(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 2781255, 82995]
NotebookOptionsPosition[ 2695576, 82004]
NotebookOutlinePosition[ 2696458, 82034]
CellTagsIndexPosition[ 2696369, 82029]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Johnson Solid", "Title",ExpressionUUID->"7d1a6d34-801b-4334-8ff8-9a684f8143f2"],
Cell[CellGroupData[{
Cell["Author", "Subsection",ExpressionUUID->"14df2b78-d68f-485d-ac03-0fe209d53981"],
Cell["\<\
Eric W. Weisstein
December 13, 2018\
\>", "Text",ExpressionUUID->"fcbc418f-6015-4f8b-9706-944750ae44ff"],
Cell[TextData[{
"This notebook downloaded from ",
ButtonBox["http://mathworld.wolfram.com/notebooks/Polyhedra/JohnsonSolid.nb",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/notebooks/Polyhedra/JohnsonSolid.nb"],
None}],
"."
}], "Text",ExpressionUUID->"5f2cb9b5-b88a-45d3-80ad-86c4261cbc3a"],
Cell[TextData[{
"For more information, see Eric's ",
StyleBox["MathWorld",
FontSlant->"Italic"],
" entry ",
ButtonBox["http://mathworld.wolfram.com/JohnsonSolid.html",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/JohnsonSolid.html"], None}],
"."
}], "Text",ExpressionUUID->"4d1a6d00-b0aa-40cd-9204-d49db16ad20e"],
Cell["\<\
\[Copyright]2018 Wolfram Research, Inc. except for portions noted otherwise\
\>", "Text",ExpressionUUID->"30f99eb5-9a4c-4372-beea-1004a303f3f3"]
}, Open ]],
Cell[CellGroupData[{
Cell["All", "Section",ExpressionUUID->"cd86cf82-0c13-4cba-becd-45d7c4fffddc"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphicsGrid", "[",
RowBox[{
RowBox[{"Partition", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Graphics3D", "[",
RowBox[{
RowBox[{"Tooltip", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\"\\"", ",", "n"}], "}"}], ",",
"\"\\""}], "]"}], ",",
RowBox[{"Column", "[",
RowBox[{"{",
RowBox[{"n", ",",
RowBox[{"PolyhedronData", "[",
RowBox[{
RowBox[{"{",
RowBox[{"\"\\"", ",", "n"}], "}"}], ",",
"\"\<#\>\""}], "]"}]}], "}"}], "]"}]}], "]"}], ",",
RowBox[{"Boxed", "\[Rule]", "False"}], ",",
RowBox[{"Method", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\\"", "\[Rule]", "True"}], "}"}]}]}],
"]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "92"}], "}"}]}], "]"}], ",",
RowBox[{"UpTo", "[", "10", "]"}]}], "]"}], ",",
RowBox[{"ImageSize", "\[Rule]", "500"}]}], "]"}]], "Input",
CellLabel->
"In[237]:=",ExpressionUUID->"29cb2cf1-a28a-4e51-8693-528cc8f06877"],
Cell[BoxData[
GraphicsBox[{{}, {{InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, 0, 2^Rational[-1, 2]}, {0, -2^Rational[-1, 2], 0}, {
0, 2^Rational[-1, 2], 0}, {-2^Rational[-1, 2], 0, 0}, {
2^Rational[-1, 2], 0, 0}}, {{0, 0, 0.7071067811865475}, {
0, -0.7071067811865475, 0}, {
0, 0.7071067811865475, 0}, {-0.7071067811865475, 0, 0}, {
0.7071067811865475, 0, 0}}],
Polygon3DBox[{{3, 4, 1}, {4, 2, 1}, {2, 5, 1}, {5, 3, 1}, {5, 2, 4,
3}}]],
TagBox[
GridBox[{{"1"}, {
RowBox[{"{",
RowBox[{"\"Pyramid\"", ",", "4"}], "}"}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{1, {"Pyramid", 4}}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {196.36363636363637, -279.27272727272725},
ImageScaled[{0.5, 0.5}], {360, 299},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, 0, (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, 0}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2], 0}}, {{
0, 0, 0.5257311121191336}, {0.8506508083520399, 0, 0}, {
0.2628655560595668, -0.8090169943749475, 0}, {
0.2628655560595668, 0.8090169943749475,
0}, {-0.6881909602355868, -0.5, 0}, {-0.6881909602355868, 0.5,
0}}], Polygon3DBox[{{4, 6, 1}, {6, 5, 1}, {5, 3, 1}, {3, 2, 1}, {
2, 4, 1}, {2, 3, 5, 6, 4}}]],
TagBox[
GridBox[{{"2"}, {
RowBox[{"{",
RowBox[{"\"Pyramid\"", ",", "5"}], "}"}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{2, {"Pyramid", 5}}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {589.0909090909091, -279.27272727272725},
ImageScaled[{0.5, 0.5}], {360, 223},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, -1, 0}, {0, 1, 0}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[2, 3]^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[2, 3]^
Rational[1, 2]}, {
3^Rational[-1, 2], 0, Rational[2, 3]^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], 0}, {
Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, {
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], 0}}, {{0, -1,
0}, {0, 1, 0}, {-0.2886751345948129, -0.5,
0.816496580927726}, {-0.2886751345948129, 0.5,
0.816496580927726}, {
0.5773502691896258, 0,
0.816496580927726}, {-0.8660254037844386, -0.5,
0}, {-0.8660254037844386, 0.5, 0}, {
0.8660254037844386, -0.5, 0}, {0.8660254037844386, 0.5, 0}}],
Polygon3DBox[{{4, 3, 5}, {9, 8, 1, 6, 7, 2}, {3, 4, 7, 6}, {5, 3, 1,
8}, {4, 5, 9, 2}, {2, 7, 4}, {6, 1, 3}, {8, 9, 5}}]],
TagBox[
GridBox[{{"3"}, {"\"TriangularCupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{3, "TriangularCupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {981.818181818182, -279.27272727272725},
ImageScaled[{0.5, 0.5}], {360, 290},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, -2^Rational[-1, 2], 2^Rational[-1, 2]}, {
0, 2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 0,
2^Rational[-1, 2]}, {2^Rational[-1, 2], 0, 2^Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, {
Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], 0}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], 0}, {
Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, {
Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], 0}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], 0}}, {{
0, -0.7071067811865475, 0.7071067811865475}, {
0, 0.7071067811865475, 0.7071067811865475}, {-0.7071067811865475,
0, 0.7071067811865475}, {
0.7071067811865475, 0, 0.7071067811865475}, {
0.5, 1.2071067811865475`, 0}, {-0.5, 1.2071067811865475`,
0}, {-1.2071067811865475`, 0.5, 0}, {-1.2071067811865475`, -0.5,
0}, {-0.5, -1.2071067811865475`, 0}, {
0.5, -1.2071067811865475`, 0}, {1.2071067811865475`, -0.5, 0}, {
1.2071067811865475`, 0.5, 0}}],
Polygon3DBox[{{2, 3, 1, 4}, {12, 11, 10, 9, 8, 7, 6, 5}, {3, 2, 6,
7}, {1, 3, 8, 9}, {4, 1, 10, 11}, {2, 4, 12, 5}, {5, 6, 2}, {7, 8,
3}, {9, 10, 1}, {11, 12, 4}}]],
TagBox[
GridBox[{{"4"}, {"\"SquareCupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{4, "SquareCupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -279.27272727272725},
ImageScaled[{0.5, 0.5}], {360, 257},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0, (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[
1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2], 0}}, {{
0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, {
0.8506508083520399, 0, 0.5257311121191336}, {
0.2628655560595668, -0.8090169943749475, 0.5257311121191336}, {
0.2628655560595668, 0.8090169943749475,
0.5257311121191336}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-0.6881909602355868, -0.5,
0.5257311121191336}, {-0.6881909602355868, 0.5,
0.5257311121191336}, {-1.5388417685876268`, -0.5,
0}, {-1.5388417685876268`, 0.5, 0}, {
1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}}],
Polygon3DBox[{{5, 11, 10, 4, 3}, {15, 14, 8, 1, 6, 12, 13, 7, 2,
9}, {11, 5, 2, 7}, {10, 11, 13, 12}, {4, 10, 6, 1}, {3, 4, 8,
14}, {5, 3, 15, 9}, {9, 2, 5}, {7, 13, 11}, {12, 6, 10}, {1, 8,
4}, {14, 15, 3}}]],
TagBox[
GridBox[{{"5"}, {"\"PentagonalCupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{5, "PentagonalCupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -279.27272727272725},
ImageScaled[{0.5, 0.5}], {360, 223},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{0, -1.618033988749895, 0}, {
0, 1.618033988749895,
0}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5,
0}, {1.5388417685876268`, -0.5, 0}, {
1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, 0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`,
0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475,
0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475,
0.8506508083520399}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475,
1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475,
1.3763819204711736`}, {0.6881909602355868, -0.5,
1.3763819204711736`}, {0.6881909602355868, 0.5,
1.3763819204711736`}}],
Polygon3DBox[{{18, 16, 17, 19, 20}, {15, 16, 18}, {14, 17, 16}, {12,
19, 17}, {11, 20, 19}, {13, 18, 20}, {6, 2, 13}, {4, 8, 15}, {7,
3, 14}, {1, 5, 12}, {9, 10, 11}, {2, 4, 15, 18, 13}, {8, 7, 14,
16, 15}, {3, 1, 12, 17, 14}, {5, 9, 11, 19, 12}, {10, 6, 13, 20,
11}, {10, 9, 5, 1, 3, 7, 8, 4, 2, 6}}]],
TagBox[
GridBox[{{"6"}, {"\"PentagonalRotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{6, "PentagonalRotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2160., -279.27272727272725},
ImageScaled[{0.5, 0.5}], {360, 311},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, 0, Rational[1, 3] (3 + 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 1}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 1}, {
3^Rational[-1, 2], 0, 0}, {3^Rational[-1, 2], 0, 1}}, {{
0, 0, 1.8164965809277258`}, {-0.2886751345948129, -0.5,
0}, {-0.2886751345948129, -0.5, 1}, {-0.2886751345948129, 0.5,
0}, {-0.2886751345948129, 0.5, 1}, {0.5773502691896258, 0, 0}, {
0.5773502691896258, 0, 1}}],
Polygon3DBox[{{5, 3, 1}, {3, 7, 1}, {7, 5, 1}, {4, 2, 3, 5}, {2, 6,
7, 3}, {6, 4, 5, 7}, {6, 2, 4}}]],
TagBox[
GridBox[{{"7"}, {"\"ElongatedTriangularPyramid\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{7, "ElongatedTriangularPyramid"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2552.727272727273, -279.27272727272725},
ImageScaled[{0.5, 0.5}], {320, 512},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, 0, Rational[1, 2] (2 + 2^Rational[1, 2])}, {
0, -2^Rational[-1, 2], 0}, {0, -2^Rational[-1, 2], 1}, {
0, 2^Rational[-1, 2], 0}, {
0, 2^Rational[-1, 2], 1}, {-2^Rational[-1, 2], 0,
0}, {-2^Rational[-1, 2], 0, 1}, {2^Rational[-1, 2], 0, 0}, {
2^Rational[-1, 2], 0, 1}}, {{0, 0, 1.7071067811865475`}, {
0, -0.7071067811865475, 0}, {0, -0.7071067811865475, 1}, {
0, 0.7071067811865475, 0}, {
0, 0.7071067811865475, 1}, {-0.7071067811865475, 0,
0}, {-0.7071067811865475, 0, 1}, {0.7071067811865475, 0, 0}, {
0.7071067811865475, 0, 1}}],
Polygon3DBox[{{5, 7, 1}, {7, 3, 1}, {3, 9, 1}, {9, 5, 1}, {4, 6, 7,
5}, {6, 2, 3, 7}, {2, 8, 9, 3}, {8, 4, 5, 9}, {8, 2, 6, 4}}]],
TagBox[
GridBox[{{"8"}, {"\"ElongatedSquarePyramid\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{8, "ElongatedSquarePyramid"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -279.27272727272725},
ImageScaled[{0.5, 0.5}], {359, 512},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, 0, Rational[1, 10] (
10 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0,
0}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0, 1}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 1}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), 0}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
1}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
1}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2], 1}}, {{
0, 0, 1.5257311121191337`}, {0.8506508083520399, 0, 0}, {
0.8506508083520399, 0, 1}, {
0.2628655560595668, -0.8090169943749475, 0}, {
0.2628655560595668, -0.8090169943749475, 1}, {
0.2628655560595668, 0.8090169943749475, 0}, {
0.2628655560595668, 0.8090169943749475,
1}, {-0.6881909602355868, -0.5, 0}, {-0.6881909602355868, -0.5,
1}, {-0.6881909602355868, 0.5, 0}, {-0.6881909602355868, 0.5,
1}}], Polygon3DBox[{{7, 11, 1}, {11, 9, 1}, {9, 5, 1}, {5, 3,
1}, {3, 7, 1}, {6, 10, 11, 7}, {10, 8, 9, 11}, {8, 4, 5, 9}, {4,
2, 3, 5}, {2, 6, 7, 3}, {2, 4, 8, 10, 6}}]],
TagBox[
GridBox[{{"9"}, {"\"ElongatedPentagonalPyramid\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{9, "ElongatedPentagonalPyramid"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -279.27272727272725},
ImageScaled[{0.5, 0.5}], {360, 389},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], Rational[-1, 2],
Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2],
Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
0, 0, 2^Rational[-1, 2] +
Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
0, -2^Rational[-1, 2],
Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
0, 2^Rational[-1, 2],
Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2],
Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2],
Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^
Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
2^Rational[-1, 2], 0,
Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^
Rational[1, 2]}}, {{-0.5, -0.5, -0.42044820762685725`}, {-0.5,
0.5, -0.42044820762685725`}, {0, 0, 1.1275549888134047`}, {
0, -0.7071067811865475, 0.42044820762685725`}, {
0, 0.7071067811865475, 0.42044820762685725`}, {
0.5, -0.5, -0.42044820762685725`}, {0.5,
0.5, -0.42044820762685725`}, {-0.7071067811865475, 0,
0.42044820762685725`}, {
0.7071067811865475, 0, 0.42044820762685725`}}],
Polygon3DBox[{{6, 1, 2, 7}, {7, 5, 9}, {2, 8, 5}, {1, 4, 8}, {6, 9,
4}, {7, 2, 5}, {2, 1, 8}, {1, 6, 4}, {6, 7, 9}, {5, 8, 3}, {8, 4,
3}, {4, 9, 3}, {9, 5, 3}}]],
TagBox[
GridBox[{{"10"}, {"\"GyroelongatedSquarePyramid\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{10, "GyroelongatedSquarePyramid"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -279.27272727272725},
ImageScaled[{0.5, 0.5}], {360, 476},
ContentSelectable->True]}, {InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, 0, (Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
0, -(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], (Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[
1, 2], (Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1,
2], -(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], -(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2]}}, {{
0, 0, 0.9510565162951535}, {-0.8506508083520399,
0, -0.42532540417601994`}, {
0.8506508083520399, 0,
0.42532540417601994`}, {-0.2628655560595668, \
-0.8090169943749475, -0.42532540417601994`}, {-0.2628655560595668,
0.8090169943749475, -0.42532540417601994`}, {
0.2628655560595668, -0.8090169943749475, 0.42532540417601994`}, {
0.2628655560595668, 0.8090169943749475,
0.42532540417601994`}, {-0.6881909602355868, -0.5,
0.42532540417601994`}, {-0.6881909602355868, 0.5,
0.42532540417601994`}, {
0.6881909602355868, -0.5, -0.42532540417601994`}, {
0.6881909602355868, 0.5, -0.42532540417601994`}}],
Polygon3DBox[{{10, 4, 2, 5, 11}, {11, 7, 3}, {5, 9, 7}, {2, 8, 9}, {
4, 6, 8}, {10, 3, 6}, {11, 5, 7}, {5, 2, 9}, {2, 4, 8}, {4, 10,
6}, {10, 11, 3}, {7, 9, 1}, {9, 8, 1}, {8, 6, 1}, {6, 3, 1}, {3,
7, 1}}]],
TagBox[
GridBox[{{"11"}, {"\"GyroelongatedPentagonalPyramid\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{11, "GyroelongatedPentagonalPyramid"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {196.36363636363637, -837.8181818181818},
ImageScaled[{0.5, 0.5}], {360, 352},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, 0, -Rational[2, 3]^Rational[1, 2]}, {
0, 0, Rational[2, 3]^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], 0}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], 0}, {
3^Rational[-1, 2], 0, 0}}, {{0, 0, -0.816496580927726}, {
0, 0, 0.816496580927726}, {-0.2886751345948129, -0.5,
0}, {-0.2886751345948129, 0.5, 0}, {0.5773502691896258, 0, 0}}],
Polygon3DBox[{{4, 3, 2}, {3, 5, 2}, {5, 4, 2}, {1, 3, 4}, {1, 5,
3}, {1, 4, 5}}]],
TagBox[
GridBox[{{"12"}, {
RowBox[{"{",
RowBox[{"\"Dipyramid\"", ",", "3"}], "}"}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{12, {"Dipyramid", 3}}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {589.0909090909091, -837.8181818181818},
ImageScaled[{0.5, 0.5}], {360, 461},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, 0, -(Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
0, 0, (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, 0}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]), 0}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2], 0}}, {{
0, 0, -0.5257311121191336}, {0, 0, 0.5257311121191336}, {
0.8506508083520399, 0, 0}, {
0.2628655560595668, -0.8090169943749475, 0}, {
0.2628655560595668, 0.8090169943749475,
0}, {-0.6881909602355868, -0.5, 0}, {-0.6881909602355868, 0.5,
0}}], Polygon3DBox[{{5, 7, 2}, {7, 6, 2}, {6, 4, 2}, {4, 3, 2}, {
3, 5, 2}, {1, 7, 5}, {1, 6, 7}, {1, 4, 6}, {1, 3, 4}, {1, 5, 3}}]],
TagBox[
GridBox[{{"13"}, {
RowBox[{"{",
RowBox[{"\"Dipyramid\"", ",", "5"}], "}"}]}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{13, {"Dipyramid", 5}}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {981.818181818182, -837.8181818181818},
ImageScaled[{0.5, 0.5}], {360, 220},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, 0, Rational[1, 6] (-3 - 2 6^Rational[1, 2])}, {
0, 0, Rational[1, 6] (3 + 2 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[
1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[
1, 2]}, {3^Rational[-1, 2], 0, Rational[-1, 2]}, {
3^Rational[-1, 2], 0, Rational[1, 2]}}, {{
0, 0, -1.3164965809277258`}, {
0, 0, 1.3164965809277258`}, {-0.2886751345948129, -0.5, -0.5}, \
{-0.2886751345948129, -0.5, 0.5}, {-0.2886751345948129,
0.5, -0.5}, {-0.2886751345948129, 0.5, 0.5}, {
0.5773502691896258, 0, -0.5}, {0.5773502691896258, 0, 0.5}}],
Polygon3DBox[{{6, 4, 2}, {4, 8, 2}, {8, 6, 2}, {1, 3, 5}, {1, 7,
3}, {1, 5, 7}, {5, 3, 4, 6}, {3, 7, 8, 4}, {7, 5, 6, 8}}]],
