 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.521929 0.269958 0.604885 0.269958 [ [ 0 0 0 0 ] [ 1 1.39041 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.39041 L 0 1.39041 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .29229 .60489 m .45097 .38648 L .70771 .46991 L .70771 .73986 L .45097 .82329 L .29229 .60489 L s .45097 1.09324 m .45097 .82329 L .70771 .73986 L .86639 .95826 L .70771 1.17667 L .45097 1.09324 L s .02381 .57667 m .18249 .35827 L .29229 .60489 L .02381 .57667 L s .18249 .35827 m .45097 .38648 L .29229 .60489 L .18249 .35827 L s .29229 .60489 m .45097 .82329 L .18249 .8515 L .29229 .60489 L s .45097 1.09324 m .70771 1.17667 L .50709 1.3573 L .45097 1.09324 L s .70771 .46991 m .45097 .38648 L .45097 .11653 L .70771 .0331 L .86639 .25151 L .70771 .46991 L s .70771 .73986 m .70771 .46991 L .9415 .60489 L .70771 .73986 L s .70771 .46991 m .86639 .25151 L .97619 .49812 L .70771 .46991 L s .86639 .95826 m .70771 .73986 L .97619 .71165 L .86639 .95826 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{207.125, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNnPlPVUcUx6/wZFVQEBQE30MWEXBBRKRWwaVqXdpq7ZZYlVJbbWJq1PSH Jk2aNGnSpEn/NP8kyp05nvu873OGO3KfLT+wnPnO+c69b+ZsM8PttVdPHj9b e/V0fa127cXa8ydP11/Wrv78YlPUuiNJktdJsqNWS9LfNzb/lG+vNza/Nhtj f/yT/mhNdZz3gr9V0OIE7tcN+UrOedBfCmoD0Ace9KeCugC07EF/KKgHQGc9 6HcF7bVBvyloAEBLHvSrgoYAdMaDfkl/VNKWUQAtetBL1TRmg54raBJApz3o mYKOAmjBg35S0JwN+lFBJwF0yoO+V9BpAM170JqCzgLIa08eKOicDbqf/mhJ W1YAdKIOlGsi+HEbvgqyY6XBL4JszoZfAtmsDb8MspnS4FdAdtSGfwSy6dLg V0F2xIZfA9mUDb8OssnS4B+DbMKG3wDZuA2/CbLDpcFvgWzMht8GWc2GfwKy amnwT0F2yIZ/BrLR0uB3QDZiw++C7KAN/xxkw6XB84NJI4fAYPyjVuplG+Ee 9C4pjDjQVBU0Xyog22+roBm6M04FLSGKliJVtINs0FZB674jTgVZGoroBpqq gqzpLpDts1WQ/d4dp4I8Ri/I+puqgrwiRcZ9tgryw31xKsjz7zNH1iwVFN1Q AiAqnHtvT1soRKbIaj/I9tQpI0PTnYqolQLDAzbBRK4pNdh7lGC4IAGlOn7G STzCJt5x0MykYJjGIhyHoYks+riSkrFeBdkIyHriSF1G0ZaK6KkCBJT10bjn c7L0I3Tp0HkAHwKZt1ASfW3tkWhat6bfnWgZWqs2KTWRDzsBsnYlXYRWen27 bFLyesdB1qWkp+JI6c2TnzwGsh4lpSHRTBRSKi+QW5wFWZ+SzkBr3nCkf3XH kZLaQSWdglYyeEJKC4m8N1VAhpR0HFppIP5xJFDd2t9Pg2xUSavQesQmtQ3h 1uMeU1IaOr2bzu2TTigpeTqaBUJKboWiEJqL00pK7p7mu1+M6CwpbqGpMqek e6xWJqUXQ+Mm+3JSSWm+k8Fo3z7pgpJ2xpEOQhNFU+SNlpS0qF/yrgQJ6OnJ Rp9TUu/l3jSi/Rc+eos0r4jvQvq93bL1AQJaLWQVV9z3LCJLf755OBcc0XLy L1xShq0DM7Iuqzle+WrRmevI6SmEnFYhPSCpoNirFWT7dCBk3SrNGUhF30NV 6SnSE3oygTSTaIZT9N6m9M5otmULDM1YFWS0qinV6VAq2Qagt0z2hlYwEXQp wYk4AlpRlPmRjZU6Pe0vUWxGi4jy1N36LEJAoQUtVpoglI73KoEU9+nhKOYq SrBXCaZtAgoZ6FOjmkS/EkjNvhtAFEvRZ0V1kwElkDo8BbIUN9FnRQS0SKVs Tp6VoiV6qVSJOqDPEiCgyIiemaplw0pQ9QSU31AURAOhit6IEkj9vGjWRgMh gkNKcDCOgHBUGaWwRgrNlPZSTEOxD9Vxx/RZhIA65osHMQTjSiC1XeefzNCF PBpVwSdVrZRJ3Zo2IxOquVB9/oiqlYrjoKodksfORSbp37i9QutdSlFjqrRX HrpeqaFvRocmWuZUS/6lpUOiPZk5VSGFFRcrO1d+D+DHFC6Fgg8BREOd1Y5S pcpvzFsDJMP1lopCb2pa6aXa6k+CFP/oplRBf72Cd5tSE6pswFZGUSZNe8on RS3V1N7ZCmxHWVWVyR4gnd0oagpHVdmIrayo4abwW9QuQVNRh9Pg0UhZUffY 4H/PAKioMx9UZeO2sqJBCEXXopZKq0WDp4bojJQVDfUaYklSRvlKociXTioV jXLpdQTUUvZI4f8uHaMcG1oAUNG0pSEvImVFk6yGLI5KIUVTQjIXbrrU56FE UDS93amjdcFXZ6aWDDVGRFEVBUc1pFS0BivvQsWVEzdJu9Lf6IULEYWRRUs0 ieQ8nZkVJOeBHGb5yYlaVC3VxwNqaYPBBTDt2ZxEZbSLRJWT5bfHmGsNFP6I gN7ZohJQ1E9PIAQUWFM5Y14JyDuZu2nFCY4rAZm/QAGY9rco9plRArLDpKXD JqDEYUoJyO4FivXUREWMw0pAizqw71GUwE1d8xhxYDeHCKhKMqxPQFOAVq3s UVEVgcaTbfdRmSmwCVaUoF8JqDWwtUcfD5H2KgG91MCGJRGQim4lIFMY2Ial BzbXpRNRtBLYXC5KUFECivADW+Y0wfj0QcInxGsg223rdq/f+ZAVaK3aymii uk/GDDaIgBZxj01wUAnIAq+CLHDYhAj6lIBCLSKgmEJKGuZScwT0QUUeAvIE DUFSp7X2I88xuZXs6gzk/iOPdRU9cx+pIvKk2ns8ckdbHs09O0gpJGWHzT1H WYKKEs6UlnCy9f9xRLeEs8YlnHgu4eh2CSqoIEm1xuaehC9BRfwlgMhbBu/3 ykP615ZXHsgv/wdXTSLvvUTeqom84hMJj7xv1NzLT5E3sSLveTX30lnkDbjI +3XNvewXefMw8l5j5CXLSHjkjc9VkG3j+qlrWQFQ4Aas+4vyrMAl2+xkOG2d yBXeb6Fpp3aktDTQsUM7Uq44b3fMMm3Kw0/ZHbPj2ZRVLtgd92pHKhRIxwfQ 5OJF5zJr0Hra7rhfGSkZXLQ7ZqUgOsh4xu6YnXOmVEQ6PoSmqnakAuCS3TGr u1GcfNbuOKkdKS4NdMwOG1M5d9nuOKsdKWiSf3PwCJqyDfzzNoimcQBO5a0L NpwKWCsevma9IzRSCKeCxEUbTuWFSzaclttlG05VNu96ku+gKdtzv2aDaOEG 4FWQXbfhtKvho45kHZrIGNyw4VTnuWnDqWpzy4ZTFea2DSd75CNV/58ock3Z ib47NohKHgE4lTfu2nAqZfisI3kMTVS2uGfDqb7whQ2n4uGXNpxM6lc2nMoM X3v4D9BEdvcbG55tRN+3QZTdB+Bkwb3v9v/9JNdEp9oe2HDK0B/acPIKj+rh fPJpvR7SkFn7KZk80Zf3uE6QIxNs9H/9SXb8C3SWIYw=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 206.125}, {287., 0.}} -> \ {-1., -2., 0., 0.}},ExpressionUUID->"7cc0c231-985a-4568-a9df-fef0e3b4d342"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(65\\). \\!\\(\\\"augmented truncated tetrahedron \ (J65)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"b38ace49-b8ec-4a6f-9728-\ 213325b707af"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .51268 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.31524 0.123173 0.118878 0.123173 [ [ 0 0 0 0 ] [ 1 .51268 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .51268 L 0 .51268 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .13048 .22555 m .02381 .16396 L .0854 .05729 L .19207 .11888 L .13048 .22555 L s .13048 .22555 m .19207 .11888 L .25365 .22555 L .13048 .22555 L s .25365 .22555 m .19207 .11888 L .25365 .01221 L .37683 .01221 L .43841 .11888 L .37683 .22555 L .25365 .22555 L s .37683 .22555 m .43841 .33222 L .31524 .33222 L .37683 .22555 L s .43841 .33222 m .5 .43889 L .39333 .50048 L .33174 .39381 L .43841 .33222 L s .5 .43889 m .43841 .33222 L .56159 .33222 L .5 .43889 L s .43841 .33222 m .37683 .22555 L .43841 .11888 L .56159 .11888 L .62317 .22555 L .56159 .33222 L .43841 .33222 L s .56159 .33222 m .62317 .22555 L .68476 .33222 L .56159 .33222 L s .62317 .01221 m .56159 .11888 L .5 .01221 L .62317 .01221 L s .62317 .22555 m .56159 .11888 L .62317 .01221 L .74635 .01221 L .80793 .11888 L .74635 .22555 L .62317 .22555 L s .80793 .11888 m .74635 .01221 L .86952 .01221 L .80793 .11888 L s .86952 .34872 m .74635 .34872 L .74635 .22555 L .86952 .22555 L .86952 .34872 L s .74635 .22555 m .80793 .11888 L .86952 .22555 L .74635 .22555 L s .86952 .34872 m .86952 .22555 L .97619 .28714 L .86952 .34872 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 147.625}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNm+tvlEUUxqeUi0ALyNUK0qVAEVQUUPAS5aJy+eA/oCCuFWyplabWGP3i /Z6o0RgTY0yMMTFG/kbs+55xZrv7m9ln3KVrP2zfnXnOzPOeuZ3L7AvNxelr c83Fmalm48JCc356ZuqtxvmbC0tFw0PODTWccz80XPV8e+nRf9R/+6oP/wWe L1X/DlT4iepptnqabKlyw7dDU0vfGn0u2wdlB6z7i1A1ITa7V5Qdh7KD/4vu LyQV0737PaLsfVDmx/58kln38dstyhLuULr7SfHt7xVlM90/D1X3i93fI8qO JXGD7v45qDoidr9TlN0FZYet+2eh6gEoo6m3Q5Ql3JF09w+Kb79dlM10fw6q HhLffpsoSzjTkk2fVVUNTZqjoh62irLdiLjVocofarSPPCyq525RlnA2ijht V0EZbfaPiMrbIsoW0hyuPuuRJd0cF8ltEmU3Q5lNRdwi1gZydHSegDJ6iVFR lnBH0+TugjI6PB4VdTgiymZo0gayIeiQTsDHRB1uFGUJZ4sJd8HRQI4OqJOi 5jaIsoXkNgdypNdToubWi7KEs/WN+yHtpVT2uKhDms0kW0hzW9Ah7UtPiDpc J8oS7piRI93sDORo/3pKJLdGlCXc8TS5eOTSxrCC5GjgaJ+jGfS0SHNYlCXc iTTNPUGHRO4ZKKOlQSc5yWbI0eE9HsiR8k8nNbemtcwqlv7OZupsL8TDdyIj RiZv++ARrio7le5yf3hv09i/lWjjFvZH65icvLqJg1UROVUn/0NjwiQnnO+K zvT2rlJDsh/KzqZVRF2Z+cyzgEaFujyTacO/JW1kkxmx9reIVGmtFHdNTakb 0SERl9kTyBqh6TVgSqQl9VQ5LOIypw/ZdkSJjv4nRUqEy5gSZALRwKlWC0Ui Cq0bokRaIhxZeUSp0BqkE5e0pNrHFLEotKOJEmlJdXYoSlDoFNVjWh+GpBva q8klJCKFruP6QIRCwqoLfUzEZYiQssgqI9OCQg5EqTA0MRJ0oxJR9UC4DJFN gQjF6MkCpggRESmMJG0JRCioQI4gxflorRTGA8lzojDXClKKLi9FjSiUQLFg 2toKY8Y7AhGKbqgxcfXEyhDZFYjQlKLhotwAESnMIYwFImTbp3Mf3S2YwlwK +c+08a0gpegrk8lFhOnEIoOzMMu2NxBRI6x3iEgjECH7lHZgOjpPi7hM1jXn pJOjSWkG8qUKc89Jx51OxTvEof53saqpHfdL1ZOvegOkyF8mtqbFjrSS+blu tk2i0gAFIWgscjGbiX41v7ysjle1mCvuRoZDLm6U1tTystWhQ0vTuJkUK2Ft EI7WBhFZC2W705R6iTqqlKKB74lMA6iXKC3d6kjmIWoiY4MlQuecWUru9ZQC BVOAcLS5E6Vo4Hsi1wFEpxERIRxZyUQkGvjb00R6ySipRChgbcabuwZVZDIQ JcKRTZLM07dYkUiklzylSiQa+OaqudcARAFHIkI4yoWq11pG0pR6yYOrlGJK zROZApDqMROOrHsiEtNnNufcqwCiWU5ECEfOHRGhFbcuTamX2yhFlFosbNcE EHnWRIRwNDGlQSIivVxfUonQrPKUXoEq8qeJEuGoLLm4a92Mpon0crFNJdKx 3V0FEE09IkI4GjgiQjPNU3oZqmjLoug/4air5DFZ62brYIl0GA5XAERbEWWN CEf7jXrZKkOpl0vBKqWNQTe2zN1lAJH1SkQIR8eDZIK/BCC66Ub5VsLRgUlE yEQdMKV41c807F6s/tW/O1DV2+GGvhcK3PKABQUd6NxXr6r4/t6FKnJnx6GM UhLtUQn/13Jb070TCsj3JSc1fWsyFf54O/RB86aoj7oVH69ZBBC5LMk7lfX9 DR8iWwitk0FNTbxvgvNBkGYquQQfmOBNqKKZSqbFh9bEXOibjsCM4GwQVFMM H5ngDagqbGI69K2mfj42wetBUE1efWKC5OcVNjEV+qYlTSP/qQk2gyBteBlB stbUzOpn1sRVqKIQNvmyn/etCXoRNY//Rd+aIMdAvXPxpTVB3hY1QbGtr/rW BPnD6q2fr/vWBIUHcjexvkmLtRuQFfxbe6CFS7faPJxiXfVZUa+/79KgmJj4 3kAUR6SFn4GPhzZ/NBCFS2PO7Kc0iA4fD6egdPSJf06DYpjlFwPRxh4dt18N 1J5oqL7RppmBxzvxvxmIsi4xnPp7GhR/l/CHgeYARAZHBh6NyD8N9CaA4i9e /jKQneQ88f9uhXQYSLfseR568VX1ly6/tXVD/wA0B0/t\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {146.625, 0.}} -> \ {-2., 0., 0., 0.}},ExpressionUUID->"98da842c-e26e-4eb2-8138-00e2c4df70ab"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(66\\). \\!\\(\\\"augmented truncated cube \ (J66)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"e72b4f5e-7375-4a7b-b7ec-\ adaf6f10ebfb"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .79939 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.13975 0.096048 0.366854 0.096048 [ [ 0 0 0 0 ] [ 1 .79939 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .79939 L 0 .79939 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .37163 .56597 m .41965 .64915 L .33647 .69718 L .28845 .614 L .37163 .56597 L s .41965 .64915 m .37163 .56597 L .45481 .51795 L .50283 .60113 L .41965 .64915 L s .41965 .64915 m .50283 .60113 L .50283 .69718 L .41965 .64915 L s .33647 .69718 m .41965 .64915 L .46768 .73233 L .3845 .78036 L .33647 .69718 L s .33647 .69718 m .3845 .78036 L .28845 .78036 L .33647 .69718 L s .28845 .614 m .33647 .69718 L .25329 .7452 L .20527 .66202 L .28845 .614 L s .28845 .614 m .20527 .66202 L .20527 .56597 L .28845 .614 L s .37163 .56597 m .28845 .614 L .24043 .53082 L .32361 .48279 L .37163 .56597 L s .37163 .56597 m .32361 .48279 L .41965 .48279 L .37163 .56597 L s .09173 .48279 m .02381 .41488 L .02381 .31883 L .09173 .25091 L .18777 .25091 L .25569 .31883 L .25569 .41488 L .18777 .48279 L .09173 .48279 L s .32361 .48279 m .25569 .41488 L .25569 .31883 L .32361 .25091 L .41965 .25091 L .48757 .31883 L .48757 .41488 L .41965 .48279 L .32361 .48279 L s .55549 .48279 m .48757 .41488 L .48757 .31883 L .55549 .25091 L .65153 .25091 L .71945 .31883 L .71945 .41488 L .65153 .48279 L .55549 .48279 L s .78737 .48279 m .71945 .41488 L .71945 .31883 L .78737 .25091 L .88342 .25091 L .95133 .31883 L .95133 .41488 L .88342 .48279 L .78737 .48279 L s .32361 .25091 m .25569 .183 L .25569 .08695 L .32361 .01903 L .41965 .01903 L .48757 .08695 L .48757 .183 L .41965 .25091 L .32361 .25091 L s .88342 .48279 m .95133 .41488 L .97619 .50765 L .88342 .48279 L s .88342 .25091 m .97619 .22605 L .95133 .31883 L .88342 .25091 L s .65153 .48279 m .71945 .41488 L .74431 .50765 L .65153 .48279 L s .65153 .25091 m .74431 .22605 L .71945 .31883 L .65153 .25091 L s .41965 .48279 m .48757 .41488 L .51243 .50765 L .41965 .48279 L s .41965 .25091 m .51243 .22605 L .48757 .31883 L .41965 .25091 L s .23083 .50765 m .25569 .41488 L .32361 .48279 L .23083 .50765 L s .23083 .22605 m .32361 .25091 L .25569 .31883 L .23083 .22605 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 230.188}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnFmTFTUUx5uZuTOywyAgyzCDK4LIjmw64wYi4r7ryxRlFTxYWsjXcAOR TRQVy9KytPxSfg2cTkJyb9/fOfeE3Meeh749Z/ufpJOT5CTdp+cvnP3k0/kL 587Mz5w4P//52XNnvpg5/tn5BdLooqpaNFNV1X8zVX1/Z+E2XNzf1voS/rnH +4/rn6na5u+e8JH7Gb0TQRb+2wS02178Q2BNAe1XL/4BsKaB9osXfx9YW4H2 sxd/D1gPAe2WF38XWI8A7Scv/g6wHgPaj178bWA9DrSbXvwtYO0A2g9e/E1g 7QTaDS/+BrB2Ae26F38dWHuAds2LvwasfUC76sVfBdYBoF3x4qeB9RTQvvfi rwDrMNAue/FTwDoKtO+8+MvAehpol7z4SWDNAu1iK96Kt+KteCs+SDwzAmfG 98zRI3Nsyhz5MsfVzFE7c06QOePInM9kzpaeq38cZxUI0axsZdSYjXdz8W6i y2xDcaz+bzkwaKq4rL46jRHgHla5R1RuR/PwbjGWApcmwIsj1DhwD6jcgyo3 uPk8sMaj4n3ApWl90lgM3L0qd5/KHZfdXBIVO8CdBlqqf2omu1TubpWruLki Ko4Cdyo41kWLxaIes0PlPqFyFSdX19dOTZqKd2tAblsEuF/lkm7ouhvrn801 ZwUIObPTNWk9cF23mVK5WyRugN8ArI2SsQZtLdDI3jqgLTHiEgb5YsUNxX4A WJuNbtKjpkwDyZE9wrXqWnF95MKGsAVoFHqoDVPGhOTIHuFada24odjUEGaM UKuBNg20SRF+MC5hkC95uNh3HjS6SQGThjpyfcKISxjWIZZwQ7Gp/T9sdHMl 0GgiQnJkj3CtulZc31Kw/T9qhLJOE2mIotkU4RIG+WLFDcWm9r/N6OYyoNEc nFynSRbhEgb5YsUNxab2v93oJo2ftGYhObJHuFZdK64f/ORZHk1tDeMnrexI juwRrlXXihuKTd3+SSMURVRa/9KAQ1N0wiUM8sWKG4pN3X630U0KLZQlINdp HUu4hEG+WHFDsanb7zW6SaGFcikkR/YI16prxfX9HSPlfnftdNM8o6qw9inL 1FFsHMyUp6SXHGIxkh1UzJMpghwL124bC/eHQHRUgaOMH3XbUBoKUIfYE7JC aCOsfsQuSklOaoy+dWG0aaLVVUPd2ENNUFVGvWMGGZ/G5UfiQx5GB2d6pCZR +Sg37ISfkRg++dxXocED6l3OlCPNxru5Xpqz7Icr7OtzQJstkFveQrVQLVQL 1UK1UC1UC9VCtVAt1D1DidN+N7F/Nt7N9dLYmLiK6Vp11L9V9+KhGo30+qe5 SumTD4sN68JOXjuNd9O6dZouhz/DIipjxSwvOHmhSOWg9X9TrtY1LEBzMxd5 C362IacvSlf9cmppsAl6MHJOxp5m0uQzEzMlCUNKOclZtMH25IThUDJqJSnh ktwo2bOmhIeQGy3ZACjJhJdsAAwhE27d7qEGU7LvYd3usepm7nuUbO6V7HKV bO4NYZerZCu3ZE+T7Fm3coewp1mycV+yg12ycT+EHeySYxo0CljPDZQc06Bi Z55XKDmUU3I6hexZD+UM4XRKyRGskrNIJUewhnAWyXrgjqJiyckz64E7q64V NxS75HhlyTnDkuOVQzhnWHKYtuRUKdmzHqYdwqlS/Qizq6+tNYliQDqkLHKn JW44y/sCsFwkcguOqjedQNXiVpfUmt1ALnK3q9zgHJ0ud4OiI9HKgGgURjoR nmp9Z+RSUN6p6iqupxcwXLW6FAhNgcjhpEvtdbfK3aNylZP8qZY60WGK69Q1 0qsKpLFf5R5QuYrDI1FxIjpMZaYwNBkLK6ZjRO4hlRscbr7F4/vX3UI6X2nG R76ui3iNHnpUYhyTGN3OifVFDZ1G2E3Ryly8S2nP0DVORwKZINofXvFUVKR4 Sl31T694MipS16JKXxY1wrtnL4GQ1diSaKxR9+E1uOORT2OHvPgZHPrCW3wv AssKlRonhSoFgKYONE1IPZU6+7WuKjKUQH7ta7DcVRmKykLz+hQmaW0ZAE4Y Aai+xyIANfcr5QAjEYA6YgCgzkAAlMSiZkpTgPDyLL0nTA+eoSqe+1yWbfti 9O5meOkq1gxN0INJek/Zm0wJ3O74T0VRPjrhTfXt51DdBytHo9cUw1O8ngbu pS4T/aDUwjdEe41IR8unHvOc3yaMdRGDxlpadFzsBpKaO4VUmtdQpyHQb2XQ 1IkpDE1GLsXDTKjxaIzC1arIpchPUN/IUGmgoIC7PHJphMyEomdFAWBpBKUs CIF+LYMmY+KLAo5rXYJ/JUOlyqJSpUGG2mcm1MporNFjqZ1TLN0cDSh11xxL IpxTFFf+5JdSlknSqYT4uF6t4y9llDVRcRq49EgyAZqjYSVAJUeowykAqdvL b5FLGhSTFKgVUdEaN5MG9XIFypppJ9DUt2nEUUCTInlLUClQ0ICsQC1WfSSo FPwp/ClQ9JCtYZuCYya87jeBpmGcoq8CNaYqNj+oEOIJ9XEFgzoZLWBdlHIk irM9AHychtajYhwV19ECUCg7pQBpPiy8cDLo8TivKFynWV9HqQFasyhPhoBS VBVfbhPXX5lQ1v0DakBKnDpmhE9DPxkbU7kKFPXPlE6haksTGiXk09eexF0R sTHoyQYFSgzlhmdKcjQcBnh654hKmsIkxQs9bxOgZo1Qaa5GfT1VuTLTIaip UBWNruyilZyf6gsqYeI5JxbGtGB2bXTUYk+c/NEYGYpPBz2zVss3ZTv+mYgn MMnTkHmkD0utjV41n2bt6Axo3JCNpWiqndgjD4NR8QNDhhhpnd1el6FSjLSe a1MAaK8tRUYxn2gAuCYDpM5JQwsBUOsLqUvK81J0IxqVj8qipGH1gYLKl/qr kkhO0Y2GOjKbZlWhmZ4I/lHrpqhA+RYKrT3m+8IYrSDIcpo8hc8UUwKX3BT3 o5yxW94Yfa+ZFGloDCboG840U0jdMXxamr7mTOEhdbPf8hRT9wmfyqYPQsun GnppmSbSAB/2seh7iWLCwSn+5RXpu4x+tcBN9u9Ban1N8R9/774X6T6q9q8n OJl7/Ex5teh/0Al1/w==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {229.188, 0.}} -> \ {-1., -3., 0., 0.}},ExpressionUUID->"5cde3873-d9cd-49f6-9e06-77f8f219cfba"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(67\\). \\!\\(\\\"biaugmented truncated cube \ (J67)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"fa75d7e3-286c-4cad-80a3-\ 3ded41563af5"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .86836 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.13975 0.096048 0.43418 0.096048 [ [ 0 0 0 0 ] [ 1 .86836 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .86836 L 0 .86836 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .37163 .6333 m .41965 .71648 L .33647 .7645 L .28845 .68132 L .37163 .6333 L s .41965 .71648 m .37163 .6333 L .45481 .58528 L .50283 .66846 L .41965 .71648 L s .41965 .71648 m .50283 .66846 L .50283 .7645 L .41965 .71648 L s .33647 .7645 m .41965 .71648 L .46768 .79966 L .3845 .84768 L .33647 .7645 L s .33647 .7645 m .3845 .84768 L .28845 .84768 L .33647 .7645 L s .28845 .68132 m .33647 .7645 L .25329 .81253 L .20527 .72935 L .28845 .68132 L s .28845 .68132 m .20527 .72935 L .20527 .6333 L .28845 .68132 L s .37163 .6333 m .28845 .68132 L .24043 .59814 L .32361 .55012 L .37163 .6333 L s .37163 .6333 m .32361 .55012 L .41965 .55012 L .37163 .6333 L s .37163 .23506 m .32361 .15188 L .40679 .10386 L .45481 .18704 L .37163 .23506 L s .32361 .15188 m .37163 .23506 L .28845 .28308 L .24043 .1999 L .32361 .15188 L s .32361 .15188 m .24043 .1999 L .24043 .10386 L .32361 .15188 L s .40679 .10386 m .32361 .15188 L .27558 .0687 L .35876 .02068 L .40679 .10386 L s .40679 .10386 m .35876 .02068 L .45481 .02068 L .40679 .10386 L s .45481 .18704 m .40679 .10386 L .48997 .05583 L .53799 .13901 L .45481 .18704 L s .45481 .18704 m .53799 .13901 L .53799 .23506 L .45481 .18704 L s .37163 .23506 m .45481 .18704 L .50283 .27022 L .41965 .31824 L .37163 .23506 L s .37163 .23506 m .41965 .31824 L .32361 .31824 L .37163 .23506 L s .09173 .55012 m .02381 .4822 L .02381 .38616 L .09173 .31824 L .18777 .31824 L .25569 .38616 L .25569 .4822 L .18777 .55012 L .09173 .55012 L s .32361 .55012 m .25569 .4822 L .25569 .38616 L .32361 .31824 L .41965 .31824 L .48757 .38616 L .48757 .4822 L .41965 .55012 L .32361 .55012 L s .55549 .55012 m .48757 .4822 L .48757 .38616 L .55549 .31824 L .65153 .31824 L .71945 .38616 L .71945 .4822 L .65153 .55012 L .55549 .55012 L s .78737 .55012 m .71945 .4822 L .71945 .38616 L .78737 .31824 L .88342 .31824 L .95133 .38616 L .95133 .4822 L .88342 .55012 L .78737 .55012 L s .88342 .55012 m .95133 .4822 L .97619 .57498 L .88342 .55012 L s .88342 .31824 m .97619 .29338 L .95133 .38616 L .88342 .31824 L s .65153 .55012 m .71945 .4822 L .74431 .57498 L .65153 .55012 L s .65153 .31824 m .74431 .29338 L .71945 .38616 L .65153 .31824 L s .41965 .55012 m .48757 .4822 L .51243 .57498 L .41965 .55012 L s .41965 .31824 m .51243 .29338 L .48757 .38616 L .41965 .31824 L s .23083 .57498 m .25569 .4822 L .32361 .55012 L .23083 .57498 L s .23083 .29338 m .32361 .31824 L .25569 .38616 L .23083 .29338 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 250.062}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnWdvnEUQx5/YPqeRDgkliR1qKIGQRkjBpiWEEghdIAQGIsELBAp8A3pJ nEJJqJEQQiAE4uvxxvh21zt3z/1mbtbPvbxI8Z13duY/u8/uf+szfmLmg7dO vjPzwdtvzEwePTXz3ltvv/H+5JF3T80njS6pqiWTVVX9N1m1v8/Nf00/wr9t 7R/pl0V+P9n+2Nq2+VNMeDN8jM4tgLTRrqultX/7IQpfb3+MtCWjkGkTpP0Y FV/Liq0yxVdBNA5pV0FaKuMrGXsFZNoAaT9HxZez4hVlii+BaBWkrYO0X6KJ FzP22jLF57MiObgG0i5HxedAdKWzIFdk0AvR2DM5gZ4tmViRNWLbWhBW5+Mv J7L8WtBeqVmspY1A2tkI8BSIvFDLsnPUvBPAkyDaDGnLIW1pBlgG0tnmANSn KN8ZvbIIaimktXJZqFsZAFs0Y7W0sQxAzf10BDjhLAEBjGQA6ogGAJWAmJSa 6XpI+ypCPe0sC0PN/7YRBF9G28+otsc706Ig/h5MXl1mMtZMq3MgWvjEAemL KHxW9W6sy9T8f6qQZOXh7DUx0+YsnQDp5x0magMpGbsmG6vR3Fa/7bmFx0ZU RPVOzYma4mcW3pwxiF6VpdRdqGif6lBjkEY8siGDEidS+QzQlmmMujmxI4F+ ooMKqxP9rslS4slCKPKWKlpGcuJOAv1YB5UxnaBEStVLjeYjHUr8JpKjZ0p8 SuUzQFeHn63OtCiY/yfPlshVOMWoPmkANa6QAY56+7WamlGS8ARGteq7BtKu NspulGlDKoCDnDfmclDr+bAPhkrYIqVOZ5itN5hKAaCGVQi1NvtIj4NaqbQV 6ukG1Oqs6KVu6Wo0/hhQNB5SxVD5hCzIigG6MivSwEVQRBaFoMszqJe6x7MG rfcMKK+36tQzgFKbNUBtb2OjYWqgFaUBJExHq9ktKU+NTGgvwMCgLkZuBo4a 1Ri9C2CsXnZ1KaySdUjrW1s9ZacVqz4l7PZTqeVOwJH+ZN0yaoAGeuPJEJA9 65NpKk1fCqGoUxC7UgOifp/gjzjh7fnfmCk1oIgI7FmfzI2JQhPUUWep7Fmf vc9hQHmJnJ4p5aPBMME/4iypkCTxhb1llKCOOaGEyKmvS5VTSzWg6ovyLKh4 UR7nAz2kkqaDj6qFcU0HQxsd9dhTp37GKP4YiIrW6hd0O/GZjNerZeGTPE2b no+DSNba9afZdnQSNM7pxoRN4xybnzV5mIw+ASLq2NTyvHPbszqUcCRNJAsB joNImFHdynQAzOoA0jlpaPHOydOuKe0AE7tRGpWPymJs0NoDBZVP+uusblbY jYY6MiuzqtRMTyT/qHUTK3h31rrM99DYaqdlmTx9HbVpQ5fcpDTp0t9GY687 FWloTCZmQEQzBemOl6LiA+2PkIfGCyIK6XBC+FP523T+trQDoGdqVPFkm/Ck /4VvQZf2S+81pQdMacvydaFANPWmNOq74xmeaHCvKd1nSpPrD5qg1BTIdZkR tbIudd9dpnS3KR3XHZYHrO5hq8wjz4m6zl2mdKcpNRxenRXp0cQWzpw2kotK C/TbTekdptRwd11WpE5Q75BVqFWl4W/PpmgJLFLSTcwQZm9btVoPZic0oliR dUm60pQmeBot1PUQOVdLI/6kJquOsg4M8sWLm4pNNUITFnJT3+Lpn4/sEa5X 14sb2RhXeDQVJygalSYgzbt0JVzvAVYZLjaE651uErlsc7pOc1XCJQzyxYub ik1950anmzRW3uDMR/YI16vrxY0tBdv/zZBGgxVNhW9y5iN7hOvV9eKmYlP7 3+6EogXLLZBGQxSt/QiXMMgXL24qNrX/25xu0iLnVqfrdNhHuIRBvnhxU7HV GZHDTRo/b3fmI3uE69X14sY07PZ3QhptqdBAssOZj+wRrlfXi5uKTd1+pxOK GPUuSFPPKRy4hEG+eHFTsanb73K6SdRytzMf2SNcr64XN3IFdvs94adxh6OW fzektQwb+wrz71XzY5GIBfcZ5skUQY6ln5025r/vh6yjBtw9qmksDRHUfvaE rBCactB5wJ/1XjUrDSrINnW0dtVQN45QS6kqs94hR56D4Qs/kkh5yA7BdNju oPIdxHqY/+0+TXA4fO2p0OQB9a5gKiRN5W/T3Wkdx5TY16chbapBvlVDqCHU EGoINYQaQg2hhlBDqCHUEKoZVJjET+dv92tpbEJdu/RewZjK9qruO1z1tUlP /rTE0Jdz6oWuwzWVNrh6aaDMTHKqYJ2sLzONk2M03Z1Wz9fWdSw7S/crypb5 bEPftGi61tc3lPqboAdDOzHe90MJ17rUR7Wo32R2bxmSCXqI+j5a/6ISrlfX i5t2pJpsEDfZKSV73g3iAeyUeo8DvO9q0v405SN7hEsjgHdfnHBTsb2HP9Rg yCXvaYT38MerW3gK0uSor8mZF9nzHvUN4MyrycGu94ST8pE978Gu94RTD4jh PsanftLkPNt7jO/VLTzP9l7a8L5Q571F4L204dUtvL3Q5IpOk7sqZM97RWcA d1WaXMjy3kyifGSPcPXbRU1w3dfviBWb3EPzXr/z6npx04Us72VLYkVvHACi TapG9aVFh27hrUN6L98bssh7x5TykT3CJe7x3jEl3FTsALW5LSHeC/W1rZ1E HCB3d1XphCZNV1wfAlFgorDOqrq3GahawqqTml0YyFXpbaY0OUf3ssPoFZLk 9Vhv/Da5qE91vSNLiYp3mLqGw8uzolzA98aNE11qpTtN6d2m1Lj5LrVEExVK o64h1/1pJNhjSveaUsP1kW7Fojh563Ox1W0aVbrflCaH62/MxP5VVX0CLJCv GzNerYce1ASHNEGnc6oP3nh/12Ur0/mbbIemTnI8J3ijAf4RFR/Pit5ogH9G RXqPtTwaYIrAeCwnNI4GmMJCHs3yQUcD/D4CHAHRYKIBJgBvEILyaICXmgMQ Y1G+i3plDSYaoAEwmGiA30UAb/SC8miABsCgowGmlzW98QmKogF+E23rAQnK owEaJkujAabXZhtGGEhWDmSvadpiRxi40GGiF7RxQMAu87ytT72oSUzA852Q WsMnFiyPCXhOh5JOrL44VhQJ0IAi7iPiahIT8KwOL9yuvj1UFFjKgJJJlPrq SlEkwFkdSqJwDSYS4BkdijoZNfYmMQENeImnRvwqo50dFdCoSokNVyOMRUYF NMpCEe8GER/QKJ105Q43K4Ww7QiBp3WUK7PihOkD9QvD7Hqtjr1bYYV41Fu8 vG4HDDRARXEwAQMNqFVZ0cvrdphAA8obWaRJwEADXvweTMBAA0pWJ15et8ME GlDio87r/jCBBhC1RJ3LXQEDDTSpD5XERzVpl1kOklfE3mqYQAOo4kl0wzCB nYBBMtgwgcbzUHfNFxkmsBBq0GECEzy9bmMTeXmYwAR1yAnVJExgIVSTMIEJ qn5/ToMadJjAQnghyfIwgQmKXsCyibw8TGCCmlKhGocJnO2HUBgmMNmbhkzl YQJP68ZUbqa5UNoRpcutm7IdultJjqbNUIorRUMamZ2EfD/oZhcfLzAZpSMI WdFQG/cG8fteB5A1mfd9agOAjv9keeslCQIwNm7tsxnvRPyiDiAsRHN0b2xA Y7vWGy/BjhJ4SQeQMV2/BKR13NQ4jyZPazTjDeNHpJos055seXTA9OelXoRM diTAy2WKNPolEy+AyI4E+GtUfB4y2fH/fitTlOHr96hIf9DKG1Cv0IT0nnR8 Rn+Xxg4w91dUpL+NYwV6+7ufWk9r/id+DyEmt7QT/o0JIc8i/65cteR/4L09 fQ==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {249.062, 0.}} -> \ {-1., -4., 0., 0.}},ExpressionUUID->"5c77c5ae-763a-45c1-8382-d53c5114c637"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(68\\). \\!\\(\\\"augmented truncated dodecahedron (J68)\\\"\ \\)\"\>"}]], "Message",ExpressionUUID->"581874ef-cddc-4bdf-8172-eabeaf6e2f67"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .5496 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.266022 0.053291 0.249457 0.053291 [ [ 0 0 0 0 ] [ 1 .5496 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .5496 L 0 .5496 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .23938 .33146 m .19626 .30014 L .1798 .24946 L .19626 .19877 L .23938 .16745 L .29267 .16745 L .33578 .19877 L .35225 .24946 L .33578 .30014 L .29267 .33146 L .23938 .33146 L s .34135 .35314 m .29267 .33146 L .33578 .30014 L .34135 .35314 L s .23938 .49548 m .19626 .46415 L .1798 .41347 L .19626 .36279 L .23938 .33146 L .29267 .33146 L .33578 .36279 L .35225 .41347 L .33578 .46415 L .29267 .49548 L .23938 .49548 L s .38791 .45307 m .33578 .46415 L .35225 .41347 L .38791 .45307 L s .19069 .35314 m .19626 .30014 L .23938 .33146 L .19069 .35314 L s .02381 .30014 m .04028 .24946 L .08339 .21813 L .13668 .21813 L .1798 .24946 L .19626 .30014 L .1798 .35082 L .13668 .38215 L .08339 .38215 L .04028 .35082 L .02381 .30014 L s .11004 .4283 m .08339 .38215 L .13668 .38215 L .11004 .4283 L s .14414 .20985 m .19626 .19877 L .1798 .24946 L .14414 .20985 L s .14297 .03476 m .19626 .03476 L .23938 .06608 L .25584 .11677 L .23938 .16745 L .19626 .19877 L .14297 .19877 L .09986 .16745 L .08339 .11677 L .09986 .06608 L .14297 .03476 L s .04773 .15637 m .08339 .11677 L .09986 .16745 L .04773 .15637 L s .26602 .1213 m .29267 .16745 L .23938 .16745 L .26602 .1213 L s .43218 .06608 m .44865 .11677 L .43218 .16745 L .38907 .19877 L .33578 .19877 L .29267 .16745 L .2762 .11677 L .29267 .06608 L .33578 .03476 L .38907 .03476 L .43218 .06608 L s .2871 .01309 m .33578 .03476 L .29267 .06608 L .2871 .01309 L s .38791 .20985 m .35225 .24946 L .33578 .19877 L .38791 .20985 L s .49177 .35082 m .44865 .38215 L .39536 .38215 L .35225 .35082 L .33578 .30014 L .35225 .24946 L .39536 .21813 L .44865 .21813 L .49177 .24946 L .50823 .30014 L .49177 .35082 L s .49734 .19646 m .49177 .24946 L .44865 .21813 L .49734 .19646 L s .66422 .35082 m .64775 .30014 L .66422 .24946 L .70733 .21813 L .76062 .21813 L .80374 .24946 L .8202 .30014 L .80374 .35082 L .76062 .38215 L .70733 .38215 L .66422 .35082 L s .73398 .4283 m .70733 .38215 L .76062 .38215 L .73398 .4283 L s .56782 .48351 m .55135 .43283 L .56782 .38215 L .61093 .35082 L .66422 .35082 L .70733 .38215 L .7238 .43283 L .70733 .48351 L .66422 .51484 L .61093 .51484 L .56782 .48351 L s .7129 .53651 m .66422 .51484 L .70733 .48351 L .7129 .53651 L s .61209 .33974 m .64775 .30014 L .66422 .35082 L .61209 .33974 L s .50823 .19877 m .55135 .16745 L .60464 .16745 L .64775 .19877 L .66422 .24946 L .64775 .30014 L .60464 .33146 L .55135 .33146 L .50823 .30014 L .49177 .24946 L .50823 .19877 L s .50266 .35314 m .50823 .30014 L .55135 .33146 L .50266 .35314 L s .65865 .19646 m .70733 .21813 L .66422 .24946 L .65865 .19646 L s .76062 .05412 m .80374 .08544 L .8202 .13613 L .80374 .18681 L .76062 .21813 L .70733 .21813 L .66422 .18681 L .64775 .13613 L .66422 .08544 L .70733 .05412 L .76062 .05412 L s .61209 .09652 m .66422 .08544 L .64775 .13613 L .61209 .09652 L s .80931 .19646 m .80374 .24946 L .76062 .21813 L .80931 .19646 L s .97619 .24946 m .95972 .30014 L .91661 .33146 L .86332 .33146 L .8202 .30014 L .80374 .24946 L .8202 .19877 L .86332 .16745 L .91661 .16745 L .95972 .19877 L .97619 .24946 L s .88996 .1213 m .91661 .16745 L .86332 .16745 L .88996 .1213 L s .85586 .33974 m .80374 .35082 L .8202 .30014 L .85586 .33974 L s .96529 .35314 m .91661 .33146 L .95972 .30014 L .96529 .35314 L s .80931 .40382 m .86231 .40939 L .87339 .46152 L .82724 .48816 L .78763 .45251 L .80931 .40382 L s .86231 .40939 m .80931 .40382 L .81488 .35082 L .86788 .35639 L .86231 .40939 L s .86231 .40939 m .86788 .35639 L .91099 .38772 L .86231 .40939 L s .87339 .46152 m .86231 .40939 L .91443 .39831 L .92551 .45044 L .87339 .46152 L s .87339 .46152 m .92551 .45044 L .90905 .50112 L .87339 .46152 L s .82724 .48816 m .87339 .46152 L .90003 .50767 L .85388 .53432 L .82724 .48816 L s .82724 .48816 m .85388 .53432 L .80059 .53432 L .82724 .48816 L s .78763 .45251 m .82724 .48816 L .79158 .52777 L .75197 .49211 L .78763 .45251 L s .73895 .43083 m .78763 .45251 L .74452 .48383 L .73895 .43083 L s .80931 .40382 m .78763 .45251 L .73895 .43083 L .76062 .38215 L .80931 .40382 L s .80931 .40382 m .76062 .38215 L .80374 .35082 L .80931 .40382 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 158.25}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzVnOuOVEUQxw87s1dW9gq4IMxwv99UEBUVFDHEYKI+ASEm+sFokOfxo/FC 9BWMxhiN77TSl6k6p+dXZ2p2GOPyYTlTXd39r+7q6qrqPufBwyeff/blwydf PHrY/+Dxw68//+LRN/17Xz1+Rursqao9/aqqvu1X4Xn72WP+E/8dC3/yjxHP n4T/ZkLdf2qEqrM9aCy0Gsv/4vLwa0Ya+dNm6grTHzbTXPgbSb8lpk+BaUFa +jUxnQ3/rQfCFrAvSukvif0MMK0C7YDVt6Pu09TVaShaB9p+oM1bdaPouYOT QjggT9TYrJQehNIfUmMnoOhFpwRdq27sNHdwHJgOAW0NaB2gHQbad6mrvvR9 VJ4IdyzoQcFH4e9GIN1NLRJTH2grBS2soOOC4YFT3Dup6lEoolHcJx2cgtL7 QNsA2u3U6REoOgm0F4BG3d8TcAflaUpdvQ80Mgpvpe5fgiJas3udfHeBRkp6 a/LuyYpFpVGNjk9T6uo20I4B7fXUPQ3CWaAtOvneARqZr5vT6T4OaiTR2Lw2 eafngHYj/J3djhvycCmthgyETOx5oNGOQ3zXBMgclNKI3JgOkMvhbyR51fY5 ALkAtEtAGxMSWamLQJt18l0GmlfTrk8H0hWgkUP1H0K6CjSa9BZI5CHR4JMD Q3wEicQhPXx1OpCuAY0cvh1B6tZplnUjVC87JSJU5P0kX2vIQQ7+W+p+toF0 UEZdkj14paUNWhnkrWaIB3jgEsq5kjz4n8aV1sR1bp0wlp5rNXA9BlEIi1vO Jg0j8YVfN4CPoK2yFBndJtSgiTzPrXSYTNP+GtAI70rLeOVpJ6WlZVjuZKGJ 0oIEGk3+TSfcfUAjBUt+JyozGbVJoL8ONJqRMkDbNuY++W8YndEWUbp2AWbJ F2hkjrzQadRpGJN/g5kJ2nAj9BgtLMrTJDApWiNXMcOkCTE98QImeW1vAo3E odGkmU1OR2KPa34JmE4LpL3yRF6DFxyNIc1dBhcXWLQepA//BTiasbTrpy01 7ksU/3iD67eARkIQOJqxDC5aqFgSEw8x5XNKRqkfnmL2kJql7vdKjdxBD5j6 QCNDQyE1tUcrnWQmwMRH7aUdHaFTmsp0sXRc4xNtxQSJYifi0xxpBnxMCC/J kyaiKAPVs6SfsVY/gdM8NeVc047ozrlS4KP5VR1NimzJphFg4tM+MmDKzlGm nLIfxNdz1iVwlPMgPmovbTq1lb4pTz15olQ6AT4iNebl6RTQqG7ahdynEmQR VqUDVQTKEtMeTO0Rn7acAZMppx2VNJz4DkkH5IylVpoedxt/D2iRmRxmgph2 pWQwV0PJGXk6LD2nzbYBqhqwFr58fk4g9MTsCLU1qFcZwpHeJ6tUy83ZScKh UZxtqo4R3ZxhckfqUY9bRaUsXgdGqDl6KN1FQevNPM5KjS3BOcuCkAOv52YJ skxjtIudMVqrSXFO6npzhEsCQ7chii3K7b0a8HWlbkfrDmEm72CxhtnhuBF6 4lsTOUq/UeUYwrcgAmzI08LYolDI4M2MEp9a31LQIApFtDqdOgylV0F1a0JE l2LdWnXerCrxxUaXnZJEiTe8stfwkytgpGy8c2MoNaUe7DBXpsfhnJejV0F7 yldzMDYZqfe0wbA42j4BuyilNJ7krJcmVlph8agJtVaF+fQmtLuFqFXaPsih NtNEhQ+mrv+YAupaPWQ20SpHUVf3lkut7ZHrT9lSysQklUJHUr0YcomoscJr MUu9Rw3klre3ksWhhJE6UnZCnt3HXkvZZXmaafIXtBawLwjTceioGmSvh8h6 Z6S2dqoGpmJRle3nCi3YSjMffp2Q5q/Jk8YyVy0aGg/c+sl7pRQz8ZEsXr7d BYkyYLQovXzkmBFfhuRNcni7Irvq5ZvfVZDI8actwctHrg7xZUheb8nbFflw Xr6FXQVpkmYnEef/C4nCg0lUdJKlsWhDmmQhT2JA/r+QKJKYZFOYZDNasiGp J9PuYJAjsjyi2cI5LlN8FfgtFl95/cXia4GkHj6F6z2gRWbyQTTPW8uf1WFc aSnrt+LIU2UqtLrXRe5SaTqlFFWMzJyW2Gs8VXvksRNRKAo1o61CPI3e0pGL cUeE1gynPUkKPX0hqC0yUlqDYkszkC7iUtJp4xaSN7Q3ssx0+PUchNf4X3MS ekB3qUkr2tuQUpoj70U44jMPmWiussQePyFITHxmFisCKTcjaaV2/se6O17m itvQc1tC3iI8Jb0povJcMwl1LwgQCo/3tYgwXqaS2/Ce5C/uYEDMRG0h8ppl v8bLKw+lVNasQc3CeMKpplKW5wBNPnNZdKTuCH2wBDQXV8dS4BYRjYO1eWlv f8EQ/heDPvLoA8xfhxRBoQByxWHuB+NLGE1iXAaalK2ayS7K6pKAxXbctUCa Z4RdqWvut+MLqAlC+2y03BWB2RJ6RmamL0+0zZDQVJdAZqHtrNnQKu9Y1sPM 95qdUx4t/oqBRrfQl/BfGYEkjkGNmt7XbsJpUEE+yaCsJ0/mTq4NkTBR/HXh 64C2z4e/dHMjzwLdQfNe4JiErwc0z+WUyhiK2O+CTEtVe3+x74RJdzaIz3vl LInoehmBDkeTpo44aKHtk1R8TmqMfzutPAcZkohvbleDkLY85nJ4ACQC8Xnv q9kHXk5hhmlJq3DL977mbV7xc7TXAxpZQwrHSmsTtM28wl5bQqjlGsqMtfvv 8DJc+2UVEoK23bQGao3Rif4kd1G81+c8bwJYgpFpyu9G0KSTXhN077Ucaq8H NLKqZtwUB4pK1dvMIsaVv2otWBJiWWrQfhQtzrqo8YzVMrlqWzVIIwy7RSPA dDudDGPawod8eR1QU46avUQTScISegrMbwHN+3q4Ork67+arFZ2aVphf68Ah Gy0Evb1wRiCppuhXRsiTo940uugl6N6t8TlCp95MX5P61Q1iVgZgyxaHoidq ls4B3gAavb2zLEB4RxtIZ15oTbYT91KyuF789KLTuSZ+anlRFsECbXo1wPQ5 BlJGWkdjAS62Jl2h5ia1FEg0UAds6BTtEXQ6z6A3Ds3XAE3o1FuLEN5jhF0g BKcRyVch4PR6ajJQLRe9CTtFPrT7ZOxHuQ9y7Up9D+LReFP6egqYmx1QREGX zZ4901AnzC3nXQSRaKQm+f2nHhTZ48zqdN3knyd+qUejTqrZAp+6ts+TmjT6 RAB9dWC7RUmmBJesPX1ngV7qTz3F35GZ/ANSTNLtMWFTgEb3/8z7o6bz6L2W 3CJE+W2A8Ms+fxktBN3OMI8Azfu7FIeTAm2OJwS5m2ThvUKoV0wraUpC0KTT RUnvClKvuGrmhSl5sVckzgaeLHT7iQgNuBertmKewpt+7+Z4gPWg5RUopdtj 5uAaF0so62W+qLXfjz60HW017fikUWSgKElDSh53xa5lUTPqCETT/ZHd+2o6 gTNfMaMpKLf+UKtlM6I4jPIpt4FGl/AIf/mKRoZlho/mHX2yBXlhUnjcA9od oNF6IKU0MswarGoCQaeMci4Z8y1h0oQofR/Q+yb2iFtboxvQU4WWkX4biihP s1NJrKVHu7puq3RNoyW6fscsatLuAc08zDD1dl8GW1ec7XqCowBu38NK67BI nd+XJz1eTFPeco+m6LIMLEfAeBeKyA3+EGh0BEgWiiIQgml+WLaq3oMi8uAf yLj14++hNb4sDHo+YryMSAqQ4cQlEa+40KeN9RTQq/4rUqPYGFYYmnmBsKq+ l6Yo00eAaMrUfNupEl4G+VNKP0I1dhx8gOgqk71CeblkaD9BNVUG8rUpWUN2 ypvWy8dcT6VTWiEExDyB8d3N1FnNnxn7eYfChl+UmjBeVyX7reccaaWmT3bH NWW+RO7bxmng1Kyn0770PfGOxd52AZK0jgRUzyF9R6X6XQhkj8v41+qK4JLe 5U7/kE5JISjotm8G8YJPrkD6HnzHshi0JS8VjYb/q8Htp+pvaU9PFFO4lb9f 32zs41QUf4z4EH61519OP/7O\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {157.25, 0.}} -> \ {-5., -4., 0., 0.}},ExpressionUUID->"60c34a50-5b19-46d3-8e07-2198452df2e4"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(69\\). \\!\\(\\\"parabiaugmented truncated dodecahedron \ (J69)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"7b7c58d2-2cad-465d-8460-\ 99840ecc88b5"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .5496 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.266022 0.053291 0.249457 0.053291 [ [ 0 0 0 0 ] [ 1 .5496 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .5496 L 0 .5496 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .23938 .33146 m .19626 .30014 L .1798 .24946 L .19626 .19877 L .23938 .16745 L .29267 .16745 L .33578 .19877 L .35225 .24946 L .33578 .30014 L .29267 .33146 L .23938 .33146 L s .34135 .35314 m .29267 .33146 L .33578 .30014 L .34135 .35314 L s .23938 .49548 m .19626 .46415 L .1798 .41347 L .19626 .36279 L .23938 .33146 L .29267 .33146 L .33578 .36279 L .35225 .41347 L .33578 .46415 L .29267 .49548 L .23938 .49548 L s .38791 .45307 m .33578 .46415 L .35225 .41347 L .38791 .45307 L s .19069 .35314 m .19626 .30014 L .23938 .33146 L .19069 .35314 L s .02381 .30014 m .04028 .24946 L .08339 .21813 L .13668 .21813 L .1798 .24946 L .19626 .30014 L .1798 .35082 L .13668 .38215 L .08339 .38215 L .04028 .35082 L .02381 .30014 L s .11004 .4283 m .08339 .38215 L .13668 .38215 L .11004 .4283 L s .14414 .20985 m .19626 .19877 L .1798 .24946 L .14414 .20985 L s .14297 .03476 m .19626 .03476 L .23938 .06608 L .25584 .11677 L .23938 .16745 L .19626 .19877 L .14297 .19877 L .09986 .16745 L .08339 .11677 L .09986 .06608 L .14297 .03476 L s .04773 .15637 m .08339 .11677 L .09986 .16745 L .04773 .15637 L s .26602 .1213 m .29267 .16745 L .23938 .16745 L .26602 .1213 L s .76062 .05412 m .80374 .08544 L .8202 .13613 L .80374 .18681 L .76062 .21813 L .70733 .21813 L .66422 .18681 L .64775 .13613 L .66422 .08544 L .70733 .05412 L .76062 .05412 L s .24495 .01309 m .23938 .06608 L .19626 .03476 L .24495 .01309 L s .38791 .20985 m .35225 .24946 L .33578 .19877 L .38791 .20985 L s .49177 .35082 m .44865 .38215 L .39536 .38215 L .35225 .35082 L .33578 .30014 L .35225 .24946 L .39536 .21813 L .44865 .21813 L .49177 .24946 L .50823 .30014 L .49177 .35082 L s .49734 .19646 m .49177 .24946 L .44865 .21813 L .49734 .19646 L s .66422 .35082 m .64775 .30014 L .66422 .24946 L .70733 .21813 L .76062 .21813 L .80374 .24946 L .8202 .30014 L .80374 .35082 L .76062 .38215 L .70733 .38215 L .66422 .35082 L s .73398 .4283 m .70733 .38215 L .76062 .38215 L .73398 .4283 L s .56782 .48351 m .55135 .43283 L .56782 .38215 L .61093 .35082 L .66422 .35082 L .70733 .38215 L .7238 .43283 L .70733 .48351 L .66422 .51484 L .61093 .51484 L .56782 .48351 L s .7129 .53651 m .66422 .51484 L .70733 .48351 L .7129 .53651 L s .61209 .33974 m .64775 .30014 L .66422 .35082 L .61209 .33974 L s .50823 .19877 m .55135 .16745 L .60464 .16745 L .64775 .19877 L .66422 .24946 L .64775 .30014 L .60464 .33146 L .55135 .33146 L .50823 .30014 L .49177 .24946 L .50823 .19877 L s .50266 .35314 m .50823 .30014 L .55135 .33146 L .50266 .35314 L s .65865 .19646 m .70733 .21813 L .66422 .24946 L .65865 .19646 L s .57799 .1213 m .60464 .16745 L .55135 .16745 L .57799 .1213 L s .80931 .19646 m .80374 .24946 L .76062 .21813 L .80931 .19646 L s .97619 .24946 m .95972 .30014 L .91661 .33146 L .86332 .33146 L .8202 .30014 L .80374 .24946 L .8202 .19877 L .86332 .16745 L .91661 .16745 L .95972 .19877 L .97619 .24946 L s .88996 .1213 m .91661 .16745 L .86332 .16745 L .88996 .1213 L s .85586 .33974 m .80374 .35082 L .8202 .30014 L .85586 .33974 L s .96529 .35314 m .91661 .33146 L .95972 .30014 L .96529 .35314 L s .80931 .40382 m .86231 .40939 L .87339 .46152 L .82724 .48816 L .78763 .45251 L .80931 .40382 L s .86231 .40939 m .80931 .40382 L .81488 .35082 L .86788 .35639 L .86231 .40939 L s .86231 .40939 m .86788 .35639 L .91099 .38772 L .86231 .40939 L s .87339 .46152 m .86231 .40939 L .91443 .39831 L .92551 .45044 L .87339 .46152 L s .87339 .46152 m .92551 .45044 L .90905 .50112 L .87339 .46152 L s .82724 .48816 m .87339 .46152 L .90003 .50767 L .85388 .53432 L .82724 .48816 L s .82724 .48816 m .85388 .53432 L .80059 .53432 L .82724 .48816 L s .78763 .45251 m .82724 .48816 L .79158 .52777 L .75197 .49211 L .78763 .45251 L s .73895 .43083 m .78763 .45251 L .74452 .48383 L .73895 .43083 L s .80931 .40382 m .78763 .45251 L .73895 .43083 L .76062 .38215 L .80931 .40382 L s .80931 .40382 m .76062 .38215 L .80374 .35082 L .80931 .40382 L s .34135 .14577 m .33027 .09365 L .37642 .067 L .41603 .10266 L .39435 .15135 L .34135 .14577 L s .33027 .09365 m .34135 .14577 L .28922 .15685 L .27814 .10473 L .33027 .09365 L s .33027 .09365 m .27814 .10473 L .29461 .05405 L .33027 .09365 L s .37642 .067 m .33027 .09365 L .30363 .0475 L .34978 .02085 L .37642 .067 L s .37642 .067 m .34978 .02085 L .40307 .02085 L .37642 .067 L s .41603 .10266 m .37642 .067 L .41208 .0274 L .45168 .06306 L .41603 .10266 L s .41603 .10266 m .45168 .06306 L .46815 .11374 L .41603 .10266 L s .39435 .15135 m .41603 .10266 L .46471 .12434 L .44303 .17302 L .39435 .15135 L s .38878 .20434 m .39435 .15135 L .43746 .18267 L .38878 .20434 L s .34135 .14577 m .39435 .15135 L .38878 .20434 L .33578 .19877 L .34135 .14577 L s .34135 .14577 m .33578 .19877 L .29267 .16745 L .34135 .14577 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 158.25}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzVneuOXEcRx493Zm9e33bXa2wn9oztOImT2MYQkphccO6KUD7AG1gRUvIB gUKeJ1wlUIjgFZAQQkI8ADzNsn2ZrnN6fv9z6uzYwrbkmTPV1d1V1dV16e7T ++nDrz7/2c8ffvXFZw/nH3/58Jeff/HZr+Yf/eLLI9DkRNOcmDdN8/W8Cc+H R4/5I/67Fj7yj4HnD8PXWqj73wR4L3xNYmOTwwSKFZr/pB8PSoVpBEwOS7dH vy6Hz90A+jahv1PQNwD9UgULvZ4BvG9S4ZuFti1A+k7pagKlJ+PntA0r+H9K zd8vgJPQwIVeTrbj52bdfIezP6aHF8PXXoDsQEMHAKMOkwTWqUPk/w+p8AUo Oieb78L2e+WzGT+7Aj56XgfU36ey56FoT7bche0WWk5JgS3RQg39LpU9V9qz cSZ0ktVpgE2Zgm1A/W0quwFFF2XLXdhZJ6xWjEYo4W9S4XUouuxodgxJa0AS CfTXqXAevuLoXC1PdROHZUx4euxmOZIpIBI/Dp/7AfRBamIGSHPg4+wgEbUs RMGHACO8d1PrV6HoepdFaSdrAQRa9wHvfYAR3oPUyBUoeg5gaTYvzRsaYuPj vBJFLDW/cCxaePiIoFOlIyqtLUdo5V3Aq31i+PV2qvAsFJERpSm9xoIl60lq cYarPwDUZwD21jgGyL/Udq9Z+CFpq/vGz+KSWXl6BETW3q5ZkCbdJsFoAH4I sGsAu5+6pUF4EWDkkDYKwevliUwyxQjkne4DjLzdG6uTbrLWSjwcXBATbwDs JsBeH8cEyXA7E9FSovCfQiOKrihafH0c9eTkX3IKL3IUQRTK0rBQK68BjGLX 11YnOJK0rsx28i1sRGjuPibC60EN3U+V4asF3whD/4NxtJJnegVg/VYjEjdV 5vBVgN2SpI8jCd3DsOQ2iiV8smilqCfqsoUgUW2bbh4/kmpKQe44qaY4hKg2 hbEnIvNlgL26OpkkXDK2ZtnIGRyLuKWAilyPl76dIrw5lFJwTjQTXkooUiRd zY47WaxkH1dhhkwHBe5U97YTL7MVM/7loUicbdTgxTd5MiKaVgwoEKnDziBA Ggtirs4FQ91ZekgWjcenniDFWAh8Itu7IJLGbknI3uE7x9Uzk9IUomddamUs z7RIoIfUn//flX1xG1l/SUto6tVxRVP82pJEvFx7ZylFVtQHSYDwqL0kbXeY PEIaXs490/pQqCb1QRPBs6wXfqUEBNWMQsY6NwnSqPECLLIdl7nJuZMAKBOi 8aC6JADCo/ZSZO1e3I4CiM6zziuLKDbMQC4K069N5blJSUghKGWjuiQPwqP2 sjxIfyiT7pcHRpeNkMJ2QabOST9IQ2ncKX7xJvkpHE/oMh15vkhhp+BNC4zE XMc3SVpivpAukHLSGBPv3lWazHs0lXFgaAJVvJMFjiDqgJbeFlMGlepQaALh rSINai+F5ym6jXOcFmqSDJYWZUhpTleo+d8aTBfSIFIK3U0XRokc4VF7WQyx +1gS18T3lQJQs+SI4i8qiAYp7oN6OdkpNTKtM0CaA4y8oFbbYd8Slb8ez8KT I0Im+RPHhEftpSgfeafNIIoY9Qo6+BZ5AOBiKaWYnNihBSfC2ystZ2avFcCz 5cn2erzskBqQITooLXuZ2OpSRez4d31p8cibXkubF4kjlSXhEYuEZy1nFmlr 7QLASOpkNySLa2YZjhdi0Io44VF7KbRJTZj+VztMeqca5lgE0bhfKe3ZdsdN gM2gboqO3MdA6h2mYPEoiLOY6HJ5otMD5O9oF4vw5qXlzAS5aYr+blQVQcWq kx+kdjcyo+TVCX8GMGk2yQwkp5vcwrlQEgdtXZmgSZeF5Lc61DaLNvoCM3Nt V6ittiIQ1zSFErXNvUI+TYObLN6tIt5J175PAL/wxys8cgpeqiplRvuWhbTX Smv6sRZpMVWM4t3s8ieWIihPt0XzKhq5WOTmbK3Fxa1Sl4I/yb45aPTCgcY6 zmkWeNNSd2J1l2imMGm7RTPOomHqCc8OmVEOfIvps12C/fK0NZoV2gMkP66b AOOOyVxghdbCbDhNDLXdobotJqI276lZR5EXsUN4sVFKtYmTyDHmMQP0U5Qi FqK9YyOUmhYtLaapk9syPMdIcxpoz/BaUct5ppTiIWpPWBxrnwh7pZSSPClr oX1x2lTN7FETZq0q80mZH7Fan/VskvugqJ/OBxnTFrqZHxjJoM3Vy7KJXj6q uuZbbve2R3EqnTalFcykUhh/PlM6paiJGqviF1lKm8N6HX1MK5kdCpMtpKKu EjscYc56yu6Up7UufgXrIfZ0QboOHR0932WwnSptugtbd6ggfNXt5wo9tFG+ ZyH9vfJkKdB3FQyNB7p+imNpc4rwiBcv3tNFEh2LpEnpxaPAjPAySd6VGG9X ZFe9eJtPFUkU+JNL8OJRqEN4mSRvtOTtimI4L97WU0XSKs2uws6TSxKlB6uo 6CpTY1uTtMpEXsWAPLkkUSaxilNYxRmd1CRZJNMfYFAgcmqg2So4rlcBG4hb FN49J14PSRbhU7o+A1hEphikdQpxvd19IeNuT9m8l448VFKhLbyuVjENZkNK WYXlHGINtaa9hdP0Zx7HYYWyUJltVexZ9pZ2ecTJN5oz/teebMOHSO3hkZY1 KLeUiXSVl5JOi7Od3tRerDLTJtMjYN7yf1uTsF3E211Y1Z69nEtjRHqulzJg LntfS84ce+KEwDHhyVWsSEjtjEorrS1H1t1xK1fchm1CE+U9zNOiN2VUnuNZ oe7LhRBKj8/0sDBupZLb8B5p2D6GQORCbcXyrrJf49aVl5ZUdpVQMzOedKqr lPU+QBdPTotJqTugD4pBObkmSoF7WBQba5ulvYMKIXwXgz649QHmb0KKYKQA 5UaH9AfjOYwmMU4DW5RtuotdtKpLDFbuWL6/JfcIp6Wu9LfjGbQFQr03WntF QFZM20HBeXkiN0NMU10iMjOtV82WZvlEWQ+53is7p3W0+CsmGtNKX8JXnYEk jEWNlt63XumxpIJikkXZrDxJT24NETOR/b2CNwFtjxvVdLgjjwIdaPGe8VgF bwYw75kWEkXsd6sMSz490spshsmkYx2EZ3dZzMsTnZ9LLLpuR6DN0aSpAxst 5D5Jxe0cIKU7M4AddGv0HePgdz6aRUpbb3M5IgBigfAsm7GhoD70hpeTmWVY 0ip0+bQTTdTLc4iO9mYAI2tI6RhdziDfVGlNIdRyS2VGeX+ZpxBjV7o15GEV YoLcbpoDrcbkC5oOdgjPDnCYXpIR9rzwoxjTp9Fx0EmviXTvsRxqbwYwsqoy b4qColKLNjOLceafUxOWmDhVapA/ihbH7vmSBxApVLvUImnAsCsYEfy2IrOC 1W8wZNdvApV8tOwlmkhilqinxPwtgI26/qY6ZCHfFJq0tIKYWOWllDcB9kIh yTTFjgB7Xyyz7GKWSPe6xkdIOvUmY035BoklN7HwkmaHsifvi3N0o0711put NkyUGbG0QB5tTbYTfekqL/7RtTq3uvRTy9tlEmyR02sRTC8ikTJ639yUBFeu yWaodFInA4gEdUGT7r0RiPYz6MIH+QKxJJ1662HiUb9I/X9kYrV34On2omSg eg56E+2U+ZD3ybRf5T48dxYE9kjetHz9GGjudqCvkVjijUSdaO7Z7yISvfdC 5Je5ZlCk5czqRNcZJfz+e1lJ6qSaPeRT13o/qQv7HsDodpjDHiV5TOSSta83 mo3cDSXliEzxASmmvpbJTTYlaHT+T54flcGj91hyDxN0QZjefxlmgk5nyC1A eX6X8nBSoPPjmKBwkyy8lwmLimkmPSYmaNDpoKR3BllU3HTXhWnxYqdwnA08 Wej+HRESuJdWa0Xuwg9cnecm2DZavg+ldHpMClccLKFVL/mi1oGf+tB2tNXk 8UmjyEDRIg0pefSKU2VRM9WREFvuj+iU/HuJk6+Y0RDQTbc9zsh7s+kDgNEh PKJfXMct00d5Rp9sQZ6YlB7PAEaX/tJ8IKUUK8yWrNoCgg2ZvM0+X3lbLcl/ 4KSPhDdwamu4AdtV6JH0O1BE6zTH5URNPfLq5lblvUFVjZxd/0gWdWEfAUxu Zki9pfubD9sLHBXh+hxW6y9A2Gr3J+XJthfTkPeco6m6rBPLATLegyIKg38M MNoCJAtFGQiRKW/CaPCedIrgPy1ym8fffFO3nSdpJV6uU32ZnDgl4hGXnwKS 7QJ61d8uYa8cw1kmTR4gzH+FQ+63ea9bNPOtl0p4GuQb076Bahw4+Aiio0x6 hvJ0yaT9GaqZMlCsTYs1ZKe8y3p5m+vb0qm8J9Wh8uJdWCnY2GG+8/Avx2Q2 /KKlCfG6Ktlv2+dIM7X5a/iKc0q+RO5z4yQ4M+tpt6/5W/iaKPS+A5Deu7ct ckhXtzR/LwCyx3X+q7ryXhefO/1H6ZQUgpJufTKIJ3wKBZp/FoHqxXsKZpa2 x1Iw3fyrtGc7iindav4Njf0kFcUfA3+sqTnxP7yRe7Q=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {157.25, 0.}} -> \ {-5., -4., 0., 0.}},ExpressionUUID->"bd59bcb0-805d-4006-bde5-52869753da12"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(70\\). \\!\\(\\\"metabiaugmented truncated dodecahedron \ (J70)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"4535b103-3c9a-4b75-a94c-\ 7c49f5e08061"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .5496 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.266022 0.053291 0.249457 0.053291 [ [ 0 0 0 0 ] [ 1 .5496 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .5496 L 0 .5496 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .23938 .33146 m .19626 .30014 L .1798 .24946 L .19626 .19877 L .23938 .16745 L .29267 .16745 L .33578 .19877 L .35225 .24946 L .33578 .30014 L .29267 .33146 L .23938 .33146 L s .34135 .35314 m .29267 .33146 L .33578 .30014 L .34135 .35314 L s .23938 .49548 m .19626 .46415 L .1798 .41347 L .19626 .36279 L .23938 .33146 L .29267 .33146 L .33578 .36279 L .35225 .41347 L .33578 .46415 L .29267 .49548 L .23938 .49548 L s .38791 .45307 m .33578 .46415 L .35225 .41347 L .38791 .45307 L s .19069 .35314 m .19626 .30014 L .23938 .33146 L .19069 .35314 L s .02381 .30014 m .04028 .24946 L .08339 .21813 L .13668 .21813 L .1798 .24946 L .19626 .30014 L .1798 .35082 L .13668 .38215 L .08339 .38215 L .04028 .35082 L .02381 .30014 L s .11004 .4283 m .08339 .38215 L .13668 .38215 L .11004 .4283 L s .14414 .20985 m .19626 .19877 L .1798 .24946 L .14414 .20985 L s .14297 .03476 m .19626 .03476 L .23938 .06608 L .25584 .11677 L .23938 .16745 L .19626 .19877 L .14297 .19877 L .09986 .16745 L .08339 .11677 L .09986 .06608 L .14297 .03476 L s .04773 .15637 m .08339 .11677 L .09986 .16745 L .04773 .15637 L s .26602 .1213 m .29267 .16745 L .23938 .16745 L .26602 .1213 L s .43218 .06608 m .44865 .11677 L .43218 .16745 L .38907 .19877 L .33578 .19877 L .29267 .16745 L .2762 .11677 L .29267 .06608 L .33578 .03476 L .38907 .03476 L .43218 .06608 L s .2871 .01309 m .33578 .03476 L .29267 .06608 L .2871 .01309 L s .38791 .20985 m .35225 .24946 L .33578 .19877 L .38791 .20985 L s .49177 .35082 m .44865 .38215 L .39536 .38215 L .35225 .35082 L .33578 .30014 L .35225 .24946 L .39536 .21813 L .44865 .21813 L .49177 .24946 L .50823 .30014 L .49177 .35082 L s .49734 .19646 m .49177 .24946 L .44865 .21813 L .49734 .19646 L s .66422 .35082 m .64775 .30014 L .66422 .24946 L .70733 .21813 L .76062 .21813 L .80374 .24946 L .8202 .30014 L .80374 .35082 L .76062 .38215 L .70733 .38215 L .66422 .35082 L s .73398 .4283 m .70733 .38215 L .76062 .38215 L .73398 .4283 L s .56782 .48351 m .55135 .43283 L .56782 .38215 L .61093 .35082 L .66422 .35082 L .70733 .38215 L .7238 .43283 L .70733 .48351 L .66422 .51484 L .61093 .51484 L .56782 .48351 L s .7129 .53651 m .66422 .51484 L .70733 .48351 L .7129 .53651 L s .61209 .33974 m .64775 .30014 L .66422 .35082 L .61209 .33974 L s .50823 .19877 m .55135 .16745 L .60464 .16745 L .64775 .19877 L .66422 .24946 L .64775 .30014 L .60464 .33146 L .55135 .33146 L .50823 .30014 L .49177 .24946 L .50823 .19877 L s .50266 .35314 m .50823 .30014 L .55135 .33146 L .50266 .35314 L s .65865 .19646 m .70733 .21813 L .66422 .24946 L .65865 .19646 L s .57799 .1213 m .60464 .16745 L .55135 .16745 L .57799 .1213 L s .80931 .19646 m .80374 .24946 L .76062 .21813 L .80931 .19646 L s .97619 .24946 m .95972 .30014 L .91661 .33146 L .86332 .33146 L .8202 .30014 L .80374 .24946 L .8202 .19877 L .86332 .16745 L .91661 .16745 L .95972 .19877 L .97619 .24946 L s .88996 .1213 m .91661 .16745 L .86332 .16745 L .88996 .1213 L s .85586 .33974 m .80374 .35082 L .8202 .30014 L .85586 .33974 L s .96529 .35314 m .91661 .33146 L .95972 .30014 L .96529 .35314 L s .80931 .40382 m .86231 .40939 L .87339 .46152 L .82724 .48816 L .78763 .45251 L .80931 .40382 L s .86231 .40939 m .80931 .40382 L .81488 .35082 L .86788 .35639 L .86231 .40939 L s .86231 .40939 m .86788 .35639 L .91099 .38772 L .86231 .40939 L s .87339 .46152 m .86231 .40939 L .91443 .39831 L .92551 .45044 L .87339 .46152 L s .87339 .46152 m .92551 .45044 L .90905 .50112 L .87339 .46152 L s .82724 .48816 m .87339 .46152 L .90003 .50767 L .85388 .53432 L .82724 .48816 L s .82724 .48816 m .85388 .53432 L .80059 .53432 L .82724 .48816 L s .78763 .45251 m .82724 .48816 L .79158 .52777 L .75197 .49211 L .78763 .45251 L s .73895 .43083 m .78763 .45251 L .74452 .48383 L .73895 .43083 L s .80931 .40382 m .78763 .45251 L .73895 .43083 L .76062 .38215 L .80931 .40382 L s .80931 .40382 m .76062 .38215 L .80374 .35082 L .80931 .40382 L s .73398 .17198 m .69438 .13632 L .71605 .08764 L .76905 .09321 L .78013 .14534 L .73398 .17198 L s .69438 .13632 m .73398 .17198 L .69832 .21158 L .65872 .17593 L .69438 .13632 L s .69438 .13632 m .65872 .17593 L .64225 .12524 L .69438 .13632 L s .71605 .08764 m .69438 .13632 L .64569 .11465 L .66737 .06596 L .71605 .08764 L s .71605 .08764 m .66737 .06596 L .71048 .03464 L .71605 .08764 L s .76905 .09321 m .71605 .08764 L .72162 .03464 L .77462 .04021 L .76905 .09321 L s .76905 .09321 m .77462 .04021 L .81773 .07153 L .76905 .09321 L s .78013 .14534 m .76905 .09321 L .82118 .08213 L .83226 .13426 L .78013 .14534 L s .80678 .19149 m .78013 .14534 L .83342 .14534 L .80678 .19149 L s .73398 .17198 m .78013 .14534 L .80678 .19149 L .76062 .21813 L .73398 .17198 L s .73398 .17198 m .76062 .21813 L .70733 .21813 L .73398 .17198 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 158.25}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnVuPVEUQgJs9O3tj1WVZUBCZQUVEQUTFKwreowaNtwcfiTHRB6NRf4/P Ro3+BaMxRuN/WunLVJ3p+aqnZsdVSSRh50z1raq6um7dp+fa9a8+/ujT6199 8uH10atfXP/8408+/HL0ymdf3AB1B0I4MAohfD0K8Xn3xmP5k/6din/KlxnP 78SPpdj2zx4gdLvjzmKvqfx3Lo/flqST3+xKy1LpV7vSSvybQD/nSu9CpTXp 6adc6f74sR0Bx6D6upR+IA0TxoP4dC13cQYabgHsqIWPo+37yFqDnWsR9HKu dh9U2gbYEYCtWm0TH95L35f7pbsGVhvCsqu51r3Sy1F5IgwGUno7lL4lpR3j chtw7Up+uAf6u8PJq2WrbcLlTSht4jcFfi5/3g0dHQfYIXPASdidAHsdYAPg GmE6JvhyrjQSwEl5Iu6lgiEUvCrN6lWhGMym8qncgAYYAYxE5G5B5BVoQcjd 6mBj/PZkbnASimi2bxVETkPpCwBblxbErxUpLYjcBZXuBdgtACOUrsoAB5uI kNq7tI8okVFSU0AYrgPssdz+BBSRmj3orHcFYJ0gp3NmoplKLy2OHBmy5wCm WplknCZGbfMT+4PmswBbk0HJJhGa6mc8ndEklXk/wEhaqB6heVDQJC2igjCQ eo/9c8glLiXLvYHIhb4/RGx+ZHFczwLsGYAR+xJKqxGUGJk8I3JrCppkXh8A GHVB9QhNErzE3JUIotKL+4Pc004eEkr7hOaDAHvKObwX9YImufvnAEYqjuo9 6USJtPjm/2g60KTJpFiJ6j2c0SQP/yGAkWNJ9R6Pf03j/C8jl3iYQGRFKWrY E3KuCJDwI49Xw0GyBBROkFDSZGSfeyqOvPFZkBtM0DEuI2afdxKT5j+xRx2L Fah3eHGycm5haioyZSs1ePxJM0WrsSYuMuYQjLhbHIFMbyoq/4mNRLbH1sQB hvkh5wx45mqRo9mkekrwFDtpQacJXdHex4Vhx0neJo9VKKReiJkPcC9G4oEk +FSDl6Qsks+SQJS5qb1a7rdIL0kCJVlqNyJ2QdkKjwzHbyT/ZAxr/RkMohMu A0tSaLQcB6FiI1O5CANOAYwkiRiwUTCiOSQJHVhiYeelUMbIR6zDhohDXS/C yJccIa7TMFqnZJCInDT1hyKIdDiNlj1mlBlKlCQGqI1MT15iyfwQscR4k1FL oP28HCSECj+8aRniBwUcxA+i00xgONpuCAakvyiGJhj1nD3svDqTPqeG98nw mn+j8JlYQaLmlWCallXBgMihFgQjrAorktJMmoZQ8rJi6ESEpIKWP/nahB8x hYilaSb8soOe/dvkjlB6xZuSJPkgREg+vMk23fkjrLwyQ1gVViTbmkpS/vhw fDotgyYSt1VNtxwf9Z9Cdme9KmJNBik4DaESMZuMIRlw6o/syHpFR6GFHC+y /6TMvFuX2Q1AKmkfhFDSDaWRPJHbsd4s9e4gtbc9CzmnBHBCnm6XJ9rEGFq8 qUxXzYAohl53UjcLaL80e5nurU/K6eg2p84EJfxIOG6TFpWvkKnjBUiToUgU imh/iHbbKQtN9YbOtkSlekS2cz21DolKGjCLcE+L7cjTUJ7I7yaK7pIWpFjV apL1qpVEGNczd3dzC/dhCVJ2WzKACh+FdR7bEVqEmWTruIUcMrKkQGnNUb3j MgBJT+6Fd+E1xaSqhBiRrF0nLRx4ZvOcnaetWHJGnu6UoTK7arku0z2o4enD dJMpojWd7Q4UCqlG2hvOzkPOYZs7WKeZ6YNJOTQSLWcY3FXt2kYpGEt0Vejv gM3jlrTiCuHnhBByXqihZjiOCQkDppHidFURSw2MaRZo/tXaOVHokX5WeOfd YtbQTq025R3qIEOkN68TTY2WT6LWzDX0Rp2ilqKb9R61jliA6DY3D9B0KAem 8Gvvx9MwnTSbi1oK/r0by1RP7Q4lAiknp7JSaaY62RtyPFFHMdRvj8Dk3G1b nCSvhEiler2AaDaViRuHvXzp4U8+11bFmdKNd96MNUGJVTtrJlPniMboGBhl 4XK9nqO2w5h6t8MNVaf9E2LnpJT4SSFXbRCkFyaPulA1WS0C8qyI1OWK1LJY KLQxk+CqMKsQbU4CVeMdN7to0lG1VUt4vtkfBWHkH9COThYpdK/VcSMHjDrT dA0Ft1rq3bGm8KbdSyGHwngNZez9Wnabh42yh+RpabJ+BWsgq9GgsaV4gcF6 BLW3dsIETtWiqvsvDRq4UfLuHun+ojxptPmwBUPlgSad3PALznpEi7fezYUS 5WRpUXrrkV9H9QpKZAO9XVA90qveeqs3FUoUcZBJ8NYjV4fqFZS83pJ3KPLh vPXWbiqUFul2EXL+uyhReLCIiC6yNNZtlBZZyIsokP8uShRJLGIUFjFGGzZK 6sm0HQxyRDZndFs5x3VWM4DfYtW76KzXQEk9fArXhwBLlckH0ex3L3fWR+NC o2zUxKNMlSnQ6l5rFFDBdEopqpiZLK5x79UJ7chjL6RQFGpGWxV5Gr3lzS/j 3B2tGX/KU7e5CNUGjZTWoNjSDKSruJRk2jhw6g3tjXQ5bUP+DcRr/K85CX39 6/wkrOrvsJTSHJGc26kMWMu0WUdzVSj2+AmRYqpnZrESIrUxkl56G63+LVo7 c8V96P66fcjD5UrGziii8hwmi20fFEQoPG6dZZ0vU8l9UKrGPgA0H0PMRG1F 8iFLf82XV55KqZhHIgsxnnBqUijT0uxo4cZ65rLopO0MebAINBdXZwlwg0Rj h1D39o5UFeKnKPSZ2yKg/joSBEUFMFc8Zpznm4fCpBLTMtCkbJhMdlFWlwis zPGyhaS5o7ksbU17Oz+BmiAky8GuBlS2iF6SmRnJE5kZIpra2vuQjazZ1Crv LO1h5nvNwSmPlr6lQGO5kpf4UUcguca4RU/ue6dbNKggn2RcNpQn05JrR0RM In9b6nUg7ek1VTrPUmaBDh3SMRlyHxapNwSY58hOMFiRxl2TaQm9MzcjJ5p0 TIXqeQ8OZhJdb7LR5miW1BkbLWQ+ScT1VMP8pwjrfZApivgd6TAOaettLocH QCRQPe/JQXvDy0nMNCxLFZp87508pESp3iKnCSkcq7VNlDbzHGtvCaGUaygz l/Xf46HC9ikZIoLMbl4Dvc5oR3+RoyzeQ4We15Mswkg1lTe/aNI9r6DFb95T PdTfEGCkVduXjlCpepuFxLTyt6wFS0RsSguyR0njbIsYL1k9k6t2rIfSDMVu wQhhujqDFGM24VO+vDLUpKOnL1FFet/OoMD8MsC8l7Gok6vzTkRoPHPCJsL7 3g0RQVdtnBGUVFL0Khry5Gi0+lyz2zT+jajTaKavab6qpMFNKjxmk+N9L472 AeheEXpHT08is0ULs+6WyboTban3PUfCny4cOTuJP/W8LovAvGWmIEyXH5Ew 0jqaC+HKNOkKNY3URgQRo47aqHtfIqb9DLrnw3zJ2UTde/VLIcK7jXATEOF/ XZ8QfwJgWUE1Tqx7bzoh61NwP8ljkGtXy3skj/hN6et9wHlyAIoo6LBZCMjq jHNjv4tQ9F4qU95TG0KRzWcWp0tm/VWqL+2I695rZwr6NLS9nzQJewRgdGXN bkNI9gld0vb1RrOiu2JxOVUm/8B7o8ycaFOARuf/zPOjpvPoPZbcIOJxKLL3 X2YTQaczzC1A8/yu9xaYnfmIIHeTNLyXCPWKaSXtExE06XRQ0ruC1CsOk3nh 9gU1RcGThm7viBDDvbhqL+YuvOn37syHsG60PAqldHrMft2bD5ZQ1st8reyI H/vYd9LVZPFJojwXLYh4kFVctjRqwTohoun+VJ2Cfy9y6hJWIktTUJv+2Kph jCgOo3zKVYDRITzCv35Fo6Blho/mGX3SBWVhUng8BNjzAKP1QEJpZJg1WK1e h05PlHMpOF+WSpoQfcmJHzFvxqmt2R3orkKD03TZL+Vp9kqJtfTIqlfvM1e9 NKLrK2bRJIzu9jY3M0y5pRf6d/sJjgpx+xxW7/JszXa/Jk+6vdi6jKt27SOM 3tVvoEHXipMb/AbAaAuQNBRFIISmedN+CC9CEXnw14Rvo/R9ao1vSgXdHzFe RiQBKOikJZGOuNBvU+guoFf8zcsyjN8MMA8QhvCNdEWZPkLIvIXRVEOtZVDu d/sWmrHj4EOIjjLZK5SXS0HtO2imwkC+NiVrSE9503plm+t7GZRWiHmpCqpd 19lMndVyFeMPeyQ2fqPUhPG6avvutLxSw4/xI60p7wW2hhknxqlaz7t9+Qdh Oqt66wCk9xIh9RzyhTXhFwF4roW1hiJ0Se7KoL/KoCQQFHTbJ4N4wWdXIP+g T2dpDDLJG1Wn8TOMTz+FP6Q/3VHM4Vb5AaLJzt7ORenLjF8yCgf+Ap0w30I= \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {157.25, 0.}} -> \ {-5., -4., 0., 0.}},ExpressionUUID->"8fa9cb05-5ee6-4360-998c-7dc467b741b4"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(71\\). \\!\\(\\\"triaugmented truncated dodecahedron \ (J71)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"bd3e2b02-0555-4eab-9701-\ 45b18f3ebc22"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .54894 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.261638 0.0523266 0.245163 0.0523266 [ [ 0 0 0 0 ] [ 1 .54894 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .54894 L 0 .54894 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .23547 .32569 m .19314 .29493 L .17697 .24516 L .19314 .1954 L .23547 .16464 L .2878 .16464 L .33013 .1954 L .3463 .24516 L .33013 .29493 L .2878 .32569 L .23547 .32569 L s .3356 .34697 m .2878 .32569 L .33013 .29493 L .3356 .34697 L s .23547 .48673 m .19314 .45597 L .17697 .40621 L .19314 .35644 L .23547 .32569 L .2878 .32569 L .33013 .35644 L .3463 .40621 L .33013 .45597 L .2878 .48673 L .23547 .48673 L s .38132 .44509 m .33013 .45597 L .3463 .40621 L .38132 .44509 L s .18767 .34697 m .19314 .29493 L .23547 .32569 L .18767 .34697 L s .02381 .29493 m .03998 .24516 L .08231 .21441 L .13464 .21441 L .17697 .24516 L .19314 .29493 L .17697 .34469 L .13464 .37545 L .08231 .37545 L .03998 .34469 L .02381 .29493 L s .10848 .42077 m .08231 .37545 L .13464 .37545 L .10848 .42077 L s .14196 .20628 m .19314 .1954 L .17697 .24516 L .14196 .20628 L s .14082 .03435 m .19314 .03435 L .23547 .06511 L .25164 .11488 L .23547 .16464 L .19314 .1954 L .14082 .1954 L .09848 .16464 L .08231 .11488 L .09848 .06511 L .14082 .03435 L s .0473 .15376 m .08231 .11488 L .09848 .16464 L .0473 .15376 L s .26164 .11932 m .2878 .16464 L .23547 .16464 L .26164 .11932 L s .42479 .06511 m .44096 .11488 L .42479 .16464 L .38246 .1954 L .33013 .1954 L .2878 .16464 L .27163 .11488 L .2878 .06511 L .33013 .03435 L .38246 .03435 L .42479 .06511 L s .28233 .01307 m .33013 .03435 L .2878 .06511 L .28233 .01307 L s .38132 .20628 m .3463 .24516 L .33013 .1954 L .38132 .20628 L s .47598 .15376 m .42479 .16464 L .44096 .11488 L .47598 .15376 L s .82303 .30378 m .80686 .35354 L .76453 .3843 L .7122 .3843 L .66987 .35354 L .6537 .30378 L .66987 .25401 L .7122 .22326 L .76453 .22326 L .80686 .25401 L .82303 .30378 L s .81233 .20197 m .80686 .25401 L .76453 .22326 L .81233 .20197 L s .97619 .25401 m .96002 .30378 L .91769 .33454 L .86536 .33454 L .82303 .30378 L .80686 .25401 L .82303 .20425 L .86536 .17349 L .91769 .17349 L .96002 .20425 L .97619 .25401 L s .89152 .12817 m .91769 .17349 L .86536 .17349 L .89152 .12817 L s .85804 .34266 m .80686 .35354 L .82303 .30378 L .85804 .34266 L s .61754 .51459 m .66987 .51459 L .7122 .48383 L .72837 .43407 L .7122 .3843 L .66987 .35354 L .61754 .35354 L .57521 .3843 L .55904 .43407 L .57521 .48383 L .61754 .51459 L s .91769 .33454 m .96549 .35582 L .96002 .30378 L .91769 .33454 L s .73836 .42962 m .76453 .3843 L .7122 .3843 L .73836 .42962 L s .71767 .53587 m .7122 .48383 L .66987 .51459 L .71767 .53587 L s .61868 .34266 m .6537 .30378 L .66987 .35354 L .61868 .34266 L s .5167 .20425 m .55904 .17349 L .61136 .17349 L .6537 .20425 L .66987 .25401 L .6537 .30378 L .61136 .33454 L .55904 .33454 L .5167 .30378 L .50053 .25401 L .5167 .20425 L s .51123 .35582 m .5167 .30378 L .55904 .33454 L .51123 .35582 L s .6644 .20197 m .7122 .22326 L .66987 .25401 L .6644 .20197 L s .5852 .12817 m .61136 .17349 L .55904 .17349 L .5852 .12817 L s .73836 .17794 m .69948 .14293 L .72076 .09512 L .7728 .10059 L .78368 .15178 L .73836 .17794 L s .69948 .14293 m .73836 .17794 L .70335 .21683 L .66446 .18181 L .69948 .14293 L s .69948 .14293 m .66446 .18181 L .64829 .13205 L .69948 .14293 L s .72076 .09512 m .69948 .14293 L .65167 .12164 L .67296 .07384 L .72076 .09512 L s .72076 .09512 m .67296 .07384 L .71529 .04308 L .72076 .09512 L s .7728 .10059 m .72076 .09512 L .72623 .04308 L .77827 .04855 L .7728 .10059 L s .7728 .10059 m .77827 .04855 L .8206 .07931 L .7728 .10059 L s .78368 .15178 m .7728 .10059 L .82398 .08971 L .83486 .1409 L .78368 .15178 L s .80984 .19709 m .78368 .15178 L .836 .15178 L .80984 .19709 L s .73836 .17794 m .78368 .15178 L .80984 .19709 L .76453 .22326 L .73836 .17794 L s .73836 .17794 m .76453 .22326 L .7122 .22326 L .73836 .17794 L s .81233 .40558 m .80145 .45677 L .84676 .48293 L .88565 .44792 L .86437 .40011 L .81233 .40558 L s .80145 .45677 m .81233 .40558 L .76114 .3947 L .75027 .44589 L .80145 .45677 L s .80145 .45677 m .75027 .44589 L .76644 .49565 L .80145 .45677 L s .84676 .48293 m .80145 .45677 L .77529 .50208 L .8206 .52825 L .84676 .48293 L s .84676 .48293 m .8206 .52825 L .87293 .52825 L .84676 .48293 L s .88565 .44792 m .84676 .48293 L .88178 .52182 L .92066 .4868 L .88565 .44792 L s .88565 .44792 m .92066 .4868 L .93683 .43704 L .88565 .44792 L s .86437 .40011 m .88565 .44792 L .93345 .42663 L .91217 .37883 L .86437 .40011 L s .8589 .34807 m .86437 .40011 L .9067 .36936 L .8589 .34807 L s .81233 .40558 m .86437 .40011 L .8589 .34807 L .80686 .35354 L .81233 .40558 L s .81233 .40558 m .80686 .35354 L .76453 .3843 L .81233 .40558 L s .38132 .28405 m .42663 .25789 L .46552 .2929 L .44424 .3407 L .3922 .33523 L .38132 .28405 L s .42663 .25789 m .38132 .28405 L .35515 .23873 L .40047 .21257 L .42663 .25789 L s .42663 .25789 m .40047 .21257 L .4528 .21257 L .42663 .25789 L s .46552 .2929 m .42663 .25789 L .46165 .219 L .50053 .25401 L .46552 .2929 L s .46552 .2929 m .50053 .25401 L .5167 .30378 L .46552 .2929 L s .44424 .3407 m .46552 .2929 L .51332 .31418 L .49204 .36199 L .44424 .3407 L s .44424 .3407 m .49204 .36199 L .44971 .39274 L .44424 .3407 L s .3922 .33523 m .44424 .3407 L .43877 .39274 L .38673 .38727 L .3922 .33523 L s .34101 .34611 m .3922 .33523 L .37603 .385 L .34101 .34611 L s .38132 .28405 m .3922 .33523 L .34101 .34611 L .33013 .29493 L .38132 .28405 L s .38132 .28405 m .33013 .29493 L .3463 .24516 L .38132 .28405 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 158.062}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNnWuPpEUVx2une257gdlhLwi7O72w7C6ssCoIosJ64WKMRCX6wpcbYgIv jAb5PL7WKF6+AjEmxvCZ2nlOVdfprv79q8/j7AibwHTXU0/VOadOnXtVv/fw kw9//ZuHn3z0wcPZux8//N2HH33w+9k7v/34uGlyJqUzs5TSH2Zp+Dw//lj+ Z/9uDv8rXzZ8/vnwZ2t49/OlhjSdLwYrI/+Hn5Z/NsC/l7tMlrscfzv+Z03/ 0p126kj/1J32aqfPcqc7w5/DoeFJ6L5fn/4jd78NnQ6g7bKaO/DuX/NUz8Gj w+BUO8F3P81TPVupcqV+omGn0O9X9dPW8Gl/+PRuHvYZGIKoTJBNgu/+smlL C0CIIntD04Pc7SZ0egraLkIbTUDvvr9Km4bxjz8/BtC/mT8c1Xdv1E8My0oX Yvru5GvNb+S/N2CgGbQRCrTwP6kgbsfBWbzyndznOoxLc12oL96Cpz+Gtm3A 4nHoR2z5rfzCNXhE058P9vsRtLX7OgEPETrDt9dOB8x3hv8brfeDwLmgLiA9 DZ1I0J6DNpKSb0Hb2TopgUSi+ZVxwJ0N9vthBeR8F6SWmsO3l08RpDUZuljR PoT2tJCKRODdIGp3oO370Dapk+52gTMms6ZXxwFHrED9CLjtChJtwAvQ5hr1 9dMB83vq3Ymrpc0b36m+Xd8tzPgV6P4CtO1C2/PQ9gDaztVJaakdk22F09dP B9Y3oc0gNCvITQ4abyRIZNFRPwkSjWdgElt+LQNHBtdXoY24/R60vQFtNH20 7ZTA/G6QhqcE5jTYj8Ck6cmOoU1ewLwKj16CNjKFXoS2b0MbUfNLCCZRkzw2 6nc/g3mleTTo1gzm9nL3+oykV7v4Qz8D1yQy0W0kkNnXW7PIe3ASWe/xMGa8 W09azpGgXurAlOHdaedf/CXS3usMR6alUQqt3eEbObKEM7F/9rfSE/CIaJ1l /xqthatH4oNGJWfK+MtGdGOFFNojQJ6GIGkokG8xSgJzGnIG7x7ANPNiZeRB 7FH5j+hJq0nM3dJpmOAofyCfnxRZawxUGNfpRDqPhjzi12nH2us7LhkWD8t+ jVJgba7CGDQl8eBdHoW8+6jdd73gRxKCwDKny5ooguaW7IXOuAVrkuwRuz+l Ze+IEKVRKDBAIpNWr/XMk0DfFmJbMRHNln3dsId8t6LdojiARDY8jUJOGG1v DRWvK20G60kPaMJCDVsCe0IhkdbFT2nZk5cOuTUR5lFflpiKkLClv6igp9ky VPnFqdI/tyuKHushZLfrKBROJD+LtBhBIAm1BYKRKEi8SABlpzFzjT0hjeb0 iDDJfLH/rKnVhgpjQoKoQO/6KhH0FLsi8tDIhTzmIUyB9M/VmT0ER5vGvj0L ExCnE5MQYhIJaVjRG9RGUGWfM8sNe2Ih3MP6aUK4qwlkZGiDNpiP4ApCIkqA gmw0c0EqiPpRaJLY83xBlCQ/qXLbbnKDRjmBIMm+MaaQLkGbScnDuh/W7aeL TXPKFi/tfhJXe3X8Alg099Y6z6ofrRCtLmUoyEQnvU57OZrRzeo9e1dG8Sfr p6egjcwUco1cqRMS0fSVp2PICskjY+aHupMRSf3u1Ek9k0y7oEViWLGo6Uis 6P57Qcx1wWH9NIM2WhNZMSBtAAIzMxuLDV8bYvtMCOR+4mBy7qkfGU00PaF6 rgKs7eU18UILRTmuzAwZvoOquA7q8jRiLWJCDESmnU1ZbVJh1+tsBTiLTso8 xC0gwKL/fehP6oiETqssFLiPVXA9lkNskfVADhQYcKSNKD7mDh5tmGcYfZkx I7+dIDGumyquIwsuy5oltonayG610tNbBeyGwb0nwTcBqqR1B3a+WPupL2/7 TsdWwQWJZoiJOqQSiL9XmG0LCLSAnTYMrfZOJYKgXIcIFAyJpqOpn0FgEoji dORUuEhfCiGWv8QdxAb24sR3zRgKmL49HDMbDRbx9QcUo/koopSnqQlSWg23 qMdFfzBWlbUrs2o0+07s60BqtFhEEjFvQ/+0HAJJq77vuaZ/yqZ8Kwg20ItM OreVaCOTeKcJiKHnHRWRAdqlVaqIkPSimKn1OyRtsIEcjvpVAD+xhUPjTQsN ojy32+kf3d5ECdILZHZ7OS3lFPJsKBnNdF6SYKtPSUq3uYzCuDomtDEL4F03 EySa7aMCvQ5piKZPV5qSYUqDedyOIjRCRUQDmC9UcDxK5T7bSHzd/jyqn6KZ 5PmKoR0yoWjVZD4R8ZnP2c0jXdfBmyT3rE6qE9PtOidmGYKGhJ5MJEvxSn6f KzCqo8h8hZzoZeb366dGPR2UMXrivJc5e2mVqI1HGII8WmX6YgcMkTle4l8u tiCS3Gz6F8F3yhiIkF8ryyvNrelWxYGc2Z1x0FHVSyQJN/SjeBgVB5EPQ4Qt oJNaJOtYFMLI6I81fSlgjntmvWi35JIwU54IFTIfhIbweJXOcoq6qL4DM5+z DC9blDQTGYTaSAT7BD2f4Vvecr2iqS8MmWiIJ5oD0rVS0S1wIhSlE+g8Jl05 QltXP22el+DbOzk6bvO7OpUlQVED82ToEM/TYkaiOkp9EGNFvAcF+iNAR+Zt rSnHNHjTkyT9ggE3TpeB8zbgkFLMrZ+P2P7FmadFJaXUKq8BJFmcYothT6Mh 13H8q6H2Y3BTJXiIuDtKJ54mrA0MbWZiaCPvT25Xl1KGDjEH1YeSWXJ2E+hr VsKMm6MINGeJyL62T00xS2cTurdtn65BG6UDKcyhQ7Nq3VqHYGhrEzMpigTx pfTSRyHm9qBIsMzK4izBXJ+hC+cvrbFCCFeKSFBdRLRKj6JxnqAm9hCUEGwv izhlsKdsrYhNktJyGMprWdwmoYUm68QjUZqZNhaYz+cBv0mm7x8BLahfP04b pY+zBIm8K0yfqHnXywLSPtYFgppSMqvbP8oaPZnk/OO0dX6kTRA15Scd4nj5 iqyoDJHEkxyjkG7lyQCSThUwCtGzlb1EEEnuDkEicYO6m3yCSV3dpl/0LCBF pjRHMrlkkXvTRmpCVxv1XSBvC5NutxLMNsGUNNfQz1TebnRrVoJdVNL3xIlY WYc+kgDTinarO1I2AtyeM1ikp7NVKUQCQ0Sk3B4jU/IkBQ6e2uxwiQ7psnlA NpIXQq4frWpPtZW/sjJpvz4VwXYvwrhcKRetAHJa96XxMm0aS90TdsQB1wDm Rf+GaFqEp1TucGgT/uWhs6MRvn+qgkTzpL47UcxaKECikSqAeTek5XpM8jb6 12g4v1FlxcpazLrIUKHFgnDuYnoRL2FTCCJPQEpeoho9WT0iaeFlWDuMjHW/ XdFKq4koCnjsObnWJJ7n+Eu13eN1/ujJG8p1SDUg8fa7QHq2lcHkJyO21eZZ zKSrf3XFgxSkhChxIelUaZVRNvEIBo0chEiCtn41W7kRjmwz8leJChR4ISq4 8JIWQ1NkQMceopef7KyOV3Ssa48AYlKKyh1KiJEtQoddoscmogTw3ZX3rS6X W4pD/W8EIAFPpCAiey02Haqg2QhSF6FZDyM1aSfQYGRlESDtSii0PfZxBKNE D19ESaFPCec6N6t7JT+R0M6Sq1/ZQSiTWvCVdtPADVUCO3pU6foSegEKUZt2 P+TNFKNOGwRMg+gVZ/0bqfxTOX9LGo9kEg1LLr5zM0miXtLarbojeNOUqXTs 9CnGjSb38KccLqV7m+TZnwAtaHkM90iBK1nT+k6/UA0lUUka6MSrVzWdoqxI 0TFTM7vOM2ybEUHaRInyE8j+5jdWmSOJdwshSAFHj1RTfs3U0pJR2zffhm8y XeyXu0jvhy4osW+0/69ojEnmkrQijB8onLYqIC5MPL7St/WsiWhekKBzaEQg UoOEBN3P5ochqRjBmGS3cuaeUroFYDICondXUJqb7myjAJgbiUbNfbWVaN7L GnRaOMI+CjoVd0dvVY3e91bQ6d0cQx4ioUB3vFEiqHun7maIqd+lZSzWRiY3 jyo2aQ2e5yHFbUXRI0S6smHNSRoAo0CpqNukRaDrlnrRhSgWtBLlqPIRPKJl 6GUk6Za7brVqiKVGIvIKPNKZsNW21yQC0rqmYU5yE13B4pvwKFKuOXx7VWLB yxZRyV0UPAgSB5ysOlo6klv0Lhnj8loDa7qiAY4meV7+PwDsfoxHwzpMEr3O 9xtB0KPMQRLPfbzGkpVWU9ZcyMHRnBIhFr2nTyO25gnIErZDjUK/pJKYSV6m Z02RdcgbPHHgYiSsXkWpRcxmxrcByFT3G6cIsQIriWhZLBnRrRrMBbJp1Uen gka9Ehngpk6SrveWMQzJME84OefL/waASLoUgF6HRzNoay9uHwMknfglqzSa dS+gk4FBMeq3oS0q03tnpKO/hiC5u9xX29TA0Y8xROU41f9Hb3wi0AuYZFlT hI5Aj0pqT31Ebh1Ro5AcL0iQO0wBd/rNjui1ZXTExKP8xAi0OqQLi6P3oA7m aab3TgAwHfDxLDdtyN6RyBJ/IoFG5iIBTnm5CI2G6ekGp/ZwYWkvkP4ARqZt /dNKEq+L7hEiWg51sY5WLpQzMWvJjl9A91YwpwpGqDaWfKc1CP4InW7wHF6Y GD0sKbPVKf2pDnatO+zmw4ChOvgSW/+zBGizapK1viPu1Cjpjr/AI5JNMhwo j0b1b/4rl7x+Wju5VCGJS8sXuamxisGmX8nw/S1IXHkVuMQveuSv5OL+Do+i VYyeqY9crToAQgq3XMdsPwEn00ryumOkV6i0/Cg/+6yLhN/FQLPtFUSb2RZ/ c/Iw/2CeZLBITRNv/XzAI/9on71FW6VNE1Rt1/TLCa38M4ESGts7Jqqzzso/ PGh93s8Nn8NbP8uP7MuGHzxMZ/4LtIXfiA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {157.062, 0.}} -> \ {-5., -4., 0., 0.}},ExpressionUUID->"bc5c6fed-1bbf-4e89-bc76-cdc70b6bdb07"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(72\\). \\!\\(\\\"gyrate rhombicosidodecahedron (J72)\\\"\\)\ \"\>"}]], "Message",ExpressionUUID->"62a32b70-ae40-44b5-995e-8adf5f501232"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .57653 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.703888 0.0664464 0.366871 0.0664464 [ [ 0 0 0 0 ] [ 1 .57653 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .57653 L 0 .57653 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .10174 .49086 m .06852 .43332 L .12606 .40009 L .15928 .45764 L .10174 .49086 L s .15928 .45764 m .12606 .40009 L .19251 .40009 L .15928 .45764 L s .12606 .40009 m .12606 .33365 L .19251 .33365 L .19251 .40009 L .12606 .40009 L s .06287 .42063 m .02381 .36687 L .06287 .31312 L .12606 .33365 L .12606 .40009 L .06287 .42063 L s .06852 .30042 m .12606 .2672 L .12606 .33365 L .06852 .30042 L s .12606 .33365 m .12606 .2672 L .19251 .2672 L .19251 .33365 L .12606 .33365 L s .03529 .24288 m .09284 .20966 L .12606 .2672 L .06852 .30042 L .03529 .24288 L s .03529 .24288 m .03529 .17643 L .09284 .20966 L .03529 .24288 L s .03529 .17643 m .06852 .11889 L .12606 .15211 L .09284 .20966 L .03529 .17643 L s .09284 .20966 m .12606 .15211 L .19105 .16593 L .198 .23201 L .1373 .25904 L .09284 .20966 L s .06852 .11889 m .12606 .08567 L .12606 .15211 L .06852 .11889 L s .12606 .15211 m .12606 .08567 L .19251 .08567 L .19251 .15211 L .12606 .15211 L s .28327 .49086 m .25005 .43332 L .30759 .40009 L .34082 .45764 L .28327 .49086 L s .34082 .45764 m .30759 .40009 L .37404 .40009 L .34082 .45764 L s .30759 .40009 m .30759 .33365 L .37404 .33365 L .37404 .40009 L .30759 .40009 L s .2444 .42063 m .20534 .36687 L .2444 .31312 L .30759 .33365 L .30759 .40009 L .2444 .42063 L s .30759 .33365 m .34082 .2761 L .37404 .33365 L .30759 .33365 L s .37404 .33365 m .34082 .2761 L .39836 .24288 L .43159 .30042 L .37404 .33365 L s .25005 .30042 m .28327 .24288 L .34082 .2761 L .30759 .33365 L .25005 .30042 L s .19251 .33365 m .19251 .2672 L .25005 .30042 L .19251 .33365 L s .19251 .2672 m .22573 .20966 L .28327 .24288 L .25005 .30042 L .19251 .2672 L s .28327 .24288 m .28327 .17643 L .34647 .1559 L .38552 .20966 L .34647 .26341 L .28327 .24288 L s .22573 .20966 m .28327 .17643 L .28327 .24288 L .22573 .20966 L s .19251 .08567 m .12606 .08567 L .12606 .01922 L .19251 .01922 L .19251 .08567 L s .46481 .49086 m .43159 .43332 L .48913 .40009 L .52235 .45764 L .46481 .49086 L s .52235 .45764 m .48913 .40009 L .55558 .40009 L .52235 .45764 L s .48913 .40009 m .48913 .33365 L .55558 .33365 L .55558 .40009 L .48913 .40009 L s .42594 .42063 m .38688 .36687 L .42594 .31312 L .48913 .33365 L .48913 .40009 L .42594 .42063 L s .48913 .33365 m .52235 .2761 L .55558 .33365 L .48913 .33365 L s .55558 .33365 m .52235 .2761 L .5799 .24288 L .61312 .30042 L .55558 .33365 L s .43159 .30042 m .46481 .24288 L .52235 .2761 L .48913 .33365 L .43159 .30042 L s .43159 .30042 m .39836 .24288 L .46481 .24288 L .43159 .30042 L s .39836 .24288 m .39836 .17643 L .46481 .17643 L .46481 .24288 L .39836 .24288 L s .46481 .24288 m .46481 .17643 L .528 .1559 L .56706 .20966 L .528 .26341 L .46481 .24288 L s .39836 .17643 m .43159 .11889 L .46481 .17643 L .39836 .17643 L s .46481 .17643 m .43159 .11889 L .48913 .08567 L .52235 .14321 L .46481 .17643 L s .64634 .49086 m .61312 .43332 L .67066 .40009 L .70389 .45764 L .64634 .49086 L s .70389 .45764 m .67066 .40009 L .73711 .40009 L .70389 .45764 L s .67066 .40009 m .67066 .33365 L .73711 .33365 L .73711 .40009 L .67066 .40009 L s .60747 .42063 m .56841 .36687 L .60747 .31312 L .67066 .33365 L .67066 .40009 L .60747 .42063 L s .67066 .33365 m .70389 .2761 L .73711 .33365 L .67066 .33365 L s .73711 .33365 m .70389 .2761 L .76143 .24288 L .79466 .30042 L .73711 .33365 L s .61312 .30042 m .64634 .24288 L .70389 .2761 L .67066 .33365 L .61312 .30042 L s .61312 .30042 m .5799 .24288 L .64634 .24288 L .61312 .30042 L s .5799 .24288 m .5799 .17643 L .64634 .17643 L .64634 .24288 L .5799 .24288 L s .64634 .24288 m .64634 .17643 L .70954 .1559 L .74859 .20966 L .70954 .26341 L .64634 .24288 L s .5799 .17643 m .61312 .11889 L .64634 .17643 L .5799 .17643 L s .64634 .17643 m .61312 .11889 L .67066 .08567 L .70389 .14321 L .64634 .17643 L s .82788 .49086 m .79466 .43332 L .8522 .40009 L .88542 .45764 L .82788 .49086 L s .88542 .45764 m .8522 .40009 L .91865 .40009 L .88542 .45764 L s .8522 .40009 m .8522 .33365 L .91865 .33365 L .91865 .40009 L .8522 .40009 L s .78901 .42063 m .74995 .36687 L .78901 .31312 L .8522 .33365 L .8522 .40009 L .78901 .42063 L s .8522 .33365 m .88542 .2761 L .91865 .33365 L .8522 .33365 L s .91865 .33365 m .88542 .2761 L .94297 .24288 L .97619 .30042 L .91865 .33365 L s .79466 .30042 m .82788 .24288 L .88542 .2761 L .8522 .33365 L .79466 .30042 L s .79466 .30042 m .76143 .24288 L .82788 .24288 L .79466 .30042 L s .76143 .24288 m .76143 .17643 L .82788 .17643 L .82788 .24288 L .76143 .24288 L s .82788 .24288 m .82788 .17643 L .89107 .1559 L .93013 .20966 L .89107 .26341 L .82788 .24288 L s .76143 .17643 m .79466 .11889 L .82788 .17643 L .76143 .17643 L s .82788 .17643 m .79466 .11889 L .8522 .08567 L .88542 .14321 L .82788 .17643 L s .29709 .55586 m .28327 .49086 L .34082 .45764 L .3902 .5021 L .36317 .5628 L .29709 .55586 L s .79466 .11889 m .74528 .07443 L .7723 .01373 L .83838 .02067 L .8522 .08567 L .79466 .11889 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 166}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnVlvXDUUx28zSUpoS7ckTdtAJw1dKC0FhHgrm4AKxCIoPPEUFaT2AYFK vw07QryxI/Fp+CyhXmpP7vzOybmTmcQ3cyt1ZuKz2P7bPj4+tu99d+P+nc8+ 37h/9/ZG/+a9jS/v3L39Vf/NL+49SOodqKoD/aqqfulX7vfmg5/xw/9bcx/x j21+/+e+5p3sjYGEqreZlPm/HvxbcEkvBKYn3deiS/gZ2I+4zzmXdH2AvcZ0 DNJ+grTjkHatmdofIe3EZNSehLSrRaj9AdIWi1X7PaQtTUbtMqQ93Uztd5B2 qli130LaSqvUnoa0K83UfgNpZ4pV+7X7nHFJqztXNiFEqbeS2qeC2nX3teQo t1Llnk+/qOOcStTYhc7XmNwESHb9/SQYZrKHxDA9EYGyX5SYI079RJ8xIvYe pJHsVSMf2QbCg2Qvh0o8kSoxa6zEO0liDqhXVCrBfFSViMV8HEjWAr+dMngE qJdUKhX48Pb6qupsYjpoLOZbkLYAaReMfFT0R42yF0MlyJBZq3MzAXAYqOsq lazIQVUiFnglMVFNqZhvJImjQO2rVCrmrCoR2i54IGJdqJivQxplcM7IRy1L VkKpBHln1uq8lgAgR3dVpYaizw5OAhJrmMkGDPljxvK9CmmUwdkx8w0WeLiK VnSp9OSiUyfYCd96KCtVjPoWGR6qziu1NDchU+erD8ed8sXq0ISaR3mzSswO pm0K+a5MhPW8XJv5VBurcX/Zf85tyTfmjcur5Qnzx9gGhQ4WUuXIvaDKvQRp PUijfk7I74asAsChBAAp2zEAXjO1ybglYgemAgezPjQMqK/fgDTqGIQkNdBu yMaa01zs0eg1qey8hJ+4DBu3xAW5Or4SPsxIfZCsU3bGRadxjBLRuSc3gkal N2AvJmlqIlpCkO86V6SWfsDjiBEP3y88KM+4X55YbV1b0/CmMuTlwFy7VJ1r BtmhBNnFpJHsBnVJKiENzZl9pzmEC9BhJpC90fXNtpbUkmNH+iitl/TNtFrf qgwj2Q9xLeeTSMshSAsjY+tk/rC4wfH2pPi/7VojxKSc4KQ0P435JKuZqg+8 YKWKVRBWz0GPh5YWn5S2nJAhqp/uliZBPTNQ4FolqQFJRd1fdLLkQ9KcTRhS vnslK8Cz6c260Aeo7nltQOEFQtW6vi1J9rSG1kMAyJ2g3YFjSYKi5wQyTb7W Btor2RUZMqo28RF4tGIhfbS2tQYfSpINGGyzBLBuPRxJEjQYSqr2hCCjalMn F7ecDPqo11q3yUqSDdAijH7iEeN5tKTPfgPpI7itgbKSZJdkyDIANE9SdD+D TD2vpGpPCLJ6tZ37RScxxHCRoV9aTw2UJLu4DWS+z9Bmfd5joFV/6IMc76eV 5u7wkye7zQCrtgZ7qMsEm2/a3Gs5LOQaUOej3VGaPaybiCUNmAkNthxoJBeC 2okMpb6NWZKpnpCZz25snvGoN1L2+q5pSd7UhDyxHEXMW4zWcyX6rmxJAIwN PI4S1hfuzvTmU0yUub6fW9JiaGwLqaGd3boWh9pSwkXeaxhSRK3W9oiHp9Sn b4fQ8UQVs/JJ1B77LHIW4BnqDnmTmibEEwkhys1jempiVF+q43KNTnKNsrWQ hbb2kh4NsM3Nwcmy5uXWzyy0X0tgVnZlhnDO/oNVKGVt2icim0YTK9m5Lqdm OSkbnrxW8mXw7BSH1w8Q6juw2ceiKlBu06tZabww/uap8ZJKiu6Lh1ioL/Wk guVtGto1o/J2eXAeofOYR5n1RLt4GEo/ykP+N3VbQxh7etWHbmM+D2U9dyKu 9oV5hHqvGOqbMr2xiShw65tj2SWR45pDwjleReNPNCcFywY3D0n5Rhs6p0Oh Xzrzm3VQDIBypZVSu7UoEIe+qEWumUarAKFVrHN/a8SDKUAI8irRGu7Sj55Y j66RB1C6bISRBm2eFq2xnOz5kqG2nnOjubZ02QUZxhzvsJ4y0yUoyjHqZZvS ZCOM5Bbl1ZL1Mqx+tqJ+KzEWK5RKu6u1pyI045sXC1bgxMN52KrFYmW/cBcm +KG4Vpx9aErQp52ao2Q1NqWPTuv1vQhn84vK3lvtSb1dzL5MiQEDjp2OIqti txLWNzTy5Xt4+0kHGsL8iBUruHnnlnwc8tX124D7T0tctpxOCdY74ge3SoiG QL+j2EbZGNfLG2yEsNWnJr5e0pz3fCjUYb0COW36BhtoKKuqGljHNF/5cHtV vBa1Flg/INWpj+rjRifNEHlTiyZs64Es4qM5Kuem7wBY74d2edjziJ1AXBH6 pCp76Okv1MO+Ctl/UTlVWr/H2qlX1McjuuTJeMG5Wi7uS4grihHzWclQaFdk p0dbPIMq7hZ4qROJnUau56t3iEQYYK72h4J4AlB81saiBNRuUON5Owp0UOxC 9PanSDYehiVTRVECq2e/n2U7yEaFjKIZFFISTwVOkaxyxF+8Qk4e6RTJdpCN Cpn1opF1LbmfZSNk5InSdTFxm36KZCNk5KfQ1aSggre96O5mmfwdBN3A2als Z54by3aQjQpZ5zc19pu6BU3jBU0HWWPIukhD40hDFwJsHAIULxL4ByqK13Un TF2RCyfGreWTNdOtIDa0eKjfu/fkSFgfCey1+E0TmlunQ0vcIBEHab2x3F/W G5niA+c6pSMrjQZGdBB70qCgWcr6qGfrWYFOX2ogMmi9NDDF/VnLY463qqoR rJcvp1xpfKpH3iyn4WFtoNrL5xpdrWyjbAQvP2GImojGS366jvUiZZkS8dnT +Q1sVh+XlgXWq49tlI0PXScV4p2tWlo+1G+9zVimRISCVjnWI/ilX2oct+yq DBmpaOMFxnHLxneW0IATb/cZxrsV7jbKKpBpN+1oT6RN/P3wg2J7wtOp5KeL lscaa2d5t7EDw/Jqzb3kW9umOn4moo3NfIlOzEqXNVDjm+Ws2zf0YOfgDHBH pYKT8yDrHY1PqVa+prWmUq0Pl7fq06nxlXiUQb4juw5U/V3U+turdX069ZJc YFp20CvlrU+Mtr7H2pqHlS9WUXwHtsfhskqVo0Cj6dOpV+QCk1dLysbzqker ZitfrJj4YGZfuKsqlTwK8RWkBn069VooMNleT/dvPxRuClCplhR+TZdGu85l dGb7OUijkU7vqCJZOQ0tep19UzC95PaRLKU9G7L/AEg0fn6X2alX/hbYPzSy /zo2diq7UpiG7NQIEZlbQCJzMT52cqj+GBs7jcI/A/tHQKKuqLDTkvCvsbGT rft7JPaPgURr0UF2/5BNiir+E5g+cV8LjkIuVmT61H15n/LfkOCpa/rv6sD/ FWCt1g==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {165., 0.}} -> \ {-10., -5., 0., 0.}},ExpressionUUID->"5bf8b2e9-7614-4efa-99fb-5ba677f585af"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(73\\). \\!\\(\\\"parabigyrate rhombicosidodecahedron \ (J73)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"6d5915a1-889b-4737-859e-\ aabced205761"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .57653 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.885423 0.0664464 0.366871 0.0664464 [ [ 0 0 0 0 ] [ 1 .57653 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .57653 L 0 .57653 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .10174 .49086 m .06852 .43332 L .12606 .40009 L .15928 .45764 L .10174 .49086 L s .15928 .45764 m .12606 .40009 L .19251 .40009 L .15928 .45764 L s .12606 .40009 m .12606 .33365 L .19251 .33365 L .19251 .40009 L .12606 .40009 L s .06287 .42063 m .02381 .36687 L .06287 .31312 L .12606 .33365 L .12606 .40009 L .06287 .42063 L s .06852 .30042 m .12606 .2672 L .12606 .33365 L .06852 .30042 L s .12606 .33365 m .12606 .2672 L .19251 .2672 L .19251 .33365 L .12606 .33365 L s .03529 .24288 m .09284 .20966 L .12606 .2672 L .06852 .30042 L .03529 .24288 L s .03529 .24288 m .03529 .17643 L .09284 .20966 L .03529 .24288 L s .03529 .17643 m .06852 .11889 L .12606 .15211 L .09284 .20966 L .03529 .17643 L s .09284 .20966 m .12606 .15211 L .19105 .16593 L .198 .23201 L .1373 .25904 L .09284 .20966 L s .06852 .11889 m .12606 .08567 L .12606 .15211 L .06852 .11889 L s .12606 .15211 m .12606 .08567 L .19251 .08567 L .19251 .15211 L .12606 .15211 L s .28327 .49086 m .25005 .43332 L .30759 .40009 L .34082 .45764 L .28327 .49086 L s .34082 .45764 m .30759 .40009 L .37404 .40009 L .34082 .45764 L s .30759 .40009 m .30759 .33365 L .37404 .33365 L .37404 .40009 L .30759 .40009 L s .2444 .42063 m .20534 .36687 L .2444 .31312 L .30759 .33365 L .30759 .40009 L .2444 .42063 L s .30759 .33365 m .34082 .2761 L .37404 .33365 L .30759 .33365 L s .37404 .33365 m .34082 .2761 L .39836 .24288 L .43159 .30042 L .37404 .33365 L s .25005 .30042 m .28327 .24288 L .34082 .2761 L .30759 .33365 L .25005 .30042 L s .19251 .33365 m .19251 .2672 L .25005 .30042 L .19251 .33365 L s .19251 .2672 m .22573 .20966 L .28327 .24288 L .25005 .30042 L .19251 .2672 L s .28327 .24288 m .28327 .17643 L .34647 .1559 L .38552 .20966 L .34647 .26341 L .28327 .24288 L s .22573 .20966 m .28327 .17643 L .28327 .24288 L .22573 .20966 L s .19251 .08567 m .12606 .08567 L .12606 .01922 L .19251 .01922 L .19251 .08567 L s .64634 .55731 m .5799 .55731 L .5799 .49086 L .64634 .49086 L .64634 .55731 L s .48913 .40009 m .48913 .33365 L .54667 .36687 L .48913 .40009 L s .48913 .33365 m .52235 .2761 L .5799 .30933 L .54667 .36687 L .48913 .33365 L s .42594 .42063 m .38688 .36687 L .42594 .31312 L .48913 .33365 L .48913 .40009 L .42594 .42063 L s .52235 .2761 m .5799 .24288 L .5799 .30933 L .52235 .2761 L s .5799 .30933 m .5799 .24288 L .64634 .24288 L .64634 .30933 L .5799 .30933 L s .43159 .30042 m .46481 .24288 L .52235 .2761 L .48913 .33365 L .43159 .30042 L s .43159 .30042 m .39836 .24288 L .46481 .24288 L .43159 .30042 L s .39836 .24288 m .39836 .17643 L .46481 .17643 L .46481 .24288 L .39836 .24288 L s .46481 .24288 m .46481 .17643 L .528 .1559 L .56706 .20966 L .528 .26341 L .46481 .24288 L s .39836 .17643 m .43159 .11889 L .46481 .17643 L .39836 .17643 L s .46481 .17643 m .43159 .11889 L .48913 .08567 L .52235 .14321 L .46481 .17643 L s .5799 .49086 m .5799 .42442 L .64634 .42442 L .64634 .49086 L .5799 .49086 L s .64634 .49086 m .64634 .42442 L .70389 .45764 L .64634 .49086 L s .64634 .42442 m .67957 .36687 L .73711 .40009 L .70389 .45764 L .64634 .42442 L s .58135 .4106 m .5744 .34452 L .63511 .31749 L .67957 .36687 L .64634 .42442 L .58135 .4106 L s .67957 .36687 m .73711 .33365 L .73711 .40009 L .67957 .36687 L s .73711 .33365 m .70389 .2761 L .76143 .24288 L .79466 .30042 L .73711 .33365 L s .64634 .30933 m .70389 .2761 L .73711 .33365 L .67957 .36687 L .64634 .30933 L s .64634 .30933 m .64634 .24288 L .70389 .2761 L .64634 .30933 L s .5799 .24288 m .5799 .17643 L .64634 .17643 L .64634 .24288 L .5799 .24288 L s .64634 .24288 m .64634 .17643 L .70954 .1559 L .74859 .20966 L .70954 .26341 L .64634 .24288 L s .5799 .17643 m .61312 .11889 L .64634 .17643 L .5799 .17643 L s .64634 .17643 m .61312 .11889 L .67066 .08567 L .70389 .14321 L .64634 .17643 L s .82788 .49086 m .79466 .43332 L .8522 .40009 L .88542 .45764 L .82788 .49086 L s .88542 .45764 m .8522 .40009 L .91865 .40009 L .88542 .45764 L s .8522 .40009 m .8522 .33365 L .91865 .33365 L .91865 .40009 L .8522 .40009 L s .78901 .42063 m .74995 .36687 L .78901 .31312 L .8522 .33365 L .8522 .40009 L .78901 .42063 L s .8522 .33365 m .88542 .2761 L .91865 .33365 L .8522 .33365 L s .91865 .33365 m .88542 .2761 L .94297 .24288 L .97619 .30042 L .91865 .33365 L s .79466 .30042 m .82788 .24288 L .88542 .2761 L .8522 .33365 L .79466 .30042 L s .79466 .30042 m .76143 .24288 L .82788 .24288 L .79466 .30042 L s .76143 .24288 m .76143 .17643 L .82788 .17643 L .82788 .24288 L .76143 .24288 L s .82788 .24288 m .82788 .17643 L .89107 .1559 L .93013 .20966 L .89107 .26341 L .82788 .24288 L s .76143 .17643 m .79466 .11889 L .82788 .17643 L .76143 .17643 L s .82788 .17643 m .79466 .11889 L .8522 .08567 L .88542 .14321 L .82788 .17643 L s .29709 .55586 m .28327 .49086 L .34082 .45764 L .3902 .5021 L .36317 .5628 L .29709 .55586 L s .79466 .11889 m .74528 .07443 L .7723 .01373 L .83838 .02067 L .8522 .08567 L .79466 .11889 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 166}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzdneuSXLURx8c7u8aL7fi69to4sIu5xQGcC4EkBXHCtaCAVEL4xCcXgYIP qaQIb5N7KpUnSFWeJs+y8ZG00ozm1z1/7TlnfRZXeWZWl1b3X1Kr1S2d88H9 r7/47Hf3v/7y0/t773x1/w9ffPnpH/fe/v1XD5Lmp2azU3uz2ezfe7Pu98GD n+kj/NvvPtIfa37/r/s63dV9bSFhNj/IxMJfD/5td0kvxUJPdV9Xu4R/QfHz 3edWl3R3oXhV6CKk/RPSLkHaC21k/wFpl8chewXSnp8E2b9D2tXJkv0bpO2M Q/YapH23jexfIe36ZMn+BdJ2TxTZG5B2p43snyHt5mTJ/qn73OiSbvUnNhKi NFqJ7Hci2dvd106X81EW7gf5Fw2c6zk3DaEnq0LdAkh6/Ze5YlzJDjPj8kQZ 1PxVq3DCaS/nb4iIfQhpVPd5sRzpBsKD6j4XhXg8C7EpCvF+rrEFuXfcXIL5 glsjsfltyFIZfi83cAZyn3VzieFz6+nNZo/lQo+IbL4LaduQ9rRYjlh/VKz7 TBSCFJkqzjsZgHOQe9vNJS3yiFsjMbybC5GkxOZbucYFyN1zc4nNTbdG7Lto gZiyEJtvQho18IRYjnqWtIQjBFlnqjivZwDI0L3l5kbWNxcXAatoXMkWFPm3 RP5+AWnUwGMDl1tkeFVEFV3inkx0GgR9yt2OvJJgNLZI8ZA4P6/SugWZBl89 HfuWS+LQglpmeZsQm4tpB0a7u6MUfdKW5nSWRlXu98Ln1lK7qW3cXl0buXzy bZDrYDsLR+YFCfczSJtDGo1zQv446joAnM0AELHeAATK1CdD10gDmBiOan1l GtBYfw3SaGAQktRBx1E3SU5rcUBj3iLsaQs/cxs2dI2nbXGCEMHNSGOQtFMx xk2jccAaybgnM4JmZVBgL+fa1EW0hSDbdWuSVPYiHudFPMK4CKC82P0KmbPl vTVNb+KhbAe2ThapJ9ogO5sheyZTJL1BQ5I4pKm58Y2jHN0FaDATyEHphm7b z2TJsCN6lDbP9DZONL1bNoykP8y9XEgiKmchLc6M5cX8kN1oeIes9P+kU00Q E3GCk9LCMhaSVDVVT7yopSZLIO6eI50ALW0+Ke1aRoZyw3K3M0buzQWGKyGp A4lEbS92dcmGpDWbMKR2H1ZdA56DoNaNMUCyl70BuRcIVXV/O6W6Nzy0DgEg c4KiAxdzDfKeE8i0+Kod9LDq7tqQkdhUjsCjHQvRo72t6nyYUt2IwZotgBp6 OJ9r0GSYktgjQUZi0yA3Q04CPRq1aphsSnUjtAhjWHhMfx5t6YvdQPQIbtVR NqW6OzZkBQBaJ8m7X0CmkTclsUeCrBa7M7/oJIbpLhLGpXpqYEp1r66BLIwZ CtaXGAPt+uMYZH8/7TSPpzxZsmsm2GzZ2UNDJup8Kbh3wmEh04AGH0VHafVQ g4hTmjAjTbbiaCQTgvqJFKUfxpySqh5JzRcztqx4NBqpeT9qOiVraiRLrHgR S4hRPVfiR2WnBMBg4LGXsN64d6q3nGKixv147pQ2Q4NtpFYiuzWVDrWdjIsd a1ghRL120j0eIadevjuELuVcs6mQRP3xDfOcRXhWhkMJUtOCeDkjRK0FTK+P lhu4umRLdIUlKtrCrrQ8SuY0wQ4OFhfLysqtzyycfCqxsBOVWcG52A9qpdy0 FCcinUYLK+m5o7SkbwomLITakhPhZBwCD6E4Od79E4N+yLUYVSQCtdZOWTVp Npopj8ezvaY7Uf7T1HmZJLnzzVMrBM3cYqwAR2Ey4rdPG6rdYG6pJyIHtREH jzzL1CPs5ukn/+wOGdw0bAW/tUpe7dyylE2Je/uQinwASj1oYm7vjXWERq/p 22ugqx4IJ8P2YfBrnxlCT23ojmtdElmqxQdcHFQ0/0x1UtUlW4rAPAN1+7RL dSMvmFWusKE1uuLrpUO+hQbpaWqVRpBPRYXzUZfKMLw0QhzHomeVch6JZ/SK uvYb1dW7RedGad1WichE2Ra2G4Oq5uYT0UY5c9qZEIYa6rF6lb8EGU3QomOa DC5z760eYqN11bggRj3jz+9KX6lXUFTet204i1NDPUrm1yBXRp8bNWW8q1pT DXdRawpXlkQJZDKUyv5JvQ/rH6+ox11iK3KlX9dqvz7nx7uurG1fuiJ3xgaS +lGF1Dy5N44UBSrVd1pFwcbp88jMiiesUXOVdavSXKrmVCeVenaQmKwCYyMr qgRs+yXnsIrOrWFkNm/WUGwKLQi2vi3/qmCayDQMVWV+1mGXFIR9l0+nUaIP 9qmBtaGwozSsXkRMuJbnsjQtjab6JrPPv0KoUqmuR87XIz8Mf2kjcyMntK9z BTKaz/41Rb9umCfhkqW/he/DQfLbFdQJL9WOpnLzTLmsXuTKUO80qvRIA6v3 Hvq0q8qxCPxKU4eq+Yi7GO4HQ9+rDPuWXRN5wrwcO29aT49D3hRkJEVb4kvE tXoYisqRqi+t+c549W5mnzZo4Ba1Uhl96u5qaCZVIFIPm/useSVT/qvBdiI9 bBInof0Lor3JU39sZwJxJvEuwrT7jkPudKyVlv5QcQuGo+GaM53Om9YE966V tlMzr+8t0OMeoK3f0fnwpEpnNE3neqh1ORenCRjK1Z2fMxYKz1oJ+GdyaKcA o7e5VWI7nYrzrTrzoI+fG4QhUYthYhyiK1tPv+l0SI12e9SuGjXrX1cK0BRL jc4YlbFZdaPtUlnPcTo/SpqKlKNqO/ev68VavAm+jFkJEKmRb5XzyQK3nFbH VBjW+ozq7LC86aYdADra2ZM/xfQnjlzXj62QYVhTyQrZNCf6yOGcmzfvZZOI I9f1YyrmM2dNnwbB2EeOEwKjHzUh7VbO+JcuUH3OjeCpd3vULeTQddUJTPSK h62Y7qZhf0Q5Eow0QejWlhk8H7muGRqhIWk8RJUMyz68J+hIK9BNoYuJX1oF 6Spla3n/yc03c+6FI/ExadFpPTdBsOJzgyAy9XlU3N6EmXrHU1VqjTNp6rq8 eDdpl0fC+kcUBtDbU4eMjHUCz6xrKrQBwJu64VW2AeptYALK9AX3M7ymvodS 4wgkdtk5UWsD7JymBx47Nsi7SoAV20MNyzQCNj1nx4oVQSRJygtV9USCpm6j W2NyvscwIsy3z1Rp5QIvLWqNXkXzdP+OtRgLuUEc+1kWy2nqcwVLu7s266Yf 3T7IMhoB9XUP5pMl+7CWutc8X79l6SD1cbyBSpictEY2UQlJj4toqUcq2vlL YRVz4tbQz4xlj7SL+ei28YiWhxirl6dGYXLXRtU/30ArivpoYzWE304vPPs9 TB71AsTQ/CVAOTg1m63xiSuP4V0mVWWodwVNonczgrQcEoKj8JceC1HWKxpv KoLV28uaruqVuq9kZNQjLX3aTQAUFzTBbBpbTZfrXu0+zeckt9NLjw4uL9BS jS2yE9WLbPQajTrWmZSj+uoPten06GsiYV6qodFjblWohi2vfseuvdUkKo0T 9cxyn1to9MKR470Hd8sGQL0y1OdO2T0RgPFutaW3NtBgNy83CXNNBU8FwHe6 9eHAAcC7HET7La/866KgflSTnBxeq3vxB+33jWfq2PvIlaKqSKpbnoQzmk5y Ke9i7WBQ9oZduTdEicywn/2wzuWG9tfwH2hTjKfc0FF5PbeeXshNL7xSfdX0 vNm4OvYb/+SCtNtaTnNEKNdE9t1cmnT3RNZLEMtvI72Ly48n34ZcP5SqLqYl XOS38azNJs1oeoO1+oBa2/hZb8Ko7SZxzNfrBpmfc3PJ+HhVZL2s4H4bd2w2 SXoi5l+TUhmmtVJtLQlhPtU1MEIv3K7Pgi/n/sRkncMEfgsvRCZJK4b8Fx3K tKD+WOCu+15D+i6z1enQ70MaTc9XLE5CA0QlpqGirYt3f1Gj4ZV74cjxDyH3 e7GBX0EWDfUfmVgup/3WJkuD76U2sr8WyZLA0yBL2A4AwkhkaVg1joSPIIvs gemSJZvw5cmSJUVoqh8m+xvIot3YAGRpU2yr7YdNtm0JPE6yH0MWeQuOQjY8 P5Kcoz/tPsMC83ks/kn3td0lkNX+n1gokA5bkv/GhJC77/+enfo/WaXDsg== \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {165., 0.