TagBox[
GridBox[{{"14"}, {"\"ElongatedTriangularDipyramid\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{14, "ElongatedTriangularDipyramid"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -837.8181818181818},
ImageScaled[{0.5, 0.5}], {255, 512},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, 0, Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
0, 0, Rational[1, 2] (1 + 2^Rational[1, 2])}, {
0, -2^Rational[-1, 2], Rational[-1, 2]}, {
0, -2^Rational[-1, 2], Rational[1, 2]}, {
0, 2^Rational[-1, 2], Rational[-1, 2]}, {
0, 2^Rational[-1, 2], Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Rational[-1, 2]}, {-2^Rational[-1, 2], 0, Rational[1, 2]}, {
2^Rational[-1, 2], 0, Rational[-1, 2]}, {
2^Rational[-1, 2], 0, Rational[1, 2]}}, {{
0, 0, -1.2071067811865475`}, {0, 0, 1.2071067811865475`}, {
0, -0.7071067811865475, -0.5}, {0, -0.7071067811865475, 0.5}, {
0, 0.7071067811865475, -0.5}, {
0, 0.7071067811865475, 0.5}, {-0.7071067811865475,
0, -0.5}, {-0.7071067811865475, 0, 0.5}, {
0.7071067811865475, 0, -0.5}, {0.7071067811865475, 0, 0.5}}],
Polygon3DBox[{{6, 8, 2}, {8, 4, 2}, {4, 10, 2}, {10, 6, 2}, {1, 7,
5}, {1, 3, 7}, {1, 9, 3}, {1, 5, 9}, {5, 7, 8, 6}, {7, 3, 4, 8}, {
3, 9, 10, 4}, {9, 5, 6, 10}}]],
TagBox[
GridBox[{{"15"}, {"\"ElongatedSquareDipyramid\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{15, "ElongatedSquareDipyramid"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -837.8181818181818},
ImageScaled[{0.5, 0.5}], {337, 512},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, 0, Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {
0, 0, Rational[1, 10] (
5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[-1, 2]}, {(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0, Rational[
1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[
1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[-1,
2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2], Rational[
1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[-1,
2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2], Rational[1, 2]}}, {{
0, 0, -1.0257311121191337`}, {0, 0, 1.0257311121191337`}, {
0.8506508083520399, 0, -0.5}, {0.8506508083520399, 0, 0.5}, {
0.2628655560595668, -0.8090169943749475, -0.5}, {
0.2628655560595668, -0.8090169943749475, 0.5}, {
0.2628655560595668, 0.8090169943749475, -0.5}, {
0.2628655560595668, 0.8090169943749475,
0.5}, {-0.6881909602355868, -0.5, -0.5}, {-0.6881909602355868, \
-0.5, 0.5}, {-0.6881909602355868, 0.5, -0.5}, {-0.6881909602355868, 0.5,
0.5}}], Polygon3DBox[{{8, 12, 2}, {12, 10, 2}, {10, 6, 2}, {6, 4,
2}, {4, 8, 2}, {1, 11, 7}, {1, 9, 11}, {1, 5, 9}, {1, 3, 5}, {1,
7, 3}, {7, 11, 12, 8}, {11, 9, 10, 12}, {9, 5, 6, 10}, {5, 3, 4,
6}, {3, 7, 8, 4}}]],
TagBox[
GridBox[{{"16"}, {"\"ElongatedPentagonalDipyramid\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{16, "ElongatedPentagonalDipyramid"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2160., -837.8181818181818},
ImageScaled[{0.5, 0.5}], {360, 391},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], Rational[-1, 2],
Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2],
Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
0, 0, -2^Rational[-1, 2] +
Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
0, 0, 2^Rational[-1, 2] +
Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
0, -2^Rational[-1, 2],
Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
0, 2^Rational[-1, 2],
Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2],
Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2],
Rational[-1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^
Rational[1, 2]}, {-2^Rational[-1, 2], 0,
Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^Rational[1, 2]}, {
2^Rational[-1, 2], 0,
Rational[1, 4] (4 - Sec[Rational[1, 8] Pi]^2)^
Rational[1, 2]}}, {{-0.5, -0.5, -0.42044820762685725`}, {-0.5,
0.5, -0.42044820762685725`}, {0, 0, -1.1275549888134047`}, {
0, 0, 1.1275549888134047`}, {
0, -0.7071067811865475, 0.42044820762685725`}, {
0, 0.7071067811865475, 0.42044820762685725`}, {
0.5, -0.5, -0.42044820762685725`}, {0.5,
0.5, -0.42044820762685725`}, {-0.7071067811865475, 0,
0.42044820762685725`}, {
0.7071067811865475, 0, 0.42044820762685725`}}],
Polygon3DBox[{{8, 6, 10}, {2, 9, 6}, {1, 5, 9}, {7, 10, 5}, {8, 2,
6}, {2, 1, 9}, {1, 7, 5}, {7, 8, 10}, {6, 9, 4}, {9, 5, 4}, {5, 10,
4}, {10, 6, 4}, {3, 2, 8}, {3, 1, 2}, {3, 7, 1}, {3, 8, 7}}]],
TagBox[
GridBox[{{"17"}, {"\"GyroelongatedSquareDipyramid\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{17, "GyroelongatedSquareDipyramid"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2552.727272727273, -837.8181818181818},
ImageScaled[{0.5, 0.5}], {360, 494},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, -1, -1}, {0, -1, 0}, {0, 1, -1}, {0, 1, 0}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[2, 3]^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[2, 3]^
Rational[1, 2]}, {
3^Rational[-1, 2], 0, Rational[2, 3]^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], -1}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], -1}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], 0}, {
Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], -1}, {
Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, {
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], -1}, {
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], 0}}, {{
0, -1, -1}, {0, -1, 0}, {0, 1, -1}, {0, 1,
0}, {-0.2886751345948129, -0.5,
0.816496580927726}, {-0.2886751345948129, 0.5,
0.816496580927726}, {
0.5773502691896258, 0,
0.816496580927726}, {-0.8660254037844386, -0.5, -1}, \
{-0.8660254037844386, -0.5, 0}, {-0.8660254037844386,
0.5, -1}, {-0.8660254037844386, 0.5, 0}, {
0.8660254037844386, -0.5, -1}, {0.8660254037844386, -0.5, 0}, {
0.8660254037844386, 0.5, -1}, {0.8660254037844386, 0.5, 0}}],
Polygon3DBox[{{5, 6, 11, 9}, {7, 5, 2, 13}, {6, 7, 15, 4}, {4, 11,
6}, {9, 2, 5}, {13, 15, 7}, {6, 5, 7}, {14, 12, 1, 8, 10, 3}, {3,
10, 11, 4}, {10, 8, 9, 11}, {8, 1, 2, 9}, {1, 12, 13, 2}, {12, 14,
15, 13}, {14, 3, 4, 15}}]],
TagBox[
GridBox[{{"18"}, {"\"ElongatedTriangularCupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{18, "ElongatedTriangularCupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -837.8181818181818},
ImageScaled[{0.5, 0.5}], {360, 422},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, -2^Rational[-1, 2], 2^Rational[-1, 2]}, {
0, 2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2], 0,
2^Rational[-1, 2]}, {2^Rational[-1, 2], 0, 2^Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), -1}, {
Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, {
Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), -1}, {
Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], -1}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], 0}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], -1}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], 0}, {
Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), -1}, {
Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, {
Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), -1}, {
Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], -1}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], 0}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], -1}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], 0}}, {{
0, -0.7071067811865475, 0.7071067811865475}, {
0, 0.7071067811865475, 0.7071067811865475}, {-0.7071067811865475,
0, 0.7071067811865475}, {
0.7071067811865475, 0, 0.7071067811865475}, {
0.5, 1.2071067811865475`, -1}, {
0.5, 1.2071067811865475`, 0}, {-0.5,
1.2071067811865475`, -1}, {-0.5, 1.2071067811865475`,
0}, {-1.2071067811865475`, 0.5, -1}, {-1.2071067811865475`, 0.5,
0}, {-1.2071067811865475`, -0.5, -1}, {-1.2071067811865475`, \
-0.5, 0}, {-0.5, -1.2071067811865475`, -1}, {-0.5, -1.2071067811865475`, 0}, {
0.5, -1.2071067811865475`, -1}, {0.5, -1.2071067811865475`, 0}, {
1.2071067811865475`, -0.5, -1}, {1.2071067811865475`, -0.5, 0}, {
1.2071067811865475`, 0.5, -1}, {1.2071067811865475`, 0.5, 0}}],
Polygon3DBox[{{3, 2, 8, 10}, {1, 3, 12, 14}, {4, 1, 16, 18}, {2, 4,
20, 6}, {6, 8, 2}, {10, 12, 3}, {14, 16, 1}, {18, 20, 4}, {2, 3,
1, 4}, {19, 17, 15, 13, 11, 9, 7, 5}, {5, 7, 8, 6}, {7, 9, 10,
8}, {9, 11, 12, 10}, {11, 13, 14, 12}, {13, 15, 16, 14}, {15, 17,
18, 16}, {17, 19, 20, 18}, {19, 5, 6, 20}}]],
TagBox[
GridBox[{{"19"}, {"\"ElongatedSquareCupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{19, "ElongatedSquareCupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -837.8181818181818},
ImageScaled[{0.5, 0.5}], {360, 358},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), -1}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), -1}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0, (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -1}, {-(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -1}, {-(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), -1}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), -1}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[
1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1,
2], -1}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[
1, 2], -1}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2], -1}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[
1, 2], -1}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2], 0}}, {{
0, -1.618033988749895, -1}, {0, -1.618033988749895, 0}, {
0, 1.618033988749895, -1}, {0, 1.618033988749895, 0}, {
0.8506508083520399, 0, 0.5257311121191336}, {
0.2628655560595668, -0.8090169943749475, 0.5257311121191336}, {
0.2628655560595668, 0.8090169943749475,
0.5257311121191336}, {-0.9510565162951535, -1.3090169943749475`, \
-1}, {-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535,
1.3090169943749475`, -1}, {-0.9510565162951535,
1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, -1}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`, -1}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-0.6881909602355868, -0.5,
0.5257311121191336}, {-0.6881909602355868, 0.5,
0.5257311121191336}, {-1.5388417685876268`, -0.5, -1}, \
{-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`,
0.5, -1}, {-1.5388417685876268`, 0.5, 0}, {
1.5388417685876268`, -0.5, -1}, {1.5388417685876268`, -0.5, 0}, {
1.5388417685876268`, 0.5, -1}, {1.5388417685876268`, 0.5, 0}}],
Polygon3DBox[{{17, 7, 4, 11}, {16, 17, 21, 19}, {6, 16, 9, 2}, {5,
6, 13, 23}, {7, 5, 25, 15}, {15, 4, 7}, {11, 21, 17}, {19, 9,
16}, {2, 13, 6}, {23, 25, 5}, {7, 17, 16, 6, 5}, {24, 22, 12, 1,
8, 18, 20, 10, 3, 14}, {14, 3, 4, 15}, {3, 10, 11, 4}, {10, 20,
21, 11}, {20, 18, 19, 21}, {18, 8, 9, 19}, {8, 1, 2, 9}, {1, 12,
13, 2}, {12, 22, 23, 13}, {22, 24, 25, 23}, {24, 14, 15, 25}}]],
TagBox[
GridBox[{{"20"}, {"\"ElongatedPentagonalCupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{20, "ElongatedPentagonalCupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -837.8181818181818},
ImageScaled[{0.5, 0.5}], {360, 306},
ContentSelectable->True]}, {InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), -1}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), -1}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -1}, {-(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -1}, {-(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), -1}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), -1}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1,
2], -1}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[
1, 2], -1}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2], -1}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[
1, 2], -1}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{0, -1.618033988749895, -1}, {
0, -1.618033988749895, 0}, {0, 1.618033988749895, -1}, {
0, 1.618033988749895,
0}, {-0.9510565162951535, -1.3090169943749475`, -1}, \
{-0.9510565162951535, -1.3090169943749475`, 0}, {-0.9510565162951535,
1.3090169943749475`, -1}, {-0.9510565162951535,
1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, -1}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`, -1}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-1.5388417685876268`, -0.5, -1}, {-1.5388417685876268`, \
-0.5, 0}, {-1.5388417685876268`, 0.5, -1}, {-1.5388417685876268`, 0.5, 0}, {
1.5388417685876268`, -0.5, -1}, {1.5388417685876268`, -0.5, 0}, {
1.5388417685876268`, 0.5, -1}, {1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, 0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`,
0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475,
0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475,
0.8506508083520399}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475,
1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475,
1.3763819204711736`}, {0.6881909602355868, -0.5,
1.3763819204711736`}, {0.6881909602355868, 0.5,
1.3763819204711736`}}],
Polygon3DBox[{{28, 26, 27, 29, 30}, {25, 26, 28}, {24, 27, 26}, {22,
29, 27}, {21, 30, 29}, {23, 28, 30}, {12, 4, 23}, {8, 16, 25}, {
14, 6, 24}, {2, 10, 22}, {18, 20, 21}, {4, 8, 25, 28, 23}, {16,
14, 24, 26, 25}, {6, 2, 22, 27, 24}, {10, 18, 21, 29, 22}, {20,
12, 23, 30, 21}, {19, 17, 9, 1, 5, 13, 15, 7, 3, 11}, {11, 3, 4,
12}, {3, 7, 8, 4}, {7, 15, 16, 8}, {15, 13, 14, 16}, {13, 5, 6,
14}, {5, 1, 2, 6}, {1, 9, 10, 2}, {9, 17, 18, 10}, {17, 19, 20,
18}, {19, 11, 12, 20}}]],
TagBox[
GridBox[{{"21"}, {"\"ElongatedPentagonalRotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{21, "ElongatedPentagonalRotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {196.36363636363637, -1396.3636363636363},
ImageScaled[{0.5, 0.5}], {360, 396},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{-1, 0, -(-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2]
3^Rational[1, 2], -(-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2]
3^Rational[1, 2], -(-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
0, -1, 0}, {0, 1, 0}, {
Rational[1, 2], Rational[-1, 2]
3^Rational[1, 2], -(-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2]
3^Rational[1, 2], -(-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
1, 0, -(-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[2, 3]^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[2, 3]^
Rational[1, 2]}, {
3^Rational[-1, 2], 0, Rational[2, 3]^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], 0}, {
Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, {
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], 0}}, {{-1,
0, -0.8555996771673521}, {-0.5, -0.8660254037844386, \
-0.8555996771673521}, {-0.5, 0.8660254037844386, -0.8555996771673521}, {0, -1,
0}, {0, 1, 0}, {0.5, -0.8660254037844386, -0.8555996771673521}, {
0.5, 0.8660254037844386, -0.8555996771673521}, {
1, 0, -0.8555996771673521}, {-0.2886751345948129, -0.5,
0.816496580927726}, {-0.2886751345948129, 0.5,
0.816496580927726}, {
0.5773502691896258, 0,
0.816496580927726}, {-0.8660254037844386, -0.5,
0}, {-0.8660254037844386, 0.5, 0}, {
0.8660254037844386, -0.5, 0}, {0.8660254037844386, 0.5, 0}}],
Polygon3DBox[{{3, 7, 8, 6, 2, 1}, {1, 2, 12}, {2, 6, 4}, {6, 8,
14}, {8, 7, 15}, {7, 3, 5}, {3, 1, 13}, {2, 4, 12}, {6, 14, 4}, {
8, 15, 14}, {7, 5, 15}, {3, 13, 5}, {1, 12, 13}, {10, 9, 11}, {9,
10, 13, 12}, {11, 9, 4, 14}, {10, 11, 15, 5}, {5, 13, 10}, {12, 4,
9}, {14, 15, 11}}]],
TagBox[
GridBox[{{"22"}, {"\"GyroelongatedTriangularCupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{22, "GyroelongatedTriangularCupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {589.0909090909091, -1396.3636363636363},
ImageScaled[{0.5, 0.5}], {360, 421},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, -2^Rational[-1, 2], 2^Rational[-1, 2]}, {
0, 2^Rational[-1, 2], 2^Rational[-1, 2]}, {
0, Root[1 - 4 #^2 + 2 #^4& , 1, 0],
Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, {
0, Root[1 - 4 #^2 + 2 #^4& , 4, 0],
Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, {-2^
Rational[-1, 2], 0, 2^Rational[-1, 2]}, {
2^Rational[-1, 2], 0, 2^Rational[-1, 2]}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], 0}, {
Root[1 - 4 #^2 + 2 #^4& , 1, 0], 0,
Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, {
Root[1 - 4 #^2 + 2 #^4& , 4, 0], 0,
Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, {
Root[1 - 8 #^2 + 8 #^4& , 1, 0], Root[1 - 8 #^2 + 8 #^4& , 1, 0],
Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, {
Root[1 - 8 #^2 + 8 #^4& , 1, 0], Root[1 - 8 #^2 + 8 #^4& , 4, 0],
Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, {
Root[1 - 8 #^2 + 8 #^4& , 4, 0], Root[1 - 8 #^2 + 8 #^4& , 1, 0],
Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, {
Root[1 - 8 #^2 + 8 #^4& , 4, 0], Root[1 - 8 #^2 + 8 #^4& , 4, 0],
Root[-1 + 8 #^2 - 16 #^4 + 8 #^6 + 2 #^8& , 1, 0]}, {
Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, {
Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, {
Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, {
Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], 0}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], 0}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], 0}}, {{
0, -0.7071067811865475, 0.7071067811865475}, {
0, 0.7071067811865475, 0.7071067811865475}, {
0, -1.3065629648763766`, -0.8602955698629716}, {
0, 1.3065629648763766`, -0.8602955698629716}, \
{-0.7071067811865475, 0, 0.7071067811865475}, {
0.7071067811865475, 0,
0.7071067811865475}, {-1.2071067811865475`, -0.5,
0}, {-1.3065629648763766`, 0, -0.8602955698629716}, {
1.3065629648763766`,
0, -0.8602955698629716}, {-0.9238795325112867, \
-0.9238795325112867, -0.8602955698629716}, {-0.9238795325112867,
0.9238795325112867, -0.8602955698629716}, {
0.9238795325112867, -0.9238795325112867, -0.8602955698629716}, {
0.9238795325112867,
0.9238795325112867, -0.8602955698629716}, {-0.5, \
-1.2071067811865475`, 0}, {0.5, 1.2071067811865475`, 0}, {
0.5, -1.2071067811865475`, 0}, {-0.5, 1.2071067811865475`, 0}, {
1.2071067811865475`, -0.5, 0}, {-1.2071067811865475`, 0.5, 0}, {
1.2071067811865475`, 0.5, 0}}],
Polygon3DBox[{{11, 4, 13, 9, 12, 3, 10, 8}, {8, 10, 7}, {10, 3,
14}, {3, 12, 16}, {12, 9, 18}, {9, 13, 20}, {13, 4, 15}, {4, 11,
17}, {11, 8, 19}, {10, 14, 7}, {3, 16, 14}, {12, 18, 16}, {9, 20,
18}, {13, 15, 20}, {4, 17, 15}, {11, 19, 17}, {8, 7, 19}, {2, 5,
1, 6}, {5, 2, 17, 19}, {1, 5, 7, 14}, {6, 1, 16, 18}, {2, 6, 20,
15}, {15, 17, 2}, {19, 7, 5}, {14, 16, 1}, {18, 20, 6}}]],
TagBox[
GridBox[{{"23"}, {"\"GyroelongatedSquareCupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{23, "GyroelongatedSquareCupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {981.818181818182, -1396.3636363636363},
ImageScaled[{0.5, 0.5}], {360, 338},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0, Root[
1 - 5 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 5 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 5 #^2 + 5 #^4& , 3, 0]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Root[5 - 20 #^2 + 16 #^4& , 1, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {
Root[5 - 20 #^2 + 16 #^4& , 1, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {
Root[5 - 20 #^2 + 16 #^4& , 4, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {
Root[5 - 20 #^2 + 16 #^4& , 4, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {
Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[-1, 2], Root[
1 - 5 #^2 + 5 #^4& , 3, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[1, 2], Root[
1 - 5 #^2 + 5 #^4& , 3, 0]}, {
Rational[-1, 2], Root[5 - 40 #^2 + 16 #^4& , 1, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[-1, 2], Root[5 - 40 #^2 + 16 #^4& , 4, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 2], Root[5 - 40 #^2 + 16 #^4& , 1, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 2], Root[5 - 40 #^2 + 16 #^4& , 4, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
5 - 20 #^2 + 16 #^4& , 1, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
5 - 20 #^2 + 16 #^4& , 4, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
5 - 20 #^2 + 16 #^4& , 1, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
5 - 20 #^2 + 16 #^4& , 4, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Root[5 - 40 #^2 + 16 #^4& , 1, 0], Rational[-1, 2], 0}, {
Root[5 - 40 #^2 + 16 #^4& , 1, 0], Rational[1, 2], 0}, {
Root[5 - 40 #^2 + 16 #^4& , 4, 0], Rational[-1, 2], 0}, {
Root[5 - 40 #^2 + 16 #^4& , 4, 0], Rational[1, 2], 0}}, {{
0, -1.618033988749895, 0}, {
0, 1.618033988749895, 0}, {-1.618033988749895,
0, -0.8623970038594585}, {
0.8506508083520399, 0, 0.5257311121191336}, {
0.2628655560595668, -0.8090169943749475, 0.5257311121191336}, {
0.2628655560595668, 0.8090169943749475, 0.5257311121191336}, {
1.618033988749895,
0, -0.8623970038594585}, {-0.9510565162951535, \
-1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-0.6881909602355868, -0.5,
0.5257311121191336}, {-0.6881909602355868, 0.5,
0.5257311121191336}, {-0.5, -1.5388417685876266`, \
-0.8623970038594585}, {-0.5, 1.5388417685876268`, -0.8623970038594585}, {
0.5, -1.5388417685876266`, -0.8623970038594585}, {0.5,
1.5388417685876268`, -0.8623970038594585}, {-1.3090169943749475`, \
-0.9510565162951535, -0.8623970038594585}, {-1.3090169943749475`,
0.9510565162951535, -0.8623970038594585}, {
1.3090169943749475`, -0.9510565162951535, -0.8623970038594585}, {
1.3090169943749475`,
0.9510565162951535, -0.8623970038594585}, {-1.5388417685876266`, \
-0.5, 0}, {-1.5388417685876266`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, {
1.5388417685876268`, 0.5, 0}}],
Polygon3DBox[{{19, 15, 17, 21, 7, 20, 16, 14, 18, 3}, {3, 18, 22}, {
18, 14, 8}, {14, 16, 1}, {16, 20, 10}, {20, 7, 24}, {7, 21, 25}, {
21, 17, 11}, {17, 15, 2}, {15, 19, 9}, {19, 3, 23}, {18, 8, 22}, {
14, 1, 8}, {16, 10, 1}, {20, 24, 10}, {7, 25, 24}, {21, 11, 25}, {
17, 2, 11}, {15, 9, 2}, {19, 23, 9}, {3, 22, 23}, {6, 13, 12, 5,
4}, {13, 6, 2, 9}, {12, 13, 23, 22}, {5, 12, 8, 1}, {4, 5, 10,
24}, {6, 4, 25, 11}, {11, 2, 6}, {9, 23, 13}, {22, 8, 12}, {1, 10,
5}, {24, 25, 4}}]],
TagBox[
GridBox[{{"24"}, {"\"GyroelongatedPentagonalCupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{24, "GyroelongatedPentagonalCupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -1396.3636363636363},
ImageScaled[{0.5, 0.5}], {360, 293},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), 0}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Root[5 - 20 #^2 + 16 #^4& , 1, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {
Root[5 - 20 #^2 + 16 #^4& , 1, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {
Root[5 - 20 #^2 + 16 #^4& , 4, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), 0}, {
Root[5 - 20 #^2 + 16 #^4& , 4, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), 0}, {
Rational[-1, 2], Root[5 - 40 #^2 + 16 #^4& , 1, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[-1, 2], Root[5 - 40 #^2 + 16 #^4& , 4, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 2], Root[5 - 40 #^2 + 16 #^4& , 1, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 2], Root[5 - 40 #^2 + 16 #^4& , 4, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
5 - 20 #^2 + 16 #^4& , 1, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
5 - 20 #^2 + 16 #^4& , 4, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
5 - 20 #^2 + 16 #^4& , 1, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
5 - 20 #^2 + 16 #^4& , 4, 0], Root[
1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Root[5 - 40 #^2 + 16 #^4& , 1, 0], Rational[-1, 2], 0}, {
Root[5 - 40 #^2 + 16 #^4& , 1, 0], Rational[1, 2], 0}, {
Root[5 - 40 #^2 + 16 #^4& , 4, 0], Rational[-1, 2], 0}, {
Root[5 - 40 #^2 + 16 #^4& , 4, 0], Rational[1, 2], 0}, {
Root[1 - 10 #^2 + 5 #^4& , 4, 0], 0, Root[
1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 4, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 4, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 5 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0, Root[
1 - 10 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 10 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 10 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 4, 0], Rational[-1, 2], Root[
1 - 10 #^2 + 5 #^4& , 4, 0]}, {
Root[1 - 40 #^2 + 80 #^4& , 4, 0], Rational[1, 2], Root[
1 - 10 #^2 + 5 #^4& , 4, 0]}}, {{0, -1.618033988749895, 0}, {
0, 1.618033988749895, 0}, {-1.618033988749895,
0, -0.8623970038594585}, {
1.618033988749895,
0, -0.8623970038594585}, {-0.9510565162951535, \
-1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-0.5, -1.5388417685876266`, -0.8623970038594585}, {-0.5,
1.5388417685876268`, -0.8623970038594585}, {
0.5, -1.5388417685876266`, -0.8623970038594585}, {0.5,
1.5388417685876268`, -0.8623970038594585}, {-1.3090169943749475`, \
-0.9510565162951535, -0.8623970038594585}, {-1.3090169943749475`,
0.9510565162951535, -0.8623970038594585}, {
1.3090169943749475`, -0.9510565162951535, -0.8623970038594585}, {
1.3090169943749475`,
0.9510565162951535, -0.8623970038594585}, {-1.5388417685876266`, \
-0.5, 0}, {-1.5388417685876266`, 0.5, 0}, {1.5388417685876268`, -0.5, 0}, {
1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, 0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`,
0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475,
0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475,
0.8506508083520399}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475,
1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475,
1.3763819204711736`}, {0.6881909602355868, -0.5,
1.3763819204711736`}, {0.6881909602355868, 0.5,
1.3763819204711736`}}],
Polygon3DBox[{{14, 10, 12, 16, 4, 15, 11, 9, 13, 3}, {3, 13, 17}, {
13, 9, 5}, {9, 11, 1}, {11, 15, 7}, {15, 4, 19}, {4, 16, 20}, {16,
12, 8}, {12, 10, 2}, {10, 14, 6}, {14, 3, 18}, {13, 5, 17}, {9,
1, 5}, {11, 7, 1}, {15, 19, 7}, {4, 20, 19}, {16, 8, 20}, {12, 2,
8}, {10, 6, 2}, {14, 18, 6}, {3, 17, 18}, {28, 26, 27, 29, 30}, {
25, 26, 28}, {24, 27, 26}, {22, 29, 27}, {21, 30, 29}, {23, 28,
30}, {8, 2, 23}, {6, 18, 25}, {17, 5, 24}, {1, 7, 22}, {19, 20,
21}, {2, 6, 25, 28, 23}, {18, 17, 24, 26, 25}, {5, 1, 22, 27,
24}, {7, 19, 21, 29, 22}, {20, 8, 23, 30, 21}}]],
TagBox[
GridBox[{{"25"}, {"\"GyroelongatedPentagonalRotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{25, "GyroelongatedPentagonalRotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -1396.3636363636363},
ImageScaled[{0.5, 0.5}], {360, 384},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{Rational[-1, 2], Rational[-1, 2], 0}, {
Rational[-1, 2], 0, Rational[1, 2] 3^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2], 0}, {
0, Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
0, Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2], 0}, {
Rational[1, 2], 0, Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2], 0}}, {{-0.5, -0.5, 0}, {-0.5, 0,
0.8660254037844386}, {-0.5, 0.5, 0}, {
0, -0.5, -0.8660254037844386}, {0, 0.5, -0.8660254037844386}, {
0.5, -0.5, 0}, {0.5, 0, 0.8660254037844386}, {0.5, 0.5, 0}}],
Polygon3DBox[{{6, 8, 7}, {2, 3, 1}, {7, 2, 1, 6}, {2, 7, 8, 3}, {4,
6, 1}, {3, 8, 5}, {1, 3, 5, 4}, {8, 6, 4, 5}}]],
TagBox[
GridBox[{{"26"}, {"\"Gyrobifastigium\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{26, "Gyrobifastigium"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2160., -1396.3636363636363},
ImageScaled[{0.5, 0.5}], {360, 482},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, -1, 0}, {0, 1, 0}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], -
Rational[2, 3]^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[2, 3]^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], -
Rational[2, 3]^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[2, 3]^
Rational[1, 2]}, {
3^Rational[-1, 2], 0, -Rational[2, 3]^Rational[1, 2]}, {
3^Rational[-1, 2], 0, Rational[2, 3]^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], 0}, {
Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], 0}, {
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], 0}}, {{0, -1,
0}, {0, 1,
0}, {-0.2886751345948129, -0.5, -0.816496580927726}, \
{-0.2886751345948129, -0.5, 0.816496580927726}, {-0.2886751345948129,
0.5, -0.816496580927726}, {-0.2886751345948129, 0.5,
0.816496580927726}, {0.5773502691896258, 0, -0.816496580927726}, {
0.5773502691896258, 0,
0.816496580927726}, {-0.8660254037844386, -0.5,
0}, {-0.8660254037844386, 0.5, 0}, {
0.8660254037844386, -0.5, 0}, {0.8660254037844386, 0.5, 0}}],
Polygon3DBox[{{6, 4, 8}, {4, 6, 10, 9}, {8, 4, 1, 11}, {6, 8, 12,
2}, {2, 10, 6}, {9, 1, 4}, {11, 12, 8}, {7, 3, 5}, {9, 10, 5,
3}, {11, 1, 3, 7}, {2, 12, 7, 5}, {5, 10, 2}, {3, 1, 9}, {7, 12,
11}}]],
TagBox[
GridBox[{{"27"}, {"\"TriangularOrthobicupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{27, "TriangularOrthobicupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2552.727272727273, -1396.3636363636363},
ImageScaled[{0.5, 0.5}], {360, 326},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, -2^Rational[-1, 2], -2^Rational[-1, 2]}, {
0, -2^Rational[-1, 2], 2^Rational[-1, 2]}, {
0, 2^Rational[-1, 2], -2^Rational[-1, 2]}, {
0, 2^Rational[-1, 2], 2^Rational[-1, 2]}, {-2^Rational[-1, 2],
0, -2^Rational[-1, 2]}, {-2^Rational[-1, 2], 0, 2^
Rational[-1, 2]}, {2^Rational[-1, 2], 0, -2^Rational[-1, 2]}, {
2^Rational[-1, 2], 0, 2^Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, {
Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], 0}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], 0}, {
Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, {
Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], 0}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], 0}}, {{
0, -0.7071067811865475, -0.7071067811865475}, {
0, -0.7071067811865475, 0.7071067811865475}, {
0, 0.7071067811865475, -0.7071067811865475}, {
0, 0.7071067811865475, 0.7071067811865475}, {-0.7071067811865475,
0, -0.7071067811865475}, {-0.7071067811865475, 0,
0.7071067811865475}, {
0.7071067811865475, 0, -0.7071067811865475}, {
0.7071067811865475, 0, 0.7071067811865475}, {
0.5, 1.2071067811865475`, 0}, {-0.5, 1.2071067811865475`,
0}, {-1.2071067811865475`, 0.5, 0}, {-1.2071067811865475`, -0.5,
0}, {-0.5, -1.2071067811865475`, 0}, {
0.5, -1.2071067811865475`, 0}, {1.2071067811865475`, -0.5, 0}, {
1.2071067811865475`, 0.5, 0}}],
Polygon3DBox[{{4, 6, 2, 8}, {6, 4, 10, 11}, {2, 6, 12, 13}, {8, 2,
14, 15}, {4, 8, 16, 9}, {9, 10, 4}, {11, 12, 6}, {13, 14, 2}, {15,
16, 8}, {7, 1, 5, 3}, {11, 10, 3, 5}, {13, 12, 5, 1}, {15, 14, 1,
7}, {9, 16, 7, 3}, {3, 10, 9}, {5, 12, 11}, {1, 14, 13}, {7, 16,
15}}]],
TagBox[
GridBox[{{"28"}, {"\"SquareOrthobicupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{28, "SquareOrthobicupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -1396.3636363636363},
ImageScaled[{0.5, 0.5}], {360, 260},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{Rational[-1, 2], Rational[-1, 2], -2^Rational[-1, 2]}, {
Rational[-1, 2], Rational[1, 2], -2^Rational[-1, 2]}, {
0, -2^Rational[-1, 2], 2^Rational[-1, 2]}, {
0, 2^Rational[-1, 2], 2^Rational[-1, 2]}, {
Rational[1, 2], Rational[-1, 2], -2^Rational[-1, 2]}, {
Rational[1, 2], Rational[
1, 2], -2^Rational[-1, 2]}, {-2^Rational[-1, 2], 0, 2^
Rational[-1, 2]}, {2^Rational[-1, 2], 0, 2^Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, {
Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), 0}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], 0}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], 0}, {
Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, {
Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), 0}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], 0}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2],
0}}, {{-0.5, -0.5, -0.7071067811865475}, {-0.5,
0.5, -0.7071067811865475}, {
0, -0.7071067811865475, 0.7071067811865475}, {
0, 0.7071067811865475, 0.7071067811865475}, {
0.5, -0.5, -0.7071067811865475}, {0.5,
0.5, -0.7071067811865475}, {-0.7071067811865475, 0,
0.7071067811865475}, {
0.7071067811865475, 0, 0.7071067811865475}, {
0.5, 1.2071067811865475`, 0}, {-0.5, 1.2071067811865475`,
0}, {-1.2071067811865475`, 0.5, 0}, {-1.2071067811865475`, -0.5,
0}, {-0.5, -1.2071067811865475`, 0}, {
0.5, -1.2071067811865475`, 0}, {1.2071067811865475`, -0.5, 0}, {
1.2071067811865475`, 0.5, 0}}],
Polygon3DBox[{{4, 7, 3, 8}, {7, 4, 10, 11}, {3, 7, 12, 13}, {8, 3,
14, 15}, {4, 8, 16, 9}, {9, 10, 4}, {11, 12, 7}, {13, 14, 3}, {15,
16, 8}, {5, 1, 2, 6}, {10, 9, 6, 2}, {12, 11, 2, 1}, {14, 13, 1,
5}, {16, 15, 5, 6}, {6, 9, 16}, {2, 11, 10}, {1, 13, 12}, {5, 15,
14}}]],
TagBox[
GridBox[{{"29"}, {"\"SquareGyrobicupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{29, "SquareGyrobicupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -1396.3636363636363},
ImageScaled[{0.5, 0.5}], {360, 265},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
0, -(Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {(
Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0, (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[
1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2], 0}}, {{
0, -1.618033988749895, 0}, {0, 1.618033988749895, 0}, {
0.8506508083520399, 0, -0.5257311121191336}, {
0.8506508083520399, 0, 0.5257311121191336}, {
0.2628655560595668, -0.8090169943749475, -0.5257311121191336}, {
0.2628655560595668, -0.8090169943749475, 0.5257311121191336}, {
0.2628655560595668, 0.8090169943749475, -0.5257311121191336}, {
0.2628655560595668, 0.8090169943749475,
0.5257311121191336}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-0.6881909602355868, -0.5, -0.5257311121191336}, \
{-0.6881909602355868, -0.5, 0.5257311121191336}, {-0.6881909602355868,
0.5, -0.5257311121191336}, {-0.6881909602355868, 0.5,
0.5257311121191336}, {-1.5388417685876268`, -0.5,
0}, {-1.5388417685876268`, 0.5, 0}, {
1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}}],
Polygon3DBox[{{8, 16, 14, 6, 4}, {16, 8, 2, 10}, {14, 16, 18, 17}, {
6, 14, 9, 1}, {4, 6, 11, 19}, {8, 4, 20, 12}, {12, 2, 8}, {10, 18,
16}, {17, 9, 14}, {1, 11, 6}, {19, 20, 4}, {3, 5, 13, 15, 7}, {
10, 2, 7, 15}, {17, 18, 15, 13}, {1, 9, 13, 5}, {19, 11, 5, 3}, {
12, 20, 3, 7}, {7, 2, 12}, {15, 18, 10}, {13, 9, 17}, {5, 11,
1}, {3, 20, 19}}]],
TagBox[
GridBox[{{"30"}, {"\"PentagonalOrthobicupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{30, "PentagonalOrthobicupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -1396.3636363636363},
ImageScaled[{0.5, 0.5}], {360, 218},
ContentSelectable->True]}, {InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[
1, 2], (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, -(Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {(
Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0, (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2], 0}}, {{
0, -1.618033988749895, 0}, {
0, 1.618033988749895, 0}, {-0.6881909602355868, -0.5,
0.5257311121191336}, {-0.6881909602355868, 0.5,
0.5257311121191336}, {
0.6881909602355868, -0.5, -0.5257311121191336}, {
0.6881909602355868,
0.5, -0.5257311121191336}, {-0.8506508083520399,
0, -0.5257311121191336}, {
0.8506508083520399, 0,
0.5257311121191336}, {-0.2628655560595668, -0.8090169943749475, \
-0.5257311121191336}, {-0.2628655560595668,
0.8090169943749475, -0.5257311121191336}, {
0.2628655560595668, -0.8090169943749475, 0.5257311121191336}, {
0.2628655560595668, 0.8090169943749475,
0.5257311121191336}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5,
0}, {1.5388417685876268`, -0.5, 0}, {
1.5388417685876268`, 0.5, 0}}],
Polygon3DBox[{{12, 4, 3, 11, 8}, {4, 12, 2, 14}, {3, 4, 18, 17}, {
11, 3, 13, 1}, {8, 11, 15, 19}, {12, 8, 20, 16}, {16, 2, 12}, {14,
18, 4}, {17, 13, 3}, {1, 15, 11}, {19, 20, 8}, {5, 9, 7, 10,
6}, {2, 16, 6, 10}, {18, 14, 10, 7}, {13, 17, 7, 9}, {15, 1, 9,
5}, {20, 19, 5, 6}, {6, 16, 20}, {10, 14, 2}, {7, 17, 18}, {9, 1,
13}, {5, 19, 15}}]],
TagBox[
GridBox[{{"31"}, {"\"PentagonalGyrobicupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{31, "PentagonalGyrobicupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {196.36363636363637, -1954.9090909090905},
ImageScaled[{0.5, 0.5}], {360, 218},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
0, -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}}, {{0, -1.618033988749895, 0}, {
0, 1.618033988749895, 0}, {
0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`, 0.8506508083520399}, {
0.6881909602355868, -0.5, -0.5257311121191336}, {
0.6881909602355868, -0.5, 1.3763819204711736`}, {
0.6881909602355868, 0.5, -0.5257311121191336}, {
0.6881909602355868, 0.5,
1.3763819204711736`}, {-0.8506508083520399,
0, -0.5257311121191336}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-1.1135163644116066`, -0.8090169943749475,
0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475,
0.8506508083520399}, {-0.2628655560595668, -0.8090169943749475, \
-0.5257311121191336}, {-0.2628655560595668, -0.8090169943749475,
1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, -0.5257311121191336}, {-0.2628655560595668,
0.8090169943749475,
1.3763819204711736`}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5,
0}, {1.5388417685876268`, -0.5, 0}, {
1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, 0.8506508083520399}}],
Polygon3DBox[{{16, 10, 14, 6, 8}, {12, 10, 16}, {11, 14, 10}, {3, 6,
14}, {25, 8, 6}, {4, 16, 8}, {20, 2, 4}, {18, 22, 12}, {21, 17,
11}, {1, 19, 3}, {23, 24, 25}, {2, 18, 12, 16, 4}, {22, 21, 11,
10, 12}, {17, 1, 3, 14, 11}, {19, 23, 25, 6, 3}, {24, 20, 4, 8,
25}, {5, 13, 9, 15, 7}, {2, 20, 7, 15}, {22, 18, 15, 9}, {17, 21,
9, 13}, {19, 1, 13, 5}, {24, 23, 5, 7}, {7, 20, 24}, {15, 18,
2}, {9, 21, 22}, {13, 1, 17}, {5, 23, 19}}]],
TagBox[
GridBox[{{"32"}, {"\"PentagonalOrthocupolarotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{32, "PentagonalOrthocupolarotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {589.0909090909091, -1954.9090909090905},
ImageScaled[{0.5, 0.5}], {360, 308},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
0, -(Rational[1, 10] (5 - 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], -(Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{0, -1.618033988749895, 0}, {
0, 1.618033988749895, 0}, {
0.8506508083520399, 0, -0.5257311121191336}, {
0.2628655560595668, -0.8090169943749475, -0.5257311121191336}, {
0.2628655560595668,
0.8090169943749475, -0.5257311121191336}, {-0.9510565162951535, \
-1.3090169943749475`, 0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-0.6881909602355868, -0.5, -0.5257311121191336}, \
{-0.6881909602355868,
0.5, -0.5257311121191336}, {-1.5388417685876268`, -0.5,
0}, {-1.5388417685876268`, 0.5, 0}, {
1.5388417685876268`, -0.5, 0}, {1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, 0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`,
0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475,
0.8506508083520399}, {-1.1135163644116066`, 0.8090169943749475,
0.8506508083520399}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475,
1.3763819204711736`}, {-0.2628655560595668, 0.8090169943749475,
1.3763819204711736`}, {0.6881909602355868, -0.5,
1.3763819204711736`}, {0.6881909602355868, 0.5,
1.3763819204711736`}}],
Polygon3DBox[{{23, 21, 22, 24, 25}, {20, 21, 23}, {19, 22, 21}, {17,
24, 22}, {16, 25, 24}, {18, 23, 25}, {9, 2, 18}, {7, 13, 20}, {
12, 6, 19}, {1, 8, 17}, {14, 15, 16}, {2, 7, 20, 23, 18}, {13, 12,
19, 21, 20}, {6, 1, 17, 22, 19}, {8, 14, 16, 24, 17}, {15, 9, 18,
25, 16}, {3, 4, 10, 11, 5}, {7, 2, 5, 11}, {12, 13, 11, 10}, {1,
6, 10, 4}, {14, 8, 4, 3}, {9, 15, 3, 5}, {5, 2, 9}, {11, 13, 7}, {
10, 6, 12}, {4, 8, 1}, {3, 15, 14}}]],
TagBox[
GridBox[{{"33"}, {"\"PentagonalGyrocupolarotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{33, "PentagonalGyrocupolarotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {981.818181818182, -1954.9090909090905},
ImageScaled[{0.5, 0.5}], {360, 308},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[1, 2] (-1 - 5^Rational[1, 2]), 0}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
0}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
0}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
0}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2],
0, -(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2],
0, (Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[
1, 2]}, {-(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
0, -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]), (
Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], -(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], (Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2]}}, {{0, -1.618033988749895, 0}, {
0, 1.618033988749895,
0}, {-0.9510565162951535, -1.3090169943749475`,
0}, {-0.9510565162951535, 1.3090169943749475`, 0}, {
0.9510565162951535, -1.3090169943749475`, 0}, {
0.9510565162951535, 1.3090169943749475`,
0}, {-1.5388417685876268`, -0.5, 0}, {-1.5388417685876268`, 0.5,
0}, {1.5388417685876268`, -0.5, 0}, {
1.5388417685876268`, 0.5, 0}, {
1.3763819204711736`, 0, -0.8506508083520399}, {
1.3763819204711736`, 0, 0.8506508083520399}, {
0.42532540417601994`, -1.3090169943749475`, -0.8506508083520399}, \
{0.42532540417601994`, -1.3090169943749475`, 0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`, -0.8506508083520399}, {
0.42532540417601994`, 1.3090169943749475`,
0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475, \
-0.8506508083520399}, {-1.1135163644116066`, -0.8090169943749475,
0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475, -0.8506508083520399}, {-1.1135163644116066`,
0.8090169943749475,
0.8506508083520399}, {-0.8506508083520399,
0, -1.3763819204711736`}, {-0.8506508083520399, 0,
1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475, \
-1.3763819204711736`}, {-0.2628655560595668, -0.8090169943749475,
1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, -1.3763819204711736`}, {-0.2628655560595668,
0.8090169943749475, 1.3763819204711736`}, {
0.6881909602355868, -0.5, -1.3763819204711736`}, {
0.6881909602355868, -0.5, 1.3763819204711736`}, {
0.6881909602355868, 0.5, -1.3763819204711736`}, {
0.6881909602355868, 0.5, 1.3763819204711736`}}],
Polygon3DBox[{{26, 22, 24, 28, 30}, {20, 22, 26}, {18, 24, 22}, {14,
28, 24}, {12, 30, 28}, {16, 26, 30}, {6, 2, 16}, {4, 8, 20}, {7,
3, 18}, {1, 5, 14}, {9, 10, 12}, {2, 4, 20, 26, 16}, {8, 7, 18,
22, 20}, {3, 1, 14, 24, 18}, {5, 9, 12, 28, 14}, {10, 6, 16, 30,
12}, {29, 27, 23, 21, 25}, {25, 21, 19}, {21, 23, 17}, {23, 27,
13}, {27, 29, 11}, {29, 25, 15}, {15, 2, 6}, {19, 8, 4}, {17, 3,
7}, {13, 5, 1}, {11, 10, 9}, {15, 25, 19, 4, 2}, {19, 21, 17, 7,
8}, {17, 23, 13, 1, 3}, {13, 27, 11, 9, 5}, {11, 29, 15, 6, 10}}]],
TagBox[
GridBox[{{"34"}, {"\"PentagonalOrthobirotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{34, "PentagonalOrthobirotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -1954.9090909090905},
ImageScaled[{0.5, 0.5}], {360, 360},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, -1, Rational[-1, 2]}, {0, -1, Rational[1, 2]}, {
0, 1, Rational[-1, 2]}, {0, 1, Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[1, 6] (-3 - 2 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[1, 6] (3 + 2 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2],
Rational[1, 6] (-3 - 2 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2],
Rational[1, 6] (3 + 2 6^Rational[1, 2])}, {
3^Rational[-1, 2], 0, Rational[1, 6] (-3 - 2 6^Rational[1, 2])}, {
3^Rational[-1, 2], 0, Rational[1, 6] (3 + 2 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2],
Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[
1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[
1, 2]}, {
Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2],
Rational[-1, 2]}, {
Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[
1, 2]}, {
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[
1, 2]}}, {{0, -1, -0.5}, {0, -1, 0.5}, {0, 1, -0.5}, {
0, 1, 0.5}, {-0.2886751345948129, -0.5, -1.3164965809277258`}, \
{-0.2886751345948129, -0.5, 1.3164965809277258`}, {-0.2886751345948129,
0.5, -1.3164965809277258`}, {-0.2886751345948129, 0.5,
1.3164965809277258`}, {
0.5773502691896258, 0, -1.3164965809277258`}, {
0.5773502691896258, 0,
1.3164965809277258`}, {-0.8660254037844386, -0.5, -0.5}, \
{-0.8660254037844386, -0.5, 0.5}, {-0.8660254037844386,
0.5, -0.5}, {-0.8660254037844386, 0.5, 0.5}, {
0.8660254037844386, -0.5, -0.5}, {0.8660254037844386, -0.5,
0.5}, {0.8660254037844386, 0.5, -0.5}, {0.8660254037844386, 0.5,
0.5}}], Polygon3DBox[{{6, 8, 14, 12}, {10, 6, 2, 16}, {8, 10, 18,
4}, {4, 14, 8}, {12, 2, 6}, {16, 18, 10}, {8, 6, 10}, {11, 13, 7,
5}, {15, 1, 5, 9}, {3, 17, 9, 7}, {7, 13, 3}, {5, 1, 11}, {9, 17,
15}, {9, 5, 7}, {3, 13, 14, 4}, {13, 11, 12, 14}, {11, 1, 2,
12}, {1, 15, 16, 2}, {15, 17, 18, 16}, {17, 3, 4, 18}}]],
TagBox[
GridBox[{{"35"}, {"\"ElongatedTriangularOrthobicupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{35, "ElongatedTriangularOrthobicupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -1954.9090909090905},
ImageScaled[{0.5, 0.5}], {360, 457},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, -1, Rational[-1, 2]}, {0, -1, Rational[1, 2]}, {
0, 1, Rational[-1, 2]}, {0, 1, Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[1, 6] (3 + 2 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2],
Rational[1, 6] (3 + 2 6^Rational[1, 2])}, {
Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[1, 6] (-3 - 2 6^Rational[1, 2])}, {
3^Rational[-1, 2], 0, Rational[1, 6] (3 + 2 6^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2],
Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[
1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[
1, 2]}, {
Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2],
Rational[-1, 2]}, {
Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[
1, 2]}, {
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[
1, 2]}, {-3^Rational[-1, 2], 0,
Rational[1, 6] (-3 - 2 6^Rational[1, 2])}, {
Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2],
Rational[1, 6] (-3 - 2 6^Rational[1, 2])}}, {{0, -1, -0.5}, {
0, -1, 0.5}, {0, 1, -0.5}, {
0, 1, 0.5}, {-0.2886751345948129, -0.5,
1.3164965809277258`}, {-0.2886751345948129, 0.5,
1.3164965809277258`}, {
0.2886751345948129, -0.5, -1.3164965809277258`}, {
0.5773502691896258, 0,
1.3164965809277258`}, {-0.8660254037844386, -0.5, -0.5}, \
{-0.8660254037844386, -0.5, 0.5}, {-0.8660254037844386,
0.5, -0.5}, {-0.8660254037844386, 0.5, 0.5}, {
0.8660254037844386, -0.5, -0.5}, {0.8660254037844386, -0.5,
0.5}, {0.8660254037844386, 0.5, -0.5}, {0.8660254037844386, 0.5,
0.5}, {-0.5773502691896258, 0, -1.3164965809277258`}, {
0.2886751345948129, 0.5, -1.3164965809277258`}}],
Polygon3DBox[{{6, 5, 8}, {5, 6, 12, 10}, {8, 5, 2, 14}, {6, 8, 16,
4}, {4, 12, 6}, {10, 2, 5}, {14, 16, 8}, {7, 17, 18}, {11, 3, 18,
17}, {1, 9, 17, 7}, {15, 13, 7, 18}, {18, 3, 15}, {17, 9, 11}, {7,
13, 1}, {3, 11, 12, 4}, {11, 9, 10, 12}, {9, 1, 2, 10}, {1, 13,
14, 2}, {13, 15, 16, 14}, {15, 3, 4, 16}}]],
TagBox[
GridBox[{{"36"}, {"\"ElongatedTriangularGyrobicupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{36, "ElongatedTriangularGyrobicupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2160., -1954.9090909090905},
ImageScaled[{0.5, 0.5}], {360, 489},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], Rational[-1, 2],
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2],
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
0, -2^Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2])}, {
0, 2^Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2],
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2],
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {-2^Rational[-1, 2], 0,
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
2^Rational[-1, 2], 0, Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[
1, 2]}, {
Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[-1, 2]}, {
Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[
1, 2]}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2], Rational[
1, 2]}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2],
Rational[-1, 2]}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2], Rational[
1, 2]}, {
Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[-1, 2]}, {
Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[
1, 2]}, {
Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[
1, 2]}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2],
Rational[-1, 2]}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2], Rational[
1, 2]}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2], Rational[
1, 2]}}, {{-0.5, -0.5, -1.2071067811865475`}, {-0.5,
0.5, -1.2071067811865475`}, {
0, -0.7071067811865475, 1.2071067811865475`}, {
0, 0.7071067811865475, 1.2071067811865475`}, {
0.5, -0.5, -1.2071067811865475`}, {0.5,
0.5, -1.2071067811865475`}, {-0.7071067811865475, 0,
1.2071067811865475`}, {
0.7071067811865475, 0, 1.2071067811865475`}, {0.5,
1.2071067811865475`, -0.5}, {0.5, 1.2071067811865475`,
0.5}, {-0.5, 1.2071067811865475`, -0.5}, {-0.5,
1.2071067811865475`, 0.5}, {-1.2071067811865475`,
0.5, -0.5}, {-1.2071067811865475`, 0.5,
0.5}, {-1.2071067811865475`, -0.5, -0.5}, {-1.2071067811865475`, \
-0.5, 0.5}, {-0.5, -1.2071067811865475`, -0.5}, {-0.5, -1.2071067811865475`,
0.5}, {0.5, -1.2071067811865475`, -0.5}, {
0.5, -1.2071067811865475`, 0.5}, {
1.2071067811865475`, -0.5, -0.5}, {1.2071067811865475`, -0.5,
0.5}, {1.2071067811865475`, 0.5, -0.5}, {1.2071067811865475`, 0.5,
0.5}}],
Polygon3DBox[{{4, 7, 3, 8}, {7, 4, 12, 14}, {3, 7, 16, 18}, {8, 3,
20, 22}, {4, 8, 24, 10}, {10, 12, 4}, {14, 16, 7}, {18, 20, 3}, {
22, 24, 8}, {5, 1, 2, 6}, {11, 9, 6, 2}, {15, 13, 2, 1}, {19, 17,
1, 5}, {23, 21, 5, 6}, {6, 9, 23}, {2, 13, 11}, {1, 17, 15}, {5,
21, 19}, {9, 11, 12, 10}, {11, 13, 14, 12}, {13, 15, 16, 14}, {15,
17, 18, 16}, {17, 19, 20, 18}, {19, 21, 22, 20}, {21, 23, 24,
22}, {23, 9, 10, 24}}]],
TagBox[
GridBox[{{"37"}, {"\"ElongatedSquareGyrobicupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{37, "ElongatedSquareGyrobicupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2552.727272727273, -1954.9090909090905},
ImageScaled[{0.5, 0.5}], {360, 364},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0,
Rational[1, 10] (
5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1,
2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1,
2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[
1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {-(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2],
Rational[1, 10] (
5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {-(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], Rational[1, 10] (
5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[-1,
2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2], Rational[
1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[-1,
2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2], Rational[
1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[-1, 2]}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Rational[
1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[-1, 2]}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2],
Rational[1, 2]}}, {{0, -1.618033988749895, -0.5}, {
0, -1.618033988749895, 0.5}, {0, 1.618033988749895, -0.5}, {
0, 1.618033988749895, 0.5}, {
0.8506508083520399, 0, -1.0257311121191337`}, {
0.8506508083520399, 0, 1.0257311121191337`}, {
0.2628655560595668, -0.8090169943749475, -1.0257311121191337`}, {
0.2628655560595668, -0.8090169943749475, 1.0257311121191337`}, {
0.2628655560595668, 0.8090169943749475, -1.0257311121191337`}, {
0.2628655560595668, 0.8090169943749475,
1.0257311121191337`}, {-0.9510565162951535, -1.3090169943749475`, \
-0.5}, {-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535,
1.3090169943749475`, -0.5}, {-0.9510565162951535,
1.3090169943749475`, 0.5}, {
0.9510565162951535, -1.3090169943749475`, -0.5}, {
0.9510565162951535, -1.3090169943749475`, 0.5}, {