}} -> \ {-13., -5., 0., 0.}},ExpressionUUID->"103de07e-3d2c-4a4b-a0b4-ae67ced28ea0"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(74\\). \\!\\(\\\"metabigyrate rhombicosidodecahedron \ (J74)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"5e1e5f2a-4a17-4859-950c-\ dacc7c6ac89c"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .59232 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.703888 0.0664464 0.367247 0.0664464 [ [ 0 0 0 0 ] [ 1 .59232 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .59232 L 0 .59232 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .10174 .49124 m .06852 .43369 L .12606 .40047 L .15928 .45801 L .10174 .49124 L s .15928 .45801 m .12606 .40047 L .19251 .40047 L .15928 .45801 L s .12606 .40047 m .12606 .33402 L .19251 .33402 L .19251 .40047 L .12606 .40047 L s .06287 .421 m .02381 .36725 L .06287 .31349 L .12606 .33402 L .12606 .40047 L .06287 .421 L s .06852 .3008 m .12606 .26758 L .12606 .33402 L .06852 .3008 L s .12606 .33402 m .12606 .26758 L .19251 .26758 L .19251 .33402 L .12606 .33402 L s .03529 .24326 m .09284 .21003 L .12606 .26758 L .06852 .3008 L .03529 .24326 L s .03529 .24326 m .03529 .17681 L .09284 .21003 L .03529 .24326 L s .03529 .17681 m .06852 .11927 L .12606 .15249 L .09284 .21003 L .03529 .17681 L s .09284 .21003 m .12606 .15249 L .19105 .1663 L .198 .23239 L .1373 .25941 L .09284 .21003 L s .06852 .11927 m .12606 .08604 L .12606 .15249 L .06852 .11927 L s .12606 .15249 m .12606 .08604 L .19251 .08604 L .19251 .15249 L .12606 .15249 L s .46481 .55768 m .39836 .55768 L .39836 .49124 L .46481 .49124 L .46481 .55768 L s .30759 .40047 m .30759 .33402 L .36514 .36725 L .30759 .40047 L s .30759 .33402 m .34082 .27648 L .39836 .3097 L .36514 .36725 L .30759 .33402 L s .2444 .421 m .20534 .36725 L .2444 .31349 L .30759 .33402 L .30759 .40047 L .2444 .421 L s .34082 .27648 m .39836 .24326 L .39836 .3097 L .34082 .27648 L s .39836 .3097 m .39836 .24326 L .46481 .24326 L .46481 .3097 L .39836 .3097 L s .25005 .3008 m .28327 .24326 L .34082 .27648 L .30759 .33402 L .25005 .3008 L s .19251 .33402 m .19251 .26758 L .25005 .3008 L .19251 .33402 L s .19251 .26758 m .22573 .21003 L .28327 .24326 L .25005 .3008 L .19251 .26758 L s .28327 .24326 m .28327 .17681 L .34647 .15628 L .38552 .21003 L .34647 .26379 L .28327 .24326 L s .22573 .21003 m .28327 .17681 L .28327 .24326 L .22573 .21003 L s .19251 .08604 m .12606 .08604 L .12606 .0196 L .19251 .0196 L .19251 .08604 L s .39836 .49124 m .39836 .42479 L .46481 .42479 L .46481 .49124 L .39836 .49124 L s .46481 .49124 m .46481 .42479 L .52235 .45801 L .46481 .49124 L s .46481 .42479 m .49803 .36725 L .55558 .40047 L .52235 .45801 L .46481 .42479 L s .39981 .41098 m .39287 .34489 L .45357 .31787 L .49803 .36725 L .46481 .42479 L .39981 .41098 L s .49803 .36725 m .55558 .33402 L .55558 .40047 L .49803 .36725 L s .55558 .33402 m .52235 .27648 L .5799 .24326 L .61312 .3008 L .55558 .33402 L s .46481 .3097 m .52235 .27648 L .55558 .33402 L .49803 .36725 L .46481 .3097 L s .46481 .3097 m .46481 .24326 L .52235 .27648 L .46481 .3097 L s .39836 .24326 m .39836 .17681 L .46481 .17681 L .46481 .24326 L .39836 .24326 L s .46481 .24326 m .46481 .17681 L .528 .15628 L .56706 .21003 L .528 .26379 L .46481 .24326 L s .39836 .17681 m .43159 .11927 L .46481 .17681 L .39836 .17681 L s .46481 .17681 m .43159 .11927 L .48913 .08604 L .52235 .14359 L .46481 .17681 L s .64634 .49124 m .61312 .43369 L .67066 .40047 L .70389 .45801 L .64634 .49124 L s .70389 .45801 m .67066 .40047 L .73711 .40047 L .70389 .45801 L s .67066 .40047 m .67066 .33402 L .73711 .33402 L .73711 .40047 L .67066 .40047 L s .60747 .421 m .56841 .36725 L .60747 .31349 L .67066 .33402 L .67066 .40047 L .60747 .421 L s .67066 .33402 m .70389 .27648 L .73711 .33402 L .67066 .33402 L s .73711 .33402 m .70389 .27648 L .76143 .24326 L .79466 .3008 L .73711 .33402 L s .61312 .3008 m .64634 .24326 L .70389 .27648 L .67066 .33402 L .61312 .3008 L s .61312 .3008 m .5799 .24326 L .64634 .24326 L .61312 .3008 L s .5799 .24326 m .5799 .17681 L .64634 .17681 L .64634 .24326 L .5799 .24326 L s .64634 .24326 m .64634 .17681 L .70954 .15628 L .74859 .21003 L .70954 .26379 L .64634 .24326 L s .5799 .17681 m .61312 .11927 L .64634 .17681 L .5799 .17681 L s .64634 .17681 m .61312 .11927 L .67066 .08604 L .70389 .14359 L .64634 .17681 L s .82788 .49124 m .79466 .43369 L .8522 .40047 L .88542 .45801 L .82788 .49124 L s .88542 .45801 m .8522 .40047 L .91865 .40047 L .88542 .45801 L s .8522 .40047 m .8522 .33402 L .91865 .33402 L .91865 .40047 L .8522 .40047 L s .78901 .421 m .74995 .36725 L .78901 .31349 L .8522 .33402 L .8522 .40047 L .78901 .421 L s .8522 .33402 m .88542 .27648 L .91865 .33402 L .8522 .33402 L s .91865 .33402 m .88542 .27648 L .94297 .24326 L .97619 .3008 L .91865 .33402 L s .79466 .3008 m .82788 .24326 L .88542 .27648 L .8522 .33402 L .79466 .3008 L s .79466 .3008 m .76143 .24326 L .82788 .24326 L .79466 .3008 L s .76143 .24326 m .76143 .17681 L .82788 .17681 L .82788 .24326 L .76143 .24326 L s .82788 .24326 m .82788 .17681 L .89107 .15628 L .93013 .21003 L .89107 .26379 L .82788 .24326 L s .76143 .17681 m .79466 .11927 L .82788 .17681 L .76143 .17681 L s .82788 .17681 m .79466 .11927 L .8522 .08604 L .88542 .14359 L .82788 .17681 L s .528 .57822 m .46481 .55768 L .46481 .49124 L .528 .4707 L .56706 .52446 L .528 .57822 L s .79466 .11927 m .74528 .0748 L .7723 .0141 L .83838 .02105 L .8522 .08604 L .79466 .11927 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 170.562}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzlnUlvXMcRx584JC2ZUqhIXLRYECnb8h4lRpBTHCWO4QWOYST+BIJhwD4E NmTfnH0BDOSQQ4BcsjgJcsp3ymdh1P2aXcOeX9VU8y3z6AgQZ6a7q7r631t1 Vdd77zz47MMPfvrgs4/ef3DwxsMHn3z40fufHrz+8cNHSbNzTXPuoGma/xw0 4fvRo6/pT/x3GP6kH0u+/zd8bAbaV+YSmtlRZhZ/Pfp3ISR9uy30VPjYCQn/ huKXwt+NkHRvrnhR6DKk/QvSvg5pL9Wx/SekXRmG7VVIe7GO7T8gbWeybL+E tN0zxXYP0l6oY/t3SNufLNu/Qdq1ybL9K6TdgLTnJ8H2L+HvWkh6ojszQvR6 d7Y0rKijKtl+6WT7XMv2yfCxG3Ley5i9nL9RM/dybhpChzmh3aGOS+Oe8a5W +J6WQTJc1QonsG7n/JkTtncyxTrkvmDmEryXTYpnWzFv5UIbTjHfzhSbkPuc mUtAXjIpkpg3c6HHnGK+lSkuQO5dM5fEfNykeKYVk9YNr8BvapUWaTQLqRw1 4ryT9m7bnGu5zVSIGvF6prgEuXfMXAJvw6RIYspycNEp5muZgnJvm7kk5ppJ 8XQr5k4u9DWnmK9mClJSb5m5ccY8mvnHaeFTKZrkkxVt2ynfDyCN9N6bPZd7 ak7gxSbSSJmg9NQTa5DmnXrfL9LCzkSKcrkudC33pN6cuPNVrR8rbgSpC5u5 EbR6UiPux78b82lm5fsDl7+jN46a5FUE7kMaDWCaA3TUGoM22TqoObLBewH4 HqSRskeCUD+NQWsAcDED4NVYCQDSNa9kztR3fVOk4U6b2HYin585yqb4CqTR wKBZRR00Bm1qOakXsfhMa+x3IY301sg5gkzWh74pntabE4d2NDvSGKRVbSuz 9SrGXSjSeYBUETK1xbX8O5ma+pZOHbSrbkySy4GOB61Scc+NoHwjfIuZzclj trqE0xCTZf3ssLrd/qAjDUF2MUN2N3OkdYO6YAvS6DC+9pXjHM9QfpDjZIjd dpjZ0mQgfpQmCvLamebXmjixTwhGSnsiV0C9TXOI9oXWILfe/mia4/9nl+XN 7shez8h6V6dS5nZxmiyDhJEo8LTFUtpeRoZy4w6/O0TujTmBF+0XXq1Q7EnF zkGFvVZIEndVtNfnYeLjLrGiE4Ms3HS2IcBoL6HapkR7bR4w2AZVQyrp5tuZ gjbOKTV7IMjWMwCUSx4XcWXQsKdx6TU1TIl2X4fMtpURZKR1EHg0QskMQI2Y Eu2eDt75DB71ju2TIn5TavZAkKkrnQM8gZvGII1Vr1lsSrS7OnhirSj0B3Jk yMwmhZbwpX4gqadEu6OjJdbRW5Arlg4yO95IZUiDIXPcOOVPpl3Vm14ePhoL BJ8/7owjEs/AqjpJ84fKeb19U5ohA82uwh6m3psiGG0v45QW44EWctJ/Zb2m 0Ui9aOtuU1IIBlImCn0/flMve5AygcvhdKEYCEYa5GW5sAzL5SKVQlWGp3Qc 6u0oddIteaSoWwG6XRMc2487pcN3bwf3BZ3jMiDaNHNeUKpa8Q5Tx511c1oc HuX9qdReccDSqiYQfhVxQRVwASE5OalEMwEYJN0fLHfOZ2u0iBVjORGTu6GE rmmSSZ5OPKJMNPaF7LPPpR1mhoeGwY67byzudYqXekcWl6oWZUZXOjdJsPCx vpwrKQ/s6jqV0Ctj7/a0rSWWxcZDQ4fIi/5Z1/YkOdx49Yy1as6US4OyXuZx Oace9DrzSY/3dp+sBnJ/g/hJZ3h3qPVqzl4Hf73M43JuB4Z7OSQzDpUTW42I SfPf20GbTn5ee7VXvjH4tZ3bexeIviQqhvdG+Hmg9d69oHr7pk2Q0eYU4dkL SaR2EoWsb95IFvUErkajkFJvyzIcly0dPIleQ63NdWsCeYRf3gAcdJGEXzTy 1QVkNAYJTtrExDWt64P+KxZy2dobKiRGCa8hwLu4dKF9XAdMur5e8dLXz1MH K5EPxntV3HtRrAttQtJewet1IP0Iu1yX8+4wtjOHavOU0zqoC22rNWEjCNp6 jYZWdRWAqm28cPBMH2TaT+xxaY99b7Prw81U9w/WZoWNDZFHakNan9ng3UXz 8YaBdQl78yxOCxZDwkIXtiM5rQILkKf9p5MmFD5Ita0PpfM4jaiBQywA3l0g AVsfNh1H+EzrV08Yns9VFH5dMetSA+nqKeaWrDn/VJ16w80iZc4M5FO8QSc5 lMeIZTXqMXh98MBVkhyv9UqNbikDQWZZ9DkPEdBWcbaj/Prhko4+9U+sEMVE ILMjDmlabDm52FGDXWiT9Uxmr1yk6aJIzICfxzuk1aGfHU5XrzcUsW9+83Av VNWwxa1ew+AeUdh7lXfbFGB7FjsLZF/+Gph9ctWpqn1MkmN8F+WFaKkOWtXU 8E7Sv7xqIEHbRUhv/OUYdaR+VQ9gswK3/KtCuSL5VObew96FzGA9gVVUHbmp Smo/gtmBnwOzT5dsSXWOhOt5lCzpqyQCLQrCyLvgFU6Hin5RN1xbCDVKtEdW uzrU25mj6H60lMZyZceHD9r+xZJB2j3g19TWWjalFwbpTp6tA6pn09hefsTD 0QndbgENCedUmdtVx9x0Lc774AmvKXGnkDnNNtpJRdOi+zUyvoquoIHeXeLl tOkmK61SNL+9erNlGLO2GZoTEolJ812vvYvkKwauXL6OTpxyGNbyuNwcl1eV uRVDR+oNXaokFt5b0ba1kjbWkkteVFV1wCtLl3YYMHpjH9WjloPWtsoTjPuZ go6UBKNXli7tWDGMtjuEVjcx6EgXqMEbqwOP+lh9Jq+32UWadwITv+sZPPuK iVeWLu0wYKTJRZFkqvvdQat6MmhItvE/Lq+Jt/4ushvQ0YpC0UvWVQ+KuBPD A3XOjZy7Xcm3Vo4VNJ32ZxUE7WrHShAZYx6JsZpw8saOdongH2gmjbGWi02S TmoksH3lYsXr9mgqWJFG4JHotvr2f6B4yTHAG2/svSKxYvDGOEN5w7ZVf62q 8a745DTM2Z0NG2RmJcDs6w8rPrGPZFYjqahrlVsQtIGNaEobBKQ4ImidIs5y lWHFUKj3LPa0jVxE15+gcTLNe7/NUe+egKxfIo/DrVn+mh01xCcmkUJLLaEW q5w7i+ZlsKdjFHnHyEpvDKMaxBOlue0Eynuxokf5qrgkt4qqBoijrypykLYw 4Rdf6xAzvREBNr++5avnl2YnO16Ou6MqeI9qib/ii6zicdQbD6ay6lGqelYJ MvE8Edbe6Drxxbyc4fHe4RDafiTowiU99EDMq964uDdzs703T+zboFRHPUVq jrwJyhuzFt98oD6od6eaXz1FehiwEHpDw+gNFcqtCFouxF3trbCeIj2Z2btf 0YDWW1kZrnbK+rvQVjafTnT0eovTBp+dToIutOm58F61lU58950A2I5OOlF5 JehCe2s8AGwb14oB0FnwLH7V2WjboUj2BatW9T2fSvmD9gsdzZVAHm+7vGZx OhErVeuPuFwourRdkhZg+KGzUarnTRftZEWeN+yFcuklV9T9ogW+5pTafvDr FWfuHV0k2py9wpH5kwShOrzlkug01CT+4g2nwOI1OjT52bnpzVC2e/ctp0ji i6FXq245c5/RRaLJ7BVOvVKtjrku74xd9hrbWOmPnKLTk2yKiU/yS0XPmrnP 67ISaF6p1Qf1zrRdRn1cdpFGzaFyqWHqU4Rj699Vm8Pmd/v9PXZdL5q5L7Xi kkEv5v9YlVQ21fB5PCZiSf1VOFDDPTtjQbQwDt/TpIpC0cAoqw9cvqWm4dD+ SfirHjapfWUF4dc32woeqrieTKOqfl3HgrS3X43OgtSRX9axoO33F6OzoJ30 53UsaJv5WR0LWjg/H51FDw3pAc5pjIseBngP06yH9WIZi+hnohPkb9pCX4SP mEMelt+2hf4QPtQnVaZCf8yFaKf9XVvoT7k6OmL9vi305/ARd5Uv2oSYe+j/ 3pz7H79hGNg=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {169.562, 0.}} -> \ {-10., -5., 0., 0.}},ExpressionUUID->"a8068746-64c5-4524-8ac4-dc547e4b79a8"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(75\\). \\!\\(\\\"trigyrate rhombicosidodecahedron (J75)\\\"\ \\)\"\>"}]], "Message",ExpressionUUID->"410bb29f-139e-42d8-bede-0826839c3aa6"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .60811 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.703888 0.0664464 0.382663 0.0664464 [ [ 0 0 0 0 ] [ 1 .60811 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .60811 L 0 .60811 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .10174 .50665 m .06852 .44911 L .12606 .41589 L .15928 .47343 L .10174 .50665 L s .15928 .47343 m .12606 .41589 L .19251 .41589 L .15928 .47343 L s .12606 .41589 m .12606 .34944 L .19251 .34944 L .19251 .41589 L .12606 .41589 L s .06287 .43642 m .02381 .38266 L .06287 .32891 L .12606 .34944 L .12606 .41589 L .06287 .43642 L s .06852 .31622 m .12606 .28299 L .12606 .34944 L .06852 .31622 L s .12606 .34944 m .12606 .28299 L .19251 .28299 L .19251 .34944 L .12606 .34944 L s .03529 .25867 m .09284 .22545 L .12606 .28299 L .06852 .31622 L .03529 .25867 L s .03529 .25867 m .03529 .19223 L .09284 .22545 L .03529 .25867 L s .03529 .19223 m .06852 .13468 L .12606 .1679 L .09284 .22545 L .03529 .19223 L s .09284 .22545 m .12606 .1679 L .19105 .18172 L .198 .2478 L .1373 .27483 L .09284 .22545 L s .06852 .13468 m .12606 .10146 L .12606 .1679 L .06852 .13468 L s .12606 .1679 m .12606 .10146 L .19251 .10146 L .19251 .1679 L .12606 .1679 L s .46481 .5731 m .39836 .5731 L .39836 .50665 L .46481 .50665 L .46481 .5731 L s .30759 .41589 m .30759 .34944 L .36514 .38266 L .30759 .41589 L s .30759 .34944 m .34082 .2919 L .39836 .32512 L .36514 .38266 L .30759 .34944 L s .2444 .43642 m .20534 .38266 L .2444 .32891 L .30759 .34944 L .30759 .41589 L .2444 .43642 L s .34082 .2919 m .39836 .25867 L .39836 .32512 L .34082 .2919 L s .39836 .32512 m .39836 .25867 L .46481 .25867 L .46481 .32512 L .39836 .32512 L s .25005 .31622 m .28327 .25867 L .34082 .2919 L .30759 .34944 L .25005 .31622 L s .19251 .34944 m .19251 .28299 L .25005 .31622 L .19251 .34944 L s .19251 .28299 m .22573 .22545 L .28327 .25867 L .25005 .31622 L .19251 .28299 L s .28327 .25867 m .28327 .19223 L .34647 .17169 L .38552 .22545 L .34647 .27921 L .28327 .25867 L s .22573 .22545 m .28327 .19223 L .28327 .25867 L .22573 .22545 L s .19251 .10146 m .12606 .10146 L .12606 .03501 L .19251 .03501 L .19251 .10146 L s .39836 .50665 m .39836 .44021 L .46481 .44021 L .46481 .50665 L .39836 .50665 L s .46481 .50665 m .46481 .44021 L .52235 .47343 L .46481 .50665 L s .46481 .44021 m .49803 .38266 L .55558 .41589 L .52235 .47343 L .46481 .44021 L s .39981 .42639 m .39287 .36031 L .45357 .33328 L .49803 .38266 L .46481 .44021 L .39981 .42639 L s .49803 .38266 m .55558 .34944 L .55558 .41589 L .49803 .38266 L s .55558 .34944 m .52235 .2919 L .5799 .25867 L .61312 .31622 L .55558 .34944 L s .46481 .32512 m .52235 .2919 L .55558 .34944 L .49803 .38266 L .46481 .32512 L s .46481 .32512 m .46481 .25867 L .52235 .2919 L .46481 .32512 L s .39836 .25867 m .39836 .19223 L .46481 .19223 L .46481 .25867 L .39836 .25867 L s .46481 .25867 m .46481 .19223 L .528 .17169 L .56706 .22545 L .528 .27921 L .46481 .25867 L s .39836 .19223 m .43159 .13468 L .46481 .19223 L .39836 .19223 L s .46481 .19223 m .43159 .13468 L .48913 .10146 L .52235 .159 L .46481 .19223 L s .64634 .50665 m .61312 .44911 L .67066 .41589 L .70389 .47343 L .64634 .50665 L s .70389 .47343 m .67066 .41589 L .73711 .41589 L .70389 .47343 L s .67066 .41589 m .67066 .34944 L .73711 .34944 L .73711 .41589 L .67066 .41589 L s .60747 .43642 m .56841 .38266 L .60747 .32891 L .67066 .34944 L .67066 .41589 L .60747 .43642 L s .61312 .31622 m .67066 .28299 L .67066 .34944 L .61312 .31622 L s .67066 .34944 m .67066 .28299 L .73711 .28299 L .73711 .34944 L .67066 .34944 L s .5799 .25867 m .63744 .22545 L .67066 .28299 L .61312 .31622 L .5799 .25867 L s .5799 .25867 m .5799 .19223 L .63744 .22545 L .5799 .25867 L s .5799 .19223 m .61312 .13468 L .67066 .1679 L .63744 .22545 L .5799 .19223 L s .63744 .22545 m .67066 .1679 L .73566 .18172 L .7426 .2478 L .6819 .27483 L .63744 .22545 L s .61312 .13468 m .67066 .10146 L .67066 .1679 L .61312 .13468 L s .67066 .1679 m .67066 .10146 L .73711 .10146 L .73711 .1679 L .67066 .1679 L s .82788 .50665 m .79466 .44911 L .8522 .41589 L .88542 .47343 L .82788 .50665 L s .88542 .47343 m .8522 .41589 L .91865 .41589 L .88542 .47343 L s .8522 .41589 m .8522 .34944 L .91865 .34944 L .91865 .41589 L .8522 .41589 L s .78901 .43642 m .74995 .38266 L .78901 .32891 L .8522 .34944 L .8522 .41589 L .78901 .43642 L s .8522 .34944 m .88542 .2919 L .91865 .34944 L .8522 .34944 L s .91865 .34944 m .88542 .2919 L .94297 .25867 L .97619 .31622 L .91865 .34944 L s .79466 .31622 m .82788 .25867 L .88542 .2919 L .8522 .34944 L .79466 .31622 L s .73711 .34944 m .73711 .28299 L .79466 .31622 L .73711 .34944 L s .73711 .28299 m .77033 .22545 L .82788 .25867 L .79466 .31622 L .73711 .28299 L s .82788 .25867 m .82788 .19223 L .89107 .17169 L .93013 .22545 L .89107 .27921 L .82788 .25867 L s .77033 .22545 m .82788 .19223 L .82788 .25867 L .77033 .22545 L s .73711 .10146 m .67066 .10146 L .67066 .03501 L .73711 .03501 L .73711 .10146 L s .528 .59363 m .46481 .5731 L .46481 .50665 L .528 .48612 L .56706 .53988 L .528 .59363 L s .67066 .10146 m .60747 .12199 L .56841 .06824 L .60747 .01448 L .67066 .03501 L .67066 .10146 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 175.125}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzlnVtvXVcRx3d8bDeN07hxYjtxnGC3lUIEiPaJl0JLgVaUlErwwqvVIiXQ kirtG/eLEBISEhISH4LbRwzea6+uOd7+zZz/OvvscxKIlONz1l4z859Zl5l1 3e+dfPbgxx+ffPbwg5Ojdx6ffPLg4QefHr396PFp0uRC01w4aprmP0dN+/3J 6df8kf4dtx/5R8X3f7d/Ji2fR1MJTUp5kv91vz7qnv8Lnq+3n+tt0oMu0z8h 0/Ml04ddpn9ApisFzkmX6ZX2z/U24VPIfrX93G2T7k9l72V6EdI+gbRrIu27 daIeQdr1cUT9DNJ2n3lRH0Pa3jiiPoK0/Wde1E8h7cY4on4CaTfHEfUQ0g6e eVFLNOASq8X/ZrtaYse0xO52Af7q5fZPcss/bL+ttd8OIfu1ki+77+OS/TRn l5Ryd46+R/2+l5lEbbefE5FzVuMo/dmYfvQ5abMDZN+HtDVIuwVpW+1nio4m dba+U6ywLhLeLxQbIriLZLymQmTGelgkb9YQJoqLItb1gnVtPmkNslVZfNcz Xy+N6ujEK8VK/DeL4s+LhO8UisseVqswVZwzpP1CuCUSfqdQXIGnx9X8MhDq n1UW34a0bUj7wgAZGeb1UHsifKtQ0DjmsJpfBnKtEJKmRPhNSCNIt6o5T0Nq 1suj3Bm9MAAf+beDYWIyWPIT1jGpteLNXlrb95L7p0ixXloAfb0wUzuAN3tm zPAJPQWf9QIzevLrzxVmz4nM3kifHAKQChRp1kvNKtCjS56NBLbfgDSKNqi1 krJDsAQqbhV7rUqxegRZHerJrhRmFAsSs69DGoVqO4UzKVEvN1AiZU9J1CsQ YIpZtgskd0TmysjgyH2lYk1zhFQRqNERF4oMjPP9GeLPFdfpr3fhAcWCVt2o /3bZ/6iDRA6JaFKBJMJXi6Gpk6RWfbEg3AxpXbmp/3+t0B7VQd8q0L9YWFCl pppL6mwWdTaq+RG+SwXfvZDfnU5tirGJ7dUC86ViQ2pWZEaSMSn8JtX83Mnx xO/lkN/tTm0KP4itG78mAcSF0kiJfpk0yRQVTAkadVa3Q7iHw+2ROoqUpAYJ /Z6r6K4yUHU/CKF1Y+tOQKo6FHpT2l5hS0BScLgbPnWlEcV+KG1aiZ5JKbur Ik1eUWZyGmRcEt6n9UC6sZEK8oCN8iS1O6c2UNzSAeGQm3y0GlQTZqJ1wfo1 VQd7MzLSk2xs6rrcgMkNU8m26kSSShtjJgOYT1Mx3/BNRiwoHxnPwmNSbBnG U9GTGS2SVtEHZoxn9WhUTqVNQAg6jWTIjCptjN4t+jnR7/tmpM6E2JJBbQig KqGOTFVaFT3xu1yNfs83o401qLRphGTunUKqZRgvxkwFbgGQijkwmTGjUQet VLvDUAG6ukCl0sbo3QKfE/2ub8b+mKl14rROY8NH6kncOVjBZCotIaVVK5t6 VJFen2GexOw2PLVumEbNBznPVFoB7g4inPzmuePC8XFQwDmjYTWzl5i7pi8t GCzSHFYsPYz+MmYFRtlU1CbVxW/qFeJli2U0MlUjMhQ5iXqNgsZoLZucNEEi I8erK8vo/GM9yChk2no9AjdgPZm5daq1VBfitZ5lhCKEXq0O9eiDoMRmGy24 ndmPCQouw4iEXe021IHqTHOu982EA+3WdDfKUyrVeDVrnCGajt12hhC6euxn Bmjnlp37WrQIbJaLZMTLaOPME0iwbQaRiqse9vQEQXrSD0RaoVfLU1fLlDTK RF2MKl5hd1EFM3KdqHOFYaalUdS1Io30SFbbD59OzVMvXnSiveqr3N9bk+Va M1RWBpomWFow/9TEGzHn4+IYzmr1eAp0mYNlnXOozEOrREX0ehGd/5P73Mif PQ6JAW9MqmQ92xs6mluk4S+GDtd8NrxuWByYn41nm0zVtVKLKNYKLcWqlk+N adaqOZNxZmrrziIsRlvXh0U1ZJPgFpbq6r27sDHxgNXvLHbHg4IMt6t/CvQn bF2TkHc5+M1yNm1v3nUCvTJFxGqpWVdfxd4vsJVrHpSX2pOR43A3xVQMDtT9 nRTiRXzVejiWXiS/S/NNvtcmURBnk33mQdVtvReB1q1uVQiIS1bR3W6uhoBU BBYGu2NGwR6XQi7uLsjxgJPIThl/Y2ltdEeG6NCfmxRWTwpcZnJX/xEh++0V LWh1uT7Ycttu1ZEGQ0BD8lHwyV0cCrC11iGhjzL0zEWqnrdwl2rIsGNrcTaN utHO2/n99OCIhdypG4RU+RF1XUTZjTaebo3TprLhafdy/ek2ddMEmaL+ZEu8 VsL7xMfVSDrW05U5Wrw3z14VxPijWM9q6gRkbwlFkDGOHvqxo2zinYCsvh9V 2/SQY0Cx4SIzjKePenKoq07nZombeaKn2f2WciZJW3UxfUYHXWnKOeOnlERO VjkCNXOtpf21U8QsBlh8miu3ZluXqq/r1q4orO6dtJp4+baB36KxxOfEciRa f3yc/F28RcnOerlVyeU3Hir19Fo2VP3Rf3OPVmJVB4CEfL3lo1HwxQfr8hyX VXdbDauPCjaAy5ATM+r83jIwxztyt6fMeK6rbziWqQ8FSDuXPWUmg75Q2KtO KTb306RvfMYxL/dS/G0X99kwsDa8oIZHfNUxi7ufUS03M6wKbZkqxwcz8wZL 13dsFgFaMEO9rDFSLWqr552l9IGJu0duNcoph0LNCP6sazKAORMCkvKtQzV2 D/hNVa3IwOeCdlf6EJTbLGvPN4zdxUnRkG0ccrf3TEVSPK/ghlqC6PQ0b3FS 19jUyTmaeopnY66wljYE6JWGOpk3L2KPNhc3NRv1Sjhq7UTrTvUnS0zMkTkD Nm4yZLhFIw8MR529em2ferAvnvK3p33apmlmrEepCIagX7Hx/Gl9rk/7mapX BW2gQYJXbEfqE9VrKikCdXf9uuM6crF9Lq113Th2TlRDNAoMqh4xVteR3Euj BFOQafv8WtOah6UCUlEN0WjFBo0n3ClYvHGWwo0+Vmw89cSL61sF2ngSnZSw iSj3SMKcWIboEZiRwiT14mX13CpNm1ND72il2XlV9BDYgdUIvX8zNvtUOktp kwBULgfl6XYl31ocK1Dd2hp1i+GtlCuxwzIaDvVxZJ36+y9X3H6W0Xmb66cB gnvE0g0WVtxRLyNYiNdkYiNTv/B/EF/ZHCZNNBOFum9gxcYbZ/jEE8vuVWQU P7nj9hUPj8YZt0tbjQhpvAlgxWPzUWbWUhJVGxfcxOvrlzhX5i4673rgbLuI f3kCUAjQBbmzJpSrXjhBMZQxoMsHVO1izoOhCQyCJQN76YV78lrwGVsFzR3R KOoutgXiq+Ky75vMfRWHf4BuNkJjely+DbHbyCDnZJqt6oYJk+Ij3IGnf5bH 43e3/ZbGWeqmmpjfovHV88t9Hm/ndSq5et0YFVv69dViRnW/h8tqFHxDmOYb CGzxz0YfZH9qG7Zh7mvFUOp2V6MdIreeNqttW/vIuOR+X28/k/slJ7hbza+e Il91617MKVSE1yGNbvlQz5OocofQZrXt4hH1NDG9H4AnVBruny3SU0XWU+RL nVW/R16HXj8w3ikt9QCESnvoG4BqDXV5qgEWfZqK+A2hzaZQg2ya1XpDNEW8 cupfkD0bwRDafGW/yoJ8jWoAdaXTfT+HgGUI7UxT8Cz6W6L68bokjeIjqf4L RDj/UfdFsU+b/VuiUvVXupI0GvdSvuNxlFAvWV0AdCpmiwfpvXPxYWK6oHVH fPpSB4kmuS3ce1uEZBXhKOQXP33Fh0QhmwqOOlwCQjLUfBk6VXmbxKWXRsZn Iehlrlvi07sdJPda6JTpeyIkc1/2ZiCahjHOd8On93xwtqP9PRFc73qhidch xfcI3wuffqkD7F5rmzK97wLmdYD4/Tz87tDPab8cPv2KD5cs4wM/60/y98Z9 540qkNBTvqzHYc+I7d/T/z/wYCfUVFVuMaNXo2TsSJNo9000VHSvQVoW8NjT Q4hlflfHgmLd39axoBDpN0tnQWHAr+tYkDv+1dJZkLv7ZR0Lcju/qGNBPfHP l85iAYoswJxPR71YQAVfQDOb1V+4F0jlTH9q/0y87jh3Xn8umWhW8fddpr+U TBTQ5Ux/LZlomPWHLtPfSqbm7LrWH7sffwfS/Cj9ONa/Nxf+C8Y07JI=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {174.125, 0.}} -> \ {-10., -5., 0., 0.}},ExpressionUUID->"53407676-747c-4b4d-9043-421d26f62863"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(76\\). \\!\\(\\\"diminished rhombicosidodecahedron \ (J76)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"bf1e821d-6d93-45c5-a717-\ 2e437d535b9f"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .58013 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.631706 0.0685419 0.202033 0.0685419 [ [ 0 0 0 0 ] [ 1 .58013 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .58013 L 0 .58013 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .1042 .49211 m .06993 .43275 L .12928 .39848 L .16356 .45783 L .1042 .49211 L s .16356 .45783 m .12928 .39848 L .19783 .39848 L .16356 .45783 L s .12928 .39848 m .12928 .32993 L .19783 .32993 L .19783 .39848 L .12928 .39848 L s .0641 .41966 m .02381 .3642 L .0641 .30875 L .12928 .32993 L .12928 .39848 L .0641 .41966 L s .12928 .32993 m .16356 .27057 L .19783 .32993 L .12928 .32993 L s .19783 .32993 m .16356 .27057 L .22291 .2363 L .25719 .29566 L .19783 .32993 L s .06993 .29566 m .1042 .2363 L .16356 .27057 L .12928 .32993 L .06993 .29566 L s .06993 .29566 m .03565 .2363 L .1042 .2363 L .06993 .29566 L s .03565 .2363 m .03565 .16776 L .1042 .16776 L .1042 .2363 L .03565 .2363 L s .1042 .2363 m .1042 .16776 L .16938 .14658 L .20967 .20203 L .16938 .25748 L .1042 .2363 L s .03565 .16776 m .06993 .1084 L .1042 .16776 L .03565 .16776 L s .1042 .16776 m .06993 .1084 L .12928 .07413 L .16356 .13349 L .1042 .16776 L s .29146 .49211 m .25719 .43275 L .31654 .39848 L .35082 .45783 L .29146 .49211 L s .35082 .45783 m .31654 .39848 L .38509 .39848 L .35082 .45783 L s .31654 .39848 m .31654 .32993 L .38509 .32993 L .38509 .39848 L .31654 .39848 L s .25136 .41966 m .21107 .3642 L .25136 .30875 L .31654 .32993 L .31654 .39848 L .25136 .41966 L s .31654 .32993 m .35082 .27057 L .38509 .32993 L .31654 .32993 L s .38509 .32993 m .35082 .27057 L .41017 .2363 L .44445 .29566 L .38509 .32993 L s .25719 .29566 m .29146 .2363 L .35082 .27057 L .31654 .32993 L .25719 .29566 L s .25719 .29566 m .22291 .2363 L .29146 .2363 L .25719 .29566 L s .22291 .2363 m .22291 .16776 L .29146 .16776 L .29146 .2363 L .22291 .2363 L s .29146 .2363 m .29146 .16776 L .35664 .14658 L .39693 .20203 L .35664 .25748 L .29146 .2363 L s .22291 .16776 m .25719 .1084 L .29146 .16776 L .22291 .16776 L s .29146 .16776 m .25719 .1084 L .31654 .07413 L .35082 .13349 L .29146 .16776 L s .47872 .49211 m .44445 .43275 L .5038 .39848 L .53808 .45783 L .47872 .49211 L s .53808 .45783 m .5038 .39848 L .57235 .39848 L .53808 .45783 L s .5038 .39848 m .5038 .32993 L .57235 .32993 L .57235 .39848 L .5038 .39848 L s .43862 .41966 m .39833 .3642 L .43862 .30875 L .5038 .32993 L .5038 .39848 L .43862 .41966 L s .5038 .32993 m .53808 .27057 L .57235 .32993 L .5038 .32993 L s .57235 .32993 m .53808 .27057 L .59743 .2363 L .63171 .29566 L .57235 .32993 L s .44445 .29566 m .47872 .2363 L .53808 .27057 L .5038 .32993 L .44445 .29566 L s .44445 .29566 m .41017 .2363 L .47872 .2363 L .44445 .29566 L s .41017 .2363 m .41017 .16776 L .47872 .16776 L .47872 .2363 L .41017 .2363 L s .47872 .2363 m .47872 .16776 L .5439 .14658 L .58419 .20203 L .5439 .25748 L .47872 .2363 L s .41017 .16776 m .44445 .1084 L .47872 .16776 L .41017 .16776 L s .47872 .16776 m .44445 .1084 L .5038 .07413 L .53808 .13349 L .47872 .16776 L s .69316 .4949 m .64729 .44396 L .69823 .3981 L .74409 .44904 L .69316 .4949 L s .74409 .44904 m .69823 .3981 L .69106 .32993 L .72534 .27057 L .78795 .2427 L .855 .25695 L .90086 .30788 L .90802 .37605 L .87375 .43541 L .81114 .46329 L .74409 .44904 L s .63561 .42598 m .58975 .37504 L .62402 .31568 L .69106 .32993 L .69823 .3981 L .63561 .42598 L s .63171 .29566 m .66598 .2363 L .72534 .27057 L .69106 .32993 L .63171 .29566 L s .63171 .29566 m .59743 .2363 L .66598 .2363 L .63171 .29566 L s .59743 .2363 m .59743 .16776 L .66598 .16776 L .66598 .2363 L .59743 .2363 L s .66598 .2363 m .66598 .16776 L .73116 .14658 L .77145 .20203 L .73116 .25748 L .66598 .2363 L s .59743 .16776 m .63171 .1084 L .66598 .16776 L .59743 .16776 L s .66598 .16776 m .63171 .1084 L .69106 .07413 L .72534 .13349 L .66598 .16776 L s .90802 .37605 m .90086 .30788 L .96903 .30072 L .97619 .36889 L .90802 .37605 L s .78795 .2427 m .8022 .17565 L .86925 .1899 L .855 .25695 L .78795 .2427 L s .855 .25695 m .86925 .1899 L .93741 .18274 L .96529 .24535 L .91436 .29122 L .855 .25695 L s .8022 .17565 m .84807 .12472 L .86925 .1899 L .8022 .17565 L s .86925 .1899 m .84807 .12472 L .91325 .10354 L .93443 .16872 L .86925 .1899 L s .30571 .55915 m .29146 .49211 L .35082 .45783 L .40175 .5037 L .37387 .56631 L .30571 .55915 L s .84807 .12472 m .80778 .06926 L .84807 .01381 L .91325 .03499 L .91325 .10354 L .84807 .12472 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 167.062}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnVlvXDUUx287mSxNmjTN3iWZtIWULtAVCuIZnqgELRSJp1AhtQ8IVPqd kKBsEt+Jff8AJdd27Zmb33GOx54kE0CimfFZfPz38bF9rn3nrc3HDz76ePPx w/ubnTcfbX764OH9zzpvfPJoq6h1qKoOdaqq+rxT1Z+fbn10/5j/1ut/3Jcd Pv9T/2nVshe6CipT8tT9Z79tWPrfQB/xSs5Zpr+Aadwzuar/BKYpz7QqM814 ppOW6Q9gmoOyZcv+O5DmZfbfgLRQjP1XIC3K7L8AaUlm/1kklWD/CUgrMvuP QDohs/8ApJPF2I2nHq4p1/2nG/BpPc3oM15wi26LDE91RSJcTSaQSRHYO17P CDBdilIvZ1A7oklo5qpXNgpMF6LUixnURDNPeWUTwLQRpZ7PoJKZkYFPnn8E yp5T8j1fmI+aEwl7Kx6bo8B0Nko9l0GloRYJ5kte2TGpzSJ1PYNKaEbMXPDK jgPTapS6lkElNOe8hI2qOBPTZH5KyXe6MB81IqxIGqF6RW4TldGoJT5qew4f tWnSt4mCu/OkJkA1AuR4zRlT4msCkMtHDQsL0XGgLskNo/jUnHclPgIgh48a Fpbhk3LD7Lhsd5OiCC4n8q8MmP8MlJlv03KbZ1FmexkNd5pjD2fI5tSrlQ2L UIrCi2mgULygjtHKkjfvhiyNGMLAwUPTbBvKCH+Ch4KoVjanXq1sWJwQtR9Q jLIkk4wE9XFpCbteGukJOkLLbQPsDN8gjUHZsahVcQka8qUl1h06FG4jzafg SruUo74i2kLRfBuXSK8jLkGzB0VzCgyJUEz6Stv+E4VjhWxrj2TNJ1pDUjAj yGwcxp0VLVHGfaVhKdNYUFMttL8kVdTRNK61ppXW12gqZZkorBUA3saM3nj4 zCqqksZAql7KxexnvYQDxV+qP9JFU0CibjNuYrOBI7akqp79L8a8RhnVFdNL A6uEvYPSSzhop2HqIjshoqfMOGManmImVu2omy6go4QdqTpodU1Te1+QhjIb EStedcp4ggLtpCFakK2AmkDLLfLgCIzGhsWaQn1ilC3URbQKH/eycSppJpOo R4jveJfp6jC5s7MRwjmOWlqWFgYU88JSfT4NKOpFcS/Qp2xOvVpZijhimSla 3D2gaDbRTvg5smRzeFZOvjXhqStp8GjNJHhoPaRdsubIks0Uj8yURkCMerRO paGltXo/oUWy1F6jz0BGmlseMgPeaP2pe1pSGEL7d9paEnha2Zx6tbI0L0x6 8Krebd2UBOjs7oFHpwUoj0r15shqwTM2j0qh7VgaUFqD9xNQJKudVKksETJK PVC2gyDTyubUq5XVTq+UH5tJg8w+keTEKqmP8dPOoD/+/mIc6fsfjhw4DsqA Sss/9pZNp0F2UMI2QUYjoABkB2VJQGGbIJO3j/+5JWjOJjQRsoOy5dGup0h2 Kg2yg7KnJshoYBaA7KBkaWh7Q5DRoJ7cPcj2UwawFGRLNYWm1bGdqcv9UbX5 e5oxE3p766/9Rl1pvJXuDYhayMK2pKXZE4W1UIsIVXIIWrFaOFUPnOpvzcVx bZexn3L1FBdodU2Pn8WKKNdNMVt7+mDvKyLoTJe2Jbcp0JHG3Uz1xi5DJD8K z5O1Bx3KaB6czTmax3o1t6XuO+H5XNTSPr4PwSnkj8XssuGj2UAcjA3N4gAV NWttHpxmQiPwmZabbqEZNjKtaA8DkFcE4xpRnHYsYjI8qSIKOlQmnmLbx7U1 QAydaxJN9MyA4qFbT2v79YivJe66NLRoSdLQF5xY1KKwqowWEfgT/hMNFLcN Tj/qGoJmjqz4EHcgsuH8ob1oHU7/1H8rPr48nYaQOBEp+CiK5OgrbV+Svq6T 19vOnMtnRdRnzmd9HV1ho6o4ES7uZbUKsi1IUnAOmA1f5CmX9paC9qahVpbK dkPW3uHddn5PjEiz+TBRGS0G9hNMdDWZJnma7dyhtX7vTNWe3O+dqUoIxoOW rb+dlyATr6nP5QNFBlM/7SegXpBkxVWJO90Xu465GKEt9Ck3OFpv8y5CGQUI 6lh30UZ7BVdzK3KvfEOSvQRlYq4s8UryMOJxGcpo1Dgo5j1U2vuFZpy1UiTm Cku8BGVrtjmLvjna5YeNrzzlJ+lo7LhKy16BMvdmJ8rea1e8075SchKtFuLT JtRK67sGZWa3Zk7BudxneAtK+iXEiWTZqV2QvQFlxqMm6iICz24Mu8ZzIzem MI4WeI38W7q+xl2+Pq0KiXlR9mb9b1sCtBuebU2MQgqOQz4fSbNU/KoQrXri I33Z7dDmFojvZSijjZTrB1oHByeJJ7nJdAKeoGhcUk2vQ+zmbOtD6qrVGx8K wC2SGlAQZJRIDU2keB80V71Ji9LqcwynUNPujVCk9JV84MMLhBrrWf0DRcEr TFgc8T6IqnirIs6RaXaycvFiSTuYypKvgSSFDusmCNaMx6TRimbXSJaK77Cy CrYliMUMqGzENh0UJEzZKOh4NQ0kmh3NEtXcaiQEDHUhSjWyNCuHBfHrQKXh ETFTe+WSooZWlsaVVlZO/PSWkVtHoKBARjspMommKq0swaiVHRAU5GK0by4N Bclq69V6VCIU8rvMdjaJZjZtc7TvexgSKGglnQOjVlY7uBKhoAhNGQVtIlor K78Lsb/BRTDSRBeBgkIQPd8uDQXJauvNgULWlwUFrfZyYNTK0uCiLkiEgkIQ HSOZdUZ0lVlCxa9+0kIn19Vf87XxwTWfwg7dAaNE6tZnehlsDCmZf+fwQY5y MFpLw4L8globtgFuizksDp3TaFOvSX26ozbDGNCoXnJGA4Dpp6X8xu7VRJbU WKxjKJcyVC81+xaUufd8D+NiluqlsT2gZu/VdoZkaYBQ0tD9RMswbmhJlgYI Janda2SGMaVBsuEJNbm2ayylssyDKHPVSsyUiPm4ICvm4+i4BHXHadlCMWdJ z9DER0etXAVaC+JpV4rL9IzV4SG+rdRMyxTtSIJ6Z9KblK0lyRYKr+FhNM3W BBk9jXfHFsSNeNMD6m80lJJehive9NC+3jPbNCoLz+wIPJot6BzImgwoPb7M fskpoVBGabqRFIjCAzlyduqvyJEiXrQJusWhp7C6JblBttIcS8mpws038lDq OTqV1jH/2tDceFN20vtWQ0f3KZteb3P37wYBeRaJ05lFh0b8d48I2vlkiYVk Ce31B8LvApS53y0MhmhvN8wlS8wnS1Bqg4YWnVS2b8VX34fQvgUiCZ4+ZWnT Sf5BJ9kjzdbeMyAzd+N+AzWbusBcDTF+ZC+J4CaAKqWIniNLey6trPZXscLP 3mwMb2MpnUD6zHLUFNkRHamUc6G0gY/xk2ExfgpItHs2vWt6zU4wmJWYSzQs xk/uFOMXG2Jm0mVv/ouy+XQMXuPVUvXEtwp84lWa8OYFY7pdnmP3hLlL/IG8 VpRqZDuKRtTfwqYnvL/4mmxcaMFalKodaEHiLFApwE57g8Mm4KY1mAYYbVkJ G+LTJh9Jlq5Rim9MN42wuTz55rlhIrWBqn1iEyRolqZFzG3ZuHCMWvwp0q73 VvRSqceCBF1pCufr37Ym0agmHDaUfLTxJDNJlhbstE6OmB72pLQgDlTt6/GC BGUEaIH3jjWOomA45EobtfjFFDIuSFwHKi3D7ljjTjsGmj2uRGjyD94yP2U2 KbTd7TZr237vKhcTIkvMeiti4z37gWYjyqqRL2sOgtRVvW8/3AF2igzEd09W QcPhiWW/q2T/UmYnf/6iGHuiMRH2d4FEffZkr9jJbb/qi/09INEI/boYO+0x vinGTuurby37PSBRlOxmN1GAlkCO6YP6z1hNoSTdd5bpQ89EccsxPaz/GMr3 tsBQ1+Ofq0P/AqTyddw=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {166.062, 0.}} -> \ {-9., -2., 0., 0.}},ExpressionUUID->"de24d12c-8db9-4233-b979-24ebfdccd0ac"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(77\\). \\!\\(\\\"paragyrate diminished \ rhombicosidodecahedron (J77)\\\"\\)\"\>"}]], "Message",ExpressionUUID->\ "4dd69c50-363f-45b9-b457-ba6691b823f2"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .58876 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.631706 0.0685419 0.210461 0.0685419 [ [ 0 0 0 0 ] [ 1 .58876 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .58876 L 0 .58876 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .1042 .50053 m .06993 .44117 L .12928 .4069 L .16356 .46626 L .1042 .50053 L s .16356 .46626 m .12928 .4069 L .19783 .4069 L .16356 .46626 L s .12928 .4069 m .12928 .33836 L .19783 .33836 L .19783 .4069 L .12928 .4069 L s .0641 .42808 m .02381 .37263 L .0641 .31718 L .12928 .33836 L .12928 .4069 L .0641 .42808 L s .12928 .33836 m .16356 .279 L .19783 .33836 L .12928 .33836 L s .19783 .33836 m .16356 .279 L .22291 .24473 L .25719 .30409 L .19783 .33836 L s .06993 .30409 m .1042 .24473 L .16356 .279 L .12928 .33836 L .06993 .30409 L s .06993 .30409 m .03565 .24473 L .1042 .24473 L .06993 .30409 L s .03565 .24473 m .03565 .17619 L .1042 .17619 L .1042 .24473 L .03565 .24473 L s .1042 .24473 m .1042 .17619 L .16938 .15501 L .20967 .21046 L .16938 .26591 L .1042 .24473 L s .03565 .17619 m .06993 .11683 L .1042 .17619 L .03565 .17619 L s .1042 .17619 m .06993 .11683 L .12928 .08256 L .16356 .14192 L .1042 .17619 L s .29146 .50053 m .25719 .44117 L .31654 .4069 L .35082 .46626 L .29146 .50053 L s .35082 .46626 m .31654 .4069 L .38509 .4069 L .35082 .46626 L s .31654 .4069 m .31654 .33836 L .38509 .33836 L .38509 .4069 L .31654 .4069 L s .25136 .42808 m .21107 .37263 L .25136 .31718 L .31654 .33836 L .31654 .4069 L .25136 .42808 L s .25719 .30409 m .31654 .26982 L .31654 .33836 L .25719 .30409 L s .31654 .33836 m .31654 .26982 L .38509 .26982 L .38509 .33836 L .31654 .33836 L s .22291 .24473 m .28227 .21046 L .31654 .26982 L .25719 .30409 L .22291 .24473 L s .22291 .24473 m .22291 .17619 L .28227 .21046 L .22291 .24473 L s .22291 .17619 m .25719 .11683 L .31654 .1511 L .28227 .21046 L .22291 .17619 L s .28227 .21046 m .31654 .1511 L .38359 .16535 L .39075 .23352 L .32814 .2614 L .28227 .21046 L s .25719 .11683 m .31654 .08256 L .31654 .1511 L .25719 .11683 L s .31654 .1511 m .31654 .08256 L .38509 .08256 L .38509 .1511 L .31654 .1511 L s .47872 .50053 m .44445 .44117 L .5038 .4069 L .53808 .46626 L .47872 .50053 L s .53808 .46626 m .5038 .4069 L .57235 .4069 L .53808 .46626 L s .5038 .4069 m .5038 .33836 L .57235 .33836 L .57235 .4069 L .5038 .4069 L s .43862 .42808 m .39833 .37263 L .43862 .31718 L .5038 .33836 L .5038 .4069 L .43862 .42808 L s .5038 .33836 m .53808 .279 L .57235 .33836 L .5038 .33836 L s .57235 .33836 m .53808 .279 L .59743 .24473 L .63171 .30409 L .57235 .33836 L s .44445 .30409 m .47872 .24473 L .53808 .279 L .5038 .33836 L .44445 .30409 L s .38509 .33836 m .38509 .26982 L .44445 .30409 L .38509 .33836 L s .38509 .26982 m .41936 .21046 L .47872 .24473 L .44445 .30409 L .38509 .26982 L s .47872 .24473 m .47872 .17619 L .5439 .15501 L .58419 .21046 L .5439 .26591 L .47872 .24473 L s .41936 .21046 m .47872 .17619 L .47872 .24473 L .41936 .21046 L s .38509 .08256 m .31654 .08256 L .31654 .01402 L .38509 .01402 L .38509 .08256 L s .69316 .50333 m .64729 .45239 L .69823 .40653 L .74409 .45746 L .69316 .50333 L s .74409 .45746 m .69823 .40653 L .69106 .33836 L .72534 .279 L .78795 .25112 L .855 .26538 L .90086 .31631 L .90802 .38448 L .87375 .44384 L .81114 .47172 L .74409 .45746 L s .63561 .43441 m .58975 .38347 L .62402 .32411 L .69106 .33836 L .69823 .40653 L .63561 .43441 L s .63171 .30409 m .66598 .24473 L .72534 .279 L .69106 .33836 L .63171 .30409 L s .63171 .30409 m .59743 .24473 L .66598 .24473 L .63171 .30409 L s .59743 .24473 m .59743 .17619 L .66598 .17619 L .66598 .24473 L .59743 .24473 L s .66598 .24473 m .66598 .17619 L .73116 .15501 L .77145 .21046 L .73116 .26591 L .66598 .24473 L s .59743 .17619 m .63171 .11683 L .66598 .17619 L .59743 .17619 L s .66598 .17619 m .63171 .11683 L .69106 .08256 L .72534 .14192 L .66598 .17619 L s .90802 .38448 m .90086 .31631 L .96903 .30915 L .97619 .37731 L .90802 .38448 L s .78795 .25112 m .8022 .18408 L .86925 .19833 L .855 .26538 L .78795 .25112 L s .855 .26538 m .86925 .19833 L .93741 .19117 L .96529 .25378 L .91436 .29965 L .855 .26538 L s .8022 .18408 m .84807 .13314 L .86925 .19833 L .8022 .18408 L s .86925 .19833 m .84807 .13314 L .91325 .11196 L .93443 .17715 L .86925 .19833 L s .30571 .56758 m .29146 .50053 L .35082 .46626 L .40175 .51213 L .37387 .57474 L .30571 .56758 L s .84807 .13314 m .80778 .07769 L .84807 .02224 L .91325 .04342 L .91325 .11196 L .84807 .13314 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 169.562}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzdnftvXUcRx09yfR0ntmM78SNJ87gObQ2htGlLaUFIQHlUCKj6okFI/BBV iPYHBCoV7/d/AxRKJf6/kLN7unN87mf2fvfucamJFPt6H7Mz392dnZ2d3fu9 +++9/eOf3n/vnbfuz1569/7P337nrV/MvvWzdx8mTc40zZlZ0zR/mzXt5wcP P3Y/wr/D9kf3x4LPP2x/7bV1P+wlNJMHidjDv3Yg7YOy4n9tf4akO0tUHKSF v47K6PwF0lYSU4+WEfszpK0lYodlxP4EaRuJ2M16YluJ2CNlxP4IaZch7UoZ 2T9A2m492d9D2t4nluzvIG2/nuxvIe2gnuxvXBKfRLK/hrSr9WR/BWnX6sn+ EtIe+djJBg14ts15tv203356M6Udlol+O1V8mB+TQpnmrpdxCYi95hUmbjL9 O0t0VqDQEyl3IiL7SpbezGUEmbuZiK1CoTspdyoy93KWXiFz1xOx81DoKOWe E5n7bpYeMZfRXTSYL0DaY5CmMvwdsQ1iPaPNryYcNqHQp1IuNUVsfjtLj6ZL ZgU7SMS2PUlD7obI3EuL6enM7SVipDFsMl0Umftmlh4hdznViAoQTReykmwy bYnMfUOkTGya0TdQnld9riktzrKVlNb+dsaZKgI1QyKsJxFIz3YDYohHKzCN H1qtzkKaOuW+LrZLgtlWYQ1yD3zBSKXQwhd6vEiDkDjUGolj26h1X5w4vab9 rCxutCqtJrEINxLrxcJWbyOYjj7pJKN2yZSgmUvLG8mmrv5fq+DFjDZShftl wtIcJ8AvpEbHFlHVMtRGJyytV8QmoUnCbiRhVVPzqxUc2EpNucuIGIiRYHFB W+mnee0WSRQanOnEI2+4vpLFt53aIFUX+mPiNfWV4jYOO1lJF2WEIc1D1vNm aohUZ2gg+PmoA/L0SCnS0kkDuFCI9dToNH0ibRQn98oQywDu8+2niVdTbfU6 lCMzhISO3KGNRCvkWmrUVtKB0Uat0Jg5l1B4KpGirqIZsiRrZFipurwQqDi/ 5np94i0fNOpoWdhIqB0lerR7Jnpj8ElWALWfgZA2YwRr6MboU1mJKU3z0X9X CwgD71KiezuJSrbnSfFJClzd5Ed5sCdpYXvQjRV11Kr7wxsJOJVyKXfEiWpJ LwTJ0qKOaNi4IAKEBvF6LSFEHNJwK2KN2KCxloEn8BB8p8R/IOYaUVTjIElM NdayrRGbhD6Vu9QTR1ZCNLDmHAe0JpNs5ugZrDcuEEvySUshaSkz5HbLwCGG o2piW5CGJqm33QwNWlFUdUj8kjZx00LS/lgggd3pevhI7J1Ug8w3AlZdet0t XkiicXU+5V4tg0dl05ZNmum0MdhKNYgeAaoad8QzcTX1bIXVhNb1MrRUrkli UiWEGw2/sRGkuoRBoBdgJMqTBGPgb7X91F+uBEYIAJpNYca6J0LkqTSXCK20 arsqz9S56wm8wUKz4QG6czLgmXVAjRJ45jyjeeU6hkcEL6xVq5662y4DSmU4 CssLH23b3S3/iIBRXXXBpbRC6NTTDZtug8FOh6k2m0nZqU2q7KqrLhmQW2Vo RWF5ANl6eMNj0j3Dy9GlzQWBrqo3ojciDOb9GwwUmmCrHecfpbW/G96CnjKI ak4NqZzqLFPbGHsSljnuyCIaXdubC7LcOZs/Bx1b3xN4vvO6CjzVphicmIZP NKVI7Pxp69jWBal/1VeweTLgUX8OoWj1ljoJyQ6hNsa2etWVlTZshdCqux2b mENXSwsojS1XI7oW89g7L9Wco7obZTD62/05Z2/PPps7IrVILpqZm9ncsXf+ hB7N7xHQ831JcwjtcPJugoZEdk67a6ae6tQkxKjd9ZEQC0kUiWSH466IkzQE l5xIJwnKQepmYq7no5/r5oupAPGymyR3iV/xctWzBlKPBR3eNJkzEFv0G3K7 z6FhR+fU9FDK1DSJZeZdk48NzwpAINIAoUU7iiCdcbV/DZekli83MpamCa1p lzssBmo+EDcbTj1ndFmkvZm6EanGIvTR1BsHI/SMmReBr5BJA8Pc5SR77oDF wiHUg9ZxeKqR9txxylOve66lcp1WUQ/tTXmYzzlv/ZEKpW372Q6a3vBq/xMa hD0x5k5Il7Eaka2cBZuoPvKuF9SoAOp6Y26gW2lf4a5rgm5QQ27yTBJldUdV DYl1VRiJdDRAKqozUtVesr1LfiDS3KMZosZQDNq1oeu2Vs69QWsRGzSwu81l eYRj3jMdoAgGnussGFBxz2rdurYUxwu6c6qJ9kAXy+R1db1QzqIV0JiaY9f3 lS7XfpE8vfBY3oohITnM1yIAelg0jtCxc3IOas5zD3bUhos4fxQKh3KZsyQ1 1FuNV7OzJNU5lQ/eUG8kqTzHe385hwlxXAVTPuhLdQaYBUjqeGyYHoc09fih CxNb9lJI46hoMkBU8NSYDuKFdLZ6teTTHoxucMPlevCIYdtGq/4EWwc/DqA+ 49V150gXb5e7QbafyaMRZg2qEZH56IzcVjHHGwH5WUgjDUuTtLtuod4dJBI5 UdRbn7kIjWXHjlf3cx5cZP0U3q30r87NGVDqhWM3AsMdpkvi8iSk+cckPZc3 MULjLwARktT7zBYdSm24t8DcGnchrXsvZz+JQ6YLNWUWsymHovE+qKu2uyPW fdoDNIRfdQ4yN8JTMDZpBBPD6qGCG6m4JH9UTqX3LKQFuM97Gj0uhb2XGgge Wi8HEY1Ft7DXoK66W6R2qe5z7c9pXqK41k7Sgpz35OZXykn6VHRz29o1V2s5 L+an2MzWfQ7SaCPQh2duOGVH0uK5od77niRQVO0ilOPomQKJ3NuDwuykcl+A tEyPuPuoyXHNqrJuA5ZUkVE2E19FP2/r1vBs08PObs9nqRSC7GYJUNCsy4to lJvjzg8/zIg3+9SDKttkARjbHNFzTFMR0eddAWgV9K/RDcFpf/lOeTbH3aVk JYEjQO0QKuJyK8Olez1kmqaKU/NLrgSINamnrQTHQIphIEg3QN2LiKGkmbSu j5Ta2ua2SA+EtFWgQVjQ4OqwcH3re17LlksYhNx9bwk2O/jL9WyS48FXbIvr usbaknV9f9DxtMIeI21FGyefxOK6/uRZru4JQUFDjLbJY0NBi7r7usiSI6oQ Cv9VpsUkasRRgzJPCRQ14tTUVUdjIRSkocl9QCT899gWi1NTV71g+cUyKEgF 0Xn12FCQIUvtjg2FT68KihpxauqqMfSFUJAKosAPgkK9++Oeki5ZV4VC1RUd FKSC6BrJdsdELy1mNHydbmep8osnII2c/yORabLQCCGRbXPQbepP4zCvASC0 G9y+XTjOaVR5BB6NzgBAGGzdMc9pXPWLhEVAq8Susd3Gtg5I7BcgrXua+DSa uwQZze2M2DV7v5oNz9ibJdIG5DvsvtbjNO7+CTKaIOSpvu6Lba6mvCPKdT4c eLl2sEwDsGOJXFKuZ091irgvetNplHv0QhyoBOxN1gEB6p1ozPgvTZIkpPII S/dlwSAdaRBig6gUsaYSNeCJyufLwFNPLtTHKt1jFvVs3T3LFJhU3yG1w20y BgjVZyCtiw1xbZtJ6iL3UKro/coBAOqdEmpD5U99qM3OBQk86ioKtrkVAWXr xely9c4Gjd+JN72ridZwSoN4EL4grJhPQdqt8LP3uGo+AoJmooU1TbN1XcGE dqmuu120PnTjLymkbxahuJIqqrcO9opr7BfXcC5VkHFD+D3hy0tWsxpC4b/U LqK2ZF018o0m4x1I675PzzqSGnADh90aNAnLa9COjICisOf4sHpVRL967avm BgPVJbFpGaCw+EKxSYGOfQlCrUsbUeqCcPckjKN4C0V+8JdW45q6/sOxi+uS sO6XpgRhj8qEJVuuhuGaurTXJuUbbMiQFGd08dO81FCuPPVCrjy9jUU76jCD Q6/F5QelpWBzmvpUjhihcjehXOAlrKe24D/5v2XzFpSjgR4GtT1uEFiPtrP/ xRyhEHn/LVjIze1dnlysl9YSc/YU8TM+cyYBST+IXBe0h9WgC4y0flxMDNs+ Kgbr4kSilXcmllMdj1SXvmPQfZwgCBH9eP5Nchcly1VPbqwGGSG0O3zZZ84i quniYPmLtFaDrGDLfTWyRLOacDgSy5E5TmxSXWKY7OEM67avIsPXcmk3lf+G NNquk/36WmSOtKB5GmhDlr+tQsxZDbqOQebW65G5G10BWu7uZvL8b+Dk8uTG JNX2Rp+tuV3f05xMiBxw0RcyPN6LH2jRJJeXatYMYyPapn4QP7wOxUkzULl7 PgmaDu/H4m+Ixf/hF6fx/PfRihcykyn+fciiPnt/tOI0Dv85WnEaW/+Kxd+E LJqh4xUn8+yD0YrTzuLfsfg9yCIt2S/uvqL+YSz0o/bXhTaHNGVX6Cftr6A4 /hMTQu6h/rk581/q7vKV\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {168.562, 0.}} -> \ {-9., -3., 0., 0.}},ExpressionUUID->"fc1d499a-1ce6-4816-835e-6a1575db3591"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(78\\). \\!\\(\\\"metagyrate diminished \ rhombicosidodecahedron (J78)\\\"\\)\"\>"}]], "Message",ExpressionUUID->\ "0d6960c9-0402-4456-816b-ad54e23bad13"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .58876 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.538076 0.0685419 0.372633 0.0685419 [ [ 0 0 0 0 ] [ 1 .58876 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .58876 L 0 .58876 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .1042 .50053 m .06993 .44117 L .12928 .4069 L .16356 .46626 L .1042 .50053 L s .16356 .46626 m .12928 .4069 L .19783 .4069 L .16356 .46626 L s .12928 .4069 m .12928 .33836 L .19783 .33836 L .19783 .4069 L .12928 .4069 L s .0641 .42808 m .02381 .37263 L .0641 .31718 L .12928 .33836 L .12928 .4069 L .0641 .42808 L s .12928 .33836 m .16356 .279 L .19783 .33836 L .12928 .33836 L s .19783 .33836 m .16356 .279 L .22291 .24473 L .25719 .30409 L .19783 .33836 L s .06993 .30409 m .1042 .24473 L .16356 .279 L .12928 .33836 L .06993 .30409 L s .06993 .30409 m .03565 .24473 L .1042 .24473 L .06993 .30409 L s .03565 .24473 m .03565 .17619 L .1042 .17619 L .1042 .24473 L .03565 .24473 L s .1042 .24473 m .1042 .17619 L .16938 .15501 L .20967 .21046 L .16938 .26591 L .1042 .24473 L s .03565 .17619 m .06993 .11683 L .1042 .17619 L .03565 .17619 L s .1042 .17619 m .06993 .11683 L .12928 .08256 L .16356 .14192 L .1042 .17619 L s .29146 .50053 m .25719 .44117 L .31654 .4069 L .35082 .46626 L .29146 .50053 L s .35082 .46626 m .31654 .4069 L .38509 .4069 L .35082 .46626 L s .31654 .4069 m .31654 .33836 L .38509 .33836 L .38509 .4069 L .31654 .4069 L s .25136 .42808 m .21107 .37263 L .25136 .31718 L .31654 .33836 L .31654 .4069 L .25136 .42808 L s .31654 .33836 m .35082 .279 L .38509 .33836 L .31654 .33836 L s .38509 .33836 m .35082 .279 L .41017 .24473 L .44445 .30409 L .38509 .33836 L s .25719 .30409 m .29146 .24473 L .35082 .279 L .31654 .33836 L .25719 .30409 L s .25719 .30409 m .22291 .24473 L .29146 .24473 L .25719 .30409 L s .22291 .24473 m .22291 .17619 L .29146 .17619 L .29146 .24473 L .22291 .24473 L s .29146 .24473 m .29146 .17619 L .35664 .15501 L .39693 .21046 L .35664 .26591 L .29146 .24473 L s .22291 .17619 m .25719 .11683 L .29146 .17619 L .22291 .17619 L s .29146 .17619 m .25719 .11683 L .31654 .08256 L .35082 .14192 L .29146 .17619 L s .47872 .50053 m .44445 .44117 L .5038 .4069 L .53808 .46626 L .47872 .50053 L s .53808 .46626 m .5038 .4069 L .57235 .4069 L .53808 .46626 L s .5038 .4069 m .5038 .33836 L .57235 .33836 L .57235 .4069 L .5038 .4069 L s .43862 .42808 m .39833 .37263 L .43862 .31718 L .5038 .33836 L .5038 .4069 L .43862 .42808 L s .44445 .30409 m .5038 .26982 L .5038 .33836 L .44445 .30409 L s .5038 .33836 m .5038 .26982 L .57235 .26982 L .57235 .33836 L .5038 .33836 L s .41017 .24473 m .46953 .21046 L .5038 .26982 L .44445 .30409 L .41017 .24473 L s .41017 .24473 m .41017 .17619 L .46953 .21046 L .41017 .24473 L s .41017 .17619 m .44445 .11683 L .5038 .1511 L .46953 .21046 L .41017 .17619 L s .46953 .21046 m .5038 .1511 L .57085 .16535 L .57801 .23352 L .5154 .2614 L .46953 .21046 L s .44445 .11683 m .5038 .08256 L .5038 .1511 L .44445 .11683 L s .5038 .1511 m .5038 .08256 L .57235 .08256 L .57235 .1511 L .5038 .1511 L s .69316 .50333 m .64729 .45239 L .69823 .40653 L .74409 .45746 L .69316 .50333 L s .74409 .45746 m .69823 .40653 L .69106 .33836 L .72534 .279 L .78795 .25112 L .855 .26538 L .90086 .31631 L .90802 .38448 L .87375 .44384 L .81114 .47172 L .74409 .45746 L s .63561 .43441 m .58975 .38347 L .62402 .32411 L .69106 .33836 L .69823 .40653 L .63561 .43441 L s .63171 .30409 m .66598 .24473 L .72534 .279 L .69106 .33836 L .63171 .30409 L s .57235 .33836 m .57235 .26982 L .63171 .30409 L .57235 .33836 L s .57235 .26982 m .60662 .21046 L .66598 .24473 L .63171 .30409 L .57235 .26982 L s .66598 .24473 m .66598 .17619 L .73116 .15501 L .77145 .21046 L .73116 .26591 L .66598 .24473 L s .60662 .21046 m .66598 .17619 L .66598 .24473 L .60662 .21046 L s .57235 .08256 m .5038 .08256 L .5038 .01402 L .57235 .01402 L .57235 .08256 L s .90802 .38448 m .90086 .31631 L .96903 .30915 L .97619 .37731 L .90802 .38448 L s .78795 .25112 m .8022 .18408 L .86925 .19833 L .855 .26538 L .78795 .25112 L s .855 .26538 m .86925 .19833 L .93741 .19117 L .96529 .25378 L .91436 .29965 L .855 .26538 L s .8022 .18408 m .84807 .13314 L .86925 .19833 L .8022 .18408 L s .86925 .19833 m .84807 .13314 L .91325 .11196 L .93443 .17715 L .86925 .19833 L s .30571 .56758 m .29146 .50053 L .35082 .46626 L .40175 .51213 L .37387 .57474 L .30571 .56758 L s .84807 .13314 m .80778 .07769 L .84807 .02224 L .91325 .04342 L .91325 .11196 L .84807 .13314 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 169.562}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzdnVlzXcURx485kiJbQoutBW+yxGZjltgsiaHykIQtrFUJi/OSBxdFAQ8U FOEllS/B1yAhgVTl+zk+MyfTV+f+eu5/7hzJFq6ydDVLT/d/enp6epb73p1v P//0yzvffvHJnf03v7nz9edffPLX/Te++uZeUnuqaU7tN03z/X7Tfb5772P/ I/w76H70f8z4/F33a7ur+/eJhKa9m4jd+2sT0v5WVvzd7mdIuj5HxUFa+Otq GZ13IG0hMfV4GbG3IW05ETsoI/YWpK0mYnv1xNYTsYtlxP4Aaecg7ZEysm9C 2lY92TcgbfuBJfs6pO3Uk30N0nbryb7qkngQyf4e0s7Xk/0dpF2oJ/tbSLt4 7GSDBXyoy3khfXqx+7TTfaKOyoj+aCJxLz8mhTLNDS/jppdxFlop7N/9RHsB Cj2TzX025bYi7oU6vZcaWIJC17O5T6fcxaNh7lJq4DQUuprNvZZyfyEyV2i7 SJnPQNoTYrknIU1lvdCan0/YPAyFHsvm2kAlIUaYwXZTAxtQaD+be5ByV4+G ue3UABmGvWzulZS7JjJHnsq5RCUaQHRdyEu6JJa7nBpYF9kkP82cvoFBPe9z TWk0yqhclG4hpXW/HQ1W/daVJAJZ5l4hhgh2ApP+DGcrrxzJ+xCkqYOPBLOl wjLk7vqCkUkZTnxeOZqug2YU2RJa+dgyasUXJw7IxcmsxK4/3vXyNP8vJfEI Z3WV2HoWo5eM6JCzQGOdpjfSNrUuTcSqb/BuQouM506ZsGQiqNvUuqTRZxLD RSIK5XphaYajpqh3SFgyY2rdh5OwqiP6TqpBbcwjYiBGzOVrUN+t94BMDm+H 07f1opE3nDfJk9vIspivQaMv9ELrMfdWDxVZtIwwZHlomJuCkENPBjBfI4zC EBkkm09GipSwUIiVxNJi+kTWSKjbenXJvIReuZUIkKtGg5ckjuTR8aHpcTk1 atPowGOjVmi+JlLUTzQ8CJQwfQZkbniskVOhGuNCoOJwPGwG/s8VNUkqV0qX Ft1El9BbSehdy/JJhoTazUBIay2CNahFDLIsxJTopHf/XZMySKO2cnRJUYkG QbiZ6D6WICQ+VetNEEbLi5pBc9Tdvk9VrV0bgYa6wNxLIBFloqK6xTNBsrRo Ixr2LHyEgIBq9lR4LiZ4iDWqQbqWgScwF8KlxFIgFuZT8qDMdlOuuzvSeq0R m4Q+lTs7IY5shGYrFqHu152KJFAHuSsFiiQTsDQVknUyv2+rDBxq1HUs5brs RKrtb2do0GxE1sRNC0k7xwcS2X6aPoMj5Ab/SOyzqQa5fsSz7dqSXp1OuefL 4FFFJHhIMPJCbAon9ScqNiSIF+KZ7M+i5yMsJbQulaGlSlyDFklMJo/WVaQa RI94IQwCfwFG4rRNMIY2lsySyoCSEDQiCFC1bhjtbqSOqNjilWZpdQlsTvpg slj1AN08PvAopEnBn9MJCmKYqNhSmcakCl7geckzdxtlQKnC1gAVheWJj5b8 xDsBRu2r6w9KK4SOFuG07ifo1LphViCvivZLzJmluZaaVBe8FM9ZL0MrMsxK QORz5deToJehphk1Gh8EnBpjIl/4PsJgtnigHDSohvGW7nfDS9b7DNFxjCvi hcqpg0Ztoz5wdzgtDvQHytqbFbJYMimk6za5G6PEAVFRo8+F4B2HTzHYOg2f 1OGY33Yl7kmTCTx3Y+zB8mZJF8xJczfiqYZAWQVUXVoWAnoc6y0bjsPVaTfn qDqd3y8mXlQnjuqulsF4NIv8qcAzuiMdiHbqizQ6v/usxt9pSI8A3dGEj6Y2 nDc5eStBQ93l7HOT1GQsCTEa7yvHh5hbNyTRqSXbFnfHU3vUoOymriLW87l4 QqATbC3lkq3eSoK52wFzekoFvd00me0Ym6ib/I5zokIcLnpUoqZM6X4++DDE KisAgUjaQVNuRE/a0+r+GjrWHV9uvFT1zGl57DZEKySayKihiOpUV5hvp27J FsEQumfR05sROsX8gsBX6w1Fi26rJwXGoRwR5EWzndFQTxSoPJnRstgwdc+F VK43KOo5ArMbFl7Ou21kxt2BM6Cc380hyls9LYA91VN3I1VZrdxqAp2mu4w9 V88DUJ8bcwMjTN6cGwkvaojsDKW5c2PBNqY6g7owWPcED4VC/mSPek9U7Rlb YeSVllSfZvMBPVPDIput7pznuTdoL6RPpMz98rH82KKZrZq6NE0EAIKPlz9Z a9NhvHU7FaSk1cJambzuNCaUo3FbQ8/OVw2GwlkW34+penb/YECoJ0ba1wdn 1bO7yHvjMOmGQ1QCkavc2V3dlrkNPw6FQ7nMHpF6flu1C2pdSrM9IjVInz+U QW3Ey3wc1vBvdVXBRGkkoFo3b2YJpvzhDGqD7jKqWwP98a95b3o0jplV65KN JcOngqee1SAYr3kwuov+c/XgEQD+mm52XXMd1JhD/jQGAfWUJ6+r5/05uty1 sJ1MXu4MW64eAWSMqick8ycuCKCnIY2MCHV0f4dCvRBYoyu+jmZ2fgXAcicv iI9nPbjIWym8MKnczSvHZ8pZUu8YuycryIg+B2n+ZsZEbLroOlrr1XDveYUk 9bqynROlNm5AWv8Ijh3tVV0XO6TYFtfdhLpF+i60e9ODJwQv+miYeoqQ3GTS QhJWpUfliJ66E+GeaBTafQHSAtynPcscp7OJ5xcIHjdWZXNo0SqV6qrwLENd avel7udiXqI417ZpQs6HbfMzXps+FVEx19ein+WXtK2GLd2Jg5cgjRYCk/BM qVNWk2brMpXjUGnDyyY1VkfliJ4rkXr6Rx2dxNCvIC3TI+5aqD1sWVWMTGHJ tA0uTRZRNpUkX5d4VuG2GrbJaoNxBJDdrAEUxDCNuny3GOXmcPCDyNNsO8BD YNy/L89hBD53c8hSEbO/dpuhWdW/HjcEp/vl7x2yS+1OQwseILkAl3vZurWe O1SxS43ezlTkz73qsWicMRevQM0MvmSS1hMEA3yHpzR6pSRm3Xd1NpiGGwMO UprzTFYlpC1BW4QFKVSPBfkEoeVtr2XLJQxC7o437Zrf/Jt6Nmkt7Ruz2XVd J2vOun4M6HBaYY+R5aPFkk9idl1/8MxX94igIBWjpfnYUKi32mo0qhAK/3ml 2SRqxFGPS54QKGrEqamramMhFGShKWRAJPyH1WaLU1NXvfD4chkUZIJoj3ps KMijonbHhsKnVwVFjTg1ddXT7YVQkAmiwx4EhXoXx93dnLOuCoVqK3ooyATR tY6NnomJtJjR8FW3zbnKzx6ApDk/I5FpsJCGkMi2OOgX8idRzWsACO2GUG9/ BOckmjwCj7QzABCUrd/aOYmzfpGwCGiV2DW+29jeAYl9C9L6N4ZPortLkNHY zohds/arWfCMvVgia0Dxwv77OU7i6p8gowFC0elLvtgWasoHotzgw66Xa5vJ pIA9SxSScqOIalDEDSHSDpR75pM4UAnY26wDAtQ70ZnBgKobsCaTR1i6rwMG 6ciCEBvuOx0qaypRA56ovFgGnrrJoj5kWbS1okqsMulqB3Wu3WERZsrnIa0/ D+L6Nm3qoqLbJ+6bmQMA3Md0hTZU/tRH12wvkMCjrqIDNlcioOy9OF3ubgsJ +tt6w7uaaA2n7tNc7qFmmjF/CWlXws+JJ+XyJzBoJNpRpvy5C1cwoV2q6y4X rQ/ds5N0jG8/QvFIqui+lUeeSFGNneIazsUHcm4Iv2d8eclrVo9NqC9XuqjN WVc9KUeD8Tqk9V+MZx2p3tXYytagQVheg1ZkBBQddX40CqbeAFC/Q0CtW9Mu iU3TAB2FLxS75tLE2GLTQpS6INw3CXoUb57Iz/PSbFxTl5afal0Slnixr227 WiYs+XI1DNfUpbU2GV97LTuO6EyjHOSlhnLlqRdy5emtKlpRhxEcei1OPygt XQBQvtrJY4TK7UG5wEuYT23Cf+7+snkFypGiB6W21wsC69F3xm6wNTVF/+2g j5s7cWFytl1aTszZs8LP+8yZBCT94KS7YD2sBl1apPljLTFs66h4QBcHEs28 +2I5NfBIdenLAt3vywhCxDief3vcRcly1Z0bq0FOCK0O3/eZs7PYdFnQctUH T60GecGW+8fIkvtu6CDtqliO3HFik+oSw+QPZ1i3dRU5vparPitnNWi5Tv7r nyJzZAUt0kALsvwNFWLOatAVDHK3PojMXe4L0HR3I5Pnf5Uml6cwJpm2DyfZ mlr13eRkQmSXi97K8Hg7fqBJk0JeqlszPBvRNfXn+OEDKE6Wgcrd9knQcPgh Fv9QLP5Pvzjp8z9GK17ITKb4R5BFffbDaMVJD/81WnHSrX/H4h9DFo3Q8YqT e/bjaMVpZfFTLH4bsshKThZ3X0T/Tyz0l+7XmS6HLGVf6LPuVzAc/40JIfdA /9yc+h+4xMy7\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {168.562, 0.}} -> \ {-7., -5., 0., 0.}},ExpressionUUID->"54f7e560-970c-424b-b7eb-ad784523af42"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(79\\). \\!\\(\\\"bigyrate diminished rhombicosidodecahedron \ (J79)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"0136868f-8df5-41e5-9e99-\ 8752e8fe03ab"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .58876 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.538076 0.0685419 0.372633 0.0685419 [ [ 0 0 0 0 ] [ 1 .58876 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .58876 L 0 .58876 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .29146 .56908 m .22291 .56908 L .22291 .50053 L .29146 .50053 L .29146 .56908 L s .12928 .4069 m .12928 .33836 L .18864 .37263 L .12928 .4069 L s .12928 .33836 m .16356 .279 L .22291 .31327 L .18864 .37263 L .12928 .33836 L s .0641 .42808 m .02381 .37263 L .0641 .31718 L .12928 .33836 L .12928 .4069 L .0641 .42808 L s .16356 .279 m .22291 .24473 L .22291 .31327 L .16356 .279 L s .22291 .31327 m .22291 .24473 L .29146 .24473 L .29146 .31327 L .22291 .31327 L s .06993 .30409 m .1042 .24473 L .16356 .279 L .12928 .33836 L .06993 .30409 L s .06993 .30409 m .03565 .24473 L .1042 .24473 L .06993 .30409 L s .03565 .24473 m .03565 .17619 L .1042 .17619 L .1042 .24473 L .03565 .24473 L s .1042 .24473 m .1042 .17619 L .16938 .15501 L .20967 .21046 L .16938 .26591 L .1042 .24473 L s .03565 .17619 m .06993 .11683 L .1042 .17619 L .03565 .17619 L s .1042 .17619 m .06993 .11683 L .12928 .08256 L .16356 .14192 L .1042 .17619 L s .22291 .50053 m .22291 .43199 L .29146 .43199 L .29146 .50053 L .22291 .50053 L s .29146 .50053 m .29146 .43199 L .35082 .46626 L .29146 .50053 L s .29146 .43199 m .32573 .37263 L .38509 .4069 L .35082 .46626 L .29146 .43199 L s .22441 .41774 m .21725 .34957 L .27986 .3217 L .32573 .37263 L .29146 .43199 L .22441 .41774 L s .32573 .37263 m .38509 .33836 L .38509 .4069 L .32573 .37263 L s .38509 .33836 m .35082 .279 L .41017 .24473 L .44445 .30409 L .38509 .33836 L s .29146 .31327 m .35082 .279 L .38509 .33836 L .32573 .37263 L .29146 .31327 L s .29146 .31327 m .29146 .24473 L .35082 .279 L .29146 .31327 L s .22291 .24473 m .22291 .17619 L .29146 .17619 L .29146 .24473 L .22291 .24473 L s .29146 .24473 m .29146 .17619 L .35664 .15501 L .39693 .21046 L .35664 .26591 L .29146 .24473 L s .22291 .17619 m .25719 .11683 L .29146 .17619 L .22291 .17619 L s .29146 .17619 m .25719 .11683 L .31654 .08256 L .35082 .14192 L .29146 .17619 L s .47872 .50053 m .44445 .44117 L .5038 .4069 L .53808 .46626 L .47872 .50053 L s .53808 .46626 m .5038 .4069 L .57235 .4069 L .53808 .46626 L s .5038 .4069 m .5038 .33836 L .57235 .33836 L .57235 .4069 L .5038 .4069 L s .43862 .42808 m .39833 .37263 L .43862 .31718 L .5038 .33836 L .5038 .4069 L .43862 .42808 L s .44445 .30409 m .5038 .26982 L .5038 .33836 L .44445 .30409 L s .5038 .33836 m .5038 .26982 L .57235 .26982 L .57235 .33836 L .5038 .33836 L s .41017 .24473 m .46953 .21046 L .5038 .26982 L .44445 .30409 L .41017 .24473 L s .41017 .24473 m .41017 .17619 L .46953 .21046 L .41017 .24473 L s .41017 .17619 m .44445 .11683 L .5038 .1511 L .46953 .21046 L .41017 .17619 L s .46953 .21046 m .5038 .1511 L .57085 .16535 L .57801 .23352 L .5154 .2614 L .46953 .21046 L s .44445 .11683 m .5038 .08256 L .5038 .1511 L .44445 .11683 L s .5038 .1511 m .5038 .08256 L .57235 .08256 L .57235 .1511 L .5038 .1511 L s .69316 .50333 m .64729 .45239 L .69823 .40653 L .74409 .45746 L .69316 .50333 L s .74409 .45746 m .69823 .40653 L .69106 .33836 L .72534 .279 L .78795 .25112 L .855 .26538 L .90086 .31631 L .90802 .38448 L .87375 .44384 L .81114 .47172 L .74409 .45746 L s .63561 .43441 m .58975 .38347 L .62402 .32411 L .69106 .33836 L .69823 .40653 L .63561 .43441 L s .63171 .30409 m .66598 .24473 L .72534 .279 L .69106 .33836 L .63171 .30409 L s .57235 .33836 m .57235 .26982 L .63171 .30409 L .57235 .33836 L s .57235 .26982 m .60662 .21046 L .66598 .24473 L .63171 .30409 L .57235 .26982 L s .66598 .24473 m .66598 .17619 L .73116 .15501 L .77145 .21046 L .73116 .26591 L .66598 .24473 L s .60662 .21046 m .66598 .17619 L .66598 .24473 L .60662 .21046 L s .57235 .08256 m .5038 .08256 L .5038 .01402 L .57235 .01402 L .57235 .08256 L s .90802 .38448 m .90086 .31631 L .96903 .30915 L .97619 .37731 L .90802 .38448 L s .78795 .25112 m .8022 .18408 L .86925 .19833 L .855 .26538 L .78795 .25112 L s .855 .26538 m .86925 .19833 L .93741 .19117 L .96529 .25378 L .91436 .29965 L .855 .26538 L s .8022 .18408 m .84807 .13314 L .86925 .19833 L .8022 .18408 L s .86925 .19833 m .84807 .13314 L .91325 .11196 L .93443 .17715 L .86925 .19833 L s .30571 .56758 m .29146 .50053 L .35082 .46626 L .40175 .51213 L .37387 .57474 L .30571 .56758 L s .84807 .13314 m .80778 .07769 L .84807 .02224 L .91325 .04342 L .91325 .11196 L .84807 .13314 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 169.562}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNnVtzHcURx9daSUiWLMmyLCPbyBLG2BhDDNjBSeWB3CDcUhWgKnl1URTw kEqK8ELxJfI1cuGSqnw/Rzs7mT5nzq9n/6OVjuUqS0ezO73d/+np7unp2fPh 46+/+OzPj7/+8tPHB+989fivX3z56d8O3v7LV0dN7bmmOXfQNM0/Dpru85Oj j/FH+HfY/Yh/DHz+e/frctf324mGpn2SiB39dRHavqm7/YPuZ2i6e4yOWVv4 63YdnfehbTEx9UIdsfegbSURO6wj9i60rSdi++OJbSZi1+qI/Q7aLkHbs3Vk 34G2nfFk34a2y2eW7G+hbXc82d9A25XxZH/tkjiLZH8FbXvjyf4S2q6OJ/sW tF2bO9lgARe6K2+kTw+6T7vdJxqogujPJxJH1/umcE9z37vwmndhG55SOb4H ifYi3HSvePWVdLUVca/U6f30gGW46W7x6svp6tLpMHc9PWAVbrpdvHonXX1G ZK7SdpEyn4e2W+J9L0KbynqlNd9L2FyAm24Wr9pEJSFOwINdSQ/YgpsOilcP 09X102HucnoAGYb94tUb6eqGyBxFKpcSld4AYuhCUdJ18b7n0gM2RTYpTrOg LzOoez7X1EazjO7rpVtMbd1vR4PVuHUtiUCWOSpEjmAnMOlP7q28+0jeBWhT Jx8JZkuFFbh6xReMTEru+Lz7yF0HzaiyJbTysWXUmi9OPyGXJi8ldv35rt9P /n85iUc4q6vE1rMYUTKiQ8ECzXVyb6Rtal9yxGps8EFCi4znbp2wZCJo2NS+ pNHnE8NVIgr3RWHJw9GjaHRIWDJjat8LSVg1EH0/9aBnHEfEQIyYK/egsduM gExOb4fT9/Rbe97Qb1Ikt1VksdyDZl8YhdZj7t0IFVm0gjBkeWiam4JQQE8G sNwjzMKQGSSbT0aKlLBSiLXE0lL6RNZI6Nt6fcm8hFF5lAhQqEaTlyTuyWPg Q+5xJT3U3GgWsdFTyF8TKRonmh4ESnCfAZn7HmsUVKjGuBKofjpOm4H/c0WP JJWrpUuLbqJL6K0l9O4U+SRDQs8tQEhrLYI1qEWfZFnsW/ogvfvvmpSsjZ5V okuKSjQIwouJ7s0EIfGpWm+CsLe8qBnko57EMVW1duMEaKgLzP0EElEmKmpY PAiStfU2ouHIwkcICKhmT4XnWoKHWKMepGsFeAJzIV1KLAViwZ9SBGW2m666 uyOt9zRik9Cn+7YnxJGN0LBiEep+35lMAg2Qu1KgTDIBS66QrJPFfTt14NBD 3cBS7stBpPr8ywUa5I3ImrhtoWl3fiCR7Sf3GQIhN/lHYm+nHhT6Ec+2a0t6 tZqu7tXBo4pI8JBgFIWYCyf1Jyo2JYgX4pnsz5IXIywntK7XoaVKPAYtkphM Hq2rSDWIHvFCGAT+AozEaZtgDM9YNksqA0pC0IwgQNW+Yba7mTqiYotX8tLq EtiC9MxZrHuAXpwfeJTSpOTPaoKCGCYqtlSmOamCF3he9szdVh1QqrBjgOqF ZcdHS37inQCj56vrD2qrhI4W4bTuJ+jUvsErUFRF+yUWzJKvpUeqC17K52zW odUzzEpA5Ev3byZBn4OeZtRofhBwao6JYuGnCIPZ4kw5aFLl+Zbud8NL1qcM 0TzmFfFC96mTRn3G+MTddFs/0c+UtTcrZLlkUkg3bHI3RokDoqJmnyvBm0dM kW2dhk/qdCxvuxL3pMkEnrsxdraiWdIFC9LcjXjqIVBWAVWXlpWAzmO9ZdMx X512PkfV6fJ+MfGiBnHUd70OxtNZ5M8knjEc6UC0qi/S6PLus5p/pyl9AtCd TvpoZsP5IjfvJGhouJx9bpKajCUhRvN9bX6IuX1DE1Ut2ba4O5/a0wblShoq Yr18FSsEOsE20lWy1TtJMHc74JiRUsVoN01hO8YcdVPecU5UiMMlj0qvKTO6 X04+5FgVBSAQSTvI5fboSXta3V95YN3x5eZLlyMwmfENnbbjHXCt+xUI0WKI fBZF+z2AM6hbGKfuvlZJHEZiyVORE8DfQoCFBBMNvyWy1ahuoZoyDUWPIA+5 lWOoxQOqtGafLA1Mw3M13Rdth1oyYCbCMsnlCE0NWhaBcnnjhnzBTuTSmU1u obpb7yLIavetJ9DJsxVMt7r1T2NuzGX21l2LCaNB99mDyM5Qm+sGK3YsVWfp wmDDE4IRyu6TPYpBpzoytpgoKy2xTgPwzDQ9U8Mqm61ukpe5N2ivpk+kzHGl WF+haMIStK6nz/qSmwgAhHCuXERr7rA/YDuTj6SFwUadvK4bE9RLrZ4heu6x Ef98nVRtUXbLhxmhSIy0L+Zh1TJd5L1xvCkBh5sXTVHKUpmubstczl+Am8N9 he0gtVTbFqT+tpw3LUjrDT01916utSCN6M/ocbbCP6xVB4m25+BOPLWkqGxa Ca5y7QXBRUcV1cx/rO4ac5BDfRRhqW54qFVlKshqyQY9947Hs+vhY4nFGJDL WxAEbbbhURXxqumIcqEGPeOlomw0LLHErnRizE3buayV8x+qMMa4WkxZLs6g Z7wMbWR5adbE4xbq2UF1i0G1s7Xxv3o6tFS4QXK9Am0TRerTRrzyvGV5F4GQ UsL4Gd+kHlF2CzPIN70Kbf5eyEQkUX8ibSsTK/4rB+6td5Ukt3JT4u4+tMV3 6ViFsB//zcSxeZwcm8tRn418laZnfYnL1zxAls1jyOWHloLfTp/UBQCpj7oN 4ZYzCs99A9oCZKve1Oxt/MS7F9zgdOeJM/dtsplZV4Vdgb7EwcPu55J3NQph 45QlowT/oqbDzNBZ/rL+RLX1MHtBnD4UOZ0EYGb4iyM/LHHZoqkRKflqlzW1 5kadFsTQT6GtAK27RGmnzZKKqrt6UsN+UyGKFok1FVXrYTuYNjtPAEv3Umiy NYQaG9oZgl7L9JAoE1XgyT9nzl6dg8kpo0Fivuk+BlYehWNl7QgNM9u8Mggr X3MPJPdsLU2ylTpdAjQdj2JncdsCFz+HngUsyYCEtkXAkoIsG9k1FmU3a24a 97DpZpLQQkFaZIW2ZWCQhHcz7exd7cnuWw4m/PaMtPZyIhrCQHzX838WNP5i vBzOmoJiOttfpE1/e4lDBra/0hvWPj9hMt1WOaAUYpeOupVsWT78dr8+/UmF 5ggHKRk5hjxZywLmS4mmmSx/UXce6flurCxoVyUk/uuJIKSYiFR1SGyBQOKr ZYdnEBI1fUoeN6fXlHzcCUJGgQ5NykrIiHVaaZdTpQTUs9M93KjKfx3aMCjq UcOf1YFCbNKWcTkdSiHn3nQPN/nq9j1lUHx6Miil9CaxZtU86nbyGHDUmvNK cGhSuHUZFIK4yGjJVPWUzRhIVMsSISGDRYcusjIG6jGRZ2W9ogNr7spf0JxT EtWSB2R2r0UWs+G+cAJy04wh9SC5bYkS0wCqrpt1dIv43OiNpv0YHR8DQHju qs082RKaz1RPjlqs5haJHdPuEXikogGAoGxx20QNEMyfqSe1DB6aP2PCgiph kVNZ7DGnregZRG8MFKQzBMUjaIuvBFajapu9/tcqePZQPXimRstEjyZcQWx9 ydlwhoV4tVUm6eiYVab6tgTKUMZv0nBzDq3Zg2ERt1KPMXkEgoJUiFLY131x LCdG2kDMkS6TvbJaTfelbmHcSeMiw+Ql7M3X5OvV916Ty3Zzo7QbRQTcdBqN Sc89Jmkts3wgikNj4r7eogUO1UJTImq4EZUHdbLbVsVNUU53c9OlXN6YcUck a7OVC1kuguJ1aItFC+4RitD0YvpEAFCb+x7HNo2Tu8JQXwhm4SwJS9BS1caN HgB21Ud/hS/wcF+oSLKT1Wi90XZ3dgStsP0R96VHWdtPfADsfWQPksREwq24 zk4XkAaopei2a2DxN/WlQqzeZDUfJiHUF56bR3Bfr5a1OcXt5CkJjXs+9291 v9y3OaqvGlRT/+r7be9C2+EEwziyM/C4r61wI1V1NU8YUH3o8zrP8Z+rFqq/ J4hJBDJDVB88KAJ4A7dSbIwQFLXRGN5KHNyqY92WseRUKRh3K2sF1mlq2ddN 3a5jnfSW2sYIQSsKWgTY23tfqhPC9grUFUCpJJfekEM0LMt4r45dKytTh5yO hO97qAbLYBspr9YxV/WaM+LrBtxHKht8np2XDo+8X8er1b/SOseWGofeVdKj wJJVGb1ex1JWvSqMrUlPR6LI2G4kNi1Kf1jHpppFIobJx9A3jLm+KDD8Zh3D eX3SMJumyORfycf8vo6lvPRn2OjZxKe4yq7+oY4R8nkUzBFLhCYxR3FaJZvm 4NVcpyFMqyJyUx8NscRhk5p7NBGo+JrG4eM6hhouXSx9FRQlTsj2fDLASZvc BrrqmRj5UYGnP048K5SSk/NQtpc7Yn8agnDYFnwMbZM8CmRJgn8PkFjwXNO/ lI7k4P95qh2PzepxOmajfBx8T54EKc93cydBhvr7IRIzhoTm8tOiQnP9h6dE hQzsj0NU9K/hGyQ144LcF0j/Z4JUMKPBC5/vPpGvibd/3v0K/P63bwhXD/XP zbn/Aahx05g=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {168.562, 0.}} -> \ {-7., -5., 0., 0.}},ExpressionUUID->"464bd627-e74c-4226-9581-343e4506b8d3"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(80\\). \\!\\(\\\"parabidiminished rhombicosidodecahedron \ (J80)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"16d96805-c3ac-41c2-8fe8-\ 47edee0ae6da"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .57835 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.63024 0.0688335 0.212692 0.0688335 [ [ 0 0 0 0 ] [ 1 .57835 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .57835 L 0 .57835 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .04532 .38698 m .03812 .31853 L .10658 .31133 L .11377 .37979 L .04532 .38698 L s .11377 .37979 m .10658 .31133 L .16946 .33933 L .11377 .37979 L s .10658 .31133 m .13457 .24845 L .19746 .27645 L .16946 .33933 L .10658 .31133 L s .03812 .30414 m .02381 .23681 L .08342 .20239 L .13457 .24845 L .10658 .31133 L .03812 .30414 L s .13457 .24845 m .19026 .20799 L .19746 .27645 L .13457 .24845 L s .19746 .27645 m .19026 .20799 L .25872 .2008 L .26591 .26925 L .19746 .27645 L s .09412 .19276 m .1498 .1523 L .19026 .20799 L .13457 .24845 L .09412 .19276 L s .09412 .19276 m .08692 .12431 L .1498 .1523 L .09412 .19276 L s .08692 .12431 m .11492 .06142 L .1778 .08942 L .1498 .1523 L .08692 .12431 L s .1498 .1523 m .1778 .08942 L .24626 .09662 L .26057 .16395 L .20096 .19836 L .1498 .1523 L s .11492 .06142 m .1706 .02097 L .1778 .08942 L .11492 .06142 L s .1778 .08942 m .1706 .02097 L .23906 .01377 L .24626 .08223 L .1778 .08942 L s .25347 .47447 m .2322 .40901 L .29766 .38774 L .31893 .4532 L .25347 .47447 L s .31893 .4532 m .29766 .38774 L .36499 .40205 L .31893 .4532 L s .29766 .38774 m .31197 .32041 L .3793 .33472 L .36499 .40205 L .29766 .38774 L s .2292 .39493 m .20121 .33205 L .25236 .28599 L .31197 .32041 L .29766 .38774 L .2292 .39493 L s .4766 .24711 m .44218 .30672 L .3793 .33472 L .31197 .32041 L .26591 .26925 L .25872 .2008 L .29313 .14118 L .35602 .11319 L .42335 .1275 L .46941 .17865 L .4766 .24711 L s .4766 .504 m .44218 .44439 L .5018 .40997 L .53621 .46958 L .4766 .504 L s .53621 .46958 m .5018 .40997 L .57063 .40997 L .53621 .46958 L s .5018 .40997 m .5018 .34114 L .57063 .34114 L .57063 .40997 L .5018 .40997 L s .43633 .43124 m .39587 .37555 L .43633 .31987 L .5018 .34114 L .5018 .40997 L .43633 .43124 L s .5018 .34114 m .53621 .28153 L .57063 .34114 L .5018 .34114 L s .57063 .34114 m .53621 .28153 L .59582 .24711 L .63024 .30672 L .57063 .34114 L s .44218 .30672 m .4766 .24711 L .53621 .28153 L .5018 .34114 L .44218 .30672 L s .4766 .24711 m .46941 .17865 L .53229 .15066 L .57835 .20181 L .54393 .26142 L .4766 .24711 L s .46941 .17865 m .42335 .1275 L .4745 .08144 L .52056 .13259 L .46941 .17865 L s .69195 .50681 m .64589 .45565 L .69705 .40959 L .74311 .46075 L .69195 .50681 L s .74311 .46075 m .69705 .40959 L .68985 .34114 L .72427 .28153 L .78715 .25353 L .85448 .26784 L .90054 .31899 L .90773 .38745 L .87332 .44706 L .81043 .47506 L .74311 .46075 L s .63416 .43759 m .58811 .38644 L .62252 .32683 L .68985 .34114 L .69705 .40959 L .63416 .43759 L s .63024 .30672 m .66466 .24711 L .72427 .28153 L .68985 .34114 L .63024 .30672 L s .63024 .30672 m .59582 .24711 L .66466 .24711 L .63024 .30672 L s .59582 .24711 m .59582 .17828 L .66466 .17828 L .66466 .24711 L .59582 .24711 L s .66466 .24711 m .66466 .17828 L .73012 .157 L .77058 .21269 L .73012 .26838 L .66466 .24711 L s .59582 .17828 m .63024 .11866 L .66466 .17828 L .59582 .17828 L s .66466 .17828 m .63024 .11866 L .68985 .08425 L .72427 .14386 L .66466 .17828 L s .90773 .38745 m .90054 .31899 L .969 .3118 L .97619 .38025 L .90773 .38745 L s .78715 .25353 m .80146 .1862 L .86879 .20051 L .85448 .26784 L .78715 .25353 L s .85448 .26784 m .86879 .20051 L .93725 .19332 L .96525 .2562 L .91409 .30226 L .85448 .26784 L s .80146 .1862 m .84752 .13505 L .86879 .20051 L .80146 .1862 L s .86879 .20051 m .84752 .13505 L .91299 .11378 L .93426 .17924 L .86879 .20051 L s .25347 .5433 m .25347 .47447 L .31893 .4532 L .35939 .50889 L .31893 .56457 L .25347 .5433 L s .84752 .13505 m .80706 .07936 L .84752 .02367 L .91299 .04494 L .91299 .11378 L .84752 .13505 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 166.562}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzlnW2PHEcRx8e3t3fns312fM7Fdmzf2uTBJsE4IbGTOAgHQsKDgoAQJRIC yYqQkhcIFPJ9ACUEBO95yCPiW0R8mMNTPe6a7f39e2tubyNHRIp9V9PTVfXv 6qrq7pr2K7fffetXv7797ttv3p68/M7t37719pu/m7z0m3fukEaHmubQpGma DyZN+/PenR+7P+y/i+0f3S9zfv5W+9da++5/E+F6+9fhljA2wmgvd3vnt89T o2v5rS3d6OvFo1a+k9D8b+2fRnosNbtqf632G+3V3i1o9tvl9NLj7V8rLWEE LU8A7a9AW80SPpy6fQzZztLuA9pfgLaRGVxKDL6qpNgngyOZwW5icDkDsxEE 5s9AO567PZe6fVQpF2DwAdC2s5hnE4NHoNHhBRicAtrpxOqhzPtokMGfgHa/ ZvAVeBRl9T7QdjSrS/DoWJDVe0B7QLO6mGE7vkQGPffQ+T5Sh6bHH2XPyG0C j1baP420GWT6B6CdGcZ0nHGlCXUATHfh0UZmug5PaTB/D7Szw5huZqYUgmyc bfRv5Xa/hHYPDmNqE89IK/B0rf1zvSV9p3jaRrWbWZCLwwS5oEB1QSzKft+e jKci4l3mz2TmKQTdbYSyVEaCZDmZJfghPKWI9xTQCFCy8IptnodH20oky15e gKdkTk9k+OjpAYhJaYvZsA3nTXhKU+1qFpNmP4lZ8WnngmiSU7mRBTkCTx8H GoVnErji8klgwpVo14FGUfZKVoyeDhSY5jwhTDSaQpRmP5IFpkBLAlcShEUE tnfNI1M2RcI9HGxHLqySUJESZBIk5pmMpuXZNjkJdZoTl/K7BA8pYVIZqctr yTFTZyT6Tu7sSBadvAT1R2ZCPKidZ//k4U9rxWhMaFhPTeM6Vqzo3d2gYjQ6 vlpag6dp2vcMRo4JmY4vZuwnCiZlFGlDO/VHoq9n0cnt9kWfzaDJtMnHHc/S U7yjuFP67yEa+eKb/LLQqPtvpGYxqeUZoHT2pnRShpOxqFL2G6XPO319AAgZ eQl2T6Qfgqc0a8iDUponZ5L0ghXF1vKLZLOkGLWjmEKCUC4xSMWAM6soW19R yTco9gciEylLea7vs5QqNsLBJetB926jYyTCld4gKC4DjXIE8kGkonvftBky s784UMujub9met1Fc4gUvAI02sTwhT95F+pZp1LstQZqbkKO3BXCbC5otF/q zsnnf4EkyUVT34eCttTICHVWqMe6B15/ctBwk/1Fl0ajjC5t+JLg1EuBrj0k SaM8KuA4qxJpBQ8x/RrQyLZXMrfovjJFS3rXgdfp7HxTJy9cAY/GroSnhdGz TbKt8qhlL9vgTEokEwhyGtTOZ6sDRkBEnRVZ27YGbD2zL8ewueshZXS9BjTy DtYBpY3knok2ymLUt4rJwZFpDsSIhiN1Gwp69PqT8Ppet+onk9cWtkYhKKNE aFIWF914r6BEE2mTUfLcgUbnqeKl9u87/1N+TWKXEy/FQYFrFGu9O4Ye2b3q FiOwlRuQCk8Djea/obejwCEPRGs+H41TfY04t7mP9aF+yRfT7qHULBwKpmnk aaT3MdJOX+8ZwztZgeNwxo4QIG1pqUzOlbSlUTa+q8rDbmYdz/R0XHGTYbU8 KJEDuQG0ReI5GUCahDMOcqymjKdl53qKIn6sMiVRNKbPAI2WmXLNFLAHqaCJ Tj0XuYMFhe15QIDPmrV+8iKEAYWEaIkFYSAXJqabCXtUoZF44HJKaw7sjdXz QWWjBSs0U6S7W1NDkDLzhJw9IfakrLXbVMg9BzQZ4ALK0syIZq3UX6e2KdZb I83Eoweq4N1LWhItyYzBbZX1LUe6aXjbkDRfxJij6bLOJVFzA6WXIM7ou10j L1flRZb9FZVPZJXL/LMdS8/RomKS2nIbfMlq6ywtlKQ2YhpHd6KePWAooquf gVBYqmVjXG67tABQIhbFnwCgMBTNWeSpwz6TvaRbMnw88WgB8H2x6OLgS6K2 3MmQZziLAEC5VlSJaJJPNiiPCJveGc7p/BOFT4Ii6vooFYouu6JLtoFqywMr L5uQK8t7Se3oVDmi1U4elRdm0aoRUj+6IRidsdF3B6pfxlYV8L4ItcliohOv ojax972IQcpa1kdzzXicbknRky7qRZ7JVJTYf/l0OXzt0K+pDuTJXqlHatHw nmd0NCnjqwBBuNW36wl92lqgZZjRxipSUFCiXsjuynYtlnIrzLCUu/Zu4JVZ ILNJmetEcfNjk/WMFqHgoYYyIZl5FwcyMlEpqgApnBEGFciGF4LI0ls5w4qq eTkY9XlaP9Mb56deaRgtY+mSiGiJT/0jAIKHNq+Jm5wWOJ7z29XPjd1WvYax cIayxiKOVv3rBd+GpFnnSPt6hmye8KAiDje/s1kqMogtrSJlcv5dhEEqdwTp LMpXqn58TG5CmouvbOynC1kWSrqOD1PMvKPZBVUvUDV4dG8hqqLsz0jieyva GjqhNSegogXmTwLNN5h6s6kRckkPSx1QISHucuReOFugxDRa+UyVCpQjEo0m BbVLNYRcIEI+8qRWlbqncfATTIouVMVy0ErTB6p++E26bQ9TW37uI5AmwakW quTVCOcTLWWl6sMi/8JeKhjNp1FYoT1BUoLq5w4aFPnZtaeEOHkXAqVeZEVM ScykTq0qPV6xTlB7VC+yl64Cf1gRSjDT8ow9YL3Rk9Ko0VwFWuV7EFNC3okQ rWFKM2TmnEiP+HBDV/qS+91NL1iUk5dCyJpUj5pkOBZ/ZBJFdr+d36CxfgJo 6aPWlH7a57uDKu6M5NcAuHuk0azXnNffpQTHgsaaR6UEZG8QQt/vkG5+GD3J WnpeTFlOtMg8uhynpNY/3aVekh69ZSfVqe1VvvghFfybnvP5JwpRlA0RsF6H 7uZPslwvtNCqYn6t4hO9ITevjVQcX4wy+hKKeq35seq7tEAnjQYCUP98iDw2 l+w3/VNrXug3/WMOct9EI0vxj9roKdFo8+cAwKvvQtFMlJ8UjTNuIwWPq11P NespEb2xOm26S0JQ7k67TvtE0B2br0ZoDvlNQd6OeNC7jjnBY72sTo8N9Uxb SITL+jAY5edUNIEJQc8zyF37BlnRPWWIWx0gRWyxt8ms3QRWKm/SVQ8V4KI3 ARX7UwFXR0xJLeO2CpilkD6Tf1AfftNF0QehoVOPMBrRmLUILpbB3a8irpeC fXM5KhJTotG2MvUX3buidwlaSnCXNNr1NIs2naPni7Qk0cFimkZrjCUBQOwX gYL6k5vx9xYU0Quq6PhEu+H570ZloSm1JCg8D6K5+H8AAG0ekClGTTt6ximX JwG+VBczEAoaxeh9KfLCkoA60UizCBRalgFQNHwSSXhQB5QOUyIh52RgNg3U PXKJY5t8RT+qIVY0m2QGHniXhiDqCOapLa+loen/JVbWd5vp3j5SNjohowYd vduDlHXpN7SK5rlsQ5Bur4neV6erN5erokvfr5a3lRAdLNjTjZYUTcui8YcC AI3xzSxfd6BxSyFyrCVRt7Jc6guTH3mkuyC9WMnakD8eT7crnkZrcaKWREpQ AXx3Q9wPsugkyOEsejO9ztaXZu3Pn5H9V6R+OUtNgvhX5bRoia7BaCjJumjn Kg1C82IWk44roh+mRwUmt0uWRDuW3dfC387IyToLwpqc6I6yKb9Mgwa4L0jx iA4Eo6m7YU2bTlG/6FdZFR0QmueHKRE95PbdXJpC8rt3CQW5D6pz69Qp7yhW YkZ3b4pN54CXIBUJPN/1pZ5J7W8A7cIwteWZKCk2yvjLnfPokaHvVkVPCuhI e3eYsvLccwbrZt7hVvTWoHrxSvRink7PF4N6yiBQ1KTSwMjNb0pFZPZAs4lS vcniil3I6kRLPFPPM1v20cM3qkgbqAfZgrz/POrnA4GVBpzuo+v+QZTvBtUh f+VVBNFrlWhlSUNK9U6X5gnMx1C70D5aUUniUlymuxvnijtT9DSBptJPY143 32Ks2NeGrPunXV5S8vWujpwPXjTfJ3X8NulHtUheDU9XHkZL4SiZp+Dg9e5X tEhe3EusNHJsptGrhf2TpVS1mFYc5BGNRJMwMqhq5hhaZrleS3NVC+K3/lDM oetlSZDoxPBvzryw5ZoWzkv+KX0j4TzXJgxlKllUiqTqt+Z7oOlKFj4gjStJ JfzUy1aWxqspnu5J07t3aj578tt0Ty+188/nbzAYe2KISRBPqqlslOLhjzRT WtOS/XkRGOUK/vQnw1iRfpQNEFPKgyrsyfGRpp7eUnpOGdVPNVNyacTUVyBU O0mx+lXNlDZHJl1H5Itp5UwR7mf7YTmTkz5bkeR1zYFiGSFJHzC/obulqP0L oFUko6zp7wfWnAT8xzCY/qmb07j968Cak/V/qJvTDP1INyd/8nGvuU0n6rNr 5DuuFMk+SY1eyY3Ir3+aGv04N6LF1Wep0atZJnJcXaPXck805/+dGr2RGzXT W2D/Sb/8HF7tHtkvc/7NyObQ/wBhUQad\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {165.562, 0.}} -> \ {-9., -3., 0., 0.}},ExpressionUUID->"e5ae0ae6-09c4-4f24-af06-5eeb49dbbdd1"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(81\\). \\!\\(\\\"metabidiminished rhombicosidodecahedron \ (J81)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"291d150c-73ef-4820-94fb-\ ab5a69b490ff"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .70229 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.260097 0.0693971 0.316747 0.0693971 [ [ 0 0 0 0 ] [ 1 .70229 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .70229 L 0 .70229 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .1052 .61044 m .0705 .55034 L .1306 .51564 L .1653 .57574 L .1052 .61044 L s .1653 .57574 m .1306 .51564 L .2 .51564 L .1653 .57574 L s .1306 .51564 m .1306 .44624 L .2 .44624 L .2 .51564 L .1306 .51564 L s .0646 .53709 m .02381 .48094 L .0646 .4248 L .1306 .44624 L .1306 .51564 L .0646 .53709 L s .1306 .44624 m .1653 .38614 L .2 .44624 L .1306 .44624 L s .2 .44624 m .1653 .38614 L .2254 .35145 L .2601 .41154 L .2 .44624 L s .0705 .41154 m .1052 .35145 L .1653 .38614 L .1306 .44624 L .0705 .41154 L s .0705 .41154 m .0358 .35145 L .1052 .35145 L .0705 .41154 L s .0358 .35145 m .0358 .28205 L .1052 .28205 L .1052 .35145 L .0358 .35145 L s .1052 .35145 m .1052 .28205 L .1712 .2606 L .21199 .31675 L .1712 .37289 L .1052 .35145 L s .0358 .28205 m .0705 .22195 L .1052 .28205 L .0358 .28205 L s .1052 .28205 m .0705 .22195 L .1306 .18725 L .1653 .24735 L .1052 .28205 L s .2948 .61044 m .2601 .55034 L .3202 .51564 L .3549 .57574 L .2948 .61044 L s .3549 .57574 m .3202 .51564 L .38959 .51564 L .3549 .57574 L s .3202 .51564 m .3202 .44624 L .38959 .44624 L .38959 .51564 L .3202 .51564 L s .2542 .53709 m .21341 .48094 L .2542 .4248 L .3202 .44624 L .3202 .51564 L .2542 .53709 L s .3202 .44624 m .3549 .38614 L .38959 .44624 L .3202 .44624 L s .38959 .44624 m .3549 .38614 L .415 .35145 L .44969 .41154 L .38959 .44624 L s .2601 .41154 m .2948 .35145 L .3549 .38614 L .3202 .44624 L .2601 .41154 L s .2601 .41154 m .2254 .35145 L .2948 .35145 L .2601 .41154 L s .2254 .35145 m .2254 .28205 L .2948 .28205 L .2948 .35145 L .2254 .35145 L s .2948 .35145 m .2948 .28205 L .3608 .2606 L .40159 .31675 L .3608 .37289 L .2948 .35145 L s .2254 .28205 m .2601 .22195 L .2948 .28205 L .2254 .28205 L s .2948 .28205 m .2601 .22195 L .3202 .18725 L .3549 .24735 L .2948 .28205 L s .52238 .60566 m .47595 .55409 L .52752 .50765 L .57396 .55922 L .52238 .60566 L s .57396 .55922 m .52752 .50765 L .5954 .49322 L .57396 .55922 L s .52752 .50765 m .51309 .43977 L .58097 .42534 L .5954 .49322 L .52752 .50765 L s .46742 .54235 m .41585 .49591 L .44407 .43252 L .51309 .43977 L .52752 .50765 L .46742 .54235 L s .63466 .30475 m .62741 .37377 L .58097 .42534 L .51309 .43977 L .44969 .41154 L .415 .35145 L .42225 .28243 L .46869 .23086 L .53657 .21643 L .59996 .24465 L .63466 .30475 L s .76629 .53275 m .7029 .50452 L .73112 .44112 L .79452 .46935 L .76629 .53275 L s .79452 .46935 m .73112 .44112 L .69642 .38102 L .70368 .31201 L .75011 .26044 L .81799 .24601 L .88139 .27423 L .91609 .33433 L .90884 .40335 L .8624 .45492 L .79452 .46935 L s .68469 .4927 m .62129 .46447 L .62854 .39545 L .69642 .38102 L .73112 .44112 L .68469 .4927 L s .62741 .37377 m .63466 .30475 L .70368 .31201 L .69642 .38102 L .62741 .37377 L s .63466 .30475 m .59996 .24465 L .6464 .19308 L .7098 .22131 L .70254 .29033 L .63466 .30475 L s .59996 .24465 m .53657 .21643 L .56479 .15303 L .62819 .18126 L .59996 .24465 L s .91609 .33433 m .88139 .27423 L .94149 .23953 L .97619 .29963 L .91609 .33433 L s .75011 .26044 m .73569 .19256 L .80357 .17813 L .81799 .24601 L .75011 .26044 L s .81799 .24601 m .80357 .17813 L .86367 .14343 L .91524 .18986 L .88701 .25326 L .81799 .24601 L s .73569 .19256 m .75713 .12655 L .80357 .17813 L .73569 .19256 L s .80357 .17813 m .75713 .12655 L .8087 .08012 L .85514 .13169 L .80357 .17813 L s .30922 .67832 m .2948 .61044 L .3549 .57574 L .40647 .62218 L .37824 .68557 L .30922 .67832 L s .75713 .12655 m .69703 .09186 L .71146 .02398 L .78048 .01672 L .8087 .08012 L .75713 .12655 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 202.25}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzdnUePXEUQx593dtc54rWNcRhsg3EgGAwYk2wOcOJGOiFZFpJ9QCBAApGj BF+CdCMj8SHICBAifRmzr7rdNfPmV73V897ujPDBO9ux/tXVlbqn98Fzz114 4slzz108f67/wDPnnr5w8fyz/fufemaxqLeqqlb1q6r6oV/Vny8tfoz/yb+r 6//iLwWf/61/zNfjnAkFv9U/1tYFc1LQu5SmWPztntDop/rHXF2zGRrdPdCo UbW1rPk2KLsrNP8Rqq5Y1ubboezOsZr/AFU7oOx0Z813QtkdYzX/HqquhLJT k2q+G8puD82/g6qryprvgbLblhh9pi46ZTcKFM8OltWfIxXfOjHOQNnJgSGE Cuo4C2W3hI7fp44kEfNQdnPo+GPqSNtgDZSdCB1/hqotULYOym4KQ/yS5ibl tAHKbgwdf00dqdEmKLshdPw9dVzrJP/60PGP1JF4SdrveOj4J1SRABD3j4Uh /kpzL9aHImmDS300NPgHqnZB2ZElmsu0ccy/G41qgmjMoeYjm4X04bHBHnND PS5PRPwRPkrR4QFONRr1oGwLkHYZLLU/ZA9Pe3JTBgeJz8FQ+XGi4RZoREZ+ feoxkz7Rlj0wMMEA7OiX3AQ9VkMZbRmZcj1URK/lI+xzKS7b9VBL9K9uEB6J p43et+edSzw65kQ3xwwjPbE/1H9oIZJ5r4NaYl4vcYg8n332VOvSVNdC7QZg 4+X2tC33hok+gKqNicKDVu0o30hZ7LHn2JKI62cpIMcglFXvQxWxdC+UybLN pc3lMOy720/aS5PSDiSkwekKKkqYdTJ9OjsmIbWeksXb6KQhLGxQM2SoTlgV Z0oolAHI1JKrF2xjVENLm98bnO3udhI8mwgmoafgKgNifxqMjMDxbG0RwaNb ltQCUZ+RCl07Uu1HsrV3Qhl5AmS01cxQD9LhGRC0OmQxDjvbnYYyWhYCNp9Y RpuBVocCs6g3dqfByJW+Jlt7B5SZfhoxZcaypoUg1FWlQOJAtvYUlNFKEIgN aWRyRQpBkDdPBJNKo3a31v/Lhl6Q39kfFSKlIzkiBIEUWrR8C4kfpt9i1kpo JzTOJpK2ZgjXuSjCJKHKEE5SS2WkBqjdkQRGRSSs0YgTS1SR7aelIO181fIg OpQQXZEQkT+5+JlkvANETaGpDPPU9MysdlcnHNJDKpuquqo4E+OFswBle5YR Dk0lEFenT2TkOoATTBFvVSJ3V2H7/VbZTFIZ8onkmTwLUhAk9zEGIm6QbaYh CI63L8UIYs+kqOFNe7ETGFLJGk1unSwXCBgFuCTb5H15GaCRe4PTQXpQiMgJ V5VJXMj3IOzkZXqxixlaowYJNIFuqUbtpjLYW9NgZOTyPUjwj0AZaWeCLbKs 7oUmzdbVn4gWytRlmGJy0+Gqkevn7UvycdTJKPKcZhOjxCFUs6hZCTNcC/kC dIZpTdQ3Ipch32Mf1B6HMhq5CbuqYr5Dd50KIvGoEKfq0fnEUgrdvH1JXCiV SrtOx9PIb+PwJ+I5V1HIQHKh+UyKokiquxmZbAllekxGkY7V46Mljq7cLNOA XuGQ9iF5azMeySAdBpC8kazuS7ORPiWrEajH5AIxr5eAaXKH1qnr8Yj0E05G mecxTb+i/o0ENhCECx1kb36wLA13GY9XCD1jkQBSGZ1fUexAvLkGysZiy7B+ 7yWt7tjnRQMQg086GUBGnhxb6ht2YKB/R11jctisJebdBmXEf1IodL5FfQdJ d7jm3psJ3pCV5vXCJs1Gfqkt7m7YXoHx5lFIZd9ujWcaDTo7tRfIDZYIpunb gKVUr5gKcf5IosirIrCry8CSnTDDoTFtDIFdk8DSzifPaMJgvclROonQNDKZ KPJz1P0vFF4ik0JF74kAsYdOjGQpvc5JM6RxoyMKKXPTBp0c9InzQf40+RPU bgWBee/n0QmmzGHe3L0VyjTu3VgG0Xv/0HumS+whiEKwZAxID2kQurkMTiCJ s8aUwKPkCMEnCLSvyFyS8v0fwGqeMk+9yBEwEj4N+raXAVsJdUFansYLBi93 fDJV6r0M1sgtlJ1liCZljkkCSVIL4XTtQJn2d/rheC+3ryCcrgMXcm9XEE7X QedywtmpShwm3VUXmXDEANDluGXga62U5Tdimt5KrobPGJvZ2ewo89Yodzkh kj6Ld988Kbb6t6aRr4kxTxVox3sPB8onMk80KXAk/nbAHko2U5ZCzyeJR96R zaM9R1kHTPFm4L1HFfnvN7QZuZcdmRxIr4aIrPAm4EkW8sdb5r3K5ZvN/L4H hRDLxKjGkaiusXlRtXwUokUgzlu1GWDec2I9h1UTRfvd25f4T3luzUd4MxiF wEyl5WjXZjxiAKVXhHkSTJFHEMF6L3honq0aPtyjSL5oAHJ1KDWmOW1vUiBC 9F7s8V4u9fYlL41SmGsTMOJbxhxNEzDz63Y9S7eSPY6Xxse9kVeL07g38uq+ FIjR+YEolFlLkZF1nUJgdArUzCItbQ0jsKUvynZbR4DoDI9UP2msDDTvleau 15F2GZ3Jenct2cgphEin7eThFkKU5iLZNKl5WbVX0mN76kFXWUm508h0yyJ+ oWNHAkEynL962ivuuw36HoJ2FGEQMDLq8VsQlNBrc/XUG2Oa46nPKZV9J2xS S2Ty49cLrkxTlV8uXVvcl/x7jRfoajKNQhDJ+MevGGxLPNSAhIKZ/C3RuTTK XPEo+pyAruyuNB6NQtJIbsC+AYgj2q7iTAdJjfdaKI0nv5GVK5pI9YLeEza/ JE5JGDpgoIvL+wPLyA/Smw355EX+bijtaB05n3DJjyw95tPW66VP5hfbvYwi xyVoHHTx1wAcEo383VBigI5cDcdo5cMTdqldN0z4TOIgjUf7mQ4d6asBGQ7q dwCq4byynatlN9RU0bNJjgtGI/kT5S5S571bT/whvzG+ZUJmcXOC0OBP84mZ KB/mbVPisTEGKWLvN8GJDXqrnTzK+HYMmU5Rg3K5lNZDahcseSXXqojgUb7Q zeGDNvXkFhMFtP29fYkv3tcIaF66H6E5f/oKaHy6iJaAPE8C4XXH2zDAO69+ aUXTnPRVoCALuFW8T1q0gU3bvA271f1VT0/Kerptkdfkg5rnh2MyqmuwTaey qga/Ri+aTqzCsfawyVp7+5JmKpKtgW9G8tNWvbTggje+mkfs9j4yQ+6vt683 xCFdpiHYAuNtRNCCN2TqcV7yDbvGS/rX21fWSIpyT1hoFuR0e6jkQnn7toGq B0+5Z+9IH0TQNDl5ZjS592WuIj3r6KvxMWkfoooctPjIrPelr5woUU6ia9Ca IaMlI9Dk5E0JaJIS0lya2yRdQpsu8xTypESdrLvNbLDkdLPIe2AQsU9Kt7XB TuZtBWG3sV6a/aNdoiFnH2pJguPb35NyPrxbWL0l2i/EClq7CHZSnqVXTehT DSTkFBbRyt7THmyb6MGzQaoqPtBAROr7ghRYRnTTFAgKV6XIfEh24NGd4dp7 A5ypC+fJQJhv8UkRpWQiOqoSyZULv8RSzUSZfTW4IAe2UabvHhLiMzaZZj7Q m5M0k4E0AJGuA5AKon1wOIElgiJY85EOotV7t4uYuz5xkOyFmYMlnCSUpKpI oo6mAWi/RKbQ/tWj0PyZQ9GrJ00mVwWD2o/yj0ThtP5UdjzRRCt91maO9+SK BJvKvOdV1Jc2lOZlGsz2HjzeSAPUP+4Lv7B3a6ym9y4vX4c0dpB3UDKmjaez HLrF/ssTw2WRPaqp82fgRLA+F54/+aa+ZP8CRI48vfcJnw8d8u/TmonEoh7B Vxs5FPFeiyVRidR7H6Ylqoix3r4UG3hTK9TuhQAn/0gtafvtxT0o0AgbiuXp xfCh6+un3r5EbvCOR0zEhCmlbz7r7nopEEdC5301nIICb19i49QQR+EgjRfJ tKdiCab4NNf+gBPKy6ED6SC6T+l5zrhuR7fzSI+8sjzT01E1aeVXQwfShHoH iVZW05b0nBRFLq/ZU2nit5+ttf90ztKOwuthekqNtXkEncwakUQhwBuBJJJs DS9oJbWWXET6gylk/t60p9dDYLo+q7Xk6tD0ZMLeCtNTqpRQ0dURakdrTySR 8n/bJkndRboiprW0yWh6EuV3wvS0xzWaoduP+QvFByNe0pLvhg97M01OZOpI iTfR1u3eG5xmxIW8mYtJUxArIwbSUnTPmTTAF2GIh6CKtsfndnOSnc9C84ed zT+1m5NofNJZ80JiMs0fgSri+2eTak6y9flYzR+FKtoWX3TWnBy8LztrTj7S V6H5Y1BFCqdFc/OFrq9Do8frH+aL2rHRhfqHKKxvQoHUFvwp3GrVf50XR1M= \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {201.25, 0.