0.9510565162951535, 1.3090169943749475`, -0.5}, {
0.9510565162951535, 1.3090169943749475`,
0.5}, {-0.6881909602355868, -0.5, -1.0257311121191337`}, \
{-0.6881909602355868, -0.5, 1.0257311121191337`}, {-0.6881909602355868,
0.5, -1.0257311121191337`}, {-0.6881909602355868, 0.5,
1.0257311121191337`}, {-1.5388417685876268`, -0.5, -0.5}, \
{-1.5388417685876268`, -0.5, 0.5}, {-1.5388417685876268`,
0.5, -0.5}, {-1.5388417685876268`, 0.5, 0.5}, {
1.5388417685876268`, -0.5, -0.5}, {1.5388417685876268`, -0.5,
0.5}, {1.5388417685876268`, 0.5, -0.5}, {1.5388417685876268`, 0.5,
0.5}}],
Polygon3DBox[{{22, 10, 4, 14}, {20, 22, 26, 24}, {8, 20, 12, 2}, {6,
8, 16, 28}, {10, 6, 30, 18}, {18, 4, 10}, {14, 26, 22}, {24, 12,
20}, {2, 16, 8}, {28, 30, 6}, {10, 22, 20, 8, 6}, {13, 3, 9,
21}, {23, 25, 21, 19}, {1, 11, 19, 7}, {27, 15, 7, 5}, {17, 29, 5,
9}, {9, 3, 17}, {21, 25, 13}, {19, 11, 23}, {7, 15, 1}, {5, 29,
27}, {5, 7, 19, 21, 9}, {17, 3, 4, 18}, {3, 13, 14, 4}, {13, 25,
26, 14}, {25, 23, 24, 26}, {23, 11, 12, 24}, {11, 1, 2, 12}, {1,
15, 16, 2}, {15, 27, 28, 16}, {27, 29, 30, 28}, {29, 17, 18,
30}}]],
TagBox[
GridBox[{{"38"}, {"\"ElongatedPentagonalOrthobicupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{38, "ElongatedPentagonalOrthobicupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -1954.9090909090905},
ImageScaled[{0.5, 0.5}], {360, 304},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[
1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[1, 10] (
5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[1, 10] (
5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0,
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0,
Rational[1, 10] (
5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 - 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1,
2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1,
2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[
1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[-1,
2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2], Rational[
1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[-1,
2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2], Rational[
1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[-1, 2]}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Rational[
1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[-1, 2]}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2],
Rational[1, 2]}}, {{0, -1.618033988749895, -0.5}, {
0, -1.618033988749895, 0.5}, {0, 1.618033988749895, -0.5}, {
0, 1.618033988749895, 0.5}, {-0.6881909602355868, -0.5,
1.0257311121191337`}, {-0.6881909602355868, 0.5,
1.0257311121191337`}, {
0.6881909602355868, -0.5, -1.0257311121191337`}, {
0.6881909602355868,
0.5, -1.0257311121191337`}, {-0.8506508083520399,
0, -1.0257311121191337`}, {
0.8506508083520399, 0,
1.0257311121191337`}, {-0.2628655560595668, -0.8090169943749475, \
-1.0257311121191337`}, {-0.2628655560595668,
0.8090169943749475, -1.0257311121191337`}, {
0.2628655560595668, -0.8090169943749475, 1.0257311121191337`}, {
0.2628655560595668, 0.8090169943749475,
1.0257311121191337`}, {-0.9510565162951535, -1.3090169943749475`, \
-0.5}, {-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535,
1.3090169943749475`, -0.5}, {-0.9510565162951535,
1.3090169943749475`, 0.5}, {
0.9510565162951535, -1.3090169943749475`, -0.5}, {
0.9510565162951535, -1.3090169943749475`, 0.5}, {
0.9510565162951535, 1.3090169943749475`, -0.5}, {
0.9510565162951535, 1.3090169943749475`,
0.5}, {-1.5388417685876268`, -0.5, -0.5}, {-1.5388417685876268`, \
-0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5,
0.5}, {1.5388417685876268`, -0.5, -0.5}, {
1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`,
0.5, -0.5}, {1.5388417685876268`, 0.5, 0.5}}],
Polygon3DBox[{{14, 6, 5, 13, 10}, {6, 14, 4, 18}, {5, 6, 26, 24}, {
13, 5, 16, 2}, {10, 13, 20, 28}, {14, 10, 30, 22}, {22, 4, 14}, {
18, 26, 6}, {24, 16, 5}, {2, 20, 13}, {28, 30, 10}, {7, 11, 9, 12,
8}, {3, 21, 8, 12}, {25, 17, 12, 9}, {15, 23, 9, 11}, {19, 1, 11,
7}, {29, 27, 7, 8}, {8, 21, 29}, {12, 17, 3}, {9, 23, 25}, {11,
1, 15}, {7, 27, 19}, {21, 3, 4, 22}, {3, 17, 18, 4}, {17, 25, 26,
18}, {25, 23, 24, 26}, {23, 15, 16, 24}, {15, 1, 2, 16}, {1, 19,
20, 2}, {19, 27, 28, 20}, {27, 29, 30, 28}, {29, 21, 22, 30}}]],
TagBox[
GridBox[{{"39"}, {"\"ElongatedPentagonalGyrobicupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{39, "ElongatedPentagonalGyrobicupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -1954.9090909090905},
ImageScaled[{0.5, 0.5}], {360, 304},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2],
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {-(Rational[1, 2] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], 0,
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1,
2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1,
2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[
1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[-1,
2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2], Rational[
1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[-1,
2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2], Rational[
1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[-1, 2]}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Rational[
1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[-1, 2]}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2],
Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2], 0,
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{
0, -1.618033988749895, -0.5}, {0, -1.618033988749895, 0.5}, {
0, 1.618033988749895, -0.5}, {0, 1.618033988749895, 0.5}, {
0.42532540417601994`, -1.3090169943749475`, 1.35065080835204}, {
0.42532540417601994`, 1.3090169943749475`, 1.35065080835204}, {
0.6881909602355868, -0.5, -1.0257311121191337`}, {
0.6881909602355868, -0.5, 1.8763819204711738`}, {
0.6881909602355868, 0.5, -1.0257311121191337`}, {
0.6881909602355868, 0.5,
1.8763819204711738`}, {-0.8506508083520399,
0, -1.0257311121191337`}, {-0.8506508083520399, 0,
1.8763819204711738`}, {-1.1135163644116066`, -0.8090169943749475,
1.35065080835204}, {-1.1135163644116066`, 0.8090169943749475,
1.35065080835204}, {-0.2628655560595668, -0.8090169943749475, \
-1.0257311121191337`}, {-0.2628655560595668, -0.8090169943749475,
1.8763819204711738`}, {-0.2628655560595668,
0.8090169943749475, -1.0257311121191337`}, {-0.2628655560595668,
0.8090169943749475,
1.8763819204711738`}, {-0.9510565162951535, -1.3090169943749475`, \
-0.5}, {-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535,
1.3090169943749475`, -0.5}, {-0.9510565162951535,
1.3090169943749475`, 0.5}, {
0.9510565162951535, -1.3090169943749475`, -0.5}, {
0.9510565162951535, -1.3090169943749475`, 0.5}, {
0.9510565162951535, 1.3090169943749475`, -0.5}, {
0.9510565162951535, 1.3090169943749475`,
0.5}, {-1.5388417685876268`, -0.5, -0.5}, {-1.5388417685876268`, \
-0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5,
0.5}, {1.5388417685876268`, -0.5, -0.5}, {
1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`,
0.5, -0.5}, {1.5388417685876268`, 0.5, 0.5}, {
1.3763819204711736`, 0, 1.35065080835204}}],
Polygon3DBox[{{18, 12, 16, 8, 10}, {14, 12, 18}, {13, 16, 12}, {5,
8, 16}, {35, 10, 8}, {6, 18, 10}, {26, 4, 6}, {22, 30, 14}, {28,
20, 13}, {2, 24, 5}, {32, 34, 35}, {4, 22, 14, 18, 6}, {30, 28,
13, 12, 14}, {20, 2, 5, 16, 13}, {24, 32, 35, 8, 5}, {34, 26, 6,
10, 35}, {7, 15, 11, 17, 9}, {3, 25, 9, 17}, {29, 21, 17, 11}, {
19, 27, 11, 15}, {23, 1, 15, 7}, {33, 31, 7, 9}, {9, 25, 33}, {17,
21, 3}, {11, 27, 29}, {15, 1, 19}, {7, 31, 23}, {25, 3, 4, 26}, {
3, 21, 22, 4}, {21, 29, 30, 22}, {29, 27, 28, 30}, {27, 19, 20,
28}, {19, 1, 2, 20}, {1, 23, 24, 2}, {23, 31, 32, 24}, {31, 33,
34, 32}, {33, 25, 26, 34}}]],
TagBox[
GridBox[{{"40"}, {"\"ElongatedPentagonalOrthocupolarotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{40, "ElongatedPentagonalOrthocupolarotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -1954.9090909090905},
ImageScaled[{0.5, 0.5}], {360, 395},
ContentSelectable->True]}, {InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {-(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1,
2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1,
2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[
1, 2]}, {-(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {-(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], Rational[1, 10] (-5 - (10 (5 - 5^Rational[1, 2]))^
Rational[1, 2])}, {-(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2],
Rational[-1,
2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2], Rational[
1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[-1,
2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2], Rational[
1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[-1, 2]}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Rational[
1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[-1, 2]}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2],
Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2], 0,
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}}, {{
0, -1.618033988749895, -0.5}, {0, -1.618033988749895, 0.5}, {
0, 1.618033988749895, -0.5}, {0, 1.618033988749895, 0.5}, {
0.8506508083520399, 0, -1.0257311121191337`}, {
0.2628655560595668, -0.8090169943749475, -1.0257311121191337`}, {
0.2628655560595668,
0.8090169943749475, -1.0257311121191337`}, {-0.9510565162951535, \
-1.3090169943749475`, -0.5}, {-0.9510565162951535, -1.3090169943749475`,
0.5}, {-0.9510565162951535,
1.3090169943749475`, -0.5}, {-0.9510565162951535,
1.3090169943749475`, 0.5}, {
0.9510565162951535, -1.3090169943749475`, -0.5}, {
0.9510565162951535, -1.3090169943749475`, 0.5}, {
0.9510565162951535, 1.3090169943749475`, -0.5}, {
0.9510565162951535, 1.3090169943749475`,
0.5}, {-0.6881909602355868, -0.5, -1.0257311121191337`}, \
{-0.6881909602355868,
0.5, -1.0257311121191337`}, {-1.5388417685876268`, -0.5, -0.5}, \
{-1.5388417685876268`, -0.5, 0.5}, {-1.5388417685876268`,
0.5, -0.5}, {-1.5388417685876268`, 0.5, 0.5}, {
1.5388417685876268`, -0.5, -0.5}, {1.5388417685876268`, -0.5,
0.5}, {1.5388417685876268`, 0.5, -0.5}, {1.5388417685876268`, 0.5,
0.5}, {1.3763819204711736`, 0, 1.35065080835204}, {
0.42532540417601994`, -1.3090169943749475`, 1.35065080835204}, {
0.42532540417601994`, 1.3090169943749475`,
1.35065080835204}, {-1.1135163644116066`, -0.8090169943749475,
1.35065080835204}, {-1.1135163644116066`, 0.8090169943749475,
1.35065080835204}, {-0.8506508083520399, 0,
1.8763819204711738`}, {-0.2628655560595668, -0.8090169943749475,
1.8763819204711738`}, {-0.2628655560595668, 0.8090169943749475,
1.8763819204711738`}, {0.6881909602355868, -0.5,
1.8763819204711738`}, {0.6881909602355868, 0.5,
1.8763819204711738`}}],
Polygon3DBox[{{33, 31, 32, 34, 35}, {30, 31, 33}, {29, 32, 31}, {27,
34, 32}, {26, 35, 34}, {28, 33, 35}, {15, 4, 28}, {11, 21, 30}, {
19, 9, 29}, {2, 13, 27}, {23, 25, 26}, {4, 11, 30, 33, 28}, {21,
19, 29, 31, 30}, {9, 2, 27, 32, 29}, {13, 23, 26, 34, 27}, {25,
15, 28, 35, 26}, {5, 6, 16, 17, 7}, {10, 3, 7, 17}, {18, 20, 17,
16}, {1, 8, 16, 6}, {22, 12, 6, 5}, {14, 24, 5, 7}, {7, 3, 14}, {
17, 20, 10}, {16, 8, 18}, {6, 12, 1}, {5, 24, 22}, {14, 3, 4,
15}, {3, 10, 11, 4}, {10, 20, 21, 11}, {20, 18, 19, 21}, {18, 8,
9, 19}, {8, 1, 2, 9}, {1, 12, 13, 2}, {12, 22, 23, 13}, {22, 24,
25, 23}, {24, 14, 15, 25}}]],
TagBox[
GridBox[{{"41"}, {"\"ElongatedPentagonalGyrocupolarotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{41, "ElongatedPentagonalGyrocupolarotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {196.36363636363637, -2513.454545454545},
ImageScaled[{0.5, 0.5}], {360, 395},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[
1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1,
2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1,
2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[
1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[-1,
2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2], Rational[
1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[-1,
2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2], Rational[
1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[-1, 2]}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Rational[
1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[-1, 2]}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2],
Rational[1, 2]}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2], 0,
Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2], 0,
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {-(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[1, 10] (-5 -
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (-5 -
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (-5 -
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[1, 10] (-5 -
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[1, 10] (-5 -
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}}, {{
0, -1.618033988749895, -0.5}, {0, -1.618033988749895, 0.5}, {
0, 1.618033988749895, -0.5}, {
0, 1.618033988749895,
0.5}, {-0.9510565162951535, -1.3090169943749475`, -0.5}, \
{-0.9510565162951535, -1.3090169943749475`, 0.5}, {-0.9510565162951535,
1.3090169943749475`, -0.5}, {-0.9510565162951535,
1.3090169943749475`, 0.5}, {
0.9510565162951535, -1.3090169943749475`, -0.5}, {
0.9510565162951535, -1.3090169943749475`, 0.5}, {
0.9510565162951535, 1.3090169943749475`, -0.5}, {
0.9510565162951535, 1.3090169943749475`,
0.5}, {-1.5388417685876268`, -0.5, -0.5}, {-1.5388417685876268`, \
-0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5,
0.5}, {1.5388417685876268`, -0.5, -0.5}, {
1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`,
0.5, -0.5}, {1.5388417685876268`, 0.5, 0.5}, {
1.3763819204711736`, 0, -1.35065080835204}, {
1.3763819204711736`, 0, 1.35065080835204}, {
0.42532540417601994`, -1.3090169943749475`, -1.35065080835204}, {
0.42532540417601994`, -1.3090169943749475`, 1.35065080835204}, {
0.42532540417601994`, 1.3090169943749475`, -1.35065080835204}, {
0.42532540417601994`, 1.3090169943749475`,
1.35065080835204}, {-1.1135163644116066`, -0.8090169943749475, \
-1.35065080835204}, {-1.1135163644116066`, -0.8090169943749475,
1.35065080835204}, {-1.1135163644116066`,
0.8090169943749475, -1.35065080835204}, {-1.1135163644116066`,
0.8090169943749475,
1.35065080835204}, {-0.8506508083520399,
0, -1.8763819204711738`}, {-0.8506508083520399, 0,
1.8763819204711738`}, {-0.2628655560595668, -0.8090169943749475, \
-1.8763819204711738`}, {-0.2628655560595668, -0.8090169943749475,
1.8763819204711738`}, {-0.2628655560595668,
0.8090169943749475, -1.8763819204711738`}, {-0.2628655560595668,
0.8090169943749475, 1.8763819204711738`}, {
0.6881909602355868, -0.5, -1.8763819204711738`}, {
0.6881909602355868, -0.5, 1.8763819204711738`}, {
0.6881909602355868, 0.5, -1.8763819204711738`}, {
0.6881909602355868, 0.5, 1.8763819204711738`}}],
Polygon3DBox[{{36, 32, 34, 38, 40}, {30, 32, 36}, {28, 34, 32}, {24,
38, 34}, {22, 40, 38}, {26, 36, 40}, {12, 4, 26}, {8, 16, 30}, {
14, 6, 28}, {2, 10, 24}, {18, 20, 22}, {4, 8, 30, 36, 26}, {16,
14, 28, 32, 30}, {6, 2, 24, 34, 28}, {10, 18, 22, 38, 24}, {20,
12, 26, 40, 22}, {39, 37, 33, 31, 35}, {35, 31, 29}, {31, 33,
27}, {33, 37, 23}, {37, 39, 21}, {39, 35, 25}, {25, 3, 11}, {29,
15, 7}, {27, 5, 13}, {23, 9, 1}, {21, 19, 17}, {25, 35, 29, 7,
3}, {29, 31, 27, 13, 15}, {27, 33, 23, 1, 5}, {23, 37, 21, 17,
9}, {21, 39, 25, 11, 19}, {11, 3, 4, 12}, {3, 7, 8, 4}, {7, 15,
16, 8}, {15, 13, 14, 16}, {13, 5, 6, 14}, {5, 1, 2, 6}, {1, 9, 10,
2}, {9, 17, 18, 10}, {17, 19, 20, 18}, {19, 11, 12, 20}}]],
TagBox[
GridBox[{{"42"}, {"\"ElongatedPentagonalOrthobirotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{42, "ElongatedPentagonalOrthobirotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {589.0909090909091, -2513.454545454545},
ImageScaled[{0.5, 0.5}], {360, 442},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[
1, 2]}, {-(Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {-(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 8] + Rational[1, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[1, 10] (-5 -
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[1, 10] (-5 -
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[1, 2] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], 0,
Rational[1, 10] (-5 -
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}, {(
Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {(Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (5 +
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (-5 -
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {
Rational[1, 2] (Rational[1, 10] (5 - 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (-5 -
2 (5 (5 + 2 5^Rational[1, 2]))^Rational[1, 2])}, {-(
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1,
2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[
1, 2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1,
2]}, {-(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[
1, 2]}, {(Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[
1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[-1,
2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2], Rational[
1, 2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[-1,
2]}, {-(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2], Rational[
1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[-1, 2]}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Rational[
1, 2]}, {(Rational[5, 4] + Rational[1, 2] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2],
Rational[-1, 2]}, {(Rational[5, 4] +
Rational[1, 2] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2],
Rational[
1, 2]}, {-(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2], 0,
Rational[1, 10] (-5 - (10 (5 + 5^Rational[1, 2]))^
Rational[1, 2])}, {(Rational[1, 5] (5 + 2 5^Rational[1, 2]))^
Rational[1, 2], 0,
Rational[1, 10] (
5 + (10 (5 + 5^Rational[1, 2]))^Rational[1, 2])}}, {{
0, -1.618033988749895, -0.5}, {0, -1.618033988749895, 0.5}, {
0, 1.618033988749895, -0.5}, {
0, 1.618033988749895,
0.5}, {-0.42532540417601994`, -1.3090169943749475`, \
-1.35065080835204}, {-0.42532540417601994`,
1.3090169943749475`, -1.35065080835204}, {
0.42532540417601994`, -1.3090169943749475`, 1.35065080835204}, {
0.42532540417601994`, 1.3090169943749475`,
1.35065080835204}, {-0.6881909602355868, -0.5, \
-1.8763819204711738`}, {-0.6881909602355868, 0.5, -1.8763819204711738`}, {
0.6881909602355868, -0.5, 1.8763819204711738`}, {
0.6881909602355868, 0.5,
1.8763819204711738`}, {-0.8506508083520399, 0,
1.8763819204711738`}, {
0.8506508083520399,
0, -1.8763819204711738`}, {-1.1135163644116066`, \
-0.8090169943749475, 1.35065080835204}, {-1.1135163644116066`,
0.8090169943749475, 1.35065080835204}, {
1.1135163644116066`, -0.8090169943749475, -1.35065080835204}, {
1.1135163644116066`,
0.8090169943749475, -1.35065080835204}, {-0.2628655560595668, \
-0.8090169943749475, 1.8763819204711738`}, {-0.2628655560595668,
0.8090169943749475, 1.8763819204711738`}, {
0.2628655560595668, -0.8090169943749475, -1.8763819204711738`}, {
0.2628655560595668,
0.8090169943749475, -1.8763819204711738`}, {-0.9510565162951535, \
-1.3090169943749475`, -0.5}, {-0.9510565162951535, -1.3090169943749475`,
0.5}, {-0.9510565162951535,
1.3090169943749475`, -0.5}, {-0.9510565162951535,
1.3090169943749475`, 0.5}, {
0.9510565162951535, -1.3090169943749475`, -0.5}, {
0.9510565162951535, -1.3090169943749475`, 0.5}, {
0.9510565162951535, 1.3090169943749475`, -0.5}, {
0.9510565162951535, 1.3090169943749475`,
0.5}, {-1.5388417685876268`, -0.5, -0.5}, {-1.5388417685876268`, \
-0.5, 0.5}, {-1.5388417685876268`, 0.5, -0.5}, {-1.5388417685876268`, 0.5,
0.5}, {1.5388417685876268`, -0.5, -0.5}, {
1.5388417685876268`, -0.5, 0.5}, {1.5388417685876268`,
0.5, -0.5}, {1.5388417685876268`, 0.5,
0.5}, {-1.3763819204711736`, 0, -1.35065080835204}, {
1.3763819204711736`, 0, 1.35065080835204}}],
Polygon3DBox[{{20, 13, 19, 11, 12}, {16, 13, 20}, {15, 19, 13}, {7,
11, 19}, {40, 12, 11}, {8, 20, 12}, {30, 4, 8}, {26, 34, 16}, {32,
24, 15}, {2, 28, 7}, {36, 38, 40}, {4, 26, 16, 20, 8}, {34, 32,
15, 13, 16}, {24, 2, 7, 19, 15}, {28, 36, 40, 11, 7}, {38, 30, 8,
12, 40}, {14, 21, 9, 10, 22}, {22, 10, 6}, {10, 9, 39}, {9, 21,
5}, {21, 14, 17}, {14, 22, 18}, {18, 29, 37}, {6, 25, 3}, {39, 31,
33}, {5, 1, 23}, {17, 35, 27}, {18, 22, 6, 3, 29}, {6, 10, 39,
33, 25}, {39, 9, 5, 23, 31}, {5, 21, 17, 27, 1}, {17, 14, 18, 37,
35}, {29, 3, 4, 30}, {3, 25, 26, 4}, {25, 33, 34, 26}, {33, 31,
32, 34}, {31, 23, 24, 32}, {23, 1, 2, 24}, {1, 27, 28, 2}, {27,
35, 36, 28}, {35, 37, 38, 36}, {37, 29, 30, 38}}]],
TagBox[
GridBox[{{"43"}, {"\"ElongatedPentagonalGyrobirotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{43, "ElongatedPentagonalGyrobirotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {981.818181818182, -2513.454545454545},
ImageScaled[{0.5, 0.5}], {360, 444},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{-1, 0,
Rational[1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2],
Rational[1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2],
Rational[1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2],
Rational[
1, 2] (Rational[5, 3] + 3^Rational[1, 2] +
4 (Rational[2, 3] (-1 + 3^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
0, -1, Rational[-1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
0, 1, Rational[-1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
0, 3^Rational[-1, 2],
Rational[
1, 2] (Rational[5, 3] + 3^Rational[1, 2] +
4 (Rational[2, 3] (-1 + 3^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2],
Rational[
1, 2] (Rational[5, 3] + 3^Rational[1, 2] +
4 (Rational[2, 3] (-1 + 3^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2],
Rational[1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2],
Rational[1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
1, 0, Rational[1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, {-3^
Rational[-1, 2], 0,
Rational[-1, 2] (Rational[5, 3] + 3^Rational[1, 2] +
4 (Rational[2, 3] (-1 + 3^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[-1, 2] (Rational[5, 3] + 3^Rational[1, 2] +
4 (Rational[2, 3] (-1 + 3^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2],
Rational[-1, 2] (Rational[5, 3] + 3^Rational[1, 2] +
4 (Rational[2, 3] (-1 + 3^Rational[1, 2]))^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2],
Rational[-1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2],
Rational[-1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2],
Rational[-1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2],
Rational[-1, 2] (-1 + 3^Rational[1, 2])^Rational[1, 2]}}, {{-1,
0, 0.42779983858367604`}, {-0.5, -0.8660254037844386,
0.42779983858367604`}, {-0.5, 0.8660254037844386,
0.42779983858367604`}, {-0.5, -0.2886751345948129,
1.2442964195114021`}, {0, -1, -0.42779983858367604`}, {
0, 1, -0.42779983858367604`}, {
0, 0.5773502691896258, 1.2442964195114021`}, {
0.5, -0.2886751345948129, 1.2442964195114021`}, {
0.5, -0.8660254037844386, 0.42779983858367604`}, {0.5,
0.8660254037844386, 0.42779983858367604`}, {
1, 0, 0.42779983858367604`}, {-0.5773502691896258,
0, -1.2442964195114021`}, {
0.2886751345948129, -0.5, -1.2442964195114021`}, {
0.2886751345948129,
0.5, -1.2442964195114021`}, {-0.8660254037844386, -0.5, \
-0.42779983858367604`}, {-0.8660254037844386, 0.5, -0.42779983858367604`}, {
0.8660254037844386, -0.5, -0.42779983858367604`}, {
0.8660254037844386, 0.5, -0.42779983858367604`}}],
Polygon3DBox[{{18, 10, 11}, {6, 3, 10}, {16, 1, 3}, {15, 2, 1}, {5,
9, 2}, {17, 11, 9}, {18, 6, 10}, {6, 16, 3}, {16, 15, 1}, {15, 5,
2}, {5, 17, 9}, {17, 18, 11}, {7, 4, 8}, {4, 7, 3, 1}, {8, 4, 2,
9}, {7, 8, 11, 10}, {10, 3, 7}, {1, 2, 4}, {9, 11, 8}, {12, 14,
13}, {18, 17, 13, 14}, {16, 6, 14, 12}, {5, 15, 12, 13}, {13, 17,
5}, {14, 6, 18}, {12, 15, 16}}]],
TagBox[
GridBox[{{"44"}, {"\"GyroelongatedTriangularBicupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{44, "GyroelongatedTriangularBicupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -2513.454545454545},
ImageScaled[{0.5, 0.5}], {360, 493},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, -2^Rational[-1, 2], Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
0, 2^Rational[-1, 2], Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
0, -(1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
0, (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-2^Rational[-1, 2], 0, Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
2^Rational[-1, 2], 0, Root[
47 - 96 # - 608 #^2 + 1408 #^3 + 256 #^4 - 1024 #^5 - 512 #^6 +
512 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2], Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] + 2^Rational[-1, 2], Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {-(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {(1 + 2^Rational[-1, 2])^Rational[1, 2], 0,
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 2^Rational[1, 2])^Rational[1, 2],
Rational[
1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] - 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] + 2^Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] + 2^Rational[-1, 2], Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2], Rational[1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] - 2^Rational[-1, 2], Rational[-1, 2],
Rational[-1, 2] (-1 - 2^
Rational[1, 2] + (5 + 7 2^Rational[-1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}, {
Rational[1, 2] (1 - 2^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[-1, 2])^Rational[1, 2], Root[
47 + 96 # - 608 #^2 - 1408 #^3 + 256 #^4 + 1024 #^5 - 512 #^6 +
512 #^8& , 6, 0]}}, {{
0, -0.7071067811865475, -1.1372545661180333`}, {
0, 0.7071067811865475, -1.1372545661180333`}, {
0, -1.3065629648763766`, 0.4301477849314858}, {
0, 1.3065629648763766`, 0.4301477849314858}, {-0.7071067811865475,
0, -1.1372545661180333`}, {
0.7071067811865475,
0, -1.1372545661180333`}, {-0.6532814824381883,
0.2705980500730985, 1.1372545661180333`}, {
0.6532814824381883, -0.2705980500730985, 1.1372545661180333`}, {
1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.3065629648763766`, 0,
0.4301477849314858}, {
1.3065629648763766`, 0,
0.4301477849314858}, {-0.9238795325112867, -0.9238795325112867,
0.4301477849314858}, {-0.9238795325112867, 0.9238795325112867,
0.4301477849314858}, {0.9238795325112867, -0.9238795325112867,
0.4301477849314858}, {0.9238795325112867, 0.9238795325112867,
0.4301477849314858}, {-0.5, -1.2071067811865475`, \
-0.4301477849314858}, {0.5, 1.2071067811865475`, -0.4301477849314858}, {
0.5, -1.2071067811865475`, -0.4301477849314858}, {-0.5,
1.2071067811865475`, -0.4301477849314858}, {
1.2071067811865475`, -0.5, -0.4301477849314858}, \
{-1.2071067811865475`,
0.5, -0.4301477849314858}, {-1.2071067811865475`, -0.5, \
-0.4301477849314858}, {-0.2705980500730985, -0.6532814824381883,
1.1372545661180333`}, {0.2705980500730985, 0.6532814824381883,
1.1372545661180333`}}],
Polygon3DBox[{{9, 15, 11}, {17, 4, 15}, {19, 13, 4}, {21, 10, 13}, {
22, 12, 10}, {16, 3, 12}, {18, 14, 3}, {20, 11, 14}, {9, 17,
15}, {17, 19, 4}, {19, 21, 13}, {21, 22, 10}, {22, 16, 12}, {16,
18, 3}, {18, 20, 14}, {20, 9, 11}, {24, 7, 23, 8}, {7, 24, 4,
13}, {23, 7, 10, 12}, {8, 23, 3, 14}, {24, 8, 11, 15}, {15, 4,
24}, {13, 10, 7}, {12, 3, 23}, {14, 11, 8}, {5, 2, 6, 1}, {20, 18,
1, 6}, {17, 9, 6, 2}, {21, 19, 2, 5}, {16, 22, 5, 1}, {1, 18,
16}, {6, 9, 20}, {2, 19, 17}, {5, 22, 21}}]],
TagBox[
GridBox[{{"45"}, {"\"GyroelongatedSquareBicupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{45, "GyroelongatedSquareBicupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -2513.454545454545},
ImageScaled[{0.5, 0.5}], {360, 349},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[-1, 8] (1 + 5^Rational[1, 2])^2,
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {
Rational[-1, 8] (1 + 5^Rational[1, 2])^2, (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0], Root[1 - 5 #^2 + 5 #^4& , 3, 0] +
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], Root[1 - 5 #^2 + 5 #^4& , 2, 0] +
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], Root[1 - 5 #^2 + 5 #^4& , 2, 0] +
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {
Rational[-1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Root[1 - 5 #^2 + 5 #^4& , 3, 0] +
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Root[1 - 5 #^2 + 5 #^4& , 3, 0] +
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 2, 0] +
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[1 - 5 #^2 + 5 #^4& , 2, 0] +
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Root[1 - 5 #^2 + 5 #^4& , 3, 0] +
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0], Root[1 - 5 #^2 + 5 #^4& , 3, 0] +
Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {(
Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0,
Root[1 - 5 #^2 + 5 #^4& , 2, 0] +
Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {(
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {(
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4, 0]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 1, 0]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Rational[1, 2]
Root[1 + 2 #^2 - 11 #^4 + 8 #^6 + #^8& , 4,
0]}}, {{-1.618033988749895, 0,
0.43119850192972925`}, {-1.5388417685876268`, -0.5, \
-0.43119850192972925`}, {-1.5388417685876268`,
0.5, -0.43119850192972925`}, {-1.3090169943749475`, \
-0.9510565162951535, 0.43119850192972925`}, {-1.3090169943749475`,
0.9510565162951535,
0.43119850192972925`}, {-0.9510565162951535, \
-1.3090169943749475`, -0.43119850192972925`}, {-0.9510565162951535,
1.3090169943749475`, -0.43119850192972925`}, {-0.8090169943749475,
0.2628655560595668,
0.9569296140488628}, {-0.6881909602355868, -0.5, \
-0.9569296140488628}, {-0.6881909602355868,
0.5, -0.9569296140488628}, {-0.5, -1.5388417685876268`,
0.43119850192972925`}, {-0.5, -0.6881909602355868,
0.9569296140488628}, {-0.5, 1.5388417685876268`,
0.43119850192972925`}, {
0, -1.618033988749895, -0.43119850192972925`}, {
0, 0.85065080835204, 0.9569296140488628}, {
0, 1.618033988749895, -0.43119850192972925`}, {
0.2628655560595668, -0.8090169943749475, -0.9569296140488628}, {
0.2628655560595668, 0.8090169943749475, -0.9569296140488628}, {
0.5, -1.5388417685876268`, 0.43119850192972925`}, {
0.5, -0.6881909602355868, 0.9569296140488628}, {0.5,
1.5388417685876268`, 0.43119850192972925`}, {0.8090169943749475,
0.2628655560595668, 0.9569296140488628}, {
0.85065080835204, 0, -0.9569296140488628}, {
0.9510565162951535, -1.3090169943749475`, -0.43119850192972925`}, \
{0.9510565162951535, 1.3090169943749475`, -0.43119850192972925`}, {
1.3090169943749475`, -0.9510565162951535, 0.43119850192972925`}, {
1.3090169943749475`, 0.9510565162951535, 0.43119850192972925`}, {
1.5388417685876268`, -0.5, -0.43119850192972925`}, {
1.5388417685876268`, 0.5, -0.43119850192972925`}, {
1.618033988749895, 0, 0.43119850192972925`}}],
Polygon3DBox[{{1, 2, 4}, {1, 3, 2}, {1, 5, 3}, {1, 8, 5}, {2, 6,
4}, {2, 9, 6}, {3, 5, 7}, {3, 7, 10}, {4, 6, 11}, {4, 11, 12}, {5,
13, 7}, {6, 14, 11}, {7, 13, 16}, {11, 14, 19}, {13, 15, 21}, {
13, 21, 16}, {14, 17, 24}, {14, 24, 19}, {16, 21, 25}, {16, 25,
18}, {19, 24, 26}, {19, 26, 20}, {21, 27, 25}, {22, 30, 27}, {23,
29, 28}, {24, 28, 26}, {25, 27, 29}, {26, 28, 30}, {27, 30, 29}, {
28, 29, 30}, {12, 8, 1, 4}, {9, 2, 3, 10}, {15, 13, 5, 8}, {14, 6,
9, 17}, {10, 7, 16, 18}, {19, 20, 12, 11}, {27, 21, 15, 22}, {24,
17, 23, 28}, {23, 18, 25, 29}, {30, 22, 20, 26}, {22, 15, 8, 12,
20}, {17, 9, 10, 18, 23}}]],
TagBox[
GridBox[{{"46"}, {"\"GyroelongatedPentagonalBicupola\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{46, "GyroelongatedPentagonalBicupola"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2160., -2513.454545454545},
ImageScaled[{0.5, 0.5}], {360, 289},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
0, -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], Root[
361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 +
6400 #^8& , 4, 0]}, {
0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 -
44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {(
Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2], 0, Root[
641 + 7760 # + 8360 #^2 - 22400 #^3 - 11440 #^4 + 19200 #^5 +
6400 #^8& , 2, 0]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
641 + 7760 # + 8360 #^2 - 22400 #^3 - 11440 #^4 + 19200 #^5 +
6400 #^8& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
641 + 7760 # + 8360 #^2 - 22400 #^3 - 11440 #^4 + 19200 #^5 +
6400 #^8& , 2, 0]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {(
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {(
Rational[5, 8] + Rational[1, 8] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], Root[
641 + 7760 # + 8360 #^2 - 22400 #^3 - 11440 #^4 + 19200 #^5 +
6400 #^8& , 2, 0]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], Root[
641 + 7760 # + 8360 #^2 - 22400 #^3 - 11440 #^4 + 19200 #^5 +
6400 #^8& , 2, 0]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Root[1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Root[1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 1, 0], Root[
361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 +
6400 #^8& , 4, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Root[
361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 +
6400 #^8& , 4, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0],
Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 -
44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, {
Rational[-1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 -
44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 1, 0], Root[
361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 +
6400 #^8& , 4, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2], Root[
361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 +
6400 #^8& , 4, 0]}, {
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 -
44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0],
Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 -
44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}}, {{
0, -1.618033988749895, -0.4311985019297291}, {
0, 1.618033988749895, -0.4311985019297291}, {
0, -1.3763819204711736`, 1.2818493102817692`}, {
0, 0.85065080835204, 1.8075804224009027`}, {-1.618033988749895, 0,
0.4311985019297292}, {
0.85065080835204,
0, -0.9569296140488629}, {-0.5, -1.5388417685876268`,
0.4311985019297292}, {
0.2628655560595668, -0.8090169943749475, -0.9569296140488629}, {