}} -> \ {-3., -4., 0., 0.}},ExpressionUUID->"24f438cb-a9bb-4a7c-bc61-2e19665e4b62"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(82\\). \\!\\(\\\"gyrate bidiminished rhombicosidodecahedron \ (J82)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"80835b63-b08c-4431-b9db-\ 7e741ebd3bca"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .62604 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.536567 0.0681882 0.436538 0.0681882 [ [ 0 0 0 0 ] [ 1 .62604 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .62604 L 0 .62604 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .07558 .48315 m .05451 .41829 L .11936 .39722 L .14043 .46207 L .07558 .48315 L s .14043 .46207 m .11936 .39722 L .18606 .4114 L .14043 .46207 L s .11936 .39722 m .13354 .33052 L .20023 .3447 L .18606 .4114 L .11936 .39722 L s .05154 .40435 m .02381 .34206 L .07448 .29643 L .13354 .33052 L .11936 .39722 L .05154 .40435 L s .08286 .2849 m .14771 .26383 L .13354 .33052 L .08286 .2849 L s .13354 .33052 m .14771 .26383 L .21441 .278 L .20023 .3447 L .13354 .33052 L s .06179 .22005 m .12664 .19898 L .14771 .26383 L .08286 .2849 L .06179 .22005 L s .06179 .22005 m .07597 .15335 L .12664 .19898 L .06179 .22005 L s .07597 .15335 m .12159 .10268 L .17227 .1483 L .12664 .19898 L .07597 .15335 L s .12664 .19898 m .17227 .1483 L .23456 .17604 L .22743 .24385 L .16074 .25803 L .12664 .19898 L s .12159 .10268 m .18645 .0816 L .17227 .1483 L .12159 .10268 L s .17227 .1483 m .18645 .0816 L .25314 .09578 L .23897 .16248 L .17227 .1483 L s .2578 .52188 m .23673 .45703 L .30158 .43596 L .32265 .50081 L .2578 .52188 L s .32265 .50081 m .30158 .43596 L .36828 .45013 L .32265 .50081 L s .30158 .43596 m .31576 .36926 L .38246 .38343 L .36828 .45013 L .30158 .43596 L s .23377 .44308 m .20603 .38079 L .25671 .33516 L .31576 .36926 L .30158 .43596 L .23377 .44308 L s .31576 .36926 m .36139 .31858 L .38246 .38343 L .31576 .36926 L s .38246 .38343 m .36139 .31858 L .42624 .29751 L .44731 .36236 L .38246 .38343 L s .26509 .32363 m .31071 .27296 L .36139 .31858 L .31576 .36926 L .26509 .32363 L s .20023 .3447 m .21441 .278 L .26509 .32363 L .20023 .3447 L s .21441 .278 m .26004 .22733 L .31071 .27296 L .26509 .32363 L .21441 .278 L s .31071 .27296 m .32489 .20626 L .3927 .19913 L .42044 .26142 L .36976 .30705 L .31071 .27296 L s .26004 .22733 m .32489 .20626 L .31071 .27296 L .26004 .22733 L s .25314 .09578 m .18645 .0816 L .20062 .01491 L .26732 .02908 L .25314 .09578 L s .47751 .56378 m .44342 .50473 L .50247 .47063 L .53657 .52968 L .47751 .56378 L s .53657 .52968 m .50247 .47063 L .57066 .47063 L .53657 .52968 L s .50247 .47063 m .50247 .40244 L .57066 .40244 L .57066 .47063 L .50247 .47063 L s .43762 .4917 m .39754 .43654 L .43762 .38137 L .50247 .40244 L .50247 .47063 L .43762 .4917 L s .6469 .29751 m .62583 .36236 L .57066 .40244 L .50247 .40244 L .44731 .36236 L .42624 .29751 L .44731 .23266 L .50247 .19258 L .57066 .19258 L .62583 .23266 L .6469 .29751 L s .72683 .54353 m .67167 .50345 L .71175 .44829 L .76691 .48837 L .72683 .54353 L s .76691 .48837 m .71175 .44829 L .69068 .38343 L .71175 .31858 L .76691 .2785 L .8351 .2785 L .89027 .31858 L .91134 .38343 L .89027 .44829 L .8351 .48837 L .76691 .48837 L s .65658 .48837 m .60142 .44829 L .62249 .38343 L .69068 .38343 L .71175 .44829 L .65658 .48837 L s .62583 .36236 m .6469 .29751 L .71175 .31858 L .69068 .38343 L .62583 .36236 L s .6469 .29751 m .62583 .23266 L .68099 .19258 L .73616 .23266 L .71509 .29751 L .6469 .29751 L s .62583 .23266 m .57066 .19258 L .61074 .13742 L .66591 .1775 L .62583 .23266 L s .91134 .38343 m .89027 .31858 L .95512 .29751 L .97619 .36236 L .91134 .38343 L s .76691 .2785 m .76691 .21032 L .8351 .21032 L .8351 .2785 L .76691 .2785 L s .8351 .2785 m .8351 .21032 L .89995 .18924 L .94003 .24441 L .89995 .29958 L .8351 .2785 L s .76691 .21032 m .80101 .15126 L .8351 .21032 L .76691 .21032 L s .8351 .21032 m .80101 .15126 L .86006 .11717 L .89416 .17622 L .8351 .21032 L s .2578 .59007 m .2578 .52188 L .32265 .50081 L .36273 .55597 L .32265 .61114 L .2578 .59007 L s .80101 .15126 m .75033 .10564 L .77807 .04334 L .84588 .05047 L .86006 .11717 L .80101 .15126 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 180.25}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzVnVuPXMURx493dr1erw2+7WJjm1nfb5gYywkXEx7C1Y4cISEhRYogK4cE FEWJCB8jAZxA8kXykAQSxEcAxEteeMn3GHy6e7vO9P7+PXV2dteLJWZn6vTp rqquW1dXN3dW33/n7d+tvv/u3dWVV95b/cM7797948rLv3/vPmiwq2l2rTRN 84+Vpv0+uv81fYR/p9qP9KPH92faP4O2n/93AE2AjNK/Zq799W3t+f1/odH/ YqOnodFibvSNbnSg/ZxpQV/rRgcB9uWmNT8AsK9i86ecvd9rP3e3oJsbeLGA DdrPhRZ0vV9nHwFsf/sZJuHq9J1Ruyu6W2IsdXtId/ujKbA9DLDL/br9EGBH dmy3HwBsqV+3NGWEbaXbH07BhGWAXYrd3mj/zLZPvKQ/ojt7sv0TnjSz8YG1 Ccqyb/oxnshjzEIjs6Dz8PTPADuqh7qSh9oNjcwOR9Oy9hBnoDLKxTzKAjQy Q07dPgqwi7Hbc7lbYjpNNnGnMsCZjNnDzgH+BLDjEwboPGo5/ZBikUOoKrSc Dn/muo/ykF720fwc00OegkcDgJFQeE01DX8hDr8Cj+YAtsc5PHncoMVBQpKo D6ER6SnBaNC/AOxIHrRQy8T3x+Ad4jGpPEnaxwAjzzsDsPMRpZPwaBFgZPCI LZ8A7OHMFprlhMgJeLQfYCSnhMjfALYvI0KidS4iQlaBrAwxlRD5O8D2AowE 4WxEiaxHHIrNBoVJv860X4On8/kpmZyEBql0HGp2DI3730kKf1PAGoHLbMaF 2B4tMzq1pfyiZECB6Vr7H0B7mt8KQhQ2BFgAkWC8rWgvYFcLxNu/gsboS2LM FQgrp6wJSiim+VcA2527egKeUoR7qoNDMTLxaCbzqGMz46+GI6m7ACPlubIR hNdJMoXFxpQwXxSI0eSS1l8CNlHIHH0mYuM1RAsZa9N2QtOsZHRbbGMIkwqS ZLZJm2zw3zrfOFdBkjg51EiS9pEPCmgEUGnTRmu8DyScdTKCpPIxjSZ5UfLZ hzMipNlaFTYdYYpnSGNpulYBRmMMnYwypsQ3kBYKD8gUkUH7pZMwCgZpDFuF ndIIEzeJenKbbzkRHjoRfigjfEYjTLaQJI1ijjenQJgYtZgRDiwLD09q1KOq scGhKPZW+7k8Ev5vkIckUkmt92R0Z/O75AOOaxJK7980vBJ4FWDUH8FmKmwi MSRSo3iti9lCIzIqMVDG0Gh/5hoRGhYhIdtLM0jC5V1nec0n+RmLhDs5rfQf KdAxTf7ezLciUCF6A4cWskKQDQlYPZq/HUz4FhNVRBteugMfg+TQ0wqV85lK Y52c0PkWRBEFTbdenrKEkzTTEr4cP05QwyuGo5pyMwXku2gBeTi/4Q0gye2S F9uXMOryRcxl8BXBNlLnj3TpZStgtpvW7QdyOxJkUuFDub/T+dtiMX7SQEtr UGaQGEjyn2gscWnCvEDfTcP5gP2ZVPLJJDKEIUWsZX8tBtQfibxXjJY7XAhk 2zci1qwZmUFCjnTvPMBKOWmEaNK4RCzZkqUOsRO6aIenuMAMHWmVtLOBoZfz t7n8zdKlXsIoljkyPWGGEs2YJ5Zpfz2e+iLLTHbCm/StEO3RsKbhGLAMZRrh mLyCWKZq2v4o6qEQSvsdUrIK2evsP6nCXPqkiSLJpj4opKe8InGA3AJxgET1 0KZwgHIOFDPSPJMskfvfRm6QhgpueNNEhBXNOXGDFPs6wMgoeLVDZ+f7cMPC MZIIooNmmjSV6NhsHsjgq8aDitqHRzJtJLdwdiD5JOU18ucz+aTx5OxIXqRr LWA3nO96HWRFF/oywhaBFF4TjIwHIUQM22xGVEykZsQ4LDBAbmd5tyR3IAPI DXoXCjWJOZEZRgRSbZTXgfYMiojAYA6C1SeDKLZRya5sB22VOJdos7WnqL0i bbXdWqKSjNU2UkmPFjKV9eovGt7WV17LTGWtpBDeGp3KQlQuSQbKC1v9GZmc qBnr8iWEAXW+2ZRX8g31hLysiRvYRHLKk1ScDKeX1CBSR1XPKYVUGqToRBtf FVnbuM4NYi3R9CzAyIGRmgTaZUVol84JxX+uxcZc0TTJKRkrQtZLqNw4FJl9 WvemzC85c5pdyp14s7y05yKEiBTEyxVL9JyAAUcVFUz5f/Ia3uSVtxqBhp9R eBHsOSdC5AFOZg5Zcp/sZeLHkdzIu2AmRLwlEGVOPP2bUUjuydg9335bynha rp0wGSgfsze/G9VVbRLIcNAbJBiSpAFy98oBMxdLT0lywi9SprJcOXdvKd0Y no3v/UXsMV9LLCM0vcsBakcyScbXFkIF/rZdTyLPHFx7Q5YSmWeRsV6UBKTT uE42xlvYS5yRtSEO22ZFdl6TbRsMpmmXFaYBRAoVrYQmcUZJv7fcmAy+d6vP DAxpNjHFFIkm8kqmyDSb9sQSU2T123rf683L0mje+gOpFMQIW/DR5FGl6MBM NXJD5nhI77014JGdlRIUmV2RZxDDG9fzN5KrKJPoGg5mvnlJKHtpUdeplclE UDvaHtDKhtpiJx9IIEj/A2FB0m0mSC63iAhSlbAolD7WlJ+MU0R9neYSRZTG IIooSS3reisFQQEkfbK03RElVp5tJIscFi2DZFW7mXn7RgbVu2YimraIdpoW mSzrnDysFcz5I2QyydSOCKVssrcdMSRyAmMgYog8Hyml3RvvkoR5A44HzBRL XZGpqAeu8o0HR7a3zk130Scg9UbkXq33WhG9lpqKAYS6CD6Jcu0vtoVynRWa bNLrFeuFufAeXHjAtNNWlFycypDUe6zEG315Q1KN6VTEEjkWppKRk5nUoBPX 8jcvYXZyI5ksbw2PNzFn5/wKuSXXbWs26upxgFnWgNaFRLGNsXd6iuVxEIlS kYwoqh0tBUlSTctc6y9lyuSqwWF4vNUJsvbDsgq0tKRi1sVxfjgotjEOaIp7 FTD0Cl9JZ4sdKDtYZwcPpPkiEq2/tFsv17NIIi+I5DF6GYTW52ZF4TSA/n5c NG5bBOYsby2BFlByNU7DeTI6MhAmL2wKhO2Bzk45Cru3nN1bEKOTR2CEzYba 9pWsSKOeKTF9tB+x0xgYb+bQ7CX1TG54ixjgqScfjfyFcMQ8mm1T0Y7CNU33 fL33+AEZoiTfpDsBmz3Zvjno9EZFNNHBlcrSpC0iMXB036jh5VY9m7NB2iUl S8qp9qQzMNJKV6Vbqt8URW94YyYikSaVVIDeJVdPgV86eGkXXsgNcnKI3qPV OlU2GestoticMkmrLSy9x929u4HedzeBRAuxKOYmGM2nN2iU1XMbZBS9S0vu dFraDvXJQ8SOQXV0tfOIdThbEm2vpfFmn8iIP2CyyVcSK7zRqC7emUw2SQq9 S0nUWGCF3RLZxOFp4lKa7R1INg1FgYs3GtX3E+wosr1lJfWQlGIWfShmMgb0 LiVU0zUdhBIR6y2ksPt64zSGh2v/pd92PsW7J/Q9YcihTFhxnUKvKHYa8d9G BhBhJzLZcp+IothpdiWIW5RyoTx7unhJ3mZQwGROJIDI51kUqy8dcZJoF7CE h9cybGUSEZyWMsTJVHtLer2xhzbLhl3nLxZCTSR03QbcscwkekkX504RVhZ3 AhSCThJ0KTdOlz5RdFC/1MGbhCOYlzp5TZoouutcgzf+UoVKS4uSzfImZUie vYs+u0TPUuayApkIC2+c1yTaPs/QSaI8S1PAvEt3ucMlDIVVsVKteSJV3qw2 UC96F3VS3ZfzLDlkQhbCo0cYh13QJFqy6pyTRO8VM5ZZLEwIdWrbpWaDdPU1 RAedImVR4rpGZ3nrpkKJwiOSUMwU5yEdoitPyBAJ0j2TVU38KLFumrRHRBu/ XlaQPbKY0cr26V3iQrE9L9+Vp/zCG1c7FMvbfb15dXIstgtkaJLSexxVOw9k hkkgCJaIfcVJIlkQCuAGivW6yn9yp7IiI+Tfr02ipLIxaVX38qQO2ckVgJF6 /2QSauuCB9ugJjknZ+jF5YU4At3MWL94loJhms2hE5EXNSJmyS2aIOElwR/m N0j1KoN2DqGP22C61NZrb8nn07svxQFvwSMLIGiAIcDId5FtolNfpPQva+TM 9ZNMEnJEPXklO0vVEyXz0rS0odBG3z5KIRDFjOOwqOfN7eJRdplEEOEVWcVm iy4nJzv6agcXeUZiKAcfx/5q7oWs4S0meyQ4rCkeH5S8L8WPleG9F0/a+vJJ eErqd1sPSsENpWRIGuyAEOntT/WgZPNoUIv5nkq0kZDd6TcQsdTu1yz3vdsB fqYHoJwKUUKSeBNgFVoo1qCh7CLaD3RnFEPT5a/kuyrdUiqAurWI8l6/zojg 0M9f+9FaCkE7zZ/oLoj3FMp8rLsgSfnnpjUnQf+Xbk5a/2/dnCzTpxtvPlAW /rPY6E5uRDmR/8RGr+VGFAf/NzZ6PTcix58avZEbke38PDb6eW5UxF1fxB+/ gFfTo/Cjx//ostn1HQVzr9E=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {179.25, 0.}} -> \ {-7., -6., 0., 0.}},ExpressionUUID->"7a0b259b-0d1f-4727-bc10-c7dece17570b"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(83\\). \\!\\(\\\"tridiminished rhombicosidodecahedron (J83)\ \\\"\\)\"\>"}]], "Message",ExpressionUUID->"13abf866-861f-4127-bd31-\ e33b0af1459b"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .59779 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.535384 0.0683719 0.408487 0.0683719 [ [ 0 0 0 0 ] [ 1 .59779 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .59779 L 0 .59779 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .04517 .41929 m .03802 .35129 L .10602 .34414 L .11317 .41214 L .04517 .41929 L s .11317 .41214 m .10602 .34414 L .16848 .37195 L .11317 .41214 L s .10602 .34414 m .13383 .28168 L .19629 .30949 L .16848 .37195 L .10602 .34414 L s .03802 .337 m .02381 .27012 L .08302 .23593 L .13383 .28168 L .10602 .34414 L .03802 .337 L s .30892 .24447 m .26317 .29528 L .19629 .30949 L .13383 .28168 L .09965 .22247 L .10679 .15447 L .15254 .10366 L .21942 .08945 L .28188 .11726 L .31607 .17647 L .30892 .24447 L s .25587 .49406 m .23474 .42903 L .29976 .4079 L .32089 .47293 L .25587 .49406 L s .32089 .47293 m .29976 .4079 L .36664 .42212 L .32089 .47293 L s .29976 .4079 m .31398 .34103 L .38086 .35524 L .36664 .42212 L .29976 .4079 L s .23177 .41505 m .20396 .35259 L .25477 .30684 L .31398 .34103 L .29976 .4079 L .23177 .41505 L s .31398 .34103 m .35973 .29022 L .38086 .35524 L .31398 .34103 L s .38086 .35524 m .35973 .29022 L .42476 .26909 L .44588 .33411 L .38086 .35524 L s .26317 .29528 m .30892 .24447 L .35973 .29022 L .31398 .34103 L .26317 .29528 L s .30892 .24447 m .31607 .17647 L .38294 .16225 L .41713 .22146 L .37138 .27227 L .30892 .24447 L s .31607 .17647 m .28188 .11726 L .34109 .08307 L .37528 .14228 L .31607 .17647 L s .47617 .53607 m .44199 .47686 L .5012 .44267 L .53538 .50188 L .47617 .53607 L s .53538 .50188 m .5012 .44267 L .56957 .44267 L .53538 .50188 L s .5012 .44267 m .5012 .3743 L .56957 .3743 L .56957 .44267 L .5012 .44267 L s .43617 .4638 m .39598 .40849 L .43617 .35317 L .5012 .3743 L .5012 .44267 L .43617 .4638 L s .64601 .26909 m .62488 .33411 L .56957 .3743 L .5012 .3743 L .44588 .33411 L .42476 .26909 L .44588 .20406 L .5012 .16387 L .56957 .16387 L .62488 .20406 L .64601 .26909 L s .72616 .51577 m .67085 .47558 L .71104 .42027 L .76635 .46045 L .72616 .51577 L s .76635 .46045 m .71104 .42027 L .68991 .35524 L .71104 .29022 L .76635 .25003 L .83472 .25003 L .89004 .29022 L .91116 .35524 L .89004 .42027 L .83472 .46045 L .76635 .46045 L s .65572 .46045 m .60041 .42027 L .62154 .35524 L .68991 .35524 L .71104 .42027 L .65572 .46045 L s .62488 .33411 m .64601 .26909 L .71104 .29022 L .68991 .35524 L .62488 .33411 L s .64601 .26909 m .62488 .20406 L .6802 .16387 L .73551 .20406 L .71438 .26909 L .64601 .26909 L s .62488 .20406 m .56957 .16387 L .60976 .10856 L .66507 .14875 L .62488 .20406 L s .91116 .35524 m .89004 .29022 L .95506 .26909 L .97619 .33411 L .91116 .35524 L s .76635 .25003 m .76635 .18166 L .83472 .18166 L .83472 .25003 L .76635 .25003 L s .83472 .25003 m .83472 .18166 L .89975 .16053 L .93994 .21584 L .89975 .27116 L .83472 .25003 L s .76635 .18166 m .80054 .12244 L .83472 .18166 L .76635 .18166 L s .83472 .18166 m .80054 .12244 L .85975 .08826 L .89393 .14747 L .83472 .18166 L s .25587 .56243 m .25587 .49406 L .32089 .47293 L .36108 .52824 L .32089 .58356 L .25587 .56243 L s .80054 .12244 m .74973 .07669 L .77754 .01423 L .84553 .02138 L .85975 .08826 L .80054 .12244 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 172.125}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzlnetuVVUQxzc9LS0tlxZKKYXSw/0mWEBuiqKAXFQ0MTEx8YNpiAl8MBpE 40uYGKNv4QN418R38K6vUlkXZnZ3f7PP7J5dwNiEnt11/c+smVkzs9Y+3Fy4 d/uddxfu3bm10L12d+H923dufdC9+t7d+0WdNUWxplsUxZfdIjwv3n/Mv+LP 7vAr/9Hj+Z/wsTb0vVAqKDqLMlj86/7PaCg6mRr9DY02ht9DoeiY3WgzlB1N zf+Cqi3Nmk9C2ZEVNf8Tqra21vwPqJpq1nwblB1OzX+HqunWmv8GVdtXtfkM lB1KzX+Fqh2tNf8lfAyEmlm7UUPECzLmR86OB1PHt6VjUscHbXAc4nAe59nw MWgRNQBlH0LZNkGTF+5c+IjaPyhV2+VpCIYg3JMWkZl7p2SWsfAUO2ufEWuW WLtZngah3YE0wXGZYIs0n4DmNNXHULZBRllrT/qENJqRJ+243jnVqPRYB7X7 S1ORBmjH+LQR2l2V2hNOjoxC2b4E5ChU7Qq/O5a8bIKyFytlhQFuaClfGdIR qNojHUsCWTwQj0rjy3muUlktqgEZfBxq96auh6FqP5QRoEtQ1pFJ5+Pfg2Xm iZ4wlkNQdQDKaGN9AcpomY87aduTIB2EKoJJQzwPZcNQdsxJYnapiCO0ijTE c1CmWlnV3iBY5GZkICQmpHfEGwIy5iAsQCJXppsq90EV2STizQUoI3VOIsFq SNzK0PZClVcYn4GyaK/ispFAdJwjzyVwe6DqSWuIOClBslW7NzhakV0J3G6o Ins3LuCedVJPI5PRoL4ZXBeqTkEZ7XgkcbYEOWFGBswlcHPQ6CkoWy8dSS9J 32hksm26Jtlo7IJGZ6BMrRKZUeISQSJXRV2fvc0gkQty0QmOlpDAjQk49Sl2 2TDPQpl2jBPEyjj9tvBEgV1H2pFjT2Z5ROYYlL4Vl3q2GWr1G6InG80rRQsU VRDDSWU7mT9kuSkkJcqTkA9WxzDdyh02G87VwOkIE0jqKKikhaXQgoyv1yDT dqjxWHqMlfkfSfhML4Ys3ewjD2heimU1IpzI2Cq8jXVkp2jr2sRjmIiS8qCE Pi2Tk1xqtEtcSVOxmGhQZhOwlJ/xL4oHeqF36JfXKo/VUESMjXvnVCgioZzu H7jpbUfWUpgZKyhkJPykhjTltmaU0BAkBuQUV3WgMESIsgNEDi39VP/kqPtA QVfV3hZFOV3zEKHTEOTwHRZwum2S3Sa7SdDJM9tqQz8PZTQ9cS5FUayzZIpp 2yISaP7J/kmgrbsabQXoO6Ed7Q8EnVyGLc2g0xC0+PNQRtApC9gQOg1LMv+o oJOLurkZdBqCFv0klJGsewWG+k40g05DEOfahk4e5/j/BjoNQVl+iq1JT7zG sQWBeVTQa9SUjGPV9W8C/XTL0BvadYJOC0fRIaUZaFP3OgQ10OMu2RHfo9KI QnJaQlLYtomocQmicxMdKApZKV9A4IhLRBgxpR/Catw1cn7TOrHLdU4YQcSQ aSQxpVkp2mnoNutR6EgNCWczkSV3LPyjcUlzHyI9GoWMVTBn3GegeDEfg3uP d8k9JHqisE2HopoQkiLT9YydDD8rV8HntiT9tBNReEl9twrrKE2Ro31N4o4z WeRFDEHTxSUr2xud99xjWEbWpNTyBBlFWjkRo5ngasYijETnH6T1egbsPUD3 EkgGcwczODYiZmZSCUZVuAPRdCKl5wQaUtMGR+tL5y8kc5pRn4PZaF/PSU5N k0/LE535kRiU8qpLE+sqGBfD02R4osWgwy0zW68nQEnFUZhUkulMlWwD8WbE wkBnTx1SgPAXnSsSF/QMpDLbBptOvSZDx9mmbTWlgeRMz1w2ymwH5WmT1JIs r7eh29fNeu+AujBkK8guDEsPUmG6lKDLQXMkJbWPPJRL6ONask66T+SMSg/V +GPytLZ2vF7Qlzs6lJYlJ6QjAuHYZDcIyIq4UxpGxc9PDEU2AzJpF2r1dIO2 EXJ7SDhP1I4y2gywLi8FdORRE6RG0B3taoigUKyyuUT5UgtNziG5zC0App2d eKiHVXEwvc2JSrDMoyMdpwiNkNKNDGq3rhlFavbXCUVkCRN0DoNooShoXSWy KNjWeGdAyFLDTUtGk1I0Trr7iInVYDV5BBweUERENtnLHMpZ9dNuxCaasg6k S7Sr1aUgiHzyfmjNKehsgXzSPdpSCRKRH7d8VQTzWJEcz0dMNpkVWnXqqzEV 6TDJmDcX79Vhr10fbsYA23UAu758ByLKabemaSgfsUqU0zJTmToQavArXqMZ Uf03KTZv/sQiMl5kFfpxmbw+Y2I8Tk+8NjNQZAzNDY1MWxSNqAnz8uQlTMVq pEROfBuQog5aMRJADSgq0kqDakBEWzPlMTSaofGITp0je8SRQessmfJm02Zk WNpq6yNpetlEA1hv3k/nyNmSGF8MhwIyr/b9x2o7A4MiJFHU9Ij63STkRImO nI9+40dpiZaF5yTkRCAdxMZ2Q9b6a+pHFYTu8NcngYhKHTkf+o0JkI0VKvOP Kec0JZGqM1SUMTbTXCUJKb11EIFHmBcrtWGKONRUiTayOESJmeP3Lum4yS3B RTo8J5PH2kkhTI8G/JSoO0p7sJ2Q773dkLrpjWziESVOCAHRQa9nTDdjhfou ZAH6YYUZB3Rk24zzem+OtcAAM8pVSA6vlBJhBI4QaGaUIgLdkL2+IRmvGmUw RZa8APugaWWLr0eNlYm8VwEaMsD0wkxchNpLMW3DausoeKYeq0QitaMyb8aW Vic6MltDEY1Mbg65gDPNCNNUKLl2XnJIy2nFvOu+SsQS16mdmYp0jPcYkq03 ACiwIePhXWNvX282kCLwHc2IpR2X+OpdJ9pJvW84PUSyyTMiEr1kExv7MW4t kG2m9ksebO91b5tYUgvqS5nUnb2I5Xw3OZDmOysOUr07dAuk0ktJ1XtT4bNg t5bslzc8tq8wPzwqS69Egws1EooIEoXA3ijCvFZSKaOE+KxNjibQulAb3dMN oYi89CHLx3kM6Yz4Y3YmJn0idL1sQnI2tLRdi5LZFokR3Hkhgsy1niIXS0MN 750Ar5klLacUdn71/LqgJvnRC0zkXXktuiY3dspseukjiXv6Qp5YRX4zlXnt SjObpDtE6RPvJ2bgl4USMqakAsTLRh5QnK3aQ0RLr7eVvwrhMgzmfS2Uyrye qnnOQXE3KTNdCmtIE2GgzKjXl9MERZ1XoVHCfnnK39t1xQmcLAmpghc4Ea3E eNNNdP20IWHeF3aiSk1Z2zi/vu1rNwdlB5sRQdsH2QDN9lfEnQZVt4YWn5ZI M/Gz8pS//7H6LWfWpN5gJ04VHUvyLEgyzeubZvqZZJQ2xFUiEe8wFwZWolhf U6fFIr7pkmu69Vgz6mhY2lL05mz96wO0bdGGQx6I98g+k3jVSSIpNslFxxJP 80t5HIPS4mt6cb4XJbxBqLrqrVXaaglkF8pInC/1grbsKsxewWKeTa8QS9qu i2sWlpK70lvNvEAojr9iA9EEuX6Bo/e+iZcPNdPrfQMS9zknfSStXSGHPLdk Z1I0QIyORaTs9LU2Xkh0SEyaf9UGV3/xwQuODPU+4VdDSHpST0a0H0h0k4B2 yyRYxY1KVVHk02xypWxcbLuOCHuIyuslBLERqYGHFYVshb21/waTTcM2mZ7e 6qIts2Z6L/X6LX/z8kSG5iV7KlJuOtCfkAm8b4m+bE9KngZNSnb8tABpYVJi qsY31bdqwuq+ak9AuQSiSk/86PD/pj0BORo0AUnbJ/0Pq2mZT+3BKB1Gg2nm 4TN7MEo9psHYyHy+kqGW5b2/aEbdHJTVDEHc/spuTkL1dWvNSSe+sZuTsfjW bk5m7LtS845l6XOjV6QR7UDfp0avSSPaWH5IjV6XRrTt50ZvSCNyXH5Mjd6U RuRw/ZQavRU+onD/nApibYP/K6NY8y/nxska\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {171.125, 0.}} -> \ {-7., -5., 0., 0.}},ExpressionUUID->"0cbd055e-7b92-46db-b2ef-dcb892f4cb55"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(84\\). \\!\\(\\\"snub disphenoid (J84)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"73fd1c45-a3a3-4a94-9c47-0d8f09cf6d86"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.73205 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.44709 0.366572 1.50753 0.366572 [ [ 0 0 0 0 ] [ 1 1.73205 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.73205 L 0 1.73205 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .34127 1.69081 m .34127 1.32424 L .65873 1.50753 L .34127 1.69081 L s .65873 1.50753 m .34127 1.32424 L .65873 1.14095 L .65873 1.50753 L s .65873 1.50753 m .65873 1.14095 L .97619 1.32424 L .65873 1.50753 L s .34127 .95767 m .34127 1.32424 L .02381 1.14095 L .34127 .95767 L s .34127 1.32424 m .34127 .95767 L .65873 1.14095 L .34127 1.32424 L s .65873 1.14095 m .34127 .95767 L .65873 .77438 L .65873 1.14095 L s .34127 .95767 m .34127 .5911 L .65873 .77438 L .34127 .95767 L s .65873 .77438 m .34127 .5911 L .65873 .40781 L .65873 .77438 L s .65873 .77438 m .65873 .40781 L .97619 .5911 L .65873 .77438 L s .34127 .22453 m .34127 .5911 L .02381 .40781 L .34127 .22453 L s .34127 .5911 m .34127 .22453 L .65873 .40781 L .34127 .5911 L s .65873 .40781 m .34127 .22453 L .65873 .04124 L .65873 .40781 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{166.25, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnG1v1FYQhZ1sEhpCIQQIby27QHgJ4SUNtCSiQoiKpkIUhBAVQlRoC0VJ UdWK8pv4m9usr5kx2edMbMjHmw949865x9de35kz4xG/9t9v/Pl3//3mq35v /V3/343NV//1fv7n3dZQZ6woig9FMdbrFcPPg62v1T8fBlt/W8a2h7fDw/iQ Yy0NbNpA0RmkoaI8rKYvG+Vh8uOw/RVO8cYoJsqBTh1c3Eyg1waa0qA/DPSV BvXBFMBfGueMBv1uoK816AWYAvhz45zVoGcGmtOg3wx0WIOegimAPzHOoxr0 2EDHNeiRgU5q0EMwBfAHxnlKg+4bqKdBvxjojAatgymA3zPOcxr0k4EuaNBd MAXwO8Z5SYNuG+iyBv1ooKsadAtMAXzNOL/ToPJQWlY06Htj2uaUyrFlPfFG eWBv1YFpVzTViq2BvNq4WQOKZQORz5sw65KmuGogcnFTZl3UFLRAIqOx85p2 yc5NfnXarAHFooHIjc6YdUFTXDDQAQAR7WlNds7IDgJov1kDCloqkc0aWVeT nTEQOfI5s36rKXoGmgcQ0Z7QZKeM7BiAjpg1oKClEtnR8FQV2UkDUSg5Hl56 ReEgWhnRHtJkvugugL4xa0BBSyUy/yno6arIDhuIgpk/GrR1Kgp/yOjJJtp9 mswfenIKZ80aUPgmvAgg38B7NQU5BSKjOLxH07q7Ind+0awBhTtN8tmXzDqp KfYY6BqALpuVgmFFQbGKyJISmKiPDT9XSYFHN4rzJV+nBu8Y/DrAlw1eZSWT Biep4UGT5MMPtTvVQNykn6K5pEjrT9FUCiwPnrG4qMj22gBJOg+jscxItwp3 F8kH2hN0AhpL15y2mtQn5806DVZ/kiuyAzZAO3PBrLEcSTcweU0p4c/CGNH6 nk96HD07OcnTNnE/WMlDpWvewaV3zUopp/vOimzeBiiBosyLaN2rp1uJEZui axwQKR9O17xD0D5h1iNgPbTtBjYRESR0pPhJtzKtTKbOsbxxa/oNUAGQUogl GC0kXfMuyUS/8xXtlwhYfzrSundJWtNTna55B/lPIolO0N12K5ukKHJDu59I NxD9KDn0OHki/5auuaYyiJZkFZ3AvXFF68qDKDxYkmv3OJFu4BclxS7EkpfF agIJLBqjE1BlJl1zCsBSwbkEoiDviqEiu24DSYV8KsQ+2qSiqd2+VG4ZVXLj MJf4SBymC0xaq9ROpNO8PlLBV22ARKPfvokavLbu4bHgX/SazZ2qz2VZp9Uu KZ+KSkk4kvK+G6Y1RVwf8n06oylabgWiaFoVoo0b0Mb1IffEs5qigYsrrXOa oml9aMQNE1lcH+qadV5TfHboIrKW4ZUoPjvwE1ksTo5tWy1SNJBNqDuRLK4P jQg6omhaHxoRnUQWy2FPWBY0RVwVIvEekLkmJN0ykkwQRdP60D4jW9RkcX3I U+QlTRHXh1yFXNEUTatCNBbQxvUhL3csa4q4PuTqYkVTbK8Psaa4oQlETYiU RMBSxt8yNN/UIBcPazushypBq3pOVPAJThWXdIILics3wURPLILX3zSRQm5L irjcEkz0lDB4dU4TKai2pOjauYM38jTRk/ngLb0MEDIBDiZSiGxJ4RE1eMNP E70sFLz1l3JBllKCiRTwWlJ4fAw6BmiilxV77SbGmXswkcJXSwqPdkEHgpTz MtMOJlJYaknhUSzoXqCJcWb8ycTmWXAwrQh7DMoZpSW3OZQUuc2hyG0Ouc2h TpHbHIrc5pDbHJgitzkUuc1hkNscym+5zQG8UW5zGJ4gtzkMcptD+S23OQxy mwPFIxl0cptDbnPwubnNob4VcpvDILc57Ergz20Oo2N10ZnbHEbHan4qtzlA NB332JbbHFq3OdzSIIrQAdyV2G0N8prMHQ3yzOCuBlF8DOCuvO9pkOdl6xpE USyAd43zvgZ5VvxAgzwjf6hBFEMCuIeXxxrk9ZAnGuQVmKcaRB48gLtzf6ZB Xv96rkGeTr7QIPKfAdxd60sNcufZ1yDybQHc3d5rDXLH9qYOYte1oSFbn/+q WcuTvNWnrUyt/5+RYux/MY9olQ==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 165.25}, {287., 0.}} -> \ {-1., -4., 0., 0.}},ExpressionUUID->"35c25e9c-04bc-4c65-8900-759a00fdf131"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(85\\). \\!\\(\\\"snub square antiprism \ (J85)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"33fd02e6-d166-45e4-ac5e-\ 45709e28e8ba"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .68301 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.261905 0.174298 0.428655 0.174298 [ [ 0 0 0 0 ] [ 1 .68301 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .68301 L 0 .68301 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .17476 .5158 m .17476 .34151 L .34905 .34151 L .34905 .5158 L .17476 .5158 L s .17476 .5158 m .2619 .66675 L .08761 .66675 L .17476 .5158 L s .2619 .66675 m .17476 .5158 L .34905 .5158 L .2619 .66675 L s .2619 .66675 m .34905 .5158 L .4362 .66675 L .2619 .66675 L s .17476 .34151 m .02381 .42866 L .02381 .25436 L .17476 .34151 L s .02381 .42866 m .17476 .34151 L .17476 .5158 L .02381 .42866 L s .02381 .42866 m .17476 .5158 L .02381 .60295 L .02381 .42866 L s .34905 .34151 m .2619 .19056 L .4362 .19056 L .34905 .34151 L s .2619 .19056 m .34905 .34151 L .17476 .34151 L .2619 .19056 L s .2619 .19056 m .17476 .34151 L .08761 .19056 L .2619 .19056 L s .34905 .5158 m .5 .42866 L .5 .60295 L .34905 .5158 L s .5 .42866 m .34905 .5158 L .34905 .34151 L .5 .42866 L s .5 .42866 m .34905 .34151 L .5 .25436 L .5 .42866 L s .65095 .34151 m .65095 .16721 L .82524 .16721 L .82524 .34151 L .65095 .34151 L s .65095 .34151 m .7381 .49245 L .5638 .49245 L .65095 .34151 L s .7381 .49245 m .65095 .34151 L .82524 .34151 L .7381 .49245 L s .7381 .49245 m .82524 .34151 L .91239 .49245 L .7381 .49245 L s .65095 .16721 m .5 .25436 L .5 .08006 L .65095 .16721 L s .5 .25436 m .65095 .16721 L .65095 .34151 L .5 .25436 L s .5 .25436 m .65095 .34151 L .5 .42866 L .5 .25436 L s .82524 .16721 m .7381 .01626 L .91239 .01626 L .82524 .16721 L s .7381 .01626 m .82524 .16721 L .65095 .16721 L .7381 .01626 L s .7381 .01626 m .65095 .16721 L .5638 .01626 L .7381 .01626 L s .82524 .34151 m .97619 .25436 L .97619 .42866 L .82524 .34151 L s .97619 .25436 m .82524 .34151 L .82524 .16721 L .97619 .25436 L s .97619 .25436 m .82524 .16721 L .97619 .08006 L .97619 .25436 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 196.688}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNnWlyFEcQhRtJCLFj9kUwIxZhB+GFH76C/cuHUBBEwA+HHZhz2L4CBgPG 1/C9sKanqZoZvnqdpcruGkWgkaqyX72s7q4l81H66eDls6c/H7x8/uRg+uOL g1+fPX/y2/SHX14cFm0ea5pj06Zp/ps2s58/Hv7YfWu/9mbful96fn41+3g6 u/bmQkGz+TGAHf72rbHs+hziL6j6eqVsRpYgbrhBvIaqR+3344tlAWoVfvZb 1ydvoOorKNs02t0aFPZvqHoIZceNdruDwr6FqgdQdsJod3tQ2HdQdQ/KThrt 7sxh30PVHpSdNtpNBoX9J1m1XHbWaDcdFPYDVN2GsvNGu71BYf+FqltQ9oXR 7u4c9o/Zx8ashoxuQNklo92NgLyz0FSztThMz/4lrz1iu9dCu/Px8VNl90Z3 NHioT+KtlF0x2l0TbS31yvJlG8GFNOjRCF0JyFtQu52mtBUuvFra/ErZ5YC8 nUeJzOkhKSFHeJk0TwT/LhsbsD79FwMyzSqC0slw4UVnShcCMk0dgtLpcCEN YNZBjezOB2SaHwQlMqdB2zqQW6/NpHku+OdN7mxAvpBHKT4F54z+TYx2ZwIy PbmCUnxXzjhTOhWQ6f0WlMj8FJRZF2FkR3iZNOOU4U1uJyDTcCwoxSmeBj7r Epvs4mBNI56gROa0hbBuK6zXZtK8GfzzJnc8IO/mUdoNF9LEat00kl1cs9zJ o3QnXEirpBJKcWU3zaNE5htQZg0JkB3hZdLcC/75kzv8jV5jweZeYNMsbwWI 3KMObaFs8ZoWhl4G0f7cPC7/Fz67ABXX0dMkmtlPuflN+/2zHdeXefAtm+9n RXSv+twnXt8xr0y376/0YKg4/Hos6vbzmrkbvKDBgOKM8SW/n9fUNFxIQyE1 FYe4u3lNTZLm/Y2SXRpvPkW1kWRant8OHtB8TM3HObqvUQMYldFa+FZolFYy hBI3WbTe7mjehCprOJsW5THoQktVQokbL9pQDUTzOpRZCZMd4XXUyavcaD89 t1dDv5GDRDxu1ARdWjyVhP5pmxQjLlSbvIfJ6M+I1OM2jnYxRF1f0VGnN7Qk hUGhEXqIrE6QHeGN6E4Mq9DmjZyIG0lBnVbqJekZ6rkY17DOEnHDSXPDiNQp eGF1guwIr3NnAlUlGS0Kr8bYCQ0e5ETcwArqU6gqSW/RoBeDF3TfiXrc6FIg ZUTq24EItUbU44Z4J009nRjsn8DJjsYVGrGsTpAd4Y3oTjsVJne25ETcYAvq tBcoSUHO1ytbi2WBBo1cRDzuxWn+H5F4wxtN4vyAL+8yd3TLSjKy7fjcFtEG nfjthys6SnFrNEg2ty2ipRqRexi4LJKrmP/dyL71Ios8/6ifRaaXiaIO5KMK oCzds+XLamWndViFHNShm+20i7Wy3Tqck5zU+rLn5OL6Zc/7p1DqALLL7Ipa GXodyCJndbBMuFgr46+DYOSiDrQJF2spCHQALbkR61MkkIvrpEiwhuHScuB+ PNEVtVQPOohHzupAoXCxlopCB/uS4ak+VQa5WEuVMVAYkVxcJ5WHNYxIHWAN X4quqKUk0YHHZAaoT5lCLtZSpugAZTKN0qd0sSpOaildrCFN6gBrKFV0RS01 jQ6CkrM60CpcrKXO0cFSclEHZIWLtdQ+OqiaTLz3qYfIRTKvpR6iMuo86gBr +Fd0RQWFko7Zkp86Liy8G0XxpEO5c3/swWLhjad+KhHLfczFQopERD0UWDGY +zj8JJRaREMrtUw6ruRtKNRxOWrBiKKnFux+19jKI/Hpc/V9bRJDidB+kQfe MrOIt/qSNgknNiVe3+ziKFuLePOuUEIdrjPJ4siVSdLcODsb8KiMBtKSuYjK 0r5hV3gL8yIedVSJs/FuZ7roLeqLeMk1/RFXknE/IMSEyV2ToyAw4tFTUeKi zl0KF8cQE1IZrdpL9nyEJ5SCBOEtSox4tAsrCWfE3Vqmi97ixYhHe+kSF+Oe W4gmdVTUJzoZa5P5C9qxGOziWJEZChxDDEll3h1AeELdSF3hLaSMeNZUzsRo F0OGmS56Cy41kRIXdecJF8cQZlIZjfMl2S/CE0pL6gpvUWfEoxG/JLEbZ4ZM F73FnxHPOrhZXYxjvxCdJvUh3iLRttaqFLEqEC71t2tfkFudJbvkwp3Gb8cO IDyhDqWu8BaiRrxiPVhy8ut10Vewymi0ei1xOa64hUyW3GuKZa0UxPJ2LyHI XVQbthdkKWDbGBD9F7USGen1wOUzbW2+ApYmwhJy5Gzi2Zh95j4bFKelJh3O n1I6WgrO5upYqWk32stV3vpUevccDhLTelcf3Sm9+hMoyzyxzapjJYgS7eiI 7nhrQin04HDSn9aY+mg9R6TureGk6dDhNEirJtRbhzmiO976StpPORz3qfWa PrpJWgyU/C/e3TR174jjiNTH0DTS3XE4j1drJH20iiNS99YgUgcc8Zxmq57Q WztII1LmadVad+ij/xuIpreGr32sFo8k12o+H1Xd7+mmyNxbySaa95aViaZ8 FV+ioXKVlgC3KqwEhNZQ9TlWqH8S8ANqlkSr3hqjvndtQE2QaHoCZbX0OoJm LX2NoFRLDyMo1dKvCErrpC0RNGtpQQSlWtoNQamW1kJQWicdhKBZS7cgKNXS GQhK66QBEDRr5ewFpVo5dkGpVk5cUFqnfLWgWSu/vERpHTLCglDDSdEB0rd/ LpDYTLXrk4xdbGrFyLtRwuu62/vopw+DwnqfqjX/e0zuB6S9HxR2ClUl2aR3 g8KSIyUZl7eDwnqffDn/i3Lux5i+GRTW+/jb14PCehyLPP9bjEWHQ79yg4in jHe02tqMP3jZHPsfRnQKpw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {195.688, 0.}} -> \ {-1., -2., 0., 0.}},ExpressionUUID->"d1f5b558-7117-4fb9-8c3f-20479c58f6a7"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(86\\). \\!\\(\\\"sphenocorona (J86)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"1b3b40db-dfa9-4623-9db4-e0c3374c4a99"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .5 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.412851 0.174298 0.25 0.174298 [ [ 0 0 0 0 ] [ 1 .5 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .5 L 0 .5 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .3257 .33715 m .3257 .16285 L .5 .16285 L .5 .33715 L .3257 .33715 L s .5 .33715 m .5 .16285 L .6743 .16285 L .6743 .33715 L .5 .33715 L s .02381 .16285 m .17476 .0757 L .17476 .25 L .02381 .16285 L s .17476 .25 m .3257 .33715 L .17476 .4243 L .17476 .25 L s .17476 .25 m .17476 .0757 L .3257 .16285 L .17476 .25 L s .17476 .25 m .3257 .16285 L .3257 .33715 L .17476 .25 L s .41285 .4881 m .5 .33715 L .58715 .4881 L .41285 .4881 L s .58715 .4881 m .5 .33715 L .6743 .33715 L .58715 .4881 L s .58715 .0119 m .5 .16285 L .41285 .0119 L .58715 .0119 L s .5 .16285 m .58715 .0119 L .6743 .16285 L .5 .16285 L s .6743 .33715 m .82524 .25 L .82524 .4243 L .6743 .33715 L s .6743 .33715 m .6743 .16285 L .82524 .25 L .6743 .33715 L s .82524 .25 m .6743 .16285 L .82524 .0757 L .82524 .25 L s .82524 .4243 m .82524 .25 L .97619 .33715 L .82524 .4243 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 144}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNm2lXFUcQhgdBxQWRRQRR7wVZg8iWeLKd7NGsP4LjyYmexGiI0ez6E/KP DXem0+9wfaqoy9zk4AcuVNV0PT1O99R7u/vr3Sf3v3m4++TBvd323b3dx/cf 3PupfefR3r5pcKAoBtpFUfzdLjq/v9z/Nf0o/811fqQ/Dvn9aedjp3Pts5qh GHyZG9v/awNsP1fhz8C13mXrgD09UvgvEL5W/jxZt+XLEtSvcNkq2AbBtte3 Jn4D1zLYToLtx7418Tu4FsF2GmyPqyb+ANcNsJ0B26O+NfEnuObAdg5sP/St ib/A1QLbCNge9q2J5+C6BrZRsH1fNfECXLNgGwPbd1UTW52P0vNVg8Zud36e 6Jh2qmY3sqEaXf9GF6XtS2hiBmwTYNuxWt6u/rhVfvDUQgP9swYs206udCNu ZtwhaOBE9n4O3stguwQ23WzKsVWBvJaDTkHQUPbS/aCkBKfOUo4EQjMwhZPt 0wZwa8EcCXM594Xms9PZewe89KzQM7Xi5kggizmIprQz2ftJA5AlN0cCuZGD aFY7l70fg5cmDZpc/BwJZB5cFE62DxrARfMmzHbuy0UIupC9H4KXJn16ObTc HAnkeg4ah6CL2Uv3hvrXAttVN0cCUdAkBI1n73sNQK64ORII/e9SONneBRuN GipKpoM5EuZM7ov5Kii9TZCm3BwJ5HIOotlD3nfAS1MblY0Tbo4EMgUuCifb mw3g6KF2MCdzX65CkB7Rt8BLRTwV+6NujgSiMXUdgjQe6d6QICHhct7NkUA0 y7QhSDPU7QYgZ90cCYRmVgon2+tgo5qSSpzhYI6EOZL7Qo/jXPY2QTrl5kgg eq/TQ6j3dVXvci3c/e1AhjTbTcnPgovC7SZk64BsOJD0RCWM4cy6AkEqnuyU Q3Wb1VDKptqS/tNKzG8tb2pCVSH1ShVlcVBCbUKwwe/cLXrzLJg2/s/ovpMi 4fglG0fTE0HMZy9pJ/rSjGzScZQjgajio0JS1SKJkiiIdBzlqM/FgVKKbE3g 6FrKkTDHcl8o6Fr20js8iqSx5oCoMqESfDZ76cGPgmjEUo4EooqPClhVi1Qr R0E031OOej0YqG3J1gSOrqUcCXM694WCVPnSgIgiaVQ7IKr4qIBVtUhlZhRE FRbl6FGBkTcK4rdS16RdLtLhZGsCR9dSjoTZyn2hIJXgNCCiSBrVDogqPipg VS2SKImCSMdRjvq3QKQAArYmcHQt5UiYC7kvFCSlQNopiqRR7YCoOqRiVpUl DYgoiEY15Ugg+rKRpIi0AImSKIh0HOWofxPd5SKJR7YmcHQt5UiYa7kvFCT5 QgMiiqRR7YCs56BK2A3Vg7KPJFAUQyqOpGPC6BYClbUqfUlgHJFlkdOk5ZRS oZQSgARUNEc5JgdrzW7nG0CiKtrscm52u9ZsTDv1dHvMhbXNet64Uoom9xQb PTnrdZyDLl8xRYF89aYcDoivmHqaWwKra2s2SFQdRZHo2ug624qN6SumKJyv 3pTDAfEVUxTEV2/KsWSD+Iqpp/omsLq2YINE1VEUKareyDZnY/qKKQrnqzfl cEB8xdSTogisrrVskP9Dd8l7zQaJqqMoUlS9ke2Kjekrpiicr96UwwHxFVNP 32oEVtembZCoOooiRdUb2S7ZmL5iisL56k05HBBfMUVBfPWmHBM2iK+Yevpm NbC6NmaD0IUkSqJIUfVGtgs2pq+YonC+elMOB8TXTDZIXL0pw3kbw5BL9vrJ K6HmChHVQgwhPWXmLU3+6pmTwF/00lat4UNuVG2l0r83nU/v3tSmDsxGoqY7 bv/TXkwKtEc2B0la6Y0giEaJv3I2Yidt56BqYT++PqwpzV8tG7WTt8DW3ffc zy4bPWckVSgH2RxMaSHahRGF00uR0ivHuA0iLUT7UqK7MFTN+KtlkzaItBBt KIqCqL7zV8umbBASKG+DLbpnhxRCdN3MwZQWop1g0T1OEjL+atmMDaImaAtf FESp/NWyWRtEaud98Eb3xukZObKiIoHSBCm6I59sDqbGCu1Gje691Czjr5a1 bRDNHrSNOArSyq34q2XzNggJlI+sXuGNhtdlIAfZHExN+7T/O7qzObpatmiD SAvRjvgoSHS1bNkGUeFwF7zRHfGruRV/tWzVBqH3VBMkOsAQXTdzMFXl0RmU 6OkKLVL5q2U36yCshb4IpiS0zdyKt1Z2y4Yo+CBUNL/RJJX0dYhBK2/0JFK5 DbQsrrfqfTsY1CQB7ctNqV6Aq8dTaH1o4jm4ejxOdzzOBR6PM5LH47xoHw6+ Ho8TvMfjNPMRj2L/t+fDXzm9XgYccuS9GPgHqvjkAA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {143., 0.}} -> \ {-2., -1., 0., 0.}},ExpressionUUID->"273f6c1b-1bfb-41e6-a76e-a9abeea07f21"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(87\\). \\!\\(\\\"augmented sphenocorona \ (J87)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"e3fa2ee1-389c-4b9a-8fca-\ 7bade1ed708a"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .63151 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.57737 0.178679 0.259116 0.178679 [ [ 0 0 0 0 ] [ 1 .63151 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .63151 L 0 .63151 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .48803 .34846 m .33329 .25912 L .48803 .16978 L .48803 .34846 L s .48803 .34846 m .48803 .16978 L .66671 .16978 L .66671 .34846 L .48803 .34846 L s .02381 .61647 m .02381 .43779 L .17855 .52713 L .02381 .61647 L s .17855 .52713 m .33329 .43779 L .33329 .61647 L .17855 .52713 L s .17855 .52713 m .02381 .43779 L .17855 .34846 L .17855 .52713 L s .17855 .52713 m .17855 .34846 L .33329 .43779 L .17855 .52713 L s .39869 .5032 m .48803 .34846 L .57737 .5032 L .39869 .5032 L s .57737 .5032 m .48803 .34846 L .66671 .34846 L .57737 .5032 L s .57737 .01504 m .48803 .16978 L .39869 .01504 L .57737 .01504 L s .48803 .16978 m .57737 .01504 L .66671 .16978 L .48803 .16978 L s .66671 .34846 m .82145 .25912 L .82145 .43779 L .66671 .34846 L s .66671 .34846 m .66671 .16978 L .82145 .25912 L .66671 .34846 L s .82145 .25912 m .66671 .16978 L .82145 .08044 L .82145 .25912 L s .82145 .43779 m .82145 .25912 L .97619 .34846 L .82145 .43779 L s .33329 .43779 m .33329 .25912 L .48803 .34846 L .33329 .43779 L s .33329 .43779 m .17855 .34846 L .33329 .25912 L .33329 .43779 L s .33329 .25912 m .17855 .34846 L .17855 .16978 L .33329 .25912 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 181.812}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy1nFlvHUUQhSexnZB935e5zr6TOGYTEggQm0QkFsG7FSElDyHBcYCEfd9+ D6+IfxZ870zqjMdf1a1ObpBw2tXT59TMdNfWPb62sHTj01sLSzevLwzeXly4 c+Pm9buDt24vLoum1lTVmkFVVf8MqmH74XKz/TH6b3b4o/1lTHtx+M/8cOyD jqCaemhgy79dBtlXzeV3oetSTzZU7P5jXb4El18Y/ZzpymxYq9Q9GHYOZFMg uzcxiC+g6wzIZkC2NDGIL6HrFMjWg6x5W+1TXdl1EmTPgGzRhzgBsg0+xH3o OgayTSD7fGIQD6BrALItILvTQHwNXTXItoLstg9xFGTbfIhvoOsIyLaD7DMf 4jDIdvgQ30LXQZDtAtkLw59rh6L5Buw7uOgAyHaDbN7AmiX9qLO66mPvB9ke kDUQbLFa1b+HYftAthdkl031aeid8wkIjEgvGcE6n+CH5MOgh3beCMiEBAT0 JumNk+UOqH6ELpqBNFNP272QFWkJfoIuWiW0mk4YAdmYgIBWMq34Y0ZA5qMl +Bm66HKySmQvC6nINtYe/ehedvoEv0AXPVvS+5AR0FxsCX6FLpod5Iv2GwEt 1wkQ7DUCWpotwW/QRb6afDo9mEIqWqsUgey0eznkE/wOXRT9UJS0zQho5bQE f0AXRWgUyW02gvrpENC0CKj+hC6KeV0LO7oXmncTIFhnBDTvWoK/2sdD3ref ehj5CJQmQAv6d69rCHY5IKI3MRZquisb/n/WR7lqWn8ybD0/bNEj616+muBD Q+lFQVf4+uC2oqDn/aBvLug7PY5uZddau5v3rEUhEqW3Gkt2JiCdtoHvWIvC JiLV2ONlpETwhoGR9SR6QiGfFyiy3khfh96sIkIppN9gA1+xFhk8ItVYilkC UiJ4ycAokCB6QgmcGCki3/Ei9GYVEUoh/VYbqGSKYk4i1VgK3wNSInjWwCjo I3pCCcItUmSHkV60FkU+RK+xhaS7bCDZ+iy9UIIYluj32MBT1qIEkkg1NojM iZQIZg2Mpg/RE0qQg5Aiisxra9GSIXqNLSQ9aAMpN8zSCyXIIYmeSPcZGBlO oieUjWWKHDFSTSRyFkSvsYWktQ2kOZulF0pQgiD6WZBtMTAKGYieUCh5CBRR hWCTtShMInqNLSRV3UPhAQWERKqxlFoEpJQCEERWkQZvuiszh8kaqJ7UCckr x+IT5QhgagzLGbvofBJWI66OeXyUT4xklM64D81FueLTN3OScwmledl3Nxat d/0lX7HjRk75CIFRgktKxsjKagLl5EwpIVCOklUpi3fBV6m2i8hkqgxAdYZy Eyy8c75K5OsITEWQrH8oQkY75LtuNyPaaL1FTtzFUzYVqBSHIZtBNpkAp++1 xoR3FKLJ704m5Ov78XToS2CqUk46HCbZwFc4DvKV9kwmadhuvYFKcbKjXtq7 Kk+eVJA+6qsUp3+kSDavjZF3W+9hXznNJarZa/Mgq1IW76CvEm3+EJhWXFEZ IouMS2hMYYaMhWwV0ZeXaA5Yb6CS7D1tZMi2kxEmlWI87ZLt8VWSp6yhl9wS 7UCRcjGy0sFdvnK0QURgtYFllStCJovHCs+YIhQUKSYjelIzxhtYb6CSQm4K HRW5UmJIKsV4SjS3dlVamXs9uoTyvJPWSwF5f4tmHJpS0M2+OhVvqZzmS+fy CKTRho4eox7Kx5TmzYXXKU1tYXU5JaojCHeT6oyBNTFu54hLBRmg+8iecCdL eWdTJ2oKywUZINVEmjexrv/SHv3r7kUloEnWaq6adJwWEoRfPKkchadCPC30 JjbvHP+JE0SqcGmVNzeW3+dVlke4MpBNyOvvPydkA0/mmrvsDjg5GZcNY/nO YiOweCuuBtmT3I6iCGLrH+bpLNA4BaXYQV6fPGD2NIXSNuJQGNXkBrgcSPXs ZqDiKnp32ZugpM5loxyi6qxpimET8S9FbIlAifyakp5UdKyVTllCvDGpDIPe WFZhpZDEsa/Xi0uDVM9uairnomA/e8rLRU7I2hvT+qbDltlclgo+tM9DVj8+ bLcqX9b6piQ9UWkga5IwBRSBK4tM1SF0OdVesnUbt5KVcD8ywKlajrs0ErK4 RkYHb7M3UZewIV5nfZMhzFYN6Rlmz+P2Yx2Po61ManLQPm55TZeef/ascnwY elWdl5YG3UR2g1rxCiFnT3STT3DZMObvrO/ae3KdRAZ8rWvFaGKRX1UYGXM0 AUhnfdN+dG292UDANcCJYONcyLZqN4gWCd1EdqNdlRWyXdlPHC6WsGEo3lnp cT3FjfDdGCb7IYi+NIk5mpvtrO+44tKkH1yroQmR/fLmSoqhqRrgsiC1nSMC VARwQ9LE45/P07Q3oDXsFoBmPK+Q/QzrOUNpD2Uo/4wLReQcsh+S0WnJLn1p tahaWXHKHtQiS3urq0b+UHR0VCHr74Kv9sgAxzWk+FgCvajCbxFJpbhyFB9L oAlb+IUlqVRUHUqMpdVOY4PPUUnNuOqjPI2SQ1KJXCGFgoFKcTUnPoxA9rzw u19SqahKkxhLatLMJU8SqJndLaTKDXm9wu+2SaW4qqKMiBY8ObPCD9qpq6ha khj7lNTMVkHIz5HDLfxrAqRS9gQEPZGnpFL2nAitOHpyhX/5gVR6khM2WTXp 7CYFdIGa2XoDuWx61om/1kFqZM9vZQOX4G+MEH1R/v+YsVShStkcvobe0YTv /pEX98xBIgsmX/6vD1uUBSfGBlTZDJUcWACbyyPJtgegBVleIbISMUrTgoHa 6idzN+5e9IDcPfkAgnIGeol0XQCrtEPhYyGE0oT4U4sAoraB8t6FU5tiXvIA dF0Aq7A5/ogngJCl1mYkmcAAgj6kIv8SQLgfhSWuC2AVR+gwUCGEoqOz1qJI KICgTwvp5QcQ2u1QzYqcUgBB6UH2dGYAq+xEf8+nEEJV+JetRdllACH/+aq1 yM8GECR7LXldAKvq8JvWKoSQVX7XWmRcV0Cwl7tmLQp/A4Dl9gcs/q8zaAT3 kbW6XT2qj3360S8FfwKvWvM/SObJlg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {180.812, 0.}} -> \ {-3., -1., 0., 0.}},ExpressionUUID->"32d24bd7-28b9-4b11-9876-842dc0b45571"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(88\\). \\!\\(\\\"sphenomegacorona (J88)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"ec40cfa3-7801-43ac-b6cf-2f3a03a4ea5a"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .73205 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.34127 0.124541 0.33489 0.124541 [ [ 0 0 0 0 ] [ 1 .73205 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .73205 L 0 .73205 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .279 .21035 m .46581 .27262 L .40354 .45943 L .21673 .39716 L .279 .21035 L s .08608 .24983 m .279 .21035 L .21673 .39716 L .08608 .24983 L s .42633 .0797 m .279 .21035 L .23952 .01743 L .42633 .0797 L s .42633 .0797 m .46581 .27262 L .279 .21035 L .42633 .0797 L s .21673 .39716 m .25621 .59008 L .06939 .52781 L .21673 .39716 L s .21673 .39716 m .40354 .45943 L .25621 .59008 L .21673 .39716 L s .14835 .06302 m .279 .21035 L .08608 .24983 L .14835 .06302 L s .08608 .24983 m .21673 .39716 L .02381 .43664 L .08608 .24983 L s .59035 .5217 m .40354 .45943 L .46581 .27262 L .65262 .33489 L .59035 .5217 L s .78327 .48222 m .59035 .5217 L .65262 .33489 L .78327 .48222 L s .44302 .65235 m .59035 .5217 L .62983 .71462 L .44302 .65235 L s .44302 .65235 m .40354 .45943 L .59035 .5217 L .44302 .65235 L s .65262 .33489 m .61314 .14197 L .79996 .20424 L .65262 .33489 L s .65262 .33489 m .46581 .27262 L .61314 .14197 L .65262 .33489 L s .721 .66904 m .78327 .48222 L .91392 .62956 L .721 .66904 L s .721 .66904 m .59035 .5217 L .78327 .48222 L .721 .66904 L s .78327 .48222 m .84554 .29541 L .97619 .44275 L .78327 .48222 L s .78327 .48222 m .65262 .33489 L .84554 .29541 L .78327 .48222 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 210.812}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy9nftrXUUQx2/zbBpT+27SPO7tI03fL9taW1tbbBtbLT4RBEFiKbS+qf3N F4IgCIIgCIKgFiqKoigKgiAIgiAIoiD418Sene3M6c1nTuaao/3hJtkzu/Pd 3dmZ7+zZvT03c+XihWdnrlw6P9OavjzzwsVL519snX7+8vWi7kWNxqJWo9H4 o9Uofp+9/mv+SP/WFx/5jw5+P1n86C7a+btU0Egls/mf/PVX1fMbjfwpQqdA qFeFfveFFqvQb77QoAr96gstVaFffKHlKvSzCJ0GoZUq9JMvtEaFfvSFRlTo B19oTIW+F6FpEJpQoe9EaBsIrYOy9Vrxm84qbtKKX0nFrW1ChSmOQsUprfhF uWJPWaj4nZRu07qflev23lT3hnJqYIc28ImIbQGhbihbC2W7is+uouia31gP lK2Bsp0wfBXN9kLZaq/Dcwc3tzwFNfqhbBWUbYeyLii76qtaHFTVblqzziRV qBqAspVQFp3CrGozPBqEshVQRjBpWmtQNVl8JkulIa9QcEtQwUYooyH/WFRN wqOlULYcyjZA2ZLOVN0KZcugbD2U0ZBXqKJmSX0Lymjws6pN8IjmhQa1CWVD namilUOqxoO9/8hXRf6A0I5BGQ1+VkUGS26Z5iAFlrSaaBwqFFAQIXsagbIa VFFfSI6GPMW6FEaeE6W0DAk39Y8Gmsp2tJUVMTGFmFT0tA+EQj/5CIqYNCIS 6+ZEUaOwF30sxIHINdKoD0MZETSKuwbugoAjb0YLlEIEWR/NdjRSG69/0gc3 EQSXlnlaj+QEohHdsognfEhNKCPCRE6OxppiLnEAy14eF3AULwhwn9dYYKwp nlF7ljU95oOjpUE9Jd/ehDKKFa7lpqJHfXDkQclGyIO6nU0W6bq/VPSwQKL+ 0eATJHJrZAhRLmM56QMLB0d+jsaadNBYWy58zgdHa8r1QQGroqXhWmkqOivg qCJ5I/LeaZ0lC6I0IcqrLLuf9iGRzyZINMEELsrEbAfhpA9Ooh0n+OQ+aHwp AlNmYTsTJ0QFDbOTUNPgUKSmoEnE3XY6jvlYaM+ALJ1SdaIWREFsx+SID8R2 Qshw2mlc8RexLGJj1vJhUU/WtUcx7vaaTU1Qn9vHsPirQlXC0+upinI4GpEj vtKtqrR9dhtpyK9/UDfIrsj+yDzulNZp6UwqGmI+tvdL5k/LjnSQTzrqQ2op JIoafQqJ3BW5piiPPOZDGlVI1OcBhUQRJ8oeqTt3CSTKgNYqJFppQwqJqEKU M1LwPe5DWqGQ6OkyhdSEpzTVJEdk5YQPaUghUWNGJ8lGiFDRaBo/zKGPluWA AnET/FTk1u3y7IsgVQDpUSC0BtYpEErhoySLWPQphtRI4dbxeeOKhlJWclhk Hk0ok3cz4s7Tk73eyHZ7q54IS5TeTZfUtz0iIEauaOUSW6G5JRu/pwQkWdg+ r1epiJYEcRTy+ORXz4j6tbkfpUfF73ugxnbFQsZIhCX6DuxsGQtzVGIJuxRQ b0VNsm5anfeWQczfN6IeexUQ8QvqAmm7TyqQF4iy4wPFZ683kUbk7vdV0Roj 2zqkfY4SuQqltCtC6+kQlKW/aFbIgeWcnOI3GTdFY8LQo4NBQ0U88sH/Bki/ AolStYd8ILT7QN6egCxRIFGClvdyyHLIB1JMJyC28xelZY/4QIgy0cYcAbFd vuiGyKTW2OlDoorUU4K0ShV0RMaSgyHfKIkQLjya8WYQplGGaqqWOFAKae3+ pKEuAsHRuqBJInCjCi5K3yyzkb3HOUG4YhiJFRHbIaR2xiVK7SzhkenjQCuB CL0clZGpEdwNCpemhyJGMucer4NEmqZ86NQE8SmCbgs3Sh5TF9PwEjOgGpt9 6OQmiH4R9C0KPUo8kwPq8ZwI0YlJHzqFIaLsBN122qI81TLEJjwlE8vQaRnS xFEZQd+t0KsYbb/CpZhKC3iTD5dGlTwYwd2ncGVUeTc3lRIfounZ6CMlp08m TkgPFp9LZhvMEOndj4Rz9Dm0/MlNEJA7is8UpSjb9Pc9wttrtJpcIG1llCz4 r+rCkGgyI5AKWydI/mEcpBcUwQm6D2mOXVOq0yGqJpSRnI+KncOuYLsTPrQW lBG9jJoVRYvopraQGhxcItxkrVGYFF2jadyYD5MSFFrnUZjRt3U+cUGYFEoo 8YvCpDBE2StFeiEpaHPUBMWRumFSSBz5/2BSXUrBiWgM+zBpc4DoThQmBVKy fyIdFTCjB7ejMGn5Rc/hyQijoyGfRk4lCpN0UEpPnH6NDzN64DwKM3o2lqjB ah+mEDUOcoeD0KJ0gFJnoZZoKxJj57CCKCoiH4SAkK70USVS0tUJEIpk7mth rOsPT5q4qAnVAIRcT1qQfclieqTEHibJA0F8FEvdW0DIahCfnQAQN1FxMJay BUIaTZzJKy/zkbYUaTSnNujESAk6hViKZ/5GMhKWMYVOXqb6UC25SoJOMKk7 /n0NhG77buQyqg/fUmgn6NGsmtob8qHbgQRqrPpoLk0wQacVGL2LJLaA1rxU oafxd6/72EY+LXsCTC6NXF+HgG37KnpGPo2Su1dH0KN5PXGgQR+6HYlowlPy RNXnNQg6hVZaT7TYBQFmCe6JEgqJ1Yc7CDUFf6IztJ81UELtOgPyhnbqg8yS YFJEJgpPQUAMArd4qImWgqNxIHC0LqnbtJ0jU46PSL29pSAFBI4SDpdNdZsT wqEke55sqzg/pOgeQFrkyf7z0k5G6N7ksncJ5PcJCMVJNwUuBUhcwwTJzrIQ dyFIlNGTWzCmlHMb8ojVN8NIfTRTN7aTN1FoB6vzO2IHoUY0KzcW05SGqeK/ ui12G1Si/hJTMoKSX47QCNdzb4x8SDQJNzIiHUM7rOcGGUWSqiR8UKGJR5KB rPH+GHVhZ67XZhN9ikVsAgNzPRfHyDdZ6t2lQCT3RTdfzyUxatlS73zKO3r5 rvNrYNSKHbAnW86QiDJQWfTyV/XZejoCko+bUw/qufJFfsMCg9SdY8N5eMg4 6rnrRXsDdghFIigv9XyLgRZQPTe93BfpbgpJvkwCp/SpxjtftMFp4cM96d1W lv0BJa313P4ik7RD+DQn5OhuF5jUq3ruhBFpsgyWnBrVEEISDtCdXxejKbRs NfotLLLBWMFu5ucb1ZfJZB3ceCjL108Jby7bLzUjbHB2tsOrZsm7UWZHVppj NjVGp7c7u4hWDBIdra8AskoV1H05zT35QZ5bUJci3cIvp/WTe9dhih5rkA6U 4l3dV9To+Hz0YIMYXSns1X1Zzdmrp8khNTLIpdhX9821qqNj5HTIgjKjt12N uu+yEbUlzhg92ZBPRtueRxOEFnLTzb2jGZgR14U3Snsj9dyDoxo0rtEzDvkM su2X1HNLLnqoNHrGIZ89tr2yuu/QkekQRaD2KgDbjaG6r9kR3ya+Fz33kLcf 9ivgui/mkTchLxE9ASGeQ/hselL3Bb7ocXQyJ/cLHfPL+25vLS/kyh/NGJlY 9IREPnp+VAHXfS+QIhPpiB6eyKe2jyvgOu4N0sJ130MHFm7ejrxbQS7kLiFF HgJH5kILLR/PTnd4A/cLiRaTepp8ckz5UPYZeLQQpk7vGWmqaRsmH89+CR5F v+yL1jlNJrn+lq+eVg8NNIW26OGFrP5leBQ9OU+BijJBYixNX32UQZP66CGC CV99lBu7e0sBHz/uq49++1dUPXnsfOb5FXhEFk1hMPoFopRKj/rqjY/6x5zm B0IBYJ2vNMouST1NA+W7I776KFckEkAegBz7sK+eiA+tWDIu9613yrFzn18F oeg3adF6Jp9vry/GfaXEwMg5UPCpfoe9wVcaZVGktPot9VRZaZwJRRXZ+4Ud ZUVzdk/I2ikKVL9gzhtTrxU/3P276Bcr2Bb/wUizFLHde5Kp2fxNVa8XP5IM DXTVl2LYG9jjUvSGNkXGMZy72jb09u40f1HMm9oKLaaRtlbyz9RA/iKPt7QB coB2Fip/E8TbWkCU8xkRekeFmiCUv8P2XRUitp2F3lMhImNZ6H0VInPJQh+o EHmYLPShCpHrfUqErqoQhYIsdE2FyGNmoU9ViJxNFvpchWg9ZaEvVYjM+JII fV38SMaQu/utL5v+6OD/0Ggs+geXTFKw\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {209.812, 0.}} -> \ {-2., -2., 0., 0.}},ExpressionUUID->"e48fa924-6574-4c60-8491-6a2ab2d005a5"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(89\\). \\!\\(\\\"hebesphenomegacorona (J89)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"2ca70ec2-74f1-4f06-a8d8-2bd0a50e1315"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .66667 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.289211 0.104118 0.281274 0.104118 [ [ 0 0 0 0 ] [ 1 .66667 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .66667 L 0 .66667 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .23715 .17716 m .39333 .22922 L .34127 .38539 L .18509 .33333 L .23715 .17716 L s .07587 .21016 m .23715 .17716 L .18509 .33333 L .07587 .21016 L s .36032 .06793 m .23715 .17716 L .20415 .01587 L .36032 .06793 L s .36032 .06793 m .39333 .22922 L .23715 .17716 L .36032 .06793 L s .18509 .33333 m .2181 .49462 L .06192 .44256 L .18509 .33333 L s .18509 .33333 m .34127 .38539 L .2181 .49462 L .18509 .33333 L s .12793 .05398 m .23715 .17716 L .07587 .21016 L .12793 .05398 L s .07587 .21016 m .18509 .33333 L .02381 .36634 L .07587 .21016 L s .54951 .28127 m .49745 .43745 L .34127 .38539 L .39333 .22922 L .54951 .28127 L s .34127 .38539 m .49745 .43745 L .37427 .54668 L .34127 .38539 L s .54951 .28127 m .39333 .22922 L .5165 .11999 L .54951 .28127 L s .65362 .48951 m .49745 .43745 L .54951 .28127 L .70568 .33333 L .65362 .48951 L s .81491 .45651 m .65362 .48951 L .70568 .33333 L .81491 .45651 L s .53045 .59873 m .65362 .48951 L .68663 .65079 L .53045 .59873 L s .53045 .59873 m .49745 .43745 L .65362 .48951 L .53045 .59873 L s .70568 .33333 m .67268 .17205 L .82886 .22411 L .70568 .33333 L s .70568 .33333 m .54951 .28127 L .67268 .17205 L .70568 .33333 L s .76285 .61268 m .81491 .45651 L .92413 .57968 L .76285 .61268 L s .76285 .61268 m .65362 .48951 L .81491 .45651 L .76285 .61268 L s .81491 .45651 m .86697 .30033 L .97619 .4235 L .81491 .45651 L s .81491 .45651 m .70568 .33333 L .86697 .30033 L .81491 .45651 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 192}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy9nftrXUUQx0+T3KTvpk3bpE3Se5O2SV+2arVWW1tR+wBREARR8YdQhFYR pfZvUMGffSAIgiAIgqAWKoovFARBEARBEAT/kNizu5k5nvuZ7Zzem9sfkty9 c3a+Mzs7Mzu7e/r40rXLL7y8dO3KpaXOhatLr16+cum1zvlXrt5sGl5TFGs6 RVF83ynKv5dv/pl+hH9z5Y/0ocHfD5S/hst+/q00FKFlOf2Ln/7Jfb/Syd+R 6BQQtYToL5torRD9aRNtEKI/bKLNQvS7TbRViH6LRKeBaEKIfrWJdgrRLzbR LiH6ORLtA6Id0DYjD/5oP7gT2vbIg9/FB/fWiEoDmoQH5+TBb6oPjlSJyr+J 6T559qvqs63/PbvCnMRdKH8OlU03Itk8EA1D2zZo2w8SZ7odcXZr6CPTcwva tkLbfEZbqfs5eGwM2sahjZ4lXV63Wa2Fti3Q1oE20m+G1Tpo2wxtbWgjhSdW hGyDk9UstI02Y7UR2jZB23T5M0wE0kMfGOyGtvXQ9mVk1XaqiNjvgjZSeYYV 2RixIodGdBlWNHMILfk/UnRitQe+Iu9CY0CekpSfYTUBbWRZ250a+cJmRV2Q 3wjSBxMncBoJ3oqsaPLRGBArkoCYUsTIsCdrI2dM1ktairG9K7JkEExBG3kk shayqly8TjBm4DFyJuSDaX6YOYgjUr3ZDBJphqY2adUb0TKQpp1aIhdAPjRM vjBFyOgSEGJKlkSykIMgvVJ/DSGRI6ERHxOZiSlpnfxBBkgb2oagjWyJhPDG 2TciJCKn2UCQaAhJHG88zkDKZapk0jR7aJZRrM7AMFJxUgQpMYSPYEzkoRNf 0hbFCbJWWgyQ223IXmMjmQGtECnY0QrkdZvpYvkzNC3Ct5TKmGuyMGDPR1Zk BYtCRKwIN8lX10Oxoq/Q9KzNPoxai9Qbuyh4FU5JBkV5w2i1SvK0DW1WoJH/ 0WoMWTsZGRkjGS3ZmQJ+KgKmSB5mbZCVPMyodNGGb4MzCOomeySXQnNQC0tP 2jB3iF5JS+ukCwowJBgBJhHJU2mR6wkb8LgAJtPfJF0QEAo/5F0pnJFz14Lb YxEwpeUbBTDZ9bh0Qc9SHuLNa2ieaPHvog042E2wXOpWS4Okf8o5zIwwWDiN ifI4Z8McFr3ShJiULshrenMYrxFpKfThCLjuXooQnG/+qAfQ5RUTDE20WhkR VZFvI5sy52VoOltBGLo9BOSzQk6dkbchcN6ihNZ6T7P6yk8HLKahiQyPfDf5 eLIuGgmtLN9f1+FBINeacPQdnDSSQXgzJRX/ROwuRt2uCEuq06ymPpolKko/ aL5T6Fe5j1dRsfgL0MHh8mfLAh7ms6N6cneV+a0No75LUH46KpKQPm63tlJ+ SuCInCIjWe1RaAufKEXzpkCkheM2Vu+K5xhiXc7kbDT/aJ6SZu6xAZPjb0Mb KXdMANMT3qIsCXtvBEzLBvJrFKkI8HoB7M3evPWfEzZgSlmIPZlE8+zNm27e ZwOmbinHIg1rPtXv7O1kBEzJC1kaZbEEeLsAptmhNSYyMc3ZTjUDR4NEw5/P 2cjXeOtOGcBUmaVpQNqcFsBm4uawTVJPyoMoxJArJ0dDgDWD6Xda96ANmNoo 9pBJrF6Cd8YGTGZCaQRpeL8A7kfSdzY+QENO85faCOQBAUm5H6VkJP5DNjgi J63SkGv2Z5bbghN6xGZPqqSBJt0cE914c74EhFwAzRQCbALpJb971MZFDo4c IWEgrCOiNG8ud84GR/6QwooXnOZtFC5I7PO9g/OOaPMc7UIEZ56dcKQ3Xs1p fcubj120wZF8lCF5wTXPvcLwV6rrCJOSMYo93gH2ZlxBPS3yyeWnGDDQ0trQ Rsscr16nBDA5O+p5UqDX9z41nCD0DrRRmueF3jwfmxDoGxNNNVxLpEb05OqI h9dSmidnWwT91qQ7SjZivMBOablPSZV3AOZFBG+6tkFEoKBtZ6Qozr6MFu5y iuBL4NYJbFpukBV0bNj700M107sTSGkgNJsb4o5aArYNj9OEi3To4YPrDB7L q9Ejwj6OZ/gyfiq6T+cuL/MRij02pKC/0bLJa6ea5FGFkWx31mbfUflGRL70 W7ddjzSBRiPsB2mWYFpq1pldWOLmQVoYz5LOZmykGk3itzwBdXOT1lI23C65 KcunSTptI94miCmhyG/Neiu7xzK6oAWbXSRCy9ksItAyLb9Z6y1HmkVgCiKO JcQuWxx1zyH9Mo+KaYLrrfiREN5TN7RIm7KFGBEhaLlG4mhK7K1gkTjeoj6l h3HBi+CCJN5zapo1ewsvJIkdR2AC19p2ViQJ35AK8nvBNJW80G33DglsrS1m Urgnmd8aplk2QMAUPPLbxaT/RitvdPIEDsyzqGw20tRuC0yyQy9MGjHKOWkR HHWNEZIAa/beyzLGuwNAtbE4EbHCRZMp0IWI7s2VvUU6AhwRYMJKDmRBtElA qI3GhIaVhj86Y4yd9p60JkPpt5mpElxvXZ8mVRQVo2SD+wFadiTXQZhpoEg/ 5Lmi7WAcaHqjQKMKzU0CTiBJmAxwPTVP1u29eaDQydZ6gW5XZ1Eq79FI8mVa dSWmJIR3S4EQRI/ovqyRv92ge+Q0rwg6uRDzNBFGH2Tl3ck2L2mGJkpUzb1h hzMno4yRHnVNY+LNUfWUIrksEsK7eUDxLy487eswDsMyb9iFJu/+HPVsV7VI jXEwzSON3lsaWqgmQyDo3v0RWlBHM8bJ5D2XSUOtJWvvRo13g0IvHCSte4+8 5y+HaJWaJnYvgIPrrNTiM3cIbu2b88clKSaYJXmHP5sW6ClJ9J4D9F5PCWKH waSqKwUdWsVraS2tbs281RGu85dczMMcjuis9bRUdNO6xupdi6Gs1/sOhk0C OI5EpXyxqvdlKOvN7YHoZkva1tITV4O9N0NTwdgFGRXM8Zx65bR8G3rp99UZ km2hhjT9bqndV87PD/biDDmsBQGXDsZ2hHywl2Qo/M4JOLKYBHivdDHYSzIU xHUjpf5sOcPSSV5d+w/ikgz5jjCyletnXfMqqfag9DLYezLmGbvKXTR2Yuk4 +hHpahCXZojHuKiYBpncSqxSVXYfB3u5hkZEb6dRf3aeFG8whG8Ge/WG0q8x EYKmETmlWMyM03VYguqqXtEhXYaxDiZEkYlEvSOCOindrsrtnQCpgN16Smdo /GM2Fc9d93KTJzTRRkaG6Rn4qp/3dwoDEk2vw/GBy/BVL1dyhiyVkkM5ZGNo dstmjGaHqIRUTP4oqq644iS/3bekWBOXRD5gQ+r9LSldkdd7fnfRRtXLVZic pyNbo2myYEPrdzZGkYTEst+DhzC9V11IHIrQ3ldPpcN4L8JXvVxwIYMgmN4d 2QzMfr9shWBSGLd9I8LsdxpFYpNd2+4TYfaSKNFpIzIiMhjbrSaYvaVC5GVp dpMrtRfuxUu1r0pI3usqjU4zOzTYrkAKriJ/XcU8/e0YaPu9UV0aKT/1kuyY h3EcjiQdP3wbvvJeEiJ3SzDJL87Y7L1vgSM36t2qzLD3vv2NpKeFMiUbqVT6 DnzlzWFIeu/rVHfb7L3JCsE0j6lgf8je+y437/tDKX2bstnn39tGDAgI+d1J m6m3bkPsaRjIx6YthHfhK2+KQNOShotWOjts9hT6acqQcZH/C9KHND4jMwVy b1GdmGphdHeVae6Kx+3FO32zVrvKqGvZQjZAPCgDmRIeKbF8r/xlRk3vGeTg msPB/4OebsmT07DpYehU63q//DW8bCh6IolNA6M7Lqne+oF0ZZ99yuyBpBfP fCi9tK1e9C154cF03fkjedBMsUNTutP6sTSQw34uEn0iRJS7JKJPhYjCeSL6 TIjIAtKL6z4XInIfiei6EJE7S0Q3hIgmYCL6WojIsBPRt0JEvueZSPRD+SuM bRL3J5s2fGjwfxoUa/4D5nWS7Q==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {191., 0.}} -> \ {-2., -2., 0., 0.}},ExpressionUUID->"cd7845a8-0a0e-46d0-b39a-7cebbd93ec40"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(90\\). \\!\\(\\\"disphenocingulum (J90)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"defff8b0-7ae5-4a94-a6cd-113cbea062ef"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.16987 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.534189 0.186812 0.444828 0.186812 [ [ 0 0 0 0 ] [ 1 1.16987 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.16987 L 0 1.16987 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .18559 .79342 m .02381 .88683 L .02381 .70002 L .18559 .79342 L s .11722 1.04861 m .02381 .88683 L .18559 .79342 L .279 .95521 L .11722 1.04861 L s .11722 1.04861 m .279 .95521 L .279 1.14202 L .11722 1.04861 L s .34738 .70002 m .18559 .79342 L .18559 .60661 L .34738 .70002 L s .279 .95521 m .18559 .79342 L .34738 .70002 L .44078 .8618 L .279 .95521 L s .279 .95521 m .44078 .8618 L .44078 1.04861 L .279 .95521 L s .34738 .70002 m .53419 .70002 L .44078 .8618 L .34738 .70002 L s .279 .63164 m .279 .44483 L .44078 .53823 L .279 .63164 L s .34738 .70002 m .44078 .53823 L .53419 .70002 L .34738 .70002 L s .53419 .70002 m .44078 .53823 L .62759 .53823 L .53419 .70002 L s .44078 .53823 m .44078 .35142 L .62759 .35142 L .62759 .53823 L .44078 .53823 L s .279 .44483 m .279 .25802 L .44078 .35142 L .279 .44483 L s .44078 .53823 m .279 .44483 L .44078 .35142 L .44078 .53823 L s .44078 .35142 m .34738 .18964 L .53419 .18964 L .44078 .35142 L s .44078 .35142 m .53419 .18964 L .62759 .35142 L .44078 .35142 L s .62759 .53823 m .62759 .35142 L .81441 .35142 L .81441 .53823 L .62759 .53823 L s .721 .70002 m .62759 .53823 L .81441 .53823 L .721 .70002 L s .721 .70002 m .81441 .53823 L .90781 .70002 L .721 .70002 L s .81441 .53823 m .97619 .44483 L .97619 .63164 L .81441 .53823 L s .81441 .53823 m .81441 .35142 L .97619 .44483 L .81441 .53823 L s .97619 .44483 m .81441 .35142 L .97619 .25802 L .97619 .44483 L s .90781 .18964 m .721 .18964 L .81441 .02785 L .90781 .18964 L s .81441 .35142 m .721 .18964 L .90781 .18964 L .81441 .35142 L s .62759 .35142 m .721 .18964 L .81441 .35142 L .62759 .35142 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{246.125, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzdndePHEUQxtecfcYJMOBsvOts4wAYhBAIIRCCJx7JYMlCSPCAAGNyTjL8 NYicc/qP/GpuZ9tde3O/+rZ6Zm5s4QfvXVd1fTWp6qvqnr0HTp155unnTp15 9qlTo/tPn3rhmWefeml03/OnF4bmVgwGg3ODwYrRaDD++fzCr+m/c+cX/i0I wx//Vh9z49nn07/B0Zmif2qiMfaxmaK/q49V0wazSjL8F2DOwdjhRup/gmgV jB1qpP4HiFbD2MFG6r+DaA2MHZio/waidTC2v5H6ryDaAGP7Gqn/AqIrYWxv I/WfQbQRxvZM1H8C0TUwtruR+o8g2gRjo0bqP4BoC4wNJ+rfg2gbjO1qpP4d iHbA2HWN1L91RYvHdjZS/8Y9aeTg4GsQ7Yax7Y3UvwLRXhjb1kj9SxDth7Gt jdS/ANFBGJvcpYPPQXQYxjY3Un9w/HH8/IUEdcP4py1Totqs62HsSHBs8pAO HgLRodrYOBvWTdDY1IEsk9mHQTRJL5zDD8+U4UV+BER0C10W1CMCIG5Jgt/X wmwh/KMg2gNjRDzoMY7qbbsk4B8D0QjGiBhRiIzqbb8k4B8H0S4YI543bKGX 0tQTIKIkuDaoR4RRJFWC39nCbCH8k+6JWTy2PqhHhFYQFoLf3sJsIfxJEG2F MSLSRPKieokM3jv+uGwsIdA+HNmcPZifcmmwcjo5GiGg/Lh4jEoImhvV25T9 m2SUC8IUYZO7nGxde7Wxq4N6VMCQ3ibh06KzDIm9OlQyem0Lh4r0Kg9WgnSl 7/rKPDHqZteHc3X2YL7M9fk8kW6Drm8N0rsqe3B5meukfhWM0bPW9bNLuIWH syafBwKggNZ1gLwye0BJVLi+Lk90zS6z6xuyB5QBhes28QpPuszpeb08ecJ1 UqcL1zV1IT3CLTwciwPkMAF0TRPXZg8o7gnXLfoSSe6aOJPe5dkDyizCdVKn wEVFRddFCuEWHo7xJQKgwmwU1IsWequzB5Q7hOtb8kTX7DK7vip7QGFXuL4t TyT2Qc2ArpsLxsAoYgnXSZ16N30cBOEWHs7OfB6IwhJA100uo/EUHoTru/JE avF13fZj1xd+o4dKeD3KXg8WF2jk8Oy26TzJMgTdcMK3PTW4qc8lbezx2BGh T7eJgN7rnZZ6B9hwl9TcdNkEZOXhyfHQgQaniXz12/pLfC08PbtrZzoLBhfW wAmV9Sm6COhhPlqKENHVDXvKKbkI+OvyREoVUXgL98My+B15IpGNKLwVzcTP BDzVDm0cobmEIVzamo+FeGXUESteC+GtAUdlRRTeClAqLGfRX7f4isJbEUl9 BQFP/ZA2jtBcwhAubczHQkVQ1BEr5grhrQdBzD8KbwUZ9VIEPDUB2jhCcwlD uGT9ASoooo5YYVQIb0UxFQVReCtuqLif1eRziX0U3goUKsYFPJVJbRyhuYQh XLIqjQh21BErFArh5/JEYspReCP7bjW3dC0m/XOpcBR8lK1QFSDAB0z0orh7 2OT0mkg1gYhvFGNvtjJttjpYosVRs/uyFb1O1vr0NFzrIhIcxVVkPLReRRQ4 Cj7MVhqvOQ1bwGs6Hlo3IgpcFA67Wvsh5hl1JErMQ+s3bRzRdDy0BkMUOAqv 6XhoHYUocBFd6mothJhn1JEoMQ+tZ7RxRNPx0JoEUeCigqKrdQVinlFHosQ8 tDbQxhFNx0P9faLAUXhNx0M9eqLARQ2HrvrsxDyjjkSJeahX3sYRTcdD/W6i wFF4TcdDjWsiwT58nI7P7EwvYcJ+6zPEw2f1o+ckhku9/yc9Z7vg9aWJsRf+ esDiMWO9hZd8CGNtHCG6TBihXvREiUuAQ0Km9rp30KOOLhJ2vYZnQaWwv21J hkJqH65bOC7MBpaeiff3sfxrJVVhaifGfbEOgnALm+JWBBBT6WMjhLGcQteN dLubdAIhq80eGqtCC9mxlStU+fWx/ccq2MJS54o8kYh9H9uvrCigjaCh5j5N 7GPTmz55sxoOtTF3a2ZtrOs9lNGtkKH2DdXLdG7avHfQePvtsaxE+6tt81m0 gdH1RlzrV9AjPn0QSwkt+Wz5nOIZPTRtXrcgPYvpYqXkWHJ2SnThyDCaGcOK 7kTvese6ZVmxAnMMRFYB0NmnbU99vHQS1SP/xMEaiacI4LaB+nhbxdpZhcdk PLPKPpWQHu8+LtuW7MG873B0PzLFsj5e0hJ7TuhwLNNQ8UMAXYe5oe+ckTAi yz2+G0jO2SLDMGis67wtnCMTxF96fL2T3DSeT470+OYtOWe5lu60Ht9KJuco qNNYj+9uk5uWF8g5MtZ1XSqcsy4LxaoRjC3TS/fknHWvKGz0+H0I5Bw95nRT X2Q3bVGFnsyuu33iGzXIOVtyoVv+Ijs3ys7RZViGb1whJ+qvDEybinbmxXfJ EGSDVwXCeFY90vpMdcGr7/tZ8s0/k0sQWnIpWsp5cdp8fCsTBTJi/fWv+xn/ dnoaEky4ZG+Ypf7X3YWh9GqIrcTQg0nX7iUfSm9NstUV/5vtwlDRbUg0RvB0 f53x4fWWI9tKRNSU8sTLPpTeXmTbhvzv0AtD6a1E1rcgekMM4hUfKrptKPoV DoXweouQtdLolBPLfNWH0tuBrPXoVxNhqOjWHxojeKpJXvPh9TYfa7gPg/AC Sm/psa06Pg9dPPa6D6W379iCFUUQun3e8KGiW3VorAN4vS3HMjolIAoYb/pQ eguO9Wj97/ILQxm7m1BF3kYTLTvf8oGcrTXEFo7DGAUigVaRlYrH3ARS6ha+ 7RuzTea3gJTiljDm0jKyTXngHd92lI6daA81zIdB0pthjHpE7/oAmnrREVCs e88H0ISLAEhPAETJFUFRMH3fh9KUigCoZyIANJGiy01B8gMfQNMnOoJCgChV omMhex/6UJog0bEUAmhaRADUB/jIB4hSIIKigPOxD6WJz4l0empJqQqfZ32j muLUL/HY2Ce+MU1i6qdghrEoOTmRQT/1jWnScUOW1jKNcE9zC7WavMjNOIs4 kqW0cfKsb3Th5xthxqFsj14cmrZXSYgdHMgmKPOIu46eBrq2hWYpIu3OPlJG ScboDJCPw2yMcrQwRp4ZTaZUlIzRU0CeUcwRZqNMwdIlMcFCY5YaKZ0kY5Ru yVh0LUeYpYtiGYmWXZMx4hwuU3T3gwpj5JmFf7rWyVgbgibMEmEks5YAqLlR aMy6gCPfGD2Hblp3d70LY5NLwZGcQlYyRbxg4lfoW3JmWamGqKuaJtKj72Y5 N2MnY7R5QSU4olDELoR5nex01zuZJfqtc57ucAuzOg/qbnYyS+E1mhGjPewE 5f4ZEzdL6i61MDvME92vnHTZfzJLMV1nTt19FmajOTTac05Q1GfSeVV3lYVZ nWF1BzmZdTv2DccohCUodwOUm391Z1iY1ZlYd4GTWbpHdU7WHV9hNpqdo33e BEWHrjO27uQKszp3665tMkuhRmfxUZZSBkpmJ+csns+dbuyn09ZCKd1eYExz 7eRSIheswE4fOfzZRInOO2XLpG4JQCjZQv/QV9qflSjdJSX6W0F0wZO65W2h dH1WomcqKR3NShToklK0rZ7UjVgJpZuyEgXfpES8nyJdUr8l2xRKt2YlCm5J 6basRKEqKd0OIooLSf2ObFMo3ZmVKBQkpbuyEj3YSenu6mPJgzr5W1KDe8Yf c1MD9AZJshT/q4uDFf8BxCofLw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 245.125}, {287., 0.}} -> \ {-2., -2., 0., 0.}},ExpressionUUID->"32fc9ce3-5ed7-4363-9715-88d34d6308eb"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(91\\). \\!\\(\\\"bilunabirotunda (J91)\\\"\\)\"\>"}]], \ "Message",ExpressionUUID->"cf926ebb-2010-46c5-ad3e-3f6ec06e80aa"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.38173 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.204996 0.638097 0.204996 [ [ 0 0 0 0 ] [ 1 1.38173 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.38173 L 0 1.38173 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .35505 .6381 m .5 .49314 L .64495 .6381 L .5 .78305 L .35505 .6381 L s .5 .49314 m .35505 .6381 L .30199 .44009 L .5 .49314 L s .64495 .6381 m .5 .49314 L .69801 .44009 L .64495 .6381 L s .5 .78305 m .64495 .6381 L .69801 .83611 L .5 .78305 L s .35505 .6381 m .5 .78305 L .30199 .83611 L .35505 .6381 L s .30199 .44009 m .35505 .6381 L .18312 .74975 L .02381 .62074 L .09727 .42936 L .30199 .44009 L s .5 .49314 m .30199 .44009 L .29126 .23537 L .48264 .16191 L .61165 .32122 L .5 .49314 L s .69801 .83611 m .64495 .6381 L .81688 .52645 L .97619 .65546 L .90273 .84684 L .69801 .83611 L s .5 .78305 m .69801 .83611 L .70874 1.04082 L .51736 1.11429 L .38835 .95498 L .5 .78305 L s .48264 .16191 m .29126 .23537 L .32333 .0329 L .48264 .16191 L s .61165 .32122 m .48264 .16191 L .68511 .12984 L .61165 .32122 L s .51736 1.11429 m .70874 1.04082 L .67667 1.2433 L .51736 1.11429 L s .38835 .95498 m .51736 1.11429 L .31489 1.14636 L .38835 .95498 L s .31489 1.14636 m .51736 1.11429 L .54943 1.31676 L .34696 1.34883 L .31489 1.14636 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{208.375, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzlnPlzVEUQxx+5FkIuQsINu1yCoiJyKMZkE7kvkVtOjZRV8IMlBVgeVWKV lpbHP8d/FPJmJj2bl0/3vtm34g/yQ7Lp/r7v9Juju6dnlkvzzx99/c3888cP 5xtnns4/efT44bPG6W+fLop6V2VZ9jLLVjUaWf55YfHP8OPlwuK/RWXqrxP5 r56c458WQdabSxa8JMv+blX1iSqo/2rV9i/TLhH86T98UuD2fy0Z8IcO6gfZ bzp8AGS/6vCamGCA1oDsFx0+CLIXHj4HqiGQ/azDh8ViAzQKsp90+BjIftTh 60D2gw4fF4sDaBZAkyD7TodvANlzHb4RZM90+Cax2ABtAdmB/KdbJXP6g1tB tjv/WctFvaBterImqLaLqduEgubrrE5RB9m4kNHcMMgaIBsUMhoHg2wnyHqE bDto59qQOR+1J+3BHflPJ/KDs6TM9gLYO4RsBlRxqMin7U4j2yJGrQbtrjSy ON/JGdGQntDJJsUy8kL1NLL1Ytk4aHeA7KRONiaWkbeh6RTIpkE1KpZtBi2t 8VM62ZBYtg205GkMskGxrF6drCaW0ZzaBLLTOlm/WPYGaMk5GGQ9YtmboKUR PuPJPna/lucyS3a9A49NtKFyTAc7eLCgOgQymvVndYr3QUbR2qA4DDJayOd0 iiMgG3ntFEdBRu7tvE5xDGRr0yg+ABnF5ws6xYcgI6efSFED2UWd4jjIKNkO FLRiiYJCoUHxEcgoY7r0r1JMBdMLHiT/O/tMf4wcj/1EUdamAQp6l7sGJ1nb t10uu9I1+BTIrupwGvRrXYPTxL7eNTgt3hs6nDzOza7BySXe0uHkhD/3cJp9 5PYNOMWq2zqcouOdrsEpfN/tGvw9kN3T4ZSO3Pdwl5UM5RpKn9s9SKFsMhdR UHsXZA882XpQ1cUySsNcfu5ETZ1iP8icw6Uc0SXuTtsD2unUVpbMo23hRtFS zAxNUbL3FsgGxO4GaCdES0nCTFpTg0JGG5Mx0VJiFZqi/PMAyEaEjDYCw6Kl gkRiU+7tnYjm9KCpNZp6G2RxNCiJromWClpN3xS9MC2QTUJGFcg+0dIOMLGp bdJFtUBeSIV6Nf8SGqLOINezQ6x2S7Rfm/SzabS7xEaqBQUy2m+QGy5ujLPu 0PriFyeZVCwy6CnW1EFGaTDhQrFsGFQUNGkeUN5PuMSmqIhDGx2jdkiujBIN cogUBAlnNEUpEK1Y2ocSLhYK96Y1SmUtGgbCeRnPXb800H7KFqnERMuccC6Q qBXXnbohlOWSh6YoQDiKaJQIeNeG/pvydCpyUb5CuEnpm1gvTGyewiM1RbhY 2CWHtT3NEHpn6nLCUSZE88svY1zhtJ+jmUErhXDrpG/I4K1phlBIp+o04UhG g+n9DuabtJOm7iWHTLgR6Zt4aJHYPE24ekkcOUDyun72YeihQgf5ZDr8ItyQ 9APFzw1phpAzpGSDcNGPkOmTaYbQ0qeNFeFoaewS44Ih+j6sPdm+krh4u4Ce GNcNoS099RztaglHMtrEem+E0bIJMjKd9luEi2dBtG0aSzOEcLRvIVxfyWdH dZNmQUa5NG1FCBcvxhyST6H5PhHQ1ROqY1Dy3xPevJCfOV793ATHsel+cqp3 1NCRqfp5C87gGXiLxc+UIbi/KBh4/6GXSlyXuLjqlNMiCw+uEUFUUW1aX9Ho S48XXi3/vWSIa4Mu2vjhwSBxTB4s9nsGPZYp08vPfQyCRwKAhpqm+GEDT037 Varvbt270VJOWxLLZdTJ/mVajv8PyidaHlXcgNF82UoXmVTW4RGOPF0YGkqk 90vf0AKrEj6auiGUNNN9AzKpSpA1TJqQftgjn2jZk0mUOuiVXVywtCVtgIyS qSqJmHoHhGu88YIUeZgqqSllmMFbUt1gixhCW5AqybphCO0OyxY/qL/qJXGG SbEfNsgn8jxVNnQUlENgpMoZeRkyqcq21zBJfSvXN7Q3rlIIMAyhvR6NLplE fUjrkXBUYvDeyE+46NrivClhUtmykX4XBpfggBhCK6lK+Uy/14MX5SiWkklV ioyGSbuDEYVsq6V60pnfIRwl8cGM4qnI4m9c5FVKz7R9Cbk6hS3yCVXK7Ubz xa9XaM1TJYFwVLQPuyXKoKscjdD5h9FUlQOfxKbqICt7jEUHSEN6U43wHoVF 5GYxrXmDnjL7sseItHkxaOO1d0qW6OBxWCdzc0O9MeEU9eqtxCMrmjT9oiXX QXsrv2nUvxji7KalsEa05GnodovR1HohI18S7zdQtElsalTIaL88LlqKLEbp q6nZ3auRxWsvFD2o8Gc0FUdDPYNQu5e2lWN6U/1CRnlRXbQ0aRKbitfY1e8F ORFlEEZTxd1g7k3cX+Te98kLZcu/4UJXgta1NNByaghDO6xpA8WXoKLpFy+Z 0dAGsi9ARcvGxZy1cRaFC2ntvch0R/D7oCJ3GOD3QEUOvzP4XVBRlOoMfgdU FM0D/DaoKKUx4JRs+e1suDXaPjMN8Fugony6M/hNUNFOJsBvgIr2XZ3Br4OK Npqdwa+BiurhAX5VVXUDfgVU+t3zcJl9uYqqap3BLxdUubdttoOvONxo2wDn p8ZbfwoqyqCNQScKilfGrLwEKsr+EimodEwUUzoFxXhavIHiIqhoR0fuwqCg 8ir5s+5RXAAVlTTJCRsU+uERUpwHFeWSFGgMCir7UWgzKCjfpdgbKM6Bigps LjmIB4r8IFWpXMrlRIUkLiyPs/AM7TX2Cw8t4SmdjGpSe+VtaBkZZJR37xTL 6PwjvOYZUFGZqi6W6QcGSKZ+3deJ9Ao7kql3h5yIZmkgOw0q2g/HkyeaMwYZ 7RPsL1AHslOgqoMs/kcWNDyJZPHOPg3PtE7WANmAkFGPBrKToKIqULzLQXYb ZMVyTb6w1dtVgYdKjM4otQBkPOgmNf6fFLkp9K4G2YSQ+TC0IrEx3oqKcSPC 5/0wpz11eHJGJ60J6WYwciGMI60MkzTjXTAlWeQPArerlDmL6ESYfDUthVYy cvwlUjBarom0lJaRx0+kjfftDDIao7IX+siHNnVaspFoKQ9IpKXkjjKURNp4 ktcFMoqNVKBMpC17TzeRtuzRf6Alp0fTimI6Dd6sTkvWOtqWi2mVyGg+Uv6W SEurhzxBIi1Vg/VbmqVp4xckukBG/oiOUAIt5QM0mbwrXhFLT+gsZFzRoWfp FJulsxIfpIA3l0bx4HXAKXekETHgxH7/fwenvQZ1pAEn9nv/FdztcN0KfKCD 3KGDSwS/0kEbBfTYg2jDOCqgJzpotYC+bwWtSGcd5EULxCF+94Lk/08yW/UK ZNy4aw==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 207.375}, {287., 0.}} -> \ {-2., -3., 0., 0.}},ExpressionUUID->"9a236e93-69a6-4ce5-a449-a4b51be422f3"], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":", " ", "\<\"\\!\\(92\\). \\!\\(\\\"triangular hebesphenorotunda \ (J92)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"3f52bc70-9d85-4c3a-a294-\ b649857f5dbd"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.1393 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.861703 0.166359 0.829529 0.166359 [ [ 0 0 0 0 ] [ 1 1.1393 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.1393 L 0 1.1393 L closepath clip newpath 0 g .5 Mabswid [ ] 0 setdash .72019 .82953 m .81797 .69494 L .97619 .74635 L .97619 .91271 L .81797 .96412 L .72019 .82953 L s .81797 .69494 m .72019 .82953 L .65253 .67755 L .81797 .69494 L s .72019 .82953 m .55474 .81214 L .65253 .67755 L .72019 .82953 L s .55474 .81214 m .72019 .82953 L .62241 .96412 L .55474 .81214 L s .55474 .81214 m .53735 .97759 L .3719 .9602 L .38929 .79475 L .55474 .81214 L s .3719 .9602 m .53735 .97759 L .43957 1.11218 L .3719 .9602 L s .22385 .77736 m .29151 .92934 L .16788 1.04065 L .02381 .95747 L .0584 .79475 L .22385 .77736 L s .38929 .79475 m .29151 .92934 L .22385 .77736 L .38929 .79475 L s .32163 .64277 m .38929 .79475 L .22385 .77736 L .32163 .64277 L s .32163 .64277 m .22385 .77736 L .15618 .62538 L .32163 .64277 L s .28483 .4104 m .18704 .54499 L .11938 .39301 L .28483 .4104 L s .32163 .64277 m .18704 .54499 L .28483 .4104 L .41941 .50819 L .32163 .64277 L s .46123 .11031 m .31716 .19349 L .31716 .02713 L .46123 .11031 L s .46123 .11031 m .58486 .22162 L .5172 .3736 L .35175 .35621 L .31716 .19349 L .46123 .11031 L s .5172 .3736 m .41941 .50819 L .35175 .35621 L .5172 .3736 L s .5172 .3736 m .58486 .52558 L .41941 .50819 L .5172 .3736 L s .58486 .52558 m .5172 .3736 L .68264 .39099 L .58486 .52558 L s .8045 .60989 m .65253 .67755 L .58486 .52558 L .73684 .45791 L .8045 .60989 L s .8045 .60989 m .73684 .45791 L .90229 .4753 L .8045 .60989 L s .58486 .52558 m .65253 .67755 L .55474 .81214 L .38929 .79475 L .32163 .64277 L .41941 .50819 L .58486 .52558 L s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{252.75, 288}, ImageMargins->{{0, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzF3YuP3UUVB/Db97vl0ZZuC90tFsrTBypoFWrFgoggFEF8JKYhQktbHm3x rSD4IEFjYoyJMcbEGKPxXySpe2emM3fvfs5v57Yb2gS2e+bMzHdmzpzXzG/6 1KlLp39w/tSlMy+dWnj8wqk3Tp956eLCY69fWCStWzMajT4cjdYsLIzGf7+8 +Gv534eXF/8sFnb/+Mb4x9px5f9NEEbrx5TLmZKa/u9k6YZaeuXPuPP/TLKs m2QZra29/DtmWl+Z/hUzbaxM/4yZNoP2j5h9S21zgGlbZfp7zLSjMv0tZtpV mf4aM90I2l9i9ptqmwNMuyvTn2OmvZXpTzHTPtD+GLPP1TYHmA5Upj/ETLdV pg9ipnnQ3o/ZF2qbA0yHxv9PpN+u0HFqaR1K34srHgRtPWjvxk3cWvuW9P8q rri/VtyG0nfiivtqxZ0ofTuueAtou0D7ZdzEntr3zSj9RVzx5lpxL0p/Hle8 sVZs0jzA3jb5bSj9SVxRcynx+HHcxPba9+0o/VFccWuteAdKfxhX3Fwr3oXS t+KKm0C7G7RLcRMbat/3o/RiXHFdrfhJlF6YrLh+sqhW+zSqvRlXW/z7g7Xu JF9q4fNo7LUY/FHQzsfsXwDtXMz+RdDOZvZnOtlfjdkfBu1MzP4IaKdj9mOg vRKzfwm0lzP7s52tD7AL+yurxq6JLDNzEkVaptVjl4idWTV2yXsRsedQpN00 wP450M5+FOzfRNGDoJ1bNfbPgnZ+1dg/A1rRYs+jSBp0gP0B0F6/XuyfAu2N zP4CimRjBtg/Adqbq8b+cdCKwfsWimRYV4/9PtAurhr7vaAVb+JFFN2zAnsK fY+A6a24zRT9bhmT5MiVit9GUfLHNl8OnNWBijfVijtQWhy576BorkJV+DFQ 8fZa8VLMJK8yeWFbx6Sin78Lpo9N0RZ/Zkd52/iv348rZgd4mR82VzvNO3v0 PdRdAG1txJfkIvsXeZU3jgnS/L3NHgbt6YkOwnmULghrrDDR49+yg8ioOkUa aQ2EVpHPBtAOgfZM3OktdaT7UXoraBtn61QrlGhpTfeg9ABoCm00nGfjTqcn dSz2u8GneVAWQFJwMu4+C4OTfYKhrNBW0LRE2W/iqojWYrebri8QyfMNoEmB bwdNS5kdLQbz86BJ8JRekSDLXMyB9nwMSULWMqyaG6VwlAYZACK9pdXVlGvM gqQ5VCrrhdkgtZyxgEi8e+Uru0NUzRIzNauUoPgEUyrixRiSVlfNaiNrabSE qwCpJRA1NxJbdaqBZUeOTpLETCsupS+p0tbXiUPqY9OY9HAMTkCkgQVOc6jB SubacUY2B1cKs+uavJIc0o3ujGprV4Q5dAmexilhTOudSPKr0xIlj+au2QBL n8giCbqEW7LSEt8yLGmx0lxnb4+xkaRdZkLQtRLSXoLekvCagGTOk3ezL4au XbFQmxVgzZL8Q5minbVllcabj2l37RkZbMUB8pglbJrXBD2RpA2lZ2+JB6HN dLjOkqBrTRSJbAGtHfJKZDV5RXR0ZiGJPFIgTtByQSBM86BpRzQHS2pCjuvc bMDz2iwLpKXNFkDTpmiHRtL4amUAs/ZLyuWESrfXm99UYUpjzoOW1RNTSdov 99cOlAaQ0Anm+jpY7VNtgAMxTO2N6bTCWGRlp7QnW7im+RLgTGP2TvKfsqsp PNd8aV7blRTVkMIegCTxVn44zcO2JvJWBG22el33YnuVGpWsCFpStFsjrZ02 vlZbe+LgbGiUGd9fJ2pd6//KBI3/k9TKGStYlJKWoApLGnZaKY1Iums+7lSi qOXQ+CR58uQXJru3iOngRaMTjNjClHOFZVZCJyuaHA1QYdyS3pZqJHWlhKgG Ftv83MTaaCzqQGORR5bTBJQBndJIQNVV6Dd5BFp78amr2MvLYpamTRUlhOKT P5J9YR5Pyo3UuaREQG5EVnsTdzcUJwiIxiIHILfHwwIlkR7qHMtAVzoelz8k SL0muYSyR+u0yaPTsb7GEt8T4jUFuTvqSmNR6FO60n0LeQq626CuZA3z6PNN kDRtsvcCog5k4jIf770ok6MrKepKhi1rldHxOhZ1cCychO4OHkWRlLnGnMey zGRllT76CmpIi3+5YxBj85TV9+hEnRHpaQ3nnlojW4rR42CS9tIIjtTGsgoe fRVMUh8nQEuqPpGyDhw9UVtXGCHch2qNrHAywOTO96aJNIL52uzRiWa1RZLf 2+6U9nbQbiNnJUTT085Itxf0k6KW641GX0fNuTqzj8TNt9PQ6c0+bvapqEZC fTyzKZ5OyjpBHb5J/mjchIIX4Wl310/EjekGwPC92yxoVCXZ1C3b8+Fd2kR6 YqX2vLDDHxzkZadCnQdNOlBT2nIWT8cd9F46l2i2S7flzFwOZG92+qnS9dT0 JaaTq9/8+Oeo3vxQHCKTKw8ktZyW/bm4MUXI8pe0jmm90z2eJ2frQJr3ySna WDpTwjNd28kWjDGHQlxZh69NTXTpZHcdxNG4j97zcalh7Yq52mk5A1KMpkhW wUZvp0kPJLN132ydKoR6DDT5c1Kz6bfitCpilHMkT0T2XltMKbSWkLwzBqLj FdHkEvXe6kmbLUllCeYVa8up6wXSe9NnR52R+RhI71H28WikHUBuqEBKTlOh vjaCZFdOtbSDYrLUXlqafR8dENmN5mrtiYFIH/WGTKobJpkTKe9RJkk0Kilp hYmaTdm75ACmpdkZA5GZkTlSQNx7w+eOOiP5sgBzOZL8XiC993rurkA2x0B6 T3+VgZEOEpBkXJLzlVUgk09S05J8pXhkHpRoliFfPxskaQV90dB7m0cWt0BS szKo8otVt/dej+zeAKTwivEUTdKnRboqSI5llI2UWui9wSP7V2A8VH6ZhDHy gZha6b2XIzW/BEErGk+AbmCoe6ke6buB7tPyJs9czlV4Ztah7bVipdN7a6cK BNt3DOpKyqD33otkuUBKMre52SFYws3NXK4MqfcWixRYgXSgdirr37690OU2 BbLSgTNCSp2mpZkHU/uqQ8qlN/kgGysFViCl5UobWGmr9r2ITpWl72RZdRQy 2b0suNwLWYWUU5O09F4ckWUdAKfEUhL+lidOWcTea10zQpKmkGRMdzW6og7S fKlTB6jLaXKJBsBpJy2USrIaWyNdqj2hw6KrwrJ0oiSA03dCVh2cckYHPVEJ X5O3iesgy1gVW8wIIus9uxoNyVydHyW4FWsVGDI0vRZB0z59ejDuPm3QNIJj swGRnypr2QtERxsDS9QLSYZee/fO0viUkEzr9qtYMXk68u7ksOTuLWCHB8oG Jk42vdcBnRWi3G3Jg4LaAbhyOuXICK7ErDdgkdwMqLJe6Ip5ZIZ6oc93tjdg rgRdXreCWmU1w3PLDkdSbtOAG3C9oEsJy+EcgC6XWYGFIgXNkqBrT0htKzE2 4Kz2evvy/TRLvdCl3iUBA25+L3RF35qlXugKsWU/ZoQudnnrvdClOWQb5DMN xHu98qVme6FrO/c+3TUQ0Kt77WrJYXylbeXt3PvN20B6pBe6YGo4vdB7M43X Gbo0keyEaAOZMEGX8VX30gi90Huz4ANZTDUrl0eLHn8+tPJ27v1CeEbocjSl Ja4FurSJFOZACrsXunSzdL2ga5/0nmgNnFEIui64yoXSzPVC7z0VTGF8Im2c DbA8bQFWrjD8yLDDh2yHdlnYuNUU7/UC1gwLnAahk6Z23Lk9Bpxj6GXhtjTW teCbB609hLprJXyNtviTWl/gJIqSsoVoQte1qYjBhd9K9kJSy8ou7q+Qys0C KUzlRHrBSeuoD2UT9lZw+2Jw2h2yg73genPEN1dwB2Jw0jWydAKn7Rwnt1A3 kQ7G4GR0BK73w2fpJNXdVsEdisHJD5F7fy3glO/eVMGVj4QkDwInLyD+7n2Z clSOvt1ROzKBZeLKOIx5ytVJJKadrrHSU745/VY+82gXdRW9yQK3Q1iZu/AU dOKBXLpdD1QmGaV2zCqtVN72a68Hy61Us+2oVBapNNteM9Zkygq0407t5tJs e2pBp1w640vaPYlVeeJOXrb0jMyCjh0LsvbghqRMmlKqvTyJ2J6rEZNQCG0Z cPtCQtOuoYuvvFvYPkNQ2lIbe6Axudmi6ZBVklleOmwPwjS08UnWUlp5Z7u9 y66to8a0r8tr3wdrY8pc9J4plcY0nfJ0eu+alEfN28c82tSK86XYf5obawfg UlrKdww0dkdtTPZQ2TYZ65/lxnqPE5RQlPdU3pK/q2IcLX3USBmPgbfvJegz NvEyimRfyjP9r6BIGvLtmF1uxTuZ/TSK5FwOsEu2y7+LcAZFynq9G7Mrfnrv qthfRZECoF/H7ApOfpPZz6JI22GAXQ5b+VcxzqFIRvh3Mbs20ftXxZ7fqV7m CH4wWbrUXft9/straLPU6v+XdUZr/g8TCymd\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 251.75}, {287., 0.}} -> \ {-5., -4., 0., 0.}},ExpressionUUID->"d2616050-ebf9-4d85-9582-5dda2f81af76"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell["Notebook Generation", "Section",ExpressionUUID->"df629a9b-5549-4083-92b1-0841ad63dfea"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"dir", "=", RowBox[{"SetDirectory", "[", RowBox[{"ToFileName", "[", RowBox[{"{", RowBox[{ "\"\<~\>\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\"", ",", "\"\\""}], "}"}], "]"}], "]"}]}]], "Input",ExpressionUUID->"f943b83a-1f9f-411d-8029-20d91edbd804"], Cell[BoxData["\<\"/Volumes/Users/eww/Mathematica/Notebooks/Math/Polyhedra\"\>\ "], "Output",ExpressionUUID->"6392c611-3bb5-4d9b-bcfd-e98b98e2aa80"] }, Open ]], Cell[CellGroupData[{ Cell["Create", "Subsection",ExpressionUUID->"fd0df7b0-8568-439b-bbf3-166fbe2f5537"], Cell[BoxData[ RowBox[{ RowBox[{"names", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"StringReplace", "[", RowBox[{ RowBox[{"StringReplace", "[", RowBox[{ RowBox[{"PolyhedronName", "[", RowBox[{"JohnsonSolid", "[", "#", "]"}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"WordBoundary", "~~", RowBox[{"x", ":", "WordCharacter"}]}], "\[RuleDelayed]", RowBox[{"ToUpperCase", "[", "x", "]"}]}], ",", RowBox[{"\"\< \>\"", "->", "\"\<\>\""}]}], "}"}]}], "]"}], ",", RowBox[{ RowBox[{"RegularExpression", "[", "\"\<(.*)\\\\(.