0.2628655560595668, 0.8090169943749475, -0.9569296140488629}, {
1.618033988749895, 0,
0.4311985019297292}, {-0.9510565162951535, -1.3090169943749475`, \
-0.4311985019297291}, {-0.9510565162951535,
1.3090169943749475`, -0.4311985019297291}, {
0.9510565162951535, -1.3090169943749475`, -0.4311985019297291}, {
0.9510565162951535,
1.3090169943749475`, -0.4311985019297291}, {-0.6881909602355868, \
-0.5, -0.9569296140488629}, {-0.6881909602355868,
0.5, -0.9569296140488629}, {-0.5, 1.5388417685876268`,
0.4311985019297292}, {0.5, -1.5388417685876268`,
0.4311985019297292}, {0.5, 1.5388417685876268`,
0.4311985019297292}, {-1.3090169943749475`, -0.9510565162951535,
0.4311985019297292}, {-1.3090169943749475`, 0.9510565162951535,
0.4311985019297292}, {1.3090169943749475`, -0.9510565162951535,
0.4311985019297292}, {1.3090169943749475`, 0.9510565162951535,
0.4311985019297292}, {-1.5388417685876268`, -0.5, \
-0.4311985019297291}, {-1.5388417685876268`, 0.5, -0.4311985019297291}, {
1.5388417685876268`, -0.5, -0.4311985019297291}, {
1.5388417685876268`, 0.5, -0.4311985019297291}, {
1.3090169943749475`, -0.42532540417602, 1.2818493102817692`}, {
0.8090169943749475, 1.1135163644116066`,
1.2818493102817692`}, {-0.8090169943749475, 0.2628655560595668,
1.8075804224009027`}, {-0.5, -0.6881909602355868,
1.8075804224009027`}, {-1.3090169943749475`, -0.42532540417602,
1.2818493102817692`}, {-0.8090169943749475, 1.1135163644116066`,
1.2818493102817692`}, {0.5, -0.6881909602355868,
1.8075804224009027`}, {0.8090169943749475, 0.2628655560595668,
1.8075804224009027`}}],
Polygon3DBox[{{27, 23, 10}, {14, 19, 23}, {2, 17, 19}, {12, 21,
17}, {25, 5, 21}, {24, 20, 5}, {11, 7, 20}, {1, 18, 7}, {13, 22,
18}, {26, 10, 22}, {27, 14, 23}, {14, 2, 19}, {2, 12, 17}, {12,
25, 21}, {25, 24, 5}, {24, 11, 20}, {11, 1, 7}, {1, 13, 18}, {13,
26, 22}, {26, 27, 10}, {6, 8, 15, 16, 9}, {12, 2, 9, 16}, {24, 25,
16, 15}, {1, 11, 15, 8}, {26, 13, 8, 6}, {14, 27, 6, 9}, {9, 2,
14}, {16, 25, 12}, {15, 11, 24}, {8, 13, 1}, {6, 27, 26}, {4, 30,
31, 34, 35}, {33, 30, 4}, {32, 31, 30}, {3, 34, 31}, {28, 35,
34}, {29, 4, 35}, {23, 19, 29}, {17, 21, 33}, {5, 20, 32}, {7, 18,
3}, {22, 10, 28}, {19, 17, 33, 4, 29}, {21, 5, 32, 30, 33}, {20,
7, 3, 31, 32}, {18, 22, 28, 34, 3}, {10, 23, 29, 35, 28}}]],
TagBox[
GridBox[{{"47"}, {"\"GyroelongatedPentagonalCupolarotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{47, "GyroelongatedPentagonalCupolarotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2552.727272727273, -2513.454545454545},
ImageScaled[{0.5, 0.5}], {360, 375},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0, Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Root[1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Root[
361 - 1520 # - 13240 #^2 - 19200 #^3 + 7760 #^4 + 25600 #^5 +
6400 #^8& , 1, 0]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 +
6400 #^8& , 4, 0]}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 +
6400 #^8& , 4, 0]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0], 0,
Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 -
44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0], Root[
361 - 1520 # - 13240 #^2 - 19200 #^3 + 7760 #^4 + 25600 #^5 +
6400 #^8& , 1, 0]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0],
Root[-479 + 6240 # - 8600 #^2 - 16000 #^3 + 49360 #^4 +
44800 #^5 - 12800 #^6 + 6400 #^8& , 1, 0]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Root[-479 + 6240 # - 8600 #^2 - 16000 #^3 + 49360 #^4 +
44800 #^5 - 12800 #^6 + 6400 #^8& , 1, 0]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 -
44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 -
44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
0, Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Root[-479 + 6240 # - 8600 #^2 - 16000 #^3 + 49360 #^4 +
44800 #^5 - 12800 #^6 + 6400 #^8& , 1, 0]}, {
0, (1 + 2 5^Rational[-1, 2])^Rational[1, 2], Root[
361 - 1520 # - 13240 #^2 - 19200 #^3 + 7760 #^4 + 25600 #^5 +
6400 #^8& , 1, 0]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 +
6400 #^8& , 4, 0]}, {
Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 +
6400 #^8& , 4, 0]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
Rational[
1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Root[-479 + 6240 # - 8600 #^2 - 16000 #^3 + 49360 #^4 +
44800 #^5 - 12800 #^6 + 6400 #^8& , 1, 0]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 -
44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], Root[-479 - 6240 # - 8600 #^2 + 16000 #^3 + 49360 #^4 -
44800 #^5 - 12800 #^6 + 6400 #^8& , 4, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0], Root[
361 - 1520 # - 13240 #^2 - 19200 #^3 + 7760 #^4 + 25600 #^5 +
6400 #^8& , 1, 0]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0],
Root[-479 + 6240 # - 8600 #^2 - 16000 #^3 + 49360 #^4 +
44800 #^5 - 12800 #^6 + 6400 #^8& , 1, 0]}, {
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Root[
361 - 1520 # - 13240 #^2 - 19200 #^3 + 7760 #^4 + 25600 #^5 +
6400 #^8& , 1, 0]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1, 0]}, {(1 +
2 5^Rational[-1, 2])^Rational[1, 2], 0, Root[
361 + 1520 # - 13240 #^2 + 19200 #^3 + 7760 #^4 - 25600 #^5 +
6400 #^8& , 4, 0]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Root[1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 4, 0]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0, Root[
1 + 8 #^2 - 176 #^4 + 512 #^6 + 256 #^8& , 1,
0]}}, {{-1.618033988749895,
0, -0.4311985019297291}, {-1.5388417685876268`, -0.5,
0.4311985019297292}, {-1.5388417685876268`, 0.5,
0.4311985019297292}, {-1.3090169943749475`, -0.9510565162951535, \
-0.4311985019297291}, {-1.3090169943749475`,
0.42532540417602, -1.2818493102817692`}, {-1.3090169943749475`,
0.9510565162951535, -0.4311985019297291}, {-1.1135163644116066`, \
-0.8090169943749475, 1.2818493102817692`}, {-1.1135163644116066`,
0.8090169943749475,
1.2818493102817692`}, {-0.9510565162951535, -1.3090169943749475`,
0.4311985019297292}, {-0.9510565162951535, 1.3090169943749475`,
0.4311985019297292}, {-0.8506508083520399, 0,
1.8075804224009027`}, {-0.8090169943749475, \
-1.1135163644116066`, -1.2818493102817692`}, {-0.8090169943749475, \
-0.2628655560595668, -1.8075804224009027`}, {-0.5, -1.5388417685876268`, \
-0.4311985019297291}, {-0.5, 0.6881909602355868, -1.8075804224009027`}, {-0.5,
1.5388417685876268`, -0.4311985019297291}, {-0.2628655560595668, \
-0.8090169943749475, 1.8075804224009027`}, {-0.2628655560595668,
0.8090169943749475, 1.8075804224009027`}, {
0, -1.618033988749895, 0.4311985019297292}, {
0, -0.8506508083520399, -1.8075804224009027`}, {
0, 1.3763819204711736`, -1.2818493102817692`}, {
0, 1.618033988749895, 0.4311985019297292}, {
0.42532540417602, -1.3090169943749475`, 1.2818493102817692`}, {
0.42532540417602, 1.3090169943749475`, 1.2818493102817692`}, {
0.5, -1.5388417685876268`, -0.4311985019297291}, {0.5,
0.6881909602355868, -1.8075804224009027`}, {0.5,
1.5388417685876268`, -0.4311985019297291}, {
0.6881909602355868, -0.5, 1.8075804224009027`}, {
0.6881909602355868, 0.5, 1.8075804224009027`}, {
0.8090169943749475, -1.1135163644116066`, -1.2818493102817692`}, {
0.8090169943749475, -0.2628655560595668, -1.8075804224009027`}, {
0.9510565162951535, -1.3090169943749475`, 0.4311985019297292}, {
0.9510565162951535, 1.3090169943749475`, 0.4311985019297292}, {
1.3090169943749475`, -0.9510565162951535, -0.4311985019297291}, {
1.3090169943749475`, 0.42532540417602, -1.2818493102817692`}, {
1.3090169943749475`, 0.9510565162951535, -0.4311985019297291}, {
1.3763819204711736`, 0, 1.2818493102817692`}, {
1.5388417685876268`, -0.5, 0.4311985019297292}, {
1.5388417685876268`, 0.5, 0.4311985019297292}, {
1.618033988749895, 0, -0.4311985019297291}}],
Polygon3DBox[{{18, 11, 17, 28, 29}, {8, 11, 18}, {7, 17, 11}, {23,
28, 17}, {37, 29, 28}, {24, 18, 29}, {33, 22, 24}, {10, 3, 8}, {2,
9, 7}, {19, 32, 23}, {38, 39, 37}, {22, 10, 8, 18, 24}, {3, 2, 7,
11, 8}, {9, 19, 23, 17, 7}, {32, 38, 37, 28, 23}, {39, 33, 24,
29, 37}, {26, 31, 20, 13, 15}, {15, 13, 5}, {13, 20, 12}, {20, 31,
30}, {31, 26, 35}, {26, 15, 21}, {21, 16, 27}, {5, 1, 6}, {12,
14, 4}, {30, 34, 25}, {35, 36, 40}, {21, 15, 5, 6, 16}, {5, 13,
12, 4, 1}, {12, 20, 30, 25, 14}, {30, 31, 35, 40, 34}, {35, 26,
21, 27, 36}, {38, 40, 39}, {32, 34, 38}, {19, 25, 32}, {9, 14,
19}, {2, 4, 9}, {3, 1, 2}, {10, 6, 3}, {22, 16, 10}, {33, 27,
22}, {39, 36, 33}, {39, 40, 36}, {38, 34, 40}, {32, 25, 34}, {19,
14, 25}, {9, 4, 14}, {2, 1, 4}, {3, 6, 1}, {10, 16, 6}, {22, 27,
16}, {33, 36, 27}}]],
TagBox[
GridBox[{{"48"}, {"\"GyroelongatedPentagonalBirotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{48, "GyroelongatedPentagonalBirotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -2513.454545454545},
ImageScaled[{0.5, 0.5}], {360, 432},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[
1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[
1, 2]}, {3^Rational[-1, 2], 0, Rational[-1, 2]}, {
3^Rational[-1, 2], 0, Rational[1, 2]}, {
Root[25 - 672 #^2 + 2304 #^4& , 4, 0],
Rational[1, 4] (1 + 6^Rational[1, 2]),
0}}, {{-0.2886751345948129, -0.5, -0.5}, {-0.2886751345948129, \
-0.5, 0.5}, {-0.2886751345948129, 0.5, -0.5}, {-0.2886751345948129, 0.5,
0.5}, {0.5773502691896258, 0, -0.5}, {
0.5773502691896258, 0, 0.5}, {
0.4978909578906802, 0.8623724356957945, 0}}],
Polygon3DBox[{{1, 3, 5}, {6, 4, 2}, {3, 1, 2, 4}, {1, 5, 6, 2}, {7,
5, 3}, {7, 3, 4}, {7, 4, 6}, {7, 6, 5}}]],
TagBox[
GridBox[{{"49"}, {"\"AugmentedTriangularPrism\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{49, "AugmentedTriangularPrism"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -2513.454545454545},
ImageScaled[{0.5, 0.5}], {360, 338},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[
1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[
1, 2]}, {3^Rational[-1, 2], 0, Rational[-1, 2]}, {
3^Rational[-1, 2], 0, Rational[1, 2]}, {
Root[25 - 168 #^2 + 144 #^4& , 1, 0], 0, 0}, {
Root[25 - 672 #^2 + 2304 #^4& , 4, 0],
Rational[1, 4] (1 + 6^Rational[1, 2]),
0}}, {{-0.2886751345948129, -0.5, -0.5}, {-0.2886751345948129, \
-0.5, 0.5}, {-0.2886751345948129, 0.5, -0.5}, {-0.2886751345948129, 0.5,
0.5}, {0.5773502691896258, 0, -0.5}, {
0.5773502691896258, 0, 0.5}, {-0.9957819157813604, 0, 0}, {
0.4978909578906802, 0.8623724356957945, 0}}],
Polygon3DBox[{{1, 3, 5}, {6, 4, 2}, {1, 5, 6, 2}, {8, 5, 3}, {8, 3,
4}, {8, 4, 6}, {8, 6, 5}, {7, 3, 1}, {7, 1, 2}, {7, 2, 4}, {7, 4,
3}}]],
TagBox[
GridBox[{{"50"}, {"\"BiaugmentedTriangularPrism\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{50, "BiaugmentedTriangularPrism"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -2513.454545454545},
ImageScaled[{0.5, 0.5}], {360, 292},
ContentSelectable->True]}, {InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Rational[
1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[
1, 2]}, {3^Rational[-1, 2], 0, Rational[-1, 2]}, {
3^Rational[-1, 2], 0, Rational[1, 2]}, {
Root[25 - 168 #^2 + 144 #^4& , 1, 0], 0, 0}, {
Root[25 - 672 #^2 + 2304 #^4& , 4, 0],
Rational[1, 4] (-1 - 6^Rational[1, 2]), 0}, {
Root[25 - 672 #^2 + 2304 #^4& , 4, 0],
Rational[1, 4] (1 + 6^Rational[1, 2]),
0}}, {{-0.2886751345948129, -0.5, -0.5}, {-0.2886751345948129, \
-0.5, 0.5}, {-0.2886751345948129, 0.5, -0.5}, {-0.2886751345948129, 0.5,
0.5}, {0.5773502691896258, 0, -0.5}, {
0.5773502691896258, 0, 0.5}, {-0.9957819157813604, 0, 0}, {
0.4978909578906802, -0.8623724356957945, 0}, {
0.4978909578906802, 0.8623724356957945, 0}}],
Polygon3DBox[{{1, 3, 5}, {6, 4, 2}, {9, 5, 3}, {9, 3, 4}, {9, 4,
6}, {9, 6, 5}, {7, 3, 1}, {7, 1, 2}, {7, 2, 4}, {7, 4, 3}, {8, 1,
5}, {8, 5, 6}, {8, 6, 2}, {8, 2, 1}}]],
TagBox[
GridBox[{{"51"}, {"\"TriaugmentedTriangularPrism\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{51, "TriaugmentedTriangularPrism"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {196.36363636363637, -3072.},
ImageScaled[{0.5, 0.5}], {360, 315},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0, Rational[-1, 2]}, {
Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0, Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2]}, {
Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[-1, 2],
Rational[-1, 2]}, {
Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[-1, 2], Rational[
1, 2]}, {
Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[1, 2],
Rational[-1, 2]}, {
Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[1, 2], Rational[
1, 2]}, {
Root[1 - 4320 #^2 + 213760 #^4 - 2252800 #^6 + 1638400 #^8& , 8,
0], Root[1 + 88 # - 176 #^2 - 128 #^3 + 256 #^4& , 4, 0],
0}}, {{0.8506508083520399, 0, -0.5}, {
0.8506508083520399, 0, 0.5}, {
0.2628655560595668, -0.8090169943749475, -0.5}, {
0.2628655560595668, -0.8090169943749475, 0.5}, {
0.2628655560595668, 0.8090169943749475, -0.5}, {
0.2628655560595668, 0.8090169943749475,
0.5}, {-0.6881909602355868, -0.5, -0.5}, {-0.6881909602355868, \
-0.5, 0.5}, {-0.6881909602355868, 0.5, -0.5}, {-0.6881909602355868, 0.5,
0.5}, {1.1288195850234877`, 0.8201354349649271, 0}}],
Polygon3DBox[{{3, 7, 9, 5, 1}, {2, 6, 10, 8, 4}, {5, 9, 10, 6}, {9,
7, 8, 10}, {7, 3, 4, 8}, {3, 1, 2, 4}, {11, 1, 5}, {11, 5, 6}, {
11, 6, 2}, {11, 2, 1}}]],
TagBox[
GridBox[{{"52"}, {"\"AugmentedPentagonalPrism\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{52, "AugmentedPentagonalPrism"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {589.0909090909091, -3072.},
ImageScaled[{0.5, 0.5}], {360, 280},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0, Rational[-1, 2]}, {
Root[1 - 5 #^2 + 5 #^4& , 4, 0], 0, Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2]}, {
Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[-1, 2],
Rational[-1, 2]}, {
Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[-1, 2], Rational[
1, 2]}, {
Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[1, 2],
Rational[-1, 2]}, {
Root[1 - 40 #^2 + 80 #^4& , 1, 0], Rational[1, 2], Rational[
1, 2]}, {
Root[1 - 2800 #^2 + 14560 #^4 - 19200 #^6 + 6400 #^8& , 1, 0], 0,
0}, {Root[
1 - 4320 #^2 + 213760 #^4 - 2252800 #^6 + 1638400 #^8& , 8, 0],
Root[1 + 88 # - 176 #^2 - 128 #^3 + 256 #^4& , 4, 0], 0}}, {{
0.8506508083520399, 0, -0.5}, {0.8506508083520399, 0, 0.5}, {
0.2628655560595668, -0.8090169943749475, -0.5}, {
0.2628655560595668, -0.8090169943749475, 0.5}, {
0.2628655560595668, 0.8090169943749475, -0.5}, {
0.2628655560595668, 0.8090169943749475,
0.5}, {-0.6881909602355868, -0.5, -0.5}, {-0.6881909602355868, \
-0.5, 0.5}, {-0.6881909602355868, 0.5, -0.5}, {-0.6881909602355868, 0.5,
0.5}, {-1.3952977414221344`, 0, 0}, {
1.1288195850234877`, 0.8201354349649271, 0}}],
Polygon3DBox[{{3, 7, 9, 5, 1}, {2, 6, 10, 8, 4}, {5, 9, 10, 6}, {7,
3, 4, 8}, {3, 1, 2, 4}, {12, 1, 5}, {12, 5, 6}, {12, 6, 2}, {12,
2, 1}, {11, 9, 7}, {11, 7, 8}, {11, 8, 10}, {11, 10, 9}}]],
TagBox[
GridBox[{{"53"}, {"\"BiaugmentedPentagonalPrism\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{53, "BiaugmentedPentagonalPrism"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {981.818181818182, -3072.},
ImageScaled[{0.5, 0.5}], {360, 254},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{-1, 0, Rational[-1, 2]}, {-1, 0, Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {1, 0, Rational[-1, 2]}, {1, 0, Rational[1, 2]}, {
Rational[1, 4] (3 + 6^Rational[1, 2]), Root[
1 - 160 #^2 + 256 #^4& , 4, 0], 0}}, {{-1, 0, -0.5}, {-1, 0,
0.5}, {-0.5, -0.8660254037844386, -0.5}, {-0.5, \
-0.8660254037844386, 0.5}, {-0.5, 0.8660254037844386, -0.5}, {-0.5,
0.8660254037844386, 0.5}, {0.5, -0.8660254037844386, -0.5}, {
0.5, -0.8660254037844386, 0.5}, {0.5, 0.8660254037844386, -0.5}, {
0.5, 0.8660254037844386, 0.5}, {1, 0, -0.5}, {1, 0, 0.5}, {
1.3623724356957945`, 0.786566092485493, 0}}],
Polygon3DBox[{{7, 3, 1, 5, 9, 11}, {12, 10, 6, 2, 4, 8}, {9, 5, 6,
10}, {5, 1, 2, 6}, {1, 3, 4, 2}, {3, 7, 8, 4}, {7, 11, 12, 8}, {
13, 11, 9}, {13, 9, 10}, {13, 10, 12}, {13, 12, 11}}]],
TagBox[
GridBox[{{"54"}, {"\"AugmentedHexagonalPrism\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{54, "AugmentedHexagonalPrism"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -3072.},
ImageScaled[{0.5, 0.5}], {360, 285},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{-1, 0, Rational[-1, 2]}, {-1, 0, Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {1, 0, Rational[-1, 2]}, {1, 0, Rational[1, 2]}, {
Rational[1, 4] (-3 - 6^Rational[1, 2]), Root[
1 - 160 #^2 + 256 #^4& , 1, 0], 0}, {
Rational[1, 4] (3 + 6^Rational[1, 2]), Root[
1 - 160 #^2 + 256 #^4& , 4, 0], 0}}, {{-1, 0, -0.5}, {-1, 0,
0.5}, {-0.5, -0.8660254037844386, -0.5}, {-0.5, \
-0.8660254037844386, 0.5}, {-0.5, 0.8660254037844386, -0.5}, {-0.5,
0.8660254037844386, 0.5}, {0.5, -0.8660254037844386, -0.5}, {
0.5, -0.8660254037844386, 0.5}, {0.5, 0.8660254037844386, -0.5}, {
0.5, 0.8660254037844386, 0.5}, {1, 0, -0.5}, {
1, 0, 0.5}, {-1.3623724356957945`, -0.7865660924854931, 0}, {
1.3623724356957945`, 0.786566092485493, 0}}],
Polygon3DBox[{{7, 3, 1, 5, 9, 11}, {12, 10, 6, 2, 4, 8}, {9, 5, 6,
10}, {5, 1, 2, 6}, {3, 7, 8, 4}, {7, 11, 12, 8}, {14, 11, 9}, {14,
9, 10}, {14, 10, 12}, {14, 12, 11}, {13, 1, 3}, {13, 3, 4}, {13,
4, 2}, {13, 2, 1}}]],
TagBox[
GridBox[{{"55"}, {"\"ParabiaugmentedHexagonalPrism\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{55, "ParabiaugmentedHexagonalPrism"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -3072.},