*\>\"", "]"}], "->", "\"\<$1\>\""}]}], "]"}], "<>", "\"\<.nb\>\""}], "&"}], "/@", RowBox[{"Range", "[", "92", "]"}]}]}], ";"}]], "Input",ExpressionUUID->\ "1dd59db1-799b-48bf-9f9c-84f3cab3f21c"], Cell[BoxData[ RowBox[{ RowBox[{"files", "=", RowBox[{"FileNames", "[", "\"\<*\>\"", "]"}]}], ";"}]], "Input",ExpressionU\ UID->"02c103b2-52e9-41ef-9ada-87b0b667afc5"], Cell[BoxData[ RowBox[{ RowBox[{"new", "=", RowBox[{"Complement", "[", RowBox[{"names", ",", "files"}], "]"}]}], ";"}]], "Input",ExpressionUUID->\ "c5fdaf55-1a8d-42d0-a356-59d641cef3cd"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"pos", "=", RowBox[{ RowBox[{"Position", "[", RowBox[{"names", ",", RowBox[{"_", "?", RowBox[{"(", RowBox[{ RowBox[{"MemberQ", "[", RowBox[{"new", ",", "#"}], "]"}], "&"}], ")"}]}], ",", "1", ",", RowBox[{"Heads", "\[Rule]", "False"}]}], "]"}], "//", "Flatten"}]}]], "Input",ExpressionUUID->"a715fc3c-84c1-40cd-ae75-\ 29e6982c3676"], Cell[BoxData[ RowBox[{"{", RowBox[{ "3", ",", "4", ",", "5", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30", ",", "31", ",", "32", ",", "33", ",", "34", ",", "35", ",", "36", ",", "37", ",", "38", ",", "39", ",", "40", ",", "41", ",", "42", ",", "43", ",", "44", ",", "45", ",", "46", ",", "47", ",", "48", ",", "49", ",", "50", ",", "51", ",", "52", ",", "53", ",", "54", ",", "55", ",", "56", ",", "57", ",", "58", ",", "59", ",", "60", ",", "61", ",", "62", ",", "63", ",", "64", ",", "65", ",", "66", ",", "67", ",", "68", ",", "69", ",", "70", ",", "71", ",", "72", ",", "73", ",", "74", ",", "75", ",", "76", ",", "77", ",", "78", ",", "79", ",", "80", ",", "81", ",", "82", ",", "83", ",", "84", ",", "85", ",", "86", ",", "87", ",", "88", ",", "89", ",", "90", ",", "91", ",", "92"}], "}"}]], "Output",ExpressionUUID->"a324e421-ca5d-\ 47b4-9a1c-d5b9ac025e11"] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"JohnsonNotebook", "/@", "pos"}], ";"}]], "Input",ExpressionUUID->\ "eadd295f-f594-4349-ab27-c81e7f86edd6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"\"\<\\\\download{Polyhedra}{\>\"", "<>", RowBox[{"StringDrop", "[", RowBox[{"#", ",", RowBox[{"-", "3"}]}], "]"}], "<>", "\"\<}\>\""}], "&"}], "/@", "new"}]], "Input",ExpressionUUID->"7a882d81-c05c-49c3-a33e-80ffaa52b7ba"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"\\\\download{Polyhedra}{AugmentedDodecahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{AugmentedHexagonalPrism}\"\>", ",", "\<\"\\\\download{Polyhedra}{AugmentedPentagonalPrism}\"\>", ",", "\<\"\\\\download{Polyhedra}{AugmentedSphenocorona}\"\>", ",", "\<\"\\\\download{Polyhedra}{AugmentedTriangularPrism}\"\>", ",", "\<\"\\\\download{Polyhedra}{AugmentedTridiminishedIcosahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{AugmentedTruncatedCube}\"\>", ",", "\<\"\\\\download{Polyhedra}{AugmentedTruncatedDodecahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{AugmentedTruncatedTetrahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{BiaugmentedPentagonalPrism}\"\>", ",", "\<\"\\\\download{Polyhedra}{BiaugmentedTriangularPrism}\"\>", ",", "\<\"\\\\download{Polyhedra}{BiaugmentedTruncatedCube}\"\>", ",", "\<\"\\\\download{Polyhedra}{BigyrateDiminishedRhombicosidodecahedron}\ \"\>", ",", "\<\"\\\\download{Polyhedra}{Bilunabirotunda}\"\>", ",", "\<\"\\\\download{Polyhedra}{DiminishedRhombicosidodecahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{Disphenocingulum}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedPentagonalCupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedPentagonalDipyramid}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedPentagonalGyrobicupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedPentagonalGyrobirotunda}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedPentagonalGyrocupolarotunda}\"\>\ ", ",", "\<\"\\\\download{Polyhedra}{ElongatedPentagonalOrthobicupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedPentagonalOrthobirotunda}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedPentagonalOrthocupolarotunda}\"\ \>", ",", "\<\"\\\\download{Polyhedra}{ElongatedPentagonalPyramid}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedPentagonalRotunds}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedSquareCupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedSquareDipyramid}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedSquareGyrobicupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedSquarePyramid}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedTriangularCupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedTriangularDipyramid}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedTriangularGyrobicupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedTriangularOrthobicupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{ElongatedTriangularPyramid}\"\>", ",", "\<\"\\\\download{Polyhedra}{GyrateBidiminishedRhombicosidodecahedron}\ \"\>", ",", "\<\"\\\\download{Polyhedra}{GyrateRhombicosidodecahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{Gyrobifastigium}\"\>", ",", "\<\"\\\\download{Polyhedra}{GyroelongatedPentagonalBicupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{GyroelongatedPentagonalBirotunda}\"\>", ",", "\<\"\\\\download{Polyhedra}{GyroelongatedPentagonalCupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{GyroelongatedPentagonalCupolarotunda}\"\>\ ", ",", "\<\"\\\\download{Polyhedra}{GyroelongatedPentagonalPyramid}\"\>", ",", "\<\"\\\\download{Polyhedra}{GyroelongatedPentagonalRotunda}\"\>", ",", "\<\"\\\\download{Polyhedra}{GyroelongatedSquareBicupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{GyroelongatedSquareCupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{GyroelongatedSquareDipyramid}\"\>", ",", "\<\"\\\\download{Polyhedra}{GyroelongatedSquarePyramid}\"\>", ",", "\<\"\\\\download{Polyhedra}{GyroelongatedTriangularBicupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{GyroelongatedTriangularCupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{Hebesphenomegacorona}\"\>", ",", "\<\"\\\\download{Polyhedra}{MetabiaugmentedDodecahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{MetabiaugmentedHexagonalPrism}\"\>", ",", "\<\"\\\\download{Polyhedra}{MetabiaugmentedTruncatedDodecahedron}\"\>\ ", ",", "\<\"\\\\download{Polyhedra}{MetabidiminishedIcosahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{MetabidiminishedRhombicosidodecahedron}\"\ \>", ",", \ "\<\"\\\\download{Polyhedra}{MetabigyrateRhombicosidodecahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{\ MetagyrateDiminishedRhombicosidodecahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{ParabiaugmentedDodecahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{ParabiaugmentedHexagonalPrism}\"\>", ",", "\<\"\\\\download{Polyhedra}{ParabiaugmentedTruncatedDodecahedron}\"\>\ ", ",", "\<\"\\\\download{Polyhedra}{ParabidiminishedRhombicosidodecahedron}\"\ \>", ",", \ "\<\"\\\\download{Polyhedra}{ParabigyrateRhombicosidodecahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{\ ParagyrateDiminishedRhombicosidodecahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{PentagonalCupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{PentagonalGyrobicupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{PentagonalGyrocupolarotunda}\"\>", ",", "\<\"\\\\download{Polyhedra}{PentagonalOrthobicupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{PentagonalOrthobirotunda}\"\>", ",", "\<\"\\\\download{Polyhedra}{PentagonalOrthocupolarontunda}\"\>", ",", "\<\"\\\\download{Polyhedra}{SnubDisphenoid}\"\>", ",", "\<\"\\\\download{Polyhedra}{SnubSquareAntiprism}\"\>", ",", "\<\"\\\\download{Polyhedra}{Sphenocorona}\"\>", ",", "\<\"\\\\download{Polyhedra}{Sphenomegacorona}\"\>", ",", "\<\"\\\\download{Polyhedra}{SquareCupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{SquareGyrobicupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{SquareOrthobicupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{TriangularCupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{TriangularDipyramid}\"\>", ",", "\<\"\\\\download{Polyhedra}{TriangularHebesphenorotunda}\"\>", ",", "\<\"\\\\download{Polyhedra}{TriangularOrthobicupola}\"\>", ",", "\<\"\\\\download{Polyhedra}{TriaugmentedDodecahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{TriaugmentedHexagonalPrism}\"\>", ",", "\<\"\\\\download{Polyhedra}{TriaugmentedTriangularPrism}\"\>", ",", "\<\"\\\\download{Polyhedra}{TriaugmentedTruncatedDodecahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{TridiminishedIcosahedron}\"\>", ",", "\<\"\\\\download{Polyhedra}{TridiminishedRhombicosidodecahedron}\"\>\ ", ",", "\<\"\\\\download{Polyhedra}{TrigyrateRhombicosidodecahedron}\"\>"}], "}"}]], "Output",ExpressionUUID->"bf81c744-cd4b-43a1-bed4-9dc986c7c725"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Exact Construction", "Section",ExpressionUUID->"9111d479-b542-4846-88be-32226c0fb748"], Cell[BoxData[ RowBox[{"\n", "\n", RowBox[{ RowBox[{"<<", "ExtraPackages`UnfoldPolytope`"}], "\n"}]}]], "Input",Express\ ionUUID->"946bcff9-56fa-450d-822e-0fba22a18255"], Cell[BoxData[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "1", "]"}], ":=", RowBox[{"Pyramid", "[", "4", "]"}]}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "2", "]"}], ":=", RowBox[{"Pyramid", "[", "5", "]"}]}], " "}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "3", "]"}], ":=", RowBox[{"Cupola", "[", "3", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "4", "]"}], ":=", RowBox[{"Cupola", "[", "4", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "5", "]"}], ":=", RowBox[{"Cupola", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "6", "]"}], ":=", RowBox[{"Rotunda", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "7", "]"}], ":=", RowBox[{"ElongatedPyramid", "[", "3", "]"}]}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "8", "]"}], ":=", RowBox[{"ElongatedPyramid", "[", "4", "]"}]}], " "}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "9", "]"}], ":=", RowBox[{"ElongatedPyramid", "[", "5", "]"}]}], " "}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "10", "]"}], ":=", RowBox[{"GyroelongatedPyramid", "[", "4", "]"}]}], " "}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "11", "]"}], ":=", RowBox[{"GyroelongatedPyramid", "[", "5", "]"}]}], " "}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "12", "]"}], ":=", RowBox[{"Dipyramid", "[", "3", "]"}]}], " "}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "13", "]"}], ":=", RowBox[{"Dipyramid", "[", "5", "]"}]}], " "}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "14", "]"}], ":=", RowBox[{"ElongatedDipyramid", "[", "3", "]"}]}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "15", "]"}], ":=", RowBox[{"ElongatedDipyramid", "[", "4", "]"}]}], " "}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "16", "]"}], ":=", RowBox[{"ElongatedDipyramid", "[", "5", "]"}]}], " "}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "17", "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"anti", "=", RowBox[{"Polyhedron", "[", RowBox[{"Antiprism", "[", "4", "]"}], "]"}]}], ",", "top", ",", "bot", ",", RowBox[{"h", "=", RowBox[{ RowBox[{"2", "^", RowBox[{"(", RowBox[{ RowBox[{"-", "5"}], "/", "4"}], ")"}]}], "+", RowBox[{"1", "/", RowBox[{"Sqrt", "[", "2", "]"}]}]}]}]}], "}"}], ",", RowBox[{ RowBox[{"bot", "=", RowBox[{ RowBox[{ RowBox[{"Polygon", "[", RowBox[{"Append", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "h"}]}], "}"}]}], "]"}], "]"}], "&"}], "/@", RowBox[{"(", RowBox[{"Partition", "[", RowBox[{ RowBox[{ RowBox[{"anti", "[", RowBox[{"[", "1", "]"}], "]"}], "/.", RowBox[{"Polygon", "\[RuleDelayed]", "Identity"}]}], ",", "2", ",", "1", ",", "1"}], "]"}], ")"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"top", "=", RowBox[{ RowBox[{ RowBox[{"Polygon", "[", RowBox[{"Append", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", "h"}], "}"}]}], "]"}], "]"}], "&"}], "/@", RowBox[{"(", RowBox[{"Partition", "[", RowBox[{ RowBox[{ RowBox[{"anti", "[", RowBox[{"[", "2", "]"}], "]"}], "/.", RowBox[{"Polygon", "\[RuleDelayed]", "Identity"}]}], ",", "2", ",", "1", ",", "1"}], "]"}], ")"}]}]}], ";", "\[IndentingNewLine]", RowBox[{"Flatten", "[", RowBox[{ RowBox[{"{", RowBox[{"top", ",", "bot", ",", RowBox[{"Drop", "[", RowBox[{"anti", ",", "2"}], "]"}]}], "}"}], "/.", RowBox[{ RowBox[{"Sec", "[", RowBox[{"Pi", "/", "8"}], "]"}], "\[RuleDelayed]", RowBox[{"Sqrt", "[", RowBox[{"4", "-", RowBox[{"2", RowBox[{"Sqrt", "[", "2", "]"}]}]}], "]"}]}]}], "]"}]}]}], "]"}]}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "18", "]"}], ":=", RowBox[{"ElongatedCupola", "[", "3", "]"}]}], " "}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "19", "]"}], ":=", RowBox[{"ElongatedCupola", "[", "4", "]"}]}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "20", "]"}], ":=", RowBox[{"ElongatedCupola", "[", "5", "]"}]}], " "}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "21", "]"}], ":=", RowBox[{"ElongatedRotunda", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "22", "]"}], ":=", RowBox[{"GyroelongatedCupola", "[", "3", "]"}]}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "23", "]"}], ":=", RowBox[{"GyroelongatedCupola", "[", "4", "]"}]}], " "}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "24", "]"}], ":=", RowBox[{"GyroelongatedCupola", "[", "5", "]"}]}], " "}], "\n", RowBox[{ RowBox[{ RowBox[{"JohnsonSolid", "[", "25", "]"}], ":=", RowBox[{"GyroelongatedRotunda", "[", "5", "]"}]}], " "}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "26", "]"}], ":=", "Gyrobifastigium"}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "27", "]"}], ":=", RowBox[{"Orthobicupola", "[", "3", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "28", "]"}], ":=", RowBox[{"Orthobicupola", "[", "4", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "29", "]"}], ":=", RowBox[{"Gyrobicupola", "[", "4", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "30", "]"}], ":=", RowBox[{"Orthobicupola", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "31", "]"}], ":=", RowBox[{"Gyrobicupola", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "32", "]"}], ":=", RowBox[{"Orthocupolarotunda", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "33", "]"}], ":=", RowBox[{"Gyrocupolarotunda", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "34", "]"}], ":=", RowBox[{"Orthobirotunda", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "35", "]"}], ":=", RowBox[{"ElongatedOrthobicupola", "[", "3", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "36", "]"}], ":=", RowBox[{"ElongatedGyrobicupola", "[", "3", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "37", "]"}], ":=", RowBox[{"ElongatedGyrobicupola", "[", "4", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "38", "]"}], ":=", RowBox[{"ElongatedOrthobicupola", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "39", "]"}], ":=", RowBox[{"ElongatedGyrobicupola", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "40", "]"}], ":=", RowBox[{"ElongatedOrthocupolarotunda", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "41", "]"}], ":=", RowBox[{"ElongatedGyrocupolarotunda", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "42", "]"}], ":=", RowBox[{"ElongatedOrthobirotunda", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "43", "]"}], ":=", RowBox[{"ElongatedGyrobirotunda", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "44", "]"}], ":=", RowBox[{"GyroelongatedBicupola", "[", "3", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "45", "]"}], ":=", RowBox[{"GyroelongatedBicupola", "[", "4", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "46", "]"}], ":=", RowBox[{"GyroelongatedBicupola", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "47", "]"}], ":=", RowBox[{"GyroelongatedCupolarotunda", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "48", "]"}], ":=", RowBox[{"GyroelongatedBirotunda", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "49", "]"}], ":=", RowBox[{"AugmentedPrism", "[", "3", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "50", "]"}], ":=", RowBox[{"AugmentedPrism", "[", RowBox[{"3", ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}], "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "51", "]"}], ":=", RowBox[{"AugmentedPrism", "[", RowBox[{"3", ",", RowBox[{"{", RowBox[{"1", ",", "2", ",", "3"}], "}"}]}], "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "52", "]"}], ":=", RowBox[{"AugmentedPrism", "[", "5", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "53", "]"}], ":=", RowBox[{"AugmentedPrism", "[", RowBox[{"5", ",", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}]}], "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "54", "]"}], ":=", RowBox[{"AugmentedPrism", "[", "6", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "55", "]"}], ":=", RowBox[{"AugmentedPrism", "[", RowBox[{"6", ",", RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}]}], "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "56", "]"}], ":=", RowBox[{"AugmentedPrism", "[", RowBox[{"6", ",", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}]}], "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "57", "]"}], ":=", RowBox[{"AugmentedPrism", "[", RowBox[{"6", ",", RowBox[{"{", RowBox[{"1", ",", "3", ",", "5"}], "}"}]}], "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "58", "]"}], ":=", RowBox[{"AugmentedDodecahedron", "[", "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "59", "]"}], ":=", RowBox[{"AugmentedDodecahedron", "[", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "60", "]"}], ":=", RowBox[{"AugmentedDodecahedron", "[", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], "]"}]}], "\n", RowBox[{ RowBox[{"JohnsonSolid", "[", "61", "]"}], ":=", RowBox[{"AugmentedDodecahedron", "[", RowBox[{"{", RowBox[{"1", ",", "3", ",", "5"}], "}"}], "]"}]}]}], "Input",ExpressionUUI\ D->"0a77683a-2bfc-4af4-ac9a-8eacdd8caf0a"], Cell[CellGroupData[{ Cell["Format", "Subsection",ExpressionUUID->"29aa2618-ce11-4b7c-a007-13b5279c464b"], Cell[BoxData[ RowBox[{ RowBox[{"Off", "[", RowBox[{"N", "::", "\"\\""}], "]"}], ";"}]], "Input",ExpressionUUI\ D->"b2195b84-f5e1-4d54-8b94-b7c113d9937a"], Cell[BoxData[{ RowBox[{"<<", "Utilities`Simplify`"}], "\n", "Null", "\n", "Null", "\n", "Null", "\n"}], \ "Input",ExpressionUUID->"523a8d37-f1a9-418d-9fbb-bec4b62ac916"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"j", "=", RowBox[{"Orient", "[", "poly", "]"}]}], ";"}], "\n", RowBox[{ RowBox[{"Print", "[", RowBox[{"ToExact", "/@", RowBox[{"PolyhedronEdgeLengths", "[", "j", "]"}]}], "]"}], ";"}], "\n", RowBox[{ RowBox[{"Print", "[", RowBox[{"OrientedQ", "[", RowBox[{"Polyhedron", "[", "j", "]"}], "]"}], "]"}], ";"}], "\n", RowBox[{ RowBox[{"Print", "[", RowBox[{"StringReplace", "[", RowBox[{ RowBox[{"ToString", "[", RowBox[{"PolyhedronFaces", "[", "j", "]"}], "]"}], ",", RowBox[{"\"\< \>\"", "->", "\"\<\>\""}]}], "]"}], "]"}], ";"}], "\n", RowBox[{ RowBox[{"Print", "[", RowBox[{"StringReplace", "[", RowBox[{ RowBox[{"ToString", "[", RowBox[{"InputForm", "@", RowBox[{"Map", "[", RowBox[{ RowBox[{ RowBox[{"RootReduce", "[", RowBox[{"Simplify", "[", RowBox[{"TrigToExp", "[", "#", "]"}], "]"}], "]"}], "&"}], ",", RowBox[{"PolyhedronVertices", "[", "j", "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{"\"\< \>\"", "->", "\"\<\>\""}], "}"}]}], "]"}], "]"}], ";"}], "\n", RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"Polyhedron", "[", "j", "]"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}], "Input",ExpressionUUID->\ "d6c164b6-cfde-488d-bb3a-9d749f2ee314"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", "1", "}"}]], "Print",ExpressionUUID->"eadd61b6-6b03-4cb9-9c7c-bd851909e744"], Cell[BoxData[ RowBox[{"{", RowBox[{ "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True"}], "}"}]], "Print",ExpressionUUID->"f8d0d897-5608-\ 4ea9-becf-36935f4445c2"], Cell[BoxData["\<\"{{3,32,31,4,12,23,24,11},{9,22,21,10,2,29,30,1},{17,24,23,\ 18,20,21,22,19},{27,30,29,28,26,31,32,25},{24,17,11},{9,19,22},{3,25,32},{30,\ 27,1},{12,18,23},{21,20,10},{31,26,4},{2,28,29},{16,6,14,8},{38,36,8,14},{42,\ 40,14,6},{46,44,6,16},{34,48,16,8},{8,36,34},{14,40,38},{6,44,42},{16,48,46},{\ 7,13,5,15},{13,7,35,37},{5,13,39,41},{15,5,43,45},{7,15,47,33},{33,35,7},{37,\ 39,13},{41,43,5},{45,47,15}}\"\>"], "Print",ExpressionUUID->"40699899-475b-\ 4b47-9cb6-d1e66be80aef"], Cell[BoxData["\<\"{{-1/2,(1+Sqrt[2])/2,(1+Sqrt[2])/2},{-1/2,(1+Sqrt[2])/2,(-1-\ Sqrt[2])/2},{-1/2,(-1-Sqrt[2])/2,(1+Sqrt[2])/2},{-1/2,(-1-Sqrt[2])/2,(-1-Sqrt[\ 2])/2},{0,-(1/Sqrt[2]),(1+2*Sqrt[2])/2},{0,-(1/Sqrt[2]),(-1-2*Sqrt[2])/2},{0,\ 1/Sqrt[2],(1+2*Sqrt[2])/2},{0,1/Sqrt[2],(-1-2*Sqrt[2])/2},{1/2,(1+Sqrt[2])/2,(\ 1+Sqrt[2])/2},{1/2,(1+Sqrt[2])/2,(-1-Sqrt[2])/2},{1/2,(-1-Sqrt[2])/2,(1+Sqrt[\ 2])/2},{1/2,(-1-Sqrt[2])/2,(-1-Sqrt[2])/2},{-(1/Sqrt[2]),0,(1+2*Sqrt[2])/2},{-\ (1/Sqrt[2]),0,(-1-2*Sqrt[2])/2},{1/Sqrt[2],0,(1+2*Sqrt[2])/2},{1/Sqrt[2],0,(-\ 1-2*Sqrt[2])/2},{(1+Sqrt[2])/2,-1/2,(1+Sqrt[2])/2},{(1+Sqrt[2])/2,-1/2,(-1-\ Sqrt[2])/2},{(1+Sqrt[2])/2,1/2,(1+Sqrt[2])/2},{(1+Sqrt[2])/2,1/2,(-1-Sqrt[2])/\ 2},{(1+Sqrt[2])/2,(1+Sqrt[2])/2,-1/2},{(1+Sqrt[2])/2,(1+Sqrt[2])/2,1/2},{(1+\ Sqrt[2])/2,(-1-Sqrt[2])/2,-1/2},{(1+Sqrt[2])/2,(-1-Sqrt[2])/2,1/2},{(-1-Sqrt[\ 2])/2,-1/2,(1+Sqrt[2])/2},{(-1-Sqrt[2])/2,-1/2,(-1-Sqrt[2])/2},{(-1-Sqrt[2])/\ 2,1/2,(1+Sqrt[2])/2},{(-1-Sqrt[2])/2,1/2,(-1-Sqrt[2])/2},{(-1-Sqrt[2])/2,(1+\ Sqrt[2])/2,-1/2},{(-1-Sqrt[2])/2,(1+Sqrt[2])/2,1/2},{(-1-Sqrt[2])/2,(-1-Sqrt[\ 2])/2,-1/2},{(-1-Sqrt[2])/2,(-1-Sqrt[2])/2,1/2},{1/2,(1+Sqrt[2])/2,(1+Sqrt[2])\ /2},{1/2,(1+Sqrt[2])/2,(-1-Sqrt[2])/2},{-1/2,(1+Sqrt[2])/2,(1+Sqrt[2])/2},{-1/\ 2,(1+Sqrt[2])/2,(-1-Sqrt[2])/2},{(-1-Sqrt[2])/2,1/2,(1+Sqrt[2])/2},{(-1-Sqrt[\ 2])/2,1/2,(-1-Sqrt[2])/2},{(-1-Sqrt[2])/2,-1/2,(1+Sqrt[2])/2},{(-1-Sqrt[2])/2,\ -1/2,(-1-Sqrt[2])/2},{-1/2,(-1-Sqrt[2])/2,(1+Sqrt[2])/2},{-1/2,(-1-Sqrt[2])/2,\ (-1-Sqrt[2])/2},{1/2,(-1-Sqrt[2])/2,(1+Sqrt[2])/2},{1/2,(-1-Sqrt[2])/2,(-1-\ Sqrt[2])/2},{(1+Sqrt[2])/2,-1/2,(1+Sqrt[2])/2},{(1+Sqrt[2])/2,-1/2,(-1-Sqrt[2]\ )/2},{(1+Sqrt[2])/2,1/2,(1+Sqrt[2])/2},{(1+Sqrt[2])/2,1/2,(-1-Sqrt[2])/2}}\"\>\ "], "Print",ExpressionUUID->"d85a994b-0aca-453a-9828-3056470bd48f"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.39939 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.193284 1.41976 -1.11022e-16 1.41976 [ [ 0 0 0 0 ] [ 1 1.39939 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.39939 L 0 1.39939 L closepath clip newpath .5 Mabswid [ ] 0 setdash .75 .613 .706 r .54837 .66159 m .32029 .62069 L .40123 .84359 L closepath p F P 0 g s .563 .353 .552 r .54837 .66159 m .40123 .84359 L p .78675 1.09871 L F P 0 g s .563 .353 .552 r .76101 .59253 m .54837 .66159 L p .78675 1.09871 L F P 0 g s .625 .517 .711 r .59637 .43118 m .54837 .66159 L .76101 .59253 L closepath p F P 0 g s .744 .634 .738 r .32029 .62069 m .54837 .66159 L .59637 .43118 L p F P 0 g s .479 .495 .796 r .67174 .27491 m .59637 .43118 L .76101 .59253 L p F P 0 g s .744 .634 .738 r .59637 .43118 m .36707 .38641 L .32029 .62069 L p F P 0 g s .672 .728 .891 r .36707 .38641 m .59637 .43118 L .67174 .27491 L p F P 0 g s .949 .687 .505 r .40123 .84359 m .32029 .62069 L p .29985 1.1241 L F P 0 g s .949 .687 .505 r .29985 1.1241 m .39657 1.04801 L .40123 .84359 L p F P 0 g s .563 .353 .552 r .40123 .84359 m .39657 1.04801 L p .78675 1.09871 L F P 0 g s .865 .756 .741 r .36707 .38641 m .19148 .48629 L .32029 .62069 L closepath p F P 0 g s .949 .687 .505 r .32029 .62069 m .19148 .48629 L p .29985 1.1241 L F P 0 g s .863 .952 .868 r .36707 .38641 m .4312 .22518 L .2484 .32386 L p F P 0 g s .863 .952 .868 r .2484 .32386 m .19148 .48629 L .36707 .38641 L p F P 0 g s .672 .728 .891 r .67174 .27491 m .4312 .22518 L .36707 .38641 L p F P 0 g s .479 .495 .796 r .76101 .59253 m .8467 .44223 L .67174 .27491 L p F P 0 g s .426 .428 .758 r .92982 .68064 m .8467 .44223 L .76101 .59253 L closepath p F P 0 g s .563 .353 .552 r .92982 .68064 m .76101 .59253 L p .78675 1.09871 L F P 0 g s .681 .24 .197 r .39657 1.04801 m .29985 1.1241 L .55162 1.16088 L closepath p F P 0 g s .563 .353 .552 r .39657 1.04801 m .55162 1.16088 L .78675 1.09871 L p F P 0 g s 0 .252 .76 r .67174 .27491 m .8467 .44223 L .73671 .28922 L closepath p F P 0 g s .152 0 0 r .4312 .22518 m .67174 .27491 L .73671 .28922 L p F P 0 g s .893 .985 .8 r .07936 .52528 m .19148 .48629 L .2484 .32386 L closepath p F P 0 g s .949 .687 .505 r .19148 .48629 m .07936 .52528 L p .29985 1.1241 L F P 0 g s .563 .353 .552 r .78675 1.09871 m .94765 .89187 L .92982 .68064 L p F P 0 g s .976 .678 .373 r .92982 .68064 m .94765 .89187 L p .76273 .8217 L F P 0 g s .976 .678 .373 r .8467 .44223 m .92982 .68064 L p .76273 .8217 L F P 0 g s 0 0 0 r .4312 .22518 m .4798 .23611 L .2484 .32386 L closepath p F P 0 g s .152 0 0 r .73671 .28922 m .4798 .23611 L .4312 .22518 L p F P 0 g s .976 .678 .373 r .73671 .28922 m .8467 .44223 L p .76273 .8217 L F P 0 g s .378 0 .151 r .78675 1.09871 m .55162 1.16088 L .61028 1.24165 L closepath p F P 0 g s .572 .04 0 r .55162 1.16088 m .29985 1.1241 L .34051 1.20354 L p F P 0 g s .572 .04 0 r .34051 1.20354 m .61028 1.24165 L .55162 1.16088 L p F P 0 g s .702 .191 0 r .29985 1.1241 m .15579 1.00241 L .34051 1.20354 L closepath p F P 0 g s .949 .687 .505 r .05935 .74223 m .15579 1.00241 L .29985 1.1241 L p F P 0 g s .949 .687 .505 r .07936 .52528 m .05935 .74223 L p .29985 1.1241 L F P 0 g s .629 .864 .501 r .78675 1.09871 m .88356 .96225 L .94765 .89187 L closepath p F P 0 g s .976 .678 .373 r .94765 .89187 m .88356 .96225 L .76273 .8217 L p F P 0 g s .518 .288 .504 r .2484 .32386 m .4798 .23611 L p .21709 .85367 L F P 0 g s .518 .288 .504 r .07936 .52528 m .2484 .32386 L p .21709 .85367 L F P 0 g s .744 .982 .752 r .88356 .96225 m .78675 1.09871 L .61028 1.24165 L p F P 0 g s .518 .288 .504 r .21709 .85367 m .05935 .74223 L .07936 .52528 L p F P 0 g s .507 0 0 r .4798 .23611 m .73671 .28922 L .65617 .31667 L closepath p F P 0 g s .976 .678 .373 r .65617 .31667 m .73671 .28922 L p .76273 .8217 L F P 0 g s .518 .288 .504 r .4798 .23611 m .65617 .31667 L p .21709 .85367 L F P 0 g s .35 .435 .808 r .15579 1.00241 m .21709 .85367 L .41506 1.06461 L p F P 0 g s .35 .435 .808 r .41506 1.06461 m .34051 1.20354 L .15579 1.00241 L p F P 0 g s .258 .328 .745 r .21709 .85367 m .15579 1.00241 L .05935 .74223 L closepath p F P 0 g s .744 .982 .752 r .61028 1.24165 m .70052 1.10775 L .88356 .96225 L p F P 0 g s .625 .78 .956 r .41506 1.06461 m .70052 1.10775 L .61028 1.24165 L p F P 0 g s .625 .78 .956 r .61028 1.24165 m .34051 1.20354 L .41506 1.06461 L p F P 0 g s .912 .815 .737 r .76273 .8217 m .88356 .96225 L .70052 1.10775 L closepath p F P 0 g s .976 .678 .373 r .76273 .8217 m .66305 .54013 L .65617 .31667 L p F P 0 g s .518 .288 .504 r .65617 .31667 m .66305 .54013 L p .21709 .85367 L F P 0 g s .599 .498 .711 r .21709 .85367 m .47536 .77254 L .41506 1.06461 L closepath p F P 0 g s .518 .288 .504 r .66305 .54013 m .47536 .77254 L .21709 .85367 L p F P 0 g s .754 .65 .746 r .47536 .77254 m .76273 .8217 L .70052 1.10775 L p F P 0 g s .754 .65 .746 r .70052 1.10775 m .41506 1.06461 L .47536 .77254 L p F P 0 g s .762 .623 .706 r .66305 .54013 m .76273 .8217 L .47536 .77254 L closepath p F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{248.5, 347.688}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnElzXFcZhts9a+iW1GqpW/M8S9bkQZ4dx7HiGEPABGLHJB4wtokTj7ET J/GQOJOTsGLDKsWGHTuKFeWCYsGO4g/wA9izCMVC3DP0px6e2zpXLRlThar6 ntbt7zzv+51z+vYdz/Gzty5deOvsrcvnz/Yv3zh77dLl8zf7j1y94a2KbAmF Qt+GQlte6w+p9yvev3bx7Yr35334/+K/W1xWRUz1yWOz4qIq4rqTIiujprv0 f1G1fGSCLqgipVaEVYyuf998dF4VmRVd/dHRh5p013x0ThXNakVSfRSxIg+L RMJqeduEn5HwlAoPrxSitdx1E/S6KprUiowExSXoigk6rYq0WpGToDoJumiC TklQlwQ1qCCdwjkT9Kok3i8ppCToJyboRxI0IqQmFZRQ7141QT9URaNaMSlB GQk6YYJ0Ua9WzEpQVoK+Z4K+L0GLEpQTT8dMkI6tUyuWxHiHNMGyCTouQfuE 1CVBz5sgDUyqFYckqEcFaeZzJuioKhIGXQjKS1B45V+/fcO8XbF/oQOm4rJU PCYVW6ViHCruNxVfkHH7siTYqCrqcVsPFfeZioflG/CKKCZEsQkq7jUVD6lC 009JxbBUzPhXPKgK/ckbUrEdwveY8P0SflaF2yAvXFehirtNRZOg+cirqCuf 2xxEDhC7DGIvIM4DIg+IJYPYA4ifAqIDEDsNYjcgLgRD7ALEzwDRCYgdBrEE iIuA6ALE9mCIbkBsM4idgLgUDLEDEJcB0QOIRYPYDoifA6IXEAsGsQ0QbwKi DxDzBrEIiCvBEAuAeNsRMRcM0Q+IWYOYB8TVYIg5QFwDxAAgthrELCCuA2IQ EDMGsRUQNwAxBIhpg5gBxM3NQQwDYsogpgFxCxAjgJg0iClAvAOIUUBMGMQk IG4HQ0wA4g4gxgAxbhDjgHgXEOOAGNswxBgg3gPEBCBGDWIUEHcBMQmIEYMY AcT7gJgCxLBBDAPig2CIIUB8CIhpQAxtGGIQEPeCIQYAcR8QM4Aw8t42sRLx IBiiDxAPgyF6AfERILYCwjSC93Nbifj4qSO6AfEIELOAMF3h7QBVIj51dGER nYD4LBiiAxCfOyZiBoS3V1uJ+GJzEHOAMGPK2z2vRDwOhmgHxJfBEG2A+AoQ 84Aww9I7+K1EfB0M0QqIX2wOYgEQ3f+LiEVAdG0YIrMG4s/f/E6V3u5+IIQZ F1FBWMx2oHT6U8wAjZVQCoYCor4sy8l7ef+Z5VpN1eGPfQzY6DOL/QKwcUds 3h/7OWATtWM/A2yyduyngK13xOY2FdviiG2oHfsJYFOO2HZ/7CPApmvHfgzY ptqxHwG2xRHb9tSxDwGbqR37ALBZR2zWH3sfsG21Y+8Bth2w9HPV6o/9ELB5 R7cW2+zodgOw5LbTEZvxx34A2K7ase8Dtrt27F3A9jpiW/yx7wG275nFvgvY AUdssz/2DmAHa8feBuxQ7dh3ADviiG0y2CZHtxuAJbejtWNvAXYcsHRAUgV7 E7ATtWNvAHaydux1wE4Dlg4vnz72GmBnHBsh7Y+9CthZR7dVsG8Ddq527FuA nQ+GTTtiFwFLZ0yePvYKYLcDlk5UVcG+Cdgd68Dqi+QE27l+j4dOPFFlyYXL AnYXYOlMYcmwihZj1eviRpFjQi68lPELgN+9HnykGB8Kq6Vu8HMgsBcE6Ky2 FWgGgYhdFg+U10Fqn2MuKX+pKEidBqn9tUvFpNlOKgF9L8oBx8ay2BbAxiGD E2qpV4VXfnX/93bg/ek3TwovLU4jLaB4QnJavasmpiUjxZJeXEGUNkVVRDMg moSMXxL5BMinRX4ryNPFoyrydZLzsojWg2hWRGknJ6BoA+R8UC1116ZAvlPk abe4inyrn7zOeZ/k3AKi/WqpN0Z0nEOXG6uIpiDnnSKfBfkRyZkOYQPKp0F+ UeTbQX5a5OmkRxX5rJ+8bvI5Ee0A0QURpZNjdJ25imgz5Dwhw6wb5JdEnk6n VpFv85PXOY9Kzv0gul9EQ/oEeUETh3Wjv14G0l29cXMIlA+rpV4VUKpVUusR gREQWNbLtVvRSrWDVBayyonouJ+oNkeDtIpUm2TVKqNkCgSO6KX5GfrH3/6g X6FQ0MRykFhKEpv11Y2V6FptvIvDiuccxetEfMFXPFIs7v0eq2Vp99KtNVWM 5KXN4yK/bY2RVJCPgDzdX2Tl8yDfAe2g/9vp6CEKHug2qSoeOqUJdju2e2yD RO06T1QL73KUj4M83V1m5TtAPl8kf/LqX/UQds0+AfJ0i92a8lGRtxaWHDs9 CQ7oPsE1HcRKHBQawnXs1TnaaDA2OsFGe1k/eC/vP7MsHhr0laS+aQBLdBNm QEtRsLToaKkRLNHdqdZSF1jKgqU4WJp37LhNspQAS3OOllJgiW5GDmgpCZbo p40spcES3WJtLXWDpQxYqgdLWx3HUjNYohvHA1pqAEszjpZawBLdUV/FUgtY SoEl2heijsuAJXrUwG4ee8BSM1hKg6VJR0utYIke40gFs9QEliYcOy4Llujh FHtqqRcspcFSC1iivWSy1AaWsmCpKZilDFgac7TUDpb000Z6h6nF30gKjGTB yFqHLQUjOTDSLEbsddM+MNK4wUbyYCQtRlr9jTSAkXYwMuzYNZ1gpFGMZIMZ yYEROmQlI11gpPgZuF///YEqC5b6wVI9WMqDpcEaLNWBpTZ/S3VgqRMs0SkF GjfdYCkBluz9OwNgKQmWusBSn6OlHrAUA0s5f0sJsNQDlnodO64PLEXAUj6Y pV6w1ONoqd8e8xVZ0i9lI6wMlW2dbQcOgrU4WOsDa3RujKwNlLWWn6Wcv6UY WBoAS52OY0pbso+nVhrJBzMyCEbotKV/25hue/LvP5aMHnsj7xDYiICNYbCR X8foUTbUq2CjO5iNEbCRW8f3ytrADrJ3FA+DpTBYGgVLbUG2PnakKDulX/Ce YiN8RXISxOlEvv/WOFHSLeWjpHdtC1NgodWxS1wsmJ/vkqe4CtIzIJ0J9PMY I2kcFT3+NraCDbqYQzY6ZAREYQT0BxNtXsf+W+GbEAF5+3xR8TN4hVFP8k3r 2I+tJj/oLz8L8mnHJid53fi6G+xTbmOOonSl0Pe4xp5krszUio47ijau4/iu kGkM5O0jihOO8nRxdq0j3mry9jnNSUf5unWcAyjIx6Wf7fOlU46iySDnQrRA EjK1otOOonTpfa1zQoVMEyBvH8udcZSPO8o3gXxSGtoM6pLHzKuJRtdxaq5S 1D5JPesoGnHMNCW9Wy9S9tHxOUep8DrOGRfyqxCd9xWNFYvqlxoAL4JQQ1Uh +2z9gq9QtETIR6O+qsa0v8acWuqgo4BNSnc0CszOarDoB9N+X/CDlXlsLPoS FXYErNtta7TIN3/5Z+Gl92/2g2TCT1JnYqd42A5CxTs+VsTbLHpLfQ1/CaTi VaXshBQ7QGoapJokq3mQikqvNEHz2ax2gtQkSOUkqymQikBWaRC1+S2B6ASI 9kh+Q0FEw6ZFtNQukBoDqRHJrwekwlWl7Kwsu0FqFKSmRCqHUiF1MrOy7WxC e0BlGFQWpO2ay1TUBigDAjaNvSAwBAK7JI16JbDqW7+zs/bsA9gAwA6K23Ap rMxjQOyyWkb8YHZyov0A6wPYS3q59iC30yYdAGwvYI8CNiXtaOejOgiw7iCw Mo8W+xxguxyxtE22M3cdAmxHDVg7f9jzgM0D9kVHbPFEaGXYdke3qz+epofM dGxlsGwQWJlHiz0C2FbH1Alrp6tbBmyLo9s6wJqO91xUYpsd3a7uO5qmNFPq lcHSQWBlHjcAmwCs6SFvI1GJbawBa2coPAbYBsAuA3b1WMuYC30HYHWOHmPg 0WKPAzbp6JGwdgbH7wI2XgPWZG8nkSzFxhyxUcCa7EMvAzbiiI1IRxmKmeGy DBYG2BE/WJlHi/2BLipueaIveRgoxpWdqnPVnNqtoBFDCOPAzAWqj5AO64rR 4orSGK+Y4JOq0LsI+yDYe/9jE3dGFUm1YhvH2YlILwlvmuNOmrirwhsuy05l fMoE3RFYNwS9ZoLuSVC2LEh9fNoEfSJyjUVBhYazQV8LKQpBdjrWX6pCZ3XG rHgmJt59lorQlv8A6xMfew==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 247.5}, {346.688, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"76ce286f-1e14-46e6-8e98-70b872bc049a"] }, Open ]], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"b69bef2e-39e4-42c0-83d6-\ 9e591b3f4ae3"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ FormBox[ SubscriptBox["J", "62"], TraditionalForm]],ExpressionUUID->"842b97cf-cbb7-4cc9-b532-8d19d0153b4f"]], \ "Subsection",ExpressionUUID->"ba1009a2-b9b8-42c3-8ebc-bc8037e00ed9"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"Polyhedron", "[", RowBox[{"Icosahedron", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0"}], "}"}]}], "}"}], "1.2"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"Text", "[", RowBox[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#1", ",", RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",", RowBox[{"PolyhedronVertices", "[", RowBox[{"Icosahedron", ",", "\"\\""}], "]"}]}], "]"}]}], "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0", ",", "5"}], "}"}]}]}], "]"}]], "Input",ExpressionU\ UID->"5e0361db-1f47-420d-9db7-343da2f21b45"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .67418 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -5.55112e-17 1 -0.16291 1 [ [ 0 0 0 0 ] [ 1 .67418 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .67418 L 0 .67418 L closepath clip newpath .5 Mabswid [ ] 0 setdash .809 .762 .809 r .5 .04912 m .20061 .15205 L .32613 .33709 L closepath p F P 0 g s .809 .559 .561 r .32613 .33709 m .20061 .52213 L .5 .62506 L closepath p F P 0 g s .934 .763 .645 r .20061 .52213 m .32613 .33709 L .20061 .15205 L closepath p F P 0 g s .705 .617 .756 r .5 .04912 m .32613 .33709 L .67387 .33709 L closepath p F P 0 g s .705 .535 .655 r .32613 .33709 m .5 .62506 L .67387 .33709 L closepath p F P 0 g s .561 .357 .561 r .5 .62506 m .79939 .52213 L .67387 .33709 L closepath p F P 0 g s .356 .291 .645 r .79939 .52213 m .79939 .15205 L .67387 .33709 L closepath p F P 0 g s .561 .559 .809 r .79939 .15205 m .5 .04912 L .67387 .33709 L closepath p F P 0 g s 0 0 0 r .5 .62506 m .5 .64886 L .79939 .52213 L closepath p F P 0 g s 0 .485 .836 r .79939 .15205 m .5 .02532 L .5 .04912 L closepath p F P 0 g s .445 .88 .836 r .20061 .15205 m .5 .04912 L .5 .02532 L closepath p F P 0 g s .445 0 0 r .5 .64886 m .5 .62506 L .20061 .52213 L closepath p F P 0 g s .975 .796 .598 r .79939 .52213 m .69773 .33709 L .79939 .15205 L closepath p F P 0 g s .825 .796 .825 r .69773 .33709 m .79939 .52213 L .5 .64886 L closepath p F P 0 g s .825 .551 .524 r .5 .02532 m .79939 .15205 L .69773 .33709 L closepath p F P 0 g s .79939 .33709 m .94409 .33709 L s .524 .305 .524 r .30227 .33709 m .20061 .15205 L .5 .02532 L closepath p F P 0 g s .222 .181 .598 r .30227 .33709 m .20061 .52213 L .20061 .15205 L closepath p F P 0 g s .524 .551 .825 r .30227 .33709 m .5 .64886 L .20061 .52213 L closepath p F P 0 g s .30227 .33709 m .69773 .33709 L s .05591 .33709 m .20061 .33709 L s .705 .622 .762 r .30227 .33709 m .69773 .33709 L .5 .64886 L closepath p F P 0 g s .705 .528 .647 r .30227 .33709 m .5 .02532 L .69773 .33709 L closepath p F P 0 g s 1 1 1 r .32613 .33709 -3 -4.5 Mabsadd m .32613 .33709 3 -4.5 Mabsadd L .32613 .33709 3 4.5 Mabsadd L .32613 .33709 -3 4.5 Mabsadd L fill 0 g [(1)] .32613 .33709 0 0 Mshowa 1 1 1 r .30227 .33709 -3 -4.5 Mabsadd m .30227 .33709 3 -4.5 Mabsadd L .30227 .33709 3 4.5 Mabsadd L .30227 .33709 -3 4.5 Mabsadd L fill 0 g [(2)] .30227 .33709 0 0 Mshowa 1 1 1 r .5 .04912 -3 -4.5 Mabsadd m .5 .04912 3 -4.5 Mabsadd L .5 .04912 3 4.5 Mabsadd L .5 .04912 -3 4.5 Mabsadd L fill 0 g [(3)] .5 .04912 0 0 Mshowa 1 1 1 r .5 .02532 -3 -4.5 Mabsadd m .5 .02532 3 -4.5 Mabsadd L .5 .02532 3 4.5 Mabsadd L .5 .02532 -3 4.5 Mabsadd L fill 0 g [(4)] .5 .02532 0 0 Mshowa 1 1 1 r .5 .62506 -3 -4.5 Mabsadd m .5 .62506 3 -4.5 Mabsadd L .5 .62506 3 4.5 Mabsadd L .5 .62506 -3 4.5 Mabsadd L fill 0 g [(5)] .5 .62506 0 0 Mshowa 1 1 1 r .5 .64886 -3 -4.5 Mabsadd m .5 .64886 3 -4.5 Mabsadd L .5 .64886 3 4.5 Mabsadd L .5 .64886 -3 4.5 Mabsadd L fill 0 g [(6)] .5 .64886 0 0 Mshowa 1 1 1 r .67387 .33709 -3 -4.5 Mabsadd m .67387 .33709 3 -4.5 Mabsadd L .67387 .33709 3 4.5 Mabsadd L .67387 .33709 -3 4.5 Mabsadd L fill 0 g [(7)] .67387 .33709 0 0 Mshowa 1 1 1 r .69773 .33709 -3 -4.5 Mabsadd m .69773 .33709 3 -4.5 Mabsadd L .69773 .33709 3 4.5 Mabsadd L .69773 .33709 -3 4.5 Mabsadd L fill 0 g [(8)] .69773 .33709 0 0 Mshowa 1 1 1 r .20061 .15205 -3 -4.5 Mabsadd m .20061 .15205 3 -4.5 Mabsadd L .20061 .15205 3 4.5 Mabsadd L .20061 .15205 -3 4.5 Mabsadd L fill 0 g [(9)] .20061 .15205 0 0 Mshowa 1 1 1 r .20061 .52213 -6 -4.5 Mabsadd m .20061 .52213 6 -4.5 Mabsadd L .20061 .52213 6 4.5 Mabsadd L .20061 .52213 -6 4.5 Mabsadd L fill 0 g [(10)] .20061 .52213 0 0 Mshowa 1 1 1 r .79939 .15205 -6 -4.5 Mabsadd m .79939 .15205 6 -4.5 Mabsadd L .79939 .15205 6 4.5 Mabsadd L .79939 .15205 -6 4.5 Mabsadd L fill 0 g [(11)] .79939 .15205 0 0 Mshowa 1 1 1 r .79939 .52213 -6 -4.5 Mabsadd m .79939 .52213 6 -4.5 Mabsadd L .79939 .52213 6 4.5 Mabsadd L .79939 .52213 -6 4.5 Mabsadd L fill 0 g [(12)] .79939 .52213 0 0 Mshowa % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{250, 168.562}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzVm9l200YYx4UtLzjeF0LiLM4eY+wk5HBYAg1pCmFpCClQSntaCBRK2lJo 2Fpoe0mveIBecdVz+gB9Ay655GnKTaqZb/RJlv8KsoemJzlHS2Y0v983I1nL SLO89vDOrbtrD9dvrlWWNtbu31m/+aBy6t6GlRTeZRjGW2v6q2KI9U1rVc3e blp/ViZaPBOLsNjuF0qghUzZVH+0kWH8LBYR17YywTDd24r1EED8RHmPWWcV U5s3FzM337x4vqliF9MTyn4oFiGREN58fv55iP+Va7KU/PcRbb7B+RGxeRiE FOUyD6jMPQ4uJspEXWVETNZkway5TLpPZe6yJyHKmB6PITNszw+U9B2X6RJl PGGF3E349+9/2n4X53vi3OF4ky6OKEKFxTzCbJGucNb2djXWCXWbQ8p4UIZs cX9UhqP6hlBfMyorUSajVGRhrqCsn6eF08y7Rbw1LpMDPGuK0gHQispwLW8Q 6hqHVvTUUhTuAog8R3OdEF8yogQQKYAoMOIrQnzOFeoOiChxRb4gxGccRQ9A ZACim6O4SohPGdELEDmA2MuIK4S4xIi+gIheRlwmxCq3RT9AFACizG3xCSFW OIpBgCgBRD9HcYEQy4wYCogYZMR5QpzligwDRDdAVLgi5whxmqMYBYgegBjm KM4Q4hQjxgMiRhmxRIhFrsgEQJQBYowr8hEhFjiKfQERkxzFh4SYZ0QNIPoB osqIE4Q4xhXZDxCDALGPK3KcEEc5iqmAiDpHMUeIaUZEeW0awIYArCHnzRcT dQW0qzZN6QfUGd99HZH/zQDViJ8KXbfRhXOKpLOeLGGa/Q99sq6mc0ESKqlD lRzz3zltSWkRdWfZ+0IsUH23SX0AqCeAer86iuyiov3kbUqIDhCnbZ0LM2rR KmDXOqjWwbYFR6mg+yA/3PhDVgT9lGrv+Cn985rKzrqxJmMVugHIdd/mNZms 6E3wSBPcjr0e0FBTd55uA6wD1qCz35Tf2S+IJuzWWMeLmFOa/YOsBlRWPXvF miyemDcfOTPt6SeBfsbvqqOnDwM9uvTOAv040Id3lN4EenTvctDvxsOjN/X1 I0B/COhH9PURoEc3f0g/DPQRfT26fT0C9EP6+ijQVwLqK0AfbU8fA/oBoJ8D +gGgj+nr0RPMcb/HDz19HOjRMxjS9wF9XF9fBvp5v+c3Pf1uoEfPwQtA3wP0 u3eUPgH0qCNh0a8XwKNP7Ch9F9CjnpiTQF8C+i59PepLWgL6or4+CfSFgPoC 0Cf19XmgPwP0eX19CuizQH8O6LNAn2pPnwZ6b2+pnz4D9Gl9fRrol4E+ra/P AL2321mIV4A+CfSZHaXPAn0C6FeBPgH02R2lzwF9HOgvAn0c6HP6+hjQXwb6 mL4+D/TRgPoo0Of19RGgvwL0EX19AejDQH8V6MNAX+hAnxQZF4RAru3pACH7 NdRLJ3tNElHvlWe7TnxW09MWTW9GDeoXa35j2hxJxJvnKueEIAIqdRCWf18d jgnltR9OWizGRE5JBIE6B0NAJIPwbzTPDpL8zDvqv2XzoiZ4+Qq90n1fu8Mn HOfldpjDsM5kYNP3H5HzWl5N5hZtg35Vnfxakkzs5AdedJ+iXrwRkxWKmKtT 1MtXsgWvyrk6Rb1+IyZrOzFvPkUVNc6QSm8C/RWgN4G+zTNkHugjAfURoNe5 PCl9FOgvA31UX58D+lhAfQzodW5NlD4O9BeBPq6vzwJ9AuhXgT4B9Dq3pduv zwB9EuhXgD4J9DqPJEqfAvploE/p69NAnw6oTwO9zuOo0meA/hzQZ/T1KaDP Af0ZoM8BfZt9AUmgzwfU54FepyNG6QtAvwT0BX19F9AXA+qLQK/TCaf0JaA/ CfQlfX0C6LuBfhHou4FepwN2+/W7gb4H6BeAvgfodTrflb4X6OeBvldfHwf6 ckB9Geh1XrwofR/QHwf6Pn19DOgHgH4O6AeAXuel2/bro0BfAfojQF8B+jbf eEaAfiigfgjodV43K/0w0B8C+mF9vQn0o0B/EOhHgV7nU4Pt14eBfhzoZ4F+ HOh1PjNR+gmgnwH6CX19COgnA+ongV7nEyOlrwL9FNBXO9H7fi7WoqwDZU09 2buUchKMYF+lvV9Ny5d1U8BQA4a66iFxGxz4YbFAwSLUPjFXnxHWxUJmO19B yo6rBoBVfWve0k8mGRGqoMxpuI4lez+jPl61DttlAvj3i7lvt3VrZ+3/Fc4W 34C2G8s0iGXM75BBsXg7ccV/jc5imQGxjIBYGk4swfr0xX91ypSLEB+jno+A 7XXDgA3jG4zR/BGwd1SPO7Yt9lOYY3PW0LEy5L9/DDxGzOlIVp+1z3EC+qEP +v02ZdIxQnzAMdYCIqoc4zwhTnAU6Kzf73fNk0kLhFjkKNBlEyHGOAo1qOIk I9CFv+x33yFLnCLEElcE3br0+N24yaTThDjLUaB7P4SocBRqmMvHjEB3r90A MciIZUKc54oMAkQJIPq5IiuEWOUo+gMiyhyFGnh0kaNAT4AFv+dfmXSJEE2D sFoQOYDYy1GoQVjOULC9ARF7GKGGgjkD0vYARAYgilwRNSDNGRaH+oEQIs9R qGFx1zgK1JGWAogsR3GdEDc4CtQV2AUQGY7iJiGc0YuoMxMhUoxQAxZvc0VQ b3CUcls5XVwbNZBynUPxdmrzqVO9KGyFJTiobwnmjDn1dtCjS4EKVuY5KDXs 9C7Xz/2mo+kk7roJUZg4104Ngr3PAcnXNegta4zNP1LSBptNKuO5kNi1D7FM jex9xDL5XlDtA5v+mDZ6whv53NwZsoidZA9ppkHQW7+dfereFF9x3UOqZcV+ dZdpbuPfKOspyFKlnnFdVELzqG9j178HZdYs\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 249.}, {167.562, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"ded10f0b-bb33-4a2c-9c68-3ea6d40b49f2"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"d5270fa6-6185-4093-a11e-\ f804957ebaee"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"Line", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0"}], "}"}]}], "}"}], "1.2"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"poly", "=", RowBox[{"ConvexHull3D", "[", RowBox[{"PolyhedronVertices", "[", RowBox[{"Polygon", "/@", RowBox[{"(", RowBox[{ RowBox[{"DeleteCases", "[", RowBox[{ RowBox[{"PolyhedronFaces", "[", RowBox[{"Icosahedron", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"___", ",", RowBox[{"(", RowBox[{"4", "|", "6"}], ")"}], ",", "___"}], "}"}]}], "]"}], "/.", RowBox[{"Thread", "[", RowBox[{ RowBox[{"Range", "[", "12", "]"}], "\[Rule]", RowBox[{"PolyhedronVertices", "[", RowBox[{"Icosahedron", ",", "\"\\""}], "]"}]}], "]"}]}], ")"}]}], "]"}], "]"}]}]}], "\[IndentingNewLine]", "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input",ExpressionUUID->\ "bfa9629c-6eb5-4ce9-81e6-608e1b541601"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .92591 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -1.33249e-16 1.01476 -0.0126893 1.01476 [ [ 0 0 0 0 ] [ 1 .92591 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .92591 L 0 .92591 L closepath clip newpath .5 Mabswid [ ] 0 setdash .355 0 .138 r .37084 .63538 m .61614 .49953 L .80121 .50463 L p F P 0 g s .41 .419 .758 r .61614 .49953 m .80121 .50463 L .63969 .25593 L closepath p F P 0 g s .655 .641 .824 r .38059 .34709 m .61614 .49953 L .63969 .25593 L closepath p F P 0 g s .751 .614 .706 r .37084 .63538 m .61614 .49953 L .38059 .34709 L closepath p F P 0 g s .646 .862 .981 r .38059 .34709 m .63969 .25593 L .38348 .22981 L closepath p F P 0 g s .882 .992 .784 r .21051 .48465 m .38059 .34709 L .38348 .22981 L closepath p F P 0 g s .908 .747 .671 r .21051 .48465 m .37084 .63538 L .38059 .34709 L closepath p F P 0 g s .355 0 .138 r .36588 .75002 m .37084 .63538 L p .80121 .50463 L F P 0 g s .901 .486 .139 r .21051 .48465 m .36588 .75002 L .37084 .63538 L closepath p F P 0 g s .19601 .59437 m .26232 .57314 L s .716 .27 0 r .63969 .25593 m .80121 .50463 L .66703 .33018 L closepath p F P 0 g s .55 0 0 r .38348 .22981 m .63969 .25593 L .66703 .33018 L closepath p F P 0 g s .355 0 .138 r .80121 .50463 m .6558 .66747 L .36588 .75002 L p F P 0 g s .95 .783 .641 r .6558 .66747 m .66703 .33018 L .80121 .50463 L closepath p F P 0 g s .73702 .42117 m .85434 .38361 L s .603 .489 .696 r .21051 .48465 m .38348 .22981 L .66703 .33018 L p F P 0 g s .603 .489 .696 r .36588 .75002 m .21051 .48465 L p .66703 .33018 L F P 0 g s .56145 .47738 m .66321 .4448 L s .603 .489 .696 r .66703 .33018 m .6558 .66747 L .36588 .75002 L p F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{208.812, 193.375}, ImageMargins->{{68, 0}, {0, 0}}, ImageRegion->{{-0.134011, 1.13401}, {-0.239163, 1.2272}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzlmltTFEcYhld2cZHzcWE5rgsIHpCDgKggEBQxpVWxchQ1yQZNIEYxSKWS qqQqqVykKpVfkOv8gtx4nbtc+l/8AWS6v+ZjZn162DFcpCpUbe/szPs+3T3T p+mP26XdzUdPSrtbG6XCjZ3Ss82tjeeF1e2d4FT6WCqVehl8/iqkzPFecOiS l3vBX3Dx//F103wdNzX/KXQilTZn9n7/4U97T6psmt77Te6R/ZU16bfiWSvz BJ/gV5DaU1njqzVHT0V+A+RZlTeq/KFfXqvyDiM/YY7uiXwV5I0q71H6HZFf B3mryotKX/PLO0xq79FpI682RysivwbyLqWfMXJ31f2llsW4AsZeNY6CcUmM b4GxoMZhY7RFXfbLB6PVD8uXQT6i8oLKXWGWQH5W71Z/qBYvrkuzWvQbx6IP kY2LYJxUYx6MV8V4FYwzasxZY0aNzrzg986ptx0ydcYFMM6rsYUznRfvPHiX or1ImqJ69zO/4ges6MNp4Myd9wp4VzXz2pjMLwvgMgDejg4ZoVsWfIJ2ZdJo m7/oh91WWHVMaS4J4BIA7iigqsLSzApsDmDvh0rzunFGjBfBeNcNpoflnRCR BsS0IGYBsa7Ngop/QYwzYLwXyvvV33/Ye555E0RGEQ5DlCmhTAPlvk2rI5S4 Ak0K6gKgHhw1Kh1GBU/XpIc/8QnBTgH2Y8CmK8SOC3YSsJ8ANmNT7lyTb4I6 vITnBTsB2E8BW10hdkyw44AtAfZ4TMXHk6GyMShX2fOA+gxQNTGogmG48dlC xwC6kRDap9AGP5RKWhsDzSu0WaDnKixpnWtIZZNWTnltwjsLvIfAq2deq/Jy wjsDvEdeHle6UaH5ZNAGLmSd8nqFdxp4nwOvkXlZ5Q0IbxR4XwCviXlp5RWT 8ZrLOnRqf3IeFs4IcDZ9HFsscaROgXELjC1coVPJKK1QDYcYBsSXgGgDhLsJ Q4B4DIh2QAwdGWIQEF8BogMQ4nWNI4p4AogcIIrJEJ0mrQq1yJNgfOozluUt Xhl0yxDbgOgChHhdd4singEir8VPaOxWo+vZ/WD8Gow9ahSHzAZlxp2jNPaq URxubIsan4OxT41uNOwB4y4Y+0MPxv0FNyw5wubdk6zQA2rsTmYsQKG7/Hea nm0REJ3+5kHtahAQuSNDUOumnhVTkUoRJ/23k/o3DRH0RPL+UYaGpwF/S6wU QY3ZtUkaJGmo7gNEbzJELyBcd6YJg+acHkD0J0N0A0IaBM58NP/mAeHGXprC aRVwBIguQLjZh9YitBTqBEQxGSIHCDeF04KMFnYdgHALCVob0tq1HRDDyRBt gAivy+wVWb3us5DTCpyRUEexVzJQKFrjtwBMKiRt1l6pARi91TQDTF4OpCfb K/UAo1euJoDJm0voNa7p38PskG3nwjaA0RtmI8DkxQ/fJwnRAAjx4nsuvdzX A2IsGaIOEDH7ArQJUguImF0K2kAixEQyxAlAuE0i2s2h3bEaQEwlQ2QB4fYf aavqfjIE7ceV74K+0v2jKGI6GaIaEG4fmDYb1wGRAcRsMkQaEG5fnjZi7wKi ChBzhyF4A9bFJ2gj+SObvraR7MIptO39YVlZTQYLh8jtEOViSrQb/55J7alF v+gg9iDxOYwp3DKprY4EJTGKsaakm37RNSXdEhEFVA5iS+/4RQsqeldEFCia 0+w+EBFFoqaVtO4XTSjpgYgooHZOSSW/aFRJLupMMb0hJW36RQUlPRbRIogO QrnbIqKAZ6eSdvyidiV9IyIK0Tar6Du/qF6z+15EFBuuUdKPIqJAdVpJP8eJ gl+/yHUbJrc951c58Z/434joV+rYP7ABHyU=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{-27.9375, 235.75}, \ {238.562, -43.875}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"ebad8ba5-33a8-4846-b2ba-51982bdd432f"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"9f30ff6c-35b3-42cb-84d7-\ f1f10297c83b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"UnfoldPolytope", "[", "poly", "]"}], "]"}]], "Input",ExpressionUUID\ ->"c33e9f67-fb86-4138-8a69-482b43cf4bc8"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.27373 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.136864 1.27373 1.11022e-16 1.27373 [ [ 0 0 0 0 ] [ 1 1.27373 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.27373 L 0 1.27373 L closepath clip newpath .5 Mabswid [ ] 0 setdash .707 .577 .707 r .71731 .74941 m .6917 .50571 L .45201 .45476 L p F P 0 g s .707 .577 .707 r .49345 .84908 m .71731 .74941 L p .45201 .45476 L F P 0 g s .707 .577 .707 r .45201 .45476 m .32949 .66698 L .49345 .84908 L p F P 0 g s .707 .577 .707 r .37093 1.0613 m .13124 1.01035 L .10562 .76665 L p F P 0 g s .707 .577 .707 r .49345 .84908 m .37093 1.0613 L p .10562 .76665 L F P 0 g s .707 .577 .707 r .10562 .76665 m .32949 .66698 L .49345 .84908 L p F P 0 g s .707 .577 .707 r .32949 .66698 m .20696 .45476 L .45201 .45476 L closepath p F P 0 g s .707 .577 .707 r .32949 .24254 m .45201 .45476 L .20696 .45476 L closepath p F P 0 g s .707 .577 .707 r .57453 .24254 m .45201 .45476 L .32949 .24254 L closepath p F P 0 g s .707 .577 .707 r .08444 .24254 m .32949 .24254 L .20696 .45476 L closepath p F P 0 g s .707 .577 .707 r .20696 .03033 m .32949 .24254 L .08444 .24254 L closepath p F P 0 g s .707 .577 .707 r .45201 .03033 m .57453 .24254 L .32949 .24254 L closepath p F P 0 g s .707 .577 .707 r .71731 .74941 m .6917 .50571 L .91556 .60538 L closepath p F P 0 g s .707 .577 .707 r .6917 .99312 m .49345 .84908 L .71731 .74941 L closepath p F P 0 g s .707 .577 .707 r .37093 1.0613 m .20696 1.2434 L .13124 1.01035 L closepath p F P 0 g s .707 .577 .707 r .6917 .99312 m .71731 .74941 L .91556 .89345 L closepath p F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{226.062, 287.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy1nPt3VcUVxy95EBASEvJ+3puQJwkhgQQDEggCAapofSx/8Ac1oi20tSjS dq32x75ftkqrfWgf2lZb7VrVlb/If4Tec2Zmn8M9nz0z90JYKzew73c+e865 Z2b23jOXq1u3r7/62tbtG9e2Kpdubb1+/ca1NyubN29VTc27SqXSl6XSrnKl lPz9bvWf9uXLu9U/1Tejfy2mv5qT1nftn9IK2L7fkPxI7q3tO9tpH1fA9oOG 5Avpr1Z5y/0kkmOe92zn5mvI1Z/qv8xr/loWI3Xf21HsYZC3gnwhUvfdHcXO gbwN5OSedN/RsXtAHqu7bbCzIN8L8lidxc6AfB/IpyN1b+4oluTtIJ+M1N3S sR0gPxSpe8Ngp0B+AOQTkToPthPk45G61w2W7lkXyCuROoule9YN8rFI3U0d 2wPy0Ujdtw2WPopekI9E6jzYPpAPR+peM1j6hPtBPhSps1j6hAdBPhCp+5aO HQJ5f6TumwZbBvkwyPsidR7sCMh7I3XfMFh6zEdB3hOp82DHQN4dqbthsDR6 KiDvitRdN1gaPeMg74zUebATID8Qqfu6wdKgPATyjkidBzsJ8vZI3dcMlsb6 NMj3Repe3VHsIMhnQb43UveKwdLMNAfyPZE6D/YwyNsiddcMlia8BZC3Rupe 3lEszaOLIG+O1G3tKJam56X0tTUvN21KSU5WRL1k3qQpuVaeIFYA8eIDQ6Qz +M3knZdyhhpmvj3ZHPOFuG5tS57b8JVFIEIf1XYhfVY/qtDD5GzNYLuPZ7RB bGigOlsr2O5j/DeIDU2CztYGNs8kGJqynW0P2DxTdmiBcba9YPMsMISdAcRD YJsBbOQq62z7wOZZZUOhhrO1g80TauwQNhTGOdsBsHnCuFDQ6WydYPMEnaEQ 2dm6wOYJkQlbBsRBsJUBawP6UJ7gbN1g8+QJZcCOAKIXbJ5kibDDgOgDmye1 CyWiztYPNk8iGkqbnW0AbJ60mZL8EIJ0EdjQBZPOYW3tIFTpiP0YI7Chh4l0 DmvrMqHiVOwQcVhbnKJSWmigki4CG5pWSOewtkIXqic6W2iyjMCGpmzSOayt foZKwM4WWogc1lMCfgDYUB3c2UKLvMPaOjgV+UOhBukisKHAiHQOa/cYQjsd zhYK9yKwoaCTdA5r929Cu03OFgqlHTZyE6tBbGgnz9lCaYrDRm4QNoj174aa S6X3vFu19/YgsXm3alV5utl56m7mjnY/a9tLn+3TcxTa1ObByb92J68tiemN +hqmwzf1aBfyJWi4BA07xaMNMZehIX2eveLxWn0Nh8Tji6bhMWhIz3tZPD5f X8NJ8ficaXgcGtJ8MCcenzINa7f0tflpUTxe1RvSfHlcPF42DVehIc3fa8lr arqoN6T15FT62pJ/9JOf84ZyAii02D1SQ7E/qWijEdS9tpbktSkxnTGwhwFG IcNpbZClsNMGtgYwCmvWwdYml3lSh1HodUYbxWnPzPVZZjg8JNh+ga3qMAph z4KtQy7TDLrqY1OEUZi9AbYu6ZmZpaofeRFGqQDBugW2qMMoXTkHtl65TLPU 2SfkXhGlVAQbkJ7N6TDK2R4F25DATPBYfRiLMMrUzoNtWC5zUodRfnYBbGPS M5OO2SEKNzYCVhGYyZurD2MRRrnYRbBNyGWO6jDKwDbBNiU9MwUuO63Bkx0B mxHYoA6jbOsS2ObkMk0luvowFmGUYxFsQXpmavfVh7EIoxToMtiOCKy7PtgV sM3nbPaPw54HLOVTX9HuXlPu7hGMsqjHwEa1YYu9AFjKoghLteF+HUtZ1OPe R9pUmG3oAAtcBIxKtxa7CVhKcq5qY7gpN4bvB0YFW4u9BFhKbZ4AWwWwY/Vh nwTbqFy6qcrZkJBzoacBQDVUi7pS068E8QwgsmVnsr6GVLrMI1Lms9CQipNT uZuZNjT30LXDDvRJz2dzIyXVtID8KbBRiXA2N5GldBpsXwVbFqfY0GJDEDRV 0QNBRUALW5eL64iEUY3OJOImgkp7RosjjYAOuTiTsJpYMzXQyk9jk8plFnZC Lo6iJZqM9kl/bLi6Iv2hIJXmXCqIWdgxgVEsTosMlcFMEmqusdmM8jhYm1yc SalMRSM1TIGc1tLd0B8LmxcY5ae0ymfJmU2BZuWS5iMRTdAfC5uW/hyFhiaE 4SnRZneTAqDCyaa9hNx8lvyYgNjMlmmDVWh7US78rJGXxdVJkKeReHNOPipy SlM3hG7ucL6LNgseku5RzrYugOaai7QUe5ED0g3KFU5Kr1uB4jyYpAsPFxD0 YWlI0yeVCtdyDihuXREixWrZI7qmd5RSiGVpSJM01YtXdQeUCSyKA4qDqc69 ojugGzMvDigF2CvverA0YmfksaCchzYplnNPW4SDSelZD7y7Hxws6Q5oDhwX B5Tptsu7HizNzlk6TIsVbWEd0R3QwjQsDqiq4VnWYx0MyEdLa2VWvPFgaU3u lYZUdOqBfs/pDiiCOCgOKl73HizFNgekIRUYadN7WndAkVhWqKNyqCcepuNG 5CAb5FQAHpR3PViKaFvlOaFIgU5aTOgOKP5ukp5RHOHJbsiBSZAKC/0RIBcS L+I9IyLa5KDDNmMBWE5eSoeXMmfVYEdD18xHWumWFpJtHXpvH5qSVzu4ilhP aSD0KDg5nUamh7lQ0qCzc0+Cgza5AsJ6CjCxDuis+iFw5SkhkasnQE6n7Wnu KpS+Yh3sl5tFWE+hjhxcBTl9F4NyLTqQelB39TjI6Usqo+CqUMuMdXBQbhZh s/CsV8c+Blg6F00BwazM0p4Hlhz0Sb8JO1070OjY5xXA0oinfYss/hupzwFd H0V443JjxnQHl8HBiNwYwpal3+M69hJgy6CjnY5sdTpUnwM6iUgFniG5MVO6 g01wMCE3hnKCLM6YrQ9LB9yoytUvDg7rDi6Cg6zEQNgeuR0LOvYCYOkkEmWR Wdxq6110Jvk8OKDDQ5T9doqDZd3Bo+BgQW4MYdvlxhyvD0snaGibIavindAd nAMHdPhlNzjIAuO1+hwsy40h7G65Mad07AZg6ZRIEzholX6v6w7OgoMT0m/C Ngv2bH3Y2jMPJecgNZ3TYWcAlt6zNE43e1t46H0dGuY3/p3NgzgNiB/q8kdA /qPG5fbxKIp+rDPTQH613jbb9iTSEjT8iWlI5//T0lPqkeI5T8N28UjfPfmp 3rBLPFag4c9MwzI07BWPlBN6Gg6KRzpk/nO94Zh4pD0Z25DW23HxSBWsX+gN p8UjFR1/qTc8LB6pyG4b0rH/rDL5li46CsxfBZg18l8bOZ3lp/D+LV1OD+pv dDl97ey3Rk7fAKDE7G1dTinjO7qcxsodI6f4h1Lq3+ly+sL57xuS0/l9qkq8 q8tpdL+ny6mU8gcjp+P59N8h/FGX04zxJ11OVa0/63L6XtD7Rk7fAaBa3we6 nGqPf9HlNMf91cjpiD/tfnvkPSD/my6n78n83cgpbqYvqnyoy6kK/pEup6r8 P4ycYmzaqv6nLqeZ/l+6nPZOPjZyOn9PW8ufPDA5bUD928jp/9WifeX/6HL6 BsOnurwF5J8Zee2h/u07vKn837yct43/l5cU9kw/N++mKUy6OH6RM9Q4s9r4 /9KutOv/ipF4wQ==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 225.062}, {286.938, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"fdb2754c-9352-417d-936b-36e6d31118ea"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"0de3e056-344a-4811-b52f-\ 2145f5b7ea05"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ FormBox[ SubscriptBox["J", "63"], TraditionalForm]],ExpressionUUID->"8768e621-bede-4ab5-918a-6a1305080d76"]], \ "Subsection",ExpressionUUID->"cd4f036c-09a7-4a4b-aef8-671df39f1643"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"Polyhedron", "[", RowBox[{"Icosahedron", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0"}], "}"}]}], "}"}], "1.2"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"Text", "[", RowBox[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#1", ",", RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",", RowBox[{"PolyhedronVertices", "[", RowBox[{"Icosahedron", ",", "\"\\""}], "]"}]}], "]"}]}], "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0", ",", "5"}], "}"}]}]}], "]"}]], "Input",ExpressionU\ UID->"291bc87b-2295-4a48-8299-bc6b32638b6d"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .67418 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0 1 -0.16291 1 [ [ 0 0 0 0 ] [ 1 .67418 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .67418 L 0 .67418 L closepath clip newpath .5 Mabswid [ ] 0 setdash .596 .24 .335 r .32875 .63371 m .67617 .64223 L .60127 .51249 L closepath p F P 0 g s .396 .17 .45 r .60127 .51249 m .67617 .64223 L .84251 .33709 L closepath p F P 0 g s .396 .476 .825 r .84251 .33709 m .67617 .03195 L .60127 .16169 L closepath p F P 0 g s .596 .734 .941 r .60127 .16169 m .67617 .03195 L .32875 .04047 L closepath p F P 0 g s .921 .846 .753 r .32875 .04047 m .14765 .33709 L .29747 .33709 L closepath p F P 0 g s .921 .657 .522 r .29747 .33709 m .14765 .33709 L .32875 .63371 L closepath p F P 0 g s .755 .698 .798 r .32875 .04047 m .29747 .33709 L .60127 .16169 L closepath p F P 0 g s .755 .535 .598 r .32875 .63371 m .60127 .51249 L .29747 .33709 L closepath p F P 0 g s .582 .475 .698 r .84251 .33709 m .60127 .16169 L .60127 .51249 L closepath p F P 0 g s .707 .577 .707 r .60127 .51249 m .60127 .16169 L .29747 .33709 L closepath p F P 0 g s .528 .106 .184 r .38581 .13931 m .32875 .04047 L .67617 .03195 L closepath p F P 0 g s .265 .015 .336 r .14765 .33709 m .32875 .04047 L .38581 .13931 L closepath p F P 0 g s .265 .417 .828 r .38581 .53487 m .32875 .63371 L .14765 .33709 L closepath p F P 0 g s .528 .756 .98 r .67617 .64223 m .32875 .63371 L .38581 .53487 L closepath p F P 0 g s .954 .903 .734 r .72838 .33709 m .84251 .33709 L .67617 .64223 L closepath p F P 0 g s .954 .655 .43 r .67617 .03195 m .84251 .33709 L .72838 .33709 L closepath p F P 0 g s .82202 .33709 m .87702 .33709 L s .17798 .33709 m .72838 .33709 L s .0538 .33709 m .12298 .33709 L s .12298 .33709 m .14765 .33709 L s .87702 .33709 m .9462 .33709 L s .762 .717 .811 r .38581 .53487 m .72838 .33709 L .67617 .64223 L closepath p F P 0 g s .762 .526 .577 r .72838 .33709 m .38581 .13931 L .67617 .03195 L closepath p F P 0 g s .559 .456 .694 r .38581 .13931 m .38581 .53487 L .14765 .33709 L closepath p F P 0 g s .707 .577 .707 r .72838 .33709 m .38581 .53487 L .38581 .13931 L closepath p F P 0 g s 1 1 1 r .29747 .33709 -3 -4.5 Mabsadd m .29747 .33709 3 -4.5 Mabsadd L .29747 .33709 3 4.5 Mabsadd L .29747 .33709 -3 4.5 Mabsadd L fill 0 g [(1)] .29747 .33709 0 0 Mshowa 1 1 1 r .38581 .13931 -3 -4.5 Mabsadd m .38581 .13931 3 -4.5 Mabsadd L .38581 .13931 3 4.5 Mabsadd L .38581 .13931 -3 4.5 Mabsadd L fill 0 g [(2)] .38581 .13931 0 0 Mshowa 1 1 1 r .38581 .53487 -3 -4.5 Mabsadd m .38581 .53487 3 -4.5 Mabsadd L .38581 .53487 3 4.5 Mabsadd L .38581 .53487 -3 4.5 Mabsadd L fill 0 g [(3)] .38581 .53487 0 0 Mshowa 1 1 1 r .60127 .16169 -3 -4.5 Mabsadd m .60127 .16169 3 -4.5 Mabsadd L .60127 .16169 3 4.5 Mabsadd L .60127 .16169 -3 4.5 Mabsadd L fill 0 g [(4)] .60127 .16169 0 0 Mshowa 1 1 1 r .60127 .51249 -3 -4.5 Mabsadd m .60127 .51249 3 -4.5 Mabsadd L .60127 .51249 3 4.5 Mabsadd L .60127 .51249 -3 4.5 Mabsadd L fill 0 g [(5)] .60127 .51249 0 0 Mshowa 1 1 1 r .72838 .33709 -3 -4.5 Mabsadd m .72838 .33709 3 -4.5 Mabsadd L .72838 .33709 3 4.5 Mabsadd L .72838 .33709 -3 4.5 Mabsadd L fill 0 g [(6)] .72838 .33709 0 0 Mshowa 1 1 1 r .32875 .04047 -3 -4.5 Mabsadd m .32875 .04047 3 -4.5 Mabsadd L .32875 .04047 3 4.5 Mabsadd L .32875 .04047 -3 4.5 Mabsadd L fill 0 g [(7)] .32875 .04047 0 0 Mshowa 1 1 1 r .32875 .63371 -3 -4.5 Mabsadd m .32875 .63371 3 -4.5 Mabsadd L .32875 .63371 3 4.5 Mabsadd L .32875 .63371 -3 4.5 Mabsadd L fill 0 g [(8)] .32875 .63371 0 0 Mshowa 1 1 1 r .67617 .03195 -3 -4.5 Mabsadd m .67617 .03195 3 -4.5 Mabsadd L .67617 .03195 3 4.5 Mabsadd L .67617 .03195 -3 4.5 Mabsadd L fill 0 g [(9)] .67617 .03195 0 0 Mshowa 1 1 1 r .67617 .64223 -6 -4.5 Mabsadd m .67617 .64223 6 -4.5 Mabsadd L .67617 .64223 6 4.5 Mabsadd L .67617 .64223 -6 4.5 Mabsadd L fill 0 g [(10)] .67617 .64223 0 0 Mshowa 1 1 1 r .14765 .33709 -6 -4.5 Mabsadd m .14765 .33709 6 -4.5 Mabsadd L .14765 .33709 6 4.5 Mabsadd L .14765 .33709 -6 4.5 Mabsadd L fill 0 g [(11)] .14765 .33709 0 0 Mshowa 1 1 1 r .84251 .33709 -6 -4.5 Mabsadd m .84251 .33709 6 -4.5 Mabsadd L .84251 .33709 6 4.5 Mabsadd L .84251 .33709 -6 4.5 Mabsadd L fill 0 g [(12)] .84251 .33709 0 0 Mshowa % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{250, 168.5}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzN3MluI9cVgGGaRYqaKFIiRamlVotSq1vz1JrneW6pbSMJsm0YAewAGeD0 M8TLLPwICRJnGcBAFl4FfoAs8hB+Aa96o9Qd6qhI/pe6ZamDEOAgFut859x7 WTN1/fbd57/6zdt3X3z2tnr25dvff/7FZ3+onv7uy/Ct4KNUKvU+vH9TTanX t+FL+/D+NryFE5s8/VU9pdXHPzVvfKOfAvXOrb2l3phJf4dJN2bSxzBpTz2W dCaBecfmpbmP3TOW1eO0eqvn9qvBef3xwG1/ApM0u6nmDmwC3//x6+gTYQKJ gl1JFhkVJnyMVaPuZibbgnfzhnOlziSHFjXvz80nDdYSVyRmeDuRmfJqJk2/ ic2ZjTVq+EkNHUiSRZ2kSePHv/1Wf9ZW97NYhtGMO4L12OqiGe3M1/GczbxH wS/UPfzLPMbj3bV6b9N41xAvC/HWpLB+HS9bEy8q8LUJ+hqC5iDokiQ5yEkm jLcg8Z41SfLKBL2CoG0QdFYqH3m8oFOS6fO6cRLew2+Geqwd/ucGuASgA4CX ArxMBlwAkAfguTTLJAABAGfJgKpUMONZgQXOASgA8FSAec8KTpMBA9JEr5IB ZwB0A1CRCpYByABwYoBTAEoA9AiwBkAWgONkQFGaaMuzAgucANALQKdUsONZ wdE9QIua0CJh95OFPYawFfVIa5O0tM4RKC2gHBrlCJQ+u9g0n7hb48XXk3qO k0eyzPo9S6vX8CvUaOTAODAzHILRrx5pg+TSM38b+wBiP7Ft5dgy0CVceJaw fx/T6mS+/fpb9XpWSXrY9SYz951mUFOKHmK6u9LK1H9Om22e8BZtu6mb2n5T KZQgkVZIZM+diB0jJvaf3v1D5tEbdhlJRK9eqJ+pMZrksOfKwb6nUgjvIa8e zXuqA8J7OHyibMYVmvVskTbIZtdks+uZTRayadWP5r2IH4ttQMWGke7Aimdq O+7UKpBaC6TWJg0VJVT3tfkpCe14JpSDhDokoVEZ0OmmibRDItvuRMoyjNuB z0NXDbsGdMJstl3Z1DUL5dUlzTIsCxfiO4DfMvyWJ98BfFH4jYejJUA7Ae0R dN0T3TToJqA90u0FoMrQ7SsPR7uhUuJ7pVJCOwHdMOiGJ1oEtE/QpWTouifa DegTQRcBzQO67kaLgPYAOgi9O5eMXwO+IEOqF9CnUintrRC15qa6oFJCnwk6 C2gXoKsGXfVEK4BWa7dB/NEVT7QP0FHo0wngC8CvuPlO6dMBQJ9LpQmpZRdV VymhLwSlIwNFQJfdaAegg4COC/rCs1KLLnmiTwGdhD4d9azZuOGOux8/BPxU 7abHw9A2GUhVoGaEqgLVDZQxwqWmg6qrj9A5aN6hZPyCJz8C/LzUTGgPoItu tBXQUUAXBX3qWalF5wHNSZ++AGpJqAHP+hbcVAvUR+gK9Gkf8CXgjRsOCz/+ JfCrUnNCdNYTHQd0XVDaoywDOudGs4BOALopaNmzUovOAJqRgTQN1Db0abdn pbNuNIBKid+RShOi057oDKB7ghYA7QXUlBgutP3QWUAPBM3/FDQTR6VHFwA6 gh5tB7ICpGnVcN2onrL1pPo7XDg3ksdSW4dnbTVQbW0ptV5vNE7FaPMsxjRc +AVDYxmMc2i6lmTaOGsroF1IRWT0gTEZGxF6o0Lvmpcg9pXETssuvF5u2EXi sHrSswTyKi1hG0+fpl3QtUDOmX7UB+tpmh5hY2ZKNfbdiuoNYo0Zu+kc0zyN cnxjD9PVfTT6W2dI55uJ+L9OmI4b2Wzz6qlbWv4D5p2Jdb2Dy8B7veqvrv9R 00LosFF/+K7ZWQlq3FEzcVg92asPoleBZJeqvbQicKV2U5eafKd0ahTFkemH H6Cv7771we33//y3xE/HOl/aE75V+q0XJs/4WrVm39S5dLsUXust4tml23is cY5+/R+5p5ot93W8nIoXLYl/+E43fL9t/ngRE3EoiENhfeqxtpxFQM/iK5uw CRVMfB/wdkUw4cnTZsKJ1NwOaAVQu4ab9ETnXdsmGu18OBqoR3vQq5E6hOYl tBfQ6caBGaEZqJS2Mfel0i7PSpugWUBpa3pX0KJnpXYbc9oTnXLtQWi0Jxk6 40J1MKK2oE8JLQNKOysWzUGltC+4Ed8XTILOeqK017sW3+ttQEuA2n3BOU/U uacfXdDlVWkTtBXQMUCXoXeJp5rtgn/exduzjo3oK6l08OFUO1RKR6cW4ken GtAeQO3RmwVP1HlELjqr14B2A2qPTi16osOAzkKfPvOsuQnfIX1K6LRUOuJZ qT3i+AqoTqjUeTxZo88fjuYBvffIeQNaBNQeRV7yROkcwUvo04T8sif/BPgx qXkC0AKgdIrCol0ykIgaFWrSsz5LrQBVgProDNcINC/xVKk9A7TqydNZvWGp eebhaBHQMqBDgs4B2gWoPau35kLt0dNGalCohYdTPVAfnYkegD4lPg+8PVO7 7snT2fd+qfmVJ2rPRG94onSdQUXQ5YejJUC7AC0LugpoJ6D2OoNNF2q34Rup EvRpQnQL0DJUSlfJdEulG4B2ALrpRnsBpSuDCoJuJUO3PdE2QPOCbnuiW260 In1KVCf0aVUOMVSS8TvA90HNdKlce93WBB8/pYTaISF7TdiuZ0LOywpjWxrO g5OPkFM/5EQXXuZcGyL1xxfVBNpla4O87GWFe555BZBXtnYL5QNl80RGsh6c gaBTBo0GiS9lrz3dB2rAHvqgMZjScPRWzUZDFDlwpdEKaZhSa6+Ijld8z4XX evuh5hJcOzBKj+RTb87JIoKqzIFiWrn20vX4KKu7FPUyWdgjCNt3l3wm3mLq fg7hWyD8wT3h3UuF9O1X/3qv5zj2LMVax2BVmgzHrIJ0wx16FnV4D6T7NSf5 7yULewJh4yu+MKy6hyu5CKCVXBYA+5uRUwDKABSlYTYfDpQAKEkFawBkALC/ 1jkDoBuAPgGWPCtICAxIEy16VmB/MXUOQAGAIamAdnMCAOxvvi4AyAMwIsD0 hwHGpIlolzQNgP3d3SUAHQCMSwV0SIEqsMAVAO0ATAkw6lnBuRtoA2BOmqia DHgNQA6ARanAHD3MxgF9V2u/q2RBlyXowP1BryFoFoKuS1P0263YeNCU/IT3 BuIFEG9Lkiw3STJh0F0J2s1J2h9D6x9mH0tFhaYf1j8FD2StdCpG/SkolfBN PGHnKvRCYqRVjF96zZQ3q6wo6caV5t0J65v6zAvq1ZB6Zb/1d+0ZIY4rJGp+ js7nqKcleO7xg+svVE5aP1Hcu/rr/1fA/fP+WRqzfkOr9nN/gciBzGs7otm/ hEh99F+gw8Iq\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 249.}, {167.5, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"64c3130f-8a26-4cda-a93f-c3d8cb8e9fef"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"9f50f286-4842-4272-aa69-\ 6fb6e69a25d5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"Line", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "0", ",", "0"}], "}"}]}], "}"}], "1.2"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"poly", "=", RowBox[{"ConvexHull3D", "[", RowBox[{"PolyhedronVertices", "[", RowBox[{"Polygon", "/@", RowBox[{"(", RowBox[{ RowBox[{"DeleteCases", "[", RowBox[{ RowBox[{"PolyhedronFaces", "[", RowBox[{"Icosahedron", ",", "\"\\""}], "]"}], ",", RowBox[{"{", RowBox[{"___", ",", RowBox[{"(", RowBox[{"7", "|", "8", "|", "12"}], ")"}], ",", "___"}], "}"}]}], "]"}], "/.", RowBox[{"Thread", "[", RowBox[{ RowBox[{"Range", "[", "12", "]"}], "\[Rule]", RowBox[{"PolyhedronVertices", "[", RowBox[{"Icosahedron", ",", "\"\\""}], "]"}]}], "]"}]}], ")"}]}], "]"}], "]"}]}]}], "\[IndentingNewLine]", "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0", ",", "2"}], "}"}]}]}], "]"}]], "Input",ExpressionU\ UID->"747ec88c-c58e-44b0-ad0d-af49ffdf5624"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .67418 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0 1 -0.16291 1 [ [ 0 0 0 0 ] [ 1 .67418 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .67418 L 0 .67418 L closepath clip newpath .5 Mabswid [ ] 0 setdash 0 0 .343 r .58393 .19172 m .58393 .48246 L .6619 .61751 L p F P 0 g s 0 0 .343 r .6619 .05667 m .58393 .19172 L p .6619 .61751 L F P 0 g s .652 .095 0 r .33214 .33709 m .58393 .48246 L .6619 .61751 L p F P 0 g s .652 .095 0 r .1762 .33709 m .33214 .33709 L p .6619 .61751 L F P 0 g s .652 .97 .878 r .33214 .33709 m .1762 .33709 L p .6619 .05667 L F P 0 g s .652 .97 .878 r .6619 .05667 m .58393 .19172 L .33214 .33709 L p F P 0 g s .707 .577 .707 r .33214 .33709 m .58393 .48246 L .58393 .19172 L closepath p F P 0 g s .21045 .33709 m .64478 .33709 L s .09879 .33709 m .1762 .33709 L s .6619 .33709 m .90121 .33709 L s 0 0 .343 r .6619 .61751 m .72709 .33709 L .6619 .05667 L p F P 0 g s .652 .095 0 r .6619 .61751 m .38646 .53375 L .1762 .33709 L p F P 0 g s .652 .97 .878 r .1762 .33709 m .38646 .14043 L .6619 .05667 L p F P 0 g s .79 .401 .318 r .38646 .14043 m .6619 .05667 L .72709 .33709 L closepath p F P 0 g s .79 .889 .916 r .38646 .53375 m .72709 .33709 L .6619 .61751 L closepath p F P 0 g s .272 .222 .617 r .1762 .33709 m .38646 .14043 L .38646 .53375 L closepath p F P 0 g s .707 .577 .707 r .38646 .53375 m .38646 .14043 L .72709 .33709 L closepath p F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 194.125}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzV2udvHEUYBvC1z723uMXlXGMnrnF33Lvjci5xb3FMgg0JhMQCCQQCgRQE AokmEAgQCCQQCAQKCASf+Jh/g2/8E+Z2dvzYsZ93mOUTWMrN5fzsb98b3+3O zuzU9v7u9Vvb+3s728HRO9u3d/d27gZHnrwTfikQ4TgRQcdx/gg67vOD8FP9 oH5K3Af9n//x89/cJuC+r2veC7/ghciDBzdmHfX0QP84V73QTwhFy6Ef3CbK /U08CW15oe8gJcuhbxBKk0NfIZQph75ATTkktOmFPoN0Vg59glCRHPoQuyuR Q+9DqpBD7yJUTUIbXugthGrk0BuoqV4OvQapSQ7dQ6iNhNa90MvYXaccehFS jxx6HqF+OfQsQsMktOaFnkZNY3LoLqRJOXQboZAcuoXQPAmteqGbqlFFHQy3 f6za++/cj3SfzMqbPX5iM71pwN1WbxHeVm0/LSuPqSb6IUVLYfuwDAOwp5rA cSB8/HAfA4fvRFV0hE0RbMXDdgkWIFgMsAkZe5RgUQSLIz3GPh2avUHYaMLG o0YDdp1gMQRLBDYiY48QLJZgycDYN2XZw3YIFkewVNJ7AzJ7jbDxhE1DjQZs m2AJBMsA1idjVwmWSLAsYL0EW/IwdexWoRRCZJM+65KxDVIZY3NQmQFbJ1gq wfKAsaO3xtYIlkaws8A6CLboYasESydYIem9VpldIWwGYYtQowFbJlgmwYLA mmVsiWBZBCsFxk7JCx62SLAzBCsnvdcgswuEzSZsBWo0YFcIlkOwc8DqZGye YLkEqwZWSzCvJGeOYHkEu0B677zMzhI2n7A1qNGAhdxGhQoJUQeiSiamST0M awBWKWNTBCsi2EXSZ+WE9f6g4THXabaYsE2o0YBNECxIsBZgpTJ2mWAlBGsD FpSxcYKVEqyD9B677vA+weGxxmm2jLCdqNGAjRKsnGBdwApkbIRgFQTrAZYv Y8MEqyRYH+m9XMJ6X1RniLDnCNuPGg3YIMGqCDYILFvGBghWTbBhYFky1uc2 KlRDiFHSZxkEm/GwXlIZY8dQmQHrIVgtwS4DY/MCGusmWB3BJoGlyFgXweoJ Nk16L4mwIY+9RNgGwoZQowHrJFgjwWaBJchYB8EuEmweWJyMtROsiWALpPfY RJNm2wjbTNhF1BhDMO+sGB72ncZaCLYMLErGWgjWSrBVYGzSTWPNBGsj2PqJ 3gu3hx/fJkK0E2LDfVQv6S4ucJtc94VOEt90H5sP1JjEf6nqfYd/8eDPvw7f tt/+W1OP3vyFyxz+c47ege3fdQUlqYr4n8L2E7cELFrGfH0rFBYrY7bf1yvH PyReb5lY22PKHGqMJ5jPo90MsEQZ83VEVliyjNmeK6ZI7xlY2/PZxPHzmYT1 EoydaceBpRNMHxD6CHZBGg0oLFPG+t1GhRgxQvrMgNmOm4aOj5skzHZENwAs h2B63ORr1KmwPBmzHQ/3kt4zsLZj9u7jY3YJs72auASskGB6zO7rikdhxTJm ey3WTnrPwNpeL7aixlIZs72SbQZWRjB9vejralthFTJmOw/QSHrPwIYIW0DY etRYJWPqC6w/oKeJWhDVhPg3szr68CVitvNN50mfGVjbObEq1FgnY7azdZXA GmTM14yiwhoJpmfrbOc6y0jvGVjb+dgS1NgsY7YzxcXAWmXM12y2wtoIpmeK befZC0jvGVjbtYB81NgpY7arFLnAumRsk2DJBMsG1k0wvUqx5TZ6AHiaOEP6 zIDZrjllorI+GbNdDUsHNiBjvlbsFDZIML0aZruWmEJ6z8DarncmocYRGbNd iU0ANiZjvlaLFTZOMJ/r2LGk9wys7Vp7NGqclDHTyv8RMC0DphsQ1LYz8rY3 T7wTd6eRpDNChNA3Hqh7K9Te5+TQE24T+IfQUwgZdreP0AQJ6fs9nkFNo3Lo OUhDcugFhPrl0EsIsQOWvi/mFdTUIYdehcROaTr0OkJNcuhN7I6NU/T9Q29D YiMjHXoPITZK1KEPEGLjUh36CDUFSUjfZ/UpJHYNo0OfI5Qvh77E7tiFqQ59 DYldCuvQtwilktCWF/oeoSQ59CNqipNDP0Nik1Y69CtCzsMzd96Z0fndbdT3 X99XqLb+D9346Pe5E/E30rGXVg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {193.125, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"e85cddd8-2f0f-4e84-be27-13bdbbf3f54f"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"6f876238-80d9-4e1b-8f0a-\ bfd380b46967"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"UnfoldPolytope", "[", "poly", "]"}], "]"}]], "Input",ExpressionUUID\ ->"b077dd0b-2219-448e-ad48-a5bafb6b5fee"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.13262 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0663094 1.13262 0 1.13262 [ [ 0 0 0 0 ] [ 1 1.13262 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.13262 L 0 1.13262 L closepath clip newpath .5 Mabswid [ ] 0 setdash .707 .577 .707 r .87086 .69579 m .71864 .9053 L .47235 .82528 L p F P 0 g s .707 .577 .707 r .71864 .48628 m .87086 .69579 L p .47235 .82528 L F P 0 g s .707 .577 .707 r .97619 .93237 m .71864 .9053 L .87086 .69579 L closepath p F P 0 g s .707 .577 .707 r .47235 .82528 m .47235 .56631 L .71864 .48628 L p F P 0 g s .707 .577 .707 r .16096 1.10565 m .41851 1.07858 L .47235 .82528 L p F P 0 g s .707 .577 .707 r .05563 .86907 m .16096 1.10565 L p .47235 .82528 L F P 0 g s .707 .577 .707 r .47235 .82528 m .24808 .69579 L .05563 .86907 L p F P 0 g s .707 .577 .707 r .05563 .26354 m .24808 .43683 L .47235 .30734 L p F P 0 g s .707 .577 .707 r .16096 .02697 m .05563 .26354 L p .47235 .30734 L F P 0 g s .707 .577 .707 r .47235 .30734 m .41851 .05404 L .16096 .02697 L p F P 0 g s .707 .577 .707 r .24808 .43683 m .47235 .30734 L .47235 .56631 L closepath p F P 0 g s .707 .577 .707 r .24808 .69579 m .47235 .56631 L .47235 .82528 L closepath p F P 0 g s .707 .577 .707 r .24808 .69579 m .24808 .43683 L .47235 .56631 L closepath p F P 0 g s .707 .577 .707 r .02381 .56631 m .24808 .43683 L .24808 .69579 L closepath p F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{226.062, 256}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNnElzFEcQhRtGo33fJSTNaEHrSAJhFovF2CAhFgFi8RLhi4KwAw4OHBgb 70v4Yh8dHO2rfXT4wMH+O/wRebqyK1tSf9XTJc8EJoKRyH75XldPd1dWZhab 208ffvDR9tNHD7aLV55sf/zw0YNPiuuPn5RNuUNBELwMgkNBMQh/3yn/M/p4 uVP+Uz6Y+cdU+KM+dP57lyHIhZadF89fhH/L/yp/NoemPwU0CaD28LMpNP3u Bg0o068CmgDQhIJ+cYNKKveTG3Qy/MyHph8FNA6g1WiMoS36E/xwIHgR4OcA /v2B4AWAn68afAzgF/zgbwD8O4GPAvziq4KPAPxNP/hbAP9W4EcAfqlq8GGA X64afAjg6wD/5kDwQYBfqSl8A+BfC3wA4FerBu8H+LWqwfsAfgPgXx0I3gvw zarBewB+0w9+C+BfHgjeDfDbVYN3AXzLD34H4F8IvBPgd6sG7wD4PT/4fYB/ LvB2gL/9quBtAH/HD/4uwJ8JvBXg77nhdO50Ms/c152G+sx9E9DXFMHpjiT4 ZwKnx4PumQhOzyrdkRGc3jP0eERweunRwxfB6Q1M8E8FbqaDw+ER8/yb36KL RpPidQVJLG0prTpN0zK75HfbrKuVothhXaXq3KdPIc0ldax3OzojLePY6Has FF5aWwpFASjOqnaL25Hi7DPq2OZ2HNdv+ZTCO9xwWvCswBhTKGj1taza3W7H o+BYUsdet+M0OM6pY7/bcQYcp9Vx0O04C45TcJlSKOaAYly1j7gd58FxTB1H 3Y4L4HhEHQtux5LeQ8MwxhTHJVDsU8UJt+MyOHar45Tb8Rg4dqjjtNvxODi2 wWhTKFaAolm159yOJ8CxQR0X3I6vgWOdOi66HU+C42EYbQrFKfOjTuHhzyD8 AtI9zJHjFYa0f5qR0wsCeY+kXUSea3IwtFKFeyEx/+y5TuZoCsWyUtQDRfwd zfs9PERWr2SzWR7hpgozlrUdrfAGSsxY1rFJzyeFYlYp6CFrUYpJv5c3kbUp 2XiFuceAOoGiA2xjbrJJJesGx049H6JY0YfkopDFE3gvkMUvxREgW1ayw3D0 gghQaEFSvSo1DGQllaLQ67xIjelYBkCgXwVo2pxTgWY4ek4ERlRgCAQGwdYH ZNMq1Q5Hz4oUBa4kOqSjIqlJlepySw3pqEZAIJ7Ce4CiqAIkvyoC8VJgDARG VYDOcVQFhuDo6yLQpwJFECiAja78sErRzR5J0RqLRIs6KpIaUKkiHD0jUt06 qkkQmFCBVqDoVQGKZk6LQKcKHAWBKRWgJ6JLBWhakNlbluqGYgYEpsHWAGTt KkWxSiRFOQcSndFRkVSLSlEoIGGNgBLTqxWIVwZ5oGhUgRNwVAKu8hRnBUog sKACOaDIq8Apt0AjXCySkvisbrct/L1ONajSI5FS+T1tB7EMzEvhpzEJmzkY /aWaigS/MjpDegxIl5WUig8Sgpe/dkux5BoxxYcpjE1wNReAW64wh5BUcZDF RvnpsydMpPN6whRMUplEFj+SdUssHazjrNJSTEhnK/EkZufoQY/XwRQdpgh0 6HkTLb3ISGANBBZFoEsFaMk9qedNwSmVdkpC26O0E+AYL80pxkyhpSQeTXgF FaBok4pGsp6XtF9iCW8daUInASozSaZBqlKJ5IJ1HNHzpmCX6kuS+ZDZPJHs sI7DSkuxaAot5QUp8BtUgX44SpUrSfpIwJMIU60jB7H26HWglXWMpAad59Pn GsE+G9XEJD2GjQA9QNGjI6DvJUVgQkdAtF1KS3cRVdskHyj5xET4uededt79 VJWT/KSctPN5awebpwDlCFuBolVHQO8dqvxJklZu+ESAaR3jzBO9JankJ90n 8lpJhJXWsVFp6e1O5Qa57+Tl7ZxPGsDmKUA5wzxQ5HUENK9SOUZWyDLdJwJH 65hTWooCqChUENoVpZVwcW80Z0kX/UgljkwEhpVyfNZ2D5il/CExtomRKMKj 0poUXBzpP+tIFb+RXYqOy0KhawqVM2GaIda+v88WBLaWhAncOC1HZPfgq475 KJMcp9VoUXMXbJTzkSodZrvj99Dsfxdw5uEzhIN3wEYrqWH3cx9PNiSwBTZa C0oZFBOxcTKMlv6eAosgMKAC40B2G2y0XJaGol2vdEogUYh4C2xU14wEqCYV p41I4CbYKI0hTUtYLYszODQqTwGareOlBNW9NsFGmR4py3vUGu3RG2CjSm8k 4KyCZgglSYrSYrKYwUptnPUggetgoxpyJEA15CUVoPDyGtg63QJU5z6uAhRo XgUbFbMl/7i/7p4hvPQUoLT9aR0BCWyArRcEpKkFexVWVYBCzitgo6xzJED9 FOdVgILPdbANgIB08VTsqbU2Cj49pZwNtolMpj26BjbKoEsDE5Yb1lSAAtLL YKPKTSRA/TsbKkAVVBKgvgXp2HI3FSXDILo2lPKPmKlt1rydjYlOk7okIrI4 nbI/Din/3NNjbcmoAUKa2jD5QysM8y/qJUrhpkIHrQhy4acxrYIA1UQlRZi5 ua1BBehVR10ekUDWZrtmFaBWJKqfSLEhc/NfmwrQeiJFgJoRafnRqQK0OKSe Eum5xOZI6qXsUQFnTYUFsjZrxgUxSidQialFBLL2msbFvSIIUPdMJJC1OzUu VFK4SI0YngJxqZWiOWoWafa7RHGxmEIsTwH6kmdUgCKgJfBoct9F9BzMqwBl 0amk5ymwqAIUP1BzUqOfwDEVoLoLNTZFAlnby0+oACVrqCjZ4Bagt6mpLTeE JjrbiCxrq73pITH73OgVUO9HthF+mv1wNO1FZFm3GGzpmVEImkJGKcb3lYxW eHkhy7q14kMdprM+nJ3scfiZl/txxzVrV2+3iefWl9ruw6ntHqLa7n+q7d4t z41ktd3VVtsdebXdTVjbnZCe2zI9N33+rzasem629dzKWwB49fYVU6qlenui q7Cf2+wRNzvgoz3itJHcRLhmDvvZDTLLQTM3PXeD4h3wvwmIsmmtCvrDDcqp 3F8CMok/M539I4bs/w1AcOhfhp+9QA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 225.062}, {255., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"c2c3db4a-9388-47df-bd1d-d8b3673eaf15"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"9c2500e5-4dba-49f4-bbdf-\ f8249d0e6dc5"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ FormBox[ SubscriptBox["J", "64"], TraditionalForm]],ExpressionUUID->"35d2647b-2617-482b-8211-767aec37a105"]], \ "Subsection",ExpressionUUID->"bfb0ba97-e347-45df-b51d-223914d3ea2d"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"?", "CumulateFace"}]], "Input",ExpressionUUID->"a85964b3-c503-4b15-8742-4c35567be64e"], Cell[BoxData["\<\"CumulateFace[poly,h] gives a pyramid of height h with base \ on the vertices of the specified polygon.\"\>"], "Print", CellTags-> "Info3281787632-6225199",ExpressionUUID->"83d3812c-1799-4a73-9a90-\ 0213046093cc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"Drop", "[", RowBox[{ RowBox[{"Polyhedron", "[", RowBox[{"JohnsonSolid", "[", "63", "]"}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "2"}]}], "}"}]}]}], "]"}]], "Input",ExpressionUUID->\ "c55ea8c1-d836-4de9-b5a9-8f340674d874"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.07047 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0352331 1.07047 0 1.07047 [ [ 0 0 0 0 ] [ 1 1.07047 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.07047 L 0 1.07047 L closepath clip newpath .5 Mabswid [ ] 0 setdash .557 .294 .474 r .45644 .73276 m .79618 .90644 L .79857 .53523 L closepath p F P 0 g s .557 .615 .866 r .45644 .3377 m .79857 .53523 L .79618 .16403 L closepath p F P 0 g s .707 .577 .707 r .45644 .3377 m .45644 .73276 L .79857 .53523 L closepath p F P 0 g s .723 .59 .016 r .79618 .16403 m .79857 .53523 L .79618 .90644 L p F P 0 g s 0 0 0 r .45644 .3377 m .79618 .16403 L .79009 .2247 L p F P 0 g s .904 .738 .666 r .15323 .53523 m .45644 .73276 L .45644 .3377 L closepath p F P 0 g s 0 0 0 r .15323 .53523 m .45644 .3377 L p .79009 .2247 L F P 0 g s 0 .31 .728 r .79009 .84577 m .79618 .90644 L .45644 .73276 L p F P 0 g s 0 .31 .728 r .25223 .53523 m .79009 .84577 L p .45644 .73276 L F P 0 g s 0 .31 .728 r .45644 .73276 m .15323 .53523 L .25223 .53523 L p F P 0 g s .723 .59 .016 r .79009 .84577 m .79009 .2247 L .79618 .16403 L p F P 0 g s .723 .59 .016 r .79618 .90644 m .79009 .84577 L p .79618 .16403 L F P 0 g s 0 0 0 r .79009 .2247 m .25223 .53523 L .15323 .53523 L p F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{265.312, 284}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztmud3VFUUxSczCSQhIQkhjWSSSe+9kwIpECBAqIoFJUaQKEiLIvbezUJR sWGv2DUWwN57++5n/4w4586b/cqce+7CDy7XkqyVOS/37v27+5438+bNrKwZ n9q5fff41OTEeGhk//jenZMTB0LL9+wPDwXifL64pPBvQchHx7M+X/RB/STT g/XHmeP/9fHvVPz03OiIDPxKJd4x8DOVOY6BH6kkOga+j/DsgW+ppDgGvqYy 3zHwJZV0x8DnVBY4Bj6lstAx8DGVbMfAKSq5joGTVPIcAx9iwBeYPXFU7UrN tEfm36eSr5+foRLUz79DpUg//5Y9Hz87fexPNW/prIhvQBIgRfjRoYmKXqMS mo1ieNFxiOboRS9DlKgXvQhRsl70PJViGpmnFz0LUape9DREaXrRk1RKaCRd L3oCogV60WMQLdSLHoEoWy96mEopjeToRQ9ClKcXPQBRvl50GKKgXjRNpYxG CvWi+0AK6UX3QFSiF90FUZledAcyletFt0FUqRfdAlG1XnQTlXIaqdGLboCo Ti+6DqIGvegaiJr0okNUKmikWS86CFGrXnQllmvXi6Yg6tSLDkDUpRftg2ix EsVDZAmtS91enJleUXc5eH2ibhd0S0TdZVh3QNRNQjck6nZCNyzqdkAX7tvM kRkl8xnx2/F6SSCX3xx8Ao4kOOSWXARHCjms80pvP+SST882eNOwmuy4kIq6 UmbCIT9VtsKRA0eX6DgfjkXMjtpF77nwBrGa7NgCRzEcraLjbDjK4GgWHZvh CG/mr4+OKxltrZzZYIOI2kRFvX0qkuWlpyR4fvsSpqNsACWBoVSCUidS1oMy h6FUg1IjUsZASWQotUyHKkXeWirW/Uwsrw6pZMpqUFIYSgMo5SJlFJRUhtIE SqlIWQlKGkNpYToUEnkrqKi70AyG14pUMmU5KJkMpR2UQpEyjL0tZCidoBSI lCFkyWYo3UyH8kTeAHi5DG8xUsmUpaDkMZReUHJESj8o+QylH5QskdJHpTBy YYylLGU6tEDk9YBXxPAGkEqmLAYlxFCGQEkXKV2glDCUZaDMFymdVIKRy3os ZYTp0DyR1w5eBcNbgVQypQ2USoayCpQkkdICSjVDWQ3KXJHSBEotQ1nLdChe 5DWCV8fwxpBKptSD0sBQ1oPiFyl1VApooImhbKTHQIQS9lmz1k/4iqkQNUC0 MIjN6lG3fDW8raftrYK37bS9KrPl8I2dpN/w5Sj86P9n+6ilYl0aiRXx0i0P kRoZ3ibHCdK2tl6MyWE3ABu+xZkePeTNGw3c4A6sjuoZ3jrwAoSTXyOepLkg a183ajZBJDcj6SKmtVUMeY3zFRluAdHlNVqZbnDkUWROFHntYje46+JKkJNF cofYjVLdFVw5UkRyl5iZIy9n+iyv0e1Or46KGfIwMqeJvB4ms30GuXfoQZAz RHIvkuYzfS7Q3UsoR6ZI7hczc+QlTJ/lNZa401sdjyX3IXO2yBtgMttnkLtX 7AE5VyQPImkB0+cs3V2ttSOJPCxm5shdTJ/lNZa501tnP5bcgcxBkTfC8LjP Km3gFYm8lUwPuOfzfN3nK+sVKq2xisnM8ZqZ7srk1br01tUsdo1GZC4TyWuQ Och0I4kh14NcIZLHxMwcuRbkKpG8zp3Zum+N5dUwfZbJG5jM9rnkvimpQuZa kbwRmQuZPvsZcgXI9SJ5s5iZI9tfWjWK5LPcmRWknOmpTNnC5LPPWwmytIiU c5ClyNG/6I7sr/raRMp57h1Z7wtRb4fo3SruI5fpi8y7QNyR/eVqt0jZJqbK AKVHpIy7s6ijVHj7RO8Ek8DubjLTF5l3MbKEmL7YX6MvJUpA/4lhh5grAM6g gXOJO4/SDBs8k8zadmeHDO5LsWKxowPR7pn2vUtc2+Te7V5bHfUbPHsYT6/B s49JGWJ2223g7GfWNnmmdGsrd6fBfQVWLGHyqusP9zm2LeI+KK5tcl/FuO19 txjcV1Mpg7zJIL9Wt5hny/UGzvXMKTJ5bmQ8tQbPzYyn2uC51e3x7KzC4L4d bvsUmjx3Mp4yg+duxlNi8Nzr9nh2VmRwT8NtXzpMnsPM88W+4AYN7vvFvIsM 7iNMXpPnIcaTa/AcZTzZBs+jbg/38VVwPw633UuT5xjjyTB4nmI8aQbPM24P 9wWI4H4ObvuGxeR5gfEkGzwvuT2elHMN7lfgtm+qTZ5XGU+CwfM64wkYPG+6 PZ6dCca3YbQ/kQnyd91ySxT9HtX6z5H3IMrTiz6AKEcvOgFRll50CqJMvUj9 D6HnkpSBHVuiT0CKmfoMU2neqS8wleqd+gpT87xT32AqyTv1Habmeqd+wFSC d+onTMU72uA5f79A5NeLfqMScKD/cDTPo1V//If+q/XM8b9/7Iv7G7A5hwg= \ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 264.312}, {283., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"ceaa1f62-ae3b-48e1-8658-0a41438fca2b"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"d07348f3-a8c2-4a9d-8994-\ d573158d828e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Polyhedron", "[", RowBox[{"JohnsonSolid", "[", "63", "]"}], "]"}], "[", RowBox[{"[", RowBox[{"2", ",", "1"}], "]"}], "]"}]], "Input",ExpressionUUID->"bd6031bd-\ 49ea-4f3d-ba85-aac18a6fdf03"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["3"]]}], ",", "0", ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]], ",", FractionBox["1", "2"], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ FractionBox["1", RowBox[{"2", " ", SqrtBox["3"]}]], ",", RowBox[{"-", FractionBox["1", "2"]}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"1", "-", RowBox[{"84", " ", SuperscriptBox["#1", "2"]}], "+", RowBox[{"144", " ", SuperscriptBox["#1", "4"]}]}], "&"}], ",", "1"}], "]"}]}], "}"}]}], "}"}]], "Output",ExpressionUUID->"dd74d9ef-4f01-4be6-a063-9a08b702b402"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{"poly", "=", RowBox[{"Flatten", "[", RowBox[{"{", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{"Polyhedron", "[", RowBox[{"JohnsonSolid", "[", "63", "]"}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"CumulateFace", "[", RowBox[{ RowBox[{ RowBox[{"Polyhedron", "[", RowBox[{"JohnsonSolid", "[", "63", "]"}], "]"}], "[", RowBox[{"[", RowBox[{"2", ",", "1"}], "]"}], "]"}], ",", RowBox[{ RowBox[{"Sqrt", "[", "6", "]"}], "/", "3"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", ".7", ",", RowBox[{"-", "2"}]}], "}"}]}]}], "]"}]], "Input",ExpressionUUID->\ "33e9a163-9c00-4aeb-b154-a2f207ef96e8"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.13063 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.160595 1.32119 0 1.32119 [ [ 0 0 0 0 ] [ 1 1.13063 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.13063 L 0 1.13063 L closepath clip newpath .5 Mabswid [ ] 0 setdash 0 .386 .805 r .28028 .3846 m .24614 .43651 L .54038 .62859 L p F P 0 g s 0 .386 .805 r .69405 .60475 m .28028 .3846 L p .54038 .62859 L F P 0 g s 0 .386 .805 r .54038 .62859 m .81108 .74037 L .69405 .60475 L p F P 0 g s .793 .72 .783 r .54038 .62859 m .24614 .43651 L .21592 .80513 L closepath p F P 0 g s .701 .496 .607 r .54257 .99122 m .54038 .62859 L .21592 .80513 L closepath p F P 0 g s .426 .277 .574 r .81108 .74037 m .54038 .62859 L .54257 .99122 L closepath p F P 0 g s .751 .355 .301 r .54257 .99122 m .21592 .80513 L .22132 1.07394 L closepath p F P 0 g s 0 0 .07 r .22132 1.07394 m .21592 .80513 L .24614 .43651 L p F P 0 g s .773 .976 .915 r .54257 .99122 m .22132 1.07394 L .26479 .84043 L p F P 0 g s .773 .976 .915 r .81108 .74037 m .54257 .99122 L p .26479 .84043 L F P 0 g s 0 0 .07 r .24614 .43651 m .28028 .3846 L p .22132 1.07394 L F P 0 g s .773 .976 .915 r .26479 .84043 m .69405 .60475 L .81108 .74037 L p F P 0 g s 0 0 .07 r .28028 .3846 m .26479 .84043 L .22132 1.07394 L p F P 0 g s 0 .253 .644 r .39683 .43823 m .28028 .3846 L .69405 .60475 L closepath p F P 0 g s 0 0 .222 r .39683 .43823 m .26479 .84043 L .28028 .3846 L closepath p F P 0 g s .813 .941 .91 r .39683 .43823 m .69405 .60475 L .26479 .84043 L closepath p F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{234, 215.125}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{ 0, 1.14957}, {-0.413713, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy9m9tPHFUcx6csy73AcqdA2UKx1GJLaSlQ7peFUi4FWgqU2haxLdgLSFGj MY1pokaNxjSmMZo++OCDD/4Zvvvmv2B48tWnujNn9zvT3e/ZnR9nkWQvzPx+ n8+5zcyZs7sza7sbdx+t7W6ur4Undta2NzbXn4THt3aimwKHLMvaiz7+Clv2 +1fRt7GnvVfRv+jOA3+Zsl+ybOlLzwYr+5UqSnfs1fpZ7b2M8IC9136yflS7 Jp2XQCwh5NQjxw5ywl+ooEuv0UPxwDzE/ZAyrgBxz1XchPMSTIhT8iIEf6+C x5NKGLKynOf4Nru63SrR2fStSoyQxABJLIHxG5U4RhKzSWIIiV/JEsuR+KVK HCWJQZJYicTPVeIIScwhidVonGcqcdhnYh2Mn3kS80lkAyKf+omMDZM///k7 Plg/TZNW7zwHkBZ9RAeC/ay2xf6sj/fBCdjPTuH3kx1E9kdpsutIdh6yP1DZ Q6Rvcn3CCgB7Yg4rIq27LcMeIdhilDEDsFLAHpvDygB7KIPVElglab1Nc2wV ypgBWA1g92WwGgKrA+yuB1bgM7sB2ev7yG4kjX0nDaeacI6hFPvJbkb2LZU9 SJozzyesBbCbMlgVgbWS9lkxx55EGTMAOwXYkgxWSWCnAVvUw9jIZiVrB+yq OayDdMWcDMsqfB5lzADsAmCz5rBuwKZlsAoC6yWtN2mO7UMZY7ABn2OPwQYA m5DByglsGLCIOWwUsFFzWIR0xZAMW0awEyhjBmCTgA2Yw6YA65PBQgQ2S1qv xxx7BWXMAGwesC4ZrJTArgHWaQ67Dtg5BesnMDYDZ7Bl0hXtMmwJwd5AGTMA WwXsjDlsBbDojj/+3YvXPHrVFLGLdY3psLNtdEKztukFrOtZ4Zc8vWWX3ZYE ieqUuWoRdckngjdlAtZY7jFRRAQnzQULEJQQQau5YA6CMiI4IRMcJgL3hFZx MIJZMp4qieoNc9U06lJLBC1K0Ofz4CsiAvcKVU8Ex80F7vW0kQiazQXu1b+J CJpkgkIiGIeghQiOmQvGIDhxMIJRMmBbiSosUxUQ1Qjq0kYEjeaCIc9lLVlw 1FzgzsU7iKBBJsgngn7PtCZZUG8u6IWgmwjqzAUXyXjqIaojStVLVGyBJI+o ejwz6AMRdEEwSAS15oJOCEaIoEYmyCUC9z4+QgTVegHrblaDDgguEUGVueAs GU+TRFUpU7HGchdmZoigwlzgLiNdORhBGwQLRFAuE+QQgbuqtkgEZeYCdw1w mQhC5oITEKwSQakSXPR5yAV1goQBe5OoSsxV7qLuHSIoNhc0pxQIGyubCJog WNN3t4kgDME7+gFrIjgKwbr+kPMrCOgECeOJ1aXCXFWPuryrP8OaCI5AcFd/ tfAryCKCWgju6a93JoJqCO7rr9gmgkoINvRzDr0g6BXEHpYqdcIYYuWPzZl6 CL4wBd4t86Z+UimFlr8Odd4dTYfKTkB5PoR9T39LIOC5nxA/0N/DMF6q7nE/ w36ov/PSQ5MKeRi8R/qbRgGviAwfVtImMdn9hsFj/QqAnuc9nOxltThsS79e 4ReWC9i2fnXFL8z9Tsf7+rUgLSy2/hlH7OhXrlIjAqQbWXla/cAULbbT/oKI dsVRy3E27erXQtO1brwOOzg/vCVLZJUXItjgOC1DsMF6Ro/I94lolyHY8XdW hmAnmw4Zgp1VzskQ7Lx8XiHYZTPXJ6JThmBXmwsyBLuWdskQbArRLUPcw8HV K0tkM7wUiByfiD4Zgk1k+2UINq8fkCHYfH1QhmD3R0MyBLuHG9Yjgj4RIzLE bYIYlSFuEcSYDPE2QURkCHZTP65HZPtETMgQN3B8XpYlrhC3EMGWaKZkiCWC mJYhrhPEjB4R8ImYlSHYetgVGeIaQczJEFcJYl6GYCuHCzLEPEFc1SOyfCKu yRBzBLEoQzjrwM6mZVmis0Lt3O2syhIjSLztTeQ/bxhD8Hr64CEEx76dqy7G ST+w6EPcg5RxPWibrZRxneDtpIw7i7gPvXHeJrOiU+t40CeeINaQrYh8miby OCKfpYkMI/KLNJH1iPw6TWQNIr9LrHYoHmhVIei5PqgMQS/0QSXotZ/0QYUg vdQH5SLol+T+itcugKBfeZDdqc5/vyW0k/W72vC//QzKOvQfhDlKVg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 268.}, {303.125, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"309736df-ccc0-481c-bf29-d65a36b21d8c"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"6c44f85c-f785-4194-9bf1-\ 222d468345ab"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ FormBox[ SubscriptBox["J", "65"], TraditionalForm]],ExpressionUUID->"4fe4a8f5-e3ee-4cca-bbcd-86502fa22dad"]], \ "Subsection",ExpressionUUID->"e7827743-4554-4412-a149-471ad4d8666c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronName", "[", RowBox[{"JohnsonSolid", "[", "65", "]"}], "]"}]], "Input",ExpressionUUID->\ "504d7052-68f3-44c7-9c41-6d68a4585871"], Cell[BoxData["\<\"augmented truncated tetrahedron (J65)\"\>"], "Output",ExpressionUUID->"5752a5fe-1423-454d-8453-04ad162b974b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Polyhedron", "[", "TruncatedTetrahedron", "]"}], ",", "\[IndentingNewLine]", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"Text", "[", RowBox[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#1", ",", RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",", RowBox[{"PolyhedronVertices", "[", "TruncatedTetrahedron", "]"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "2"}]}], "}"}]}]}], "]"}]], "Input",ExpressionUUID->\ "0ba6b459-4b0b-4452-8f73-7e4d0c3406bf"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .98974 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0 1 -0.00512834 1 [ [ 0 0 0 0 ] [ 1 .98974 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .98974 L 0 .98974 L closepath clip newpath .5 Mabswid [ ] 0 setdash 1 .816 .511 r .36343 .33717 m .22858 .11878 L p .02948 .72772 L F P 0 g s 1 .816 .511 r .36343 .65257 m .36343 .33717 L p .02948 .72772 L F P 0 g s 1 .816 .511 r .02948 .72772 m .22858 .87096 L .36343 .65257 L p F P 0 g s .229 .55 .931 r .63657 .49487 m .87999 .49487 L p .43278 .02918 L F P 0 g s .229 .55 .931 r .36343 .33717 m .63657 .49487 L p .43278 .02918 L F P 0 g s .229 .55 .931 r .43278 .02918 m .22858 .11878 L .36343 .33717 L p F P 0 g s .229 0 .041 r .36343 .65257 m .22858 .87096 L p .83608 .72772 L F P 0 g s .229 0 .041 r .63657 .49487 m .36343 .65257 L p .83608 .72772 L F P 0 g s .229 0 .041 r .83608 .72772 m .87999 .49487 L .63657 .49487 L p F P 0 g s .707 .577 .707 r .36343 .33717 m .36343 .65257 L .63657 .49487 L closepath p F P 0 g s 1 .816 .511 r .22858 .11878 m .02948 .26203 L .02948 .72772 L p F P 0 g s .229 .55 .931 r .87999 .49487 m .83608 .26203 L .43278 .02918 L p F P 0 g s .229 0 .041 r .22858 .87096 m .43278 .96056 L .83608 .72772 L p F P 0 g s 0 0 0 r .43278 .02918 m .02948 .26203 L .22858 .11878 L closepath p F P 0 g s 0 .283 .698 r .22858 .87096 m .02948 .72772 L .43278 .96056 L closepath p F P 0 g s .848 .692 .159 r .83608 .72772 m .83608 .26203 L .87999 .49487 L closepath p F P 0 g s .707 .577 .707 r .02948 .72772 m .02948 .26203 L .43278 .02918 L p F P 0 g s .707 .577 .707 r .43278 .96056 m .02948 .72772 L p .43278 .02918 L F P 0 g s .707 .577 .707 r .83608 .72772 m .43278 .96056 L p .43278 .02918 L F P 0 g s .707 .577 .707 r .43278 .02918 m .83608 .26203 L .83608 .72772 L p F P 0 g s 1 1 1 r .43278 .96056 -3 -4.5 Mabsadd m .43278 .96056 3 -4.5 Mabsadd L .43278 .96056 3 4.5 Mabsadd L .43278 .96056 -3 4.5 Mabsadd L fill 0 g [(1)] .43278 .96056 0 0 Mshowa 1 1 1 r .43278 .02918 -3 -4.5 Mabsadd m .43278 .02918 3 -4.5 Mabsadd L .43278 .02918 3 4.5 Mabsadd L .43278 .02918 -3 4.5 Mabsadd L fill 0 g [(2)] .43278 .02918 0 0 Mshowa 1 1 1 r .22858 .87096 -3 -4.5 Mabsadd m .22858 .87096 3 -4.5 Mabsadd L .22858 .87096 3 4.5 Mabsadd L .22858 .87096 -3 4.5 Mabsadd L fill 0 g [(3)] .22858 .87096 0 0 Mshowa 1 1 1 r .22858 .11878 -3 -4.5 Mabsadd m .22858 .11878 3 -4.5 Mabsadd L .22858 .11878 3 4.5 Mabsadd L .22858 .11878 -3 4.5 Mabsadd L fill 0 g [(4)] .22858 .11878 0 0 Mshowa 1 1 1 r .36343 .65257 -3 -4.5 Mabsadd m .36343 .65257 3 -4.5 Mabsadd L .36343 .65257 3 4.5 Mabsadd L .36343 .65257 -3 4.5 Mabsadd L fill 0 g [(5)] .36343 .65257 0 0 Mshowa 1 1 1 r .36343 .33717 -3 -4.5 Mabsadd m .36343 .33717 3 -4.5 Mabsadd L .36343 .33717 3 4.5 Mabsadd L .36343 .33717 -3 4.5 Mabsadd L fill 0 g [(6)] .36343 .33717 0 0 Mshowa 1 1 1 r .63657 .49487 -3 -4.5 Mabsadd m .63657 .49487 3 -4.5 Mabsadd L .63657 .49487 3 4.5 Mabsadd L .63657 .49487 -3 4.5 Mabsadd L fill 0 g [(7)] .63657 .49487 0 0 Mshowa 1 1 1 r .87999 .49487 -3 -4.5 Mabsadd m .87999 .49487 3 -4.5 Mabsadd L .87999 .49487 3 4.5 Mabsadd L .87999 .49487 -3 4.5 Mabsadd L fill 0 g [(8)] .87999 .49487 0 0 Mshowa 1 1 1 r .02948 .72772 -3 -4.5 Mabsadd m .02948 .72772 3 -4.5 Mabsadd L .02948 .72772 3 4.5 Mabsadd L .02948 .72772 -3 4.5 Mabsadd L fill 0 g [(9)] .02948 .72772 0 0 Mshowa 1 1 1 r .02948 .26203 -6 -4.5 Mabsadd m .02948 .26203 6 -4.5 Mabsadd L .02948 .26203 6 4.5 Mabsadd L .02948 .26203 -6 4.5 Mabsadd L fill 0 g [(10)] .02948 .26203 0 0 Mshowa 1 1 1 r .83608 .72772 -6 -4.5 Mabsadd m .83608 .72772 6 -4.5 Mabsadd L .83608 .72772 6 4.5 Mabsadd L .83608 .72772 -6 4.5 Mabsadd L fill 0 g [(11)] .83608 .72772 0 0 Mshowa 1 1 1 r .83608 .26203 -6 -4.5 Mabsadd m .83608 .26203 6 -4.5 Mabsadd L .83608 .26203 6 4.5 Mabsadd L .83608 .26203 -6 4.5 Mabsadd L fill 0 g [(12)] .83608 .26203 0 0 Mshowa % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{287.438, 284.438}, ImageMargins->{{40, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztm/lvVFUcxR/zOtMWBAVBQNBOKWsXkKVQNllECiKLrLLKUJAWWUvBIioK BEQDIqgoIiJRQ9REJcQYjcYYY4wxxmg0KspP/h849577zn3z5jtTeZ3AMGmT zn1zz+d77vfed98yb5mbaGncsCXR0tSQiNc3J7Y3NjXsjM/c1pyscjs5Tqey 5H//uKOWrzqO96H/4urDfAm53KqKqPI8j4o9uii6ykZ0rac+oQvXr3rSXjnw HMpdqtCiG+Aunbyklt8Ct5NcEjSSViJCWPI/oireROwOXxtJKQmbHLz/CAAv 7A3I2xgWVVJMfY0Reh3QZtQmK3pq79QheBXQJkK9GW+kRkr9KL0M6VFKZYL1 S4DWq6JYKeWMN1JCFSWqYhClFyE9QmkYpaOQVquiVFVUC60+D2gloRGMN9LD quisKkZTeg7SUkrjKB2CtFgVXVTFBKHVA4AWEprMeCPNV8UtqmIapWchzVVF V1UxQ7B+GtAcQvWMN9JsSnMoPQmpntJ8StgSnKmqcM189U03R+MLhUweBzVN F6mSjlnCJgx5ryqiQhN6xSwnvsuHp2+HEa6UVYzYCW1KIBXHw/XMWSv0YTuw SaqI0N0u6dncwHYMPpFj5Qqd1xlvZMxWxIxn52OM3kRoM6A6rp+tQrJNgMZx 6uxgvJFqKe2itBHSGEqtgvV6QKMI7WW8kUaqQs/lfZTWQbqH0n5KayENp3RI aHU1oBqu0SOMN1IVpaOUVkKqpHSc0nJIw1RRij1TeqtLAQ0hdIrxRhpM6TSl xZAGUjpLaSGkCs6080Kr8wENUIXe/b3LeCPFGX+B0lxIZYz6ULB+ANDdqtAT 9iPGG6k/4y9SmgWpH6M+pTQTUl9Knwut3geojyr0vP6S8UbqTelrSthbOL0o fUtpCqSeqtDb0PdCq5MA9WD8D4w3UnfG/0RpAqTbVKH9fhGsxwHqRug3xhup K6U/KNX6oi6r2rGocMnqo7fdpVzOckjXPaqCoolAijh3iPrrvGXnMlLKFJS2 H811M9KuMNdtSEaV7W4jFTCQ2J9hELUU4brN1kLgSOdmaTDLYNkG7RTKuKp1 VTXM0qZliS/KnHk6/3IyD79ukKn785Ohuu81hYwXETch1TdbxAr+njgYLjbD /g5u0RQ3b1ir2rKMSVtRfroW5abHwk6hnX6+/vn9XL9fMnH1mdr40Da8A+fR ubKN5cgsuB3nj4UrWAzpsAhrUSRYDO6wuIEWUcFiUIdFWIuYYDGwwyKsRbFg UdFhEdaiRLAY0GER1qJUsCjPd4sLPHEbm2mSZTmEXODZZOASRja/9J8bWQY6 XAvyb/i2hkG6qHBj27jmkQpen1BCbY67kPlXWK4Hy387whPG5G6wQk/7/Nh0 89ciP/bHBWORH2cLBWORH+eyBWORH7+0CsYiP64DFIxFflzoKhiL638ZNqdX ltu+3ZED+zZuUrS/Bekk/4D+DHsDJNd+Th7eUJF+TOxvh1/IO275eQ8xbISd zGrIbq47v9eGX+db8H6oiyquqFrznICeeppwKaXv1exDLsJq9DarK2gsXcjy xEhpQFKt/xPCR3fDewrXS16Z/R3CLKqLjPtePVrhfeXrF/aJjr/MjPKtAt+j RTW+/mo8yqXfubKvMa9bafErLeogdaf0s7AjNZB+SMts8c6si17WP9JsIrjb 2QvlY0E8AKaFySB7BR0BfyfkYCLuyOT9Db2nguzjGwjj7Wj9K5LTQfb1rS9m AWvnC8IzAN/JBCIK0kufCfkavL/UQxN2id71gO+it0voY0KzAZXJ/Up+pu4T PmDgHATGMwVq6H2hDyawnGkVEX+P7vMAVQjurpDW2wxcgMCBgvs5IRmDD87U jg48Q/dFwIcIuG3nNeJLgA9lMjEh95PElwGvzOp+QuiFCawSAqMMPMZ2VgCv ZlrFQlr2KdtVwIdndT9MfA3wEanueumgkLvBRwruMQY+Q/cE8FECLvXCPqHc gMDRTKuE7nsIbQBUm8ldQ7uFXpjAsXQvJd5M90ZAdYJ7iZD7FgZuQuD4TIHm 6fD0tEzgBKbVmXgj3bcAmiS4lwpp2QfdtyFwsi/Qa1gfc+zsSDBmB2KmqMK9 6h1u7OCuEXphYvCof8Yjqx3xFWytBfr0QIaqU52FrtmXEXYjcCoHzn9UTBkd s1/wAlvlFvnNroAFQk9b/T2Vj/XR1HUZ6IF9mWNvcKBLhLk5m/hTwB8UoPsJ 7QM0z+fpQdOF3hj8IXpKs9y+9LIf+CLidlZMJHQQ0BIBqhNSMPiyVDyQgn2l 5zDw5eygncIjCR0BtIqeFqoh9AKgNQJUKeRp8LWpeCBP+8LTMeDrmKc9WFUQ Og5oAz0tVEboBKCNqVCg4X5CxiawybeFeO596f4KoMeYZ+D8qhfJUyC30i5A 9hBSMDHbpRhFd6P7aZDNqtCnTV0onYHUQkmfHTv2dTzlexbQbtuSfO0mkKAJ y/IaYc6lPUzxnTZZ/SX+/5edTv8BqYyNKA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 286.438}, {283.438, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"d8b93fd6-afbd-4553-a596-608073708a9e"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"6808d911-b1b8-4798-8dec-\ 71342809872e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Union", "[", RowBox[{"Last", "/@", RowBox[{ RowBox[{"PolyhedronVertices", "[", "TruncatedTetrahedron", "]"}], "[", RowBox[{"[", RowBox[{"{", RowBox[{"2", ",", "12", ",", "11", ",", "1", ",", "9", ",", "10"}], "}"}], "]"}], "]"}]}], "]"}]], "Input",ExpressionUUID->"ee77f588-9676-\ 4cde-9838-e0f90beca628"], Cell[BoxData[ RowBox[{"{", RowBox[{"-", FractionBox[ SqrtBox[ FractionBox["3", "2"]], "2"]}], "}"}]], "Output",ExpressionUUID->\ "8ffc479d-6d4a-4ae1-8597-d1fb85de6d68"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{"Polyhedron", "[", "TruncatedTetrahedron", "]"}], ",", RowBox[{"{", "8", "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"Text", "[", RowBox[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#1", ",", RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",", RowBox[{"PolyhedronVertices", "[", "TruncatedTetrahedron", "]"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "2"}]}], "}"}]}]}], "]"}]], "Input",ExpressionUUID->\ "d9f66cb9-7f44-4191-96c4-be1eeadde51e"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .98974 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0 1 -0.00512834 1 [ [ 0 0 0 0 ] [ 1 .98974 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .98974 L 0 .98974 L closepath clip newpath .5 Mabswid [ ] 0 setdash 1 .816 .511 r .36343 .33717 m .22858 .11878 L p .02948 .72772 L F P 0 g s 1 .816 .511 r .36343 .65257 m .36343 .33717 L p .02948 .72772 L F P 0 g s 1 .816 .511 r .02948 .72772 m .22858 .87096 L .36343 .65257 L p F P 0 g s .229 .55 .931 r .63657 .49487 m .87999 .49487 L p .43278 .02918 L F P 0 g s .229 .55 .931 r .36343 .33717 m .63657 .49487 L p .43278 .02918 L F P 0 g s .229 .55 .931 r .43278 .02918 m .22858 .11878 L .36343 .33717 L p F P 0 g s .229 0 .041 r .36343 .65257 m .22858 .87096 L p .83608 .72772 L F P 0 g s .229 0 .041 r .63657 .49487 m .36343 .65257 L p .83608 .72772 L F P 0 g s .229 0 .041 r .83608 .72772 m .87999 .49487 L .63657 .49487 L p F P 0 g s .707 .577 .707 r .36343 .33717 m .36343 .65257 L .63657 .49487 L closepath p F P 0 g s 1 .816 .511 r .22858 .11878 m .02948 .26203 L .02948 .72772 L p F P 0 g s .229 .55 .931 r .87999 .49487 m .83608 .26203 L .43278 .02918 L p F P 0 g s .229 0 .041 r .22858 .87096 m .43278 .96056 L .83608 .72772 L p F P 0 g s 0 0 0 r .43278 .02918 m .02948 .26203 L .22858 .11878 L closepath p F P 0 g s 0 .283 .698 r .22858 .87096 m .02948 .72772 L .43278 .96056 L closepath p F P 0 g s .848 .692 .159 r .83608 .72772 m .83608 .26203 L .87999 .49487 L closepath p F P 0 g s 1 1 1 r .43278 .96056 -3 -4.5 Mabsadd m .43278 .96056 3 -4.5 Mabsadd L .43278 .96056 3 4.5 Mabsadd L .43278 .96056 -3 4.5 Mabsadd L fill 0 g [(1)] .43278 .96056 0 0 Mshowa 1 1 1 r .43278 .02918 -3 -4.5 Mabsadd m .43278 .02918 3 -4.5 Mabsadd L .43278 .02918 3 4.5 Mabsadd L .43278 .02918 -3 4.5 Mabsadd L fill 0 g [(2)] .43278 .02918 0 0 Mshowa 1 1 1 r .22858 .87096 -3 -4.5 Mabsadd m .22858 .87096 3 -4.5 Mabsadd L .22858 .87096 3 4.5 Mabsadd L .22858 .87096 -3 4.5 Mabsadd L fill 0 g [(3)] .22858 .87096 0 0 Mshowa 1 1 1 r .22858 .11878 -3 -4.5 Mabsadd m .22858 .11878 3 -4.5 Mabsadd L .22858 .11878 3 4.5 Mabsadd L .22858 .11878 -3 4.5 Mabsadd L fill 0 g [(4)] .22858 .11878 0 0 Mshowa 1 1 1 r .36343 .65257 -3 -4.5 Mabsadd m .36343 .65257 3 -4.5 Mabsadd L .36343 .65257 3 4.5 Mabsadd L .36343 .65257 -3 4.5 Mabsadd L fill 0 g [(5)] .36343 .65257 0 0 Mshowa 1 1 1 r .36343 .33717 -3 -4.5 Mabsadd m .36343 .33717 3 -4.5 Mabsadd L .36343 .33717 3 4.5 Mabsadd L .36343 .33717 -3 4.5 Mabsadd L fill 0 g [(6)] .36343 .33717 0 0 Mshowa 1 1 1 r .63657 .49487 -3 -4.5 Mabsadd m .63657 .49487 3 -4.5 Mabsadd L .63657 .49487 3 4.5 Mabsadd L .63657 .49487 -3 4.5 Mabsadd L fill 0 g [(7)] .63657 .49487 0 0 Mshowa 1 1 1 r .87999 .49487 -3 -4.5 Mabsadd m .87999 .49487 3 -4.5 Mabsadd L .87999 .49487 3 4.5 Mabsadd L .87999 .49487 -3 4.5 Mabsadd L fill 0 g [(8)] .87999 .49487 0 0 Mshowa 1 1 1 r .02948 .72772 -3 -4.5 Mabsadd m .02948 .72772 3 -4.5 Mabsadd L .02948 .72772 3 4.5 Mabsadd L .02948 .72772 -3 4.5 Mabsadd L fill 0 g [(9)] .02948 .72772 0 0 Mshowa 1 1 1 r .02948 .26203 -6 -4.5 Mabsadd m .02948 .26203 6 -4.5 Mabsadd L .02948 .26203 6 4.5 Mabsadd L .02948 .26203 -6 4.5 Mabsadd L fill 0 g [(10)] .02948 .26203 0 0 Mshowa 1 1 1 r .83608 .72772 -6 -4.5 Mabsadd m .83608 .72772 6 -4.5 Mabsadd L .83608 .72772 6 4.5 Mabsadd L .83608 .72772 -6 4.5 Mabsadd L fill 0 g [(11)] .83608 .72772 0 0 Mshowa 1 1 1 r .83608 .26203 -6 -4.5 Mabsadd m .83608 .26203 6 -4.5 Mabsadd L .83608 .26203 6 4.5 Mabsadd L .83608 .26203 -6 4.5 Mabsadd L fill 0 g [(12)] .83608 .26203 0 0 Mshowa % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 285}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzNXHlXFNkVL+kGQYLKBCUGFxAVBMRBBRRBEUVwAUYRt9EZcceFYVhcGEfj lnGdZCb7yZ6TLxDPfJD8my+Rr0D6vfvqV0v/HthYT8M58Lrr/pZ7b71aurqK vuHJq5duDk+OXBiu7BkfHrs6cmGicv8X45lFqQWet6Ay87uq0lOvZzzP/6N/ qtQf82aer++qIV9p/kMWTOshPQMTvdSPfqWHVDjqh+6R0N9DJt7CiKbR9Ufv b/Lilhq0eyqWSNur/6rXfxXcJHAZoAr5Onkz+k/mJ08t12//LMHxkHYmVCBv fdAfBTQGUKkKxQr6vYBuomtl4JvQdTUUqAXlCP1WQiMIVSD0awldVoNu0Bri +p2ALqqhUEWqwDeh8witR+gXEjqH0EYi/UpAZ9VQpCIN4JvQp2pYpBZsRuiF hE4htBWhZxI6gVArcX0qoGNqKFaRNvBN6KgafqQWdCD0WEKfILSHSP9MQH1q KFGRfeCb0CE1LFYLehC6L6EDCB1CSOa116kGbZUGaID4y1zPpDaTtTUsUe+O Qtggd2EuyZSf8bdxXeIQ4LdD8OztMw9NOUWSmhTU7lhSnk/UK+oMrCZDJQfb k55D5wAaF1A7QClSsp7SF8AZE85O9LIAxV8had8U+A40/BqUTGg7VvMoQtcl 1IqQyuzfj7Sy8giQI4JsBjKtgCYJtVMBPJbYZSFuQ9MLCPEL+Bj4FvgUEvgY 4BcF3gT1YgL/kqQ1LMSP1aA3qxJCHIePgTcCvpTAJwD/XOCbAC8l8CnAzwq8 HvAyAr9FqjgtxDpMzHIbUfsY+EY16D3YCgK/A/hJgddAvYLA75K0hoS4AT6r bcQ82XA1fB3glQT+FeCDAq/GhlZN4PcAPyLwtYCvJ/CvSRX9QqwEsYYQ78PH wNeoQW/LdQT+APDDAl8NeD2BPyRpHRDiShAbbUTtY+AVatAH1CYCfwR4j8BX AL6VwJ8A3i3wnwDeTOBPSRVdQixXg96pbbcRtY+BLwO8jcC/AbxT4GVq0Pv/ DgJ/RtLqEOJH8NlFiM/hY+Cl8NlD4C8A3ynwpWrQmH0E/hLwHQJfDPVuAn9N qmgJEbVS71sSm4WYQoJpSOjj2iGrTloE5HgMvG5hg0Q0IuanQV5+eJn/2rN6 5VmFsg7187Q+TKxf2azZsfx9+DLx+vn59tmnYTbJEGnddRLUoTzMH4trv21b iZ3cpWZJYpZGB0noKqxu1umkF20SA70pDdj2Ba0CKgwrZc6iFHqQcL7FFr7Z AfGYfbuZnThkn33zJJpl//lXrV5ZjXaJ47YZ+F4lTswyI99S4qRtjiQhkYaE kdlkVzllPeLlonLadpj9UCr6U9CTeWbAD1Kilh9R81dTw1ySBWy39P+pmkbF 9Cxznqnyg+EPv/rBt3hX+VD1/j49o26uUkQ3rMxvpkD1N5rVxjlczDUwvz1p GNxPyEDP2gLI3nt32bOh5qtmZ34zOPXX/vEsQasi1OLIoBgGt4lBihjU5mZQ Qpo16cZqMWpxZLAUBuNuDD6CwZgbgzKyNm4SqzSxqsnNahlqcWRQDoPrbgxW wGDEjUEFWRuX3VitRC3MIJ8YbMjNYDUMLroxqITBeTcGa8na+NyNVTVqcWSw HgZniUEBMVifm0ENadZpN1a1qMWRQR0MTroxaIDBcTcGjWRtDBKrhcRqXW5W m1GLI4MmGBxxY7AVBgNuDJrJ2jjsxqoFtTCDQmJQnZvBdhgcdGPQBoNeNwbt ZG10u7HqQC2ODHbDYC8xKCIGa3Mz2EOa1enGqgu1ODLYB4Ndbgz2w0B/7myx beI5nqr1iqwCRy+0z+aRfc0lx6k1P1d+tTjHPmprdpm7Vb0reg9GmQK9RU7a 2hPaoHy3+JVw5d1szSCRyrsxVTOBjJOv+SFy2YtcdCrh+0xUZsp7m7P10RXe wRk3nYa/CXPfHDfhTpTYRRQT2PXsgsE+NwYdpE+OrHailh5ikMBRcwcMDrgx aIXBITcGLWRtOLLahlr63RhsgcEn1q383T9AxJrlyCryYciFwSYYDLkxaCDN cmQV+ZidZZD0hQIXBjWkWY6sIhdwXBhELkG5MKiCwTAxSOqCYGxtOLKKXNx0 YRC5POvCoII0y5FV5LJ5lkHSF/5dGCwnzXJkVYZaRt0YRL5ScmEQ+VIsyyCB 76yWkLXhyKoEtUy5MYh83erCYBFpliOrQtQy7cYg8kV+lkECX37nk2YlYBXc ipBCBQ8SkrXcW+MFt4JkftWtIMm4zf6A1OOEbOK3FSpV0Z7vHThJ63nBPUzz Vok1JfWueuzCyaN30CsIEpr3TWcmjW8+kMopovIsZ5WTROV5girBBqNWy9ve J2kkXuQmcZxIvHzvEkNE4lVCEjndp2uIr9+GOEiI3yZGLFbDUdscMXc6600y eJLtiHU+ZB0VgkcL2BQ1uyCrXvyqMPZXsWVml1IUD2VUB2yzJkdt80hssKsz nY7eTB+dEDkZ5OvBeieo7n6yXvwqeh7W2EHbjPWiN+wHD400hnqlefl41Wtf D56Xdfl/jvyXYGV0z7FT8IlmIpeGNL3eNzr9vfbZ5+kHjxRRPyFk9ruGqH73 EO4zcNuF+2P0RyEDcvRho/DBxnxbqNnL4s4i0G49UEULNyrLbTm0EZ2nyEGe 1ZXnvcJt630jT5O3EvYTsPcKewWroPeNhjQTgcekDCP1U5Shq4jt8JqI2CNk s18kVs6SzcdE4CEEekVgVTQHf+JnER+AeFCIa3gXjUS9TSLWCSNWScRYT2qI 7H1k1idiVSgpjXwY8R6IA0KstmWhQetsErGSjNg6ZJFPCqkiYtPI56hIbJg1 n0oicRcSx0SihkgEXVlFJO5A4rhI1KKQAhArCPE26YWRqCNZsK6UE9lbyOeU iNXbxDRoOZGYgsSnItGAkhaCWEaIk6QkI9FIsgj6U0rEJpDFZyKxGVkUkl6U EIlxSJwTiaZZs2ASY5A4LxJbiETQlUU2iVhXjNhWlFQEiUIiMYosLgmxmWTB upImYjchdkXEWkgWKUK8AaL5BwHbbVn4xxqVhlEQdqwNRmcH0SkKVeMncA0J 3BBiGzJfBNurAI0KqN2mbhqanZYhdoSIfkif7gRTZhhmXwpntxo0RZ/VFJIq zoAzIRw5SltP/oJcT4M5JfGuWIbKLOjECVKaIXaiceGTL787gcQgHO9wR7wr JpX2gz0drpSfeuaTddlHKpiON7qQEA/A+WuBHyagboAeCKgfmmz2dQL+UOBH oBlM+t0kYwMfJPCd0HwioCGksJCk0AL4zwV+EprBnGwmKRj4aQJvguZzAZ0h oE0AvRTQZ8gzn+RZC/hrgQ9DM3yOkZ2ngV8g8Gpo/lJAlwhoDUDfC+gK8kyR PCtICoZ4LbSF+OoroP4bAd0goGUA/U5Ao0ghdPatfEuB/IMg9T5En5wuIYkZ 0ARAxeD/SUJTCOkPYV5wl5Uy/4uAbiNn+2XcsK2hzfIfrhIPTSPFf86J1W9y +Mde3oL/AZOlCos=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {284., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"c1a8dd55-978b-4315-ba18-490590b4f453"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"825da171-6f35-4946-a2c5-\ ada070fe714a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"Drop", "[", RowBox[{ RowBox[{"Polyhedron", "[", RowBox[{"Cupola", "[", "3", "]"}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "2"}]}], "}"}]}]}], "]"}]], "Input",ExpressionUUID->\ "9db93021-6f14-4176-8f1a-9e8202b78ec1"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.1547 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.0773503 1.1547 0 1.1547 [ [ 0 0 0 0 ] [ 1 1.1547 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.1547 L 0 1.1547 L closepath clip newpath .5 Mabswid [ ] 0 setdash .025 .02 .512 r .97363 .8508 m .97363 .3039 L .75981 .57735 L closepath p F P 0 g s .756 .273 .09 r .02637 .8508 m .5 1.12425 L .3701 .80235 L closepath p F P 0 g s .756 .962 .934 r .5 .03045 m .02637 .3039 L .3701 .35235 L closepath p F P 0 g s .428 .604 .92 r .97363 .3039 m .5 .03045 L .3701 .35235 L p F P 0 g s .428 .604 .92 r .3701 .35235 m .75981 .57735 L .97363 .3039 L p F P 0 g s .428 .095 .297 r .5 1.12425 m .97363 .8508 L .75981 .57735 L p F P 0 g s .428 .095 .297 r .75981 .57735 m .3701 .80235 L .5 1.12425 L p F P 0 g s .969 .791 .608 r .02637 .3039 m .02637 .8508 L .3701 .80235 L p F P 0 g s .969 .791 .608 r .3701 .80235 m .3701 .35235 L .02637 .3039 L p F P 0 g s .707 .577 .707 r .3701 .35235 m .3701 .80235 L .75981 .57735 L closepath p F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{265.062, 306.062}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy1nNd2FNkVhhukVs4SyjknlAPKAqGcURolQGlGAoEAkUEkMTM2nrGNMTNe 9mvMC/jWr+IL33n5DlfXPv1PSf1rUHNOsVZXi+rv31/tPh2qq0/1+Nr97a1b a/d3NtbyB++t3dne2djPH9i7Z60KOePxnIm0Lg35Ht/fnzwe/8L+F+VbqP+4 +Peh7yrE5z2UFa99V2ftDQn59M///sf316dbf/+3x173WqBX9lWofZuPUVyo DdrVPql/nheSeIGydlUFWbiKWEv7VoU/B+4luBf4c8GfAg8jeATwp4I/sa9C nJtPg1Gkn0dS4hGMESQYA6PCHwCPIngc8AeC7wOPJngi2ax7ErxHOmMlkmBU wTswxhE8BfgdwW8Djyd4GvDbgu8CTyR4BunnpgRvkn4SSIksGFVwB8ZkgucA 3xH8G+DnCJ4H/BvBt4CnEryQ9LMpwU3SDytRBKMKrsOYTvBS4OuCXweeSfBy 4NcFvwo8m+CVpJ9VCa6SfrJIiWoYVXAZxlyC1wBfFnwReB7B64EvCr4AvIDg jaSfeQnOk37ySYlmGFVwFsYigrcCnxX8CvASgreRDZyW4BSCpSTYAY/CJ0k/ LNiFoCQ84/CUE7wX+Ljgo8ArCX6J9DMiwWEEq0mwDx6FD5F+qkhwAEFJWCv8 nhqCDwEfEPwy8FqCj5J++iR4CcF6EhyDR+EXST8sOIGgJDw98DQSfBp4j+Bd wJsJPkP66ZRgB4ItJDgHj8LbST8suICgJDwX4LlA8CXgFwRvAd5O8BXST7ME mxDsJMFVeBTeSPrpIMHrCErCGkS/p5vg62QD6yRYi2APCW7Co/DzwC8S/Gvg NYJXk35YcBtBSVhPa7+nj+A3ST8VEixHsJ8Ed+FReCnwAYLvAS8TvIT0w4J3 EZSE9Srt9wwTfJ/0UyjBAgRHSPABPArPAz5G8EfA8wXPJf2MkuBTBCVhvW/7 PRMEf076yZJgJoKTJPgCHoWnA58m+CvgGYKnkX5Y8A2CkrB2w/yeGYJ/S/pJ kWAygnMk+B08Ck8EPk/w3wNPEjyB9MOCfyAbGC8l4mBcJMEfYFR4DPAlgv8J eKzgUcBXCP4eeLTgkaSfZRL8K+knQkqEw3iVBD/CqPAw35X3pA38mXi8R4L/ +9c/wn03z5L03z6TVjdZJXwXq3l/sfGTNsXe8vCTSySgBHt1c3YT5j30Xf9W sTQUY+8ZP9nLUBRTBX+jXi7qsbdgqec9Uu8UG1mComzP6AuLVqMo29v8eOxu tC6es/by1EPdCAHbm2eCkOAE7RBkfObp4xeEBie4CAH7CM0E3uAEQxCwQxQG BJMQsENAH4ggLDjBvG9pP0HY1oYHV+wreylPt18+/GJfW5f3pHLEl1T2orL/ 4nuO/NlU+RBneevZYi3t17IfiSBSXxAKwTsiiNIXhEHwPRFE6wsi7OXRx+Qh UcXoqyLRi0uCaAheEUGsviAWggMiiNMXxJPReEJU8fqqBPTymAgS9AVJEDx0 R5ACwT4RJOoLUslo7BFVkr4qDb3cJoJkfUEGBDeJIEVfkAXBjjuCHDIaW0R1 Tl+Vi142iSBVX5APwRoRpOkLCiG4SgTp+oJiMhrL7qhK0MsSEWToC8ogWCCC TH1BBQSzRJClL6giozHtjqoavUwRQba+oAaCcSLI0RfUQTBCBLn6ggYyGgNE laevakQvLgmaIegjgnx9QSu5s3qIqkBfdQG9dBNBob6gHYIOIijSF3RC0OaO oJuMRjNRFeuretBLExGU6AsuQlBPBKX6gj4IaoigTF/QT0ajyh3VAHqpJIJy fcEQBGVEUKEvGIGgmAgq9QVjZDTyiapKXzWOXlwSTEKQQwTV+oJpCDKJ4Ly+ YIaMRipR1eirZtGLS4J5CJKJoFZf8BUECURQpy9YIqMRQ1T1+qpl9BJNBA36 glUIIt0RXIMgjAga9QVrZDTOElWTvmodvXjs2Yz++p4W/dobqH3B0H2CDU0f w4a26te+7ry/rdLWxXd/W8uj93ezvuqq87ETIDAwoCvOR3+AwMCDcwmCGCIw 8PRaJKPhkmrB+boaIDDwYjfnfGcIEBh44Z5xvrcFCAy89Vwho5FGVAbeRqec +xxuCCace00BAgM7NWPO/b4AgYHdslEyGgVEZWAXc9i5P+6GYND5iSJAYGCH v9/5mShAYOAjy2UyGlVEZeDj1yX0UksEBj5A9jo/bbsh6HYeLwgQGPg430VG o5moDBya6EAvbURg4OBKGwSdRGDgQFErBN3uCFrIaPQQlYHDdk3opY8IDBx4 bIBggAgMHET99ZD2MBEYOAxcS0bDJdV59DJOBAYOz1dBMEUEBr5gqCR31jRR GfiypBy9zBGBga97SiFYcEdQDMESERj48q2IjMYyURn4IrEAvVwjAgNfheZB sOaOIAeCTSIw8MV0NhmNLaIy8CV7JnrZIQID0wTSIdglAgNTHlIhuO2O4BwZ jT2iMjABJRm97BOBgSk0iRA8JAID04HiIXhCBAYmNMWR0XBJFYNeDojAwPSy KAheEYGBqXIREBwSgYHJfuFkNN4SlYGJi1708r07ghAI3hHBF00jDXUKUP5H Uv6LpsEeLe+xpwgHVP6SGbz2qr+QYkHON57zLf2zrnWLTfiW/jni/WnHHnUf iCDIad2DEESfUhDkJPReCJKIgN1FQU6jb4Mgwx1BAwQFpxQEeSpDFQTlRPCR CEKCExRDUHdKQZCnk+RA0EoEP9nLoE+CSUXRnhO3Ouii8Sg6cOKWBnNOUQTq jZN6Px+7awM2LtRZDKXmTioVcPqVnV85DW6fbmavWD3pUay+3LHxKEevFm5H lj7zCuF/oKgS0TCy4HsYYwSPBb5I8D8CjxM8HvgCwX8ALmcoynmNx/phd/M7 0o8qkQQjC/4OxmTBU4DPEPw74OcETwV+heBvyWapYDrpbJKUeAOjJOSUVHW4 IxB/CTxT8CzgEwQ/AJ4teA5w9sR4RvpRwTzSzwgp8QRGScgpw2r6ZiD+CHiB 4IXAhwl+H3iR4MXABwm+T/pRwVLSTz8pcQdGScgp3fYKht8GXi54BfA+gu8C rxS8Cvglgt8g/ajgedIPe4HehlEScsq9vaKX4FvAawWvA95N8A3g9YI3AO8k +DrpRwWbSD/tpMQ1GCUhP4lgr2D4KvAWwVuBtxF8mWygCrYhyN5cF+FpE7yD 9NNMgvMISkJ+ssJewfBZ4F2CdwNvJPgM6UcFexFsIMEpeHoFv0T6qSXBCQQl IT8pYq9gez2jwC8L3g+8huAjpB8VHESwmgSH4BkUfJj0U0mC/QhKQn7yRT2F A/E+4KOCjwGvIPhF0o8KTiBYRoI98EwIPkX6KSbBLgQlIT/JY68oIXg78CuC zwAvIngb6UcF5xAsJMEWeOYEXyD95JFgE4KSsD5F+j35BG8gG6iCSwjmkmAd PEuCrwDPJngN8BXBr5J+MkmwCkFJWC94fg/DK0k/KriGIPtEVgbPmuAbwNMI XgJ8Q/At0k8KCRYhKAnP1/CcI3gB6UcFtxFMJsE8eLYFvwGcfeLNBn5D8F3S TzwJZiIoCc8teBieQfpRwT0E40gwFZ49we8CjyF4CvC7gu+TfqJIMBFBSVi7 XH4PwxNIPyr4EMFIEoyF56Hgj4GHEzwa+GPBn5J+QkkwimygKvEMRi8JhsP4 TPAD4Oygjxf4geAvgZ8l+FngLwV/fawfj0dNfDy27Qp/g+qeX6dH+v73Rm5/ 6yjnj6qb7P+4+FudnjP/BwtyoZU=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 264.062}, {305.062, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"b59f098e-0b95-4f20-af3b-8b2be87dd3ae"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"056441b0-6b07-4bcf-a513-\ a005fa8a231f"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Last", "/@", RowBox[{"PolyhedronVertices", "[", RowBox[{"Cupola", "[", "3", "]"}], "]"}]}]], "Input",ExpressionUUID->\ "267689b2-b144-40de-95da-0044f4770224"], Cell[BoxData[ RowBox[{"{", RowBox[{"0", ",", "0", ",", SqrtBox[ FractionBox["2", "3"]], ",", SqrtBox[ FractionBox["2", "3"]], ",", SqrtBox[ FractionBox["2", "3"]], ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]], "Output",ExpressionUUID->"6a41cfd7-57fe-4509-bcec-700564656f10"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"RotationMatrix", "[", RowBox[{"Pi", "/", "3"}], "]"}], ".", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}]], "Input",ExpressionUUID->"596f0a0c-1176-\ 490f-b310-e458f3e2ce19"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ FractionBox["1", "2"], "+", SqrtBox["3"]}], ",", RowBox[{"1", "-", FractionBox[ SqrtBox["3"], "2"]}]}], "}"}]], "Output",ExpressionUUID->"d81b6032-8d8d-\ 4291-b653-8e2fa19a17bd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"poly", "=", RowBox[{"Flatten", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{"Polyhedron", "[", "TruncatedTetrahedron", "]"}], ",", RowBox[{"{", "8", "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{"Polyhedron", "[", RowBox[{"Cupola", "[", "3", "]"}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}], "/.", RowBox[{ RowBox[{"Polygon", "[", "x_", "]"}], "\[RuleDelayed]", RowBox[{"Polygon", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Sequence", "@@", RowBox[{"(", RowBox[{ RowBox[{"RotationMatrix", "[", RowBox[{"Pi", "/", "3"}], "]"}], ".", RowBox[{"Most", "[", "#", "]"}]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox[ SqrtBox[ FractionBox["3", "2"]], "2"]}], "-", RowBox[{"#", "[", RowBox[{"[", "3", "]"}], "]"}]}]}], "}"}], "&"}], "/@", "x"}], "]"}]}]}]}], "\[IndentingNewLine]", "}"}], "]"}]}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "2"}]}], "}"}]}]}], "]"}]], "Input",ExpressionUUID->\ "5b352998-f797-4742-a299-6503c1624cc2"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .98974 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -5.55112e-17 1 -0.00512834 1 [ [ 0 0 0 0 ] [ 1 .98974 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .98974 L 0 .98974 L closepath clip newpath .5 Mabswid [ ] 0 setdash 1 .816 .511 r .37637 .35212 m .26366 .16738 L p .11207 .68685 L F P 0 g s 1 .816 .511 r .37637 .63762 m .37637 .35212 L p .11207 .68685 L F P 0 g s 1 .816 .511 r .11207 .68685 m .26366 .82236 L .37637 .63762 L p F P 0 g s .235 .552 .931 r .62363 .49487 m .83088 .49487 L p .44458 .11092 L F P 0 g s .235 .552 .931 r .37637 .35212 m .62363 .49487 L p .44458 .11092 L F P 0 g s .235 .552 .931 r .44458 .11092 m .26366 .16738 L .37637 .35212 L p F P 0 g s .235 0 .048 r .37637 .63762 m .26366 .82236 L p .77709 .68685 L F P 0 g s .235 0 .048 r .62363 .49487 m .37637 .63762 L p .77709 .68685 L F P 0 g s .235 0 .048 r .77709 .68685 m .83088 .49487 L .62363 .49487 L p F P 0 g s .707 .577 .707 r .37637 .35212 m .37637 .63762 L .62363 .49487 L closepath p F P 0 g s 1 .816 .511 r .26366 .16738 m .11207 .3029 L .11207 .68685 L p F P 0 g s .235 .552 .931 r .83088 .49487 m .77709 .3029 L .44458 .11092 L p F P 0 g s .235 0 .048 r .26366 .82236 m .44458 .87882 L .77709 .68685 L p F P 0 g s 0 0 0 r .44458 .11092 m .11207 .3029 L .26366 .16738 L closepath p F P 0 g s 0 .362 .783 r .26366 .82236 m .11207 .68685 L .44458 .87882 L closepath p F P 0 g s .909 .742 .246 r .77709 .68685 m .77709 .3029 L .83088 .49487 L closepath p F P 0 g s .564 .933 .808 r .44458 .87882 m .77709 .68685 L .56696 .72684 L closepath p F P 0 g s 0 0 .177 r .11207 .3029 m .11207 .68685 L .16518 .49487 L closepath p F P 0 g s .564 0 0 r .77709 .3029 m .44458 .11092 L .56696 .2629 L closepath p F P 0 g s 1 .816 .505 r .77709 .68685 m .77709 .3029 L .56696 .2629 L p F P 0 g s 1 .816 .505 r .56696 .2629 m .56696 .72684 L .77709 .68685 L p F P 0 g s .226 .549 .93 r .11207 .68685 m .44458 .87882 L .56696 .72684 L p F P 0 g s .226 .549 .93 r .56696 .72684 m .16518 .49487 L .11207 .68685 L p F P 0 g s .226 0 .037 r .44458 .11092 m .11207 .3029 L .16518 .49487 L p F P 0 g s .226 0 .037 r .16518 .49487 m .56696 .2629 L .44458 .11092 L p F P 0 g s .707 .577 .707 r .56696 .2629 m .16518 .49487 L .56696 .72684 L closepath p F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 285}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnFlXW0cWhWU0IQFmNKPBYvYABoOZHEbbDMYhxHgg2BCDCTYYz3E6WelO 93J6WD2kV7s7vXqefoRf+z1PWfkZ/eS/4FbVKe0riX3tK6xbT2Et3RKlfb59 TtVV6SKVWNh4ur11f+PpzuZGYvbJxqPtnc2PEzMPnyS7ggcCgQOJ5K0xEVD3 XwUCqYP+aVYH88v3963e/0I1ITUX/5aOz9ERCL4aCcTUvVfPk4cCde+fIvpU NWHVEVKaQCil0rfk/X+I7qlqoqojonXBdJ0Q/ybKx6opVB0xQnxuxH8R8QPV 6MyKKTYl/5PId1UTVx0HiTykj9JnfgJfS+C2aorVI2VugdrHyLdUU6I6Kok8 DPnvRX5LNQdVRzWRRyD/nchvqqZMddQSeZRU8ZUErqqmXD1STwIL4WPkK6qp UB2NRB6D/Nciv6aaStWRIPI45L8U+WXVHFIdLUReRKr4uQS+r5pq9Ui7W6D2 MfIF1dSojk4iL4H8pyKfV02t6jhO5AchfybyC5B3EXkpqeLHEjiHtHrcArWP kc+i6D4iL4P8RyKfgbyfyCsg/1zk05iLQSKvJFV8KoHnVVOlHhlxC9Q+Rn4O p8gokVdB/onIp0AfI/JqyD8W+STok0ReQ6p4JIETONHPuQVqHyMfx9Nohshr IX8g8jHI54i8jqS1K4GjeJ7Pk8B6+Bj5O6opVR0LRN4A+Y7IR0BfJPLDkN8R +TDoS0TeSKr4SAKHVKMXt6tugdrHyAdVo5fOZSI/AvktkQ9AvkLkCcjXRX5a NXodXyXyZlLFmgT2q6ZIPXLTLVD7GHmfauKS5155C+Q3RN4L+iaRt0G+IvIe 0G8TeTup4poEnlRNTE4Cl0DtY+TdkO8SeQfkV0TepRr9yn1fyfVVgSNaEtEJ 1UQh0g8lwS++fiEJf/csKU8edXQrKWVROMdVE5GnmcpN6zUmdVPgQoXSqiYk YgBHSSIhFZjy++6ZzqYY2ThPoQVBdCIHBxEhiHJk4awlFwXRoZpwJqKQIGqA YKvxnMDaVRNyxiSYPiYU24jinFccA2sDzMmsiCBakJnz0jsjiFbVBDMRJQRx FFk41yDnBdGimoJMRClBdCMLdhU3JbDmTFjW+DBsvzrqk8QgEroR0Yi5Qt1F ZhUEMayOumvSHbEDRBVBnNHHzJLG3WF3AKveB8ws+nvHxxWmIyayEVvIoi63 wE0ENngONCK1ZKmn/QZJ3xVm+v7333EdSwY2hb2JzJreHrYGWOLtYTcAa9kP LJQG08AVMoDu5BDIhj72Wvgykm3PF/IqkJ35Ql4G8tg+keEspEzVJTK07g7h DIfU5I2+2WYR6XflH74A+Mm3gaefw9162e/OWsrmYNTr4bxO3pIUdcxc3kZy M50lM2TRfho199szPQfTAX9Mg8R0EqZDHk2DxHQ4N9MJMrsW7cdQ8xl7pu/A dNQf0xAxHYbpuEfTEDEdys10iMyuRfsB1Dzlj2mYmPbB9JxH0zAxHczNtBem 0/ZMe8jsWrTvRs1z/phGiOlxmM57NI0Q04HcTI/C9F17pp1kdi3at6PmRX9M o8S0BaaXPJpGienp3EwTML1sz/QImV2f7AuJ/WHUfM2jaSEx7c/NtB6mH9gz rSMDbdG+BjXf8Mc0RkyrYLrm0TRGTPtyM62A6U17puVkdi3al6LmW/6Yxolp MUw/8mgaJ6ancjONw/S2PdMYmV2f7IuIfQQ173g0LSKmvbmZhmC6a8+0AKb3 /TQNp5vqW/L3wEN/LNXnWt2665FHg2Ji0PMGAz1oj300MO+qjXz10jzmebz2 5RaGW+qmpuiBP5YZp6LYJX9LHvWo3rNw/hvTMEzv2jONmnrTV7c79uwLUbNP pnFiWgTTLQsvI8a0BKab9kxLyeyu+2MfI/blqNmr6dtcDhnTSph+aM/0EBlo r9faebCvRs0+mRYS0zqYrlj4U8aYNsB02Z5pI5ndK/bsm1CzT6ZRYtoM0yUL b0gY01Yy0F7f+cmDfRtqtmjaAdMFf0wjxPQYTC9aeDfPmJ4gs+v1Xds82Heh Zp9Mw8S0B6YzFt4UN6anyEDb+BzC2PehZoump2Hq9WOeHE1DxHQIphMWPtAy piNkdr1+hpgH+zOo2aLpKEy9fkSbo2mQmE7AdNjC58LGdIrMrtfP//NgfxY1 +2RaQEynYWpje4UxnSUDbWNLibGfQ80WTedh6r5JKEdT161OxsiHrU6XyMz5 sF1rCTX4AL8CuPvuOA9wtpFvz9i0uTrkuP/uAySdN+R1IPO2l3EVSPddnK9H pj+R9BbTPUPa6OHpo2Jfsz90HWnmAXYLsP3sqU1tDt5TZq0bjG8Tvo0scgzc RmCOO5rvItB1k7bbxuTUmrhL6i5/wyCmVkK249tg7yEzBhtSR30STgoiY1O9 CWS73/vUUe9+PyuBrQh8QAopJogudUzty3/5bVZJBqu/ahDMzIfBOtUx9T2B l9+a3Uca0Z7+9Fz9xpyvabw44TUjuSLwZoXXkX7eK97qN4GsEWPfp2gAsRTE C0LsTF+ghZjKlI5mmOCrMQBVZDSN0dHsoZBbVvYMX4bsa5D9uwI9hpkPEliQ wIqQawNg7wnsBB/c5JGc1qaSF863eqJIswnk94Xc5UZ2EtYPZnzFaM9AGlg3 gQUJrANZXJbAkyQwhMD0NSAZqP3bgLgqiB6CCJMhukNgrYAtC6zXDeYspAyR NSoGdgpnQhSITYJoQRbXJbCfZBEBYp0gmoFYFcRpgoiSUVkjsCOAfSiwATeY cXRBZI2KgQ0SWCFgKwTmnLsbghgiiBgp7iqBNQK2KbBhN5h5a3cv4jAQW4IY IYg4EEsE0UDGx8DO4KwpBmKRIOqRxbYEjpIsisioXCSwOsDuCmzMDWb2V+5F 1AJxTxDjBOGUNOuGyBoVA5sgsBLApgmsGvk8FMQkQRwk4zNFYIcAeyywKTeY Fk26IbKKM7CzmPIyIMYIogpZPJXA8ySLUlLSCIFVAvYDgU27wbSIIcqB+EwQ MwThlDTohsgaFQObJbBywPoJrAz5/FAQcwRRQcanh8Ccy5IvBHbBDaZFDFEC xE8EMU8QlUB0uSGyxsfA9Pdi9SNVQBwjiGJk8aUEvofASjIW7QThXPT9TBCX gHBmpI0ExhH4Cwm8gkDnvGghgTFSt0EsA8FO9SYCc66BfyWI60A4a0gjCYwi 8DcSuIZAZyWrJ4ERBP5WAtcR6KyiNW6BWXUbxCYQcVJ3FYGFkMVzQdwGwnnF rSSBQQT+QQJ3EOi87peRwAIE/lEC7yHQuYApcQvMqtsgHgLBLutiaVe+BoYc /iyAJwA416TZYQH5K+ivEvEJIpxL4giuYv8uos8gEm4qrYCzTcn86x+9GuH/ Azm7tQL/ksf1fy7RAf+RDl1/8/f3bd4PHPg/jvXrRg==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {284., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"3f57c9c3-9b2b-42bf-8215-59a58bb7018b"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"66b5fabe-38a0-4158-b101-\ 318928a7aefc"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ FormBox[ SubscriptBox["J", "66"], TraditionalForm]],ExpressionUUID->"377e24b4-124d-4dde-b6d8-a7a26d93cb84"]], \ "Subsection",ExpressionUUID->"bfd2c0d3-88aa-4a66-95ad-f5c107d6e38e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronName", "[", RowBox[{"JohnsonSolid", "[", "66", "]"}], "]"}]], "Input",ExpressionUUID->\ "bd19dcc7-6761-4e68-8b8d-0cafece882b3"], Cell[BoxData["\<\"augmented truncated cube (J66)\"\>"], "Output",ExpressionUUID->"4a834692-7bb1-4312-a8b8-933ed130f56d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Polyhedron", "[", "TruncatedCube", "]"}], ",", "\[IndentingNewLine]", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"Text", "[", RowBox[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#1", ",", RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",", RowBox[{"PolyhedronVertices", "[", "TruncatedCube", "]"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "2"}]}], "}"}]}]}], "]"}]], "Input",ExpressionUUID->\ "91d8afaa-2d9f-4e3d-93c3-61b8659ab312"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -2.22045e-16 1 -1.66533e-16 1 [ [ 0 0 0 0 ] [ 1 1 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath .5 Mabswid [ ] 0 setdash .85 .861 .85 r .17492 .17492 m .21154 .38052 L .38052 .21154 L closepath p F P 0 g s .85 .527 .44 r .38052 .78846 m .21154 .61948 L .17492 .82508 L closepath p F P 0 g s .44 .527 .85 r .61948 .21154 m .78846 .38052 L .82508 .17492 L closepath p F P 0 g s .44 .192 .44 r .82508 .82508 m .78846 .61948 L .61948 .78846 L closepath p F P 0 g s .942 .769 .304 r .17492 .82508 m .21154 .61948 L .21154 .38052 L p F P 0 g s .942 .769 .304 r .10378 .89622 m .17492 .82508 L p .21154 .38052 L F P 0 g s .942 .769 .304 r .03125 .69416 m .10378 .89622 L p .21154 .38052 L F P 0 g s .942 .769 .304 r .03125 .30584 m .03125 .69416 L p .21154 .38052 L F P 0 g s .942 .769 .304 r .10378 .10378 m .03125 .30584 L p .21154 .38052 L F P 0 g s .942 .769 .304 r .21154 .38052 m .17492 .17492 L .10378 .10378 L p F P 0 g s 0 0 .304 r .82508 .17492 m .78846 .38052 L .78846 .61948 L p F P 0 g s 0 0 .304 r .89622 .10378 m .82508 .17492 L p .78846 .61948 L F P 0 g s 0 0 .304 r .96875 .30584 m .89622 .10378 L p .78846 .61948 L F P 0 g s 0 0 .304 r .96875 .69416 m .96875 .30584 L p .78846 .61948 L F P 0 g s 0 0 .304 r .89622 .89622 m .96875 .69416 L p .78846 .61948 L F P 0 g s 0 0 .304 r .78846 .61948 m .82508 .82508 L .89622 .89622 L p F P 0 g s .304 .769 .942 r .17492 .17492 m .38052 .21154 L .61948 .21154 L p F P 0 g s .304 .769 .942 r .10378 .10378 m .17492 .17492 L p .61948 .21154 L F P 0 g s .304 .769 .942 r .30584 .03125 m .10378 .10378 L p .61948 .21154 L F P 0 g s .304 .769 .942 r .69416 .03125 m .30584 .03125 L p .61948 .21154 L F P 0 g s .304 .769 .942 r .89622 .10378 m .69416 .03125 L p .61948 .21154 L F P 0 g s .304 .769 .942 r .61948 .21154 m .82508 .17492 L .89622 .10378 L p F P 0 g s .304 0 0 r .82508 .82508 m .61948 .78846 L .38052 .78846 L p F P 0 g s .304 0 0 r .89622 .89622 m .82508 .82508 L p .38052 .78846 L F P 0 g s .304 0 0 r .69416 .96875 m .89622 .89622 L p .38052 .78846 L F P 0 g s .304 0 0 r .30584 .96875 m .69416 .96875 L p .38052 .78846 L F P 0 g s .304 0 0 r .10378 .89622 m .30584 .96875 L p .38052 .78846 L F P 0 g s .304 0 0 r .38052 .78846 m .17492 .82508 L .10378 .89622 L p F P 0 g s .707 .577 .707 r .78846 .38052 m .61948 .21154 L .38052 .21154 L p F P 0 g s .707 .577 .707 r .78846 .61948 m .78846 .38052 L p .38052 .21154 L F P 0 g s .707 .577 .707 r .61948 .78846 m .78846 .61948 L p .38052 .21154 L F P 0 g s .707 .577 .707 r .38052 .78846 m .61948 .78846 L p .38052 .21154 L F P 0 g s .707 .577 .707 r .21154 .61948 m .38052 .78846 L p .38052 .21154 L F P 0 g s .707 .577 .707 r .38052 .21154 m .21154 .38052 L .21154 .61948 L p F P 0 g s 0 0 0 r .30584 .03125 m .03125 .30584 L .10378 .10378 L closepath p F P 0 g s 0 .298 .793 r .10378 .89622 m .03125 .69416 L .30584 .96875 L closepath p F P 0 g s .793 .298 0 r .89622 .10378 m .96875 .30584 L .69416 .03125 L closepath p F P 0 g s .793 .997 .793 r .69416 .96875 m .96875 .69416 L .89622 .89622 L closepath p F P 0 g s .707 .577 .707 r .03125 .30584 m .30584 .03125 L .69416 .03125 L p F P 0 g s .707 .577 .707 r .03125 .69416 m .03125 .30584 L p .69416 .03125 L F P 0 g s .707 .577 .707 r .30584 .96875 m .03125 .69416 L p .69416 .03125 L F P 0 g s .707 .577 .707 r .69416 .96875 m .30584 .96875 L p .69416 .03125 L F P 0 g s .707 .577 .707 r .96875 .69416 m .69416 .96875 L p .69416 .03125 L F P 0 g s .707 .577 .707 r .69416 .03125 m .96875 .30584 L .96875 .69416 L p F P 0 g s 1 1 1 r .38052 .21154 -3 -4.5 Mabsadd m .38052 .21154 3 -4.5 Mabsadd L .38052 .21154 3 4.5 Mabsadd L .38052 .21154 -3 4.5 Mabsadd L fill 0 g [(1)] .38052 .21154 0 0 Mshowa 1 1 1 r .30584 .03125 -3 -4.5 Mabsadd m .30584 .03125 3 -4.5 Mabsadd L .30584 .03125 3 4.5 Mabsadd L .30584 .03125 -3 4.5 Mabsadd L fill 0 g [(2)] .30584 .03125 0 0 Mshowa 1 1 1 r .38052 .78846 -3 -4.5 Mabsadd m .38052 .78846 3 -4.5 Mabsadd L .38052 .78846 3 4.5 Mabsadd L .38052 .78846 -3 4.5 Mabsadd L fill 0 g [(3)] .38052 .78846 0 0 Mshowa 1 1 1 r .30584 .96875 -3 -4.5 Mabsadd m .30584 .96875 3 -4.5 Mabsadd L .30584 .96875 3 4.5 Mabsadd L .30584 .96875 -3 4.5 Mabsadd L fill 0 g [(4)] .30584 .96875 0 0 Mshowa 1 1 1 r .61948 .21154 -3 -4.5 Mabsadd m .61948 .21154 3 -4.5 Mabsadd L .61948 .21154 3 4.5 Mabsadd L .61948 .21154 -3 4.5 Mabsadd L fill 0 g [(5)] .61948 .21154 0 0 Mshowa 1 1 1 r .69416 .03125 -3 -4.5 Mabsadd m .69416 .03125 3 -4.5 Mabsadd L .69416 .03125 3 4.5 Mabsadd L .69416 .03125 -3 4.5 Mabsadd L fill 0 g [(6)] .69416 .03125 0 0 Mshowa 1 1 1 r .61948 .78846 -3 -4.5 Mabsadd m .61948 .78846 3 -4.5 Mabsadd L .61948 .78846 3 4.5 Mabsadd L .61948 .78846 -3 4.5 Mabsadd L fill 0 g [(7)] .61948 .78846 0 0 Mshowa 1 1 1 r .69416 .96875 -3 -4.5 Mabsadd m .69416 .96875 3 -4.5 Mabsadd L .69416 .96875 3 4.5 Mabsadd L .69416 .96875 -3 4.5 Mabsadd L fill 0 g [(8)] .69416 .96875 0 0 Mshowa 1 1 1 r .78846 .61948 -3 -4.5 Mabsadd m .78846 .61948 3 -4.5 Mabsadd L .78846 .61948 3 4.5 Mabsadd L .78846 .61948 -3 4.5 Mabsadd L fill 0 g [(9)] .78846 .61948 0 0 Mshowa 1 1 1 r .96875 .69416 -6 -4.5 Mabsadd m .96875 .69416 6 -4.5 Mabsadd L .96875 .69416 6 4.5 Mabsadd L .96875 .69416 -6 4.5 Mabsadd L fill 0 g [(10)] .96875 .69416 0 0 Mshowa 1 1 1 r .78846 .38052 -6 -4.5 Mabsadd m .78846 .38052 6 -4.5 Mabsadd L .78846 .38052 6 4.5 Mabsadd L .78846 .38052 -6 4.5 Mabsadd L fill 0 g [(11)] .78846 .38052 0 0 Mshowa 1 1 1 r .96875 .30584 -6 -4.5 Mabsadd m .96875 .30584 6 -4.5 Mabsadd L .96875 .30584 6 4.5 Mabsadd L .96875 .30584 -6 4.5 Mabsadd L fill 0 g [(12)] .96875 .30584 0 0 Mshowa 1 1 1 r .89622 .10378 -6 -4.5 Mabsadd m .89622 .10378 6 -4.5 Mabsadd L .89622 .10378 6 4.5 Mabsadd L .89622 .10378 -6 4.5 Mabsadd L fill 0 g [(13)] .89622 .10378 0 0 Mshowa 1 1 1 r .82508 .17492 -6 -4.5 Mabsadd m .82508 .17492 6 -4.5 Mabsadd L .82508 .17492 6 4.5 Mabsadd L .82508 .17492 -6 4.5 Mabsadd L fill 0 g [(14)] .82508 .17492 0 0 Mshowa 1 1 1 r .89622 .89622 -6 -4.5 Mabsadd m .89622 .89622 6 -4.5 Mabsadd L .89622 .89622 6 4.5 Mabsadd L .89622 .89622 -6 4.5 Mabsadd L fill 0 g [(15)] .89622 .89622 0 0 Mshowa 1 1 1 r .82508 .82508 -6 -4.5 Mabsadd m .82508 .82508 6 -4.5 Mabsadd L .82508 .82508 6 4.5 Mabsadd L .82508 .82508 -6 4.5 Mabsadd L fill 0 g [(16)] .82508 .82508 0 0 Mshowa 1 1 1 r .21154 .61948 -6 -4.5 Mabsadd m .21154 .61948 6 -4.5 Mabsadd L .21154 .61948 6 4.5 Mabsadd L .21154 .61948 -6 4.5 Mabsadd L fill 0 g [(17)] .21154 .61948 0 0 Mshowa 1 1 1 r .03125 .69416 -6 -4.5 Mabsadd m .03125 .69416 6 -4.5 Mabsadd L .03125 .69416 6 4.5 Mabsadd L .03125 .69416 -6 4.5 Mabsadd L fill 0 g [(18)] .03125 .69416 0 0 Mshowa 1 1 1 r .21154 .38052 -6 -4.5 Mabsadd m .21154 .38052 6 -4.5 Mabsadd L .21154 .38052 6 4.5 Mabsadd L .21154 .38052 -6 4.5 Mabsadd L fill 0 g [(19)] .21154 .38052 0 0 Mshowa 1 1 1 r .03125 .30584 -6 -4.5 Mabsadd m .03125 .30584 6 -4.5 Mabsadd L .03125 .30584 6 4.5 Mabsadd L .03125 .30584 -6 4.5 Mabsadd L fill 0 g [(20)] .03125 .30584 0 0 Mshowa 1 1 1 r .10378 .10378 -6 -4.5 Mabsadd m .10378 .10378 6 -4.5 Mabsadd L .10378 .10378 6 4.5 Mabsadd L .10378 .10378 -6 4.5 Mabsadd L fill 0 g [(21)] .10378 .10378 0 0 Mshowa 1 1 1 r .17492 .17492 -6 -4.5 Mabsadd m .17492 .17492 6 -4.5 Mabsadd L .17492 .17492 6 4.5 Mabsadd L .17492 .17492 -6 4.5 Mabsadd L fill 0 g [(22)] .17492 .17492 0 0 Mshowa 1 1 1 r .10378 .89622 -6 -4.5 Mabsadd m .10378 .89622 6 -4.5 Mabsadd L .10378 .89622 6 4.5 Mabsadd L .10378 .89622 -6 4.5 Mabsadd L fill 0 g [(23)] .10378 .89622 0 0 Mshowa 1 1 1 r .17492 .82508 -6 -4.5 Mabsadd m .17492 .82508 6 -4.5 Mabsadd L .17492 .82508 6 4.5 Mabsadd L .17492 .82508 -6 4.5 Mabsadd L fill 0 g [(24)] .17492 .82508 0 0 Mshowa % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{287.438, 287.438}, ImageMargins->{{40, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnP2LJMUZx/umZ/ZlXndm32f3bjcR0WjUM2piYnK6e3e7d+ZOY9SYXw8J ubsQEoyEICIiIiIiYsTcXQ4RERG5iMgR8ieEXP6GICIiIiIiIhKymeep6qeq u79PT83ceLnA7LJdvdXP9/M8XV1V3VX9cvTYw8d/8etjD5948Nj69kPHfnv8 xIO/W9/6zUO9rHhXFO1ao7/1iNZ3oihZ8M86Lew/I1i/j5IK8X9FazGt/dxs up+T8o645tzoJKeVVLbdFD1gVn4GlL2fk5QR87bY32Y9RfcWkEu0cmLn/B/P M5b/LdHafcbiJ7IfWQc9SXScl2mnsUFcOGLy7zGco5RM9ePYqBzH2vVg9Bc5 7F3G9MeUTPOelEVt/9yuub0qWWgvMwH3Cqa35K1HDOEQJTWGGstk18pCnDBE t/dJhBWJ8LCBHaSkQRmPAPNJMd8y5puUtCjjUWA+Leb7jfkdlMxQxmPAvCZ7 tmHMf0RJhzIeB+Z1oe8z5j+gZI4yngDmTTG/zZh/j5IFyngSmM+I+a3G/GZK lijjKWDeEfNbjPl3KFmmjKeB+Zzs6k3G/AZKVijjGWA+L/S9xvzblOymjGeB +aKYX2fMv0XJGmU8B8yXxfwaY34VJeuU8TwwX5HYrzbmi9LouL7G0my+SWsv AMSqeMy3g1gYK2bLkq3MmQ4oBtmJzxeBzz0m7B21b0FdkvHdK6H8JsX/Nyjj JeB/t/OfBlV0v12wqYT98uE6pZU18mt7PlfQi30LJ+eV69QZvZIMtLdF/l2f yJHsobWzwG+Xl65rdrFjrilhEwGTynhHua29rDUetKOuLdjivYKSVcp4BXCW aHmlsWTBFbT5VWC5ZnfRd9b1hNwCXtNaQIGQq+7rWtXFwq4I3wgULntCrrRv apW2QMj17pxW77BwWYRvBQr91s817u2CGgeESyJ8J1C46Am5yp3XqlyBkOvY X7U6hoWLIvxboHDBE87TljqtcdHy2lwfTde1Ta+lujy6kqFIzFHOnSY4w7dP nYmxX074jG+6oewpBZ4e7LqpNKihl0HePAhiPhuE2innux/PeW5bBRTCbIh/ dMJDeZ7zgs45vAQ4WUIRoNMwHf2/aGWfzZNoFoD7uYtyn6mqXIFK2cNYVP7W PSeL1ldyuW7iTtzHgu1T6dKHw44SYNHPes5t5UsaqmuyaISAmpMP46b/TyBs 68JZEW7I6OR2WdsMhHU8GF/1b+KeoiR4Zdt+7fK/wOEsbdlf0CqNwwnUXig5 AHy2dJ8d8Xmgn89sd0R+Qr21PW887jo4jLeD2uirwFubtmz195Ycs23go6H7 aIuPbdCWY3fAQG94KNDVjOeKx7iH+u2O33Mnpzu0Y/U+3ngAfhg0pTu1UTaG zQjs3UBhyxM2act7QFjVhS0Rvh8obHpCnqf4QJt4KBDWacuHQDilC5si/ChQ 2PCEPD/zsTalUiCs0pZPgHBCFzZE+GmgsO4JeX7qM22yqEDI82WfA2FZF9ZF +EWgsOYJJ2nLl0AY68KaCL8KFFY9IXfo/wbCUh8ht/X/sLDiC/mPugFbIFUx 5j5hV4Gi5inKoojtmc5XOOOmCY07pt7CNvySOHWTAqW0pXLuZJEZ08Nr16j4 otrx9au7HNC6Q9fdw/tCF77WUQVALTh3AUol5Q5c6HCh7B2GQkdhexY+vxWP yjE6oypAv7a4KRdU54qnVSYMB9foKU+anFrZqAZO85NjzVhzeWiulcHYaVm7 fgiEMq/uxpinC6zc+HMY16Gd3unirjh3yTyqWLIz0GR86n8UC+eVXZcpij9d soDCThaXqpDgeUQdRZ8GEnc2iUd+pFzDuBSV9+K6gcu5lxtrxpqxZqwZa8aa sWasGWvGmrHm65hF4GekeKbsxiEQymMX+eFN8iiWZ23+G8brAMMq9osmNkfl F01csFN043Pv1+00U8IlV84CvWFEMaBZkj/zUh2ND1XDBhrvnx19AAEP1ST2 Z3CTKA3r+uIa6OXc/4w1/98afE/FzQ1nZomL7hK66Th7vwY9uWQ1EZp1LL6b FnKL8FL6AgpUTpf3rmRuFegdrnr/D10mjLCoXICFNwGrXhTRkQvmL4ryt8nt b5S+p25LW5RG7ZVscl/e+42yjNhn0Bm7t0w3xtTTBOaXnibYuZDZ6WmDrQVi vwrEVnVsDLBfAmw8GLYMsF8AbFnH1gOxnwdiazq2ArCfAWxFxzYCsZ8GYus6 dgJgPwHYicGwkwD7McBO6thmIPajQGxDx04B7IcAOzUYdhpgPwDYaR3bCsS+ H4ht6tgqwL4HsNXBsDWAfRdgazp2JhD7r0BsS8fWAXZbrriVByWtq7ruqh3o agtfE7knkpXRx+HAcGb0cBogHPNgrno2L4roEIioMVhETRARP5iMhtL7zDk6 vYH+2waBNPVAOoGBuEe5S+kjhGLYCoyhrcfQAjFsFhZG3+e6bSCtwQKZAYFs BNSTwEfbbVAzelCzgUHd0a8toSH7RmAsHT2WNojFdRxubRO4ag/mqgNc/QNg Ozp2LhD790DsrI6dzWB3kgse90JJ5L263kPPDeZgjpZczdx4M3N8lZfDMuPT zH4WhDGvhaG8MIZGMn1fl8p2KRTNPIjJf18JxTTA1NW5Ece0oNWHwmeA1XLK 7YN70QMF4b/JBitl2LO6ktf3iFVGHEnmKevkfVS7Wa1Z/QpkEYTRsWMjj72T 7JF+QNIbMuGi9uO/2YkiyL8cOghiGfRg50EPtqxjlwKx7wRiF3VsF2DfBtju YNgVgH0LYFd07HIg9lwgFnweIcGuAuybALuqY7uB2DcCscs6djfAvg6wuwfD 7gHY1wB2j45dCcS+Gojt6tg1gH0FYNd0LH/jANWolwFniZZXeq0+8w0RXkMH /CyAmTYa+jWR9MWrd0LIvRKs1LkzIARuzyP8wki2j9Yq6imttY7qayOu60dV 5CWt+Y3w8x+oKFAsL2pttug6I/X5k0nkP3MEy34e/aFQXlC7j5wc1YtVs919 mCTzvgyvodrwvFYbHEW5ZrRt+Go55KjiP6dX/Mh+aMh+Ryg2zDziWa0v4Kxr DeI6QSwBxDMAsSCI6w1iryAWAOJpgJgTxI0GcZOUxTxAPAUQs1IWNxvELRJF dsBE4icBoi1RfNcgbhUEGow+ARAtQXzfIG4TBJp5eBwgGoL4oUHsEwSaW3oM IGqCuN0gNqQ40WzZowBRleLcNIj9EgWa4HwEIKYkigMGsSUINFH8B4CYEMS2 QRwWBJpw/z1AlAVxp0EckbLwbwUkzT/z7bYoPZAuS6kcNbC7vG4iGRnGrseS yH6Jx8t+73jB/TLhbmN7T7ojyoTLkRb0nXLB8FOT6743CAMs7oTv9xjKUPME G+b2M/VJwzgF5e8eBnzPkEs9wPgBUEonpQxtIJy9Ptx6tOu/4nz0xA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 286.438}, {286.438, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"f7dcab5e-b739-4eb2-ac6a-8f126878b7a7"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"53726d6e-a28b-474e-bd3b-\ a87a347ad947"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Union", "[", RowBox[{"Last", "/@", RowBox[{ RowBox[{"PolyhedronVertices", "[", "TruncatedCube", "]"}], "[", RowBox[{"[", RowBox[{"{", RowBox[{ "4", ",", "18", ",", "20", ",", "2", ",", "6", ",", "12", ",", "10", ",", "8"}], "}"}], "]"}], "]"}]}], "]"}]], "Input",ExpressionUUID->\ "6ac7757b-fe67-4959-82c0-f031c7570187"], Cell[BoxData[ RowBox[{"{", FractionBox["1", RowBox[{"2", "-", RowBox[{"2", " ", SqrtBox["2"]}]}]], "}"}]], "Output",ExpressionUUID->"60451179-6ae4-4f0f-\ 9206-4009ce649f74"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{"Polyhedron", "[", "TruncatedCube", "]"}], ",", RowBox[{"{", "1", "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"MapIndexed", "[", RowBox[{ RowBox[{ RowBox[{"Text", "[", RowBox[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], ",", "#1", ",", RowBox[{"Background", "\[Rule]", "White"}]}], "]"}], "&"}], ",", RowBox[{"PolyhedronVertices", "[", "TruncatedCube", "]"}]}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "2"}]}], "}"}]}]}], "]"}]], "Input",ExpressionUUID->\ "e88f8f24-e0aa-4eba-aae7-f20019ee903b"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -2.22045e-16 1 -1.66533e-16 1 [ [ 0 0 0 0 ] [ 1 1 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath .5 Mabswid [ ] 0 setdash .85 .861 .85 r .17492 .17492 m .21154 .38052 L .38052 .21154 L closepath p F P 0 g s .85 .527 .44 r .38052 .78846 m .21154 .61948 L .17492 .82508 L closepath p F P 0 g s .44 .527 .85 r .61948 .21154 m .78846 .38052 L .82508 .17492 L closepath p F P 0 g s .44 .192 .44 r .82508 .82508 m .78846 .61948 L .61948 .78846 L closepath p F P 0 g s .942 .769 .304 r .17492 .82508 m .21154 .61948 L .21154 .38052 L p F P 0 g s .942 .769 .304 r .10378 .89622 m .17492 .82508 L p .21154 .38052 L F P 0 g s .942 .769 .304 r .03125 .69416 m .10378 .89622 L p .21154 .38052 L F P 0 g s .942 .769 .304 r .03125 .30584 m .03125 .69416 L p .21154 .38052 L F P 0 g s .942 .769 .304 r .10378 .10378 m .03125 .30584 L p .21154 .38052 L F P 0 g s .942 .769 .304 r .21154 .38052 m .17492 .17492 L .10378 .10378 L p F P 0 g s 0 0 .304 r .82508 .17492 m .78846 .38052 L .78846 .61948 L p F P 0 g s 0 0 .304 r .89622 .10378 m .82508 .17492 L p .78846 .61948 L F P 0 g s 0 0 .304 r .96875 .30584 m .89622 .10378 L p .78846 .61948 L F P 0 g s 0 0 .304 r .96875 .69416 m .96875 .30584 L p .78846 .61948 L F P 0 g s 0 0 .304 r .89622 .89622 m .96875 .69416 L p .78846 .61948 L F P 0 g s 0 0 .304 r .78846 .61948 m .82508 .82508 L .89622 .89622 L p F P 0 g s .304 .769 .942 r .17492 .17492 m .38052 .21154 L .61948 .21154 L p F P 0 g s .304 .769 .942 r .10378 .10378 m .17492 .17492 L p .61948 .21154 L F P 0 g s .304 .769 .942 r .30584 .03125 m .10378 .10378 L p .61948 .21154 L F P 0 g s .304 .769 .942 r .69416 .03125 m .30584 .03125 L p .61948 .21154 L F P 0 g s .304 .769 .942 r .89622 .10378 m .69416 .03125 L p .61948 .21154 L F P 0 g s .304 .769 .942 r .61948 .21154 m .82508 .17492 L .89622 .10378 L p F P 0 g s .304 0 0 r .82508 .82508 m .61948 .78846 L .38052 .78846 L p F P 0 g s .304 0 0 r .89622 .89622 m .82508 .82508 L p .38052 .78846 L F P 0 g s .304 0 0 r .69416 .96875 m .89622 .89622 L p .38052 .78846 L F P 0 g s .304 0 0 r .30584 .96875 m .69416 .96875 L p .38052 .78846 L F P 0 g s .304 0 0 r .10378 .89622 m .30584 .96875 L p .38052 .78846 L F P 0 g s .304 0 0 r .38052 .78846 m .17492 .82508 L .10378 .89622 L p F P 0 g s .707 .577 .707 r .78846 .38052 m .61948 .21154 L .38052 .21154 L p F P 0 g s .707 .577 .707 r .78846 .61948 m .78846 .38052 L p .38052 .21154 L F P 0 g s .707 .577 .707 r .61948 .78846 m .78846 .61948 L p .38052 .21154 L F P 0 g s .707 .577 .707 r .38052 .78846 m .61948 .78846 L p .38052 .21154 L F P 0 g s .707 .577 .707 r .21154 .61948 m .38052 .78846 L p .38052 .21154 L F P 0 g s .707 .577 .707 r .38052 .21154 m .21154 .38052 L .21154 .61948 L p F P 0 g s 0 0 0 r .30584 .03125 m .03125 .30584 L .10378 .10378 L closepath p F P 0 g s 0 .298 .793 r .10378 .89622 m .03125 .69416 L .30584 .96875 L closepath p F P 0 g s .793 .298 0 r .89622 .10378 m .96875 .30584 L .69416 .03125 L closepath p F P 0 g s .793 .997 .793 r .69416 .96875 m .96875 .69416 L .89622 .89622 L closepath p F P 0 g s 1 1 1 r .38052 .21154 -3 -4.5 Mabsadd m .38052 .21154 3 -4.5 Mabsadd L .38052 .21154 3 4.5 Mabsadd L .38052 .21154 -3 4.5 Mabsadd L fill 0 g [(1)] .38052 .21154 0 0 Mshowa 1 1 1 r .30584 .03125 -3 -4.5 Mabsadd m .30584 .03125 3 -4.5 Mabsadd L .30584 .03125 3 4.5 Mabsadd L .30584 .03125 -3 4.5 Mabsadd L fill 0 g [(2)] .30584 .03125 0 0 Mshowa 1 1 1 r .38052 .78846 -3 -4.5 Mabsadd m .38052 .78846 3 -4.5 Mabsadd L .38052 .78846 3 4.5 Mabsadd L .38052 .78846 -3 4.5 Mabsadd L fill 0 g [(3)] .38052 .78846 0 0 Mshowa 1 1 1 r .30584 .96875 -3 -4.5 Mabsadd m .30584 .96875 3 -4.5 Mabsadd L .30584 .96875 3 4.5 Mabsadd L .30584 .96875 -3 4.5 Mabsadd L fill 0 g [(4)] .30584 .96875 0 0 Mshowa 1 1 1 r .61948 .21154 -3 -4.5 Mabsadd m .61948 .21154 3 -4.5 Mabsadd L .61948 .21154 3 4.5 Mabsadd L .61948 .21154 -3 4.5 Mabsadd L fill 0 g [(5)] .61948 .21154 0 0 Mshowa 1 1 1 r .69416 .03125 -3 -4.5 Mabsadd m .69416 .03125 3 -4.5 Mabsadd L .69416 .03125 3 4.5 Mabsadd L .69416 .03125 -3 4.5 Mabsadd L fill 0 g [(6)] .69416 .03125 0 0 Mshowa 1 1 1 r .61948 .78846 -3 -4.5 Mabsadd m .61948 .78846 3 -4.5 Mabsadd L .61948 .78846 3 4.5 Mabsadd L .61948 .78846 -3 4.5 Mabsadd L fill 0 g [(7)] .61948 .78846 0 0 Mshowa 1 1 1 r .69416 .96875 -3 -4.5 Mabsadd m .69416 .96875 3 -4.5 Mabsadd L .69416 .96875 3 4.5 Mabsadd L .69416 .96875 -3 4.5 Mabsadd L fill 0 g [(8)] .69416 .96875 0 0 Mshowa 1 1 1 r .78846 .61948 -3 -4.5 Mabsadd m .78846 .61948 3 -4.5 Mabsadd L .78846 .61948 3 4.5 Mabsadd L .78846 .61948 -3 4.5 Mabsadd L fill 0 g [(9)] .78846 .61948 0 0 Mshowa 1 1 1 r .96875 .69416 -6 -4.5 Mabsadd m .96875 .69416 6 -4.5 Mabsadd L .96875 .69416 6 4.5 Mabsadd L .96875 .69416 -6 4.5 Mabsadd L fill 0 g [(10)] .96875 .69416 0 0 Mshowa 1 1 1 r .78846 .38052 -6 -4.5 Mabsadd m .78846 .38052 6 -4.5 Mabsadd L .78846 .38052 6 4.5 Mabsadd L .78846 .38052 -6 4.5 Mabsadd L fill 0 g [(11)] .78846 .38052 0 0 Mshowa 1 1 1 r .96875 .30584 -6 -4.5 Mabsadd m .96875 .30584 6 -4.5 Mabsadd L .96875 .30584 6 4.5 Mabsadd L .96875 .30584 -6 4.5 Mabsadd L fill 0 g [(12)] .96875 .30584 0 0 Mshowa 1 1 1 r .89622 .10378 -6 -4.5 Mabsadd m .89622 .10378 6 -4.5 Mabsadd L .89622 .10378 6 4.5 Mabsadd L .89622 .10378 -6 4.5 Mabsadd L fill 0 g [(13)] .89622 .10378 0 0 Mshowa 1 1 1 r .82508 .17492 -6 -4.5 Mabsadd m .82508 .17492 6 -4.5 Mabsadd L .82508 .17492 6 4.5 Mabsadd L .82508 .17492 -6 4.5 Mabsadd L fill 0 g [(14)] .82508 .17492 0 0 Mshowa 1 1 1 r .89622 .89622 -6 -4.5 Mabsadd m .89622 .89622 6 -4.5 Mabsadd L .89622 .89622 6 4.5 Mabsadd L .89622 .89622 -6 4.5 Mabsadd L fill 0 g [(15)] .89622 .89622 0 0 Mshowa 1 1 1 r .82508 .82508 -6 -4.5 Mabsadd m .82508 .82508 6 -4.5 Mabsadd L .82508 .82508 6 4.5 Mabsadd L .82508 .82508 -6 4.5 Mabsadd L fill 0 g [(16)] .82508 .82508 0 0 Mshowa 1 1 1 r .21154 .61948 -6 -4.5 Mabsadd m .21154 .61948 6 -4.5 Mabsadd L .21154 .61948 6 4.5 Mabsadd L .21154 .61948 -6 4.5 Mabsadd L fill 0 g [(17)] .21154 .61948 0 0 Mshowa 1 1 1 r .03125 .69416 -6 -4.5 Mabsadd m .03125 .69416 6 -4.5 Mabsadd L .03125 .69416 6 4.5 Mabsadd L .03125 .69416 -6 4.5 Mabsadd L fill 0 g [(18)] .03125 .69416 0 0 Mshowa 1 1 1 r .21154 .38052 -6 -4.5 Mabsadd m .21154 .38052 6 -4.5 Mabsadd L .21154 .38052 6 4.5 Mabsadd L .21154 .38052 -6 4.5 Mabsadd L fill 0 g [(19)] .21154 .38052 0 0 Mshowa 1 1 1 r .03125 .30584 -6 -4.5 Mabsadd m .03125 .30584 6 -4.5 Mabsadd L .03125 .30584 6 4.5 Mabsadd L .03125 .30584 -6 4.5 Mabsadd L fill 0 g [(20)] .03125 .30584 0 0 Mshowa 1 1 1 r .10378 .10378 -6 -4.5 Mabsadd m .10378 .10378 6 -4.5 Mabsadd L .10378 .10378 6 4.5 Mabsadd L .10378 .10378 -6 4.5 Mabsadd L fill 0 g [(21)] .10378 .10378 0 0 Mshowa 1 1 1 r .17492 .17492 -6 -4.5 Mabsadd m .17492 .17492 6 -4.5 Mabsadd L .17492 .17492 6 4.5 Mabsadd L .17492 .17492 -6 4.5 Mabsadd L fill 0 g [(22)] .17492 .17492 0 0 Mshowa 1 1 1 r .10378 .89622 -6 -4.5 Mabsadd m .10378 .89622 6 -4.5 Mabsadd L .10378 .89622 6 4.5 Mabsadd L .10378 .89622 -6 4.5 Mabsadd L fill 0 g [(23)] .10378 .89622 0 0 Mshowa 1 1 1 r .17492 .82508 -6 -4.5 Mabsadd m .17492 .82508 6 -4.5 Mabsadd L .17492 .82508 6 4.5 Mabsadd L .17492 .82508 -6 4.5 Mabsadd L fill 0 g [(24)] .17492 .82508 0 0 Mshowa % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 288}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJztnWmPHMUBhoe5duc+d2dm79O767V3vRgTEgIJkEAI3hAHHAchhCwLgXEs zCVkWZZlWcayLMuyLMsxxEIIIUQAIwQoyne++Rcg5U/wCzZTVd3VNT1PzdTs Qb7Mrqa7p7rqfZ+qrqruru7pXj/6zmuvnDz6zvFjR6eeeuvoqdeOH3t76sk3 3moGxe6LRO6bEp+piFjeiET8ifybFhPvyzYsPy9mCaH/d7EUE0t/U6sOy1l8 Q1vL0MgJOU+0BHurIkfUwl8hZfPvhAiIyXUxc53nFHmug3JULLy+sf7DT1JW fo2KpedVjD/rfIQNmkkix+W01TSmJO4dVOGHlM66mA120/GoAh0vXlNMfCKB 7J9U1GfELCVzEtepvU+QtSBXUU+0GegLNwumOZVrDyqFP4hZRoqqmH7W4lox qRSD3PuECU34tBL7vZjlRMAZiD6goz+poj8uZgURcBaip3T0J1T034pZUQSc g+gZnbPHVPRHxKwsAs5D9KxWf1RF/5WYVUXABYie19EfVtF/IWbDIuAiRC/q 6A+p6A+IWV0EXILoZR39gIp+v5g1RMBliF7VWd2voq+K2agIuALRh7T6PhV9 j5iNi4CrEL2mo+9V0ZfEbFIEXIPoDR19t4q+IGZTIuA6RB/V7Isq+pyYzYiA GxB9TKvPq+g13UZl9Y7pJSlxEyQm5LStxcR08lG1pu5V+1BXFYPgDdH1NQNu gd24yuCGtReizkt5N8uyfZXFXxbwbVuJRUEoYfcdgVVR9pX14EP7hrVkIGoU dK1r4bS5ToiAO+A6soncdvIPek9JIhvJR7Zab3TiATvrqhJWBFIpzhkdEwEf g2HdltGgGXjFOytmsjP4xNa6vbYkE8h286m13bSajRgJZQv4zNYCOOGITvi5 Y8KGkVDW+S9sdb5DQllpv7JVWk7Y0Am/dkxoNmJZYb+xVVhOWNcJv3VMWDMS yqr6fYeqaksoq9y/bVWOE9Z0wv84Jhw2Eg6JNVmxdFekzqqwzmlGgiZmNLgg TBy6CJIv5bStt5cBZnyftWL3lTO5i1e9SXjPgL28txy5q4/FQuJxCBsGiKEw hLVvbe9FDPO2dQkohKqLP+23KMww79DHupeAnNWJgPamIuxfgiBmK7NwWBip U6FUN4P0439/bH5rTpMb/r4zqdKeev/HUJWWFS3air7uY3VCkrOa5//TD+tG 1nykoETSmuaapkkJGtcKK0TXQ+VFLaliwHmVuMkmG3xRM1zQDAXBkPVZwwbl LgayW0kLAy9S00AWfl1MZV08Lazk0ohX+Krg16XdIJiW7KYVbZoB03Gdv5M6 f5NgmnI0LRumVdWBtpvOatOMPnN7VC9lNcg8gKQBpNgFpCLW5ABkSYMkuEOO ajTLuqSGXRaweaAr2OnKmi4PdKu6Qlg6SQWWpO5LsTUX1gRWwRGrZGDJc9Ii YO0XUyuRvxczlMVGPACbkgor34WqJNaUeqb67sZ3rlRUVjk7VUlTlTdH5W/e B4Gl6MhSNFjk0EPFxkInAxKkwy6zySXZ9gNhCQizXQjlWEoVCO+XUz63lZDm UUHzq/z2AFCVgSpjpypqqiGgWvPKTYQJ040N77xNInnDTkEJ+qW1BlwVR66C wSVaSfPg0tI9GFwCYR1AVgFkCEDSdpCCBqkDyAqAPAsgKwAy7AiSN0Dk0F0D QPYCyCEA2QsgNQBJdQHJbshddDvIHgB5DkD2AEgdQAbtIHkNMgogywByGECW AaThCJIzQOQQ7RiA7AaQIwCyG0BGAGSgC4g4TIhMAMgigLwAIIsAMgYgSTtI ToNMAsgCgLwIIAsAMu4IkjVA5JD8FIDsApCXAGQXgEwASKILiLzkMA0g8wDy MoDQYeEkgMTtIFkNMgMgcwByFEDmAGTKESRjgAyINbO2A+UQyDEAmQWQaQCJ 2UEyGmQeQKYB5BUAmQaQWUeQtAEiD113AcgUgLwKIFMAMgcg0S4g8ohjAUAm AeQ4gNDJ1LycJkwQ+RGHM14FTWvzRTCfAPMTYD4B5rs6mGcMc3kYtmQ7ZQyZ nwTzcTBfkNN4i3nIVyZYBt9R8H0DfEfBdym06Y3Myt3FbvAbAb83wY/O0WU+ vaPLqN6UwTWGqM20AaZvg2mjQ+Eq29bzVOmvrjZEaDgu0nmckFDrgPouoNZt qPZhrzY2j5wHeXrDrgH2e4Bd6wWbRhg95gTweYxtg3yClprcMDCfBubhXpip MONGle3IzOVNzbYK7GeAvQrsiwG7+1XK2PbnoQJ5OAt5qNjyEHG/Bmc2Uqkk t0nQaxBfGfjOAV+5cxlDw5JBSYWUt9mXwP482Jds9l5POWhQiMFh4bQCfkXw uwB+RfBbMfYEfk4HerMvgP1FsC9s3X4V7HNgfwnsc2C/unX7LNhfBvvszthn wP4K2Gd2xj4N9lfBPr0z9imwvwb2qZ2xHwT762A/uHX7fWCfBPsbYJ8E+31b t0+A/U2wT+yMfRzsb4F9fGfsY2B/G+xjW7df1pffPhAGcqnHjlPtpvh2quBa o5TvdNNVdLPWrgdckqCHa+bbxRK+8Uhvzf8DiwyT6pFgaF8A/eNnA3I7uvy5 CgmPFq2X+T7wGqGZJDhmjG37lgoaxs9RebfWDawZHZlfqz4xOi2/g1rry/Zl +7J92b5sX7Yv25fty/Zl+7J92b5sX7Yv25fty/Zl+7J9WZANhinvCDF5sXwz EpafA7YPo97xmI3Y6ttmXHsYvpW+dMfFdvnSBRJpGl4h7DZzTakn01AJR4Ny 1jWlx2uaPV2N+aecWkf9N1XDerqucGf7ARx+7Ok3zA+Mhum5RoKbYDbdRD80 ZE+tnQpKv0fFliuk758SH3GBtjlt7V9uhfyaH3GBds2P59ekrVyg9ewTYH8T 7BM7Y58E+xtgn9wZ+wGwvw72A1u3XwX7FNhfA/sU2G/lxgzPPg32V8E+vTP2 GbC/AvaZnbHPgv1lsM/ujH0O7C+BfW5n7PNgfxHs81u3XwH7IthfAPsi2G/l ZjzPvgT258G+1Jt9+72Onl8Z/M6BXxn8zHsdg3tMQnebkGkFTM+CacVmajm2 lDtU7+5OdRzkdiOEINwNnFXgPAOcVRvnZm8J3xr2EGCfBuyh7caGFEFFINIa kL4HpDUg3dI99+4FvATYdcB+F7Dr24cdutPLfhxLxdwA3reBt2HjjcDtONtd F0YA8k2AHOmlUINiM2/6JvtRsH8D7Edt9l5HmDbKJnLwnvpEsJ2OgeVJsBzr 0A2KsHvef6T1l0deJdcQCqT1B1geyQSQnACSCSBp+QGW8R8J48RMHHHy05y2 7hDnAW0S0I4D2iSgzW8EO0QPS/xCbuNeqJakFGbGEXMOMKcA81XAnALMOUfM tB0zBpizgDkNmK8A5jRgzgJmrDfMOGDOAOYMYB4DzBnAnAHMuB0z64g5BZhz gHkUMOcAc8oRM2PHTADmJGDOA+bLgDkPmJOAmbBj5hwxJwBzF2C+BJi7AHPC ETNrx0wC5jhgLgDmi4C5AJjjgJnsDXMAMMcAcxEwXwDMRcAcA8wBO2beEXMU MJcA8whgLgHmqCNmzo45CJgNwFwGzMOAuQyYDcAc7A0zBZh1wNwDmM8B5h7A rANmyo5ZcMSsAeZewDwEmHsBs+aImbdjpgFzGDBXAPNZwFwBzGHATPeGmQHM IcBcBcx1wFwFzCHAzNgxi46YVcDcB5jPAOY+wKw6YhbsmFnALAPm/QamLyvP aILHIzXXigx40OI5Um3AZQDO2oFLjsAlAN7vDdYrJT0gEtXMnX4ScgDYS47s RTt7DtiLVnbruayB33aR5UEgLwJ5rjfyPJAXbOThM11RmR8RU7qqSMAFAM7b gcuOwHkbcOgx9fLxdpbHJ1DNyDviluy4BcDN2XYRsmKEC3k9Ip4yv84rZArq 6HKAXugNvQjoGUBf1OjJgImrd8fVA2K1XLsbMpSBDBXtGao4ZigNGZrRGcpK YutjJSMR89Jn86uMntH5oPOgtGM+yvZ8lCAfKdt4iwQpKySfWi5VNCaNcqQA s9QbZhkwB22DorIgz+gipZG5QUAq25GqjkgDtqsSsmwu6lKiwfkBR6SKHakS QtrwTy5TmuG6ZhgUDPIsJArOld6cq2Ka1F2iXOnVda8cNMEdTRCVpdDtJ7fS ad2HE++GsIEN2cAsT8OmwVb57XOBaDzT2G3EW4QNA535CGaic7gTwu8OvlRg 7kyCpgPTsK0SdXwuUKvU3YCpLQ/BI00JwnxgN9Zktyfl6LC73Uonsc0koYc4 Sf8IDfe3unUrkBpglL3BNUN7w8+RfYOE63YLLrUk8wH2ROA/A98bVOtRomH0 T36V/t4rNLPzadhl646y3zrK1uyyIyD7DciO9CY7CrJfg+yoXbbhKPuVoyy8 zMWXHQPZL0B2zC474ij7uaNswy47DrKfgex4b7ITIPspyE7YZUcdZT9xlB2x y06C7McgO2mX9d/I0qbzEejUxbTby45og9+xtlHXdx+1Hv8bO4S2fbOlzn1o a8/b+D6kcB9tq6i3ba11u96NFHT9VEVu2ZrfNr6siIqCWG7a2myn44yWlzUN kH9oC8bNMPEhlBvW7qMtOdWLMbU+eI1S6GFucolqw3VbbQhULMeMXhte1Juc Kv41e8WPeC9Q896PFlOa7RJXbX2BDFpWEnu1RB0kroDEsJZYURL7tMQwSFwG iaqWWFMS+3VZDIHEJZCo6LJ4QEkc0BQVkLgIEiVN8aCSeEhLlEDiAkgUtMQv lcTDWqIAEudBIqclfq0kHtUSOZA4BxIZLfEbJfGYLs4sSJwFibQuzseVxBOa Ig0SZ0BiUFP8Tkk8qSUGQeI0SCS1xFNK4mktkQSJ90AiriX+qCQO6rIwr9X6 zd9/J6V/D01MinuCSkymVefq6r2ZXgP3zwxjQY+lyV7rMJYUurHFx31WxT3U 2hGFcCVph75THzD8RYUG71FFwM6d8GFDw3Kq+bqM2JbPlle1xlpE5ftcHd7T KkvdIfIRKKUTugw9EBm8yVfRRu77H+G7ZWo=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {287., 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"0c6dfe4f-224d-4d75-8ff2-0bc657689b6e"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"d52ced62-84ac-440b-a04d-\ b13a9d349351"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"Drop", "[", RowBox[{ RowBox[{"Polyhedron", "[", RowBox[{"Cupola", "[", "4", "]"}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "2"}]}], "}"}]}]}], "]"}]], "Input",ExpressionUUID->\ "f29696c5-2fc6-4188-bedb-ff0947490f16"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -5.55112e-17 1 -1.11022e-16 1 [ [ 0 0 0 0 ] [ 1 1 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1 L 0 1 L closepath clip newpath .5 Mabswid [ ] 0 setdash .273 .223 .617 r .97441 .69651 m .97441 .30349 L .74167 .5 L closepath p F P 0 g s .617 .223 .273 r .30349 .97441 m .69651 .97441 L .5 .74167 L closepath p F P 0 g s .962 .786 .617 r .02559 .30349 m .02559 .69651 L .25833 .5 L closepath p F P 0 g s .617 .786 .962 r .69651 .02559 m .30349 .02559 L .5 .25833 L closepath p F P 0 g s .453 .531 .847 r .97441 .30349 m .69651 .02559 L .5 .25833 L p F P 0 g s .453 .531 .847 r .5 .25833 m .74167 .5 L .97441 .30349 L p F P 0 g s .453 .21 .453 r .69651 .97441 m .97441 .69651 L .74167 .5 L p F P 0 g s .453 .21 .453 r .74167 .5 m .5 .74167 L .69651 .97441 L p F P 0 g s .847 .531 .453 r .02559 .69651 m .30349 .97441 L .5 .74167 L p F P 0 g s .847 .531 .453 r .5 .74167 m .25833 .5 L .02559 .69651 L p F P 0 g s .847 .852 .847 r .30349 .02559 m .02559 .30349 L .25833 .5 L p F P 0 g s .847 .852 .847 r .25833 .5 m .5 .25833 L .30349 .02559 L p F P 0 g s .707 .577 .707 r .5 .74167 m .74167 .5 L .5 .25833 L p F P 0 g s .707 .577 .707 r .5 .25833 m .25833 .5 L .5 .74167 L p F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{265.062, 265.062}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJyt3elWGlkCwHESRRQQRUREQVERRMQFBRH3Bfd9jzHGLUaTmGSSzMyZOTPz tR9gPuct+iX6DXL6Qfprhqp7rQH8213XdM6hVAy/f13qxiipulk7+3L96vbs y83FWWjh09nH65uLz6H5D5/yd5U9sVieVGm3kEV7/7vFcrfRf9m1jfzgT3h/ U3tzrflb4o4N7c1T7Y6r719/+U1/b1N8al1/U67d8/3br9/0W/79S+33ybs/ //RNv1kkZLGs6W/KCh9keapvxX35x+qPP9W3ZYVK/vdpW3Gf/GVZFewqsOXA ngBbDuyKYFeArQD2GNgKYJcFuwxsJbBHwFYCuyTYJWCrTLJVwC4KdhFYB7CH wDqAXRDsArDVwO4DWw3svGDnga0BdhfYGmBzgs0B6wZ2G1g3sHOCnQPWA+wW sHXAzgp2Fth6YDeBrQd2RrAzwDYAuw5sA7DTgp0GthHYVWAbgZ0S7BSwTcAu A9sE7KRgJ4ENALsIbADYCcFOANsC7AKwQWDHBTsObAjYHLCtwI4JdgzYNmDn gG0DdlSwo8B2ADsDbAewWcFmge0EdgrYTmBHBDsCbBTYCWCjwGYEmwE2Buw4 sF3ADgt2GNg4sKPAdgObFmwa2B5gs8D2AJsSbArYXmAzwPYCOyTYIWD7gU0D 2w/soGAHgU0CmwJ2ANikYJPADgE7COwgsAOCHQA2DewAsClg+wXbD+wwsP3A DgPbJ9g+YEeA7QV2BNhewfYCOwpsD7CjwCYEmwB2HNg4sGPA9gi2B9hJYGPA TgAbF2wc2Glgo8BOAdst2G5gZ4CNADsDbEywMWDngA0DOwdsl2C7gJ0HtgPY HLBRwUaBXQS2DdgFYCOCjQC7DGwrsEvAdgq2E9hVYIPArgAbFmwY2DVgA8Cu Adsh2A5gN4BtAnYD2HbBtgO7Bawf2E1g2wTbBuwOsD5gt4ENCTYE7B6wXmB3 gW0VbCuwB8B6gN0HtkWwLcA+A9YN7CGwQcEGgT0CthbYI2ADgg0AewxsDbDP gW0WbDOwJ8BWA/sC2CbBNgF7CqwD2JfA+gXrB/Yc2Cpgz4BtFGwjsJfA2oC9 ANYnWB+wr0yyl8A2CLYB2NfAWoG9AtYrWC+wN8CWAXsNbL1g64F9q2+thax+ y39seQeUR1AeoG5L9lAj3gNRJ4g6IN5rW/1lxI/wQLd4oPuhB8rXFX/+78/6 7QGlVii1DyplhYrlqb4tfo5pVDWCrTHJlptkXYJ1mWQrTLLVgq02yVaaZJ2C dZpk7SZZh2AdJlmnSVa+rG03ybpMslWCrTLJ1ppkKwVbaZKtM8naBGszydab ZCsEq7/R/0B/AKwBsFttqz/CVkDI3/TbL1/1Lyu3gDUC9rZgz3Ij4rFFbLnB SvotyE0g3+jbckOWehFuLcLv9v0GCgEovNa31qICjqGsMJP/eqVtH/6b7i7Z AslXJU9X/pb3tG3xwbU+nC/Ttvrhu4RoCKLnxgG3qqWsMNJTiLZD9BRGqpiv gPwJ5MOQP4F8hVreBvljyEcgfwx5m1q+0jjOzyHaBdFnxnG2q6XsMNIDiHZD 9ABGqph3QH4P8j2Q34O8Qy3vhPwO5HshvwN5p1q+GvJbkO+H/Bbkq9XyLmOa bUI0CdF1Y5rVqqVqYaSrEB2C6CqMVDHvhvwy5NOQX4a8Wy1fB/lFyGcgvwj5 OrW8B/LzkM9Cfh7yHrV8vTHNchAdg+isMc0a1FINMNJpiE5AdBpGqpj3QX4S 8lOQn4S8Ty3fCPlxyM9AfhzyjWp5v3GcxyA6B9GscZyb1VLNMNIMROchmoGR KuYDkE9DfhHyacgH1PJByA9BfhnyQ5APquVbIJ+E/Crkk5BvUcu3GtNsAKLr EO0zplmbWqoNRpqA6CZEEzBSxXw75OOQ34Z8HPLtavkOyMcgvwv5GOQ71PJh 4zh3QXQfohHjOEfUUhEYaRiihxANw0gV81HIt0P+CPLtkI+q5bsgH4L8MeRD kO9Sy8cg3wL5E8i3QD6mlu82plkQoqcQbTamWY9aqgdG6ofoOUT9MFLFfALy PshfQt4H+YRavhfyXshfQd4L+V61fB/kPZC/hrwH8n1q+X5jmtVB9A1Ea41p llRLJWGkLoi+g6gLRqqYH4S8E/LvIe+E/KBafgjydsh/hLwd8kNq+ZRxnKsg +gmiNuM4D6ulhmGkVoh+gagVRqqYz0C+DPJ/g3wZ5DNq+RF9ay3M67f8x5Z/ 6klrYVK/aZ8bVctkS0apEf8qGZF239gjWP2g/0fD5E9Nj3gC5EUAP33Wb/n3 /124c6nPjxlz0ZEVsnalQH5bfGT/Ufg051N3Ny2Z/YG5LJPlkPx7yejyN20y pT7/2FxOQ74C8n+FvBXy6Ud8zZKv3t6PfoaoTdvqj1BMDcJIHRD9C0TtMFLF r85JyFdD/gPknZBX/LtpAPI1kL+FvAvyA4/4JqAk74b8W8jXQr7/Ed+B6ZPG C9EbiNYZ00wxlYCRNkD0NUS9MFLF7zV7IN8I+VeQ90Fe8TvtOOSbIH8BeT/k 44/4kaYkH4D8GeSbId/9Az/QyXwL5F9CPgh5xR/oosYsb4foC4i2GrNcMRWB kXZA9DlE22Gkiq8bdEK+E/LPIB+GfOcjXqApyUchfwD5COTDP/DylMzHIL8H +S7IK7481WZMswREdyDabUwzxVQIRtoL0S2IJmCkoUe84FqS74f8BuT7IN/6 Ay83y3wS8muQH4C84svNQcgPQX4F8oOQV3yxvdmYZhmILkE0ZUwzxVQTjHQE ogsQzcBIm9TyfsiPQj4H+Szk/Wr5RsiPQ34W8mOQV/zHMx/kJyE/DfkJyCv+ 06HXmGazEJ2E6JQxzRRT9TDSOYiOQ3QWRlqvlvdAfh7yo5DPQV7xH8PrIL8I +RHIL0Be8VQAN+SXIT8M+SXIK54IUWNMs3WIpiC6YkwzxZQLRroB0UGIrsNI XWr5ashvQX4A8puQVzy1xwn5Hcj3QX4b8oonNjkgvwf5BOR3Ia94Wpcd8geQ j0N+H/KKJ7UVnb53LxqD6KExyxVTNhjpMUSjEH0OI1U8UbEC8ieQ74T8C8gr nqZphfwp5Dsg/xLyiieplkP+HPJtkD+DfLla/qkxza4g2grRC2Oa/WHqwdOr 74WCELrStyZOr6ZTxO8VmqFwrW9//xTx/z9dWvcWZD/Ib0qOTOk+351wfw/z AfbOeMZhz+7mDGFewN4X7FnJQbOZZD0mWXmFQaVJ1m2SlU9ClUm2xiQrr96w m2SrTbLyWhOHSdZhkpVXxjhNslUmWXkdT7VJ1maSlVcduUyyVpOsvEaqxiRb ZpKVV3TVPshaC1n9pv35/giUvObMbWIPHyLk1XB1f0D83oDkZXkeIN4DcQuE vCSwHoh3BcTXkZz8OnmfkBcmeoF4U/C0asTdzaJ/Mb9PycslG4C6Ltmb/C3/ kdgWDvI1sPLiTh+wV8BagX0FrLwUtRHYS2BtwF4AKy+c9QN7YZI9B1Ze5tsE 7BmwVcCeAisvSm4G9iWwDmBPgJWXUAeAfQFsNbDHwMoLvoPAPge2BtgjYOXl 6S3APgO2FthnwMqL6VuBPQTWDewBsPLS/xCw+8B6gN0DVuxm8bIKkt0F1gvs DrBiN4sXgZDsNrA+YLeAlYtAdAC7Cawf2A1g5ZIVYWDXgW0Cdh1YucBGJ7Cr wAaAXQVWLgcSAXYF2CCwy8DKxUuiwC4B2wrsIrByqZUuYBeAbQN2Hli5MEwM 2BywHcDOASuXsekGdhbYMLCzwMpFd+LATgMbAXYaWLlEUA+wU8BGgZ0EVi5o lAB2AtgYsOPAyuWXeoEdAzYO7CiwcrGoPmCzwPYAmwVWLm3VD2wG2F5gM8DK hbgGgE0D2w9sGli5bFgS2BSwA8AOASsXORsEdhDYQWCTwMol2YaAHQA2BWw/ sHIBuRSwfcCmge0DVi53lwY2AWwG2ASwcnG+YWDjwGaBjQMrlxLMANsN7Ciw MWDlwocjwHYBOw5sFFi5TGMW2AiwE8BGgJWLSo4CGwZ2CtgwsHIJzDFg24Gd AbYdWLlg5ziwIWDngA0BK5cXnQC2FdgcsC3AysVQJ4ENArsAbABYuXTrFLDN wC4C2wys2M3iZXEl6wd2GVg/sGI3ixfxlawP2FVgfcDKRXxngfUCuw6sF1i5 5PAcsB5gN4H1ACsXSM4BWwfsFrBuYOVyzvPA1gK7DWwtsHLx6QVgXcDuAusC Vi6VvQisE9h9YJ3AyoW9l4C1A3sIrB1YuQz5MrCVwB4BWwmsXDR9BVibSdYG rFzifRVYK7DHwFqBlQvSrwFbBuwJsGXAyuXzxVL+1kJWv+U/tpzrFJ9fLxf1 3yjZK+1TlyV7oN0n/+OAe//JgL4vf8L/XmB58j/Tdsun\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 264.062}, {264.062, \ 0.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"8784bce7-0bfd-4123-b738-b699fa2125d0"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"e1845b87-b425-4676-a05c-\ b655470bff9a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Last", "/@", RowBox[{"PolyhedronVertices", "[", RowBox[{"Cupola", "[", "4", "]"}], "]"}]}]], "Input",ExpressionUUID->\ "8dded0f1-c6a9-4059-bb39-e067d861897d"], Cell[BoxData[ RowBox[{"{", RowBox[{ FractionBox["1", SqrtBox["2"]], ",", FractionBox["1", SqrtBox["2"]], ",", FractionBox["1", SqrtBox["2"]], ",", FractionBox["1", SqrtBox["2"]], ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]], "Output",ExpressionUUID->"91a3104a-0bb6-\ 403d-a8cd-8b20fbb9b1a9"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"poly", "=", RowBox[{"Flatten", "[", RowBox[{ RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{"Polyhedron", "[", "TruncatedCube", "]"}], ",", RowBox[{"{", "1", "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{"Polyhedron", "[", RowBox[{"Cupola", "[", "4", "]"}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}], "/.", RowBox[{ RowBox[{"Polygon", "[", "x_", "]"}], "\[RuleDelayed]", RowBox[{"Polygon", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Sequence", "@@", RowBox[{"(", RowBox[{ RowBox[{"RotationMatrix", "[", "0", "]"}], ".", RowBox[{"Most", "[", "#", "]"}]}], ")"}]}], ",", RowBox[{ FractionBox["1", RowBox[{"2", "-", RowBox[{"2", " ", SqrtBox["2"]}]}]], "-", RowBox[{"#", "[", RowBox[{"[", "3", "]"}], "]"}]}]}], "}"}], "&"}], "/@", "x"}], "]"}]}]}]}], "\[IndentingNewLine]", "}"}], "/.", RowBox[{ RowBox[{"Polygon", "[", "x_", "]"}], "\[RuleDelayed]", RowBox[{"Polygon", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"#", "[", RowBox[{"[", "1", "]"}], "]"}], ",", RowBox[{"#", "[", RowBox[{"[", "2", "]"}], "]"}], ",", RowBox[{"-", RowBox[{"#", "[", RowBox[{"[", "3", "]"}], "]"}]}]}], "}"}], "&"}], "/@", "x"}], "]"}]}]}], "]"}]}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "2", ",", "2"}], "}"}]}]}], "]"}]], "Input",ExpressionU\ UID->"d090c597-dd6e-47fb-86b4-55fd2aec7737"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.26291 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.149339 1.29868 -0.0357627 1.29868 [ [ 0 0 0 0 ] [ 1 1.26291 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.26291 L 0 1.26291 L closepath clip newpath .5 Mabswid [ ] 0 setdash .555 .453 .693 r .62676 .5502 m .82028 .41458 L .82028 .67991 L closepath p F P 0 g s .832 .679 .693 r .17972 .67991 m .17972 .41458 L .37324 .5502 L closepath p F P 0 g s .678 .388 .475 r .17972 .67991 m .37324 .5502 L .62676 .5502 L p F P 0 g s .678 .388 .475 r .15711 .88545 m .17972 .67991 L p .62676 .5502 L F P 0 g s .678 .388 .475 r .35051 1.04921 m .15711 .88545 L p .62676 .5502 L F P 0 g s .678 .388 .475 r .64949 1.04921 m .35051 1.04921 L p .62676 .5502 L F P 0 g s .678 .388 .475 r .84289 .88545 m .64949 1.04921 L p .62676 .5502 L F P 0 g s .678 .388 .475 r .62676 .5502 m .82028 .67991 L .84289 .88545 L p F P 0 g s .68 .714 .874 r .37324 .5502 m .17972 .41458 L p .64949 .02845 L F P 0 g s .68 .714 .874 r .62676 .5502 m .37324 .5502 L p .64949 .02845 L F P 0 g s .68 .714 .874 r .82028 .41458 m .62676 .5502 L p .64949 .02845 L F P 0 g s 0 0 .244 r .82028 .67991 m .82028 .41458 L .84289 .19968 L p F P 0 g s 0 0 .244 r .84289 .88545 m .82028 .67991 L p .84289 .19968 L F P 0 g s .908 .741 .244 r .1191 .15379 m .15711 .19968 L .17972 .41458 L p F P 0 g s .908 .741 .244 r .0867 .35678 m .1191 .15379 L p .17972 .41458 L F P 0 g s .908 .741 .244 r .0867 .69917 m .0867 .35678 L p .17972 .41458 L F P 0 g s .908 .741 .244 r .1191 .91559 m .0867 .69917 L p .17972 .41458 L F P 0 g s .908 .741 .244 r .15711 .88545 m .1191 .91559 L p .17972 .41458 L F P 0 g s .908 .741 .244 r .17972 .41458 m .17972 .67991 L .15711 .88545 L p F P 0 g s .68 .714 .874 r .17972 .41458 m .15711 .19968 L p .64949 .02845 L F P 0 g s .68 .714 .874 r .64949 .02845 m .84289 .19968 L .82028 .41458 L p F P 0 g s 0 .408 .853 r .8809 .15379 m .84289 .19968 L .64949 .02845 L closepath p F P 0 g s .707 .985 .853 r .35051 .02845 m .15711 .19968 L .1191 .15379 L closepath p F P 0 g s 0 0 .244 r .8809 .91559 m .84289 .88545 L p .84289 .19968 L F P 0 g s 0 0 .244 r .9133 .69917 m .8809 .91559 L p .84289 .19968 L F P 0 g s 0 0 .244 r .9133 .35678 m .9133 .69917 L p .84289 .19968 L F P 0 g s 0 0 .244 r .84289 .19968 m .8809 .15379 L .9133 .35678 L p F P 0 g s .68 .714 .874 r .15711 .19968 m .35051 .02845 L .64949 .02845 L p F P 0 g s 0 0 0 r .84289 .88545 m .8809 .91559 L .64949 1.04921 L closepath p F P 0 g s .663 .112 0 r .35051 1.04921 m .1191 .91559 L .15711 .88545 L closepath p F P 0 g s .485 0 0 r .64949 1.04921 m .35051 1.04921 L .5 1.14022 L closepath p F P 0 g s .379 0 0 r .35051 1.04921 m .1191 .91559 L .25355 .9982 L p F P 0 g s .379 0 0 r .25355 .9982 m .5 1.14022 L .35051 1.04921 L p F P 0 g s .649 .3 .368 r .8809 .15379 m .64949 .02845 L .35051 .02845 L p F P 0 g s .649 .3 .368 r .9133 .35678 m .8809 .15379 L p .35051 .02845 L F P 0 g s .649 .3 .368 r .68215 .5225 m .9133 .35678 L p .35051 .02845 L F P 0 g s .649 .3 .368 r .31785 .5225 m .68215 .5225 L p .35051 .02845 L F P 0 g s .649 .3 .368 r .0867 .35678 m .31785 .5225 L p .35051 .02845 L F P 0 g s .649 .3 .368 r .35051 .02845 m .1191 .15379 L .0867 .35678 L p F P 0 g s 0 0 0 r .8809 .91559 m .64949 1.04921 L .5 1.14022 L p F P 0 g s 0 .148 .682 r .1191 .91559 m .0867 .69917 L .25355 .9982 L closepath p F P 0 g s 0 0 0 r .5 1.14022 m .74645 .9982 L .8809 .91559 L p F P 0 g s .933 .966 .682 r .9133 .69917 m .8809 .91559 L .74645 .9982 L closepath p F P 0 g s .641 .767 .939 r .5 1.14022 m .25355 .9982 L .5 .83765 L p F P 0 g s .641 .767 .939 r .5 .83765 m .74645 .9982 L .5 1.14022 L p F P 0 g s .885 .723 .675 r .68215 .5225 m .9133 .69917 L .9133 .35678 L closepath p F P 0 g s .465 .38 .675 r .0867 .35678 m .0867 .69917 L .31785 .5225 L closepath p F P 0 g s .51 .458 .734 r .0867 .69917 m .31785 .5225 L .5 .83765 L p F P 0 g s .51 .458 .734 r .5 .83765 m .25355 .9982 L .0867 .69917 L p F P 0 g s .857 .741 .734 r .68215 .5225 m .9133 .69917 L .74645 .9982 L p F P 0 g s .857 .741 .734 r .74645 .9982 m .5 .83765 L .68215 .5225 L p F P 0 g s .705 .534 .654 r .31785 .5225 m .68215 .5225 L .5 .83765 L closepath p F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{228, 287.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzlnN1PW2UcxztK6aC8v5TXjkLpoLDyMtgYDAaMbYVtiFOnzrlNxOlw4rsx XhijxszEGLMYYxZjzOLLYuY0ZhqzGO/8L7wzXhvvvJw953n6PYf2e8rzay9k YUlP2fn++v38vk/p4Zyn7bO08uqli+srr66trkRTL6+8eGlt9ZXosRdeTu/y 7/D5fH/5fDs6oz7r57vp/+rNX3fT/9Li5nf3WXcp61HLasdJ667E2pG6+83J 8/ZPS0o6Yd/5rT2WZN18i/ZW7dP/fMdV+SKcluCkpRSkU5AWlHQU0mlIx5Q0 D+kMpCNKOkxaO0tam1Pls3C6ACctHYK0CmlGSVOQnoE0raRJSJchHVTSBGlt nbR2QJWPw+klOGlpH6TXIO1X0iikNyCNKWkE0puQ9ippmLT2FmltSJUPwuld OGlpD6QrkJJK6of0AaQBJfVB+ghSQkm9pLWrpLXdqjwOp0/gpKUYpGuQepTU BelzSN1K6oR0HVJUSbtIa1+S1iKqvANON+CkpXbi9C1xatuC5W2k/CYpb912 5a2k/BYpb7n3y1tI+Q+kvHnblTeT8h9JeXjblYdJ+W1S3rTtyptI+c+kvPHe L28k5b+Q8oZtV95Ayu+Q8vrCy+1TELvI/qkx1+n1le+s+w19/nlH7fMoT998 tt1tGJdYj9m8befR1tb7CGs1YBkKbf3E9hax9ctsS62tHfMmApfJLMpIZzdI Z0LbIDr7Gp2VyyzKSWfXSWdC2wp09gU6q5RZVJLOPiOdCW2riO01Ylsls61G 4E8RuFZmUUs6+5h0JrStQ2dX0VmDzKKBdPYh6Uxo24jOnOvFsMwiTDq7QjoT 2jajs/fQWavMopV09jbpTGjbRmzfIrZtMtt2BHamDiIyiwjp7A3SmdB2Fzp7 HZ1FZRZR0tkrpDOhbRc6c+ZvYjKLGOlsnXQmtO0htpeJbY/MNo7AawjcK7Po JZ1dJJ0JbfvQmTOV1y+z6CedXSCdCW0H0Nk5dJaUWSRJZ2dIZ0LbQWL7CLEd lNkOIbAzqzsisxghnZ0inRVie9raNSp74LCrn3de+9W6T/fz0/s39L4/flP7 9hYwUr4AbDM3y2rZtg/APnPzyUcziSek1LLXatreRixl5Ujf0qfd6a2e8xWh 9mQNlIULEOgJAg3Y241P8J4CXmtZ+CDBLxJ8kOAHZPgEBrrCELoTAy1E9ZGk IQJNEWiIJO0r/CiewVca4isJXni0d/4O1RLoUQKtxkALUT0kqSm0liQV/sWN EXw9wc8TfD3BC88jnDOcMIHOEWgjBlqIipKkptAwSSo8l+sk+BaCnyH4FoLv LODc2R62dkNoKwZaiOogSTsIdJpAO0jSjgIuNLLwEUN8hODbC7gqs4eti0AP EmgnBlqIaiFJuwl0gkC7SdKWAi5hs/AxQ3yM4JsLvzDP4OMEP07wcYIXXsA7 Uwt9htDdeJ6FqAaSNEGg+wg0QZIKJ1HqCb7fEN9P8PUFTFrZwzZIoKMEugcD LUTVkKRDBDpCoEMkaU0BM3xZ+GFD/DDBVxcwHao/7ZELHSLQvRhoISpEkppC x0jSUAFzx1n4/QSfJPj9BF8hw+/EQE8YQscx0EJUkCSdJNABAp0kSYMyfBnB TxF8guCnCF747oXzvsqMIXQaAy1E+UnSWQLtJdBZklT4DlIJwc8Z4ucIXvx2 m8/6tF0uL0548xhjASV9n77YMwMczQpkPdb9TqPNXiRmMWKWQrfkzcrMUC8Y mi24OssTOGPLeuwitoub2NrtnyBmnV5mOYGLs2jMaxHJa9HkstBFvvj39pN6 3NDMPex//6sem8eW9di+ybBT21LHVlmzhpmzargUzto9vzlru9Wz7fzmgY3m eQam2ZMQ2EDIGqAm8wzehJwMYbe5eYYmYYb/A+N3Y6wDbnq7+dGiweDXNn1L +1nbjUcQ8mmcDN5P8OwYyPDZL0YFLhrP0tcZphfiSw3xNYb4Um98uIj0pniW nnzoTJq+qoj0WxcfMMSHDPGBewpfZogvN8SXeeObi8AHi8CTD6JuEXzQEB8w xAfvKfxOQ7zfEL9zy+JbRPiAG2/f1OmHGZJ8ID0fMvv81UKdLB5VbjC4XqnK ZagKrzMXe9dxAqgoHpByPVNf/f4PblYm9sshRIYI8oi1ta+fAhZKf/UtFxXy RrUappt3PVM6WfrFbW03vgzmDZOSr4/kSzqLpCEkPWyYVIg6BFQNULPFoyoJ aooMah0Z1CmCr5Thqwh+AkmbkPQgQVUVjzpAkjaTpAeKx1cT/D4kbUfScYKq 9ka1GSYdI0kjJOmYYVLylbJ8SUeQtAtJRw2TClHDJGmMJB0uHl9D8Ekk7UXS IYKqKR41ANQAUMniUbUElSCDmiSDmiD4Wm98uyF+N5KOIGmfIYp8LTQfKk6S jpKk8QLw+n3BXGg38o0jX48XwFY7lG0EtixLF8kyQbJ0eb0UbGf1PWH1TWKD 198uZJlGlqjha02jokjFABGSaoakinj9edLHIRvVDRQ7arYhyzyydBDbEGxj yraHDBY7f2kBIAVAm+G5ikY5Xxlnpw1hMliLZLDCBFqOVPor6L1AsSwNyLKE LE1eJ+j6JWzbJshgsSu+epJlmWSpJ1B2xafxzhf72WVHDVI9iFR1XhfU7kUB nKUE2LV7NclymmSp9po2ci9NMEgGkM1VhZDlDLJUGc5LadQQUjFABUl1lqSq 8JoGtp3Vcg6uBR/8BBVElgvIUk5m5jOmeqkIe4GJ3Ll/x20VbkE+z6+XoxhD d6q9THMbPoecGYOLZAz8WfZ2R3pxDL0ehv2AErS2htbszzD71d8Lu/yA6zfg Hf0p6/UsqLVPLeKh7myndXhOKukgJAc3paRpF4Qly/yq6HL3CiQZpxklzUJy njy9bslhAjlLILrcvZZKxkmvpeJegcW5DLWlFIGcIhBdvgCnZTgtKuk4pBOQ 1PoyG1agyUh6BZr7CH+e8HX5Mpzm4HS/kk5Bcv7aPqCkBwlkgkB0+UNwcs5B TivpYUijkB5R0qMEMkQguvwMnJJwekxJZyElID2upHMEEicQXX4eTjE4XVDS E5A6Ia0o6UlIzsXYqpKeIvxmwtflF+HkXMA+raRnINVBuqSkNQKpIhBd/iyc nKmHy0p6DlIQ0rqSnicQP4Ho8hfgpKoyBynfi0p/yWWXeaiWzJdu2oJ3vh3/ AQIeA7Q=\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 227.}, {286.938, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"477d4001-d539-4a22-973d-163694cc8a2c"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"b07560d0-5892-440d-90c9-\ 5a7af2e9dc59"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ FormBox[ SubscriptBox["J", "67"], TraditionalForm]],ExpressionUUID->"788a860a-a5fa-4eab-9cfd-b18c1fcc9b51"]], \ "Subsection",ExpressionUUID->"edfd7349-03b8-42c2-ab15-c118324390e1"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{"poly", "=", RowBox[{"Flatten", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{"Polyhedron", "[", "TruncatedCube", "]"}], ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{"Polyhedron", "[", RowBox[{"Cupola", "[", "4", "]"}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}], "/.", RowBox[{ RowBox[{"Polygon", "[", "x_", "]"}], "\[RuleDelayed]", RowBox[{"Polygon", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Sequence", "@@", RowBox[{"(", RowBox[{ RowBox[{"RotationMatrix", "[", "0", "]"}], ".", RowBox[{"Most", "[", "#", "]"}]}], ")"}]}], ",", RowBox[{ FractionBox["1", RowBox[{"2", "-", RowBox[{"2", " ", SqrtBox["2"]}]}]], "-", RowBox[{"#", "[", RowBox[{"[", "3", "]"}], "]"}]}]}], "}"}], "&"}], "/@", "x"}], "]"}]}]}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"Drop", "[", RowBox[{ RowBox[{"Polyhedron", "[", RowBox[{"Cupola", "[", "4", "]"}], "]"}], ",", RowBox[{"{", "2", "}"}]}], "]"}], "/.", RowBox[{ RowBox[{"Polygon", "[", "x_", "]"}], "\[RuleDelayed]", RowBox[{"Polygon", "[", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Sequence", "@@", RowBox[{"(", RowBox[{ RowBox[{"RotationMatrix", "[", "0", "]"}], ".", RowBox[{"Most", "[", "#", "]"}]}], ")"}]}], ",", RowBox[{ RowBox[{"-", FractionBox["1", RowBox[{"2", "-", RowBox[{"2", " ", SqrtBox["2"]}]}]]}], "+", RowBox[{"#", "[", RowBox[{"[", "3", "]"}], "]"}]}]}], "}"}], "&"}], "/@", "x"}], "]"}]}]}]}], "\[IndentingNewLine]", "}"}], "]"}]}], "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}], ",", RowBox[{"ViewPoint", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "2", ",", "0"}], "}"}]}]}], "]"}]], "Input",ExpressionU\ UID->"38c482ab-9233-42bb-b76a-332a9c2e8d2b"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.58579 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.292893 1.58579 -2.22045e-16 1.58579 [ [ 0 0 0 0 ] [ 1 1.58579 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.58579 L 0 1.58579 L closepath clip newpath .5 Mabswid [ ] 0 setdash .681 .399 .489 r .64446 1.14165 m .35554 1.14165 L .5 1.37756 L closepath p F P 0 g s .816 .422 .304 r .35554 1.14165 m .12237 1.17053 L .26503 1.42898 L p F P 0 g s .816 .422 .304 r .26503 1.42898 m .5 1.37756 L .35554 1.14165 L p F P 0 g s .681 .712 .872 r .64446 .44414 m .35554 .44414 L .5 .20823 L closepath p F P 0 g s .816 .911 .904 r .35554 .44414 m .12237 .41526 L .26503 .1568 L p F P 0 g s .816 .911 .904 r .26503 .1568 m .5 .20823 L .35554 .44414 L p F P 0 g s .392 .075 .304 r .87763 1.17053 m .64446 1.14165 L .5 1.37756 L p F P 0 g s .392 .565 .904 r .87763 .41526 m .64446 .44414 L .5 .20823 L p F P 0 g s .397 .512 .858 r .84876 .64843 m .87763 .41526 L .64446 .44414 L closepath p F P 0 g s .858 .889 .858 r .35554 .44414 m .12237 .41526 L .15124 .64843 L closepath p F P 0 g s .397 .136 .397 r .64446 1.14165 m .87763 1.17053 L .84876 .93735 L closepath p F P 0 g s .858 .512 .397 r .15124 .93735 m .12237 1.17053 L .35554 1.14165 L closepath p F P 0 g s 0 0 .203 r .84876 .93735 m .87763 1.17053 L .92772 1.22061 L p F P 0 g s 0 0 .203 r .84876 .64843 m .84876 .93735 L p .92772 1.22061 L F P 0 g s 0 0 .203 r .87763 .41526 m .84876 .64843 L p .92772 1.22061 L F P 0 g s .881 .719 .203 r .15124 .64843 m .12237 .41526 L p .12237 1.17053 L F P 0 g s .881 .719 .203 r .12237 1.17053 m .15124 .93735 L .15124 .64843 L p F P 0 g s .707 .577 .707 r .15124 .93735 m .35554 1.14165 L .64446 1.14165 L p F P 0 g s .707 .577 .707 r .15124 .64843 m .15124 .93735 L p .64446 1.14165 L F P 0 g s .707 .577 .707 r .35554 .44414 m .15124 .64843 L p .64446 1.14165 L F P 0 g s .707 .577 .707 r .64446 .44414 m .35554 .44414 L p .64446 1.14165 L F P 0 g s .707 .577 .707 r .84876 .64843 m .64446 .44414 L p .64446 1.14165 L F P 0 g s .707 .577 .707 r .64446 1.14165 m .84876 .93735 L .84876 .64843 L p F P 0 g s .392 .075 .304 r .5 1.37756 m .73497 1.42898 L .87763 1.17053 L p F P 0 g s .304 0 0 r .5 1.37756 m .26503 1.42898 L .5 1.49032 L p F P 0 g s .304 0 0 r .5 1.49032 m .73497 1.42898 L .5 1.37756 L p F P 0 g s .392 .565 .904 r .5 .20823 m .73497 .1568 L .87763 .41526 L p F P 0 g s .304 .769 .942 r .5 .20823 m .26503 .1568 L .5 .09546 L p F P 0 g s .304 .769 .942 r .5 .09546 m .73497 .1568 L .5 .20823 L p F P 0 g s .806 .35 0 r .12237 1.17053 m .07228 1.22061 L .26503 1.42898 L closepath p F P 0 g s .806 .965 .65 r .12237 .41526 m .07228 .36517 L .26503 .1568 L closepath p F P 0 g s 0 0 .203 r .92772 .36517 m .87763 .41526 L p .92772 1.22061 L F P 0 g s .881 .719 .203 r .02802 .9884 m .07228 1.22061 L .12237 1.17053 L p F P 0 g s .881 .719 .203 r .02802 .59739 m .02802 .9884 L p .12237 1.17053 L F P 0 g s .881 .719 .203 r .07228 .36517 m .02802 .59739 L p .12237 1.17053 L F P 0 g s .881 .719 .203 r .12237 .41526 m .07228 .36517 L p .12237 1.17053 L F P 0 g s 0 0 0 r .92772 1.22061 m .87763 1.17053 L .73497 1.42898 L closepath p F P 0 g s 0 .096 .65 r .92772 .36517 m .87763 .41526 L .73497 .1568 L closepath p F P 0 g s .051 .434 .872 r .5 1.49032 m .26503 1.42898 L .07228 1.22061 L p F P 0 g s .731 .99 .872 r .6955 1.26488 m .92772 1.22061 L .73497 1.42898 L p F P 0 g s .731 .99 .872 r .73497 1.42898 m .5 1.49032 L .6955 1.26488 L p F P 0 g s .051 0 0 r .5 .09546 m .26503 .1568 L .07228 .36517 L p F P 0 g s .731 .204 0 r .6955 .32091 m .92772 .36517 L .73497 .1568 L p F P 0 g s .731 .204 0 r .73497 .1568 m .5 .09546 L .6955 .32091 L p F P 0 g s 0 0 .203 r .97198 .59739 m .92772 .36517 L p .92772 1.22061 L F P 0 g s .845 .387 .102 r .6955 .32091 m .92772 .36517 L .97198 .59739 L closepath p F P 0 g s .102 0 .102 r .02802 .59739 m .07228 .36517 L .3045 .32091 L closepath p F P 0 g s 0 0 .203 r .92772 1.22061 m .97198 .9884 L .97198 .59739 L p F P 0 g s .845 .993 .845 r .97198 .9884 m .92772 1.22061 L .6955 1.26488 L closepath p F P 0 g s .102 .387 .845 r .3045 1.26488 m .07228 1.22061 L .02802 .9884 L closepath p F P 0 g s .051 .434 .872 r .07228 1.22061 m .3045 1.26488 L .5 1.49032 L p F P 0 g s .051 0 0 r .07228 .36517 m .3045 .32091 L .5 .09546 L p F P 0 g s .639 .769 .942 r .3045 1.26488 m .6955 1.26488 L .5 1.49032 L closepath p F P 0 g s .639 .274 .335 r .3045 .32091 m .6955 .32091 L .5 .09546 L closepath p F P 0 g s .707 .577 .707 r .97198 .9884 m .6955 1.26488 L .3045 1.26488 L p F P 0 g s .707 .577 .707 r .97198 .59739 m .97198 .9884 L p .3045 1.26488 L F P 0 g s .707 .577 .707 r .6955 .32091 m .97198 .59739 L p .3045 1.26488 L F P 0 g s .707 .577 .707 r .3045 .32091 m .6955 .32091 L p .3045 1.26488 L F P 0 g s .707 .577 .707 r .02802 .59739 m .3045 .32091 L p .3045 1.26488 L F P 0 g s .707 .577 .707 r .3045 1.26488 m .02802 .9884 L .02802 .59739 L p F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{172, 272.688}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzt3F1rVEcYB/Bj9v0t+/6+mxdjjDFatWpTm6pUMTG1qU01iIhICKJBJPUN ERERERERES+KlNaCt156520/RO78DP0AdXvOPLPT3c1/7P/ceLXCmZM9Z57f MzPZJGeSGReWb16+eHX55urK8sjc9eVfLq+u3BiZXbvuXgpschznreNsyow4 3sct96Uu3rbcf+7Nz3U65Z1CXu7TcuEn7xTwLgy0Um6pPmy936cOebUoNX/w TkHvQrCj5pvZJdWToFdf3V2Q6sdN9YiqHjLV24ej7rXD5iXsmGlPvCeLe7iv pOxsY9Qr1aVZIb4zmZOACAEiblpxRIiDhkgDIgKIlCEOCfGN6UgOEDFAZExH ZoT4yrSiSBJ504ppIb40RAUQCUCUDLFXiF2mI3VApABRNR3ZLcRO7zTgXWgC Ig2IuleqiC86CF0pJQdsT9aG6Wv6n7ND2B0kmyfZKWGnANsg2QZgtwu7nWSL JDsp7CTJlkl2m7DbSLZKshPCTpBsnWS3CruVZJskOy7sOMkOk+wWYbcAFn1t IbYJ2DFhx0h2lGQ3C7uZZMdIdtTOorEdJ8dWs6MkO0GyI8KOkOwkyQ4LO0yO LWLR2A4JO0SyUyTbFLZJsjtJtiFsg2R3kWxd2DrJ7iHZmrA1kt1LslVhqyS7 n2QrwlYAO0SyQ4AtC1sm2WmSLdlZNAgHyEHQbIlkZ0i2KGyRZA+SbEHYAmDV U83xloO/meQlMA8Cy14Z9i4da717+U7fXV+peWdHP1tuFHMi5oCY90o1Hwi2 ak5N33Vt5fdmcQ/3lVuqiAJIlZVUWZAqbVJFQao5kCpiUmVAqoykyoBUCZMq CVLNg1QJkyoJUqUlVRqkiphUGZDqBEiVNqmiINWgpBoEqQImVQGkWgCp8iZV EKRKSapUT6qOt9LGLCdBlrJXqnelbnzSOwXk/b2RWARE3SvVHCPVQehKLqGY OsBO2bCevibsbA2wS4Ct2dkEyZ4h2bidrQL2LGCr/lj0uT4H2Io/tgzY87a3 EM+WAHsBsCU7GyfZZZKN2dkiYFcAW/THom8CFwFb8MfmAXvJ9r2FZ3OAXQVs zs7GSPYKyUbtbBawVwGb9ceiHxFrgM34Y9OAvWb7ycOzg4C9AdhBOxsl2Vsk G7GzKcDeBmzKH4seIO4ANumPTQD2ru25hGfjgL0H2LidjZDsfZIN29kYYB8A NuaPRY+XDwEb9cdGAPvI9tTKs2HAPgZs2M6GSfYJyYbsbAiwTwEb8seiyccz wAb9sQHAPrfNaXh2ALAvADtgZ0Mk+5Jkg51sqJNVh/va+VVRoU7KTB3DneHB rnD341cqMtgV2Rv0X1c87zcwPe2srh71f/cqDXRIQXPrtbkV6rjVMzavO5K0 xyHQr96v3q/er96v3q/er96v3q/er96v3q++obqaXfzJmbWVde/s/KGrr39c b4e0Z15B/aJdXYfIREhPndwoHdk1C9wQ9AoHdc23Ql1B7QZ2zfF0pI6G0zUJ 9Waebtk9fl0zT2G8mefH9Z7hCtrZAGBfADbgjw0C9jlgg3Y2TLLPSBb9skCz IcA+BWzIHxsG7BPAhv2xEcA+BmzEHxsF7CPARu1shGQfkiz6lZxmY4B9ANiY PzYO2PuAjftjE4C9B9iEPzYJ2LuATdrZKMneIVn0i2/NpgB7G7Apf+wgYG8B dtAfmwbsDcCm/bEZwF4DbMbOxkh2jWTRn5c0mwXsVcBm/bE5wF4BbM4fmwfs KmDz/tgCYC8BtmBn4yR7kWTRH3E1WwTsCmCL/tgSYJcBW/LHlgF7AbBlf2wF sOcBW7GzCZI9R7JoqYRmq4A9C9iqP7YG2DOArflj64BdAmzdH9sA7CnANuxs kmQXSRYtSNJsE7AnAdv8H1ZNIBC2YBtRFdG1AksmIam1D+1DrfNC79UTAFVf sCoi0Hr/zwfc1q71Z5LEfYBwy/ZStw2p5kEq9e28vapuQyrpTPeqOp0qbnqF firPgVQp06skSKWHLw1SpU0q9Ch4DKSKmlRZkEovt8uAVAUzgGiicNQ2rVER JZBKr4DMglQV0ysn0J6IKv9ITxavhkpQAwn0as4cSND0yjnv0jAI1CtO8yBw SJVy7c1ff3uHc1iVcs3FFDgEWL1mtkCyB0lWL+4tkuwMyerFxiWSPUCyeml0 mWSnSVYv5K6Q7H6S1avZqyS7l2T12vsaYJsk2wSs3ilQJ9k9JKv3NTRIdhfJ 6l0YTZLdSbINO4s+ZVPkp0yzQyQ7SbJ648wwOQiIRYOgt/mMkOwEyUozu7dQ fYIdJ1lpZveGr0+wYySrN3yNkewoyepdb1tIdphkpZndOwo/wTZJVu8o3ArY Bsk2AKv3P06QbJ1k9W7NbSRbJVm9t3SSZMskq3fCbifZIsnqfbtTJJsnWb3L eAdg6yRbB6zeE612cKs7CMsCrOqV6pLeBL7bEFVApAFRNsQeIdSmdjXBKAEi BYiCV6qIfUJMGyIPiAQgsob4WogZ05EsIGKASJuOfCvEIdOKQUBEAJE0rTgs xBFDxEkiaoijQsyajkQBEQJE2HRkToh504oQIAKACJhWfC/EgiEGFBHqJNTh qHvtsB8lbNGESRoVJTXd4mepdNr0cEkufO7/ssPZ9C81w8Gc\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 171.}, {271.688, 0.}} -> \ {0., 0., 0., 0.}},ExpressionUUID->"4c837873-d7ae-484c-8224-575c393ce8b0"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"28f8f3ed-4f65-418f-bb5d-\ 5b7772ac5e75"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ FormBox[ SubscriptBox["J", "84"], TraditionalForm]],ExpressionUUID->"5b22bee9-e42b-4f43-9a55-1711f7807a07"]], \ "Subsection",ExpressionUUID->"a05ea264-b0d1-491b-bd40-4c99030750c4"], Cell[BoxData[ RowBox[{"j84", ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{"x2", ",", "z1", ",", "z2", ",", "z3", ",", "v"}], "}"}], ",", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"x2", ",", "z1", ",", "z2", ",", "z3"}], "}"}], "=", RowBox[{"{", RowBox[{ RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{"2", "-", RowBox[{"2", "*", "#1"}], "-", RowBox[{"3", "*", RowBox[{"#1", "^", "2"}]}], "+", RowBox[{"2", "*", RowBox[{"#1", "^", "3"}]}]}], "&"}], ",", "2"}], "]"}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "1"}], "-", RowBox[{"22", "*", RowBox[{"#1", "^", "2"}]}], "+", RowBox[{"64", "*", RowBox[{"#1", "^", "4"}]}], "+", RowBox[{"32", "*", RowBox[{"#1", "^", "6"}]}]}], "&"}], ",", "2"}], "]"}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "8"}], "-", RowBox[{"15", "*", RowBox[{"#1", "^", "2"}]}], "+", RowBox[{"8", "*", RowBox[{"#1", "^", "4"}]}], "+", RowBox[{"16", "*", RowBox[{"#1", "^", "6"}]}]}], "&"}], ",", "2"}], "]"}], ",", RowBox[{"Root", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"-", "4"}], "-", RowBox[{"8", "*", RowBox[{"#1", "^", "2"}]}], "-", RowBox[{"#1", "^", "4"}], "+", RowBox[{"2", "*", RowBox[{"#1", "^", "6"}]}]}], "&"}], ",", "2"}], "]"}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"v", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "x2"}], ",", "0", ",", "z2"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"1", "/", "2"}], ",", "z3"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{ RowBox[{"-", "1"}], "/", "2"}], ",", "z3"}], "}"}], ",", RowBox[{"{", RowBox[{"x2", ",", "0", ",", "z2"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"1", "/", "2"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "1"}], "/", "2"}], ",", "0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "x2"}], ",", "z1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "x2", ",", "z1"}], "}"}]}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"Polygon", "/@", RowBox[{"{", RowBox[{ RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"3", ",", "2", ",", "1"}], "}"}], "]"}], "]"}], ",", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"2", ",", "3", ",", "4"}], "}"}], "]"}], "]"}], ",", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"7", ",", "3", ",", "1"}], "}"}], "]"}], "]"}], ",", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"3", ",", "7", ",", "4"}], "}"}], "]"}], "]"}], ",", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"5", ",", "4", ",", "7"}], "}"}], "]"}], "]"}], ",", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"7", ",", "6", ",", "5"}], "}"}], "]"}], "]"}], ",", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"1", ",", "6", ",", "7"}], "}"}], "]"}], "]"}], ",", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"2", ",", "8", ",", "1"}], "}"}], "]"}], "]"}], ",", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"4", ",", "8", ",", "2"}], "}"}], "]"}], "]"}], ",", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"8", ",", "4", ",", "5"}], "}"}], "]"}], "]"}], ",", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"8", ",", "5", ",", "6"}], "}"}], "]"}], "]"}], ",", RowBox[{"v", "[", RowBox[{"[", RowBox[{"{", RowBox[{"8", ",", "6", ",", "1"}], "}"}], "]"}], "]"}]}], "}"}]}]}]}], "]"}]}]], "Input",ExpressionUUID->"40539558-cbfe-4b90-\ 913e-fda585f55096"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"Graphics3D", "[", RowBox[{"poly", ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], "]"}]], "Input",Expression\ UUID->"c13255b1-c939-4dfd-a95d-ecab3f6059bb"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.20015 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics3D %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations -0.105752 1.25478 2.22045e-16 1.25478 [ [ 0 0 0 0 ] [ 1 1.20015 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 1.20015 L 0 1.20015 L closepath clip newpath .5 Mabswid [ ] 0 setdash .24649 .79597 m .32635 .40903 L .65971 .70348 L closepath p .77 .542 .588 r F P 0 g s .32635 .40903 m .72977 .26141 L .65971 .70348 L closepath p .637 .563 .754 r F P 0 g s .72977 .26141 m .32635 .40903 L .35945 .36282 L closepath p .384 .846 .817 r F P 0 g s .35945 .36282 m .32635 .40903 L .24649 .79597 L closepath p 0 0 0 r F P 0 g s .72977 .26141 m .82298 .61907 L .65971 .70348 L closepath p .081 .045 .513 r F P 0 g s .64222 1.07914 m .65971 .70348 L .82298 .61907 L closepath p .011 0 .349 r F P 0 g s .24649 .79597 m .65971 .70348 L .64222 1.07914 L closepath p .745 .472 .517 r F P 0 g s .35945 .36282 m .82298 .61907 L .72977 .26141 L closepath p .774 .463 .461 r F P 0 g s .24649 .79597 m .38307 .84414 L .35945 .36282 L closepath p 0 0 .409 r F P 0 g s .24649 .79597 m .64222 1.07914 L .38307 .84414 L closepath p 0 .265 .732 r F P 0 g s .82298 .61907 m .38307 .84414 L .64222 1.07914 L closepath p .861 .815 .803 r F P 0 g s .82298 .61907 m .35945 .36282 L .38307 .84414 L closepath p .756 .511 .562 r F P 0 g s % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{134.125, 196.938}, ImageMargins->{{41, 0}, {0, 0}}, ImageRegion->{{-0.357875, 1.27586}, {-0.228499, 1.10663}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJyt2ltTFEcUB/Bh7/eFheWygCxyEVGuERQCIig3FYO3eI1VxEpKqLKSUr9B qnzJZ8pbfMxjXv0qZKe7+U+7+z+z7RirlkXmnF+f6Znt6enZg6MPb355e/Th +PVRfffd0e9vjl+/r+/89q7xp3iH53kfG6+/657/+2njV/Pj42njX2Pj//n2 1n+L+36v/sOx/5bw/xA7/fT+vae2nZp/Xo8O+hVZKTnoZ0g5EtStg14hqCQH vUBzFTnoCaSqHPQQQTUSVNFBh2junBx0F9KoHLSHoAk5aBvNTZOgLh20CWlG DlpH0IIctIrmluSgZUgrJKhTBy0iaF0OmkNzm3LQJUi35KALCNonQWUdNI7m DuSgOqRDOeic/xbztzwmQSUryFPU6ac//jw1n9WHcsYw2LifoX67L4cPYX+S frgJaoSrlHsuiSm08wMJL+rwQXRJBuGsB014zX9Lms+2Cb8jhw9AV9tPzvrL yyObHdN22UXSJbvEKWinH0U3OSVUEZLdh2w/8uSs2cZB94kyiG0XIk6IThA3 oxIVEFuEyGtCDfQpieghfbrRBlP1JAhWRT2RiT4QbJBxIgZArBEi50IMgliV iSqIJCGGScdejYqdQz2RiTqIZUJkXYjzIK60IRJ6IGolxkEsykQPqmDEJOnY uajYBdQzT4iMRahdShPiIojZqMQlEJdlohs7wogZEGxW4UTMkY6dIljawswl pBWbRz2RiUUQk1GJKyDGZaKCXskSYgnEGCFSFmHmvq3EVdKx9ajYNdQTmVgF wSa8TsQaiGFCJDXRBSJPiOsgBqMSN0jH9kfFNlHPACESFqG2FAhxE0SfTHSi CkZsg2C3NU7ELojuqMQ+6dgugsUtTG0pEuw26olM3AVRlokydokR90AUoxKH IAqEiFmE2lIixAPSsdmo2EPUE5l4DCItEyX0CiOegGCLAx0WEdcHsJV4BiLh QnQS4rn6mbQ7Vr0a/z87uOHAC9Tg36npTLsTiugElv2T/1P9yQ6P65O+NfwV GnMKf2nX9vnff1Bbh0v2c6uxRjLvXUWooAohnloHSCQKqIIRP1qnSUTikXWy thIxF+KB9ZEJJ8wAGjYK5AgRdyGCsaggE3nsCCOCEbEUlQjG5TIhEhahgnoI sWcN7RGJXWtE9E9tnwnBctglhgVXz25CJF2I4BpebUOYoLCZRC8hUi7EBoj+ qMQ6iJpMZEH0ESKYKA4SIu1CBNPV4ajEsjVdbSUyLkRwH1BvQ5hNernopHEA w+5LzstYBvX0EyK4OxojRNaFmAUxEZW4DGKSEDmLaOoV1sXTwKZkLI16Bggx BWI6KjEJ4hIh8i5EsEQx04Zo6hXWxcGSySzBCl+HBUs48zKWws7VCBEsJC22 IZrqYT01BOw7ghW/DqsBW/p2rB/Y1W/HeoFdI5hZf08SjB2AKrnctWPNCNyK daOyVUKUrbMrLp3twSr0mkyoMUDNrdl4GCynX5eJnN0/m3/5L0+cmRQgbhDR PB/KEzHm/zTzkVY2eHaxKbPBzC3hY+KdU/DcZItg5rlaidQYsGwVInh6c0tm y6gxjR1ma1cJYDsy1kVqTKFGtmgaA7tLWPOYs0LYDNg4ZT3/uZAodmOv876j HmncJuHm2W+VFJBHd92RE3vRTjE4TfFh3ZMT+6UWmwh2MMxD9AFHYlsmaii/ QBLZWWUSh0jbOUKw8113tvW0kxXNPnUmcYS0nSUEGw/MNxnqEiEOJCZxNLRo NiyaxDHHotng3KeJcbTNenpFTpwkbWcIwa5/+jzVD9gdiGWZmEL5bL/Zhdwk TpO204RgEwv9GdFfIlBts6LZ9MYkzpC2UzhRFkhiTSfOOhbNpnqGmAstmk04 TeKCVHQTwaa9g5pYRNusaDblNolXSNtJQlyUiSVH4gIh9Likv6NiFpBaE9kd jEm8RtpO4Hizu6dhnbgS2iK7+TOJ30stNhGjMrHmSIwQQn9LRX89SJXPeprd S5vEDdJ2nBBDhBjRxA20zYpmqwkmcYu0HSMEW9MwxE1Hgq2s6ItI4yp5Vn4c J0pI+I5jiz2EGNXE7pctNiWy1SyTuK/eknbb+uV5Ye3dDkmrkLTzOu0OymT7 x9YRTeKBekt82R5fedSXVe8emtJdctZSY1Ym5hw2t+Kp72exVVaTcZ/XxZZ2 x3XGA6mujJzzqPkEURcAMfyx/2am361BEzroCepIykFPrdOqNUhPIrxn1kEV g15Yu/BZP4LQl3/Pe2ltOsvSkwuXr6R6Hf8BW+0nAA==\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{-48., 170.125}, {240.938, \ -21.}} -> {0., 0., 0., \ 0.}},ExpressionUUID->"753584c3-8bb5-4476-8110-813605663186"], Cell[BoxData[ TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}], False, Editable->False]], "Output",ExpressionUUID->"50bc940d-5f8d-44ea-a2a7-\ 456ded318a8b"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Vertex Subset Hulls", "Section",ExpressionUUID->"3755fb89-915a-4d5e-8224-3e189687e130"], Cell[CellGroupData[{ Cell["TruncatedCube", "Subsection",ExpressionUUID->"0872d50d-d54d-46e3-bb42-b6997dd5fc69"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Print", "[", RowBox[{"{", RowBox[{"#", ",", RowBox[{ RowBox[{"VertexSubsetHulls", "[", RowBox[{"#", ",", "\"\\"", ",", RowBox[{"Debug", "\[Rule]", "False"}], ",", RowBox[{"\"\\"", "\[Rule]", "4*^9"}], ",", RowBox[{"\"\\"", "\[Rule]", "1"}]}], "]"}], "//", "Timing"}]}], "}"}], "]"}], "&"}], "/@", RowBox[{"SortBy", "[", RowBox[{ RowBox[{"PolyhedronData", "[", "\"\<*TruncatedCube*\>\"", "]"}], ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", " ", "\"\\""}], "]"}], "&"}]}], "]"}]}], ";"}]], "Input",ExpressionUUID->"ef49965c-a130-420b-8e6c-a1c4fdefa1de"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TruncatedCube\"\>", ",", RowBox[{"{", RowBox[{"0.009263000000373722`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"a9d4b2ea-b188-4ee9-b0fe-7888d2cfb429"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedTruncatedCube\"\>", ",", RowBox[{"{", RowBox[{"7.363652000000002`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "7", ",", "8", ",", "9", ",", "10", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"a4e874dd-0b17-4c62-bbf5-\ 3ac1808b1b8b"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"BiaugmentedTruncatedCube\"\>", ",", RowBox[{"{", RowBox[{"2319.1710160000007`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "9", ",", "10", ",", "11", ",", "12", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30", ",", "31", ",", "32"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"3550b337-6b7e-42ca-ac78-\ e1fba5004331"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["TruncatedTetrahedron", "Subsection",ExpressionUUID->"2c5d277d-7771-41b2-981a-214ad91247d5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Print", "[", RowBox[{"{", RowBox[{"#", ",", RowBox[{ RowBox[{"VertexSubsetHulls", "[", RowBox[{"#", ",", "\"\\"", ",", RowBox[{"Debug", "\[Rule]", "False"}], ",", RowBox[{"\"\\"", "\[Rule]", "4*^9"}], ",", RowBox[{"\"\\"", "\[Rule]", "1"}]}], "]"}], "//", "Timing"}]}], "}"}], "]"}], "&"}], "/@", RowBox[{"SortBy", "[", RowBox[{ RowBox[{"PolyhedronData", "[", "\"\<*TruncatedTetrahedron*\>\"", "]"}], ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", " ", "\"\\""}], "]"}], "&"}]}], "]"}]}], ";"}]], "Input",ExpressionUUID->"5a86c854-4ced-44a5-bd99-e5a7504bdd9a"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TruncatedTetrahedron\"\>", ",", RowBox[{"{", RowBox[{"0.007646999999451509`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"da8c6ff5-b955-46e2-8ebe-\ 2b6af610c9ea"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedTruncatedTetrahedron\"\>", ",", RowBox[{"{", RowBox[{"0.02659399999993184`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"0c26afc2-7e84-443a-8339-\ 89173b1b0df2"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["TruncatedDodecahedron", "Subsection",ExpressionUUID->"60f23fcc-9a50-4ca0-a264-49288df07789"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]], "Input",ExpressionUUID->"f131ad9c-8a4b-40b5-a7c1-666684553762"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TruncatedDodecahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30", ",", "31", ",", "32", ",", "33", ",", "34", ",", "35", ",", "36", ",", "37", ",", "38", ",", "39", ",", "40", ",", "41", ",", "42", ",", "43", ",", "44", ",", "45", ",", "46", ",", "47", ",", "48", ",", "49", ",", "50", ",", "51", ",", "52", ",", "53", ",", "54", ",", "55", ",", "56", ",", "57", ",", "58", ",", "59", ",", "60"}], "}"}], "}"}]}], "}"}]], "Output",ExpressionUUID->"f4b2fad8-13bf-\ 4298-9d2b-dcc6017abfdd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Print", "[", RowBox[{"{", RowBox[{"#", ",", RowBox[{ RowBox[{"VertexSubsetHulls", "[", RowBox[{"#", ",", "\"\\"", ",", RowBox[{"Debug", "\[Rule]", "False"}], ",", RowBox[{"\"\\"", "\[Rule]", "4*^9"}]}], "]"}], "//", "Timing"}]}], "}"}], "]"}], "&"}], "/@", RowBox[{"SortBy", "[", RowBox[{ RowBox[{"PolyhedronData", "[", "\"\<*TruncatedDodecahedron*\>\"", "]"}], ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", " ", "\"\\""}], "]"}], "&"}]}], "]"}]}], ";"}]], "Input",ExpressionUUID->"bdac93b9-d93f-40c4-8c84-f9c571af931d"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TruncatedDodecahedron\"\>", ",", RowBox[{"{", RowBox[{"0.0716309999997975`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30", ",", "31", ",", "32", ",", "33", ",", "34", ",", "35", ",", "36", ",", "37", ",", "38", ",", "39", ",", "40", ",", "41", ",", "42", ",", "43", ",", "44", ",", "45", ",", "46", ",", "47", ",", "48", ",", "49", ",", "50", ",", "51", ",", "52", ",", "53", ",", "54", ",", "55", ",", "56", ",", "57", ",", "58", ",", "59", ",", "60"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"125c5772-453e-47a6-8481-dba81bb6bfce"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"VertexSubsetHulls", "::", "maxmem"}], "MessageName"], ":", " ", "\<\"Maximum allowed memory \[NoBreak]\\!\\(4.`\\)\[NoBreak] GB \ exceeded.\"\>"}]], "Message", \ "MSG",ExpressionUUID->"154f9192-79ab-452f-9ba2-d2d7e92a0f47"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedTruncatedDodecahedron\"\>", ",", RowBox[{"{", RowBox[{"13.68840899999941`", ",", "$Failed"}], "}"}]}], "}"}]], "Print",E\ xpressionUUID->"ad9f0d80-29aa-406e-8e32-a53e5610fc18"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"VertexSubsetHulls", "::", "toomanysub"}], "MessageName"], ":", " ", "\<\"Too many subsets to enumerate.\"\>"}]], "Message", \ "MSG",ExpressionUUID->"1ebd12ec-fed0-40c9-89a6-4c5d056d281e"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"MetabiaugmentedTruncatedDodecahedron\"\>", ",", RowBox[{"{", RowBox[{"0.0241280000000188`", ",", "$Failed"}], "}"}]}], "}"}]], "Print",\ ExpressionUUID->"df3f8264-7027-4cb9-a410-e5a2c7604086"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"VertexSubsetHulls", "::", "toomanysub"}], "MessageName"], ":", " ", "\<\"Too many subsets to enumerate.\"\>"}]], "Message", \ "MSG",ExpressionUUID->"d56cf0c7-4e3f-48fe-a878-6d3b99e2119a"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ParabiaugmentedTruncatedDodecahedron\"\>", ",", RowBox[{"{", RowBox[{"0.023704999999608845`", ",", "$Failed"}], "}"}]}], "}"}]], "Print",ExpressionUUID->"a5a273c8-8ffc-4945-b4dd-7887219e2514"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"VertexSubsetHulls", "::", "toomanysub"}], "MessageName"], ":", " ", "\<\"Too many subsets to enumerate.\"\>"}]], "Message", \ "MSG",ExpressionUUID->"2199275d-8646-4b6b-932c-75d215475022"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{"General", "::", "stop"}], "MessageName"], ":", " ", "\<\"Further output of \ \[NoBreak]\\!\\(\\*StyleBox[\\(VertexSubsetHulls :: toomanysub\\), \ \\\"MessageName\\\"]\\)\[NoBreak] will be suppressed during this calculation. \ \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/stop\\\", \ ButtonNote -> \\\"General::stop\\\"]\\)\"\>"}]], "Message", \ "MSG",ExpressionUUID->"9cc0b395-6c01-46bd-b407-222cf0be26c8"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TriaugmentedTruncatedDodecahedron\"\>", ",", RowBox[{"{", RowBox[{"0.0247190000000046`", ",", "$Failed"}], "}"}]}], "}"}]], "Print",\ ExpressionUUID->"be5cfe49-096a-40c5-b635-7e991d02841a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"#", ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "[", RowBox[{"[", RowBox[{"1", ",", "1"}], "]"}], "]"}]}], "}"}], "&"}], "/@", RowBox[{"PolyhedronData", "[", "\"\<*TruncatedDodecahedron*\>\"", "]"}]}], "//", "Column"}]], "Input",ExpressionUUID->"27011f9d-0305-4056-87ec-\ 658672a22fd4"], Cell[BoxData[ TagBox[GridBox[{ { RowBox[{"{", RowBox[{"\<\"AugmentedTruncatedDodecahedron\"\>", ",", RowBox[{"-", "3.101261240121073`"}]}], "}"}]}, { RowBox[{"{", RowBox[{"\<\"MetabiaugmentedTruncatedDodecahedron\"\>", ",", RowBox[{"-", "2.974850065734247`"}]}], "}"}]}, { RowBox[{"{", RowBox[{"\<\"ParabiaugmentedTruncatedDodecahedron\"\>", ",", RowBox[{"-", "2.9576077063696586`"}]}], "}"}]}, { RowBox[{"{", RowBox[{"\<\"TriaugmentedTruncatedDodecahedron\"\>", ",", RowBox[{"-", "2.8418467343130844`"}]}], "}"}]}, { RowBox[{"{", RowBox[{"\<\"TruncatedDodecahedron\"\>", ",", "0"}], "}"}]} }, GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]], "Output",ExpressionUUID->"8f6d517f-35a7-443b-8a02-98ad2fc4b1e4"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"r", "=", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}], "//", "N"}]}]], "Input",ExpressionUUID->"c98250e2-2ffb-432c-8855-\ 6337df4950a5"], Cell[BoxData["2.9694490158633986`"], "Output",ExpressionUUID->"51a57a51-5d4a-4cc3-ada5-53760bbd1ace"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Graphics3D", "[", RowBox[{"{", RowBox[{ RowBox[{"PointSize", "[", ".02", "]"}], ",", RowBox[{"Point", "[", RowBox[{"{", RowBox[{"0", ",", "0", ",", "0"}], "}"}], "]"}], ",", RowBox[{"Opacity", "[", ".2", "]"}], ",", RowBox[{"PolyhedronData", "[", RowBox[{"\"\\"", ",", "\"\\""}], "]"}]}], "}"}], "]"}]], "Input",ExpressionUUID->"c70c8a1c-795d-4c5a-\ 88a6-eb55859debc2"], Cell[BoxData[ Graphics3DBox[ {PointSize[0.02], Point3DBox[{0, 0, 0}], {Opacity[0.2], GraphicsComplex3DBox[CompressedData[" 1:eJwBKQbW+SFib1JlAgAAAEEAAAADAAAAGWGVDWLPCMCoNbDY0/7Jv2Y914Wc qto/0c1SI9aqCMCh5ngF5Xyiv62UgpZbNuK/VWtHsj7DBsBY80XvVnnGP0nb Su7R5fQ/nTy9l5BjBsB2dMzOi5vjPx+o6lVcZfS/Ib0dELsoBsBqUTXebdnp vyFMUyEmQfI/bY6T9QzJBcCUs3SWb7jXvzc34iIICve/iaaLBaBOA8B2CcXk cZHuP5FcTbPBJvw/sW/8pFvYAsBb/YhfCO73P692r/vw4/a/LYxiBxq6AcAl wuPcaOj5v8HmNG41O/U/QVXTptVDAcAlSb1vGUPxv+/sx0B9z/2/U7OVJdaG /7/rR4Vq+2j9P+GNiA0tqPk/81WB8HnH/r/dYQE6yzMCQN3qWW0CRu+/A5Fq Dkv4+r+1pAs9VOUDQENgvgX9u+w/g2rlOTOv+r91xIDmTTsFQOiafp1mfba/ U6ZEccVp+r8j74Ezs54CwCNinqCA6+w/U2umKog5+r8LpoD2HrzzP0UFswZW nwJAm0gwPGmq+b/lYYZdyz7+v9dS5vNt1fq/M9cClecD+b8LXpG2YQ3/P2fi TY7bkf2/U7qoun5R9r8lGQUOYS7/v9E8JB3rsPw/QyYFJd4b9b9lYPRNHt3z v1PYRz/ODwPAoyfGFTOm9L+noTqSzUsFwDB/yBW/3KA/4wBBQRtd9L/TgcXo 0/UDwF2sEejdfe6/pRHpsvaW7L8d1Y/oAHUHQKYRA8FPwN4/FRsUraUt6r9W nr6KTezsPz2wKt4wWgZA5aXC2DQw57/LRlrYXHP8PwvTCmb98ALAxbBvtI3b 47919+YJ+7r6v1V1nrtq5AJAJTwe4Bze4L+K/9ftiXvpvy8Ol4jDZgbAy42S tJfp3L9PLVYB0JgGwNoAZhTlJN+/C65OFEPm0L+wZGN5Tae3Pzt9m4Q41wdA 1ngCBkwkyL+KYdrq2YLsv6m1H57ihAZAlgQHd15txL+LKjpOXx7xP+et/fS3 UwbAq0PYqEiKtb+wNmwT2Ce2P3d1edsNpgfA1S032AmDuj9FqrwtSQcIQMMf uy4dV+A/qnFvA8nmxj/28nGfbjXvP/cVuTHulwZAFaNaKkZu0T/78LNi7Zf9 P1dtfBJAswLA5YwAc5QX2D9VTY1/apb5v73aLA8oIgNAhXajG3YS3j/qqiTZ aDLnv3eoCDUGKQbAM7CmE4xy4T/nVym8hwYGwDrT8nf6Nt2/O6E/48uV7T/l /isVTWQFQIPLmYyIQu8/G+5JjPsn7j+lHqG+RroGQEL7GTVTSIK/c+zHqlET 7z9rWsGmELr2Pw3gaej4QANARYoHa0m/8D8dCWmzqQUBQKcs4MqVTvy/Zadh RbJx8z/VY8RdbzD8v8HxkeAw9P0/hRiP7DMY9D/9rSnb3o0AQEliKkbDN/s/ TTsF21Kn9D9VrLOdLN/wv3f9kF0rbgLAsXWjIZDX9D/Va+hfLA0EQM1BFvzV Juy/DTpE6v0c9T9jRxq61MwDwJiHv8G7orw/dWDJvhVm9T/DJ6UQ23YCwE1C NmFS9+u/oSXgoEQ1+T8D5ZoNUsUAwDEE8YhWBfA/cYP01aD0+T91TrgRCYz6 v59+RLvXRfm/fXoF/nX1/D8LQ4rICyD0Pzn8C5PSMf4/+ecjv/7h/T97u7A1 W8X8P4/W8Bvg2PS/sdcr/UAPAEC1A7wGFhH1v8GF801GRvc/lQ67XYWFAEAK Fiszjdfov/9MCWFsxPu/+9dmKatrAUC1ubgbqYr/v4xKAOvXOcs/IWupEzeQ AUDVes7Itd78v50hrt4zvei/X/bCTfL/AkC2TdR8HJbhP3lGJnVdbPc/5yRN aKBfA0A2Rc+PUpPvP7c8D8/Q3vG/l6Ts73WaA0DUAGU6TsPbv1G3Lqixx/Q/ NdN2CiT6A0DwFXfI9Y5rP+fLBpx8g/S/vZwi1kngBEDF8j4HGxHzvzMVxYRV UOU/PzhqBmwbBUDKbVeh5nztvw2+Nypduu2/pzWCe7vhBUDYCcYHzIbLP+Oy CjsG++I/38jEZUcGBkAsA4xPM3PYP7oBxzxHIdm/0S24YY8nB0Cq41nv217h v9Bt2gh5QKS/D/Eh7A== "], Polygon3DBox[{{32, 27, 20, 10, 6, 4, 8, 18, 25, 31}, {35, 31, 25}, { 60, 54, 45, 37, 32, 31, 35, 42, 52, 58}, {46, 52, 42}, {37, 27, 32}, { 38, 28, 22, 17, 20, 27, 37, 45, 50, 48}, {54, 50, 45}, {17, 10, 20}, { 9, 5, 1, 2, 6, 10, 17, 22, 21, 15}, {28, 21, 22}, {2, 4, 6}, {11, 13, 14, 12, 8, 4, 2, 1, 3, 7}, {5, 3, 1}, {12, 18, 8}, {40, 46, 42, 35, 25, 18, 12, 14, 23, 33}, {13, 23, 14}, {51, 41, 34, 29, 30, 36, 43, 53, 59, 57}, {63, 57, 59}, {46, 40, 39, 44, 51, 57, 63, 64, 58, 52}, {60, 58, 64}, {44, 41, 51}, {13, 11, 16, 24, 34, 41, 44, 39, 33, 23}, {40, 33, 39}, {24, 29, 34}, {5, 9, 19, 26, 30, 29, 24, 16, 7, 3}, {11, 7, 16}, {26, 36, 30}, {28, 38, 47, 49, 43, 36, 26, 19, 15, 21}, {9, 15, 19}, {49, 53, 43}, {48, 47, 38}, {61, 55, 56, 62, 65}, {55, 61, 53, 49}, {55, 49, 47}, {56, 55, 47, 48}, {56, 48, 50}, {62, 56, 50, 54}, { 62, 54, 60}, {65, 62, 60, 64}, {63, 65, 64}, {61, 65, 63, 59}, {61, 59, 53}}]]}}, ImageSize->{360., 360.}, ViewAngle->0.46068587877912265`, ViewPoint->{1.1145444347871951`, -0.2791062333245243, -3.1827488768993835`}, ViewVertical->{ 0.8777828893501775, -0.394288450565265, -0.29026809255390373`}]], "Output",\ ExpressionUUID->"4aa26745-65e4-49c7-b240-7e461d700c66"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Select", "[", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{ "\"\\"", ",", "\"\\""}], "]"}], ",", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{ RowBox[{"Norm", "[", "#", "]"}], "-", "r"}], "]"}], "<", RowBox[{"10", "^", RowBox[{"-", "2"}]}]}], "&"}]}], "]"}]], "Input",ExpressionUUID->\ "0a67fcfd-4ae3-4adb-b9c7-e250b461caea"], Cell[BoxData[ RowBox[{"{", "}"}]], "Output",ExpressionUUID->"708af1bd-5da2-4d17-8d2b-96ba1051c5b8"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["AugmentedDodecahedron", "Subsection",ExpressionUUID->"d61c4b1e-6c08-48e4-b8ff-ff62183eb45e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Print", "[", RowBox[{"{", RowBox[{"#", ",", RowBox[{ RowBox[{"VertexSubsetHulls", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "//", "Timing"}]}], "}"}], "]"}], "&"}], "/@", RowBox[{"SortBy", "[", RowBox[{ RowBox[{"PolyhedronData", "[", "\"\<*AugmentedDodecahedron*\>\"", "]"}], ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", " ", "\"\\""}], "]"}], "&"}]}], "]"}]}], ";"}]], "Input",ExpressionUUID->"a3d308a4-da13-480d-843b-b5842e3a2708"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedDodecahedron\"\>", ",", RowBox[{"{", RowBox[{"0.20787399999971967`", ",", RowBox[{"{", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "20", ",", "21"}], "}"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->\ "e318c0ea-749d-4cd7-91eb-c8ca45fea22e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["AugmentedSphenocorona", "Subsection",ExpressionUUID->"8d70bb8f-f8dc-428b-b312-dcae7104aa45"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", "\"\\"", "]"}]], "Input",Expres\ sionUUID->"62dce037-3a73-44ca-9dc6-9041815f24f4"], Cell[BoxData[ Graphics3DBox[ GraphicsComplex3DBox[ NCache[{{0, Rational[-1, 2], Rational[-1, 180] (7774 + 4389 6^Rational[1, 2] - 2 (3330013 + 481743 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, Rational[1, 2], Rational[-1, 180] (7774 + 4389 6^Rational[1, 2] - 2 (3330013 + 481743 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 30] (-6 - 6^Rational[1, 2] - 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[1, 2], Rational[1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 180] (7774 + 4389 6^Rational[1, 2] - 2 (3330013 + 481743 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[-1, 2], 0, (Rational[1, 2] (1 + 6^Rational[1, 2]))^Rational[1, 2] + Rational[-1, 180] (7774 + 4389 6^Rational[1, 2] - 2 (3330013 + 481743 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 30] (-6 - 6^Rational[1, 2] - 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2], Rational[1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 180] (7774 + 4389 6^Rational[1, 2] - 2 (3330013 + 481743 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 30] (6 + 6^Rational[1, 2] + 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[1, 2], Rational[1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 180] (7774 + 4389 6^Rational[1, 2] - 2 (3330013 + 481743 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 2], 0, (Rational[1, 2] (1 + 6^Rational[1, 2]))^Rational[1, 2] + Rational[-1, 180] (7774 + 4389 6^Rational[1, 2] - 2 (3330013 + 481743 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { Rational[1, 30] (6 + 6^Rational[1, 2] + 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2], Rational[1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 180] (7774 + 4389 6^Rational[1, 2] - 2 (3330013 + 481743 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, Rational[1, 30] (9 - 6^Rational[1, 2] + 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 180] (7774 + 4389 6^Rational[1, 2] - 2 (3330013 + 481743 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}, { 0, Rational[1, 30] (-9 + 6^Rational[1, 2] - 2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] + Rational[1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2] + Rational[-1, 180] (7774 + 4389 6^Rational[1, 2] - 2 (3330013 + 481743 6^Rational[1, 2])^Rational[1, 2])^ Rational[1, 2]}}, {{0, -0.5, -0.6638235832416433}, { 0, 0.5, -0.6638235832416433}, {-0.8527269428464169, 0.5, -0.1414666545580049}, {-0.5, 0, 0.6494718410219109}, {-0.8527269428464169, -0.5, -0.1414666545580049}, { 0.8527269428464169, 0.5, -0.1414666545580049}, { 0.5, 0, 0.6494718410219109}, { 0.8527269428464169, -0.5, -0.1414666545580049}, { 0, 0.7894276266608717, 0.2933763169492496}, { 0, -0.7894276266608717, 0.2933763169492496}}], Polygon3DBox[{{3, 2, 1, 5}, {2, 6, 8, 1}, {3, 9, 2}, {9, 6, 2}, {9, 3, 4}, {6, 9, 7}, {3, 5, 4}, {6, 7, 8}, {4, 7, 9}, {10, 7, 4}, {10, 8, 7}, { 5, 10, 4}, {1, 8, 10}, {5, 1, 10}}]], ImageSize->{360., 360.}, ViewAngle->0.41153787899230804`, ViewPoint->{0.5140247408726811, -3.2711580182024775`, -0.6966374851530822}, ViewVertical->{-0.07698899253442079, -0.821749211495728, 0.8369042527637879}]], "Output",ExpressionUUID->"8d483746-dc25-4c9c-8150-\ 2f892fdfea12"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"PolyhedronData", "[", "\"\\"", "]"}]], "Input",ExpressionUUID->"32f1fe5e-7f02-4ded-908a-e4d99f086c4d"], Cell[BoxData[ Graphics3DBox[ GraphicsComplex3DBox[{{-0.8097582135547496, -0.7471091304426166, 0.4030724692749733}, {-0.7418882135547495, 0.04837086955738355, -0.19908753072502666`}, {-0.5055982135547497, 0.13245086955738328`, 0.7689524692749736}, {-0.22206821355474957`, 0.8401008695573836, 0.12177246927497347`}, {-0.20559821355474958`, 0.5901008695573832, -0.8463275307250266}, {-0.09214821355474942, \ -0.7060591304426166, -0.29216753072502677`}, { 0.14414178644525047`, -0.6219891304426165, 0.6758724692749736}, { 0.44414178644525054`, -0.1643391304426164, -0.9394075307250263}, { 0.46624178644525055`, 0.3236608695573836, 0.6312024692749736}, { 0.6421457864452503, 0.5920108695573832, -0.31592753072502655`}, { 0.8037757864452504, -0.35104913044261654`, -0.02517753072502644}}, Polygon3DBox[{{6, 1, 2}, {6, 2, 5, 8}, {10, 4, 9}, {9, 7, 11}, {9, 4, 3}, { 9, 3, 7}, {7, 6, 11}, {11, 6, 8}, {4, 2, 3}, {2, 4, 5}, {8, 10, 11}, {8, 5, 10}, {10, 5, 4}, {11, 10, 9}, {7, 1, 6}, {7, 3, 1}, {1, 3, 2}}]], ImageSize->{360., 360.}, ViewAngle->0.4520400502904392, ViewPoint->{0.020198541312012357`, -3.35109403572626, -0.46878650007093176`}, ViewVertical->{0.7598328574883083, -0.6814035931051639, 0.29013260862952794`}]], "Output",ExpressionUUID->"2c76c4b9-8618-459a-a5c9-\ b329501e5e51"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Print", "[", RowBox[{"{", RowBox[{"#", ",", RowBox[{ RowBox[{"VertexSubsetHulls", "[", RowBox[{"#", ",", "\"\\""}], "]"}], "//", "Timing"}]}], "}"}], "]"}], "&"}], "/@", RowBox[{"SortBy", "[", RowBox[{ RowBox[{"PolyhedronData", "[", "\"\<*Sphenocorona*\>\"", "]"}], ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", " ", "\"\\""}], "]"}], "&"}]}], "]"}]}], ";"}]], "Input",ExpressionUUID->"566ec635-3e6b-4f2a-b62c-bc0c75bb37a0"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Sphenocorona\"\>", ",", RowBox[{"{", RowBox[{"0.009390999999595806`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",E\ xpressionUUID->"ae02e1d9-392c-491c-b975-1e2c2bae6ecd"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedSphenocorona\"\>", ",", RowBox[{"{", RowBox[{"0.009869999999864376`", ",", RowBox[{"{", "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"eaf518e9-\ 89d8-45b0-b98a-cc482c134cfa"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["AugmentedPrism", "Subsection",ExpressionUUID->"406b1cb5-be56-449c-8840-c90c35d31d5b"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Print", "[", RowBox[{"{", RowBox[{"#", ",", RowBox[{ RowBox[{"VertexSubsetHulls", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{"\"\\"", ",", "4"}], "}"}]}], "]"}], "//", "Timing"}]}], "}"}], "]"}], "&"}], "/@", RowBox[{"SortBy", "[", RowBox[{ RowBox[{"PolyhedronData", "[", "\"\<*ugmentedSquarePrism*\>\"", "]"}], ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", " ", "\"\\""}], "]"}], "&"}]}], "]"}]}], ";"}]], "Input",ExpressionUUID->"a404c39a-38c2-47a2-933f-3adc29125bed"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Print", "[", RowBox[{"{", RowBox[{"#", ",", RowBox[{ RowBox[{"VertexSubsetHulls", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{"\"\\"", ",", "5"}], "}"}]}], "]"}], "//", "Timing"}]}], "}"}], "]"}], "&"}], "/@", RowBox[{"SortBy", "[", RowBox[{ RowBox[{ "PolyhedronData", "[", "\"\<*ugmentedPentagonalPrism*\>\"", "]"}], ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", " ", "\"\\""}], "]"}], "&"}]}], "]"}]}], ";"}]], "Input",ExpressionUUID->"d248337e-3ef5-43e7-a3d2-f3e6cd448954"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedPentagonalPrism\"\>", ",", RowBox[{"{", RowBox[{"0.010677999999643362`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",E\ xpressionUUID->"3332d047-e84b-4d81-b933-2fa9f2b1c0a2"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"BiaugmentedPentagonalPrism\"\>", ",", RowBox[{"{", RowBox[{"0.02476299999943876`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",E\ xpressionUUID->"f25fc561-d7ae-4b00-a412-01120567cdb1"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Print", "[", RowBox[{"{", RowBox[{"#", ",", RowBox[{ RowBox[{"VertexSubsetHulls", "[", RowBox[{"#", ",", RowBox[{"{", RowBox[{"\"\\"", ",", "6"}], "}"}]}], "]"}], "//", "Timing"}]}], "}"}], "]"}], "&"}], "/@", RowBox[{"SortBy", "[", RowBox[{ RowBox[{"PolyhedronData", "[", "\"\<*ugmentedHexagonalPrism*\>\"", "]"}], ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", " ", "\"\\""}], "]"}], "&"}]}], "]"}]}], ";"}]], "Input",ExpressionUUID->"89bea25f-9e13-447d-be3c-f0a65614e3c0"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedHexagonalPrism\"\>", ",", RowBox[{"{", RowBox[{"0.009216000000378699`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"d8824e6f-f259-4101-b7bb-\ ad52e37be970"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"MetabiaugmentedHexagonalPrism\"\>", ",", RowBox[{"{", RowBox[{"0.030850000000100408`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"e397ecda-864d-4dfb-b940-\ 5ffda6e34528"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ParabiaugmentedHexagonalPrism\"\>", ",", RowBox[{"{", RowBox[{"0.03085800000008021`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"ef3c2d41-5acf-410f-b13a-\ 7319655d2b68"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TriaugmentedHexagonalPrism\"\>", ",", RowBox[{"{", RowBox[{"0.13619800000014948`", ",", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"ca5a139e-bbfc-42b5-b410-\ 6e5955d4e4cf"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Platonic", "Subsection",ExpressionUUID->"3af5af01-907e-4367-95ff-584c2905ffe4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"Print", "[", RowBox[{"{", RowBox[{"#", ",", RowBox[{"VertexSubsetHulls", "[", RowBox[{"#", ",", "\"\\"", ",", RowBox[{"Debug", "\[Rule]", "False"}]}], "]"}]}], "}"}], "]"}], "&"}], "/@", RowBox[{"SortBy", "[", RowBox[{ RowBox[{"PolyhedronData", "[", "\"\\"", "]"}], ",", RowBox[{ RowBox[{"PolyhedronData", "[", RowBox[{"#", ",", " ", "\"\\""}], "]"}], "&"}]}], "]"}]}]], "Input",\ ExpressionUUID->"45127ca0-fda7-4521-ab0c-a5819a5c3187"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Dipyramid\"\>", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"\<\"Tetrahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3", ",", "4", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3", ",", "4", ",", "5"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"0ee46bf1-3a34-4610-aab5-\ b5f8e80c8cde"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Pyramid\"\>", ",", "4"}], "}"}], ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"dfc4fff6-50e5-4aa2-\ af88-3ee546a0d144"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Pyramid\"\>", ",", "5"}], "}"}], ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"69a252df-dedb-4c0e-\ 80c2-0c8dc958f0a6"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedTriangularPrism\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"f0963e3c-4484-4144-\ b1a2-2717938916f0"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedTriangularPyramid\"\>", ",", RowBox[{"{", RowBox[{"\<\"Tetrahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{"1", ",", "3", ",", "5", ",", "7"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"262d33d6-11a6-4b5f-86fc-8882396bc421"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\<\"Dipyramid\"\>", ",", "5"}], "}"}], ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"185aaaba-4291-4e78-\ b2d6-b637d6ae2a33"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"BiaugmentedTriangularPrism\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"883edb97-07ba-45c5-\ 9ea7-86d4e2a2d735"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedTriangularDipyramid\"\>", ",", RowBox[{"{", RowBox[{"\<\"Tetrahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "3", ",", "5", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "4", ",", "6", ",", "8"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"2fd64b4c-2dcf-4083-b6ad-\ e80f705da072"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Gyrobifastigium\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"a24d9823-742a-47a2-\ b2eb-75396cca01be"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"SnubDisphenoid\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"95f57d29-026e-47d1-\ a7ef-b6ec2f6534ca"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedSquarePyramid\"\>", ",", RowBox[{"{", RowBox[{ RowBox[{"\<\"Tetrahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "4", ",", "7", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "5", ",", "6", ",", "8"}], "}"}]}], "}"}]}], ",", RowBox[{"\<\"Cube\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9"}], "}"}], "}"}]}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->\ "b137024a-54c6-46e7-8054-341b45140a41"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyroelongatedSquarePyramid\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"db5f575b-01a0-4900-\ 85d0-03ee541c01f9"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TriangularCupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"ecdb0ad7-7057-46fe-\ abd0-430bcde88f99"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TriaugmentedTriangularPrism\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"1e117106-effd-4e0a-\ 987e-d246e106737c"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TridiminishedIcosahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"9f70cf04-6a88-4e62-\ a86e-b13b3033d31d"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedTridiminishedIcosahedron\"\>", ",", RowBox[{"{", RowBox[{"\<\"Tetrahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{"1", ",", "2", ",", "5", ",", "6"}], "}"}], "}"}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"6db423f7-e29f-46df-b76b-08f7e7945d11"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedSquareDipyramid\"\>", ",", RowBox[{"{", RowBox[{ RowBox[{"\<\"Tetrahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "5", ",", "8", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "6", ",", "7", ",", "9"}], "}"}]}], "}"}]}], ",", RowBox[{"\<\"Cube\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10"}], "}"}], "}"}]}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->\ "f77c0e0f-946a-482e-90c9-89ca637fdbcd"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyroelongatedSquareDipyramid\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"d96e2648-f8f0-4404-\ 9487-5da1a74e9d3a"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"MetabidiminishedIcosahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"fe4247bc-407d-4018-\ 9f0e-f51638ef3c53"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Sphenocorona\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"f8194801-f2ab-4eb9-\ b2d3-d73fe8bec3c0"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedPentagonalPrism\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"e269772f-4214-4312-\ 956a-7d9c7bcd7810"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedSphenocorona\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"a248e063-72fd-42ac-\ b649-1370ecb183b1"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalPyramid\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"7e57d6c5-3d13-413d-\ ab29-f2466d3bd766"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyroelongatedPentagonalPyramid\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"4f386613-1c78-4fc5-\ bde3-a3ded2626d9c"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"BiaugmentedPentagonalPrism\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"e2bd75b3-8651-4410-\ 9ce6-be5ac474f037"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalDipyramid\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"a382a3c8-b857-402d-\ 95db-ed03fe06a02d"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Sphenomegacorona\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"a803e70f-ea64-4615-\ be43-dbbd84d0f296"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"SquareCupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"b30e3942-beee-4dbc-\ bcf1-b5a2d12fed99"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TriangularOrthobicupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"cb61b3b9-9fb7-4f2d-\ 8225-f548b6026374"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedHexagonalPrism\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"9645d8d7-a9ea-49db-\ 8736-7340a0a155ee"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Bilunabirotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"f3218646-e23c-4692-\ 9092-7328f26e4729"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Hebesphenomegacorona\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"4c99b32a-5ef4-4197-\ a67e-5730c50aeee8"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"MetabiaugmentedHexagonalPrism\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"3ac5440f-29e3-4bf7-\ 9573-02e1415e3d49"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ParabiaugmentedHexagonalPrism\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"b516613b-17c7-4dad-\ b9a7-3a5601c1e6ac"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedTruncatedTetrahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"1fce1e1f-0ab4-475a-\ 82b9-f613528fd8a3"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedTriangularCupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"9b2f3a71-1ce1-4088-\ 8b25-3e46f7030e42"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyroelongatedTriangularCupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"54ff25c5-91df-43da-\ bdbe-fedd56293ccf"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"PentagonalCupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"7e00a068-f999-43ab-\ b11a-60fc264474ac"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TriaugmentedHexagonalPrism\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"0eabf585-5ecb-4b3c-\ b194-bf2dbfb8c1f6"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"Disphenocingulum\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"ce133b62-6523-4ad1-\ 9363-87bc20d5c889"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"SnubSquareAntiprism\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"1d009da2-5b7e-4a4b-\ a917-831790c93849"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"SquareGyrobicupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"8187bd1e-348c-4bb6-\ bb40-63679de58db2"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"SquareOrthobicupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"438c4ba0-99f9-49ff-\ b3a4-2986b50ebdcb"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedTriangularGyrobicupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"9361bbfe-615d-4550-\ a258-8ff1e5a3c068"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedTriangularOrthobicupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"8330d8e9-e863-4a8f-\ 8bdd-34906a8c8ddb"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyroelongatedTriangularBicupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"0c154cf6-ca53-444e-\ 83b3-c3084eacf52d"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TriangularHebesphenorotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"4cf47ca4-d393-4a5e-\ bf8a-51121d74b612"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedSquareCupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"35bf1ad3-0071-4d79-\ bb0a-6c6e64ec8303"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyroelongatedSquareCupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"189e4019-439b-42be-\ 8d10-3cb76ec9e499"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"PentagonalGyrobicupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"0119e424-fdea-4a35-\ 84f7-5a6e1f4b0671"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"PentagonalOrthobicupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"29fa845f-1311-4d6e-\ b067-b6feff393cdf"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"PentagonalRotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"377eef16-533d-403d-\ b778-0390a333b054"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedDodecahedron\"\>", ",", RowBox[{"{", RowBox[{ RowBox[{"\<\"Tetrahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "11", ",", "17", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "12", ",", "18", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3", ",", "8", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "4", ",", "7", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "12", ",", "13", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "11", ",", "13", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "8", ",", "14", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "9", ",", "16", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "7", ",", "15", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "10", ",", "16", ",", "20"}], "}"}]}], "}"}]}], ",", RowBox[{"\<\"Cube\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "8", ",", "10", ",", "11", ",", "17", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "4", ",", "7", ",", "9", ",", "12", ",", "18", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "9", ",", "12", ",", "13", ",", "15", ",", "16", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{ "4", ",", "6", ",", "10", ",", "11", ",", "13", ",", "14", ",", "16", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{ "5", ",", "6", ",", "7", ",", "8", ",", "14", ",", "15", ",", "17", ",", "18"}], "}"}]}], "}"}]}], ",", RowBox[{"\<\"Dodecahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "20", ",", "21"}], "}"}], "}"}]}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"22e6aaac-\ ccc8-4933-bfa0-574e951d75a1"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"MetabiaugmentedDodecahedron\"\>", ",", RowBox[{"{", RowBox[{ RowBox[{"\<\"Tetrahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "11", ",", "17", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "12", ",", "18", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3", ",", "8", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "4", ",", "7", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "12", ",", "13", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "11", ",", "13", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "8", ",", "14", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "9", ",", "16", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "7", ",", "15", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "10", ",", "16", ",", "20"}], "}"}]}], "}"}]}], ",", RowBox[{"\<\"Cube\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "8", ",", "10", ",", "11", ",", "17", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "4", ",", "7", ",", "9", ",", "12", ",", "18", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "9", ",", "12", ",", "13", ",", "15", ",", "16", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{ "4", ",", "6", ",", "10", ",", "11", ",", "13", ",", "14", ",", "16", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{ "5", ",", "6", ",", "7", ",", "8", ",", "14", ",", "15", ",", "17", ",", "18"}], "}"}]}], "}"}]}], ",", RowBox[{"\<\"Dodecahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "20", ",", "21"}], "}"}], "}"}]}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"5ea98e85-\ 4925-415b-865a-350e98c2a6c2"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ParabiaugmentedDodecahedron\"\>", ",", RowBox[{"{", RowBox[{ RowBox[{"\<\"Tetrahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "11", ",", "17", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "12", ",", "18", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3", ",", "8", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "4", ",", "7", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "12", ",", "13", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "11", ",", "13", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "8", ",", "14", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "9", ",", "16", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "7", ",", "15", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "10", ",", "16", ",", "21"}], "}"}]}], "}"}]}], ",", RowBox[{"\<\"Cube\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "8", ",", "10", ",", "11", ",", "17", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "4", ",", "7", ",", "9", ",", "12", ",", "18", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "9", ",", "12", ",", "13", ",", "15", ",", "16", ",", "22"}], "}"}], ",", RowBox[{"{", RowBox[{ "4", ",", "6", ",", "10", ",", "11", ",", "13", ",", "14", ",", "16", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{ "5", ",", "6", ",", "7", ",", "8", ",", "14", ",", "15", ",", "17", ",", "18"}], "}"}]}], "}"}]}], ",", RowBox[{"\<\"Dodecahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "21", ",", "22"}], "}"}], "}"}]}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"98d5b23d-\ 2289-4ae1-bbee-9bf8b9b5c807"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TriaugmentedDodecahedron\"\>", ",", RowBox[{"{", RowBox[{ RowBox[{"\<\"Tetrahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"1", ",", "11", ",", "17", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "12", ",", "18", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "3", ",", "8", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "4", ",", "7", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "12", ",", "13", ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "11", ",", "13", ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "8", ",", "14", ",", "18"}], "}"}], ",", RowBox[{"{", RowBox[{"5", ",", "9", ",", "16", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "7", ",", "15", ",", "17"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "10", ",", "16", ",", "20"}], "}"}]}], "}"}]}], ",", RowBox[{"\<\"Cube\"\>", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "8", ",", "10", ",", "11", ",", "17", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "4", ",", "7", ",", "9", ",", "12", ",", "18", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{ "3", ",", "5", ",", "9", ",", "12", ",", "13", ",", "15", ",", "16", ",", "21"}], "}"}], ",", RowBox[{"{", RowBox[{ "4", ",", "6", ",", "10", ",", "11", ",", "13", ",", "14", ",", "16", ",", "20"}], "}"}], ",", RowBox[{"{", RowBox[{ "5", ",", "6", ",", "7", ",", "8", ",", "14", ",", "15", ",", "17", ",", "18"}], "}"}]}], "}"}]}], ",", RowBox[{"\<\"Dodecahedron\"\>", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "20", ",", "21"}], "}"}], "}"}]}]}], "}"}]}], "}"}]], "Print",ExpressionUUID->"45f1d2bf-\ f924-4a8c-9a8b-dd61b9bc7c06"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedSquareGyrobicupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"6d5848ee-884d-412e-\ b618-8b91c16ec483"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyroelongatedSquareBicupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"f550f60d-ae6e-41d8-\ ba69-966b70474cf5"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalCupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"59e4b468-3d4e-4bd8-\ 8a12-c100691f6d86"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyroelongatedPentagonalCupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"650c2d1c-3586-431b-\ aec7-64bff56e8a01"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"PentagonalGyrocupolarotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"68abe586-2198-4d58-\ a299-9431994018a6"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"PentagonalOrthocupolarotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"aa773b2f-45c7-45a3-\ 9ef3-03fe58343f19"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedTruncatedCube\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"8de7a3fd-9c0a-4e89-\ b1ce-ebcd5521a2f4"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalGyrobicupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"30321221-f3b5-465c-\ b224-c868bd3ce1b5"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalOrthobicupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"9c5ac008-0b26-47c0-\ 95b3-c1dfcbe40513"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalRotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"964f1bb4-2dc6-4431-\ 9ef1-3067857e8ad7"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyroelongatedPentagonalBicupola\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"07ca788a-ad50-4ee5-\ 9192-c0aeb218346b"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyroelongatedPentagonalRotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"3ab3c8d9-1b63-4b3d-\ b41e-c197618dd80c"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"PentagonalOrthobirotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"ad6d0460-8c1f-4983-\ b657-567216c4d7a8"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"BiaugmentedTruncatedCube\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"182953a5-f096-459b-\ a5eb-9f6fc86374b2"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalGyrocupolarotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"ad624c43-9169-4521-\ a100-e36edafb13cd"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalOrthocupolarotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"f51bd0dd-9d6e-4eba-\ b66c-3bd71bdba176"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyroelongatedPentagonalCupolarotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"4277e50e-03dd-4f30-\ 8da2-9883b4434684"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalGyrobirotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"f620b97d-85cf-4a59-\ 8e10-e4c62ab41210"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ElongatedPentagonalOrthobirotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"7dcd8d34-facc-4bb7-\ 99d2-d1293c21a84f"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyroelongatedPentagonalBirotunda\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"f96164a0-98c3-4482-\ 92b4-d4c35ce36aa1"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TridiminishedRhombicosidodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"3052f2af-f155-4d6c-\ 80aa-385d941a0b0e"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyrateBidiminishedRhombicosidodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"ce446980-c54d-4941-\ 9935-c3eb642f049b"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"MetabidiminishedRhombicosidodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"a869aaad-ddf1-45b3-\ bb1e-d4a2aff728c3"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ParabidiminishedRhombicosidodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"0bf08889-2337-49e9-\ 88a5-9609b02e1cc6"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"BigyrateDiminishedRhombicosidodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"2954e9a2-ba15-49ba-\ aa93-f56f2f2d8093"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"DiminishedRhombicosidodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"974738fc-5aa6-4926-\ a454-5e6507f2826e"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"MetagyrateDiminishedRhombicosidodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"1dbc3416-9a5b-4684-\ 8afc-c379ba511875"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ParagyrateDiminishedRhombicosidodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"dfd13f98-b577-46d4-\ b8d2-b0f50edae9ca"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"GyrateRhombicosidodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"cb1a8ea5-ce82-4720-\ 8556-6bc617609a09"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"MetabigyrateRhombicosidodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"d7d3bf8e-3216-44c7-\ a15f-7d4e0d92baef"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ParabigyrateRhombicosidodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"e182bf51-1150-494f-\ 818b-3d1b2d4de2ae"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TrigyrateRhombicosidodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"3c737fc6-d931-4996-\ a1ce-74cc0fbd2e1b"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"AugmentedTruncatedDodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"f95e4f5b-ae14-409f-\ b71c-e6e359368ca5"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"MetabiaugmentedTruncatedDodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"a0e39a06-469b-42ea-\ 9573-64435ca2fe98"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"ParabiaugmentedTruncatedDodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"879a53e9-e9a9-4147-\ 9944-5a04177fc211"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"TriaugmentedTruncatedDodecahedron\"\>", ",", RowBox[{"{", "}"}]}], "}"}]], "Print",ExpressionUUID->"d1e7d9a9-343f-45ce-\ 8d77-0028dcb1bc2a"] }, Open ]] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Checks", "Section",ExpressionUUID->"d5daa8c9-004a-45e3-8d95-8c409f93a951"], Cell[CellGroupData[{ Cell["Net", "Subsection",ExpressionUUID->"a36433a5-4115-410e-b8a3-ca727cf9ff42"], Cell[CellGroupData[{ Cell["Net Vertices", "Subsubsection",ExpressionUUID->"7f640e3b-cd59-4e17-a21e-720f05402b4a"], Cell[BoxData[ RowBox[{ RowBox[{"inexact", "=", RowBox[{"Position", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"NetVertices", "[", "i", "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "142"}], "}"}]}], "]"}], ",", RowBox[{"_", "?", "InexactNumberQ"}]}], "]"}]}], ";"}]], "Input",Expressi\ onUUID->"2ec0922d-6b1a-46e6-9f88-2c60a1b37b3b"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Union", "[", RowBox[{"First", "/@", "inexact"}], "]"}]], "Input",ExpressionUUID->\ "58d6fbe5-d5a2-4e91-9abc-8551ceb1e26d"], Cell[BoxData[ RowBox[{"{", RowBox[{ "33", ",", "34", ",", "35", ",", "36", ",", "37", ",", "38", ",", "39", ",", "40", ",", "41", ",", "42", ",", "43", ",", "44", ",", "45", ",", "116", ",", "140", ",", "141", ",", "142"}], "}"}]], "Output",ExpressionUUID->\ "fbb606aa-24de-460c-9735-e785c2a9db88"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"SolidName", "/@", "%"}]], "Input",ExpressionUUID->"2ef9cbd9-8ded-4f11-a3c8-9074172566ca"], Cell[BoxData[ RowBox[{"{", RowBox[{"\<\"triakis tetrahedron\"\>", ",", "\<\"rhombic dodecahedron\"\>", ",", "\<\"triakis octahedron\"\>", ",", "\<\"tetrakis hexahedron\"\>", ",", "\<\"trapezoidal icositetrahedron\"\>", ",", "\<\"hexakis octahedron\"\>", ",", "\<\"pentagonal icositetrahedron (dextro)\"\>", ",", "\<\"rhombic triacontahedron\"\>", ",", "\<\"triakis icosahedron\"\>", ",", "\<\"pentakis dodecahedron\"\>", ",", "\<\"trapezoidal hexecontahedron\"\>", ",", "\<\"hexakis icosahedron\"\>", ",", "\<\"pentagonal hexecontahedron (dextro)\"\>", ",", "\<\"triaugmented truncated dodecahedron (J71)\"\>", ",", "\<\"small ditrigonal icosidodecahedron\"\>", ",", "\<\"dodecadodecahedron\"\>", ",", "\<\"echidnahedron\"\>"}], "}"}]], "Output",ExpressionUUID->"159ca181-abfb-4fcd-8dc4-71d253b75813"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Solid 116 (J71)", "Subsubsection",ExpressionUUID->"d644080a-ee24-465f-87e5-cb06aa20a6e6"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"badverts", "=", RowBox[{"Union", "[", RowBox[{"First", "/@", RowBox[{"Rest", "/@", RowBox[{"Select", "[", RowBox[{"inexact", ",", RowBox[{ RowBox[{ RowBox[{"First", "[", "#", "]"}], "\[Equal]", "116"}], "&"}]}], "]"}]}]}], "]"}]}]], "Input",ExpressionUUID->"113d2f9e-538a-4515-bc83-\ 9d3f8501d701"], Cell[BoxData[ RowBox[{"{", RowBox[{ "73", ",", "74", ",", "75", ",", "78", ",", "79", ",", "81", ",", "82", ",", "83", ",", "86", ",", "87", ",", "89", ",", "94", ",", "96", ",", "99", ",", "101", ",", "103", ",", "105", ",", "107", ",", "109", ",", "112", ",", "115", ",", "116", ",", "118", ",", "119", ",", "124", ",", "125", ",", "135", ",", "136", ",", "140", ",", "141", ",", "144", ",", "145"}], "}"}]], "Output",ExpressionUUID->"1e031019-2c18-4526-840c-4796ea6c377d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"v", "=", RowBox[{"NetVertices", "[", "116", "]"}]}], ";"}], "\n", RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"Graphics", "[", RowBox[{"{", RowBox[{ RowBox[{"ColoredNet", "[", RowBox[{"116", ",", RowBox[{"Labeled", "\[Rule]", "True"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Text", "[", RowBox[{"#", ",", RowBox[{"v", "[", RowBox[{"[", "#", "]"}], "]"}], ",", RowBox[{"Background", "\[Rule]", "Green"}]}], "]"}], "&"}], "/@", "badverts"}]}], "\[IndentingNewLine]", "}"}], "]"}], ",", RowBox[{"AspectRatio", "\[Rule]", "Automatic"}]}], "]"}], "//", "Timing"}]}], "Input",ExpressionUUID->"3b22241c-ff5b-476e-89a1-\ 686ff66ea06c"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .54894 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.261638 0.0523266 0.245163 0.0523266 [ [ 0 0 0 0 ] [ 1 .54894 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 0 m 1 0 L 1 .54894 L 0 .54894 L closepath clip newpath 1 0 0 r .3356 .34697 m .2878 .32569 L .33013 .29493 L F .38132 .44509 m .33013 .45597 L .3463 .40621 L F .18767 .34697 m .19314 .29493 L .23547 .32569 L F .10848 .42077 m .08231 .37545 L .13464 .37545 L F .14196 .20628 m .19314 .1954 L .17697 .24516 L F .0473 .15376 m .08231 .11488 L .09848 .16464 L F .26164 .11932 m .2878 .16464 L .23547 .16464 L F .28233 .01307 m .33013 .03435 L .2878 .06511 L F .38132 .20628 m .3463 .24516 L .33013 .1954 L F .47598 .15376 m .42479 .16464 L .44096 .11488 L F .81233 .20197 m .80686 .25401 L .76453 .22326 L F .89152 .12817 m .91769 .17349 L .86536 .17349 L F .85804 .34266 m .80686 .35354 L .82303 .30378 L F .91769 .33454 m .96549 .35582 L .96002 .30378 L F .73836 .42962 m .76453 .3843 L .7122 .3843 L F .71767 .53587 m .7122 .48383 L .66987 .51459 L F .61868 .34266 m .6537 .30378 L .66987 .35354 L F .51123 .35582 m .5167 .30378 L .55904 .33454 L F .6644 .20197 m .7122 .22326 L .66987 .25401 L F .5852 .12817 m .61136 .17349 L .55904 .17349 L F .69948 .14293 m .66446 .18181 L .64829 .13205 L F .72076 .09512 m .67296 .07384 L .71529 .04308 L F .7728 .10059 m .77827 .04855 L .8206 .07931 L F .80984 .19709 m .78368 .15178 L .836 .15178 L F .73836 .17794 m .76453 .22326 L .7122 .22326 L F .80145 .45677 m .75027 .44589 L .76644 .49565 L F .84676 .48293 m .8206 .52825 L .87293 .52825 L F .88565 .44792 m .92066 .4868 L .93683 .43704 L F .8589 .34807 m .86437 .40011 L .9067 .36936 L F .81233 .40558 m .80686 .35354 L .76453 .3843 L F .42663 .25789 m .40047 .21257 L .4528 .21257 L F .46552 .2929 m .50053 .25401 L .5167 .30378 L F .44424 .3407 m .49204 .36199 L .44971 .39274 L F .34101 .34611 m .3922 .33523 L .37603 .385 L F .38132 .28405 m .33013 .29493 L .3463 .24516 L F 1 1 0 r .69948 .14293 m .73836 .17794 L .70335 .21683 L .66446 .18181 L F .72076 .09512 m .69948 .14293 L .65167 .12164 L .67296 .07384 L F .7728 .10059 m .72076 .09512 L .72623 .04308 L .77827 .04855 L F .78368 .15178 m .7728 .10059 L .82398 .08971 L .83486 .1409 L F .73836 .17794 m .78368 .15178 L .80984 .19709 L .76453 .22326 L F .80145 .45677 m .81233 .40558 L .76114 .3947 L .75027 .44589 L F .84676 .48293 m .80145 .45677 L .77529 .50208 L .8206 .52825 L F .88565 .44792 m .84676 .48293 L .88178 .52182 L .92066 .4868 L F .86437 .40011 m .88565 .44792 L .93345 .42663 L .91217 .37883 L F .81233 .40558 m .86437 .40011 L .8589 .34807 L .80686 .35354 L F .42663 .25789 m .38132 .28405 L .35515 .23873 L .40047 .21257 L F .46552 .2929 m .42663 .25789 L .46165 .219 L .50053 .25401 L F .44424 .3407 m .46552 .2929 L .51332 .31418 L .49204 .36199 L F .3922 .33523 m .44424 .3407 L .43877 .39274 L .38673 .38727 L F .38132 .28405 m .3922 .33523 L .34101 .34611 L .33013 .29493 L F 0 0 1 r .73836 .17794 m .69948 .14293 L .72076 .09512 L .7728 .10059 L .78368 .15178 L F .81233 .40558 m .80145 .45677 L .84676 .48293 L .88565 .44792 L .86437 .40011 L F .38132 .28405 m .42663 .25789 L .46552 .2929 L .44424 .3407 L .3922 .33523 L F 1 .5 0 r .23547 .32569 m .19314 .29493 L .17697 .24516 L .19314 .1954 L .23547 .16464 L .2878 .16464 L .33013 .1954 L .3463 .24516 L .33013 .29493 L .2878 .32569 L F .23547 .48673 m .19314 .45597 L .17697 .40621 L .19314 .35644 L .23547 .32569 L .2878 .32569 L .33013 .35644 L .3463 .40621 L .33013 .45597 L .2878 .48673 L F .02381 .29493 m .03998 .24516 L .08231 .21441 L .13464 .21441 L .17697 .24516 L .19314 .29493 L .17697 .34469 L .13464 .37545 L .08231 .37545 L .03998 .34469 L F .14082 .03435 m .19314 .03435 L .23547 .06511 L .25164 .11488 L .23547 .16464 L .19314 .1954 L .14082 .1954 L .09848 .16464 L .08231 .11488 L .09848 .06511 L F .42479 .06511 m .44096 .11488 L .42479 .16464 L .38246 .1954 L .33013 .1954 L .2878 .16464 L .27163 .11488 L .2878 .06511 L .33013 .03435 L .38246 .03435 L F .82303 .30378 m .80686 .35354 L .76453 .3843 L .7122 .3843 L .66987 .35354 L .6537 .30378 L .66987 .25401 L .7122 .22326 L .76453 .22326 L .80686 .25401 L F .97619 .25401 m .96002 .30378 L .91769 .33454 L .86536 .33454 L .82303 .30378 L .80686 .25401 L .82303 .20425 L .86536 .17349 L .91769 .17349 L .96002 .20425 L F .61754 .51459 m .66987 .51459 L .7122 .48383 L .72837 .43407 L .7122 .3843 L .66987 .35354 L .61754 .35354 L .57521 .3843 L .55904 .43407 L .57521 .48383 L F .5167 .20425 m .55904 .17349 L .61136 .17349 L .6537 .20425 L .66987 .25401 L .6537 .30378 L .61136 .33454 L .55904 .33454 L .5167 .30378 L .50053 .25401 L F 0 g .5 Mabswid [ ] 0 setdash .23547 .32569 m .19314 .29493 L .17697 .24516 L .19314 .1954 L .23547 .16464 L .2878 .16464 L .33013 .1954 L .3463 .24516 L .33013 .29493 L .2878 .32569 L .23547 .32569 L s .3356 .34697 m .2878 .32569 L .33013 .29493 L .3356 .34697 L s .23547 .48673 m .19314 .45597 L .17697 .40621 L .19314 .35644 L .23547 .32569 L .2878 .32569 L .33013 .35644 L .3463 .40621 L .33013 .45597 L .2878 .48673 L .23547 .48673 L s .38132 .44509 m .33013 .45597 L .3463 .40621 L .38132 .44509 L s .18767 .34697 m .19314 .29493 L .23547 .32569 L .18767 .34697 L s .02381 .29493 m .03998 .24516 L .08231 .21441 L .13464 .21441 L .17697 .24516 L .19314 .29493 L .17697 .34469 L .13464 .37545 L .08231 .37545 L .03998 .34469 L .02381 .29493 L s .10848 .42077 m .08231 .37545 L .13464 .37545 L .10848 .42077 L s .14196 .20628 m .19314 .1954 L .17697 .24516 L .14196 .20628 L s .14082 .03435 m .19314 .03435 L .23547 .06511 L .25164 .11488 L .23547 .16464 L .19314 .1954 L .14082 .1954 L .09848 .16464 L .08231 .11488 L .09848 .06511 L .14082 .03435 L s .0473 .15376 m .08231 .11488 L .09848 .16464 L .0473 .15376 L s .26164 .11932 m .2878 .16464 L .23547 .16464 L .26164 .11932 L s .42479 .06511 m .44096 .11488 L .42479 .16464 L .38246 .1954 L .33013 .1954 L .2878 .16464 L .27163 .11488 L .2878 .06511 L .33013 .03435 L .38246 .03435 L .42479 .06511 L s .28233 .01307 m .33013 .03435 L .2878 .06511 L .28233 .01307 L s .38132 .20628 m .3463 .24516 L .33013 .1954 L .38132 .20628 L s .47598 .15376 m .42479 .16464 L .44096 .11488 L .47598 .15376 L s .82303 .30378 m .80686 .35354 L .76453 .3843 L .7122 .3843 L .66987 .35354 L .6537 .30378 L .66987 .25401 L .7122 .22326 L .76453 .22326 L .80686 .25401 L .82303 .30378 L s .81233 .20197 m .80686 .25401 L .76453 .22326 L .81233 .20197 L s .97619 .25401 m .96002 .30378 L .91769 .33454 L .86536 .33454 L .82303 .30378 L .80686 .25401 L .82303 .20425 L .86536 .17349 L .91769 .17349 L .96002 .20425 L .97619 .25401 L s .89152 .12817 m .91769 .17349 L .86536 .17349 L .89152 .12817 L s .85804 .34266 m .80686 .35354 L .82303 .30378 L .85804 .34266 L s .61754 .51459 m .66987 .51459 L .7122 .48383 L .72837 .43407 L .7122 .3843 L .66987 .35354 L .61754 .35354 L .57521 .3843 L .55904 .43407 L .57521 .48383 L .61754 .51459 L s .91769 .33454 m .96549 .35582 L .96002 .30378 L .91769 .33454 L s .73836 .42962 m .76453 .3843 L .7122 .3843 L .73836 .42962 L s .71767 .53587 m .7122 .48383 L .66987 .51459 L .71767 .53587 L s .61868 .34266 m .6537 .30378 L .66987 .35354 L .61868 .34266 L s .5167 .20425 m .55904 .17349 L .61136 .17349 L .6537 .20425 L .66987 .25401 L .6537 .30378 L .61136 .33454 L .55904 .33454 L .5167 .30378 L .50053 .25401 L .5167 .20425 L s .51123 .35582 m .5167 .30378 L .55904 .33454 L .51123 .35582 L s .6644 .20197 m .7122 .22326 L .66987 .25401 L .6644 .20197 L s .5852 .12817 m .61136 .17349 L .55904 .17349 L .5852 .12817 L s .73836 .17794 m .69948 .14293 L .72076 .09512 L .7728 .10059 L .78368 .15178 L .73836 .17794 L s .69948 .14293 m .73836 .17794 L .70335 .21683 L .66446 .18181 L .69948 .14293 L s .69948 .14293 m .66446 .18181 L .64829 .13205 L .69948 .14293 L s .72076 .09512 m .69948 .14293 L .65167 .12164 L .67296 .07384 L .72076 .09512 L s .72076 .09512 m .67296 .07384 L .71529 .04308 L .72076 .09512 L s .7728 .10059 m .72076 .09512 L .72623 .04308 L .77827 .04855 L .7728 .10059 L s .7728 .10059 m .77827 .04855 L .8206 .07931 L .7728 .10059 L s .78368 .15178 m .7728 .10059 L .82398 .08971 L .83486 .1409 L .78368 .15178 L s .80984 .19709 m .78368 .15178 L .836 .15178 L .80984 .19709 L s .73836 .17794 m .78368 .15178 L .80984 .19709 L .76453 .22326 L .73836 .17794 L s .73836 .17794 m .76453 .22326 L .7122 .22326 L .73836 .17794 L s .81233 .40558 m .80145 .45677 L .84676 .48293 L .88565 .44792 L .86437 .40011 L .81233 .40558 L s .80145 .45677 m .81233 .40558 L .76114 .3947 L .75027 .44589 L .80145 .45677 L s .80145 .45677 m .75027 .44589 L .76644 .49565 L .80145 .45677 L s .84676 .48293 m .80145 .45677 L .77529 .50208 L .8206 .52825 L .84676 .48293 L s .84676 .48293 m .8206 .52825 L .87293 .52825 L .84676 .48293 L s .88565 .44792 m .84676 .48293 L .88178 .52182 L .92066 .4868 L .88565 .44792 L s .88565 .44792 m .92066 .4868 L .93683 .43704 L .88565 .44792 L s .86437 .40011 m .88565 .44792 L .93345 .42663 L .91217 .37883 L .86437 .40011 L s .8589 .34807 m .86437 .40011 L .9067 .36936 L .8589 .34807 L s .81233 .40558 m .86437 .40011 L .8589 .34807 L .80686 .35354 L .81233 .40558 L s .81233 .40558 m .80686 .35354 L .76453 .3843 L .81233 .40558 L s .38132 .28405 m .42663 .25789 L .46552 .2929 L .44424 .3407 L .3922 .33523 L .38132 .28405 L s .42663 .25789 m .38132 .28405 L .35515 .23873 L .40047 .21257 L .42663 .25789 L s .42663 .25789 m .40047 .21257 L .4528 .21257 L .42663 .25789 L s .46552 .2929 m .42663 .25789 L .46165 .219 L .50053 .25401 L .46552 .2929 L s .46552 .2929 m .50053 .25401 L .5167 .30378 L .46552 .2929 L s .44424 .3407 m .46552 .2929 L .51332 .31418 L .49204 .36199 L .44424 .3407 L s .44424 .3407 m .49204 .36199 L .44971 .39274 L .44424 .3407 L s .3922 .33523 m .44424 .3407 L .43877 .39274 L .38673 .38727 L .3922 .33523 L s .34101 .34611 m .3922 .33523 L .37603 .385 L .34101 .34611 L s .38132 .28405 m .3922 .33523 L .34101 .34611 L .33013 .29493 L .38132 .28405 L s .38132 .28405 m .33013 .29493 L .3463 .24516 L .38132 .28405 L s 1 1 1 r .02381 .29493 -3 -4.5 Mabsadd m .02381 .29493 3 -4.5 Mabsadd L .02381 .29493 3 4.5 Mabsadd L .02381 .29493 -3 4.5 Mabsadd L fill 0 g [(1)] .02381 .29493 0 0 Mshowa 1 1 1 r .03998 .24516 -3 -4.5 Mabsadd m .03998 .24516 3 -4.5 Mabsadd L .03998 .24516 3 4.5 Mabsadd L .03998 .24516 -3 4.5 Mabsadd L fill 0 g [(2)] .03998 .24516 0 0 Mshowa 1 1 1 r .03998 .34469 -3 -4.5 Mabsadd m .03998 .34469 3 -4.5 Mabsadd L .03998 .34469 3 4.5 Mabsadd L .03998 .34469 -3 4.5 Mabsadd L fill 0 g [(3)] .03998 .34469 0 0 Mshowa 1 1 1 r .0473 .15376 -3 -4.5 Mabsadd m .0473 .15376 3 -4.5 Mabsadd L .0473 .15376 3 4.5 Mabsadd L .0473 .15376 -3 4.5 Mabsadd L fill 0 g [(4)] .0473 .15376 0 0 Mshowa 1 1 1 r .08231 .11488 -3 -4.5 Mabsadd m .08231 .11488 3 -4.5 Mabsadd L .08231 .11488 3 4.5 Mabsadd L .08231 .11488 -3 4.5 Mabsadd L fill 0 g [(5)] .08231 .11488 0 0 Mshowa 1 1 1 r .08231 .21441 -3 -4.5 Mabsadd m .08231 .21441 3 -4.5 Mabsadd L .08231 .21441 3 4.5 Mabsadd L .08231 .21441 -3 4.5 Mabsadd L fill 0 g [(6)] .08231 .21441 0 0 Mshowa 1 1 1 r .08231 .37545 -3 -4.5 Mabsadd m .08231 .37545 3 -4.5 Mabsadd L .08231 .37545 3 4.5 Mabsadd L .08231 .37545 -3 4.5 Mabsadd L fill 0 g [(7)] .08231 .37545 0 0 Mshowa 1 1 1 r .09848 .06511 -3 -4.5 Mabsadd m .09848 .06511 3 -4.5 Mabsadd L .09848 .06511 3 4.5 Mabsadd L .09848 .06511 -3 4.5 Mabsadd L fill 0 g [(8)] .09848 .06511 0 0 Mshowa 1 1 1 r .09848 .16464 -3 -4.5 Mabsadd m .09848 .16464 3 -4.5 Mabsadd L .09848 .16464 3 4.5 Mabsadd L .09848 .16464 -3 4.5 Mabsadd L fill 0 g [(9)] .09848 .16464 0 0 Mshowa 1 1 1 r .10848 .42077 -6 -4.5 Mabsadd m .10848 .42077 6 -4.5 Mabsadd L .10848 .42077 6 4.5 Mabsadd L .10848 .42077 -6 4.5 Mabsadd L fill 0 g [(10)] .10848 .42077 0 0 Mshowa 1 1 1 r .13464 .21441 -6 -4.5 Mabsadd m .13464 .21441 6 -4.5 Mabsadd L .13464 .21441 6 4.5 Mabsadd L .13464 .21441 -6 4.5 Mabsadd L fill 0 g [(11)] .13464 .21441 0 0 Mshowa 1 1 1 r .13464 .37545 -6 -4.5 Mabsadd m .13464 .37545 6 -4.5 Mabsadd L .13464 .37545 6 4.5 Mabsadd L .13464 .37545 -6 4.5 Mabsadd L fill 0 g [(12)] .13464 .37545 0 0 Mshowa 1 1 1 r .14082 .03435 -6 -4.5 Mabsadd m .14082 .03435 6 -4.5 Mabsadd L .14082 .03435 6 4.5 Mabsadd L .14082 .03435 -6 4.5 Mabsadd L fill 0 g [(13)] .14082 .03435 0 0 Mshowa 1 1 1 r .14082 .1954 -6 -4.5 Mabsadd m .14082 .1954 6 -4.5 Mabsadd L .14082 .1954 6 4.5 Mabsadd L .14082 .1954 -6 4.5 Mabsadd L fill 0 g [(14)] .14082 .1954 0 0 Mshowa 1 1 1 r .14196 .20628 -6 -4.5 Mabsadd m .14196 .20628 6 -4.5 Mabsadd L .14196 .20628 6 4.5 Mabsadd L .14196 .20628 -6 4.5 Mabsadd L fill 0 g [(15)] .14196 .20628 0 0 Mshowa 1 1 1 r .17697 .24516 -6 -4.5 Mabsadd m .17697 .24516 6 -4.5 Mabsadd L .17697 .24516 6 4.5 Mabsadd L .17697 .24516 -6 4.5 Mabsadd L fill 0 g [(16)] .17697 .24516 0 0 Mshowa 1 1 1 r .17697 .34469 -6 -4.5 Mabsadd m .17697 .34469 6 -4.5 Mabsadd L .17697 .34469 6 4.5 Mabsadd L .17697 .34469 -6 4.5 Mabsadd L fill 0 g [(17)] .17697 .34469 0 0 Mshowa 1 1 1 r .17697 .40621 -6 -4.5 Mabsadd m .17697 .40621 6 -4.5 Mabsadd L .17697 .40621 6 4.5 Mabsadd L .17697 .40621 -6 4.5 Mabsadd L fill 0 g [(18)] .17697 .40621 0 0 Mshowa 1 1 1 r .18767 .34697 -6 -4.5 Mabsadd m .18767 .34697 6 -4.5 Mabsadd L .18767 .34697 6 4.5 Mabsadd L .18767 .34697 -6 4.5 Mabsadd L fill 0 g [(19)] .18767 .34697 0 0 Mshowa 1 1 1 r .19314 .03435 -6 -4.5 Mabsadd m .19314 .03435 6 -4.5 Mabsadd L .19314 .03435 6 4.5 Mabsadd L .19314 .03435 -6 4.5 Mabsadd L fill 0 g [(20)] .19314 .03435 0 0 Mshowa 1 1 1 r .19314 .1954 -6 -4.5 Mabsadd m .19314 .1954 6 -4.5 Mabsadd L .19314 .1954 6 4.5 Mabsadd L .19314 .1954 -6 4.5 Mabsadd L fill 0 g [(21)] .19314 .1954 0 0 Mshowa 1 1 1 r .19314 .29493 -6 -4.5 Mabsadd m .19314 .29493 6 -4.5 Mabsadd L .19314 .29493 6 4.5 Mabsadd L .19314 .29493 -6 4.5 Mabsadd L fill 0 g [(22)] .19314 .29493 0 0 Mshowa 1 1 1 r .19314 .35644 -6 -4.5 Mabsadd m .19314 .35644 6 -4.5 Mabsadd L .19314 .35644 6 4.5 Mabsadd L .19314 .35644 -6 4.5 Mabsadd L fill 0 g [(23)] .19314 .35644 0 0 Mshowa 1 1 1 r .19314 .45597 -6 -4.5 Mabsadd m .19314 .45597 6 -4.5 Mabsadd L .19314 .45597 6 4.5 Mabsadd L .19314 .45597 -6 4.5 Mabsadd L fill 0 g [(24)] .19314 .45597 0 0 Mshowa 1 1 1 r .23547 .06511 -6 -4.5 Mabsadd m .23547 .06511 6 -4.5 Mabsadd L .23547 .06511 6 4.5 Mabsadd L .23547 .06511 -6 4.5 Mabsadd L fill 0 g [(25)] .23547 .06511 0 0 Mshowa 1 1 1 r .23547 .16464 -6 -4.5 Mabsadd m .23547 .16464 6 -4.5 Mabsadd L .23547 .16464 6 4.5 Mabsadd L .23547 .16464 -6 4.5 Mabsadd L fill 0 g [(26)] .23547 .16464 0 0 Mshowa 1 1 1 r .23547 .32569 -6 -4.5 Mabsadd m .23547 .32569 6 -4.5 Mabsadd L .23547 .32569 6 4.5 Mabsadd L .23547 .32569 -6 4.5 Mabsadd L fill 0 g [(27)] .23547 .32569 0 0 Mshowa 1 1 1 r .23547 .48673 -6 -4.5 Mabsadd m .23547 .48673 6 -4.5 Mabsadd L .23547 .48673 6 4.5 Mabsadd L .23547 .48673 -6 4.5 Mabsadd L fill 0 g [(28)] .23547 .48673 0 0 Mshowa 1 1 1 r .25164 .11488 -6 -4.5 Mabsadd m .25164 .11488 6 -4.5 Mabsadd L .25164 .11488 6 4.5 Mabsadd L .25164 .11488 -6 4.5 Mabsadd L fill 0 g [(29)] .25164 .11488 0 0 Mshowa 1 1 1 r .26164 .11932 -6 -4.5 Mabsadd m .26164 .11932 6 -4.5 Mabsadd L .26164 .11932 6 4.5 Mabsadd L .26164 .11932 -6 4.5 Mabsadd L fill 0 g [(30)] .26164 .11932 0 0 Mshowa 1 1 1 r .27163 .11488 -6 -4.5 Mabsadd m .27163 .11488 6 -4.5 Mabsadd L .27163 .11488 6 4.5 Mabsadd L .27163 .11488 -6 4.5 Mabsadd L fill 0 g [(31)] .27163 .11488 0 0 Mshowa 1 1 1 r .28233 .01307 -6 -4.5 Mabsadd m .28233 .01307 6 -4.5 Mabsadd L .28233 .01307 6 4.5 Mabsadd L .28233 .01307 -6 4.5 Mabsadd L fill 0 g [(32)] .28233 .01307 0 0 Mshowa 1 1 1 r .2878 .06511 -6 -4.5 Mabsadd m .2878 .06511 6 -4.5 Mabsadd L .2878 .06511 6 4.5 Mabsadd L .2878 .06511 -6 4.5 Mabsadd L fill 0 g [(33)] .2878 .06511 0 0 Mshowa 1 1 1 r .2878 .16464 -6 -4.5 Mabsadd m .2878 .16464 6 -4.5 Mabsadd L .2878 .16464 6 4.5 Mabsadd L .2878 .16464 -6 4.5 Mabsadd L fill 0 g [(34)] .2878 .16464 0 0 Mshowa 1 1 1 r .2878 .32569 -6 -4.5 Mabsadd m .2878 .32569 6 -4.5 Mabsadd L .2878 .32569 6 4.5 Mabsadd L .2878 .32569 -6 4.5 Mabsadd L fill 0 g [(35)] .2878 .32569 0 0 Mshowa 1 1 1 r .2878 .48673 -6 -4.5 Mabsadd m .2878 .48673 6 -4.5 Mabsadd L .2878 .48673 6 4.5 Mabsadd L .2878 .48673 -6 4.5 Mabsadd L fill 0 g [(36)] .2878 .48673 0 0 Mshowa 1 1 1 r .33013 .03435 -6 -4.5 Mabsadd m .33013 .03435 6 -4.5 Mabsadd L .33013 .03435 6 4.5 Mabsadd L .33013 .03435 -6 4.5 Mabsadd L fill 0 g [(37)] .33013 .03435 0 0 Mshowa 1 1 1 r .33013 .1954 -6 -4.5 Mabsadd m .33013 .1954 6 -4.5 Mabsadd L .33013 .1954 6 4.5 Mabsadd L .33013 .1954 -6 4.5 Mabsadd L fill 0 g [(38)] .33013 .1954 0 0 Mshowa 1 1 1 r .33013 .29493 -6 -4.5 Mabsadd m .33013 .29493 6 -4.5 Mabsadd L .33013 .29493 6 4.5 Mabsadd L .33013 .29493 -6 4.5 Mabsadd L fill 0 g [(39)] .33013 .29493 0 0 Mshowa 1 1 1 r .33013 .35644 -6 -4.5 Mabsadd m .33013 .35644 6 -4.5 Mabsadd L .33013 .35644 6 4.5 Mabsadd L .33013 .35644 -6 4.5 Mabsadd L fill 0 g [(40)] .33013 .35644 0 0 Mshowa 1 1 1 r .33013 .45597 -6 -4.5 Mabsadd m .33013 .45597 6 -4.5 Mabsadd L .33013 .45597 6 4.5 Mabsadd L .33013 .45597 -6 4.5 Mabsadd L fill 0 g [(41)] .33013 .45597 0 0 Mshowa 1 1 1 r .3356 .34697 -6 -4.5 Mabsadd m .3356 .34697 6 -4.5 Mabsadd L .3356 .34697 6 4.5 Mabsadd L .3356 .34697 -6 4.5 Mabsadd L fill 0 g [(42)] .3356 .34697 0 0 Mshowa 1 1 1 r .34101 .34611 -6 -4.5 Mabsadd m .34101 .34611 6 -4.5 Mabsadd L .34101 .34611 6 4.5 Mabsadd L .34101 .34611 -6 4.5 Mabsadd L fill 0 g [(43)] .34101 .34611 0 0 Mshowa 1 1 1 r .3463 .24516 -6 -4.5 Mabsadd m .3463 .24516 6 -4.5 Mabsadd L .3463 .24516 6 4.5 Mabsadd L .3463 .24516 -6 4.5 Mabsadd L fill 0 g [(44)] .3463 .24516 0 0 Mshowa 1 1 1 r .3463 .40621 -6 -4.5 Mabsadd m .3463 .40621 6 -4.5 Mabsadd L .3463 .40621 6 4.5 Mabsadd L .3463 .40621 -6 4.5 Mabsadd L fill 0 g [(45)] .3463 .40621 0 0 Mshowa 1 1 1 r .35515 .23873 -6 -4.5 Mabsadd m .35515 .23873 6 -4.5 Mabsadd L .35515 .23873 6 4.5 Mabsadd L .35515 .23873 -6 4.5 Mabsadd L fill 0 g [(46)] .35515 .23873 0 0 Mshowa 1 1 1 r .37603 .385 -6 -4.5 Mabsadd m .37603 .385 6 -4.5 Mabsadd L .37603 .385 6 4.5 Mabsadd L .37603 .385 -6 4.5 Mabsadd L fill 0 g [(47)] .37603 .385 0 0 Mshowa 1 1 1 r .38132 .20628 -6 -4.5 Mabsadd m .38132 .20628 6 -4.5 Mabsadd L .38132 .20628 6 4.5 Mabsadd L .38132 .20628 -6 4.5 Mabsadd L fill 0 g [(48)] .38132 .20628 0 0 Mshowa 1 1 1 r .38132 .28405 -6 -4.5 Mabsadd m .38132 .28405 6 -4.5 Mabsadd L .38132 .28405 6 4.5 Mabsadd L .38132 .28405 -6 4.5 Mabsadd L fill 0 g [(49)] .38132 .28405 0 0 Mshowa 1 1 1 r .38132 .44509 -6 -4.5 Mabsadd m .38132 .44509 6 -4.5 Mabsadd L .38132 .44509 6 4.5 Mabsadd L .38132 .44509 -6 4.5 Mabsadd L fill 0 g [(50)] .38132 .44509 0 0 Mshowa 1 1 1 r .38246 .03435 -6 -4.5 Mabsadd m .38246 .03435 6 -4.5 Mabsadd L .38246 .03435 6 4.5 Mabsadd L .38246 .03435 -6 4.5 Mabsadd L fill 0 g [(51)] .38246 .03435 0 0 Mshowa 1 1 1 r .38246 .1954 -6 -4.5 Mabsadd m .38246 .1954 6 -4.5 Mabsadd L .38246 .1954 6 4.5 Mabsadd L .38246 .1954 -6 4.5 Mabsadd L fill 0 g [(52)] .38246 .1954 0 0 Mshowa 1 1 1 r .38673 .38727 -6 -4.5 Mabsadd m .38673 .38727 6 -4.5 Mabsadd L .38673 .38727 6 4.5 Mabsadd L .38673 .38727 -6 4.5 Mabsadd L fill 0 g [(53)] .38673 .38727 0 0 Mshowa 1 1 1 r .3922 .33523 -6 -4.5 Mabsadd m .3922 .33523 6 -4.5 Mabsadd L .3922 .33523 6 4.5 Mabsadd L .3922 .33523 -6 4.5 Mabsadd L fill 0 g [(54)] .3922 .33523 0 0 Mshowa 1 1 1 r .40047 .21257 -6 -4.5 Mabsadd m .40047 .21257 6 -4.5 Mabsadd L .40047 .21257 6 4.5 Mabsadd L .40047 .21257 -6 4.5 Mabsadd L fill 0 g [(55)] .40047 .21257 0 0 Mshowa 1 1 1 r .42479 .06511 -6 -4.5 Mabsadd m .42479 .06511 6 -4.5 Mabsadd L .42479 .06511 6 4.5 Mabsadd L .42479 .06511 -6 4.5 Mabsadd L fill 0 g [(56)] .42479 .06511 0 0 Mshowa 1 1 1 r .42479 .16464 -6 -4.5 Mabsadd m .42479 .16464 6 -4.5 Mabsadd L .42479 .16464 6 4.5 Mabsadd L .42479 .16464 -6 4.5 Mabsadd L fill 0 g [(57)] .42479 .16464 0 0 Mshowa 1 1 1 r .42663 .25789 -6 -4.5 Mabsadd m .42663 .25789 6 -4.5 Mabsadd L .42663 .25789 6 4.5 Mabsadd L .42663 .25789 -6 4.5 Mabsadd L fill 0 g [(58)] .42663 .25789 0 0 Mshowa 1 1 1 r .43877 .39274 -6 -4.5 Mabsadd m .43877 .39274 6 -4.5 Mabsadd L .43877 .39274 6 4.5 Mabsadd L .43877 .39274 -6 4.5 Mabsadd L fill 0 g [(59)] .43877 .39274 0 0 Mshowa 1 1 1 r .44096 .11488 -6 -4.5 Mabsadd m .44096 .11488 6 -4.5 Mabsadd L .44096 .11488 6 4.5 Mabsadd L .44096 .11488 -6 4.5 Mabsadd L fill 0 g [(60)] .44096 .11488 0 0 Mshowa 1 1 1 r .44424 .3407 -6 -4.5 Mabsadd m .44424 .3407 6 -4.5 Mabsadd L .44424 .3407 6 4.5 Mabsadd L .44424 .3407 -6 4.5 Mabsadd L fill 0 g [(61)] .44424 .3407 0 0 Mshowa 1 1 1 r .44971 .39274 -6 -4.5 Mabsadd m .44971 .39274 6 -4.5 Mabsadd L .44971 .39274 6 4.5 Mabsadd L .44971 .39274 -6 4.5 Mabsadd L fill 0 g [(62)] .44971 .39274 0 0 Mshowa 1 1 1 r .4528 .21257 -6 -4.5 Mabsadd m .4528 .21257 6 -4.5 Mabsadd L .4528 .21257 6 4.5 Mabsadd L .4528 .21257 -6 4.5 Mabsadd L fill 0 g [(63)] .4528 .21257 0 0 Mshowa 1 1 1 r .46165 .219 -6 -4.5 Mabsadd m .46165 .219 6 -4.5 Mabsadd L .46165 .219 6 4.5 Mabsadd L .46165 .219 -6 4.5 Mabsadd L fill 0 g [(64)] .46165 .219 0 0 Mshowa 1 1 1 r .46552 .2929 -6 -4.5 Mabsadd m .46552 .2929 6 -4.5 Mabsadd L .46552 .2929 6 4.5 Mabsadd L .46552 .2929 -6 4.5 Mabsadd L fill 0 g [(65)] .46552 .2929 0 0 Mshowa 1 1 1 r .47598 .15376 -6 -4.5 Mabsadd m .47598 .15376 6 -4.5 Mabsadd L .47598 .15376 6 4.5 Mabsadd L .47598 .15376 -6 4.5 Mabsadd L fill 0 g [(66)] .47598 .15376 0 0 Mshowa 1 1 1 r .49204 .36199 -6 -4.5 Mabsadd m .49204 .36199 6 -4.5 Mabsadd L .49204 .36199 6 4.5 Mabsadd L .49204 .36199 -6 4.5 Mabsadd L fill 0 g [(67)] .49204 .36199 0 0 Mshowa 1 1 1 r .50053 .25401 -6 -4.5 Mabsadd m .50053 .25401 6 -4.5 Mabsadd L .50053 .25401 6 4.5 Mabsadd L .50053 .25401 -6 4.5 Mabsadd L fill 0 g [(68)] .50053 .25401 0 0 Mshowa 1 1 1 r .51123 .35582 -6 -4.5 Mabsadd m .51123 .35582 6 -4.5 Mabsadd L .51123 .35582 6 4.5 Mabsadd L .51123 .35582 -6 4.5 Mabsadd L fill 0 g [(69)] .51123 .35582 0 0 Mshowa 1 1 1 r .51332 .31418 -6 -4.5 Mabsadd m .51332 .31418 6 -4.5 Mabsadd L .51332 .31418 6 4.5 Mabsadd L .51332 .31418 -6 4.5 Mabsadd L fill 0 g [(70)] .51332 .31418 0 0 Mshowa 1 1 1 r .5167 .20425 -6 -4.5 Mabsadd m .5167 .20425 6 -4.5 Mabsadd L .5167 .20425 6 4.5 Mabsadd L .5167 .20425 -6 4.5 Mabsadd L fill 0 g [(71)] .5167 .20425 0 0 Mshowa 1 1 1 r .5167 .30378 -6 -4.5 Mabsadd m .5167 .30378 6 -4.5 Mabsadd L .5167 .30378 6 4.5 Mabsadd L .5167 .30378 -6 4.5 Mabsadd L fill 0 g [(72)] .5167 .30378 0 0 Mshowa 1 1 1 r .93683 .43704 -6 -4.5 Mabsadd m .93683 .43704 6 -4.5 Mabsadd L .93683 .43704 6 4.5 Mabsadd L .93683 .43704 -6 4.5 Mabsadd L fill 0 g [(73)] .93683 .43704 0 0 Mshowa 1 1 1 r .93345 .42663 -6 -4.5 Mabsadd m .93345 .42663 6 -4.5 Mabsadd L .93345 .42663 6 4.5 Mabsadd L .93345 .42663 -6 4.5 Mabsadd L fill 0 g [(74)] .93345 .42663 0 0 Mshowa 1 1 1 r .92066 .4868 -6 -4.5 Mabsadd m .92066 .4868 6 -4.5 Mabsadd L .92066 .4868 6 4.5 Mabsadd L .92066 .4868 -6 4.5 Mabsadd L fill 0 g [(75)] .92066 .4868 0 0 Mshowa 1 1 1 r .55904 .17349 -6 -4.5 Mabsadd m .55904 .17349 6 -4.5 Mabsadd L .55904 .17349 6 4.5 Mabsadd L .55904 .17349 -6 4.5 Mabsadd L fill 0 g [(76)] .55904 .17349 0 0 Mshowa 1 1 1 r .55904 .33454 -6 -4.5 Mabsadd m .55904 .33454 6 -4.5 Mabsadd L .55904 .33454 6 4.5 Mabsadd L .55904 .33454 -6 4.5 Mabsadd L fill 0 g [(77)] .55904 .33454 0 0 Mshowa 1 1 1 r .91217 .37883 -6 -4.5 Mabsadd m .91217 .37883 6 -4.5 Mabsadd L .91217 .37883 6 4.5 Mabsadd L .91217 .37883 -6 4.5 Mabsadd L fill 0 g [(78)] .91217 .37883 0 0 Mshowa 1 1 1 r .9067 .36936 -6 -4.5 Mabsadd m .9067 .36936 6 -4.5 Mabsadd L .9067 .36936 6 4.5 Mabsadd L .9067 .36936 -6 4.5 Mabsadd L fill 0 g [(79)] .9067 .36936 0 0 Mshowa 1 1 1 r .5852 .12817 -6 -4.5 Mabsadd m .5852 .12817 6 -4.5 Mabsadd L .5852 .12817 6 4.5 Mabsadd L .5852 .12817 -6 4.5 Mabsadd L fill 0 g [(80)] .5852 .12817 0 0 Mshowa 1 1 1 r .88565 .44792 -6 -4.5 Mabsadd m .88565 .44792 6 -4.5 Mabsadd L .88565 .44792 6 4.5 Mabsadd L .88565 .44792 -6 4.5 Mabsadd L fill 0 g [(81)] .88565 .44792 0 0 Mshowa 1 1 1 r .88178 .52182 -6 -4.5 Mabsadd m .88178 .52182 6 -4.5 Mabsadd L .88178 .52182 6 4.5 Mabsadd L .88178 .52182 -6 4.5 Mabsadd L fill 0 g [(82)] .88178 .52182 0 0 Mshowa 1 1 1 r .87293 .52825 -6 -4.5 Mabsadd m .87293 .52825 6 -4.5 Mabsadd L .87293 .52825 6 4.5 Mabsadd L .87293 .52825 -6 4.5 Mabsadd L fill 0 g [(83)] .87293 .52825 0 0 Mshowa 1 1 1 r .61136 .17349 -6 -4.5 Mabsadd m .61136 .17349 6 -4.5 Mabsadd L .61136 .17349 6 4.5 Mabsadd L .61136 .17349 -6 4.5 Mabsadd L fill 0 g [(84)] .61136 .17349 0 0 Mshowa 1 1 1 r .61136 .33454 -6 -4.5 Mabsadd m .61136 .33454 6 -4.5 Mabsadd L .61136 .33454 6 4.5 Mabsadd L .61136 .33454 -6 4.5 Mabsadd L fill 0 g [(85)] .61136 .33454 0 0 Mshowa 1 1 1 r .86437 .40011 -6 -4.5 Mabsadd m .86437 .40011 6 -4.5 Mabsadd L .86437 .40011 6 4.5 Mabsadd L .86437 .40011 -6 4.5 Mabsadd L fill 0 g [(86)] .86437 .40011 0 0 Mshowa 1 1 1 r .8589 .34807 -6 -4.5 Mabsadd m .8589 .34807 6 -4.5 Mabsadd L .8589 .34807 6 4.5 Mabsadd L .8589 .34807 -6 4.5 Mabsadd L fill 0 g [(87)] .8589 .34807 0 0 Mshowa 1 1 1 r .61868 .34266 -6 -4.5 Mabsadd m .61868 .34266 6 -4.5 Mabsadd L .61868 .34266 6 4.5 Mabsadd L .61868 .34266 -6 4.5 Mabsadd L fill 0 g [(88)] .61868 .34266 0 0 Mshowa 1 1 1 r .84676 .48293 -6 -4.5 Mabsadd m .84676 .48293 6 -4.5 Mabsadd L .84676 .48293 6 4.5 Mabsadd L .84676 .48293 -6 4.5 Mabsadd L fill 0 g [(89)] .84676 .48293 0 0 Mshowa 1 1 1 r .64829 .13205 -6 -4.5 Mabsadd m .64829 .13205 6 -4.5 Mabsadd L .64829 .13205 6 4.5 Mabsadd L .64829 .13205 -6 4.5 Mabsadd L fill 0 g [(90)] .64829 .13205 0 0 Mshowa 1 1 1 r .65167 .12164 -6 -4.5 Mabsadd m .65167 .12164 6 -4.5 Mabsadd L .65167 .12164 6 4.5 Mabsadd L .65167 .12164 -6 4.5 Mabsadd L fill 0 g [(91)] .65167 .12164 0 0 Mshowa 1 1 1 r .6537 .20425 -6 -4.5 Mabsadd m .6537 .20425 6 -4.5 Mabsadd L .6537 .20425 6 4.5 Mabsadd L .6537 .20425 -6 4.5 Mabsadd L fill 0 g [(92)] .6537 .20425 0 0 Mshowa 1 1 1 r .6537 .30378 -6 -4.5 Mabsadd m .6537 .30378 6 -4.5 Mabsadd L .6537 .30378 6 4.5 Mabsadd L .6537 .30378 -6 4.5 Mabsadd L fill 0 g [(93)] .6537 .30378 0 0 Mshowa 1 1 1 r .8206 .52825 -6 -4.5 Mabsadd m .8206 .52825 6 -4.5 Mabsadd L .8206 .52825 6 4.5 Mabsadd L .8206 .52825 -6 4.5 Mabsadd L fill 0 g [(94)] .8206 .52825 0 0 Mshowa 1 1 1 r .6644 .20197 -6 -4.5 Mabsadd m .6644 .20197 6 -4.5 Mabsadd L .6644 .20197 6 4.5 Mabsadd L .6644 .20197 -6 4.5 Mabsadd L fill 0 g [(95)] .6644 .20197 0 0 Mshowa 1 1 1 r .81233 .40558 -6 -4.5 Mabsadd m .81233 .40558 6 -4.5 Mabsadd L .81233 .40558 6 4.5 Mabsadd L .81233 .40558 -6 4.5 Mabsadd L fill 0 g [(96)] .81233 .40558 0 0 Mshowa 1 1 1 r .66446 .18181 -6 -4.5 Mabsadd m .66446 .18181 6 -4.5 Mabsadd L .66446 .18181 6 4.5 Mabsadd L .66446 .18181 -6 4.5 Mabsadd L fill 0 g [(97)] .66446 .18181 0 0 Mshowa 1 1 1 r .66987 .25401 -6 -4.5 Mabsadd m .66987 .25401 6 -4.5 Mabsadd L .66987 .25401 6 4.5 Mabsadd L .66987 .25401 -6 4.5 Mabsadd L fill 0 g [(98)] .66987 .25401 0 0 Mshowa 1 1 1 r .80686 .35354 -6 -4.5 Mabsadd m .80686 .35354 6 -4.5 Mabsadd L .80686 .35354 6 4.5 Mabsadd L .80686 .35354 -6 4.5 Mabsadd L fill 0 g [(99)] .80686 .35354 0 0 Mshowa 1 1 1 r .67296 .07384 -9 -4.5 Mabsadd m .67296 .07384 9 -4.5 Mabsadd L .67296 .07384 9 4.5 Mabsadd L .67296 .07384 -9 4.5 Mabsadd L fill 0 g [(100)] .67296 .07384 0 0 Mshowa 1 1 1 r .80145 .45677 -9 -4.5 Mabsadd m .80145 .45677 9 -4.5 Mabsadd L .80145 .45677 9 4.5 Mabsadd L .80145 .45677 -9 4.5 Mabsadd L fill 0 g [(101)] .80145 .45677 0 0 Mshowa 1 1 1 r .69948 .14293 -9 -4.5 Mabsadd m .69948 .14293 9 -4.5 Mabsadd L .69948 .14293 9 4.5 Mabsadd L .69948 .14293 -9 4.5 Mabsadd L fill 0 g [(102)] .69948 .14293 0 0 Mshowa 1 1 1 r .77529 .50208 -9 -4.5 Mabsadd m .77529 .50208 9 -4.5 Mabsadd L .77529 .50208 9 4.5 Mabsadd L .77529 .50208 -9 4.5 Mabsadd L fill 0 g [(103)] .77529 .50208 0 0 Mshowa 1 1 1 r .70335 .21683 -9 -4.5 Mabsadd m .70335 .21683 9 -4.5 Mabsadd L .70335 .21683 9 4.5 Mabsadd L .70335 .21683 -9 4.5 Mabsadd L fill 0 g [(104)] .70335 .21683 0 0 Mshowa 1 1 1 r .76644 .49565 -9 -4.5 Mabsadd m .76644 .49565 9 -4.5 Mabsadd L .76644 .49565 9 4.5 Mabsadd L .76644 .49565 -9 4.5 Mabsadd L fill 0 g [(105)] .76644 .49565 0 0 Mshowa 1 1 1 r .7122 .22326 -9 -4.5 Mabsadd m .7122 .22326 9 -4.5 Mabsadd L .7122 .22326 9 4.5 Mabsadd L .7122 .22326 -9 4.5 Mabsadd L fill 0 g [(106)] .7122 .22326 0 0 Mshowa 1 1 1 r .76453 .3843 -9 -4.5 Mabsadd m .76453 .3843 9 -4.5 Mabsadd L .76453 .3843 9 4.5 Mabsadd L .76453 .3843 -9 4.5 Mabsadd L fill 0 g [(107)] .76453 .3843 0 0 Mshowa 1 1 1 r .71529 .04308 -9 -4.5 Mabsadd m .71529 .04308 9 -4.5 Mabsadd L .71529 .04308 9 4.5 Mabsadd L .71529 .04308 -9 4.5 Mabsadd L fill 0 g [(108)] .71529 .04308 0 0 Mshowa 1 1 1 r .76114 .3947 -9 -4.5 Mabsadd m .76114 .3947 9 -4.5 Mabsadd L .76114 .3947 9 4.5 Mabsadd L .76114 .3947 -9 4.5 Mabsadd L fill 0 g [(109)] .76114 .3947 0 0 Mshowa 1 1 1 r .72076 .09512 -9 -4.5 Mabsadd m .72076 .09512 9 -4.5 Mabsadd L .72076 .09512 9 4.5 Mabsadd L .72076 .09512 -9 4.5 Mabsadd L fill 0 g [(110)] .72076 .09512 0 0 Mshowa 1 1 1 r .72623 .04308 -9 -4.5 Mabsadd m .72623 .04308 9 -4.5 Mabsadd L .72623 .04308 9 4.5 Mabsadd L .72623 .04308 -9 4.5 Mabsadd L fill 0 g [(111)] .72623 .04308 0 0 Mshowa 1 1 1 r .75027 .44589 -9 -4.5 Mabsadd m .75027 .44589 9 -4.5 Mabsadd L .75027 .44589 9 4.5 Mabsadd L .75027 .44589 -9 4.5 Mabsadd L fill 0 g [(112)] .75027 .44589 0 0 Mshowa 1 1 1 r .73836 .17794 -9 -4.5 Mabsadd m .73836 .17794 9 -4.5 Mabsadd L .73836 .17794 9 4.5 Mabsadd L .73836 .17794 -9 4.5 Mabsadd L fill 0 g [(113)] .73836 .17794 0 0 Mshowa 1 1 1 r .73836 .42962 -9 -4.5 Mabsadd m .73836 .42962 9 -4.5 Mabsadd L .73836 .42962 9 4.5 Mabsadd L .73836 .42962 -9 4.5 Mabsadd L fill 0 g [(114)] .73836 .42962 0 0 Mshowa 1 1 1 r .72837 .43407 -9 -4.5 Mabsadd m .72837 .43407 9 -4.5 Mabsadd L .72837 .43407 9 4.5 Mabsadd L .72837 .43407 -9 4.5 Mabsadd L fill 0 g [(115)] .72837 .43407 0 0 Mshowa 1 1 1 r .71767 .53587 -9 -4.5 Mabsadd m .71767 .53587 9 -4.5 Mabsadd L .71767 .53587 9 4.5 Mabsadd L .71767 .53587 -9 4.5 Mabsadd L fill 0 g [(116)] .71767 .53587 0 0 Mshowa 1 1 1 r .76453 .22326 -9 -4.5 Mabsadd m .76453 .22326 9 -4.5 Mabsadd L .76453 .22326 9 4.5 Mabsadd L .76453 .22326 -9 4.5 Mabsadd L fill 0 g [(117)] .76453 .22326 0 0 Mshowa 1 1 1 r .7122 .3843 -9 -4.5 Mabsadd m .7122 .3843 9 -4.5 Mabsadd L .7122 .3843 9 4.5 Mabsadd L .7122 .3843 -9 4.5 Mabsadd L fill 0 g [(118)] .7122 .3843 0 0 Mshowa 1 1 1 r .7122 .48383 -9 -4.5 Mabsadd m .7122 .48383 9 -4.5 Mabsadd L .7122 .48383 9 4.5 Mabsadd L .7122 .48383 -9 4.5 Mabsadd L fill 0 g [(119)] .7122 .48383 0 0 Mshowa 1 1 1 r .7728 .10059 -9 -4.5 Mabsadd m .7728 .10059 9 -4.5 Mabsadd L .7728 .10059 9 4.5 Mabsadd L .7728 .10059 -9 4.5 Mabsadd L fill 0 g [(120)] .7728 .10059 0 0 Mshowa 1 1 1 r .77827 .04855 -9 -4.5 Mabsadd m .77827 .04855 9 -4.5 Mabsadd L .77827 .04855 9 4.5 Mabsadd L .77827 .04855 -9 4.5 Mabsadd L fill 0 g [(121)] .77827 .04855 0 0 Mshowa 1 1 1 r .78368 .15178 -9 -4.5 Mabsadd m .78368 .15178 9 -4.5 Mabsadd L .78368 .15178 9 4.5 Mabsadd L .78368 .15178 -9 4.5 Mabsadd L fill 0 g [(122)] .78368 .15178 0 0 Mshowa 1 1 1 r .80686 .25401 -9 -4.5 Mabsadd m .80686 .25401 9 -4.5 Mabsadd L .80686 .25401 9 4.5 Mabsadd L .80686 .25401 -9 4.5 Mabsadd L fill 0 g [(123)] .80686 .25401 0 0 Mshowa 1 1 1 r .66987 .35354 -9 -4.5 Mabsadd m .66987 .35354 9 -4.5 Mabsadd L .66987 .35354 9 4.5 Mabsadd L .66987 .35354 -9 4.5 Mabsadd L fill 0 g [(124)] .66987 .35354 0 0 Mshowa 1 1 1 r .66987 .51459 -9 -4.5 Mabsadd m .66987 .51459 9 -4.5 Mabsadd L .66987 .51459 9 4.5 Mabsadd L .66987 .51459 -9 4.5 Mabsadd L fill 0 g [(125)] .66987 .51459 0 0 Mshowa 1 1 1 r .80984 .19709 -9 -4.5 Mabsadd m .80984 .19709 9 -4.5 Mabsadd L .80984 .19709 9 4.5 Mabsadd L .80984 .19709 -9 4.5 Mabsadd L fill 0 g [(126)] .80984 .19709 0 0 Mshowa 1 1 1 r .81233 .20197 -9 -4.5 Mabsadd m .81233 .20197 9 -4.5 Mabsadd L .81233 .20197 9 4.5 Mabsadd L .81233 .20197 -9 4.5 Mabsadd L fill 0 g [(127)] .81233 .20197 0 0 Mshowa 1 1 1 r .8206 .07931 -9 -4.5 Mabsadd m .8206 .07931 9 -4.5 Mabsadd L .8206 .07931 9 4.5 Mabsadd L .8206 .07931 -9 4.5 Mabsadd L fill 0 g [(128)] .8206 .07931 0 0 Mshowa 1 1 1 r .82303 .20425 -9 -4.5 Mabsadd m .82303 .20425 9 -4.5 Mabsadd L .82303 .20425 9 4.5 Mabsadd L .82303 .20425 -9 4.5 Mabsadd L fill 0 g [(129)] .82303 .20425 0 0 Mshowa 1 1 1 r .82303 .30378 -9 -4.5 Mabsadd m .82303 .30378 9 -4.5 Mabsadd L .82303 .30378 9 4.5 Mabsadd L .82303 .30378 -9 4.5 Mabsadd L fill 0 g [(130)] .82303 .30378 0 0 Mshowa 1 1 1 r .82398 .08971 -9 -4.5 Mabsadd m .82398 .08971 9 -4.5 Mabsadd L .82398 .08971 9 4.5 Mabsadd L .82398 .08971 -9 4.5 Mabsadd L fill 0 g [(131)] .82398 .08971 0 0 Mshowa 1 1 1 r .83486 .1409 -9 -4.5 Mabsadd m .83486 .1409 9 -4.5 Mabsadd L .83486 .1409 9 4.5 Mabsadd L .83486 .1409 -9 4.5 Mabsadd L fill 0 g [(132)] .83486 .1409 0 0 Mshowa 1 1 1 r .836 .15178 -9 -4.5 Mabsadd m .836 .15178 9 -4.5 Mabsadd L .836 .15178 9 4.5 Mabsadd L .836 .15178 -9 4.5 Mabsadd L fill 0 g [(133)] .836 .15178 0 0 Mshowa 1 1 1 r .85804 .34266 -9 -4.5 Mabsadd m .85804 .34266 9 -4.5 Mabsadd L .85804 .34266 9 4.5 Mabsadd L .85804 .34266 -9 4.5 Mabsadd L fill 0 g [(134)] .85804 .34266 0 0 Mshowa 1 1 1 r .61754 .35354 -9 -4.5 Mabsadd m .61754 .35354 9 -4.5 Mabsadd L .61754 .35354 9 4.5 Mabsadd L .61754 .35354 -9 4.5 Mabsadd L fill 0 g [(135)] .61754 .35354 0 0 Mshowa 1 1 1 r .61754 .51459 -9 -4.5 Mabsadd m .61754 .51459 9 -4.5 Mabsadd L .61754 .51459 9 4.5 Mabsadd L .61754 .51459 -9 4.5 Mabsadd L fill 0 g [(136)] .61754 .51459 0 0 Mshowa 1 1 1 r .86536 .17349 -9 -4.5 Mabsadd m .86536 .17349 9 -4.5 Mabsadd L .86536 .17349 9 4.5 Mabsadd L .86536 .17349 -9 4.5 Mabsadd L fill 0 g [(137)] .86536 .17349 0 0 Mshowa 1 1 1 r .86536 .33454 -9 -4.5 Mabsadd m .86536 .33454 9 -4.5 Mabsadd L .86536 .33454 9 4.5 Mabsadd L .86536 .33454 -9 4.5 Mabsadd L fill 0 g [(138)] .86536 .33454 0 0 Mshowa 1 1 1 r .89152 .12817 -9 -4.5 Mabsadd m .89152 .12817 9 -4.5 Mabsadd L .89152 .12817 9 4.5 Mabsadd L .89152 .12817 -9 4.5 Mabsadd L fill 0 g [(139)] .89152 .12817 0 0 Mshowa 1 1 1 r .57521 .3843 -9 -4.5 Mabsadd m .57521 .3843 9 -4.5 Mabsadd L .57521 .3843 9 4.5 Mabsadd L .57521 .3843 -9 4.5 Mabsadd L fill 0 g [(140)] .57521 .3843 0 0 Mshowa 1 1 1 r .57521 .48383 -9 -4.5 Mabsadd m .57521 .48383 9 -4.5 Mabsadd L .57521 .48383 9 4.5 Mabsadd L .57521 .48383 -9 4.5 Mabsadd L fill 0 g [(141)] .57521 .48383 0 0 Mshowa 1 1 1 r .91769 .17349 -9 -4.5 Mabsadd m .91769 .17349 9 -4.5 Mabsadd L .91769 .17349 9 4.5 Mabsadd L .91769 .17349 -9 4.5 Mabsadd L fill 0 g [(142)] .91769 .17349 0 0 Mshowa 1 1 1 r .91769 .33454 -9 -4.5 Mabsadd m .91769 .33454 9 -4.5 Mabsadd L .91769 .33454 9 4.5 Mabsadd L .91769 .33454 -9 4.5 Mabsadd L fill 0 g [(143)] .91769 .33454 0 0 Mshowa 1 1 1 r .55904 .43407 -9 -4.5 Mabsadd m .55904 .43407 9 -4.5 Mabsadd L .55904 .43407 9 4.5 Mabsadd L .55904 .43407 -9 4.5 Mabsadd L fill 0 g [(144)] .55904 .43407 0 0 Mshowa 1 1 1 r .96549 .35582 -9 -4.5 Mabsadd m .96549 .35582 9 -4.5 Mabsadd L .96549 .35582 9 4.5 Mabsadd L .96549 .35582 -9 4.5 Mabsadd L fill 0 g [(145)] .96549 .35582 0 0 Mshowa 1 1 1 r .96002 .20425 -9 -4.5 Mabsadd m .96002 .20425 9 -4.5 Mabsadd L .96002 .20425 9 4.5 Mabsadd L .96002 .20425 -9 4.5 Mabsadd L fill 0 g [(146)] .96002 .20425 0 0 Mshowa 1 1 1 r .96002 .30378 -9 -4.5 Mabsadd m .96002 .30378 9 -4.5 Mabsadd L .96002 .30378 9 4.5 Mabsadd L .96002 .30378 -9 4.5 Mabsadd L fill 0 g [(147)] .96002 .30378 0 0 Mshowa 1 1 1 r .97619 .25401 -9 -4.5 Mabsadd m .97619 .25401 9 -4.5 Mabsadd L .97619 .25401 9 4.5 Mabsadd L .97619 .25401 -9 4.5 Mabsadd L fill 0 g [(148)] .97619 .25401 0 0 Mshowa 0 1 0 r .93683 .43704 -6 -4.5 Mabsadd m .93683 .43704 6 -4.5 Mabsadd L .93683 .43704 6 4.5 Mabsadd L .93683 .43704 -6 4.5 Mabsadd L fill 0 g [(73)] .93683 .43704 0 0 Mshowa 0 1 0 r .93345 .42663 -6 -4.5 Mabsadd m .93345 .42663 6 -4.5 Mabsadd L .93345 .42663 6 4.5 Mabsadd L .93345 .42663 -6 4.5 Mabsadd L fill 0 g [(74)] .93345 .42663 0 0 Mshowa 0 1 0 r .92066 .4868 -6 -4.5 Mabsadd m .92066 .4868 6 -4.5 Mabsadd L .92066 .4868 6 4.5 Mabsadd L .92066 .4868 -6 4.5 Mabsadd L fill 0 g [(75)] .92066 .4868 0 0 Mshowa 0 1 0 r .91217 .37883 -6 -4.5 Mabsadd m .91217 .37883 6 -4.5 Mabsadd L .91217 .37883 6 4.5 Mabsadd L .91217 .37883 -6 4.5 Mabsadd L fill 0 g [(78)] .91217 .37883 0 0 Mshowa 0 1 0 r .9067 .36936 -6 -4.5 Mabsadd m .9067 .36936 6 -4.5 Mabsadd L .9067 .36936 6 4.5 Mabsadd L .9067 .36936 -6 4.5 Mabsadd L fill 0 g [(79)] .9067 .36936 0 0 Mshowa 0 1 0 r .88565 .44792 -6 -4.5 Mabsadd m .88565 .44792 6 -4.5 Mabsadd L .88565 .44792 6 4.5 Mabsadd L .88565 .44792 -6 4.5 Mabsadd L fill 0 g [(81)] .88565 .44792 0 0 Mshowa 0 1 0 r .88178 .52182 -6 -4.5 Mabsadd m .88178 .52182 6 -4.5 Mabsadd L .88178 .52182 6 4.5 Mabsadd L .88178 .52182 -6 4.5 Mabsadd L fill 0 g [(82)] .88178 .52182 0 0 Mshowa 0 1 0 r .87293 .52825 -6 -4.5 Mabsadd m .87293 .52825 6 -4.5 Mabsadd L .87293 .52825 6 4.5 Mabsadd L .87293 .52825 -6 4.5 Mabsadd L fill 0 g [(83)] .87293 .52825 0 0 Mshowa 0 1 0 r .86437 .40011 -6 -4.5 Mabsadd m .86437 .40011 6 -4.5 Mabsadd L .86437 .40011 6 4.5 Mabsadd L .86437 .40011 -6 4.5 Mabsadd L fill 0 g [(86)] .86437 .40011 0 0 Mshowa 0 1 0 r .8589 .34807 -6 -4.5 Mabsadd m .8589 .34807 6 -4.5 Mabsadd L .8589 .34807 6 4.5 Mabsadd L .8589 .34807 -6 4.5 Mabsadd L fill 0 g [(87)] .8589 .34807 0 0 Mshowa 0 1 0 r .84676 .48293 -6 -4.5 Mabsadd m .84676 .48293 6 -4.5 Mabsadd L .84676 .48293 6 4.5 Mabsadd L .84676 .48293 -6 4.5 Mabsadd L fill 0 g [(89)] .84676 .48293 0 0 Mshowa 0 1 0 r .8206 .52825 -6 -4.5 Mabsadd m .8206 .52825 6 -4.5 Mabsadd L .8206 .52825 6 4.5 Mabsadd L .8206 .52825 -6 4.5 Mabsadd L fill 0 g [(94)] .8206 .52825 0 0 Mshowa 0 1 0 r .81233 .40558 -6 -4.5 Mabsadd m .81233 .40558 6 -4.5 Mabsadd L .81233 .40558 6 4.5 Mabsadd L .81233 .40558 -6 4.5 Mabsadd L fill 0 g [(96)] .81233 .40558 0 0 Mshowa 0 1 0 r .80686 .35354 -6 -4.5 Mabsadd m .80686 .35354 6 -4.5 Mabsadd L .80686 .35354 6 4.5 Mabsadd L .80686 .35354 -6 4.5 Mabsadd L fill 0 g [(99)] .80686 .35354 0 0 Mshowa 0 1 0 r .80145 .45677 -9 -4.5 Mabsadd m .80145 .45677 9 -4.5 Mabsadd L .80145 .45677 9 4.5 Mabsadd L .80145 .45677 -9 4.5 Mabsadd L fill 0 g [(101)] .80145 .45677 0 0 Mshowa 0 1 0 r .77529 .50208 -9 -4.5 Mabsadd m .77529 .50208 9 -4.5 Mabsadd L .77529 .50208 9 4.5 Mabsadd L .77529 .50208 -9 4.5 Mabsadd L fill 0 g [(103)] .77529 .50208 0 0 Mshowa 0 1 0 r .76644 .49565 -9 -4.5 Mabsadd m .76644 .49565 9 -4.5 Mabsadd L .76644 .49565 9 4.5 Mabsadd L .76644 .49565 -9 4.5 Mabsadd L fill 0 g [(105)] .76644 .49565 0 0 Mshowa 0 1 0 r .76453 .3843 -9 -4.5 Mabsadd m .76453 .3843 9 -4.5 Mabsadd L .76453 .3843 9 4.5 Mabsadd L .76453 .3843 -9 4.5 Mabsadd L fill 0 g [(107)] .76453 .3843 0 0 Mshowa 0 1 0 r .76114 .3947 -9 -4.5 Mabsadd m .76114 .3947 9 -4.5 Mabsadd L .76114 .3947 9 4.5 Mabsadd L .76114 .3947 -9 4.5 Mabsadd L fill 0 g [(109)] .76114 .3947 0 0 Mshowa 0 1 0 r .75027 .44589 -9 -4.5 Mabsadd m .75027 .44589 9 -4.5 Mabsadd L .75027 .44589 9 4.5 Mabsadd L .75027 .44589 -9 4.5 Mabsadd L fill 0 g [(112)] .75027 .44589 0 0 Mshowa 0 1 0 r .72837 .43407 -9 -4.5 Mabsadd m .72837 .43407 9 -4.5 Mabsadd L .72837 .43407 9 4.5 Mabsadd L .72837 .43407 -9 4.5 Mabsadd L fill 0 g [(115)] .72837 .43407 0 0 Mshowa 0 1 0 r .71767 .53587 -9 -4.5 Mabsadd m .71767 .53587 9 -4.5 Mabsadd L .71767 .53587 9 4.5 Mabsadd L .71767 .53587 -9 4.5 Mabsadd L fill 0 g [(116)] .71767 .53587 0 0 Mshowa 0 1 0 r .7122 .3843 -9 -4.5 Mabsadd m .7122 .3843 9 -4.5 Mabsadd L .7122 .3843 9 4.5 Mabsadd L .7122 .3843 -9 4.5 Mabsadd L fill 0 g [(118)] .7122 .3843 0 0 Mshowa 0 1 0 r .7122 .48383 -9 -4.5 Mabsadd m .7122 .48383 9 -4.5 Mabsadd L .7122 .48383 9 4.5 Mabsadd L .7122 .48383 -9 4.5 Mabsadd L fill 0 g [(119)] .7122 .48383 0 0 Mshowa 0 1 0 r .66987 .35354 -9 -4.5 Mabsadd m .66987 .35354 9 -4.5 Mabsadd L .66987 .35354 9 4.5 Mabsadd L .66987 .35354 -9 4.5 Mabsadd L fill 0 g [(124)] .66987 .35354 0 0 Mshowa 0 1 0 r .66987 .51459 -9 -4.5 Mabsadd m .66987 .51459 9 -4.5 Mabsadd L .66987 .51459 9 4.5 Mabsadd L .66987 .51459 -9 4.5 Mabsadd L fill 0 g [(125)] .66987 .51459 0 0 Mshowa 0 1 0 r .61754 .35354 -9 -4.5 Mabsadd m .61754 .35354 9 -4.5 Mabsadd L .61754 .35354 9 4.5 Mabsadd L .61754 .35354 -9 4.5 Mabsadd L fill 0 g [(135)] .61754 .35354 0 0 Mshowa 0 1 0 r .61754 .51459 -9 -4.5 Mabsadd m .61754 .51459 9 -4.5 Mabsadd L .61754 .51459 9 4.5 Mabsadd L .61754 .51459 -9 4.5 Mabsadd L fill 0 g [(136)] .61754 .51459 0 0 Mshowa 0 1 0 r .57521 .3843 -9 -4.5 Mabsadd m .57521 .3843 9 -4.5 Mabsadd L .57521 .3843 9 4.5 Mabsadd L .57521 .3843 -9 4.5 Mabsadd L fill 0 g [(140)] .57521 .3843 0 0 Mshowa 0 1 0 r .57521 .48383 -9 -4.5 Mabsadd m .57521 .48383 9 -4.5 Mabsadd L .57521 .48383 9 4.5 Mabsadd L .57521 .48383 -9 4.5 Mabsadd L fill 0 g [(141)] .57521 .48383 0 0 Mshowa 0 1 0 r .55904 .43407 -9 -4.5 Mabsadd m .55904 .43407 9 -4.5 Mabsadd L .55904 .43407 9 4.5 Mabsadd L .55904 .43407 -9 4.5 Mabsadd L fill 0 g [(144)] .55904 .43407 0 0 Mshowa 0 1 0 r .96549 .35582 -9 -4.5 Mabsadd m .96549 .35582 9 -4.5 Mabsadd L .96549 .35582 9 4.5 Mabsadd L .96549 .35582 -9 4.5 Mabsadd L fill 0 g [(145)] .96549 .35582 0 0 Mshowa % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{693, 380.312}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJzlnfmvnsd13x/flcslefmSvCR1Sd1LURIpa6EoWtZKUftGLRQluUnr2BIp y5JTW67rLUFQJnFSB0lru4ndpEkdNW0KNIuLpJvTIklbNCiQ9ocWKFAg6I42 bVC0Rf+Dt3xmOzPzfM4887zveym1lcB73/u8M/Oc8z1nzpyZOXPm+dc//9Yn Pv3659++/PrmU597/bNvvX35T28++c7nrj6a/0DTzP3dpvnAD2027edx0/gf 8t932x/xk6188Lvtr/mWhLn20+LY0/K/7Pe/Y37JY/9f42s0C8l3WfV/XKhu Pvxv+9c/bH/NtY8XzYP5uIb98D/jFuX7tqV5eGY+/I+YiWWiQm3DQuL/+u85 WvMpbvPtt1L8j2zx37eQJl/9V/vV78Wvs/+a7WnJ/6KX3Nn+FFr/k15yd9rm f9BLrqYl/51ecpSW/Dd6yf1pyT+wJT8KKF5nofLPTJ0HoMW1sS0Ti84UXsjl d/Wv6+BF5ptftVW/z/xi7ezow9W/DpmfHYVX+sH9QP7BsdXx2jceHkih+fkr MXfp99S7DsMzhSVVIoT+HDw7UuDHfPg1nXZRDNPyoSDXonlK27hPY2AuNE4Q HRINm4z2TqNXjC5c0XRhFvh39MO/c0HrL+an056PBkBsO0tEZ/vr0AzZGGqj A4opHwuBdvN3QS7OeItOtY0thBe7f9LegyrlnUoynlq626ZN82vtTzF1GUV/ EChaDJ/m4dNv2dd9MpC9Ao3do5G7Uqz2rzWkuqKk3kJsOXfjewOSp9uXm09E pAwcUm7rqPqe+CsnpTOgVx8CSveNrVz66v6rLaP+jwH1dwfUiOYR0Cw1ZkJp WvTqf8Z+7Go/Zd6mdMFv2lZfbX8ZSu4HHO8CfvYEbaEa/yK0t5CR1une8mne 0ny1zHaNUQUTktTP2O9eAUk9EHAnznaDpKTGv4RX1SqPIqY9oSQNn3pDyO/F AOfDIJdTwO9KkCTV+MP250iwB6tf4YM44l4CYTwCL70DyNwJYqG6/zwAsBzX QOTMP+OMOapLXh9/9y374QJw9lhQGuJnB/AjNf4Z1BjEjxsAXXfrd9rMWx0z L4QHTwPAtwJp24IOUY1/qtUYJhzNjSAldAr3PIjlmQAycZKA3KnxewGZnUPo /2VLzXNAzXOA10mgawnoorr/COrW0nrMKU5cV6bSP22ZeDZAcCHAQgQvhIpS 7ndD3d1TkET94OuWuGcA4YuA0s1A8BwgTHX/AdSdhh3qCV+z7DwV8HqlJeTO 9s+X20+/AzTsmYIGWQZxb360/SVj0keC/yzdbj18yhZmXmaPXkr9ZmBrNAXN pNU/Zd/5iPmlTp8MN60ayaPksxjMtPWD5ufw+dJF975B9a7+9Z34meN6n+uV ZMhvBJRkdB+ADdlbcnLW4ZkKQG6mNa5/HbjeP5Br6o8/YSuQZhMZNKqYZZvM axWVZwav/vhOKFxaiyI+qE9/1Vao0nH1a+OEXg8sFsTXsINKWjqUT1kIHcJd uUcdNR8m7a39yvAb7c+1AqPHgdFk6uqK/pitQIpZWuKglVZRxmxd991QhGZe c5Owsh9Y+Yqt8FRgQIasXwUIlekc+eLuczOUygNBs74SwZwN86+ByI9Wlnv3 veHLKNJX/99jqaTx4nt86X3N+MGsZ2hWb5/VTe2dS9R46NZZlc/b7x4BTi8B p+uV5b7d/sSFnGuBQ2nWeg1B+EWNNDKjc8HqTMM5oT1OlX/WXP5NS71Rv6Y7 UlWwUCeoHuE9DOS+AeQeriz3S8mrzD+zJmq53AtclgY7VyZiYrhbfw0ZlaXF 3CMuMlpebxF340vXjpNRENlKJSfkav24rXAOCHkTCDlYWe5dIPhAIHhHJcF7 LfTepGRYy6cvXDsmDgYm8lUKjQnZFzDz6wlWVL+4NeylRtyy17rQRrPGR4CV lfBoe1J37IjvZeEhIO0tIO1AZblvayyUFluy4YkY3RFkRjuT2UjHxmzWrP5l YLUdyKq3SEp+CWEgK9g7UsDee7FfcyyWAhbb2jJh5j/ZpsIWofILgMqRWaEy 8j+woUUH0iQbE66/nAUuPwVc7qss9/NbicaSNw3F2VlmJ4zW7GwL//jWsPyX gOWj466WZgseBR7H2z0fhVnZoBmQea3fj4vb+vI1xmTQzrIYvz0tKvOaLRyq R+s6EEmQj2PwTwKDeyvL/ZwGhOnUo5YtfdpVG9vWIEdf2hqOfhY4uil6vbPf Vx2CwFvJ91LU+H3FXjzd9Oytm58Dx6GasS9lLwmXc2R/BsjeU1nuW5XSW9c0 MxtVFIfufcSE6WhHgbgvbg1x36wk7manQHG5G3QyjZ4bhTXr7W+3n8j1mMGr 7gkingsvlXVPI/GlUCRb8zd0laIov1FJ84lhNH/Y/FL3aWxPX4wf+c+F2KF6 uxU4HxQL+/VKLE4CFslOdIpFEnze/neVru9vf1J/3tXH6QR8fa2Sr1sqZfyF Hr7U8d88MlJXl449hwtjRbRbx4/RWdnOtDqqqnAUj13vK0QSpEodTk1sTbyc 4ln74ASskZdmmSyvVSq0sZRzJqPGtIa+GuCU9a05jfFbK/tezDhFfn+KDeMi 0FJS07m0vPn0kwgMthGLzHN4W6Vo3YxRBqKd8N6VQKkdpAtqOQNa7o4psP8w fOqzWQ/QzHhT3kH4XNwMvc4VNRNN1aDMhnWK7V4A1j/j9C6jIPPgkqAacm7o DY6gj0B7N/YJX/luE4C5o7IHbgQ6ssVqQ9FT9hVnALZFFbaBHiC15+q+UmBa GUWP91XJzMD1U2C32SsvMi/ps8dtBQplp6BRQnge6s4Dmkm5giSWoO7LwyVh tDkyzTCUGgnE01QvgVOV3XoDWq6N53/M0nka0Eu2SwrT3gWoS8gn5ag9em+M vHTLLs43AG97Arrx8tUs0BXbYD4Zap6wlNwJaGyvRJJ0mCwC6TAhuR3qvuTU Y6gODzgtuS2gswa43zlDrdZsjNNqOipCZxauhSzyHdS21oXhsriJH5MYzCaQ ebQPxHAaxEDm/fogzEljBZww6ABJsg9eWBMmYfQeJaH26L2xMDJfxIyjUdRo YYV8JVRaBbTvqlR6CmelqIUn7ftvB1x2VWI6B3XJYCTlCpjugro/CKh5VSkj OnaOp+xk7p4C1s/93wHXS/AOGkk3J4R1KcAqJnonwHoGYDWb9AQgEeg85tug eBIOXtgbJbzpuATh/RbgTWHoF+AdxE5rF3Hh2hh1g7UJ4aChzboeheAG2X08 MgxdOvq1+h6huwp1X4B30Ahq+NgTVFPdJYiXRrym0iSl8ixk1RiahHsVeHD2 +INQPAnPSyBk6va4l9B3ZEjy8L+26PNAB5F9AsrZMMEOOhPEzqrdYWhQShL7 3C+FW6A4nbenECvqGGSqqWO8CdKhCL7z8A7yZuiEnzsL0MVP8ReVVaRBopHZ Tm8emAI3bn5E5yyTYxgJmKwPewtdhKwTHfN4Buig8fymGQiBpv7kfx/SJFA7 70kCCQtMufUW6v5J2Hciiw5b/rBD9pgkkAeTtyWfriSWukE5xLf+2EGjTEgP hGJhwJkuYHqgZIjn5ChCEnrMPaF0zJJMVX7UoS36JNBBfgL1Eoo3X5iNeMwU a3GsWCSaMJGVIkbcZJX4OaTi3+kCB7hnEOqHgIgnpkW9bMUz39NsPZpQh4UA K60HFuC6EYof3hK4zIEsst00SBM+pleMAt8VCZik63efGTz3gL7JJ+r5RKw9 CGbndvGrfJ11wPMS43mQ8XxD7fSF6cm5KbBOddt23WXzc969yHZxI4nB4Yqk RuPanQh61v61f5i0jkETR7dQUMMHHkqaRnNh6sLpiGDltx3kd1KTnxqe2fVI RyLYsu+jtZvElxYYtWfO7Epbstve289S7Tmctd3MWHCUB5LmeiS41N2ygqOF nhOa4KoSA47HPqenUjjbZUzC4gscPRxJSOn8RnA0wrwGklrP3tE+u6RJSqLV zJvPVtJMUkinHVYKcmwvwn4Kk9WEM1ddGdT2nOSQQL9cNoCu5QAYzR+mEYoZ rxeifuoqoIqStGgGfry3nJUWLeXfaH7OYFYQoTx1W+MsSrnA+znbyGb7K6wA W9nRUtVrNnSoaey4Zj6RnGQBbwmII4IpKSYRTF0rTbpjhbUXhHVcOln/HME8 Uy0a1SBvoYA5eQsmiHLRycGBZ9JO+Fybbmvp5fBsezBTO4MMxcjSeE+zb+oC ewFV2js85rpA3N5qAI9aJgrsaaoolNGvGtnnUW+g1E1zAR4lZDjxoZ0yv+Tc MCrfdUkWg0q/PAWoqwDqAQD1equqjRsjslZyc9kWuW4Y0PcHoOdt+11lnCir VFPOlUN2+uXCsoUW42UFdfXHR4BtWru4AcqlDqEVxkEQxpFEw225eAPSt5c7 gZpYiD47WFnpzI8JqSsmq6kPvq4MsfJvo1RO8Tia9Ak9kL3jf30vsEcwEPzp TMrCSrE5h0NfiI166W20vkPl7KBjp2+EhklSx6HSYnT8p+iELbupmFNLsE2f /fEpgF0BYCmkbC0Aux+AJS0lbS4AO4OkV4sW5ICculoYQ9yw35GkaC6Y0mNQ Ll3vspi6g4gGP49kbD98XTLDhCTR8kCMZBmqVwt2VPVhSpnXs7OTL6uxOFyd VJhYJBVOV8Mt3JsRtF6FV8dd07xFIjBWQlw+g4uSGTLbq1YywtOMTFKddVyf xmWfN24ObZxtA8woQHxXUNbkOKRrhTxW0yGMO+d2JJ6NX++M5YXYT81ywsdF Pqap4gBPjvaAiX06iLEjsJ8c5iuwv5pKPhqeYeGqh3ISq40ltzvBhrAXwjRL MtfLMwvgQAdggD9G4C4BuHRyaTmAG/dW3wqtI4x6uSl8p87Php17HrstDkyv /Gxs9tyzM/DsWTCPH3fExGSAlFqqDmlfdDNbOjTToAcrk2MB0o1B+KfP9Ez1 ed2GXZ5xnEIhq+S0PQkIchA+FXT8HgBYvr2EEu8xt4prtgHILgCy1pIW9kay pQPSf1qBTlaq3bNyjMWobxZQu/huT1g0L4a3PQmo3xtQfxIU/HLWbNPELlsl fe0zE31gzsfr1NceK2HjQxs3+zt1KxdKr5jOxCdhib2SuFyHUO8SMOCfBdE8 knWILXH9joRPFphOR+8RWh+49cLaFyiZaFXUiywbgeXgZIWMlMsonDweCvJ4 GLqKkVGWWKbfPezYK0pRrZjgQZLJiEoCp51QaM//ADSVeXN0inVV6zylPJH2 qCLegPKg1j1K5dwrXw+cd73Xtp7XlGS+kCCfPpu6Q9Qmhze77GY0cG75q4DM fUEpnwA85NvLUJfuIDImU739y2c4sfREYT5Rv1XXA2Jv3fNNYVGJ1S6Qak/8 2CVC8/57AYEnAwL3QhOX4FVyy9E+J0KyGCTY40M0I+tFteBQZqW7gTN7Ake/ tsoweF7zfUVlzCe6MsnMmgZvXTmQjFdK2VkpmHQU6BB1duwl65OOgdPA1HPw 7HSlPshdSntTkSWGz7mRN8c8iapEPNlyJ4F3inIeaQRl5ez5ALsmY2g9FaiW 60xOgWhpKDPrqyeAk2XgJClX4GQ1vPJcIMNR/VFg8laQ2EV4dmulFOnqpUOJ ejaint1hmTgnGdIRjtVKcuyiT35dn+wFmmfvQGOPBUDTezotmceYI1qCI1kS R3TC/THg6EQkX/ONulknFx5mdrH3cpbeOaFp9VLQPrrwKQnbg+VI1yyuEpty 4kXLLNYxT1dK0tDq3XXPQiSqRgmjsthMeh/moKOor8fNOJnJNVOHAvsbY1Q2 FbiSzEQTdmpvB/ckQM5LFpnzshZehEM2Q84Xp3SfHQwqr4BNhoouySL9XGek adfNCGUGAfTtX8tA8nkg+XgsivqZ68FCeWXu8HKYa1DAs3lW69p/X6hxIdXt DFC7jclUqgKQTvJiaDxBqX+ZwczGwk6m6zNSuDDX79HbCFRr9s2DUXhdqf2E eBqpXdEsr6n5Mk1UbcE6WACXtvSvDwBkrlnvfCwJFEnLbdo3yg3Hso6wN6Bi 3Zy+zCuC/wRBYxKWshu4Ka2bfSy8doeDP+vlvb0b4ld8uf6Tc5Fs1NkP+UnG /Lmh80+1vxadnjTavos2Lvb5DHKed3t4j6hRMteOic5dEwro6+eVym0D8OOI rBL41DGOai/K0pllORvngxhKG12ChTXZ1gzMpzhLpKi5ziHzZyWK8A0VIZat irLvlp1vydAk4SYFbClS7oiG7YBbgMkLfC4MZugyVnViu34ybB/Rt70W80oR vQ6T/UF2JCflDa/AM2VtMxqvqrbX5p0F6gjZ3ChS6nwFIVsXa/jeJelA59kV 5zeV9tci4yJYFYRdfmXb4HWV8j0UOK+gYahcM5sZrc5XBAtRxw4ns2q6M8V+ u8O4nttoNZMlvMTcUZDZsyLkejd4ITKsNaIdDxWt0qtMye8pEBs5M9tKsgqN RStlC76Ul3yaGNJKIj654pul/kpSPAh1BwQ7TrrtdF6z2fpOYWfqL4JmpTLV SMLq2ZZo8Ha/S0rYm+1umCtrxvf5IA0afeOzZb4FEjQdb9o/7nZXMQRTyTGz TYtZqzRbjaaN6s7bINHl8aaF6XDmcNEdxyb+LpoQDXeXKemf3D9Dbmt88NOT TK2QcOXmLBHujgCL6pJn3n2PIwWthPjOcZza/Pr0BeWB2rNFp8dVaSvtRshP moFgeD2zIG/0IZluOnLl3iWaJy6O62ROB033jLsyX/HKkMwJbcZo7hGUUM1Y Iv14ekraWnhlyTC5t2FEFxVu/zoeP1NOynXqOqrkSmw69noY4EwOlYSWG75n mlJ1flzbFerNoL8uZqsfFVIPPfNCoZxrb1fNe5twZqLJspYNlIsFsxAdnM2W KwRnvJ+5yKK4NjG0bxLBiTOxrhnI3lkt9eOCoOigwY6UliS4j/kUc2g+bUwr N91fq82GlRz9d/LbpsmP4o5JfsTDoUh+xN4gSSYHJ2gUdoRQPg6Ksqfk7qpR 9NL1yEjhCcOXlSP7IsxBkufMZp1ZcGOWfzqyXwqFCacEE0f267qwTSxUrkip xDMNE7OTeNuOYD3rVqGcI8l01mVQ6vnomW9gLUAcObDqaGHgSobtWUnUDJUm ftyM52SEBorkDBTPGO3piaW1hJSt3gx2VM41KROhlpLoaLF5UbSdU46VnmnX EutNe3TKqYp8AtJxkWuFSjw4R/+uuOUr4d9SkGYeKTjODbfjfwQSo+RoI6B5 OQCjnwbuCCs/AdcoPamUNcwfV46ALyxg1+8TN4VEFbrHXCXfpEnH4mVdvncG aCWujcSnJ+4slIvFlw0GteeH1RlquKqB5dnfIXcNEcBAATcGiWZCR18kNK10 T0FxCoYkfHqz51I5195SkFDtkWWZ1lL/SpIBTyLnbdBoyaeRUSA6bbK1YiR+ 1ixNd0DxeyrZ700xTeVce7K4V3tA+hagtJS8tCd5qNrhFgeLhnYE1lxbRNkn dXHcFmCR0FeaR/VmU6dy7lVi42qP86YMWitLy4xJvE6tiMiXVo75kyBHRX98 HmTtS479KDdYSklGcMfn2QKfuyulRdclpP3eYl8rN6pLa/9JjNs0XUtMbXZO u6c/Va3sHigIS78dPM0V7pg7V2CutmvRsRHhv/b8N4mI9uH0q845y+cooG4+ lcwR3T3osCOb+0gBu52AXe2FOTKfqz08ntpii53kfRuKmKn0IXWiNxi7E4Gf J4Ipp1G09/qnpFynpww6EU6IxbnXfDk6+qBgR6sbdwP5owKKdA+IC664GSh5 KiveNtF73ZCYWD6BR3ClBsvCNQK46OJqBS5aXbgn6MeEIN0E789jtBtF1ZLL B6Xp+aCu8uk4wEa+HcGWeHmuHB1l+BTDthp66IMg1D3QNRp38SwjZvaETHvP t4VMmWUVnehtgb2KqKs0SYYntveWA4dYfKeXL5fsDJYRI+f8LGC3m7Gjq7rs FliaVMa1LGHVvfcIBh+t8aD5l4CDUIKQu8l1AFuyN1WGjVy1c4G54WAdg1dL OhczfFBAU9PZnYlTgngcem+SSWLm03J0riPno8nV1ZV7tMIdaut+WsfFbIzR qZC6AGK5aFeeZS9XvU0dSf1WlJyLHZXo7Qx260nALL+rrq1Bd27a4dgdpeBV heH56664MUpdk1Kjasy3yWlLx8/2AoobtmbTVGNHQ7oc8RqInT3b3/GeJodt 0VqCEnY9OHV6fOKWuKfJUnNsTuekofTbZ0HRloMavqNDlKyEua8ifArBcW+r tjQ7yxqT0y2fHEp2T9Vbj+dSvl6AZ/mV0m1L1lVz+/LqukCvWizGbEcVqcuE 8plV1s8hd5DJjzZbeZSQoWH4AmjGPHSjKXFraEEH+oh6WXq6vWLBqjnq3Hik ZGw1nwzfRsnNerY1BdaayugRiRzGDOnPb2s2s3/RVhc7ScFyXDUQEuJS5AKP qNn5Eyl/mcvT+RPrRNjNy1dTryaZExWEOB+6qwVmeOxoNIr1O+VXgq/aldbQ rbYrbntzyjMjdgMhPSjpeuzH4p7onn0WevFcpj/j3HI6ARhn2sjoxDRg1xzC LSJdtYqewjvxKY0CvB8HeOmO8gWAl7q2nav0ddkTgZ2KviyGJ+vQw+NrpXOX RjYF7bi7TwMlpacgKK0vNDzFCY2UPZsAFvbhXeHFPiirRomSEdGnNfxC61mn mSgouK0gnyWQD60aGvlU2YFIKBGqWyqUrA9NeijhErRVl9OsIIjXQRD6cm+/ II6RIMJfYnCyKV1udfqMlmpzxDZlNS6XrVTRwkwDXO9l0SlwQZKqKhr4qlxK 2v+8VEk23VtPZG+OBxu4W+Iq5DGQZ1HwQGgOuVdH4DI0Ubv7SQiY9ZjlIDjR OPKsF4DPzwBBvfZxdnyWVi8l73n7Y7wC7FPqrsWt4ZL2hd8YxGW/NOX4ZxvV xG5AYYgayCytSI50Zj8BTegRLixSundhBKxuAqu9e4O1RmZ2rK4WWF0LslwD BjeuHYNrwOCblQzudXYjZrCJzz0eBt5oy5oW52p5o62rfTpvn4Qm9JjlDm97 A290HwuFMtBG/6eAiF5rkfKm79n386bcpx4fTffd7yhweRi4XHn/cZmH+TRN HPNgLowKqZOKJnkgOxTosF9n5+2+Zh1JeaBfy86OwM5NICcKF+wNRKw1ASlj lAy1Fy9Hkon6D2d0/QJXl50RsNMbHnvt2THxQ8YbuRWYWAUmeqO6C0xQ6N0B nYnvhyYuARNywFt8RpkR3QaMUSh57/mQWmZTxii5bO9oETNWuyZ9O/BJZx+m 4fMTwOfajPjE68hbloixncBY73ms2TH2aWjiNV0zG3X5LY2W0PndDvxSXqHe EYvKpfxSjFivGx7rluVp0dE+jmTZOyWnu+qTgGQaXgayXjj7MA3rknnLcJ4t z+osn2obqDtRPxlTRn9NT1Tvwdw+DjaFl2/mAqW9C0q9WTlqbUPKxe70LaZ2 3yXzvlnl1krZADSf0rSAFiLL8vAUgyTKWhAKxyX3sIhsK5zmtnRipXSLJC7m OXxo5nva/KzM3fXeIDQgTF29d5BiAOI5YgIH36rXVKSVqrU99czXehGU+TVJ wQUTY890ar2jd8hqrPmS0lHUsv9xYP9wP/sT7BJcJB3AwmOXlFOBI3pZtRhM RyJPbQY47U6lOxU+E+zkqVBlQ2aS4Gyc3vFivqPZYe/GOpVL4SmqUd/oVxfl uKFB4HN8OcyWA69mcMrGb+PbdpL5ZMN9xreEqG4CDWeSDmw7uqRP2RGoqdi5 T8feYhzLm32YZWeOevOoUocqOLfvWJPXuBVoCjvLMIlXrz12dwF2uwN2e4Ck 3qF5QOzLJ2SAK+1Z9x+/u1LIvafn/ZtsIuFIo7ViNdhxQkmsBlIon5Giz9Ve QCaB3JRPgjx3LiLmQA/acbK3Jjs/4pCtvQaVkN039jpem7ZGzVeaReS9WXTa 1Hyivgs919clagOYCgs5nw4A05Ly4+FbCRePjz14WE8DrLLlsiMjSXozjceV HvjsFbZsFpqG75fer2OrHlowqDwGaiwox3upuTsWo3wovHbSWJKJvKArsuDk y0q5krIWND1rqy6epXbtzhUnj0tu8NtdhP8UwH8kKueposhVcmJ6nSzVfEjj 5FjUDnyGTodf7+K1w482AOjc23AkzXTMnyIbCyaRI1PwGfUdBNpSdKQ9AITn pwYbxeLdASzInRMD/CQKkHi2YAhrTrE5zWi0Ns5Debpj7brB4NKE78NBgHma o0bRD1o/ji6NqBwMG44+kYM6iVVzMPTGqyTlmJJ+ByWBV9+l5CPNhnY6yLyv 2OloF2ljElBljkGXAyc1HGG1OrvkNDejJDuqTmcLC1C+VehMtAFxGgjbPxmy tRlDcv1wlMhVv2qu5dKQV9A8GpMegbozhFo2kuTCQdpjJ2NLO7ub5udwV0Pm EQ+D9s4aaHH0z6VeBoOqR9CoEVwd0m4F0qYGmq4wpgkDXbVLmPZGIFE5as/V paF8IM60A07GTAIO5DrGPLlXo1iKD2r4mlYoCkYuN6WMkL3BToV+TDDeV+ER RTDq0XoFdS0lnVdubMz84lq0bwG0bTkmbxRMA90KTNmOe8OwqFyMv3lbnmVj dlgrW2pF9IfvFebpmYfLg/PeZNxKrsYkt6KDeJq8Y3SU9wzUpVQ/h3Xx1Cbr k+ifUhd1z0yC+aolvUa91YVMP4WA3cTC6fWaXEmyWFNn5qv11lhMvdHxfWKq 3f46ZJV1jAeHi8KhnnNC7Tn1zlaSDdKxNE26S1mf0R26WSI/YGHQXGXLG58N p7oiB4kEcbPaSyZ00FxRsmjTZJ+l5Aw1jmGPwCi8hWbRBwJyFG5Aq4kHK8Ye SbBK4tpof7skWlpvGezd7Yci06Th9gnIk+R3CH/vQbMC/LIQkHlOtL+5xj5X Zwc7eqnPYkfmy26OF/Y2mzRWcEPtUZXCGhAU0+te7oCXTCNuOoKYiWTENFFO g7ktVBlZFZVBK5vktPWuyLqslFPOblhNqL/D4VhltyXyJ9OE4VchkUszzS0K Qw5pa6Zzb3A10H3s331vOEdrQateq5zm70kNEbrYvNynnHW6vvOmsVeormm5 vtK0qApV6+wdRliVwjSP7A2ETsqxuixn79JUKErRzlv0FOxY0I/enAuuOOnH ShCGrC2pOb7NIyXPnaoX1C/aKZQNVIonQiU6B2qDJ5b2i6n5YZcmdZjPriOc dxSrhkXdohL7XxhlppG3LL7SXO7eMI8QjlYKGn8ksEh6bvjYbq1QUxH2TbpA lsFdE1anCwcLYjBxPLWX0JkxNu/i49ycjLnbt3/tg2dVMQ65eXJPXcRub24g ItPxJLdFirzPapoUpdZT57zRtUxOzO0zmTY4lRi31+EYVhs14lvxG5JT3zF5 GWsDJ0A9mqJmsqi9QNSfQHUN+n9ZlPQE/tAotJCHa/Rktkdl2mh/mWxddNGk pM+j2a1EcYi8txXUZRTgNruOanDaKABT2ic139Uqh0zPOpMyJxhbIcsDtxWn OGL9qImCCs8ybVyDcqVsKqJ55FnEtkWKv8ozpVXblIc0sZG0teneIfrqzIX/ wqje8tiL2myd+JmQY0fhrFb+Mte6472S672Be5q2OvzrU1ECz5lXJ5/kXqsn +taM3TPKNBZrkRcV3RvMAVoovmNqUW1SczplVGhaB/m8BvLpXFfh/r860DUd Wm4PwNGKn5NZchFi+9/Vd76iCYpuHSIbmCwdO3aeDPZ2xzhIIIbTKG/PWDAX lNl88gcrohLR4J92BCve+ChGSWYy0bB3uw3rcpaTpuLcT1GuvpUF88diLPBQ QFSKtq+dkNcDJmIYa+WrPjPtndfcL+Mw0czwulR6YtgXXNM50GMPA2WvpvUV mTTcPYHsAlF1B5LcO0eBNJo36OKbh357V4CEtoGVfts2NqjfmnLd83qOx+dA roxUU3AE5Nv1VOr+1E/kuNRIViYA99oGEksqp3V6z0m59kyXkTWMuXEmES+n OfNzIZWgu0s3mmcUBsWCtTMNXHTURarT7z+W1kpNqxeCzbWdS3oC/MaZHIVO 5BPfJulzB8ddWdJulUQFml46aiHdGSRo/DPzzJ3fasbWn/c+lrEzTg7+3yKI 7r4ABoVbdRxHWmaIsmPy2uNguaXtX4S+lnWfmnnSdZWikovgD4CoqNsthhr3 MPCmz8ynn0yfWRWMOpVMgcW0kv0YkHnBIyM1bTvSU+eCUhgV36V14fxZy8f9 gToKZnbH8I+DxJ4HidHlicYimcM/y306oczRC3LcHR7tHXfluCvw5nvAuGYM 0p61Te6VhqrM4wIUNb25Rj7tXzvHVl3Hfuclo7zIgRGusSAuBeCNAZHzwSya cYjOX2SHwo0eW1tYDI7xspEZ255xVzbZhNiUe0gDl4wa8bs39CksnElHVr46 /Y3E1lUHf6tPoVv7xl3HLRmQhdRsyCcnu5q7s4LWD8t7ftFqpN49ybshK6ks tpN6yILOiqYeA/ZBH9BUZz6YyqVcflfCNmC32gJ3Zyp6AQz0XCjs99icxhgW zJizYr8dxw7AAErIOK1ahE6AotCyAZ1Opsggox3qCfDGJpIp7s45weUb0+0z WfSlqyxLakAOvR/N+i2IJ84UHokalIaHpVwIiVpciLbHs/qqkW45oWST4uSf EY7YfOWcRYpw0tV15yb90lUHtcy98tkMMikrZ8kp/ENJ3kjyz+Ng28fGtZWU +ubTg/41US+zaJYRXwzyxcoFcUsfnqVkd4RH/kJ1lQrdGqC09ZtRU3RXh/Qp 3/2zeCZdHZLj4I5nJdaF1MH7F/5ljR8bFa3NnpXGsAcFb3DdxBiQU7CqjRNS l3wUf2Q10ruxb1temKzHOcjkyPMdRbIzkyZDTuw56Bccp+jZ4hOehs73xbZG M6a4mqFnODHqMQrWwnyKj9EqgtoTHgWUIyOzmBoS8k2cjG4DGT0AMjL2W/zm zFtXmZ5zStWRwN4CrNZt4+8OFeqpG/1ZvMVZ4PmuAHmy/OaoTe+zsFY22YJw 5eRUyi3uvR3wycVPur4j3HpJ0UaCnC46FnBP4n4dDaXU2r3IhpSCOY5PAWbJ uVb37GlAjxJ+bAJ6+8MjM+eIJ5Cn+l7vyKwNgKM961L69X6VTNun6I/HU1GS p2y+3VkJV7w57zXJ7EVZn8UO9NlbzgAWFBZCmCV+ezxeFAfIuLOU8XN/u9pj 1WI+AfTeH9B7HBSwFlGfbrnTQeeCPZ2PAD4dBHo6vP4oEEdgrgKYtVdX9IKZ OdaLDpcOYWdBDx8G/FamxY+MngPxDNB1OwB2BMrREQcCtnQva+/RnKz98wHb RwC9s0ER9gBmNGS4k0p1LvcDlrIP5ViM3Qx6vf2T3C5CKrlbz1FTe+3NDQXU 3IZqY9ZqO5Q8Cqj1J/eowq8zUU0XQSyB91sy7fYkTzbXs5mH+yd9abMS4SRL Fg6GkyFM0enPAU2SEup+QHh1CMKdHtx0tTbS0HsBXo+sHrvUEccGMEUnNUmV ZwE0BdyIAXgGVPnueMWjHt6hi+xjZ2fvs5TeB5CqWJOzXgs0aXTtZW8Us0NB u5KPiOzHswB6//nfHvjdKmMyPc7gLiLtrUP2BU1Irq9EOlkwc7TStYfTIE3e m6i3zELFvVmrRFXGgF1gJKx1cKY4en0TQlTaP+rn3OQbUIoIwnQBMJgGU3Li zgN9F0CPbwc9rkWcxgQ/5R1XLuQ7uZjYCn2z2wfM+UciFZYYaTxJh85vzgFX dNFnrXQouYZZDjCTzefDCoysxdTiT0OFD67s4h8bmvsi1JNDn67lw9IlYDQz jzYqId6cArrtoUs/7JiLVpxsT/JszYfp0lyAdUDkwojLS/QB7k2NM3fdcrcJ opIdYjNNr3VtXO94MPSBk4A63Zwja2dm2WGjEnByYAz0+gyrbkG/pdBlH+w2 NF9oqIPKlcJWphKZoHQHkh11M8o1sex+AsnVAs1esw6vuaFS3Ikd63TVbPm0 VhkoSuYRUQbeo8NdHvvZdsr3QgFoLaBW+hRna+IBlgO7Hbs6a/GauUa0LT1d TvqSzCX2yy8d9nTxmXV/EGRsnqHRLRK4BMzJUQRziGAlkvBZwC4PnmxLUDiZ KuHuZJTWdKcRL3mekaAJWxqktrJ7NzJY1kq7ExfQ1Puw5J0lx0s7uN4/TAOo j9MVi8l6guvJy6AVsUraM0d/wtf0smji3bheiWU1s4DLPBJEaodkZHllPXiE hF0rKIq5ltBnirtzXfUhEBStslJXJUHJmUZZnctjqVsstgldfLY4K581+bTW Lcm2yWaBeL8TmlqzRDeaQlAS0CMHvShk1YnnHIiHDv3dWCkejvpp/BYjzxdN ZM92L8ny3nspbLBjwI0Us4neqjPFUccJD6TjOZq9bPZXok9Om+zNJHeQTiYH 6iZ0obE58pnF2ho3dSmoxgQwX4S35+fJm0YWg1jb6xwGGQZGleCL9yQxAHRA ws0CHgbIaU5Pqk+QJ5bOPeOUHWMT8NFp9LWw6DYUPwrNk4PWtcv+C75nwHiX XHO8tTiaEV6u9MpUq2RHXtRAzdrYPxBeiK+1bRkPwTSxCzA2p1tXrDXxONKJ VxumbSd3GY50lpRwzO+9GQfLQl5px06W7MGMQK33SsYuLlMNjbAY9gW7merk mW8l3NEsEcZAWQkgUPP9xCbuR5N7eY3v09sDqDsAVHtb+/DQ001A2C4ntxu/ HYRpNeemSoR/XgWto9A+LKujjDK4Z+qyGHrAUpAS3Qi1BTg9BjjRRo2JuzV3 D/zSQCSM47MjcBivp3uqTRzRIe5ZWbAnZVK4exgrGwHjbHXs7bCHKc/Mp78I LL/BLFu/SY2WSQNvk14l6mCmnny+rXHjbQGGJPTGwUBTXRPXV7vtdcWtXSg2 nLbJfmY2oB11rYwrdpWaJhwla5px5QJVGCYozdOHrgGmqp+mI1gfP0AxCOtO hh3suni2S+VNo22/yLSzgF0SQOewo8CfZLUkpj7roF31ocwgPw3YvcnV9xW0 L4zhUW+dgx4sSLgUcrPEZKA+dU8xSAaAb6mw8EvIKSGVsm5RxSGVTaNOaWXK vGgD9dpcIh2gaJ5rgIri8tXtZLHxsuiStUXWvvYKCBpvaH/f4jXQQNWmQXXY PQX0UUxH4mTGvGUdj1NWXv2L7FTpwhfyw3SQ+kwPoUIaddcwVO4IfP+iyl6/ PtAgQayaUW5lAnaehpfOw0vp3FRyebCrSyEQf+EaABA7NK56IaV62t5pC8UP AZn6/WdpE1+HurTESCz23kQzOxaNOZx3TDgTdnsl26TkX3uP2KZbC4hte6gg 7bMJSZ3BnE4Y6ReKpU3++Uo0anfMa9HQL9iYFg3SjdoLqn6qr24BDdK11MPV 0aC7YAiNU//fomHWT81g8cEtw4B6909WYkCZDWlMSv12HQP1bix1kcU8sh/D 22z8lDWhskfVRegO4LL25qyfgLq0mkRacs0Qog2PgiLJfgYdi6u90+qrGjL7 K1ksXFLZZYeOODr5/5lKJsiT/7OqeAsppLOcl9OzWpWvwwn0ClBce6nSj0Hd d8L0qejT2Wf959knwKBnBXouMou1zNMdRj/Q/jRLl5fbGn5XPJJyM0im6sW1 dckZBnJE0/YvjwN8saJmcbSJ5XRveN2vm6Q156GmjwzzOIW3K1Adr4TKTAWX A72s7D8M6NTex/Kl9mettSSTc9n2DK1wKQRKlk0iuIqwkYbR1dmHbZdr3DR+ d/uSkzMFq5htKukppFS1gSq0x5ynYpgMoYMBoSVhKn15FiUzED86KfFFeVVp CajK0PfoXT+OpZgLuujsTkBxf0BxWx9rOVltTXdV+48ApPpdJymkXyhKL34G NATIe8DkI5+mfBquqRs3Qm9vqGqCkUhwdDx3IGoU+PZ5XzfqrBI/mC20XfaN RoXzkEFArRaZ04DM7qBXK5GW5iqV0XlyAm36sqY+MzL/5aR8Thq1c8K7AKmV gJTRIR8wMi71BGAl0qsfBfwuqXrFyYwMQZ9pP4krdaz9dBTYOgNsbU8Ni08Y 0gzfBZ+Qr0Ehf1+Gpmn6F9LMS08KXUgGmlRFLB7rgJsZ1kKoTxTxaBowE3k6 cXpyAjhqr633Y1wtFoMCVpWIZlIpO+JXRetIErbdtj8JRF8BVl4DiA69HyBS 7I2OTmmY7n4XmKNB+PZheMlhaCWs4AegIVpwUl23mqG0/esIoHPnBOi03+VZ fScAZhSAadJENXQ/xexwqk8a3AnLTEHjSWZXKelglIOKFh/Kid0Nc6JNhsQf HAJMj2ujnoaYDyTsVxEpQduBhTTIrkraZWiTjMs4RJIo/RvAKe1d+INNVV0l GzG2jT21JlTeDOm3FtiLjWuZrSup7OYj1ffMvBRWnhxBySdJDk4RDioQhoWV tLdlWp6pgaBx6yBVLzD/w9ypafWsnP5OCZ+m0EX1dEvWveKrfCPRIpOqPhuk zIBKp6TcPs6PMAfJEfVYFaJxI22vdrue0jO4y2KVnjCM4cyTNfdGkcPAcPwo KwW5EUomW9KfWmwoOcLQcwEKNrRVkSRFjp0DxuaK+VWXwzs88yi5h+9zlGjb byegRMd07uxHSUZIyoEv31KsL4VCHdCQoDFVWdcSG2uiA8yfydk+1y4tqDmW jSU13yiO0sWy/UyfvVvJfHLDXUxkOQZcGSgoImQVYKB1WQfDnwvyexHI/RvT smUGzZuAzL1A5gjIdMEsFHzyrFtGaZpfm4JMuTcs7jPeI6MIq31AOm2iONIp XOhpIO7XoRylX6LMqrkBbPuPrPJsAhPJLS+uFdrbckx8I6gJXbDwnSlIp7T4 ewLpR4H05Kica4X2JB3pFN37aFCd35iC9NjhCQWdapvGrwPqDwP1tH/sYvYo XvJhoO83oRwl/ktSqibmocMHzVDWgKN4nck3Sdv6jqNvBlU6B/T9ran5SFVp LQhj/9iPFBtAMEVoOIIpxpcSUf/tKUgfsQgOBer3AvCbwAfF4rgY358F+uSy 7O/Ct68B9UeA+lWmfj1QvxuovwGop2gqR/3PBbWhq92nob6UXZmWwnYAM0n8 fj8zNM2iBMi/NQVbuwtsbcRsOW9jh/UounxQ+KM7m/ALQSiSiO/vtM+ys+yH gb7anMI28oHXZWM/sEs4xdI5wr8NwFJuX8NMKRAiW/aoSygmZBMwZIoIGCvE wjZXJuCTABHFNzuIfqX9dajl5584KXdaVHNMdF3VQbkmqF1CipJ9EFKbBaS6 29w2ybtd1T8TqUuWpWAu4FOK6Pr7gh3v683PAC/aqie8yCJRQMRmoculx8tt +Zss8IoySO9waNo586D7uA6an8PvbP17Av/AAzRTimSui5WliBzJ2oTANhnC 8DO9N4t86gMtnPfzrvlVf6zMSCpfKakQD4lgPuFMmQTPJp+U0mMoVF/PwTqh ZGpMYCSRv2J+dVY/Y6PUhKVu/2khGCOnj65P5ymg5NNUWZ/WAcvaHMHWMezb iD0xAXJ21B9uRdazZ22539ZUd6sGxcyWEsI0mqsHS1YCisrx3tRoT4qdvTC1 bgG2/cvoaOY+7g/PyCqSz2r22YyiWq+n4rRpPDg5V81/Wg+fJFLl98MnyUZN 1uLwOEAca7O6VdTEu7jstOXR/y0LJwLKWZedj555mtzKiPmDZoVJJvOCJTys 9YE5sg4CeO7zOCaI19xotMx03DPzjUwQnwHyaYjtIb83e1FLyy0qzZ3pMB1M ejBigCaFck8CzQpmwQCBvswM0CH1sxEDMht8DCQwAQMcvLNg5dmMcQkhXwBp eaQMGA9FhNNs8KGAPKV2Db5CPjjqSr+U9nOd9g7uG+0vQ8ojEdG08/Qg4K6S X95y6ISVefjzam3zm8DMTmYmuQLSPY3ZejcoUf/dKxEza4Oo4uEoWch0jx+N SKMdrg8HNaHdi42yfvMOn8BPDOwqMEDJzx6LGPirAdu7AVvaJbp+IAM0m95Q ueif8dBl9I9HHP0yiOQ08EYbgSH7f30fJhdevQOxgr1kK8mVeyJi768HgZ0K ekab3aqYMp9ezA9RXZvAg9J0PhlR/dfaH8XLCiKq4xyi/gW0o0DE0eyBUrw+ lRM34ICSkvJfzGPmlxOjch3bdcBZbSqeXWM/DDyb8zNkbk/PWhZ7sqUPytZL oQZnAgiHKkEg8SaBDa6cAkfKBfk+g2Do4AiNarz7u8x535VqEO90H/j5Gt6z YUVOoqgJ02kS25lYK6TfA6SPKtmm2WoSDeXKPTepyBddn56ozxS6+L1BwhTZ QDbbdHEzi3khZyYblOYLlKoddqQ2VDEXJnrvCxzuBg7Vy4jHMXJ0kqVKlGJk swM8o/4a3TcXFPCBwGWS1L2PywBu7zm8tvTzOcujwMookE0uS5JN3nWPbUCn DZaG1Hs9Kh9r4r8NSJBn+1D4tvr9jvBOrxw3yXv/fWiZ4lHOtT9NrzEBkeaT vgwZt/sf2x+mMXI+z3lko+4iabUzxVnz7EnhAK+oXB1Z/zmwSxPkc47oDmL0 zIaIDr+vT0iOCfvDQBjFFBjCaOEw3vPwQB4c62/uPFvMCflvQXC0E02CmxPx 5d3R8mk3Yfqyhb0SEfFH7Q/TOW026UprnL6wdgfSxOmmrx7gsZYIzDwBS9bw 43Ed8max/3IP80n2QpFfBkRHfjOj0hsg92nAiwrHgn97WnIXsZWsb4iOqxsV Awgp+pmddkb5U/Pfdyd+0Hzg/wAcYRiL\ \>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 692.}, {379.312, 0.}} -> \ {-5., -4., 0., 0.}},ExpressionUUID->"14202adf-2a60-428d-a1e2-8b19347e55d7"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"1.6299999999999955`", " ", "Second"}], ",", TagBox[ RowBox[{"\[SkeletonIndicator]", "Graphics", "\[SkeletonIndicator]"}], False, Editable->False]}], "}"}]], "Output",ExpressionUUID->"c024ca20-cb9d-4450-\ 95da-ddecd5b72497"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Net edge lengths", "Subsection",ExpressionUUID->"197981d5-1aa9-4e6e-a1ec-2271d437c0a4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Timing", "[", RowBox[{"edges", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"Union", "[", RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"#1", "-", "#2"}], ")"}], ".", RowBox[{"(", RowBox[{"#1", "-", "#2"}], ")"}]}], "]"}], "&"}], "@@@", RowBox[{"(", RowBox[{"Flatten", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Partition", "[", RowBox[{"#", ",", "2", ",", "1"}], "]"}], "&"}], "@@@", RowBox[{"JohnsonNet", "[", "n", "]"}]}], ",", "1"}], "]"}], ")"}]}], "]"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"n", ",", "92"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "]"}]], "Input",ExpressionUUID->"8cac2a44-05fa-48d4-9a5d-2d4730ef68a5"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"22.82000000000005`", " ", "Second"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", RowBox[{ "0.9999996824126921`", ",", "0.9999997682407176`", ",", "0.9999999946611356`", ",", "0.9999999948425581`", ",", "0.9999999948425583`", ",", "0.999999995929505`", ",", "0.9999999967225798`", ",", "0.9999999969108012`", ",", "0.9999999976979081`", ",", "0.9999999980786242`", ",", "0.9999999987489584`", ",", "0.9999999996254061`", ",", "0.9999999996584441`", ",", "0.999999999829973`", ",", "0.9999999998841307`", ",", "0.9999999998841403`", ",", "0.9999999999720192`", ",", "1", ",", "1.`", ",", "1.0000000000000013`", ",", "1.0000000000378946`", ",", "1.000000000547201`", ",", "1.0000000007037184`", ",", "1.0000000010527073`", ",", "1.0000000017382327`", ",", "1.0000000021566748`", ",", "1.000000002436403`", ",", "1.0000000025000015`", ",", "1.0000000041729664`", ",", "1.0000000045507613`", ",", "1.0000000045507664`", ",", "1.0000000046063546`", ",", "1.0000000051511138`", ",", "1.0000000068266204`", ",", "1.0000001411068333`", ",", "1.000000256030213`", ",", "1.0000005554363447`", ",", "1.000002702581355`", ",", "1.0000027025813647`"}], "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}], ",", RowBox[{"{", "1", "}"}]}], "}"}]}], "}"}]], "Output",ExpressionUUID->\ "b8ba4b28-18b0-44e1-b51c-49668585f55e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Flatten", "[", RowBox[{"Position", "[", RowBox[{"edges", ",", RowBox[{"_", "?", RowBox[{"(", RowBox[{ RowBox[{"#", "\[NotEqual]", RowBox[{"{", "1", "}"}]}], "&"}], ")"}]}], ",", RowBox[{"{", "1", "}"}]}], "]"}], "]"}]], "Input",ExpressionUUID->\ "9531711c-4c74-4e08-9651-0f8e3f7cdccd"], Cell[BoxData[ RowBox[{"{", "71", "}"}]], "Output",ExpressionUUID->"01abf7fc-c9c3-49ff-a51c-15c23817c7f1"] }, Open ]], Cell[CellGroupData[{ Cell["Now corrected", "Subsubsection",ExpressionUUID->"90cf3624-c9d8-4ee1-90fe-f886be35d253"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"{", RowBox[{ "14", ",", "15", ",", "16", ",", "50", ",", "71", ",", "88", ",", "89"}], "}"}], "+", "45"}]], "Input",ExpressionUUID->"435b90ae-3750-464c-bd53-\ 31aed57d81fb"], Cell[BoxData[ RowBox[{"{", RowBox[{ "59", ",", "60", ",", "61", ",", "95", ",", "116", ",", "133", ",", "134"}], "}"}]], "Output",ExpressionUUID->"191dec1b-9b55-4186-ae1c-27ce2ad0a9dd"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{"%", ",", RowBox[{"edges", "[", RowBox[{"[", "%", "]"}], "]"}]}], "}"}], "]"}], "//", "ColumnForm"}]], "Input",ExpressionUUID->"76a5c386-9693-4916-8ee2-\ 9cb799b4b025"], Cell[BoxData[ InterpretationBox[GridBox[{ { RowBox[{"{", RowBox[{"14", ",", RowBox[{"{", SqrtBox[ FractionBox["5", "2"]], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"15", ",", RowBox[{"{", SqrtBox[ FractionBox["5", "2"]], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"16", ",", RowBox[{"{", SqrtBox[ FractionBox["5", "2"]], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"50", ",", RowBox[{"{", SqrtBox[ FractionBox["5", "2"]], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"71", ",", RowBox[{"{", RowBox[{ "0.9999996824126921`", ",", "0.9999997682407176`", ",", "0.9999999946611356`", ",", "0.9999999948425581`", ",", "0.9999999948425583`", ",", "0.999999995929505`", ",", "0.9999999967225798`", ",", "0.9999999969108012`", ",", "0.9999999976979081`", ",", "0.9999999980786242`", ",", "0.9999999987489584`", ",", "0.9999999996254061`", ",", "0.9999999996584441`", ",", "0.999999999829973`", ",", "0.9999999998841307`", ",", "0.9999999998841403`", ",", "0.9999999999720192`", ",", "1", ",", "1.`", ",", "1.0000000000000013`", ",", "1.0000000000378946`", ",", "1.000000000547201`", ",", "1.0000000007037184`", ",", "1.0000000010527073`", ",", "1.0000000017382327`", ",", "1.0000000021566748`", ",", "1.000000002436403`", ",", "1.0000000025000015`", ",", "1.0000000041729664`", ",", "1.0000000045507613`", ",", "1.0000000045507664`", ",", "1.0000000046063546`", ",", "1.0000000051511138`", ",", "1.0000000068266204`", ",", "1.0000001411068333`", ",", "1.000000256030213`", ",", "1.0000005554363447`", ",", "1.000002702581355`", ",", "1.0000027025813647`"}], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"88", ",", RowBox[{"{", SqrtBox[ FractionBox["5", "2"]], "}"}]}], "}"}]}, { RowBox[{"{", RowBox[{"89", ",", RowBox[{"{", SqrtBox[ FractionBox["5", "2"]], "}"}]}], "}"}]} }, BaselinePosition->{Baseline, {1, 1}}, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}], ColumnForm[{{14, {Rational[5, 2]^Rational[1, 2]}}, { 15, {Rational[5, 2]^Rational[1, 2]}}, { 16, {Rational[5, 2]^Rational[1, 2]}}, { 50, {Rational[5, 2]^Rational[1, 2]}}, { 71, {0.9999996824126921, 0.9999997682407176, 0.9999999946611356, 0.9999999948425581, 0.9999999948425583, 0.999999995929505, 0.9999999967225798, 0.9999999969108012, 0.9999999976979081, 0.9999999980786242, 0.9999999987489584, 0.9999999996254061, 0.9999999996584441, 0.999999999829973, 0.9999999998841307, 0.9999999998841403, 0.9999999999720192, 1, 1., 1.0000000000000013`, 1.0000000000378946`, 1.000000000547201, 1.0000000007037184`, 1.0000000010527073`, 1.0000000017382327`, 1.0000000021566748`, 1.000000002436403, 1.0000000025000015`, 1.0000000041729664`, 1.0000000045507613`, 1.0000000045507664`, 1.0000000046063546`, 1.0000000051511138`, 1.0000000068266204`, 1.0000001411068333`, 1.000000256030213, 1.0000005554363447`, 1.000002702581355, 1.0000027025813647`}}, {88, {Rational[5, 2]^Rational[1, 2]}}, { 89, {Rational[5, 2]^Rational[1, 2]}}}], Editable->False]], "Output",ExpressionUUID->"27d95a9a-244d-4a46-bc1b-\ e29b6eb685ca"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Solids", "Subsection",ExpressionUUID->"2a2ddbd0-c208-42cc-9080-1901ce9cf042"], Cell[CellGroupData[{ Cell["Exact solid Vertices", "Subsubsection",ExpressionUUID->"360b372a-0875-4a56-9d19-0e897edbc044"], Cell[CellGroupData[{ Cell["exact = (#1[[1,1,1]] & ) /@ DownValues[JohnsonExact]", "Input",ExpressionUUID->"17bc8d31-2708-422f-abea-55b01cf129e5"], Cell[BoxData[ RowBox[{"{", RowBox[{ "1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8", ",", "9", ",", "10", ",", "11", ",", "12", ",", "13", ",", "14", ",", "15", ",", "16", ",", "17", ",", "18", ",", "19", ",", "20", ",", "21", ",", "22", ",", "23", ",", "24", ",", "25", ",", "26", ",", "27", ",", "28", ",", "29", ",", "30", ",", "31", ",", "32", ",", "33", ",", "34", ",", "35", ",", "36", ",", "37", ",", "38", ",", "39", ",", "40", ",", "41", ",", "42", ",", "43", ",", "44", ",", "45", ",", "46", ",", "47", ",", "48", ",", "49", ",", "50", ",", "51", ",", "52", ",", "53", ",", "54", ",", "55", ",", "56", ",", "57", ",", "58", ",", "59", ",", "60", ",", "61", ",", "84"}], "}"}]], "Output",ExpressionUUID->"c6e29a46-1fbd-4c04-\ bf07-bb5c34df525c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Timing", "[", RowBox[{"solidedges", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"Union", "[", RowBox[{ RowBox[{"N", "[", RowBox[{ RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"#1", "-", "#2"}], ")"}], ".", RowBox[{"(", RowBox[{"#1", "-", "#2"}], ")"}]}], "]"}], "&"}], "@@@", RowBox[{"(", RowBox[{"Flatten", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Partition", "[", RowBox[{"#", ",", "2", ",", "1"}], "]"}], "&"}], "@@@", RowBox[{"JohnsonExact", "[", RowBox[{"exact", "[", RowBox[{"[", "n", "]"}], "]"}], "]"}]}], ",", "1"}], "]"}], ")"}]}], "]"}], ",", RowBox[{"SameTest", "\[Rule]", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{"#1", "-", "#2"}], "]"}], "<", ".000001"}], "&"}], ")"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", RowBox[{"Length", "[", "exact", "]"}]}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "]"}]], "Input",ExpressionUUID->"f8c57015-f9b0-43a1-\ 829d-0b7992d3e552"], Cell[BoxData[ RowBox[{ RowBox[{"Function", "::", "\<\"slotn\"\>"}], ":", " ", "\<\"Slot number \\!\\(1\\) in \\!\\(\\@\\(\\(\\((#1 - #2)\\)\\) . \\(\ \\((#1 - #2)\\)\\)\\) &\\) cannot be filled from \ \\!\\(\\(\\((\\(\\@\\(\\(\\((#1 - #2)\\)\\) . \\(\\((#1 - #2)\\)\\)\\) \ &\\))\\)\\)[]\\). (\\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \ ButtonStyle->\\\"OtherInformationLink\\\", ButtonFrame->None, \ ButtonData:>\\\"Function::slotn\\\"]\\))\"\>"}]], "Message",ExpressionUUID->\ "fe64d14e-7b94-4f45-84ba-ff1c9c657532"], Cell[BoxData[ RowBox[{ RowBox[{"Function", "::", "\<\"slotn\"\>"}], ":", " ", "\<\"Slot number \\!\\(2\\) in \\!\\(\\@\\(\\(\\((#1 - #2)\\)\\) . \\(\ \\((#1 - #2)\\)\\)\\) &\\) cannot be filled from \ \\!\\(\\(\\((\\(\\@\\(\\(\\((#1 - #2)\\)\\) . \\(\\((#1 - #2)\\)\\)\\) \ &\\))\\)\\)[]\\). (\\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \ ButtonStyle->\\\"OtherInformationLink\\\", ButtonFrame->None, \ ButtonData:>\\\"Function::slotn\\\"]\\))\"\>"}]], "Message",ExpressionUUID->\ "9eb8aff9-b580-4fab-bdbc-176ad62c3b93"], Cell[BoxData[ RowBox[{ RowBox[{"Function", "::", "\<\"slotn\"\>"}], ":", " ", "\<\"Slot number \\!\\(1\\) in \\!\\(\\@\\(\\(\\((#1 - #2)\\)\\) . \\(\ \\((#1 - #2)\\)\\)\\) &\\) cannot be filled from \ \\!\\(\\(\\((\\(\\@\\(\\(\\((#1 - #2)\\)\\) . \\(\\((#1 - #2)\\)\\)\\) \ &\\))\\)\\)[]\\). (\\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \ ButtonStyle->\\\"OtherInformationLink\\\", ButtonFrame->None, \ ButtonData:>\\\"Function::slotn\\\"]\\))\"\>"}]], "Message",ExpressionUUID->\ "adb124e5-9081-43bc-a707-cdebb227779f"], Cell[BoxData[ RowBox[{ RowBox[{"General", "::", "\<\"stop\"\>"}], ":", " ", "\<\"Further output of \\!\\(Function :: \\\"slotn\\\"\\) will be \ suppressed during this calculation. (\\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\ \", ButtonStyle->\\\"OtherInformationLink\\\", ButtonFrame->None, \ ButtonData:>\\\"function::stop\\\"]\\))\"\>"}]], "Message",ExpressionUUID->\ "fa3ad919-b733-450c-9a43-7a7235f1cdfe"], Cell[BoxData[ RowBox[{ RowBox[{"Union", "::", "\<\"smtst\"\>"}], ":", " ", "\<\"SameTest function \\!\\(\\(\\((\\(\\(\\(\\(\\(Abs[\\(\\(#1 - \ #2\\)\\)]\\)\\) < 1.`*^-6\\)\\) &\\))\\)\\)[\\(\\(\\@\\(\\(\\((#1 - \\(\\(1.`\ \\\\ #2\\)\\))\\)\\) . \\(\\((#1 - \\(\\(1.`\\\\ #2\\)\\))\\)\\)\\), \ 1.`\\)\\)]\\) evaluates to \\!\\(\\(\\(Abs[\\(\\(\\(\\(-1.`\\)\\) + \\@\\(\\(\ \\((#1 - \\(\\(1.`\\\\ #2\\)\\))\\)\\) . \\(\\((#1 - \\(\\(1.`\\\\ \ #2\\)\\))\\)\\)\\)\\)\\)]\\)\\) < 1.`*^-6\\). (\\!\\(\\*ButtonBox[\\\"More\ \[Ellipsis]\\\", ButtonStyle->\\\"OtherInformationLink\\\", \ ButtonFrame->None, ButtonData:>\\\"Union::smtst\\\"]\\))\"\>"}]], "Message",Ex\ pressionUUID->"93ffa6e1-1b20-4681-bece-60a78cb10e68"], Cell[BoxData[ RowBox[{ RowBox[{"Union", "::", "\<\"smtst\"\>"}], ":", " ", "\<\"SameTest function \\!\\(\\(\\((\\(\\(\\(\\(\\(Abs[\\(\\(#1 - \ #2\\)\\)]\\)\\) < 1.`*^-6\\)\\) &\\))\\)\\)[\\(\\(\\@\\(\\(\\((#1 - \\(\\(1.`\ \\\\ #2\\)\\))\\)\\) . \\(\\((#1 - \\(\\(1.`\\\\ #2\\)\\))\\)\\)\\), \ 1.`\\)\\)]\\) evaluates to \\!\\(\\(\\(Abs[\\(\\(\\(\\(-1.`\\)\\) + \\@\\(\\(\ \\((#1 - \\(\\(1.`\\\\ #2\\)\\))\\)\\) . \\(\\((#1 - \\(\\(1.`\\\\ \ #2\\)\\))\\)\\)\\)\\)\\)]\\)\\) < 1.`*^-6\\). (\\!\\(\\*ButtonBox[\\\"More\ \[Ellipsis]\\\", ButtonStyle->\\\"OtherInformationLink\\\", \ ButtonFrame->None, ButtonData:>\\\"Union::smtst\\\"]\\))\"\>"}]], "Message",Ex\ pressionUUID->"dbf25257-726e-4d47-bbd1-a4466c9b4751"], Cell[BoxData[ RowBox[{ RowBox[{"Union", "::", "\<\"smtst\"\>"}], ":", " ", "\<\"SameTest function \\!\\(\\(\\((\\(\\(\\(\\(\\(Abs[\\(\\(#1 - \ #2\\)\\)]\\)\\) < 1.`*^-6\\)\\) &\\))\\)\\)[\\(\\(\\@\\(\\(\\((#1 - \\(\\(1.`\ \\\\ #2\\)\\))\\)\\) . \\(\\((#1 - \\(\\(1.`\\\\ #2\\)\\))\\)\\)\\), \ 0.9999999999999999`\\)\\)]\\) evaluates to \ \\!\\(\\(\\(Abs[\\(\\(\\(\\(-0.9999999999999999`\\)\\) + \\@\\(\\(\\((#1 - \ \\(\\(1.`\\\\ #2\\)\\))\\)\\) . \\(\\((#1 - \\(\\(1.`\\\\ \ #2\\)\\))\\)\\)\\)\\)\\)]\\)\\) < 1.`*^-6\\). (\\!\\(\\*ButtonBox[\\\"More\ \[Ellipsis]\\\", ButtonStyle->\\\"OtherInformationLink\\\", \ ButtonFrame->None, ButtonData:>\\\"Union::smtst\\\"]\\))\"\>"}]], "Message",Ex\ pressionUUID->"fcb7e173-11df-41bc-90fd-2fb393eec9ea"], Cell[BoxData[ RowBox[{ RowBox[{"General", "::", "\<\"stop\"\>"}], ":", " ", "\<\"Further output of \\!\\(Union :: \\\"smtst\\\"\\) will be \ suppressed during this calculation. (\\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\ \", ButtonStyle->\\\"OtherInformationLink\\\", ButtonFrame->None, \ ButtonData:>\\\"function::stop\\\"]\\))\"\>"}]], "Message",ExpressionUUID->\ "fb378b98-92d3-40b3-b7ab-8b1856059600"], Cell[BoxData["$Aborted"], "Output",ExpressionUUID->"6a44eb12-d42e-4210-8e82-60f9f7c95d4a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Complement", "[", RowBox[{ RowBox[{"Range", "[", "92", "]"}], ",", "%"}], "]"}]], "Input",ExpressionUU\ ID->"c8042b5c-5143-4358-8b9d-59f327371c55"], Cell[BoxData[ RowBox[{"{", RowBox[{ "62", ",", "63", ",", "64", ",", "65", ",", "66", ",", "67", ",", "68", ",", "69", ",", "70", ",", "71", ",", "72", ",", "73", ",", "74", ",", "75", ",", "76", ",", "77", ",", "78", ",", "79", ",", "80", ",", "81", ",", "82", ",", "83", ",", "85", ",", "86", ",", "87", ",", "88", ",", "89", ",", "90", ",", "91", ",", "92"}], "}"}]], "Output",ExpressionUUID->\ "00537ecb-6541-4b90-8e15-20f4a36f328d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Approximate solid edge lengths", "Subsubsection",ExpressionUUID->"d6d30479-ac83-4c5f-bf9f-3738ed719c55"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Timing", "[", RowBox[{"solidedges", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"Union", "[", RowBox[{ RowBox[{"FullSimplify", "[", RowBox[{ RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"(", RowBox[{"#1", "-", "#2"}], ")"}], ".", RowBox[{"(", RowBox[{"#1", "-", "#2"}], ")"}]}], "]"}], "&"}], "@@@", RowBox[{"(", RowBox[{"Flatten", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Partition", "[", RowBox[{"#", ",", "2", ",", "1"}], "]"}], "&"}], "@@@", RowBox[{"JohnsonSolid", "[", "n", "]"}]}], ",", "1"}], "]"}], ")"}]}], "]"}], ",", RowBox[{"SameTest", "\[Rule]", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{"#1", "-", "#2"}], "]"}], "<", ".000001"}], "&"}], ")"}]}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"{", RowBox[{"n", ",", "92"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", "]"}]], "Input",ExpressionUUID->"b3564e24-75a1-43bc-855d-92cc6918485d"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"1.4800000000000182`", " ", "Second"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", "0.9999999999999999`", "}"}], ",", RowBox[{"{", "0.9999999999999996`", "}"}], ",", RowBox[{"{", "0.9999999999999999`", "}"}], ",", RowBox[{"{", "0.9999999999999989`", "}"}], ",", RowBox[{"{", "0.9999999999999943`", "}"}], ",", RowBox[{"{", "0.9999999999999927`", "}"}], ",", RowBox[{"{", "0.999999999999997`", "}"}], ",", RowBox[{"{", "0.9999999999999997`", "}"}], ",", RowBox[{"{", "0.9999999999999996`", "}"}], ",", RowBox[{"{", "0.9999999999999991`", "}"}], ",", RowBox[{"{", "0.9999999999999996`", "}"}], ",", RowBox[{"{", "0.9999999999999957`", "}"}], ",", RowBox[{"{", "0.9999999999999961`", "}"}], ",", RowBox[{"{", "0.9999999999999996`", "}"}], ",", RowBox[{"{", "0.9999999999999997`", "}"}], ",", RowBox[{"{", "0.9999999999999999`", "}"}], ",", RowBox[{"{", "0.9999999999999974`", "}"}], ",", RowBox[{"{", "0.9999999999999996`", "}"}], ",", RowBox[{"{", "0.999999999999999`", "}"}], ",", RowBox[{"{", "0.9999999999999948`", "}"}], ",", RowBox[{"{", "0.9999999999999971`", "}"}], ",", RowBox[{"{", "0.9999999999999968`", "}"}], ",", RowBox[{"{", "0.9999999999999974`", "}"}], ",", RowBox[{"{", RowBox[{"0.9999999999999231`", ",", "1.0000017906098284`"}], "}"}], ",", RowBox[{"{", "0.9999999999999907`", "}"}], ",", RowBox[{"{", "0.9999999999999978`", "}"}], ",", RowBox[{"{", "0.9999999999999996`", "}"}], ",", RowBox[{"{", "0.9999999999999999`", "}"}], ",", RowBox[{"{", "1.`", "}"}], ",", RowBox[{"{", "0.9999999999999963`", "}"}], ",", RowBox[{"{", "0.9999999999999944`", "}"}], ",", RowBox[{"{", "0.9999999999999925`", "}"}], ",", RowBox[{"{", "0.9999999999999956`", "}"}], ",", RowBox[{"{", "0.9999999999999939`", "}"}], ",", RowBox[{"{", "0.9999999999999993`", "}"}], ",", RowBox[{"{", "0.9999999999999999`", "}"}], ",", RowBox[{"{", "0.9999999983219683`", "}"}], ",", RowBox[{"{", "0.9999999999999948`", "}"}], ",", RowBox[{"{", "0.9999999999999932`", "}"}], ",", RowBox[{"{", "0.9999999999999947`", "}"}], ",", RowBox[{"{", "0.9999999999999942`", "}"}], ",", RowBox[{"{", "0.999999999999997`", "}"}], ",", RowBox[{"{", "0.9999999999999962`", "}"}], ",", RowBox[{"{", "0.9999999999999925`", "}"}], ",", RowBox[{"{", "0.9999999999999968`", "}"}], ",", RowBox[{"{", "0.9999999999999944`", "}"}], ",", RowBox[{"{", "0.9999999999999938`", "}"}], ",", RowBox[{"{", "0.9999999999999947`", "}"}], ",", RowBox[{"{", "0.9999999999999998`", "}"}], ",", RowBox[{"{", "0.9999999999999998`", "}"}], ",", RowBox[{"{", "0.9999999999999987`", "}"}], ",", RowBox[{"{", "0.9999999999999981`", "}"}], ",", RowBox[{"{", "0.9999999999999978`", "}"}], ",", RowBox[{"{", "0.9999999999999994`", "}"}], ",", RowBox[{"{", "0.9999999999999996`", "}"}], ",", RowBox[{"{", "0.9999999999999993`", "}"}], ",", RowBox[{"{", "0.9999999999999994`", "}"}], ",", RowBox[{"{", "0.9999999999999911`", "}"}], ",", RowBox[{"{", "0.9999999999999893`", "}"}], ",", RowBox[{"{", "0.99999999999999`", "}"}], ",", RowBox[{"{", "0.9999999999999893`", "}"}], ",", RowBox[{"{", "0.999999999999994`", "}"}], ",", RowBox[{"{", "0.999999999999994`", "}"}], ",", RowBox[{"{", "0.9999999999999937`", "}"}], ",", RowBox[{"{", "0.999999999999999`", "}"}], ",", RowBox[{"{", "0.9999999999999923`", "}"}], ",", RowBox[{"{", "0.9999999999999921`", "}"}], ",", RowBox[{"{", "0.9999999999999721`", "}"}], ",", RowBox[{"{", "0.9999999999999719`", "}"}], ",", RowBox[{"{", "0.999999999999971`", "}"}], ",", RowBox[{"{", "0.9999999999999458`", "}"}], ",", RowBox[{"{", "0.9999999999999729`", "}"}], ",", RowBox[{"{", "0.9999999999999771`", "}"}], ",", RowBox[{"{", "0.9999999999999775`", "}"}], ",", RowBox[{"{", "0.9999999999999611`", "}"}], ",", RowBox[{"{", "0.9999999999999928`", "}"}], ",", RowBox[{"{", "0.9999999999999923`", "}"}], ",", RowBox[{"{", "0.999999999999993`", "}"}], ",", RowBox[{"{", "0.9999999999999932`", "}"}], ",", RowBox[{"{", "0.9999999999999929`", "}"}], ",", RowBox[{"{", "0.999999999999993`", "}"}], ",", RowBox[{"{", "0.9999999999999815`", "}"}], ",", RowBox[{"{", "0.9999999999999887`", "}"}], ",", RowBox[{"{", RowBox[{ "0.9996181671012107`", ",", "0.99965735675395`", ",", "0.9997815750477899`", ",", "0.9998664284483731`", ",", "0.9999050726384274`", ",", "0.9999482149280262`", ",", "0.9999999785463362`", ",", "1.00005178531802`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.9999984233388688`", ",", "0.999999553258433`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.9999985499977562`", ",", "0.9999998427417369`", ",", "1.0000008552219983`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.9999983780002072`", ",", "0.999999405528323`", ",", "1.0000004252618988`", ",", "1.0000015641011908`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.9999991537161954`", ",", "1.000073076778224`", ",", "1.0004562676723867`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.9999931363007358`", ",", "0.9999955765275116`", ",", "0.9999969780374696`", ",", "0.999998353597821`", ",", "0.9999994417472001`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.999994535257569`", ",", "0.9999961262506404`", ",", "0.9999980392737936`", ",", "0.9999990911761806`", ",", "1.0000000964907265`"}], "}"}], ",", RowBox[{"{", RowBox[{ "0.9999944558868377`", ",", "0.9999969804644976`", ",", "0.999998214360932`", ",", "0.9999993685387131`"}], "}"}], ",", RowBox[{"{", RowBox[{"0.9999997465411713`", ",", "1.0000019135142797`"}], "}"}]}], "}"}]}], "}"}]], "Output",ExpressionUUID->"130bae65-16db-4191-b779-\ 39333a13cbcc"] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, AutoGeneratedPackage->None, WindowToolbars->{}, WindowSize->{1304, 819}, WindowMargins->{{Automatic, 37}, {Automatic, 150}}, ShowSelection->True, ShowCellLabel->True, ShowCellTags->False, FrontEndVersion->"13.1 for Mac OS X x86 (64-bit) (May 17, 2022)", StyleDefinitions->"Default.nb", PrivateNotebookOptions -> {"ColorPalette" -> {RGBColor, -1}}, RenderingOptions -> {"ObjectDithering" -> True}, RenderingOptions -> {"RasterDithering" -> False}, ExpressionUUID->"f6704c43-0fc2-44f9-a177-64ecb7808b39" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{ "Info3281787632-6225199"->{ Cell[2429859, 73066, 233, 4, 24, "Print",ExpressionUUID->"83d3812c-1799-4a73-9a90-0213046093cc", CellTags->"Info3281787632-6225199"]} } *) (*CellTagsIndex CellTagsIndex->{ {"Info3281787632-6225199", 2696206, 82023} } *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 85, 0, 98, "Title",ExpressionUUID->"7d1a6d34-801b-4334-8ff8-9a684f8143f2"], Cell[CellGroupData[{ Cell[690, 26, 83, 0, 54, "Subsection",ExpressionUUID->"14df2b78-d68f-485d-ac03-0fe209d53981"], Cell[776, 28, 114, 3, 58, "Text",ExpressionUUID->"fcbc418f-6015-4f8b-9706-944750ae44ff"], Cell[893, 33, 336, 9, 35, "Text",ExpressionUUID->"5f2cb9b5-b88a-45d3-80ad-86c4261cbc3a"], Cell[1232, 44, 354, 10, 35, "Text",ExpressionUUID->"4d1a6d00-b0aa-40cd-9204-d49db16ad20e"], Cell[1589, 56, 154, 2, 35, "Text",ExpressionUUID->"30f99eb5-9a4c-4372-beea-1004a303f3f3"] }, Open ]], Cell[CellGroupData[{ Cell[1780, 63, 77, 0, 67, "Section",ExpressionUUID->"cd86cf82-0c13-4cba-becd-45d7c4fffddc"], Cell[CellGroupData[{ Cell[1882, 67, 1278, 34, 73, "Input",ExpressionUUID->"29cb2cf1-a28a-4e51-8693-528cc8f06877"], Cell[3163, 103, 881353, 15123, 728, 608639, 10651, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"7a61dc8d-e3d5-4ebc-b814-88555c9499be"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[884565, 15232, 79, 0, 67, "Section",ExpressionUUID->"b0e3fb65-3ef5-4d17-87c9-3cb5ca4a890e"], Cell[884647, 15234, 102, 0, 35, "Text",ExpressionUUID->"52255b9f-3a57-429a-9896-874eee926ea4"], Cell[CellGroupData[{ Cell[884774, 15238, 492, 14, 30, "Input",ExpressionUUID->"dde4bba3-2e61-41e5-941d-2ce8803ada26"], Cell[885269, 15254, 1194, 23, 140, "Output",ExpressionUUID->"72e656ff-a5d1-4c9a-96c1-12f56c7e2a9a"] }, Open ]], Cell[CellGroupData[{ Cell[886500, 15282, 145, 3, 30, "Input",ExpressionUUID->"fbcc64b8-a8dd-4005-b21a-6fb2de361bbf"], Cell[886648, 15287, 112, 2, 34, "Output",ExpressionUUID->"eba8c701-aad6-42e0-abcb-f2e544f2271c"] }, Open ]], Cell[CellGroupData[{ Cell[886797, 15294, 557, 16, 30, "Input",ExpressionUUID->"210d4768-36ce-43f6-b9c4-794faefd0318"], Cell[887357, 15312, 58421, 990, 910, "Output",ExpressionUUID->"20fdc361-d441-44f5-941a-9e56d9406a9f"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[945827, 16308, 89, 0, 67, "Section",ExpressionUUID->"ed7d572c-21e2-4fc5-89c8-6fc0725b86b6"], Cell[CellGroupData[{ Cell[945941, 16312, 563, 16, 30, "Input",ExpressionUUID->"1602c045-b142-4409-b23b-7a1d9eb8209d"], Cell[946507, 16330, 739, 20, 56, "Output",ExpressionUUID->"bd312744-b404-4d72-bac6-278564794700"] }, Open ]], Cell[CellGroupData[{ Cell[947283, 16355, 256, 7, 30, "Input",ExpressionUUID->"60c522b6-f2b2-49e0-b34d-c29079fd8bed"], Cell[947542, 16364, 128, 3, 34, "Output",ExpressionUUID->"3ba70d71-6058-480c-ae42-3e2a49660788"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[947719, 16373, 80, 0, 67, "Section",ExpressionUUID->"a0553b76-41f7-4bfa-8678-96a5cc233b95"], Cell[CellGroupData[{ Cell[947824, 16377, 91, 0, 54, "Subsection",ExpressionUUID->"883b2f3f-f229-4253-afd6-616762931e51"], Cell[CellGroupData[{ Cell[947940, 16381, 855, 25, 52, "Input",ExpressionUUID->"63a91e85-c8f5-4c19-83e7-0535a7819002"], Cell[948798, 16408, 6385, 156, 632, "Output",ExpressionUUID->"21695243-6ce3-4265-902b-bd25fcd0b57e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[955232, 16570, 86, 0, 54, "Subsection",ExpressionUUID->"6ffc0d5e-8189-4f23-aa0f-5b2e1429a326"], Cell[CellGroupData[{ Cell[955343, 16574, 721, 20, 30, "Input",ExpressionUUID->"7a60b1b5-7f2e-440b-96d0-5d79004c3dcd"], Cell[956067, 16596, 30057, 880, 2904, "Output",ExpressionUUID->"a36b1cb9-61de-4cc6-8d0b-b8e75c4078d1"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[986173, 17482, 88, 0, 54, "Subsection",ExpressionUUID->"e4cb8a8f-1810-473f-a291-e2e346c53152"], Cell[CellGroupData[{ Cell[986286, 17486, 716, 20, 52, "Input",ExpressionUUID->"31fc57d4-b971-44a2-bb97-51baaf79a87e"], Cell[987005, 17508, 24103, 709, 3222, "Output",ExpressionUUID->"8fbdeaac-6543-4d6d-a2f2-fdc1f1d6038b"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1011169, 18224, 102, 0, 67, "Section",ExpressionUUID->"c1b8cdcd-7e7e-45e2-b8e6-1335e6f1a091"], Cell[1011274, 18226, 286, 8, 30, "Input",ExpressionUUID->"38d844c2-f79f-400e-8a62-a98e575bdc41"], Cell[CellGroupData[{ Cell[1011585, 18238, 300, 8, 30, "Input",ExpressionUUID->"eec634c5-b23e-404f-abc7-f693873f3c46"], Cell[1011888, 18248, 1965, 65, 56, "Output",ExpressionUUID->"6b7ab6ba-e47e-4269-af41-534b92f7f6c3"] }, Open ]], Cell[CellGroupData[{ Cell[1013890, 18318, 350, 10, 30, "Input",ExpressionUUID->"3783e242-b7cd-4dd7-a338-f8fb9ea22db4"], Cell[1014243, 18330, 5004, 171, 575, "Output",ExpressionUUID->"621157f0-5843-4f51-97f4-906b65767014"] }, Open ]], Cell[CellGroupData[{ Cell[1019284, 18506, 255, 6, 30, "Input",ExpressionUUID->"c505f89c-c8df-47e4-ba62-3bd5652c0899"], Cell[1019542, 18514, 16048, 691, 195, 11930, 622, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ab093aa8-70ed-41eb-a565-c2af31a42f0f"], Cell[1035593, 19207, 193, 5, 34, "Output",ExpressionUUID->"f05e0876-5aab-445d-82d4-bdc92c05d985"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1035835, 19218, 80, 0, 67, "Section",ExpressionUUID->"bd25b5ce-6186-4ea6-a480-96438a937a3e"], Cell[CellGroupData[{ Cell[1035940, 19222, 1165, 33, 178, "Input",ExpressionUUID->"f6f851b6-e72e-474c-87ce-afbfd5612dc6"], Cell[1037108, 19257, 268, 7, 22, "Message",ExpressionUUID->"f3e3007c-af73-47cc-bb54-7af6b703b705"], Cell[1037379, 19266, 3832, 109, 296, 1108, 62, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"8fdef724-6578-4367-817a-ff6bbf287e01"], Cell[1041214, 19377, 272, 7, 22, "Message",ExpressionUUID->"d20ba33f-4a00-4d5a-ad5d-c7551cd7b7e1"], Cell[1041489, 19386, 3037, 102, 284, 1280, 70, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"365200d6-5711-4603-be0d-da2cfeee07ad"], Cell[1044529, 19490, 271, 7, 22, "Message",ExpressionUUID->"36266263-87e7-4df3-a101-c192b326cf56"], Cell[1044803, 19499, 4450, 142, 317, 1721, 94, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"4a24d2a6-0dd2-4e44-930c-318d6d31ea25"], Cell[1049256, 19643, 267, 7, 22, "Message",ExpressionUUID->"036a08f2-6280-4884-9cd9-9c192268303a"], Cell[1049526, 19652, 4690, 163, 307, 2158, 118, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"db32bf6d-ff9f-42e9-9ded-5bf593df87f7"], Cell[1054219, 19817, 271, 7, 22, "Message",ExpressionUUID->"0c659af1-2465-4162-80ae-234c7f90d85c"], Cell[1054493, 19826, 5222, 188, 274, 2611, 142, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"8f0ed33a-b3a6-45e3-a9e4-5d030a825022"], Cell[1059718, 20016, 272, 7, 22, "Message",ExpressionUUID->"c662ed4f-d8f6-4b3c-9827-fa2dfec20521"], Cell[1059993, 20025, 5588, 221, 296, 3380, 182, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"d277d9f4-59e5-4f9d-8a96-5a623efe97f6"], Cell[1065584, 20248, 282, 7, 22, "Message",ExpressionUUID->"61db45a2-0743-4189-96d1-909c93783e34"], Cell[1065869, 20257, 3919, 123, 312, 1417, 78, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"35fb5435-3ee8-4e35-87a9-b2cd8b702859"], Cell[1069791, 20382, 278, 7, 22, "Message",ExpressionUUID->"f5ecdc6a-508d-4fc9-9733-47563f14a059"], Cell[1070072, 20391, 3969, 134, 296, 1724, 94, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"84551563-1857-40a8-acf1-c724ca74c1c6"], Cell[1074044, 20527, 282, 7, 22, "Message",ExpressionUUID->"3ac8ab82-6f16-43ca-9e04-4a42d0a91314"], Cell[1074329, 20536, 4633, 156, 303, 2034, 110, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"e41a7c44-08ab-4260-b577-379056168241"], Cell[1078965, 20694, 284, 7, 22, "Message",ExpressionUUID->"24cc7f6d-0fab-4369-90a6-f6c64df232bc"], Cell[1079252, 20703, 5385, 156, 318, 1794, 94, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"b03641ec-d234-4759-9113-61494784b2dc"], Cell[1084640, 20861, 288, 7, 22, "Message",ExpressionUUID->"33f2f8b8-0f28-4315-807f-e59b8b7b3ae1"], Cell[1084931, 20870, 5643, 170, 319, 2147, 110, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ef60b419-7a4d-4f01-b04d-389b77e191c9"], Cell[1090577, 21042, 276, 7, 22, "Message",ExpressionUUID->"4d59aca1-65f1-4a9b-ad6b-7325fdc20fca"], Cell[1090856, 21051, 2795, 93, 304, 1135, 62, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"88cfbe3b-8f86-4114-8e4f-5bad17a067c9"], Cell[1093654, 21146, 276, 7, 22, "Message",ExpressionUUID->"09df9431-76ca-4f3c-a3df-db200a2574e4"], Cell[1093933, 21155, 3821, 120, 280, 1456, 78, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"05264cb8-b7f2-4f20-8101-b88be429b331"], Cell[1097757, 21277, 286, 7, 22, "Message",ExpressionUUID->"f9cbfeca-72cb-48c3-83ae-ea271874f5f0"], Cell[1098046, 21286, 3638, 122, 292, 1599, 86, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"8375da9b-cd0e-42b8-a17e-da7899aa335f"], Cell[1101687, 21410, 282, 7, 22, "Message",ExpressionUUID->"a0dcebca-7cc8-4f40-9ce6-a3785bcc15ca"], Cell[1101972, 21419, 4127, 142, 298, 1918, 102, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"8bd7f692-1750-420a-9864-20fb93fabd31"], Cell[1106102, 21563, 286, 7, 22, "Message",ExpressionUUID->"0a1ddfac-16fa-4657-a4ec-483ac2de27e1"], Cell[1106391, 21572, 5116, 169, 295, 2236, 118, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"af00b7ee-c6e2-48e9-964e-dc770781b36f"], Cell[1111510, 21743, 286, 7, 22, "Message",ExpressionUUID->"bedf9e42-4840-49e3-bb54-9937127fa0e3"], Cell[1111799, 21752, 4915, 154, 315, 1986, 102, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"7e1039fe-9993-4cea-b62c-5f4d00e2df71"], Cell[1116717, 21908, 283, 7, 22, "Message",ExpressionUUID->"9a151890-ff07-4d88-a828-0d9aa211b59c"], Cell[1117003, 21917, 5778, 197, 302, 2638, 142, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"40a55fb0-09f7-4b9b-ba0f-a1ea5bd16b4c"], Cell[1122784, 22116, 279, 7, 22, "Message",ExpressionUUID->"0a954db8-4d12-4718-9a5b-a163410b7598"], Cell[1123066, 22125, 6400, 235, 306, 3374, 182, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"180c002d-6a91-420d-94af-6da012b451f0"], Cell[1129469, 22362, 283, 7, 22, "Message",ExpressionUUID->"e6bf8e41-696d-4663-a582-70cfe14d5095"], Cell[1129755, 22371, 7742, 284, 298, 4139, 222, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"2971b9db-d863-4a48-a62e-474b5673aa8d"], Cell[1137500, 22657, 284, 7, 22, "Message",ExpressionUUID->"5b05c2df-4fc2-4a5d-9441-ba59cc7013e5"], Cell[1137787, 22666, 7656, 310, 296, 4879, 262, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"f210e8a3-5fce-4021-8a02-be08e000dc1c"], Cell[1145446, 22978, 287, 7, 22, "Message",ExpressionUUID->"2d36bad9-04a1-4e8b-ad3a-acfc74de7a56"], Cell[1145736, 22987, 6169, 202, 307, 2714, 142, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"e675d00e-25bb-4f55-bc7c-498e707e612b"], Cell[1151908, 23191, 283, 7, 22, "Message",ExpressionUUID->"a0e562ae-fde4-4907-a94d-4a90ed28e499"], Cell[1152194, 23200, 7361, 249, 300, 3521, 182, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"9e3a4e61-1555-4ae7-ba75-e8c943ba14ee"], Cell[1159558, 23451, 287, 7, 22, "Message",ExpressionUUID->"b9cf5a69-4e72-4972-b466-a5a06f1295a5"], Cell[1159848, 23460, 8682, 297, 287, 4344, 222, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"dd31e3ed-1595-4d1f-9b7f-60b3e5211aa7"], Cell[1168533, 23759, 288, 7, 22, "Message",ExpressionUUID->"ededfee4-df21-44d7-ae1d-b1a180166e7d"], Cell[1168824, 23768, 8253, 317, 305, 5097, 262, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ac8246c8-f1c1-4790-a482-a84a2af3e9df"], Cell[1177080, 24087, 271, 7, 22, "Message",ExpressionUUID->"fd0ce266-2ebc-4ab9-89da-91ab8f35d3cc"], Cell[1177354, 24096, 4565, 139, 323, 1579, 86, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"e2d4cf20-6d77-4886-8481-14c79448ba80"], Cell[1181922, 24237, 280, 7, 22, "Message",ExpressionUUID->"951468e3-1c8c-4c82-98a3-f22a97c74896"], Cell[1182205, 24246, 5047, 168, 300, 2218, 118, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"44346f9f-bd1d-49bd-81d0-9e04e8028ffb"], Cell[1187255, 24416, 276, 7, 22, "Message",ExpressionUUID->"eb19734c-4c35-4c74-ba6f-cfbf2c4fdb36"], Cell[1187534, 24425, 5874, 204, 272, 2785, 150, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"1830e412-8534-4112-b1c6-7729b52a5521"], Cell[1193411, 24631, 275, 7, 22, "Message",ExpressionUUID->"dc2ae264-7c46-4757-8ead-367fa61d3b3e"], Cell[1193689, 24640, 5748, 202, 282, 2803, 150, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"338442b5-8155-4cb1-97d2-5fa11d2169cd"], Cell[1199440, 24844, 280, 7, 22, "Message",ExpressionUUID->"bcc66488-49d3-4391-a8a2-f4c52d927d53"], Cell[1199723, 24853, 6529, 235, 260, 3436, 182, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"86927334-f359-4bb4-8c54-252ac6be4338"], Cell[1206255, 25090, 279, 7, 22, "Message",ExpressionUUID->"c7fc833e-9099-4ca1-ab14-c38216be07e9"], Cell[1206537, 25099, 6429, 234, 258, 3429, 182, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"524624fe-b163-45a6-84cc-4a785d1f4fb9"], Cell[1212969, 25335, 286, 7, 22, "Message",ExpressionUUID->"026ca5a0-c4da-44c4-bc72-a9eb821b80c6"], Cell[1213258, 25344, 7548, 281, 308, 4176, 222, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"663b04af-6ad0-4136-b78c-e8453c74e0d0"], Cell[1220809, 25627, 284, 7, 22, "Message",ExpressionUUID->"009b5d61-c8d9-4c3d-a1ed-e05f2b891dd2"], Cell[1221096, 25636, 7513, 280, 319, 4206, 222, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"c071e81d-07ff-49b0-8f8c-5d2d8a3f2025"], Cell[1228612, 25918, 281, 7, 70, "Message",ExpressionUUID->"59eebc4a-0ae4-4697-9933-4b51f9c4e831"], Cell[1228896, 25927, 8997, 329, 70, 5057, 262, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"4ac6a88b-b98c-4f50-826f-ea48156ed2a3"], Cell[1237896, 26258, 290, 7, 70, "Message",ExpressionUUID->"d4fcb7bd-df66-4535-a450-bc58552b737b"], Cell[1238189, 26267, 6331, 223, 70, 3130, 167, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"4b8ce098-2ed8-4ecc-b283-7b6551e448b5"], Cell[1244523, 26492, 289, 7, 70, "Message",ExpressionUUID->"b2acea89-6914-44f7-8644-6504680fa82e"], Cell[1244815, 26501, 6573, 226, 70, 3110, 166, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"68c7cdf6-853a-49a4-9a2d-754287b3d359"], Cell[1251391, 26729, 285, 7, 70, "Message",ExpressionUUID->"3885f185-09e3-40d8-8235-f2afeced0814"], Cell[1251679, 26738, 7715, 277, 70, 4020, 214, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"d4032b2c-45e6-440a-8fe9-a75bac9bffe7"], Cell[1259397, 27017, 290, 7, 70, "Message",ExpressionUUID->"1f5b3f35-b17a-43c9-9735-aa3c03693293"], Cell[1259690, 27026, 8459, 323, 70, 4933, 262, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"c9840c43-de3e-4c7b-a9a6-9ed9564cb533"], Cell[1268152, 27351, 289, 7, 70, "Message",ExpressionUUID->"005efdd9-f2a5-4756-9d61-6ee4ef938772"], Cell[1268444, 27360, 8485, 324, 70, 4948, 262, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"81031feb-765b-408d-98be-db64b5cd1f6c"], Cell[1276932, 27686, 295, 7, 70, "Message",ExpressionUUID->"ddd64bc3-e08e-486c-9dc0-f0e99686b432"], Cell[1277230, 27695, 9469, 367, 70, 5729, 302, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"4f61d2ce-f17a-4ce7-8171-3c953807dc05"], Cell[1286702, 28064, 294, 7, 70, "Message",ExpressionUUID->"c0a8468a-263e-48e4-91c4-19555235edf7"], Cell[1286999, 28073, 9581, 369, 70, 5703, 302, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"4d4a3995-937a-4eaa-9361-cc160ef301b5"], Cell[1296583, 28444, 291, 7, 70, "Message",ExpressionUUID->"6e21bb3b-f642-41ce-b058-7839b090bfb5"], Cell[1296877, 28453, 10516, 411, 70, 6554, 342, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"dd8e6767-b13d-48de-93c5-7a7d8e1fc804"], Cell[1307396, 28866, 290, 7, 70, "Message",ExpressionUUID->"f4e83a1f-d253-45da-aab9-141bd8477c75"], Cell[1307689, 28875, 10512, 410, 70, 6519, 342, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"61916195-ed8c-4d1d-963c-67d4df100dab"], Cell[1318204, 29287, 289, 7, 70, "Message",ExpressionUUID->"ee12c7aa-d691-4e9d-b3dc-14bed982ff48"], Cell[1318496, 29296, 6522, 224, 70, 3217, 166, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"c0fe18c7-8c89-4e25-969c-23fae12f546d"], Cell[1325021, 29522, 285, 7, 70, "Message",ExpressionUUID->"5e52e4b9-22ad-4d16-bcac-9032d743a5c0"], Cell[1325309, 29531, 7842, 278, 70, 4173, 214, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"3a1ab63d-9b10-403f-9f44-689801862140"], Cell[1333154, 29811, 289, 7, 70, "Message",ExpressionUUID->"10ef30b3-68ca-4480-ae86-8868470c52c3"], Cell[1333446, 29820, 9552, 337, 70, 5180, 262, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"d9d5f6dc-5567-43c2-bb26-39527f43c9d4"], Cell[1343001, 30159, 294, 7, 70, "Message",ExpressionUUID->"67179187-720d-491f-8a89-7b21ce46075f"], Cell[1343298, 30168, 10248, 376, 70, 5933, 302, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"b6a4eb05-ee17-4eef-9162-18688bd7a65a"], Cell[1353549, 30546, 290, 7, 70, "Message",ExpressionUUID->"6a8b8931-d203-4bbc-af54-a68ea4434c53"], Cell[1353842, 30555, 11509, 423, 70, 6719, 342, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"b4724f68-8453-4ac4-81c3-cee0b1abb438"], Cell[1365354, 30980, 282, 7, 70, "Message",ExpressionUUID->"086bd1fc-c866-496b-a63a-672b570f9360"], Cell[1365639, 30989, 3612, 117, 70, 1444, 78, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"f9b8defb-fd27-44c2-a961-3b69fbe5b5d2"], Cell[1369254, 31108, 284, 7, 70, "Message",ExpressionUUID->"3b3c21bf-0303-4d3a-8f5a-dc91dc11e9ef"], Cell[1369541, 31117, 4145, 131, 70, 1613, 86, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"715928bb-7fbf-4c42-a130-e43189e8bf33"], Cell[1373689, 31250, 285, 7, 70, "Message",ExpressionUUID->"4f2f8ea5-1caa-4cef-b2f2-540350bf2591"], Cell[1373977, 31259, 4700, 144, 70, 1818, 94, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"da5f8871-4b48-4838-a9fb-9299f2e696a8"], Cell[1378680, 31405, 282, 7, 70, "Message",ExpressionUUID->"2f92bc67-147f-4f4c-b109-dd0c1c3d2a64"], Cell[1378965, 31414, 5385, 169, 70, 2021, 110, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"bdad8d27-d5e0-45c5-af52-cedd7bcc7ee2"], Cell[1384353, 31585, 284, 7, 70, "Message",ExpressionUUID->"c45a5a3b-b14d-4cc0-a77a-1b72089ea111"], Cell[1384640, 31594, 4707, 163, 70, 2189, 118, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"6c376b25-7afa-4e3a-b8d0-8a0031972f3b"], Cell[1389350, 31759, 281, 7, 70, "Message",ExpressionUUID->"04ee1de1-572a-4065-b9f7-90382fb31934"], Cell[1389634, 31768, 5593, 183, 70, 2327, 126, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"95a8e9fb-08d8-4a28-901a-0d772ddd7e87"], Cell[1395230, 31953, 287, 7, 70, "Message",ExpressionUUID->"838e05d1-e3a8-4a49-a8a2-2b074720d236"], Cell[1395520, 31962, 5093, 181, 70, 2461, 134, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"0baf8146-6a2d-4802-ae9f-d1e77b98753b"], Cell[1400616, 32145, 287, 7, 70, "Message",ExpressionUUID->"e0c8bc85-2746-47bf-85b7-a899d93df36a"], Cell[1400906, 32154, 4522, 171, 70, 2474, 134, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ea58b5d2-46fb-41fb-b166-29c9002fcd61"], Cell[1405431, 32327, 284, 7, 70, "Message",ExpressionUUID->"dc1c2fa8-2f9a-4d31-b8a8-8e8018a79230"], Cell[1405718, 32336, 5566, 193, 70, 2690, 142, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ba038c21-d62b-4679-93c0-798213e62771"], Cell[1411287, 32531, 278, 7, 70, "Message",ExpressionUUID->"85049305-92f6-4614-98d6-2ce3bfe05fb8"], Cell[1411568, 32540, 5980, 234, 70, 3523, 190, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"35db5a0f-7545-4feb-9f36-f1ea19592025"], Cell[1417551, 32776, 284, 7, 70, "Message",ExpressionUUID->"88163bfd-0ff3-4df2-970b-9f580e13406e"], Cell[1417838, 32785, 6736, 251, 70, 3702, 198, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"346cee64-3424-45ea-b4b7-fa937fa80ee8"], Cell[1424577, 33038, 284, 7, 70, "Message",ExpressionUUID->"0a736c39-22dc-4454-9498-2ed2fccbcdbd"], Cell[1424864, 33047, 6608, 250, 70, 3657, 198, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"97892361-9553-4c62-b0c2-6fb263c05760"], Cell[1431475, 33299, 281, 7, 70, "Message",ExpressionUUID->"0a374141-f344-49c0-9268-f9cf44077572"], Cell[1431759, 33308, 7052, 261, 70, 3928, 206, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"86160e7e-ac9d-4eb5-b159-6d5de57ed835"], Cell[1438814, 33571, 284, 7, 70, "Message",ExpressionUUID->"5d8d8a01-39f5-48d3-ab78-d9b09aa42ac1"], Cell[1439101, 33580, 4646, 150, 70, 1943, 102, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"b8fb8dae-59a0-49b6-838e-ab6cbbad28ff"], Cell[1443750, 33732, 281, 7, 70, "Message",ExpressionUUID->"2d0463f2-fe0c-47ac-a61d-c5eee9f2ae68"], Cell[1444034, 33741, 3815, 131, 70, 1741, 94, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"cbbd0f0a-c28c-45c0-a0ed-f968d7b15aba"], Cell[1447852, 33874, 291, 7, 70, "Message",ExpressionUUID->"5d3c93c2-2e1b-4647-8112-709bd96ea7fd"], Cell[1448146, 33883, 4257, 144, 70, 1872, 102, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"02fd2a6b-c48c-41c8-93de-dd23f8e4fb17"], Cell[1452406, 34029, 287, 7, 70, "Message",ExpressionUUID->"b9996606-19f1-41bf-b0e4-2e3c1e1ffe04"], Cell[1452696, 34038, 5589, 194, 70, 2640, 142, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ea4fb61a-d947-43dd-b546-0b6b45e406a0"], Cell[1458288, 34234, 280, 7, 70, "Message",ExpressionUUID->"b8e789c5-98ed-4dab-8dc3-0a3f35b3d888"], Cell[1458571, 34243, 8240, 308, 70, 4653, 246, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"7c55f22c-619a-4e84-9e89-af3cde3272ee"], Cell[1466814, 34553, 282, 7, 70, "Message",ExpressionUUID->"da52b4da-7a9e-4ba3-9c2f-4bcbc77192ba"], Cell[1467099, 34562, 8313, 332, 70, 5266, 278, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"f767f3e2-4617-431a-94e1-02c6684af4c3"], Cell[1475415, 34896, 288, 7, 70, "Message",ExpressionUUID->"6476284a-b79c-4927-bbaa-29af7f41809e"], Cell[1475706, 34905, 13882, 604, 70, 10295, 542, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"904c1d44-98e5-4145-b6f5-151d1a0a1ada"], Cell[1489591, 35511, 294, 7, 70, "Message",ExpressionUUID->"408eb24c-39e3-43ee-8790-e240fc986d59"], Cell[1489888, 35520, 14803, 646, 70, 11116, 582, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"aba6a199-44ea-4012-a95c-353c366aa54d"], Cell[1504694, 36168, 294, 7, 70, "Message",ExpressionUUID->"82ac4705-01fa-4de7-903c-33315d27dd47"], Cell[1504991, 36177, 14687, 642, 70, 11182, 582, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"b3cc41e7-8635-4517-8aa8-721b02df3b25"], Cell[1519681, 36821, 291, 7, 70, "Message",ExpressionUUID->"36c181c2-9109-4f55-919b-0147c86ee8ed"], Cell[1519975, 36830, 16172, 695, 70, 11930, 622, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"4bd49586-da9b-4ace-857e-7ed104552440"], Cell[1536150, 37527, 285, 7, 70, "Message",ExpressionUUID->"e4370c6c-90fb-409d-a13d-513fe7e7291a"], Cell[1536438, 37536, 14116, 580, 70, 9551, 502, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"5721c248-0f7a-4afa-b9e6-c92ef148100c"], Cell[1550557, 38118, 291, 7, 70, "Message",ExpressionUUID->"b1a28a1f-bc49-4b84-ab8e-a06364def07d"], Cell[1550851, 38127, 12903, 560, 70, 9547, 502, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"588911e1-b7b9-4c42-aebb-f1873ebab3b7"], Cell[1563757, 38689, 291, 7, 70, "Message",ExpressionUUID->"0c0b62fd-e2af-4ba3-b2c9-32aa0effcb3f"], Cell[1564051, 38698, 12798, 558, 70, 9560, 502, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ce75c506-d9a8-47f2-8f08-2774aa1cfdcb"], Cell[1576852, 39258, 288, 7, 70, "Message",ExpressionUUID->"7bb58880-7cda-4864-abe1-63d91d51c64b"], Cell[1577143, 39267, 12806, 559, 70, 9523, 502, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"06f02628-60c2-4c36-9d74-330cb38ec67d"], Cell[1589952, 39828, 289, 7, 70, "Message",ExpressionUUID->"4eaf8745-e647-41d8-b992-ec269046a357"], Cell[1590244, 39837, 11634, 513, 70, 8730, 462, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ebb968f4-0270-4849-bf52-128bef170583"], Cell[1601881, 40352, 300, 7, 70, "Message",ExpressionUUID->"31d45b0e-6328-46c1-bf57-5c687ac31275"], Cell[1602184, 40361, 11705, 513, 70, 8791, 462, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"c3f64405-6cdc-4912-aceb-cd1a3d0f940b"], Cell[1613892, 40876, 300, 7, 70, "Message",ExpressionUUID->"976e5279-fdd8-44e4-a0c7-bfe4d00fd8d9"], Cell[1614195, 40885, 12109, 520, 70, 8802, 462, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"815d80c6-381d-485f-82c4-d893ddfe6e99"], Cell[1626307, 41407, 298, 7, 70, "Message",ExpressionUUID->"e5bba19d-16e6-417d-9ebf-a549f630bd46"], Cell[1626608, 41416, 11687, 513, 70, 8775, 462, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"f61bafe6-8bb2-43ef-98d9-42ac737ee8fb"], Cell[1638298, 41931, 295, 7, 70, "Message",ExpressionUUID->"7f5324e6-c3ec-4600-b5b0-485b79f716d1"], Cell[1638596, 41940, 10692, 470, 70, 7999, 422, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"63c05b85-05fc-4f88-8234-b70fb7a0a5b7"], Cell[1649291, 42412, 295, 7, 70, "Message",ExpressionUUID->"9fe36208-7b72-4f1d-970a-049588507f3d"], Cell[1649589, 42421, 10365, 466, 70, 7908, 422, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"5f4a5678-a9c2-4960-9bfa-a8fcac344397"], Cell[1659957, 42889, 298, 7, 70, "Message",ExpressionUUID->"0c3e11de-fdaf-4329-a61e-a496535c5cdf"], Cell[1660258, 42898, 10014, 461, 70, 7866, 422, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"0b8d059e-e469-4649-8186-8160afd51c79"], Cell[1670275, 43361, 292, 7, 70, "Message",ExpressionUUID->"64b2ea89-4d33-413d-8ea4-f023acb01511"], Cell[1670570, 43370, 9444, 422, 70, 7163, 382, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"c41b3bb6-a4e5-46f8-84cf-2497deab5f1e"], Cell[1680017, 43794, 271, 7, 70, "Message",ExpressionUUID->"4efcd8fe-7d15-4cee-85fe-f64fb0697712"], Cell[1680291, 43803, 3750, 124, 70, 1635, 86, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"6c682f38-bc6e-4258-b46f-09956c69fd84"], Cell[1684044, 43929, 277, 7, 70, "Message",ExpressionUUID->"bc8638dc-d9c9-4328-acb9-d00026862e22"], Cell[1684324, 43938, 5770, 200, 70, 2955, 150, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"a52264f5-b2dd-4fc6-9b10-d50be266e825"], Cell[1690097, 44140, 268, 7, 70, "Message",ExpressionUUID->"35918b69-6883-4a84-9aaa-d108ddd8abb2"], Cell[1690368, 44149, 4020, 139, 70, 1954, 102, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"63a25e11-6ef5-4e8e-98f2-340e5a74c4d5"], Cell[1694391, 44290, 278, 7, 70, "Message",ExpressionUUID->"ed5e3db2-6b98-4fdd-b368-b00ee170fc39"], Cell[1694672, 44299, 5745, 173, 70, 2145, 110, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"adef18ef-6253-4a3f-87ec-1f78de5e1aa4"], Cell[1700420, 44474, 272, 7, 70, "Message",ExpressionUUID->"d8af81f7-09d9-4866-9fc1-3cc3fcc98a84"], Cell[1700695, 44483, 5536, 175, 70, 2306, 118, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ce9dc97a-c713-480d-ae65-d8a27f2f0119"], Cell[1706234, 44660, 276, 7, 70, "Message",ExpressionUUID->"b0f27f41-b565-4b91-8bbe-272461f7df1d"], Cell[1706513, 44669, 6250, 197, 70, 2634, 134, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"2f96ef94-292e-458f-8fd5-0321e5bb1fd3"], Cell[1712766, 44868, 272, 7, 70, "Message",ExpressionUUID->"cf599076-762d-4c88-9e00-701c45062354"], Cell[1713041, 44877, 6144, 206, 70, 2895, 150, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"7a921431-7c9c-431d-acb7-3432541f34c4"], Cell[1719188, 45085, 271, 7, 70, "Message",ExpressionUUID->"1c396a8a-5a0f-47c3-b9cf-1625388a15e8"], Cell[1719462, 45094, 5258, 182, 70, 2529, 134, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"a687d64c-7fda-412c-92eb-eb861c31f48f"], Cell[1724723, 45278, 284, 7, 70, "Message",ExpressionUUID->"a6661b0e-d3b7-4148-9b7c-824b94516f84"], Cell[1725010, 45287, 6191, 219, 70, 3161, 166, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"32791f67-a8db-45c3-8876-5f274e127de4"] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[1731250, 45512, 78, 0, 67, "Section",ExpressionUUID->"ea39771c-d69a-4677-8918-9823ec6cb371"], Cell[CellGroupData[{ Cell[1731353, 45516, 84, 0, 54, "Subsection",ExpressionUUID->"2f3ea52e-fdf4-406c-9447-b6ec9e68afab"], Cell[CellGroupData[{ Cell[1731462, 45520, 782, 21, 94, "Input",ExpressionUUID->"c3398159-48ae-4388-abc2-35e1f5cfeead"], Cell[1732247, 45543, 6952, 372, 136, 4438, 329, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"36da51f7-dab5-4779-b311-1bb1f359d849"], Cell[1739202, 45917, 196, 5, 34, "Output",ExpressionUUID->"7d6c283d-4e7c-43ee-a80d-9e61adc55bfc"] }, Open ]], Cell[1739413, 45925, 330, 8, 30, "Input",ExpressionUUID->"7ba334e3-c09d-4d4f-9b54-f02c50e1a087"], Cell[CellGroupData[{ Cell[1739768, 45937, 782, 21, 94, "Input",ExpressionUUID->"46ee4317-d061-479c-abf7-0e9530317f86"], Cell[1740553, 45960, 21024, 1179, 114, 14941, 1078, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"607bdb2e-ddfd-41cd-9915-abbab6e846d2"], Cell[1761580, 47141, 196, 5, 34, "Output",ExpressionUUID->"7dbe5677-75fe-420a-9c76-bd1007d06de5"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[1761825, 47152, 80, 0, 54, "Subsection",ExpressionUUID->"e62e91be-fdd5-4809-8e6e-8fc0eafd3fac"], Cell[CellGroupData[{ Cell[1761930, 47156, 1182, 34, 180, "Input",ExpressionUUID->"428c7156-5de3-4819-becc-2606b9bd9781"], Cell[1763115, 47192, 215, 4, 22, "Message",ExpressionUUID->"f0dfa9f0-039b-4f60-9ebf-7113407f4321"], Cell[1763333, 47198, 3539, 110, 296, 891, 65, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"e17423c3-2c2c-4585-a267-cc604306568e"], Cell[1766875, 47310, 219, 4, 22, "Message",ExpressionUUID->"13b5239c-51a2-4cd9-a708-f664de26386a"], Cell[1767097, 47316, 4417, 128, 296, 1054, 71, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ca4701d3-edde-4e08-9990-f5447499c68b"], Cell[1771517, 47446, 218, 4, 22, "Message",ExpressionUUID->"158fc44d-4fbc-4a41-8e88-95dd42ee4a67"], Cell[1771738, 47452, 4165, 135, 296, 1210, 85, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"be4e0b5b-0a80-4c25-a6e2-f453af4c85d6"], Cell[1775906, 47589, 214, 4, 22, "Message",ExpressionUUID->"a8ab9044-a776-4fc4-9613-6245e0f41397"], Cell[1776123, 47595, 3752, 139, 168, 1382, 99, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"8d2bd850-b48f-4168-b822-5e52837ca476"], Cell[1779878, 47736, 218, 4, 22, "Message",ExpressionUUID->"2305f3f4-f258-44ac-a31a-24d292e5480d"], Cell[1780099, 47742, 4989, 170, 70, 1634, 113, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"b47dc561-7dfb-40c5-b9b0-862d712224f7"], Cell[1785091, 47914, 219, 4, 22, "Message",ExpressionUUID->"42b05cd9-bc33-48e8-9c4c-cee4943abbf0"], Cell[1785313, 47920, 5727, 204, 296, 2099, 143, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"eb3847dd-059c-44a7-9663-260b546e2703"], Cell[1791043, 48126, 231, 5, 22, "Message",ExpressionUUID->"3c42dadf-e46c-4454-af7b-ad8b6deefb73"], Cell[1791277, 48133, 3138, 112, 271, 1104, 77, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"088bd620-9770-4ab1-b5bf-79ec3b687696"], Cell[1794418, 48247, 227, 5, 22, "Message",ExpressionUUID->"5f29a087-2143-481d-9f39-046689f11aa1"], Cell[1794648, 48254, 2322, 108, 215, 1246, 89, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"defce678-2e7a-4bca-b31d-c70bc207f1af"], Cell[1796973, 48364, 231, 5, 22, "Message",ExpressionUUID->"c41565fb-2ad5-4093-984a-27dd3c039918"], Cell[1797207, 48371, 3089, 130, 205, 1419, 101, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ba89db81-cf06-45cc-a323-20d18d2c8603"], Cell[1800299, 48503, 233, 5, 22, "Message",ExpressionUUID->"e7339f1c-e4d2-442d-b0b8-c8109f423d5f"], Cell[1800535, 48510, 3021, 132, 183, 1481, 105, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"3c882bc4-c67c-4693-a01b-e6ab8dfa09b1"], Cell[1803559, 48644, 235, 4, 70, "Message",ExpressionUUID->"c0aa533b-ace3-404f-a7e2-87cd76b04a10"], Cell[1803797, 48650, 3619, 154, 70, 1707, 121, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"61cb19c3-0498-483d-ad13-266805a91178"], Cell[1807419, 48806, 223, 4, 70, "Message",ExpressionUUID->"caca4cda-afb6-4f69-a726-a6e82e435358"], Cell[1807645, 48812, 4654, 131, 70, 983, 69, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"1586102d-d2d7-4302-8184-ed94bb61a8cb"], Cell[1812302, 48945, 223, 4, 22, "Message",ExpressionUUID->"cc5d35f4-a172-4d0f-a3ff-913cbe3f9531"], Cell[1812528, 48951, 3967, 136, 175, 1212, 89, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"6748094f-410f-434a-b68a-9197633be0c9"], Cell[1816498, 49089, 235, 5, 22, "Message",ExpressionUUID->"a6a9077b-6894-4b54-82d0-006b66e26173"], Cell[1816736, 49096, 5423, 157, 296, 1267, 87, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"de27daa0-8c63-486f-89eb-bfb7751646d5"], Cell[1822162, 49255, 231, 5, 22, "Message",ExpressionUUID->"4e9a2eb5-f37d-48f6-a496-c731ba3fc198"], Cell[1822396, 49262, 5405, 169, 256, 1476, 103, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"1905f991-9011-4900-bd6b-e0fd1362fa1f"], Cell[1827804, 49433, 235, 5, 22, "Message",ExpressionUUID->"6318a97e-a105-47ed-b227-025547ddd3c1"], Cell[1828042, 49440, 4711, 170, 228, 1678, 119, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"00f449c6-53ff-470f-b089-37fe65f3649b"], Cell[1832756, 49612, 235, 5, 22, "Message",ExpressionUUID->"c8c7df4b-2c73-4067-ae96-eca7e9de32df"], Cell[1832994, 49619, 3623, 153, 175, 1674, 119, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"683a19e5-f243-47bd-9d98-a4ab6d1e5377"], Cell[1836620, 49774, 230, 4, 22, "Message",ExpressionUUID->"0ce440a0-fc99-4386-baf5-063c418fafc8"], Cell[1836853, 49780, 4243, 165, 277, 1658, 121, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"19621b25-e5e3-4468-8f49-8a6a183acf73"], Cell[1841099, 49947, 228, 5, 22, "Message",ExpressionUUID->"e361f971-bfde-4305-b234-4ec5fb369271"], Cell[1841330, 49954, 3866, 180, 239, 1976, 147, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"039ad5be-a7ab-49af-ba90-6c87d3e2d5dc"], Cell[1845199, 50136, 230, 4, 22, "Message",ExpressionUUID->"e1068517-3af6-4cf9-890e-bc32a7855fb8"], Cell[1845432, 50142, 4910, 216, 225, 2398, 173, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"a0540f70-0586-4aee-8ff5-f75273a9bbdb"], Cell[1850345, 50360, 233, 5, 22, "Message",ExpressionUUID->"55a3deb3-7a36-4a3f-b885-b7e7f82a9f31"], Cell[1850581, 50367, 6073, 258, 267, 2789, 203, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"b9eb1662-ac0a-4c16-984f-ae29e16ebcd4"], Cell[1856657, 50627, 236, 5, 22, "Message",ExpressionUUID->"bd11414b-2843-4073-84ec-eeca4dcb47fe"], Cell[1856896, 50634, 4826, 193, 251, 2009, 145, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"7e7d6e83-8a61-4872-8f4a-a259b563397a"], Cell[1861725, 50829, 230, 4, 22, "Message",ExpressionUUID->"a6ff1261-ae99-4198-9237-7ee4258560e9"], Cell[1861958, 50835, 4568, 215, 221, 2477, 179, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"94b034e5-2ed2-48a6-b831-d952ee0bac90"], Cell[1866529, 51052, 236, 5, 22, "Message",ExpressionUUID->"1c736a6c-780e-413f-afd0-390a146a4ede"], Cell[1866768, 51059, 5707, 260, 211, 2963, 213, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"94066e91-346d-4cc7-a0cd-b3c74f422cde"], Cell[1872478, 51321, 235, 4, 22, "Message",ExpressionUUID->"5d10842a-0501-4fb5-9099-05fd3f4d25bd"], Cell[1872716, 51327, 6730, 300, 251, 3344, 243, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"bac6eb15-9905-423a-8aeb-20bc9003b871"], Cell[1879449, 51629, 218, 4, 22, "Message",ExpressionUUID->"b018143c-2d8c-4424-8dfa-b893446998fa"], Cell[1879670, 51635, 4451, 138, 285, 1211, 83, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"dd238743-5566-4a85-b404-d02cc48b0392"], Cell[1884124, 51775, 229, 5, 22, "Message",ExpressionUUID->"9ada0d3a-34ad-43ea-993c-e43c1eb5e9bd"], Cell[1884356, 51782, 4635, 166, 146, 1616, 115, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"f74a3d79-6a48-49f4-a628-b664515d6301"], Cell[1888994, 51950, 223, 4, 70, "Message",ExpressionUUID->"617494cf-be75-4f4c-a5a0-8e7f5798185e"], Cell[1889220, 51956, 4177, 178, 70, 1915, 139, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"e72c775f-608b-40b5-b965-f9553e5f3dcd"], Cell[1893400, 52136, 222, 4, 70, "Message",ExpressionUUID->"d698537b-ac3b-43ac-a1df-839510400ef6"], Cell[1893625, 52142, 5541, 199, 161, 1947, 139, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"009c2f17-e1dd-4e6d-a1ca-7488bb3cff3d"], Cell[1899169, 52343, 229, 5, 22, "Message",ExpressionUUID->"6f83b5b2-3ad9-462c-babb-5ef6271897c6"], Cell[1899401, 52350, 6582, 236, 159, 2251, 163, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"05a79d5c-c819-4975-bf3a-ab157af61b20"], Cell[1905986, 52588, 228, 5, 22, "Message",ExpressionUUID->"cdfc148c-6952-41cc-bb28-90e0e72a0da5"], Cell[1906217, 52595, 6724, 238, 161, 2271, 163, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"4b205a2d-1344-4de9-ba48-01277fa7de13"], Cell[1912944, 52835, 235, 5, 22, "Message",ExpressionUUID->"a38625cd-38bd-4fd6-b8c1-01903021594c"], Cell[1913182, 52842, 8068, 283, 242, 2696, 193, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"3b34f80e-37ea-4227-90b8-eba8d0b845f2"], Cell[1921253, 53127, 233, 5, 22, "Message",ExpressionUUID->"165cd2ae-6343-4f2f-8dff-85a90eb198ec"], Cell[1921489, 53134, 7454, 273, 178, 2687, 193, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"621db71f-ec35-4212-96b8-21d2922e7dc7"], Cell[1928946, 53409, 230, 5, 22, "Message",ExpressionUUID->"1611607b-4379-4cfc-a340-faac148d0d0a"], Cell[1929179, 53416, 8004, 305, 174, 3106, 223, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"6756bd2f-8adb-471c-a30d-0d51a8d02b65"], Cell[1937186, 53723, 239, 5, 70, "Message",ExpressionUUID->"ee831ab8-864c-4093-902b-bd9ed5fa6bb4"], Cell[1937428, 53730, 5275, 206, 70, 2043, 151, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"fb06747c-fcd5-420e-bb9d-3a27deb15f6c"], Cell[1942706, 53938, 238, 5, 70, "Message",ExpressionUUID->"f42b8586-da52-4ce3-88d1-36a6cb7e919c"], Cell[1942947, 53945, 5355, 207, 70, 2042, 151, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"f8112d1f-088b-413e-ac4d-10ab541a6158"], Cell[1948305, 54154, 232, 4, 70, "Message",ExpressionUUID->"8beb10ee-c7a5-4fe4-8737-cbc5646e2a79"], Cell[1948540, 54160, 5629, 240, 70, 2523, 187, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"c5f712cb-fa51-4040-845f-caf1b01ff1b1"], Cell[1954172, 54402, 239, 5, 70, "Message",ExpressionUUID->"7d8db4f1-24be-4ad5-a028-187f27f37b5c"], Cell[1954414, 54409, 6531, 282, 70, 3003, 223, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"0a8e67f7-201d-4609-a41d-87d687de4257"], Cell[1960948, 54693, 238, 5, 70, "Message",ExpressionUUID->"2da2aa59-41ad-49eb-abd2-c9a1e2791e60"], Cell[1961189, 54700, 6611, 284, 70, 3005, 223, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"b7df22d8-63da-4692-98d1-a12ea3ad8085"], Cell[1967803, 54986, 244, 5, 70, "Message",ExpressionUUID->"8603dc25-6deb-4c7c-a243-d2aef7a6f28d"], Cell[1968050, 54993, 7798, 326, 70, 3444, 253, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"a3dee612-2823-4a88-9c34-61c932a8cf0a"], Cell[1975851, 55321, 243, 5, 70, "Message",ExpressionUUID->"a1b499e9-d8ef-42ba-83cd-35323ce81223"], Cell[1976097, 55328, 7904, 327, 70, 3469, 253, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"9b201da7-0d0d-4761-98f1-fe5486ff3d16"], Cell[1984004, 55657, 240, 5, 70, "Message",ExpressionUUID->"6c832bd4-f597-42ea-b6fc-d0b17148dfcf"], Cell[1984247, 55664, 8597, 362, 70, 3865, 283, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"2b5c5cb2-c791-4622-a352-70ae8e219895"], Cell[1992847, 56028, 239, 5, 70, "Message",ExpressionUUID->"21cb342a-4910-47be-bbc1-67b393ddae3c"], Cell[1993089, 56035, 8572, 362, 70, 3840, 283, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"2764993d-8096-44a4-a539-538781b1d8c2"], Cell[2001664, 56399, 238, 5, 70, "Message",ExpressionUUID->"51ea91bc-746b-49f1-9074-d6934b992386"], Cell[2001905, 56406, 6283, 240, 70, 2409, 175, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"e2c10d44-fa9e-4dd3-a2d1-0c10e2b217f4"], Cell[2008191, 56648, 232, 4, 70, "Message",ExpressionUUID->"6c050ca1-8f7b-484b-ba3d-692036e24577"], Cell[2008426, 56654, 5553, 263, 70, 2976, 219, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"2b22c3f8-61f6-4275-b477-63bd4b9cd68d"], Cell[2013982, 56919, 238, 5, 70, "Message",ExpressionUUID->"87f83890-af2a-4681-a9f7-01f88b5a20f1"], Cell[2014223, 56926, 7297, 325, 70, 3598, 263, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"bb56f36e-53b9-41ad-98b9-cf16c8701789"], Cell[2021523, 57253, 243, 5, 70, "Message",ExpressionUUID->"68527330-a106-4733-bce1-cd346c85f0c3"], Cell[2021769, 57260, 8498, 368, 70, 4014, 293, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"252242c9-6b8e-4136-baf9-7ebd8dcd14f6"], Cell[2030270, 57630, 239, 5, 70, "Message",ExpressionUUID->"d0f536fb-5616-4470-bfae-0ba6e2cb7b12"], Cell[2030512, 57637, 9444, 407, 70, 4397, 323, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"2d51372e-e63f-4f21-8493-02e9ce09d820"], Cell[2039959, 58046, 231, 5, 70, "Message",ExpressionUUID->"85f9f31a-1b48-499f-a038-9a9ab234248b"], Cell[2040193, 58053, 3782, 126, 70, 1151, 81, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"7fac58e4-1339-458a-af3f-737303658d60"], Cell[2043978, 58181, 233, 5, 70, "Message",ExpressionUUID->"f957d94b-1b5b-4e66-be75-d80453b84038"], Cell[2044214, 58188, 4589, 150, 70, 1356, 95, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"5fa109ac-419a-4aba-8a12-8e0521fd8923"], Cell[2048806, 58340, 232, 4, 70, "Message",ExpressionUUID->"dc6ceb91-c425-4639-933b-537e43be2ca7"], Cell[2049041, 58346, 3844, 149, 70, 1523, 109, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"c017b6b9-6656-488c-99e7-47d7c8b690c7"], Cell[2052888, 58497, 231, 5, 70, "Message",ExpressionUUID->"e82ab35d-e9ce-4b59-8a42-de0e71e835df"], Cell[2053122, 58504, 5300, 162, 70, 1405, 97, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"a7bd2d30-3825-4b03-9495-63292663777c"], Cell[2058425, 58668, 233, 5, 70, "Message",ExpressionUUID->"02aced50-a617-4c59-940c-e9d95e309101"], Cell[2058661, 58675, 6002, 185, 70, 1590, 111, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"bf6780ae-3597-4185-a7d5-ebeb030824fa"], Cell[2064666, 58862, 230, 5, 70, "Message",ExpressionUUID->"310a991c-5008-4855-b533-2d254d2b46d5"], Cell[2064899, 58869, 4509, 156, 70, 1466, 105, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"1cbefa26-7f2b-4052-8eff-0c98436053df"], Cell[2069411, 59027, 236, 5, 70, "Message",ExpressionUUID->"e4072daa-d40f-48ba-9ace-cdc012ed5693"], Cell[2069650, 59034, 5114, 177, 70, 1650, 119, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"9a1f9e99-51a7-44cf-88d9-0628c1f8c6e6"], Cell[2074767, 59213, 236, 5, 70, "Message",ExpressionUUID->"dbacaf14-2d7a-462e-98ec-cc000e5798ab"], Cell[2075006, 59220, 5014, 176, 70, 1607, 119, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"3389be5e-ffce-4b1f-ad82-d345ef160e3e"], Cell[2080023, 59398, 233, 5, 70, "Message",ExpressionUUID->"ebe681f3-c484-404d-b7fe-ce5877845cb1"], Cell[2080259, 59405, 5514, 194, 70, 1859, 133, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"df36aa04-5166-44c3-95ae-d3de2d91f083"], Cell[2085776, 59601, 227, 5, 70, "Message",ExpressionUUID->"d58a3e62-51f8-4533-8180-a84d822831c9"], Cell[2086006, 59608, 5073, 192, 70, 2028, 141, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"01ea9e3c-eb29-42f5-97fd-8b3988684cf3"], Cell[2091082, 59802, 233, 5, 70, "Message",ExpressionUUID->"d390917d-3069-4b06-aa6e-3f6db25e0858"], Cell[2091318, 59809, 5231, 209, 70, 2253, 159, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"13064dc4-230a-42bc-942d-56ce9f158ca5"], Cell[2096552, 60020, 233, 5, 70, "Message",ExpressionUUID->"f0091c8e-d8a8-4567-b190-f24c928c58d2"], Cell[2096788, 60027, 5396, 212, 70, 2240, 159, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"902e9a42-5e01-474c-872e-a6496df6549c"], Cell[2102187, 60241, 230, 5, 70, "Message",ExpressionUUID->"47ab8eb2-46a6-4613-82f2-c60f454aebfb"], Cell[2102420, 60248, 6196, 240, 70, 2477, 177, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"1af8b967-fbf8-441b-bcb8-b85fb456b243"], Cell[2108619, 60490, 233, 5, 70, "Message",ExpressionUUID->"d9110203-e662-41dc-9cae-8d630ccf3d98"], Cell[2108855, 60497, 5422, 169, 70, 1494, 103, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"80457062-f442-4ffd-94b3-0e2e835e3547"], Cell[2114280, 60668, 230, 5, 70, "Message",ExpressionUUID->"c7a8055e-c679-475c-8dbc-ccad36ccd821"], Cell[2114513, 60675, 4207, 135, 70, 1259, 85, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"d8fd33cf-4349-4a57-aa2c-3007855f36c2"], Cell[2118723, 60812, 240, 5, 70, "Message",ExpressionUUID->"2b5346ee-5f82-472f-9f8a-37621354cdc1"], Cell[2118966, 60819, 4726, 151, 70, 1388, 95, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"7cc0c231-985a-4568-a9df-fef0e3b4d342"], Cell[2123695, 60972, 236, 5, 70, "Message",ExpressionUUID->"b38ace49-b8ec-4a6f-9728-213325b707af"], Cell[2123934, 60979, 4328, 165, 70, 1723, 121, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"98da842c-e26e-4eb2-8138-00e2c4df70ab"], Cell[2128265, 61146, 229, 5, 70, "Message",ExpressionUUID->"e72b4f5e-7375-4a7b-b7ec-adaf6f10ebfb"], Cell[2128497, 61153, 5973, 237, 70, 2537, 179, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"5cde3873-d9cd-49f6-9e06-77f8f219cfba"], Cell[2134473, 61392, 231, 5, 70, "Message",ExpressionUUID->"fa75d7e3-286c-4cad-80a3-3ded41563af5"], Cell[2134707, 61399, 7203, 289, 70, 3051, 219, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"5c77c5ae-763a-45c1-8382-d53c5114c637"], Cell[2141913, 61690, 235, 4, 70, "Message",ExpressionUUID->"581874ef-cddc-4bdf-8172-eabeaf6e2f67"], Cell[2142151, 61696, 9066, 406, 70, 4713, 333, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"60c34a50-5b19-46d3-8e07-2198452df2e4"], Cell[2151220, 62104, 243, 5, 70, "Message",ExpressionUUID->"7b7c58d2-2cad-465d-8460-99840ecc88b5"], Cell[2151466, 62111, 10221, 464, 70, 5360, 383, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"bd59bcb0-805d-4006-bde5-52869753da12"], Cell[2161690, 62577, 243, 5, 70, "Message",ExpressionUUID->"4535b103-3c9a-4b75-a94c-7c49f5e08061"], Cell[2161936, 62584, 10128, 463, 70, 5372, 383, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"8fa9cb05-5ee6-4360-998c-7dc467b741b4"], Cell[2172067, 63049, 240, 5, 70, "Message",ExpressionUUID->"bd3e2b02-0555-4eab-9701-45b18f3ebc22"], Cell[2172310, 63056, 11189, 520, 70, 5968, 433, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"bc5c6fed-1bbf-4e89-bc76-cdc70b6bdb07"], Cell[2183502, 63578, 232, 4, 70, "Message",ExpressionUUID->"62a32b70-ae40-44b5-995e-8adf5f501232"], Cell[2183737, 63584, 9189, 465, 70, 5527, 403, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"5bf8b2e9-7614-4efa-99fb-5ba677f585af"], Cell[2192929, 64051, 240, 5, 70, "Message",ExpressionUUID->"6d5915a1-889b-4737-859e-aabced205761"], Cell[2193172, 64058, 9961, 478, 70, 5514, 403, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"103de07e-3d2c-4a4b-a0b4-ae67ced28ea0"], Cell[2203136, 64538, 240, 5, 70, "Message",ExpressionUUID->"5e1e5f2a-4a17-4859-950c-dacc7c6ac89c"], Cell[2203379, 64545, 9842, 476, 70, 5498, 403, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"a8068746-64c5-4524-8ac4-dc547e4b79a8"], Cell[2213224, 65023, 235, 4, 70, "Message",ExpressionUUID->"410bb29f-139e-42d8-bede-0826839c3aa6"], Cell[2213462, 65029, 10027, 478, 70, 5517, 403, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"53407676-747c-4b4d-9043-421d26f62863"], Cell[2223492, 65509, 238, 5, 70, "Message",ExpressionUUID->"bf1e821d-6d93-45c5-a717-2e437d535b9f"], Cell[2223733, 65516, 9053, 424, 70, 4824, 353, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"de24d12c-8db9-4233-b979-24ebfdccd0ac"], Cell[2232789, 65942, 249, 5, 70, "Message",ExpressionUUID->"4dd69c50-363f-45b9-b457-ba6691b823f2"], Cell[2233041, 65949, 9619, 433, 70, 4841, 353, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"fc1d499a-1ce6-4816-835e-6a1575db3591"], Cell[2242663, 66384, 249, 5, 70, "Message",ExpressionUUID->"0d6960c9-0402-4456-816b-ad54e23bad13"], Cell[2242915, 66391, 9600, 433, 70, 4830, 353, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"54f7e560-970c-424b-b7eb-ad784523af42"], Cell[2252518, 66826, 247, 5, 70, "Message",ExpressionUUID->"0136868f-8df5-41e5-9e99-8752e8fe03ab"], Cell[2252768, 66833, 9730, 435, 70, 4838, 353, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"464bd627-e74c-4226-9581-343e4506b8d3"], Cell[2262501, 67270, 244, 5, 70, "Message",ExpressionUUID->"16d96805-c3ac-41c2-8fe8-47edee0ae6da"], Cell[2262748, 67277, 9050, 384, 70, 4199, 303, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"e5ae0ae6-09c4-4f24-af06-5eeb49dbbdd1"], Cell[2271801, 67663, 244, 5, 70, "Message",ExpressionUUID->"291d150c-73ef-4820-94fb-ab5a69b490ff"], Cell[2272048, 67670, 8816, 382, 70, 4121, 303, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"24f438cb-a9bb-4a7c-bc61-2e19665e4b62"], Cell[2280867, 68054, 247, 5, 70, "Message",ExpressionUUID->"80835b63-b08c-4431-b9db-7e741ebd3bca"], Cell[2281117, 68061, 9048, 384, 70, 4207, 303, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"7a0b259b-0d1f-4727-bc10-c7dece17570b"], Cell[2290168, 68447, 241, 5, 70, "Message",ExpressionUUID->"13abf866-861f-4127-bd31-e33b0af1459b"], Cell[2290412, 68454, 7883, 325, 70, 3577, 253, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"0cbd055e-7b92-46db-b2ef-dcb892f4cb55"], Cell[2298298, 68781, 218, 4, 70, "Message",ExpressionUUID->"73fd1c45-a3a3-4a94-9c47-0d8f09cf6d86"], Cell[2298519, 68787, 3837, 140, 70, 1432, 99, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"35c25e9c-04bc-4c65-8900-759a00fdf131"], Cell[2302359, 68929, 226, 5, 70, "Message",ExpressionUUID->"33fd02e6-d166-45e4-ac5e-45709e28e8ba"], Cell[2302588, 68936, 5476, 225, 70, 2280, 171, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"d1f5b558-7117-4fb9-8c3f-20479c58f6a7"], Cell[2308067, 69163, 215, 4, 70, "Message",ExpressionUUID->"1b3b40db-dfa9-4623-9db4-e0c3374c4a99"], Cell[2308285, 69169, 4112, 156, 70, 1452, 111, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"273f6c1b-1bfb-41e6-a76e-a9abeea07f21"], Cell[2312400, 69327, 227, 5, 70, "Message",ExpressionUUID->"e3fa2ee1-389c-4b9a-8fca-7bade1ed708a"], Cell[2312630, 69334, 5144, 182, 70, 1757, 125, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"32d24bd7-28b9-4b11-9876-842dc0b45571"], Cell[2317777, 69518, 219, 4, 70, "Message",ExpressionUUID->"ec40cfa3-7801-43ac-b6cf-2f3a03a4ea5a"], Cell[2317999, 69524, 6298, 206, 70, 1813, 131, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"e48fa924-6574-4c60-8491-6a2ab2d005a5"], Cell[2324300, 69732, 223, 4, 70, "Message",ExpressionUUID->"2ca70ec2-74f1-4f06-a8d8-2bd0a50e1315"], Cell[2324526, 69738, 6346, 219, 70, 2055, 147, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"cd7845a8-0a0e-46d0-b39a-7cebbd93ec40"], Cell[2330875, 69959, 219, 4, 70, "Message",ExpressionUUID->"defff8b0-7ae5-4a94-a6cd-113cbea062ef"], Cell[2331097, 69965, 6292, 231, 70, 2238, 163, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"32fc9ce3-5ed7-4363-9715-88d34d6308eb"], Cell[2337392, 70198, 218, 4, 70, "Message",ExpressionUUID->"cf926ebb-2010-46c5-ad3e-3f6ec06e80aa"], Cell[2337613, 70204, 5328, 181, 70, 1660, 119, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"9a236e93-69a6-4ce5-a449-a4b51be422f3"], Cell[2342944, 70387, 233, 5, 70, "Message",ExpressionUUID->"3f52bc70-9d85-4c3a-a294-b649857f5dbd"], Cell[2343180, 70394, 6904, 231, 70, 2112, 151, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"d2616050-ebf9-4d85-9582-5dda2f81af76"] }, Open ]] }, Closed]] }, Open ]], Cell[CellGroupData[{ Cell[2350145, 70632, 93, 0, 67, "Section",ExpressionUUID->"df629a9b-5549-4083-92b1-0841ad63dfea"], Cell[CellGroupData[{ Cell[2350263, 70636, 350, 8, 30, "Input",ExpressionUUID->"f943b83a-1f9f-411d-8029-20d91edbd804"], Cell[2350616, 70646, 147, 1, 34, "Output",ExpressionUUID->"6392c611-3bb5-4d9b-bcfd-e98b98e2aa80"] }, Open ]], Cell[CellGroupData[{ Cell[2350800, 70652, 83, 0, 54, "Subsection",ExpressionUUID->"fd0df7b0-8568-439b-bbf3-166fbe2f5537"], Cell[2350886, 70654, 908, 23, 73, "Input",ExpressionUUID->"1dd59db1-799b-48bf-9f9c-84f3cab3f21c"], Cell[2351797, 70679, 173, 4, 30, "Input",ExpressionUUID->"02c103b2-52e9-41ef-9ada-87b0b667afc5"], Cell[2351973, 70685, 197, 5, 30, "Input",ExpressionUUID->"c5fdaf55-1a8d-42d0-a356-59d641cef3cd"], Cell[CellGroupData[{ Cell[2352195, 70694, 415, 12, 30, "Input",ExpressionUUID->"a715fc3c-84c1-40cd-ae75-29e6982c3676"], Cell[2352613, 70708, 1127, 17, 77, "Output",ExpressionUUID->"a324e421-ca5d-47b4-9a1c-d5b9ac025e11"] }, Open ]], Cell[2353755, 70728, 141, 3, 30, "Input",ExpressionUUID->"eadd295f-f594-4349-ab27-c81e7f86edd6"], Cell[CellGroupData[{ Cell[2353921, 70735, 290, 7, 30, "Input",ExpressionUUID->"7a882d81-c05c-49c3-a33e-80ffaa52b7ba"], Cell[2354214, 70744, 6523, 94, 812, "Output",ExpressionUUID->"bf81c744-cd4b-43a1-bed4-9dc986c7c725"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2360798, 70845, 92, 0, 67, "Section",ExpressionUUID->"9111d479-b542-4846-88be-32226c0fb748"], Cell[2360893, 70847, 175, 4, 94, "Input",ExpressionUUID->"946bcff9-56fa-450d-822e-0fba22a18255"], Cell[2361071, 70853, 10237, 284, 1354, "Input",ExpressionUUID->"0a77683a-2bfc-4af4-ac9a-8eacdd8caf0a"], Cell[CellGroupData[{ Cell[2371333, 71141, 83, 0, 54, "Subsection",ExpressionUUID->"29aa2618-ce11-4b7c-a007-13b5279c464b"], Cell[2371419, 71143, 169, 4, 30, "Input",ExpressionUUID->"b2195b84-f5e1-4d54-8b94-b7c113d9937a"], Cell[2371591, 71149, 173, 3, 115, "Input",ExpressionUUID->"523a8d37-f1a9-418d-9fbb-bec4b62ac916"], Cell[CellGroupData[{ Cell[2371789, 71156, 1508, 42, 136, "Input",ExpressionUUID->"d6c164b6-cfde-488d-bb3a-9d749f2ee314"], Cell[CellGroupData[{ Cell[2373322, 71202, 104, 1, 24, "Print",ExpressionUUID->"eadd61b6-6b03-4cb9-9c7c-bd851909e744"], Cell[2373429, 71205, 522, 9, 44, "Print",ExpressionUUID->"f8d0d897-5608-4ea9-becf-36935f4445c2"], Cell[2373954, 71216, 496, 6, 63, "Print",ExpressionUUID->"40699899-475b-4b47-9cb6-d1e66be80aef"], Cell[2374453, 71224, 1810, 22, 215, "Print",ExpressionUUID->"d85a994b-0aca-453a-9828-3056470bd48f"], Cell[2376266, 71248, 9849, 353, 356, 5370, 278, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"76ce286f-1e14-46e6-8e98-70b872bc049a"] }, Open ]], Cell[2386130, 71604, 193, 5, 34, "Output",ExpressionUUID->"b69bef2e-39e4-42c0-83d6-9e591b3f4ae3"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2386372, 71615, 214, 4, 54, "Subsection",ExpressionUUID->"ba1009a2-b9b8-42c3-8ebc-bc8037e00ed9"], Cell[CellGroupData[{ Cell[2386611, 71623, 1224, 34, 73, "Input",ExpressionUUID->"5e0361db-1f47-420d-9db7-343da2f21b45"], Cell[2387838, 71659, 7550, 277, 177, 4343, 223, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ded10f0b-bb33-4a2c-9c68-3ea6d40b49f2"], Cell[2395391, 71938, 193, 5, 34, "Output",ExpressionUUID->"d5270fa6-6185-4093-a11e-f804957ebaee"] }, Open ]], Cell[CellGroupData[{ Cell[2395621, 71948, 1479, 39, 157, "Input",ExpressionUUID->"bfa9629c-6eb5-4ce9-81e6-608e1b541601"], Cell[2397103, 71989, 4251, 149, 202, 2035, 111, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ebad8ba5-33a8-4846-b2ba-51982bdd432f"], Cell[2401357, 72140, 193, 5, 34, "Output",ExpressionUUID->"9f30ff6c-35b3-42cb-84d7-f1f10297c83b"] }, Open ]], Cell[CellGroupData[{ Cell[2401587, 72150, 158, 3, 30, "Input",ExpressionUUID->"c33e9f67-fb86-4138-8a69-482b43cf4bc8"], Cell[2401748, 72155, 5948, 170, 296, 1959, 102, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"fdb2754c-9352-417d-936b-36e6d31118ea"], Cell[2407699, 72327, 193, 5, 34, "Output",ExpressionUUID->"0de3e056-344a-4811-b52f-2145f5b7ea05"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2407941, 72338, 214, 4, 54, "Subsection",ExpressionUUID->"cd4f036c-09a7-4a4b-aef8-671df39f1643"], Cell[CellGroupData[{ Cell[2408180, 72346, 1224, 34, 73, "Input",ExpressionUUID->"291bc87b-2295-4a48-8299-bc6b32638b6d"], Cell[2409407, 72382, 8240, 291, 177, 4573, 229, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"64c3130f-8a26-4cda-a93f-c3d8cb8e9fef"], Cell[2417650, 72675, 193, 5, 34, "Output",ExpressionUUID->"9f50f286-4842-4272-aa69-6fb6e69a25d5"] }, Open ]], Cell[CellGroupData[{ Cell[2417880, 72685, 1602, 42, 157, "Input",ExpressionUUID->"747ec88c-c58e-44b0-ad0d-af49ffdf5624"], Cell[2419485, 72729, 4248, 145, 203, 1781, 103, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"e85cddd8-2f0f-4e84-be27-13bdbbf3f54f"], Cell[2423736, 72876, 193, 5, 34, "Output",ExpressionUUID->"6f876238-80d9-4e1b-8f0a-bfd380b46967"] }, Open ]], Cell[CellGroupData[{ Cell[2423966, 72886, 158, 3, 30, "Input",ExpressionUUID->"b077dd0b-2219-448e-ad48-a5bafb6b5fee"], Cell[2424127, 72891, 5135, 151, 264, 1749, 94, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"c2c3db4a-9388-47df-bd1d-d8b3673eaf15"], Cell[2429265, 73044, 193, 5, 34, "Output",ExpressionUUID->"9c2500e5-4dba-49f4-bbdf-f8249d0e6dc5"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2429507, 73055, 214, 4, 54, "Subsection",ExpressionUUID->"bfb0ba97-e347-45df-b51d-223914d3ea2d"], Cell[CellGroupData[{ Cell[2429746, 73063, 110, 1, 30, "Input",ExpressionUUID->"a85964b3-c503-4b15-8742-4c35567be64e"], Cell[2429859, 73066, 233, 4, 24, "Print",ExpressionUUID->"83d3812c-1799-4a73-9a90-0213046093cc", CellTags->"Info3281787632-6225199"] }, Open ]], Cell[CellGroupData[{ Cell[2430129, 73075, 516, 14, 30, "Input",ExpressionUUID->"c55ea8c1-d836-4de9-b5a9-8f340674d874"], Cell[2430648, 73091, 4354, 137, 292, 1610, 90, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"ceaa1f62-ae3b-48e1-8658-0a41438fca2b"], Cell[2435005, 73230, 193, 5, 34, "Output",ExpressionUUID->"d07348f3-a8c2-4a9d-8994-d573158d828e"] }, Open ]], Cell[CellGroupData[{ Cell[2435235, 73240, 236, 6, 30, "Input",ExpressionUUID->"bd6031bd-49ea-4f3d-ba85-aac18a6fdf03"], Cell[2435474, 73248, 1351, 47, 54, "Output",ExpressionUUID->"dd74d9ef-4f01-4be6-a063-9a08b702b402"] }, Open ]], Cell[CellGroupData[{ Cell[2436862, 73300, 1149, 30, 115, "Input",ExpressionUUID->"33e9a163-9c00-4aeb-b154-a2f207ef96e8"], Cell[2438014, 73332, 4394, 145, 224, 1879, 102, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"309736df-ccc0-481c-bf29-d65a36b21d8c"], Cell[2442411, 73479, 193, 5, 34, "Output",ExpressionUUID->"6c44f85c-f785-4194-9bf1-222d468345ab"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2442653, 73490, 214, 4, 54, "Subsection",ExpressionUUID->"e7827743-4554-4412-a149-471ad4d8666c"], Cell[CellGroupData[{ Cell[2442892, 73498, 164, 3, 30, "Input",ExpressionUUID->"504d7052-68f3-44c7-9c41-6d68a4585871"], Cell[2443059, 73503, 127, 0, 34, "Output",ExpressionUUID->"5752a5fe-1423-454d-8453-04ad162b974b"] }, Open ]], Cell[CellGroupData[{ Cell[2443223, 73508, 904, 23, 94, "Input",ExpressionUUID->"0ba6b459-4b0b-4452-8f73-7e4d0c3406bf"], Cell[2444130, 73533, 7063, 263, 293, 4213, 214, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"d8b93fd6-afbd-4553-a596-608073708a9e"], Cell[2451196, 73798, 193, 5, 34, "Output",ExpressionUUID->"6808d911-b1b8-4798-8dec-71342809872e"] }, Open ]], Cell[CellGroupData[{ Cell[2451426, 73808, 365, 9, 30, "Input",ExpressionUUID->"ee77f588-9676-4cde-9838-e0f90beca628"], Cell[2451794, 73819, 185, 6, 76, "Output",ExpressionUUID->"8ffc479d-6d4a-4ae1-8597-d1fb85de6d68"] }, Open ]], Cell[CellGroupData[{ Cell[2452016, 73830, 991, 25, 94, "Input",ExpressionUUID->"d9f66cb9-7f44-4191-96c4-be1eeadde51e"], Cell[2453010, 73857, 7756, 263, 293, 3905, 198, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"c1a8dd55-978b-4315-ba18-490590b4f453"], Cell[2460769, 74122, 193, 5, 34, "Output",ExpressionUUID->"825da171-6f35-4946-a2c5-ada070fe714a"] }, Open ]], Cell[CellGroupData[{ Cell[2460999, 74132, 509, 14, 30, "Input",ExpressionUUID->"9db93021-6f14-4176-8f1a-9e8202b78ec1"], Cell[2461511, 74148, 5506, 148, 315, 1383, 78, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"b59f098e-0b95-4f20-af3b-8b2be87dd3ae"], Cell[2467020, 74298, 193, 5, 34, "Output",ExpressionUUID->"056441b0-6b07-4bcf-a513-a005fa8a231f"] }, Open ]], Cell[CellGroupData[{ Cell[2467250, 74308, 189, 4, 30, "Input",ExpressionUUID->"267689b2-b144-40de-95da-0044f4770224"], Cell[2467442, 74314, 309, 9, 58, "Output",ExpressionUUID->"6a41cfd7-57fe-4509-bcec-700564656f10"] }, Open ]], Cell[CellGroupData[{ Cell[2467788, 74328, 219, 6, 30, "Input",ExpressionUUID->"596f0a0c-1176-490f-b310-e458f3e2ce19"], Cell[2468010, 74336, 253, 9, 54, "Output",ExpressionUUID->"d81b6032-8d8d-4291-b653-8e2fa19a17bd"] }, Open ]], Cell[CellGroupData[{ Cell[2468300, 74350, 1704, 45, 159, "Input",ExpressionUUID->"5b352998-f797-4742-a299-6503c1624cc2"], Cell[2470007, 74397, 6380, 205, 293, 2623, 142, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"3f57c9c3-9b2b-42bf-8215-59a58bb7018b"], Cell[2476390, 74604, 193, 5, 34, "Output",ExpressionUUID->"66b5fabe-38a0-4158-b101-318928a7aefc"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2476632, 74615, 214, 4, 54, "Subsection",ExpressionUUID->"bfd2c0d3-88aa-4a66-95ad-f5c107d6e38e"], Cell[CellGroupData[{ Cell[2476871, 74623, 164, 3, 30, "Input",ExpressionUUID->"bd19dcc7-6761-4e68-8b8d-0cafece882b3"], Cell[2477038, 74628, 120, 0, 34, "Output",ExpressionUUID->"4a834692-7bb1-4312-a8b8-933ed130f56d"] }, Open ]], Cell[CellGroupData[{ Cell[2477195, 74633, 888, 23, 94, "Input",ExpressionUUID->"91d8afaa-2d9f-4e3d-93c3-61b8659ab312"], Cell[2478086, 74658, 11898, 470, 296, 8113, 406, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"f7dcab5e-b739-4eb2-ac6a-8f126878b7a7"], Cell[2489987, 75130, 193, 5, 34, "Output",ExpressionUUID->"53726d6e-a28b-474e-bd3b-a87a347ad947"] }, Open ]], Cell[CellGroupData[{ Cell[2490217, 75140, 387, 10, 30, "Input",ExpressionUUID->"6ac7757b-fe67-4959-82c0-f031c7570187"], Cell[2490607, 75152, 192, 6, 54, "Output",ExpressionUUID->"60451179-6ae4-4f0f-9206-4009ce649f74"] }, Open ]], Cell[CellGroupData[{ Cell[2490836, 75163, 975, 25, 94, "Input",ExpressionUUID->"e88f8f24-e0aa-4eba-aae7-f20019ee903b"], Cell[2491814, 75190, 13047, 472, 296, 7651, 382, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"0c6dfe4f-224d-4d75-8ff2-0bc657689b6e"], Cell[2504864, 75664, 193, 5, 34, "Output",ExpressionUUID->"d52ced62-84ac-440b-a04d-b13a9d349351"] }, Open ]], Cell[CellGroupData[{ Cell[2505094, 75674, 509, 14, 30, "Input",ExpressionUUID->"f29696c5-2fc6-4188-bedb-ff0947490f16"], Cell[2505606, 75690, 6374, 174, 274, 1625, 94, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"8784bce7-0bfd-4123-b738-b699fa2125d0"], Cell[2511983, 75866, 193, 5, 34, "Output",ExpressionUUID->"e1845b87-b425-4676-a05c-b655470bff9a"] }, Open ]], Cell[CellGroupData[{ Cell[2512213, 75876, 189, 4, 30, "Input",ExpressionUUID->"8dded0f1-c6a9-4059-bb39-e067d861897d"], Cell[2512405, 75882, 378, 12, 54, "Output",ExpressionUUID->"91a3104a-0bb6-403d-a8cd-8b20fbb9b1a9"] }, Open ]], Cell[CellGroupData[{ Cell[2512820, 75899, 2214, 58, 133, "Input",ExpressionUUID->"d090c597-dd6e-47fb-86b4-55fd2aec7737"], Cell[2515037, 75959, 8081, 306, 296, 4536, 246, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"477d4001-d539-4a22-973d-163694cc8a2c"], Cell[2523121, 76267, 193, 5, 34, "Output",ExpressionUUID->"b07560d0-5892-440d-90c9-5a7af2e9dc59"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2523363, 76278, 214, 4, 54, "Subsection",ExpressionUUID->"edfd7349-03b8-42c2-ab15-c118324390e1"], Cell[CellGroupData[{ Cell[2523602, 76286, 2722, 72, 179, "Input",ExpressionUUID->"38c482ab-9233-42bb-b76a-332a9c2e8d2b"], Cell[2526327, 76360, 8235, 328, 281, 5260, 278, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"4c837873-d7ae-484c-8224-575c393ce8b0"], Cell[2534565, 76690, 193, 5, 34, "Output",ExpressionUUID->"28f8f3ed-4f65-418f-bb5d-5b7772ac5e75"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2534807, 76701, 214, 4, 54, "Subsection",ExpressionUUID->"a05ea264-b0d1-491b-bd40-4c99030750c4"], Cell[2535024, 76707, 4716, 134, 157, "Input",ExpressionUUID->"40539558-cbfe-4b90-913e-fda585f55096"], Cell[CellGroupData[{ Cell[2539765, 76845, 217, 5, 30, "Input",ExpressionUUID->"c13255b1-c939-4dfd-a95d-ecab3f6059bb"], Cell[2539985, 76852, 4301, 131, 205, 1655, 86, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"753584c3-8bb5-4476-8110-813605663186"], Cell[2544289, 76985, 193, 5, 34, "Output",ExpressionUUID->"50bc940d-5f8d-44ea-a2a7-456ded318a8b"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2544543, 76997, 93, 0, 67, "Section",ExpressionUUID->"3755fb89-915a-4d5e-8224-3e189687e130"], Cell[CellGroupData[{ Cell[2544661, 77001, 90, 0, 54, "Subsection",ExpressionUUID->"0872d50d-d54d-46e3-bb42-b6997dd5fc69"], Cell[CellGroupData[{ Cell[2544776, 77005, 794, 20, 52, "Input",ExpressionUUID->"ef49965c-a130-420b-8e6c-a1c4fdefa1de"], Cell[CellGroupData[{ Cell[2545595, 77029, 570, 12, 24, "Print",ExpressionUUID->"a9d4b2ea-b188-4ee9-b0fe-7888d2cfb429"], Cell[2546168, 77043, 582, 13, 24, "Print",ExpressionUUID->"a4e874dd-0b17-4c62-bbf5-3ac1808b1b8b"], Cell[2546753, 77058, 587, 13, 24, "Print",ExpressionUUID->"3550b337-6b7e-42ca-ac78-e1fba5004331"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2547401, 77078, 97, 0, 54, "Subsection",ExpressionUUID->"2c5d277d-7771-41b2-981a-214ad91247d5"], Cell[CellGroupData[{ Cell[2547523, 77082, 814, 21, 52, "Input",ExpressionUUID->"5a86c854-4ced-44a5-bd99-e5a7504bdd9a"], Cell[CellGroupData[{ Cell[2548362, 77107, 431, 11, 24, "Print",ExpressionUUID->"da8c6ff5-b955-46e2-8ebe-2b6af610c9ea"], Cell[2548796, 77120, 440, 11, 24, "Print",ExpressionUUID->"0c26afc2-7e84-443a-8339-89173b1b0df2"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2549297, 77138, 98, 0, 54, "Subsection",ExpressionUUID->"60f23fcc-9a50-4ca0-a264-49288df07789"], Cell[CellGroupData[{ Cell[2549420, 77142, 200, 3, 30, "Input",ExpressionUUID->"f131ad9c-8a4b-40b5-a7c1-666684553762"], Cell[2549623, 77147, 939, 16, 56, "Output",ExpressionUUID->"f4b2fad8-13bf-4298-9d2b-dcc6017abfdd"] }, Open ]], Cell[CellGroupData[{ Cell[2550599, 77168, 757, 20, 52, "Input",ExpressionUUID->"bdac93b9-d93f-40c4-8c84-f9c571af931d"], Cell[2551359, 77190, 1026, 18, 44, "Print",ExpressionUUID->"125c5772-453e-47a6-8481-dba81bb6bfce"], Cell[2552388, 77210, 274, 6, 21, "Message",ExpressionUUID->"154f9192-79ab-452f-9ba2-d2d7e92a0f47"], Cell[2552665, 77218, 238, 5, 24, "Print",ExpressionUUID->"ad9f0d80-29aa-406e-8e32-a53e5610fc18"], Cell[2552906, 77225, 238, 5, 21, "Message",ExpressionUUID->"1ebd12ec-fed0-40c9-89a6-4c5d056d281e"], Cell[2553147, 77232, 245, 5, 24, "Print",ExpressionUUID->"df3f8264-7027-4cb9-a410-e5a2c7604086"], Cell[2553395, 77239, 238, 5, 21, "Message",ExpressionUUID->"d56cf0c7-4e3f-48fe-a878-6d3b99e2119a"], Cell[2553636, 77246, 248, 5, 24, "Print",ExpressionUUID->"a5a273c8-8ffc-4945-b4dd-7887219e2514"], Cell[2553887, 77253, 238, 5, 21, "Message",ExpressionUUID->"2199275d-8646-4b6b-932c-75d215475022"], Cell[2554128, 77260, 548, 10, 24, "Message",ExpressionUUID->"9cc0b395-6c01-46bd-b407-222cf0be26c8"], Cell[2554679, 77272, 242, 5, 24, "Print",ExpressionUUID->"be5cfe49-096a-40c5-b635-7e991d02841a"] }, Open ]], Cell[CellGroupData[{ Cell[2554958, 77282, 469, 13, 30, "Input",ExpressionUUID->"27011f9d-0305-4056-87ec-658672a22fd4"], Cell[2555430, 77297, 910, 24, 105, "Output",ExpressionUUID->"8f6d517f-35a7-443b-8a02-98ad2fc4b1e4"] }, Open ]], Cell[CellGroupData[{ Cell[2556377, 77326, 249, 6, 30, "Input",ExpressionUUID->"c98250e2-2ffb-432c-8855-6337df4950a5"], Cell[2556629, 77334, 101, 0, 34, "Output",ExpressionUUID->"51a57a51-5d4a-4cc3-ada5-53760bbd1ace"] }, Open ]], Cell[CellGroupData[{ Cell[2556767, 77339, 485, 12, 30, "Input",ExpressionUUID->"c70c8a1c-795d-4c5a-88a6-eb55859debc2"], Cell[2557255, 77353, 3614, 60, 377, "Output",ExpressionUUID->"4aa26745-65e4-49c7-b240-7e461d700c66"] }, Open ]], Cell[CellGroupData[{ Cell[2560906, 77418, 467, 14, 30, "Input",ExpressionUUID->"0a67fcfd-4ae3-4adb-b9c7-e250b461caea"], Cell[2561376, 77434, 100, 1, 34, "Output",ExpressionUUID->"708af1bd-5da2-4d17-8d2b-96ba1051c5b8"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2561525, 77441, 98, 0, 54, "Subsection",ExpressionUUID->"d61c4b1e-6c08-48e4-b8ff-ff62183eb45e"], Cell[CellGroupData[{ Cell[2561648, 77445, 620, 18, 30, "Input",ExpressionUUID->"a3d308a4-da13-480d-843b-b5842e3a2708"], Cell[2562271, 77465, 564, 13, 24, "Print",ExpressionUUID->"e318c0ea-749d-4cd7-91eb-c8ca45fea22e"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2562884, 77484, 98, 0, 54, "Subsection",ExpressionUUID->"8d70bb8f-f8dc-428b-b312-dcae7104aa45"], Cell[CellGroupData[{ Cell[2563007, 77488, 143, 2, 30, "Input",ExpressionUUID->"62dce037-3a73-44ca-9dc6-9041815f24f4"], Cell[2563153, 77492, 4340, 85, 377, "Output",ExpressionUUID->"8d483746-dc25-4c9c-8150-2f892fdfea12"] }, Open ]], Cell[CellGroupData[{ Cell[2567530, 77582, 153, 2, 30, "Input",ExpressionUUID->"32f1fe5e-7f02-4ded-908a-e4d99f086c4d"], Cell[2567686, 77586, 1347, 22, 377, "Output",ExpressionUUID->"2c76c4b9-8618-459a-a5c9-b329501e5e51"] }, Open ]], Cell[CellGroupData[{ Cell[2569070, 77613, 605, 17, 30, "Input",ExpressionUUID->"566ec635-3e6b-4f2a-b62c-bc0c75bb37a0"], Cell[CellGroupData[{ Cell[2569700, 77634, 396, 10, 24, "Print",ExpressionUUID->"ae02e1d9-392c-491c-b975-1e2c2bae6ecd"], Cell[2570099, 77646, 247, 6, 24, "Print",ExpressionUUID->"eaf518e9-89d8-45b0-b98a-cc482c134cfa"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2570407, 77659, 91, 0, 54, "Subsection",ExpressionUUID->"406b1cb5-be56-449c-8840-c90c35d31d5b"], Cell[2570501, 77661, 674, 20, 30, "Input",ExpressionUUID->"a404c39a-38c2-47a2-933f-3adc29125bed"], Cell[CellGroupData[{ Cell[2571200, 77685, 678, 20, 30, "Input",ExpressionUUID->"d248337e-3ef5-43e7-a3d2-f3e6cd448954"], Cell[CellGroupData[{ Cell[2571903, 77709, 408, 10, 24, "Print",ExpressionUUID->"3332d047-e84b-4d81-b933-2fa9f2b1c0a2"], Cell[2572314, 77721, 409, 10, 24, "Print",ExpressionUUID->"f25fc561-d7ae-4b00-a412-01120567cdb1"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2572772, 77737, 677, 20, 30, "Input",ExpressionUUID->"89bea25f-9e13-447d-be3c-f0a65614e3c0"], Cell[CellGroupData[{ Cell[2573474, 77761, 434, 11, 24, "Print",ExpressionUUID->"d8824e6f-f259-4101-b7bb-ad52e37be970"], Cell[2573911, 77774, 440, 11, 24, "Print",ExpressionUUID->"e397ecda-864d-4dfb-b940-5ffda6e34528"], Cell[2574354, 77787, 439, 11, 24, "Print",ExpressionUUID->"ef3c2d41-5acf-410f-b13a-7319655d2b68"], Cell[2574796, 77800, 437, 11, 24, "Print",ExpressionUUID->"ca5a139e-bbfc-42b5-b410-6e5955d4e4cf"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2575294, 77818, 85, 0, 54, "Subsection",ExpressionUUID->"3af5af01-907e-4367-95ff-584c2905ffe4"], Cell[CellGroupData[{ Cell[2575404, 77822, 574, 16, 30, "Input",ExpressionUUID->"45127ca0-fda7-4521-ab0c-a5819a5c3187"], Cell[CellGroupData[{ Cell[2576003, 77842, 479, 14, 24, "Print",ExpressionUUID->"0ee46bf1-3a34-4610-aab5-b5f8e80c8cde"], Cell[2576485, 77858, 211, 6, 24, "Print",ExpressionUUID->"dfc4fff6-50e5-4aa2-af88-3ee546a0d144"], Cell[2576699, 77866, 211, 6, 24, "Print",ExpressionUUID->"69a252df-dedb-4c0e-80c2-0c8dc958f0a6"], Cell[2576913, 77874, 179, 4, 24, "Print",ExpressionUUID->"f0963e3c-4484-4144-b1a2-2717938916f0"], Cell[2577095, 77880, 337, 8, 24, "Print",ExpressionUUID->"262d33d6-11a6-4b5f-86fc-8882396bc421"], Cell[2577435, 77890, 213, 6, 24, "Print",ExpressionUUID->"185aaaba-4291-4e78-b2d6-b637d6ae2a33"], Cell[2577651, 77898, 181, 4, 24, "Print",ExpressionUUID->"883edb97-07ba-45c5-9ea7-86d4e2a2d735"], Cell[2577835, 77904, 449, 12, 24, "Print",ExpressionUUID->"2fd64b4c-2dcf-4083-b6ad-e80f705da072"], Cell[2578287, 77918, 170, 4, 24, "Print",ExpressionUUID->"a24d9823-742a-47a2-b2eb-75396cca01be"], Cell[2578460, 77924, 169, 4, 24, "Print",ExpressionUUID->"95f57d29-026e-47d1-a7ef-b6ec2f6534ca"], Cell[2578632, 77930, 676, 18, 24, "Print",ExpressionUUID->"b137024a-54c6-46e7-8054-341b45140a41"], Cell[2579311, 77950, 181, 4, 24, "Print",ExpressionUUID->"db5f575b-01a0-4900-85d0-03ee541c01f9"], Cell[2579495, 77956, 171, 4, 24, "Print",ExpressionUUID->"ecdb0ad7-7057-46fe-abd0-430bcde88f99"], Cell[2579669, 77962, 182, 4, 24, "Print",ExpressionUUID->"1e117106-effd-4e0a-987e-d246e106737c"], Cell[2579854, 77968, 179, 4, 24, "Print",ExpressionUUID->"9f70cf04-6a88-4e62-a86e-b13b3033d31d"], Cell[2580036, 77974, 344, 8, 24, "Print",ExpressionUUID->"6db423f7-e29f-46df-b76b-08f7e7945d11"], Cell[2580383, 77984, 680, 18, 24, "Print",ExpressionUUID->"f77c0e0f-946a-482e-90c9-89ca637fdbcd"], Cell[2581066, 78004, 183, 4, 24, "Print",ExpressionUUID->"d96e2648-f8f0-4404-9487-5da1a74e9d3a"], Cell[2581252, 78010, 182, 4, 24, "Print",ExpressionUUID->"fe4247bc-407d-4018-9f0e-f51638ef3c53"], Cell[2581437, 78016, 167, 4, 24, "Print",ExpressionUUID->"f8194801-f2ab-4eb9-b2d3-d73fe8bec3c0"], Cell[2581607, 78022, 179, 4, 24, "Print",ExpressionUUID->"e269772f-4214-4312-956a-7d9c7bcd7810"], Cell[2581789, 78028, 176, 4, 24, "Print",ExpressionUUID->"a248e063-72fd-42ac-b649-1370ecb183b1"], Cell[2581968, 78034, 181, 4, 24, "Print",ExpressionUUID->"7e57d6c5-3d13-413d-ab29-f2466d3bd766"], Cell[2582152, 78040, 185, 4, 24, "Print",ExpressionUUID->"4f386613-1c78-4fc5-bde3-a3ded2626d9c"], Cell[2582340, 78046, 181, 4, 24, "Print",ExpressionUUID->"e2bd75b3-8651-4410-9ce6-be5ac474f037"], Cell[2582524, 78052, 183, 4, 24, "Print",ExpressionUUID->"a382a3c8-b857-402d-95db-ed03fe06a02d"], Cell[2582710, 78058, 171, 4, 24, "Print",ExpressionUUID->"a803e70f-ea64-4615-be43-dbbd84d0f296"], Cell[2582884, 78064, 167, 4, 24, "Print",ExpressionUUID->"b30e3942-beee-4dbc-bcf1-b5a2d12fed99"], Cell[2583054, 78070, 178, 4, 24, "Print",ExpressionUUID->"cb61b3b9-9fb7-4f2d-8225-f548b6026374"], Cell[2583235, 78076, 178, 4, 24, "Print",ExpressionUUID->"9645d8d7-a9ea-49db-8736-7340a0a155ee"], Cell[2583416, 78082, 170, 4, 24, "Print",ExpressionUUID->"f3218646-e23c-4692-9092-7328f26e4729"], Cell[2583589, 78088, 175, 4, 24, "Print",ExpressionUUID->"4c99b32a-5ef4-4197-a67e-5730c50aeee8"], Cell[2583767, 78094, 184, 4, 24, "Print",ExpressionUUID->"3ac5440f-29e3-4bf7-9573-02e1415e3d49"], Cell[2583954, 78100, 184, 4, 24, "Print",ExpressionUUID->"b516613b-17c7-4dad-b9a7-3a5601c1e6ac"], Cell[2584141, 78106, 184, 4, 24, "Print",ExpressionUUID->"1fce1e1f-0ab4-475a-82b9-f613528fd8a3"], Cell[2584328, 78112, 180, 4, 24, "Print",ExpressionUUID->"9b2f3a71-1ce1-4088-8b25-3e46f7030e42"], Cell[2584511, 78118, 184, 4, 24, "Print",ExpressionUUID->"54ff25c5-91df-43da-bdbe-fedd56293ccf"], Cell[2584698, 78124, 171, 4, 24, "Print",ExpressionUUID->"7e00a068-f999-43ab-b11a-60fc264474ac"], Cell[2584872, 78130, 181, 4, 24, "Print",ExpressionUUID->"0eabf585-5ecb-4b3c-b194-bf2dbfb8c1f6"], Cell[2585056, 78136, 171, 4, 24, "Print",ExpressionUUID->"ce133b62-6523-4ad1-9363-87bc20d5c889"], Cell[2585230, 78142, 174, 4, 24, "Print",ExpressionUUID->"1d009da2-5b7e-4a4b-a917-831790c93849"], Cell[2585407, 78148, 173, 4, 24, "Print",ExpressionUUID->"8187bd1e-348c-4bb6-bb40-63679de58db2"], Cell[2585583, 78154, 174, 4, 24, "Print",ExpressionUUID->"438c4ba0-99f9-49ff-b3a4-2986b50ebdcb"], Cell[2585760, 78160, 186, 4, 24, "Print",ExpressionUUID->"9361bbfe-615d-4550-a258-8ff1e5a3c068"], Cell[2585949, 78166, 187, 4, 24, "Print",ExpressionUUID->"8330d8e9-e863-4a8f-8bdd-34906a8c8ddb"], Cell[2586139, 78172, 186, 4, 24, "Print",ExpressionUUID->"0c154cf6-ca53-444e-83b3-c3084eacf52d"], Cell[2586328, 78178, 182, 4, 24, "Print",ExpressionUUID->"4cf47ca4-d393-4a5e-bf8a-51121d74b612"], Cell[2586513, 78184, 176, 4, 24, "Print",ExpressionUUID->"35bf1ad3-0071-4d79-bb0a-6c6e64ec8303"], Cell[2586692, 78190, 180, 4, 24, "Print",ExpressionUUID->"189e4019-439b-42be-8d10-3cb76ec9e499"], Cell[2586875, 78196, 177, 4, 24, "Print",ExpressionUUID->"0119e424-fdea-4a35-84f7-5a6e1f4b0671"], Cell[2587055, 78202, 178, 4, 24, "Print",ExpressionUUID->"29fa845f-1311-4d6e-b067-b6feff393cdf"], Cell[2587236, 78208, 172, 4, 24, "Print",ExpressionUUID->"377eef16-533d-403d-b778-0390a333b054"], Cell[2587411, 78214, 2433, 60, 82, "Print",ExpressionUUID->"22e6aaac-ccc8-4933-bfa0-574e951d75a1"], Cell[2589847, 78276, 2439, 60, 82, "Print",ExpressionUUID->"5ea98e85-4925-415b-865a-350e98c2a6c2"], Cell[2592289, 78338, 2439, 60, 82, "Print",ExpressionUUID->"98d5b23d-2289-4ae1-bbee-9bf8b9b5c807"], Cell[2594731, 78400, 2436, 60, 82, "Print",ExpressionUUID->"45f1d2bf-f924-4a8c-9a8b-dd61b9bc7c06"], Cell[2597170, 78462, 182, 4, 24, "Print",ExpressionUUID->"6d5848ee-884d-412e-b618-8b91c16ec483"], Cell[2597355, 78468, 182, 4, 24, "Print",ExpressionUUID->"f550f60d-ae6e-41d8-ba69-966b70474cf5"], Cell[2597540, 78474, 180, 4, 24, "Print",ExpressionUUID->"59e4b468-3d4e-4bd8-8a12-c100691f6d86"], Cell[2597723, 78480, 184, 4, 24, "Print",ExpressionUUID->"650c2d1c-3586-431b-aec7-64bff56e8a01"], Cell[2597910, 78486, 182, 4, 24, "Print",ExpressionUUID->"68abe586-2198-4d58-a299-9431994018a6"], Cell[2598095, 78492, 183, 4, 24, "Print",ExpressionUUID->"aa773b2f-45c7-45a3-9ef3-03fe58343f19"], Cell[2598281, 78498, 177, 4, 24, "Print",ExpressionUUID->"8de7a3fd-9c0a-4e89-b1ce-ebcd5521a2f4"], Cell[2598461, 78504, 186, 4, 24, "Print",ExpressionUUID->"30321221-f3b5-465c-b224-c868bd3ce1b5"], Cell[2598650, 78510, 187, 4, 24, "Print",ExpressionUUID->"9c5ac008-0b26-47c0-95b3-c1dfcbe40513"], Cell[2598840, 78516, 181, 4, 24, "Print",ExpressionUUID->"964f1bb4-2dc6-4431-9ef1-3067857e8ad7"], Cell[2599024, 78522, 186, 4, 24, "Print",ExpressionUUID->"07ca788a-ad50-4ee5-9192-c0aeb218346b"], Cell[2599213, 78528, 185, 4, 24, "Print",ExpressionUUID->"3ab3c8d9-1b63-4b3d-b41e-c197618dd80c"], Cell[2599401, 78534, 179, 4, 24, "Print",ExpressionUUID->"ad6d0460-8c1f-4983-b657-567216c4d7a8"], Cell[2599583, 78540, 179, 4, 24, "Print",ExpressionUUID->"182953a5-f096-459b-a5eb-9f6fc86374b2"], Cell[2599765, 78546, 191, 4, 24, "Print",ExpressionUUID->"ad624c43-9169-4521-a100-e36edafb13cd"], Cell[2599959, 78552, 192, 4, 24, "Print",ExpressionUUID->"f51bd0dd-9d6e-4eba-b66c-3bd71bdba176"], Cell[2600154, 78558, 191, 4, 24, "Print",ExpressionUUID->"4277e50e-03dd-4f30-8da2-9883b4434684"], Cell[2600348, 78564, 187, 4, 24, "Print",ExpressionUUID->"f620b97d-85cf-4a59-8e10-e4c62ab41210"], Cell[2600538, 78570, 188, 4, 24, "Print",ExpressionUUID->"7dcd8d34-facc-4bb7-99d2-d1293c21a84f"], Cell[2600729, 78576, 187, 4, 24, "Print",ExpressionUUID->"f96164a0-98c3-4482-92b4-d4c35ce36aa1"], Cell[2600919, 78582, 190, 4, 24, "Print",ExpressionUUID->"3052f2af-f155-4d6c-80aa-385d941a0b0e"], Cell[2601112, 78588, 195, 4, 24, "Print",ExpressionUUID->"ce446980-c54d-4941-9935-c3eb642f049b"], Cell[2601310, 78594, 193, 4, 24, "Print",ExpressionUUID->"a869aaad-ddf1-45b3-bb1e-d4a2aff728c3"], Cell[2601506, 78600, 193, 4, 24, "Print",ExpressionUUID->"0bf08889-2337-49e9-88a5-9609b02e1cc6"], Cell[2601702, 78606, 195, 4, 24, "Print",ExpressionUUID->"2954e9a2-ba15-49ba-aa93-f56f2f2d8093"], Cell[2601900, 78612, 187, 4, 24, "Print",ExpressionUUID->"974738fc-5aa6-4926-a454-5e6507f2826e"], Cell[2602090, 78618, 197, 4, 24, "Print",ExpressionUUID->"1dbc3416-9a5b-4684-8afc-c379ba511875"], Cell[2602290, 78624, 197, 4, 24, "Print",ExpressionUUID->"dfd13f98-b577-46d4-b8d2-b0f50edae9ca"], Cell[2602490, 78630, 183, 4, 24, "Print",ExpressionUUID->"cb1a8ea5-ce82-4720-8556-6bc617609a09"], Cell[2602676, 78636, 189, 4, 24, "Print",ExpressionUUID->"d7d3bf8e-3216-44c7-a15f-7d4e0d92baef"], Cell[2602868, 78642, 189, 4, 24, "Print",ExpressionUUID->"e182bf51-1150-494f-818b-3d1b2d4de2ae"], Cell[2603060, 78648, 186, 4, 24, "Print",ExpressionUUID->"3c737fc6-d931-4996-a1ce-74cc0fbd2e1b"], Cell[2603249, 78654, 185, 4, 24, "Print",ExpressionUUID->"f95e4f5b-ae14-409f-b71c-e6e359368ca5"], Cell[2603437, 78660, 191, 4, 24, "Print",ExpressionUUID->"a0e39a06-469b-42ea-9573-64435ca2fe98"], Cell[2603631, 78666, 191, 4, 24, "Print",ExpressionUUID->"879a53e9-e9a9-4147-9944-5a04177fc211"], Cell[2603825, 78672, 188, 4, 24, "Print",ExpressionUUID->"d1e7d9a9-343f-45ce-8d77-0028dcb1bc2a"] }, Open ]] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2604086, 78684, 80, 0, 67, "Section",ExpressionUUID->"d5daa8c9-004a-45e3-8d95-8c409f93a951"], Cell[CellGroupData[{ Cell[2604191, 78688, 80, 0, 54, "Subsection",ExpressionUUID->"a36433a5-4115-410e-b8a3-ca727cf9ff42"], Cell[CellGroupData[{ Cell[2604296, 78692, 92, 0, 45, "Subsubsection",ExpressionUUID->"7f640e3b-cd59-4e17-a21e-720f05402b4a"], Cell[2604391, 78694, 394, 11, 30, "Input",ExpressionUUID->"2ec0922d-6b1a-46e6-9f88-2c60a1b37b3b"], Cell[CellGroupData[{ Cell[2604810, 78709, 149, 3, 30, "Input",ExpressionUUID->"58d6fbe5-d5a2-4e91-9abc-8551ceb1e26d"], Cell[2604962, 78714, 312, 6, 34, "Output",ExpressionUUID->"fbb606aa-24de-460c-9735-e785c2a9db88"] }, Open ]], Cell[CellGroupData[{ Cell[2605311, 78725, 113, 1, 30, "Input",ExpressionUUID->"2ef9cbd9-8ded-4f11-a3c8-9074172566ca"], Cell[2605427, 78728, 856, 15, 98, "Output",ExpressionUUID->"159ca181-abfb-4fcd-8dc4-71d253b75813"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2606332, 78749, 95, 0, 45, "Subsubsection",ExpressionUUID->"d644080a-ee24-465f-87e5-cb06aa20a6e6"], Cell[CellGroupData[{ Cell[2606452, 78753, 379, 11, 30, "Input",ExpressionUUID->"113d2f9e-538a-4515-bc83-9d3f8501d701"], Cell[2606834, 78766, 500, 8, 34, "Output",ExpressionUUID->"1e031019-2c18-4526-840c-4796ea6c377d"] }, Open ]], Cell[CellGroupData[{ Cell[2607371, 78779, 844, 24, 94, "Input",ExpressionUUID->"3b22241c-ff5b-476e-89a1-686ff66ea06c"], Cell[2608218, 78805, 60549, 2526, 389, 41301, 2209, "GraphicsData", "PostScript", "Graphics",ExpressionUUID->"14202adf-2a60-428d-a1e2-8b19347e55d7"], Cell[2668770, 81333, 291, 8, 34, "Output",ExpressionUUID->"c024ca20-cb9d-4450-95da-ddecd5b72497"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2669122, 81348, 93, 0, 54, "Subsection",ExpressionUUID->"197981d5-1aa9-4e6e-a1ec-2271d437c0a4"], Cell[CellGroupData[{ Cell[2669240, 81352, 949, 26, 73, "Input",ExpressionUUID->"8cac2a44-05fa-48d4-9a5d-2d4730ef68a5"], Cell[2670192, 81380, 4727, 118, 119, "Output",ExpressionUUID->"b8ba4b28-18b0-44e1-b51c-49668585f55e"] }, Open ]], Cell[CellGroupData[{ Cell[2674956, 81503, 355, 10, 30, "Input",ExpressionUUID->"9531711c-4c74-4e08-9651-0f8e3f7cdccd"], Cell[2675314, 81515, 106, 1, 34, "Output",ExpressionUUID->"01abf7fc-c9c3-49ff-a51c-15c23817c7f1"] }, Open ]], Cell[CellGroupData[{ Cell[2675457, 81521, 93, 0, 45, "Subsubsection",ExpressionUUID->"90cf3624-c9d8-4ee1-90fe-f886be35d253"], Cell[CellGroupData[{ Cell[2675575, 81525, 219, 6, 30, "Input",ExpressionUUID->"435b90ae-3750-464c-bd53-31aed57d81fb"], Cell[2675797, 81533, 194, 4, 34, "Output",ExpressionUUID->"191dec1b-9b55-4186-ae1c-27ce2ad0a9dd"] }, Open ]], Cell[CellGroupData[{ Cell[2676028, 81542, 266, 8, 30, "Input",ExpressionUUID->"76a5c386-9693-4916-8ee2-9cb799b4b025"], Cell[2676297, 81552, 3604, 86, 302, "Output",ExpressionUUID->"27d95a9a-244d-4a46-bc1b-e29b6eb685ca"] }, Open ]] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2679962, 81645, 83, 0, 54, "Subsection",ExpressionUUID->"2a2ddbd0-c208-42cc-9080-1901ce9cf042"], Cell[CellGroupData[{ Cell[2680070, 81649, 100, 0, 45, "Subsubsection",ExpressionUUID->"360b372a-0875-4a56-9d19-0e897edbc044"], Cell[CellGroupData[{ Cell[2680195, 81653, 124, 0, 30, "Input",ExpressionUUID->"17bc8d31-2708-422f-abea-55b01cf129e5"], Cell[2680322, 81655, 822, 13, 56, "Output",ExpressionUUID->"c6e29a46-1fbd-4c04-bf07-bb5c34df525c"] }, Open ]], Cell[CellGroupData[{ Cell[2681181, 81673, 1306, 38, 94, "Input",ExpressionUUID->"f8c57015-f9b0-43a1-829d-0b7992d3e552"], Cell[2682490, 81713, 526, 9, 27, "Message",ExpressionUUID->"fe64d14e-7b94-4f45-84ba-ff1c9c657532"], Cell[2683019, 81724, 526, 9, 27, "Message",ExpressionUUID->"9eb8aff9-b580-4fab-bdbc-176ad62c3b93"], Cell[2683548, 81735, 526, 9, 27, "Message",ExpressionUUID->"adb124e5-9081-43bc-a707-cdebb227779f"], Cell[2684077, 81746, 413, 7, 25, "Message",ExpressionUUID->"fa3ad919-b733-450c-9a43-7a7235f1cdfe"], Cell[2684493, 81755, 718, 11, 27, "Message",ExpressionUUID->"93ffa6e1-1b20-4681-bece-60a78cb10e68"], Cell[2685214, 81768, 718, 11, 27, "Message",ExpressionUUID->"dbf25257-726e-4d47-bbd1-a4466c9b4751"], Cell[2685935, 81781, 752, 12, 27, "Message",ExpressionUUID->"fcb7e173-11df-41bc-90fd-2fb393eec9ea"], Cell[2686690, 81795, 410, 7, 25, "Message",ExpressionUUID->"fb378b98-92d3-40b3-b7ab-8b1856059600"], Cell[2687103, 81804, 90, 0, 34, "Output",ExpressionUUID->"6a44eb12-d42e-4210-8e82-60f9f7c95d4a"] }, Open ]], Cell[CellGroupData[{ Cell[2687230, 81809, 177, 4, 30, "Input",ExpressionUUID->"c8042b5c-5143-4358-8b9d-59f327371c55"], Cell[2687410, 81815, 459, 8, 34, "Output",ExpressionUUID->"00537ecb-6541-4b90-8e15-20f4a36f328d"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[2687918, 81829, 110, 0, 45, "Subsubsection",ExpressionUUID->"d6d30479-ac83-4c5f-bf9f-3738ed719c55"], Cell[CellGroupData[{ Cell[2688053, 81833, 1217, 34, 115, "Input",ExpressionUUID->"b3564e24-75a1-43bc-855d-92cc6918485d"], Cell[2689273, 81869, 6239, 128, 140, "Output",ExpressionUUID->"130bae65-16db-4191-b779-39333a13cbcc"] }, Open ]] }, Open ]] }, Open ]] }, Open ]] }, Open ]] } ] *)