ImageScaled[{0.5, 0.5}], {360, 228},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{-1, 0, Rational[-1, 2]}, {-1, 0, Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {1, 0, Rational[-1, 2]}, {1, 0, Rational[1, 2]}, {
Rational[1, 4] (-3 - 6^Rational[1, 2]), Root[
1 - 160 #^2 + 256 #^4& , 4, 0], 0}, {
Rational[1, 4] (3 + 6^Rational[1, 2]), Root[
1 - 160 #^2 + 256 #^4& , 4, 0], 0}}, {{-1, 0, -0.5}, {-1, 0,
0.5}, {-0.5, -0.8660254037844386, -0.5}, {-0.5, \
-0.8660254037844386, 0.5}, {-0.5, 0.8660254037844386, -0.5}, {-0.5,
0.8660254037844386, 0.5}, {0.5, -0.8660254037844386, -0.5}, {
0.5, -0.8660254037844386, 0.5}, {0.5, 0.8660254037844386, -0.5}, {
0.5, 0.8660254037844386, 0.5}, {1, 0, -0.5}, {
1, 0, 0.5}, {-1.3623724356957945`, 0.786566092485493, 0}, {
1.3623724356957945`, 0.786566092485493, 0}}],
Polygon3DBox[{{7, 3, 1, 5, 9, 11}, {12, 10, 6, 2, 4, 8}, {9, 5, 6,
10}, {1, 3, 4, 2}, {3, 7, 8, 4}, {7, 11, 12, 8}, {14, 11, 9}, {14,
9, 10}, {14, 10, 12}, {14, 12, 11}, {13, 5, 1}, {13, 1, 2}, {13,
2, 6}, {13, 6, 5}}]],
TagBox[
GridBox[{{"56"}, {"\"MetabiaugmentedHexagonalPrism\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{56, "MetabiaugmentedHexagonalPrism"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2160., -3072.},
ImageScaled[{0.5, 0.5}], {360, 288},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{-1, 0, Rational[-1, 2]}, {-1, 0, Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {0, Root[1 - 40 #^2 + 16 #^4& , 1, 0], 0}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2], Rational[
1, 2]}, {1, 0, Rational[-1, 2]}, {1, 0, Rational[1, 2]}, {
Rational[1, 4] (-3 - 6^Rational[1, 2]), Root[
1 - 160 #^2 + 256 #^4& , 4, 0], 0}, {
Rational[1, 4] (3 + 6^Rational[1, 2]), Root[
1 - 160 #^2 + 256 #^4& , 4, 0], 0}}, {{-1, 0, -0.5}, {-1, 0,
0.5}, {-0.5, -0.8660254037844386, -0.5}, {-0.5, \
-0.8660254037844386, 0.5}, {-0.5, 0.8660254037844386, -0.5}, {-0.5,
0.8660254037844386, 0.5}, {0, -1.5731321849709863`, 0}, {
0.5, -0.8660254037844386, -0.5}, {0.5, -0.8660254037844386,
0.5}, {0.5, 0.8660254037844386, -0.5}, {0.5, 0.8660254037844386,
0.5}, {1, 0, -0.5}, {
1, 0, 0.5}, {-1.3623724356957945`, 0.786566092485493, 0}, {
1.3623724356957945`, 0.786566092485493, 0}}],
Polygon3DBox[{{8, 3, 1, 5, 10, 12}, {13, 11, 6, 2, 4, 9}, {10, 5, 6,
11}, {1, 3, 4, 2}, {8, 12, 13, 9}, {15, 12, 10}, {15, 10, 11}, {
15, 11, 13}, {15, 13, 12}, {14, 5, 1}, {14, 1, 2}, {14, 2, 6}, {
14, 6, 5}, {7, 3, 8}, {7, 8, 9}, {7, 9, 4}, {7, 4, 3}}]],
TagBox[
GridBox[{{"57"}, {"\"TriaugmentedHexagonalPrism\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{57, "TriaugmentedHexagonalPrism"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2552.727272727273, -3072.},
ImageScaled[{0.5, 0.5}], {360, 288},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, 0, Root[9 - 36 #^2 + 16 #^4& , 4, 0]}, {
0, 0, Root[9 - 36 #^2 + 16 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 3, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 3, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 1, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[-1, 2], Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[1, 2], Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[-1, 2], Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[1, 2], Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 9 #^2 + 9 #^4& , 1, 0], 0, Root[
25 - 180 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 9 #^2 + 9 #^4& , 4, 0], 0, Root[
25 - 180 #^2 + 144 #^4& , 4, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[121 - 345 #^2 + 225 #^4& , 1, 0], 0, Root[
121 - 6180 #^2 + 3600 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 2, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 2, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}}, {{0, 0, 1.4012585384440734`}, {
0, 0, -1.4012585384440737`}, {
0.17841104488654497`, -1.3090169943749475`, 0.4670861794813579}, {
0.17841104488654497`, 1.3090169943749475`, 0.4670861794813579}, {
0.4670861794813579, -0.8090169943749475, -1.0444364486709836`}, {
0.4670861794813579, 0.8090169943749475, -1.0444364486709836`}, {
1.0444364486709836`, -0.8090169943749475, 0.4670861794813579}, {
1.0444364486709836`, 0.8090169943749475,
0.4670861794813579}, {-1.2228474935575286`, -0.5,
0.4670861794813579}, {-1.2228474935575286`, 0.5,
0.4670861794813579}, {
1.2228474935575286`, -0.5, -0.46708617948135783`}, {
1.2228474935575286`,
0.5, -0.46708617948135783`}, {-0.9341723589627157,
0, -1.0444364486709836`}, {-0.46708617948135783`, \
-0.8090169943749475, 1.0444364486709836`}, {-0.46708617948135783`,
0.8090169943749475, 1.0444364486709836`}, {
0.9341723589627158, 0,
1.0444364486709836`}, {-1.0444364486709836`, \
-0.8090169943749475, -0.46708617948135783`}, {-1.0444364486709836`,
0.8090169943749475, -0.46708617948135783`}, {-0.9951248486580192,
0, 1.3026353384181448`}, {-0.17841104488654497`, \
-1.3090169943749475`, -0.46708617948135783`}, {-0.17841104488654497`,
1.3090169943749475`, -0.46708617948135783`}}],
Polygon3DBox[{{2, 6, 12, 11, 5}, {5, 11, 7, 3, 20}, {11, 12, 8, 16,
7}, {12, 6, 21, 4, 8}, {6, 2, 13, 18, 21}, {2, 5, 20, 17, 13}, {4,
21, 18, 10, 15}, {18, 13, 17, 9, 10}, {17, 20, 3, 14, 9}, {3, 7,
16, 1, 14}, {16, 8, 4, 15, 1}, {19, 15, 10}, {19, 10, 9}, {19, 9,
14}, {19, 14, 1}, {19, 1, 15}}]],
TagBox[
GridBox[{{"58"}, {"\"AugmentedDodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{58, "AugmentedDodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -3072.},
ImageScaled[{0.5, 0.5}], {360, 380},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, 0, Root[9 - 36 #^2 + 16 #^4& , 4, 0]}, {
0, 0, Root[9 - 36 #^2 + 16 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 3, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 3, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 1, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[-1, 2], Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[1, 2], Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[-1, 2], Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[1, 2], Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 9 #^2 + 9 #^4& , 1, 0], 0, Root[
25 - 180 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 9 #^2 + 9 #^4& , 4, 0], 0, Root[
25 - 180 #^2 + 144 #^4& , 4, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[121 - 345 #^2 + 225 #^4& , 4, 0], 0, Root[
121 - 6180 #^2 + 3600 #^4& , 1, 0]}, {
Root[121 - 345 #^2 + 225 #^4& , 1, 0], 0, Root[
121 - 6180 #^2 + 3600 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 2, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 2, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}}, {{0, 0, 1.4012585384440734`}, {
0, 0, -1.4012585384440737`}, {
0.17841104488654497`, -1.3090169943749475`, 0.4670861794813579}, {
0.17841104488654497`, 1.3090169943749475`, 0.4670861794813579}, {
0.4670861794813579, -0.8090169943749475, -1.0444364486709836`}, {
0.4670861794813579, 0.8090169943749475, -1.0444364486709836`}, {
1.0444364486709836`, -0.8090169943749475, 0.4670861794813579}, {
1.0444364486709836`, 0.8090169943749475,
0.4670861794813579}, {-1.2228474935575286`, -0.5,
0.4670861794813579}, {-1.2228474935575286`, 0.5,
0.4670861794813579}, {
1.2228474935575286`, -0.5, -0.46708617948135783`}, {
1.2228474935575286`,
0.5, -0.46708617948135783`}, {-0.9341723589627157,
0, -1.0444364486709836`}, {-0.46708617948135783`, \
-0.8090169943749475, 1.0444364486709836`}, {-0.46708617948135783`,
0.8090169943749475, 1.0444364486709836`}, {
0.9341723589627158, 0,
1.0444364486709836`}, {-1.0444364486709836`, \
-0.8090169943749475, -0.46708617948135783`}, {-1.0444364486709836`,
0.8090169943749475, -0.46708617948135783`}, {
0.9951248486580193,
0, -1.3026353384181446`}, {-0.9951248486580192, 0,
1.3026353384181448`}, {-0.17841104488654497`, \
-1.3090169943749475`, -0.46708617948135783`}, {-0.17841104488654497`,
1.3090169943749475`, -0.46708617948135783`}}],
Polygon3DBox[{{5, 11, 7, 3, 21}, {11, 12, 8, 16, 7}, {12, 6, 22, 4,
8}, {6, 2, 13, 18, 22}, {2, 5, 21, 17, 13}, {4, 22, 18, 10, 15}, {
18, 13, 17, 9, 10}, {17, 21, 3, 14, 9}, {3, 7, 16, 1, 14}, {16, 8,
4, 15, 1}, {20, 15, 10}, {20, 10, 9}, {20, 9, 14}, {20, 14, 1}, {
20, 1, 15}, {19, 2, 6}, {19, 6, 12}, {19, 12, 11}, {19, 11, 5}, {
19, 5, 2}}]],
TagBox[
GridBox[{{"59"}, {"\"ParabiaugmentedDodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{59, "ParabiaugmentedDodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -3072.},
ImageScaled[{0.5, 0.5}], {360, 380},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, 0, Root[9 - 36 #^2 + 16 #^4& , 4, 0]}, {
0, 0, Root[9 - 36 #^2 + 16 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 3, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 3, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 1, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[-1, 2], Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[1, 2], Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[-1, 2], Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[1, 2], Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 9 #^2 + 9 #^4& , 1, 0], 0, Root[
25 - 180 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 9 #^2 + 9 #^4& , 4, 0], 0, Root[
25 - 180 #^2 + 144 #^4& , 4, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[121 - 345 #^2 + 225 #^4& , 1, 0], 0, Root[
121 - 6180 #^2 + 3600 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 2, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 2, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[121 - 2520 #^2 + 3600 #^4& , 4, 0],
Rational[1, 10] (-5 - 4 5^Rational[1, 2]), Root[
121 - 1620 #^2 + 3600 #^4& , 2, 0]}}, {{
0, 0, 1.4012585384440734`}, {0, 0, -1.4012585384440737`}, {
0.17841104488654497`, -1.3090169943749475`, 0.4670861794813579}, {
0.17841104488654497`, 1.3090169943749475`, 0.4670861794813579}, {
0.4670861794813579, -0.8090169943749475, -1.0444364486709836`}, {
0.4670861794813579, 0.8090169943749475, -1.0444364486709836`}, {
1.0444364486709836`, -0.8090169943749475, 0.4670861794813579}, {
1.0444364486709836`, 0.8090169943749475,
0.4670861794813579}, {-1.2228474935575286`, -0.5,
0.4670861794813579}, {-1.2228474935575286`, 0.5,
0.4670861794813579}, {
1.2228474935575286`, -0.5, -0.46708617948135783`}, {
1.2228474935575286`,
0.5, -0.46708617948135783`}, {-0.9341723589627157,
0, -1.0444364486709836`}, {-0.46708617948135783`, \
-0.8090169943749475, 1.0444364486709836`}, {-0.46708617948135783`,
0.8090169943749475, 1.0444364486709836`}, {
0.9341723589627158, 0,
1.0444364486709836`}, {-1.0444364486709836`, \
-0.8090169943749475, -0.46708617948135783`}, {-1.0444364486709836`,
0.8090169943749475, -0.46708617948135783`}, {-0.9951248486580192,
0, 1.3026353384181448`}, {-0.17841104488654497`, \
-1.3090169943749475`, -0.46708617948135783`}, {-0.17841104488654497`,
1.3090169943749475`, -0.46708617948135783`}, {
0.8050729140891351, -1.394427190999916, -0.3075104897601255}}],
Polygon3DBox[{{2, 6, 12, 11, 5}, {11, 12, 8, 16, 7}, {12, 6, 21, 4,
8}, {6, 2, 13, 18, 21}, {2, 5, 20, 17, 13}, {4, 21, 18, 10, 15}, {
18, 13, 17, 9, 10}, {17, 20, 3, 14, 9}, {3, 7, 16, 1, 14}, {16, 8,
4, 15, 1}, {19, 15, 10}, {19, 10, 9}, {19, 9, 14}, {19, 14, 1}, {
19, 1, 15}, {22, 5, 11}, {22, 11, 7}, {22, 7, 3}, {22, 3, 20}, {
22, 20, 5}}]],
TagBox[
GridBox[{{"60"}, {"\"MetabiaugmentedDodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{60, "MetabiaugmentedDodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -3072.},
ImageScaled[{0.5, 0.5}], {360, 380},
ContentSelectable->True]}, {InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, 0, Root[9 - 36 #^2 + 16 #^4& , 4, 0]}, {
0, 0, Root[9 - 36 #^2 + 16 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 3, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 3, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 1, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[-1, 2], Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 1, 0], Rational[1, 2], Root[
1 - 36 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[-1, 2], Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 216 #^2 + 144 #^4& , 4, 0], Rational[1, 2], Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 9 #^2 + 9 #^4& , 1, 0], 0, Root[
25 - 180 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
25 - 180 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 9 #^2 + 9 #^4& , 4, 0], 0, Root[
25 - 180 #^2 + 144 #^4& , 4, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[25 - 180 #^2 + 144 #^4& , 1, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[121 - 345 #^2 + 225 #^4& , 1, 0], 0, Root[
121 - 6180 #^2 + 3600 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 2, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 2, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 1, 0]}, {
Root[121 - 2520 #^2 + 3600 #^4& , 4, 0],
Rational[1, 10] (5 + 4 5^Rational[1, 2]), Root[
121 - 1620 #^2 + 3600 #^4& , 2, 0]}, {
Root[121 - 2520 #^2 + 3600 #^4& , 4, 0],
Rational[1, 10] (-5 - 4 5^Rational[1, 2]), Root[
121 - 1620 #^2 + 3600 #^4& , 2, 0]}}, {{
0, 0, 1.4012585384440734`}, {0, 0, -1.4012585384440737`}, {
0.17841104488654497`, -1.3090169943749475`, 0.4670861794813579}, {
0.17841104488654497`, 1.3090169943749475`, 0.4670861794813579}, {
0.4670861794813579, -0.8090169943749475, -1.0444364486709836`}, {
0.4670861794813579, 0.8090169943749475, -1.0444364486709836`}, {
1.0444364486709836`, -0.8090169943749475, 0.4670861794813579}, {
1.0444364486709836`, 0.8090169943749475,
0.4670861794813579}, {-1.2228474935575286`, -0.5,
0.4670861794813579}, {-1.2228474935575286`, 0.5,
0.4670861794813579}, {
1.2228474935575286`, -0.5, -0.46708617948135783`}, {
1.2228474935575286`,
0.5, -0.46708617948135783`}, {-0.9341723589627157,
0, -1.0444364486709836`}, {-0.46708617948135783`, \
-0.8090169943749475, 1.0444364486709836`}, {-0.46708617948135783`,
0.8090169943749475, 1.0444364486709836`}, {
0.9341723589627158, 0,
1.0444364486709836`}, {-1.0444364486709836`, \
-0.8090169943749475, -0.46708617948135783`}, {-1.0444364486709836`,
0.8090169943749475, -0.46708617948135783`}, {-0.9951248486580192,
0, 1.3026353384181448`}, {-0.17841104488654497`, \
-1.3090169943749475`, -0.46708617948135783`}, {-0.17841104488654497`,
1.3090169943749475`, -0.46708617948135783`}, {0.8050729140891351,
1.394427190999916, -0.3075104897601255}, {
0.8050729140891351, -1.394427190999916, -0.3075104897601255}}],
Polygon3DBox[{{2, 6, 12, 11, 5}, {11, 12, 8, 16, 7}, {6, 2, 13, 18,
21}, {2, 5, 20, 17, 13}, {4, 21, 18, 10, 15}, {18, 13, 17, 9,
10}, {17, 20, 3, 14, 9}, {3, 7, 16, 1, 14}, {16, 8, 4, 15, 1}, {
19, 15, 10}, {19, 10, 9}, {19, 9, 14}, {19, 14, 1}, {19, 1, 15}, {
23, 5, 11}, {23, 11, 7}, {23, 7, 3}, {23, 3, 20}, {23, 20, 5}, {
22, 12, 6}, {22, 6, 21}, {22, 21, 4}, {22, 4, 8}, {22, 8, 12}}]],
TagBox[
GridBox[{{"61"}, {"\"TriaugmentedDodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{61, "TriaugmentedDodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {196.36363636363637, -3630.545454545454},
ImageScaled[{0.5, 0.5}], {360, 380},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], 0, Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 2], 0, Rational[1, 4] (1 + 5^Rational[1, 2])}, {
0, Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2]}, {
0, Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2]}, {
Rational[1, 2], 0, Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2], 0, Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 2], 0}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 2], 0}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 2], 0}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 2],
0}}, {{-0.5, 0, -0.8090169943749475}, {-0.5, 0,
0.8090169943749475}, {0, -0.8090169943749475, -0.5}, {
0, 0.8090169943749475, -0.5}, {0.5, 0, -0.8090169943749475}, {
0.5, 0, 0.8090169943749475}, {-0.8090169943749475, -0.5,
0}, {-0.8090169943749475, 0.5, 0}, {
0.8090169943749475, -0.5, 0}, {0.8090169943749475, 0.5, 0}}],
Polygon3DBox[{{7, 8, 1}, {7, 1, 3}, {7, 2, 8}, {8, 4, 1}, {1, 4,
5}, {1, 5, 3}, {3, 5, 9}, {4, 10, 5}, {5, 10, 9}, {6, 9, 10}, {9,
6, 2, 7, 3}, {4, 8, 2, 6, 10}}]],
TagBox[
GridBox[{{"62"}, {"\"MetabidiminishedIcosahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{62, "MetabidiminishedIcosahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {589.0909090909091, -3630.545454545454},
ImageScaled[{0.5, 0.5}], {360, 323},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{-3^Rational[-1, 2], 0, Root[
1 - 84 #^2 + 144 #^4& , 1, 0]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[
1 - 84 #^2 + 144 #^4& , 4, 0]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[
1 - 84 #^2 + 144 #^4& , 4, 0]}, {
Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[
1 - 84 #^2 + 144 #^4& , 1, 0]}, {
Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[
1 - 84 #^2 + 144 #^4& , 1, 0]}, {
3^Rational[-1, 2], 0, Root[1 - 84 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 3, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 3, 0]}, {
Root[1 - 9 #^2 + 9 #^4& , 1, 0], 0, Root[
1 - 36 #^2 + 144 #^4& , 3, 0]}}, {{-0.5773502691896258,
0, -0.7557613140761708}, {-0.2886751345948129, -0.5,
0.7557613140761708}, {-0.2886751345948129, 0.5,
0.7557613140761708}, {
0.2886751345948129, -0.5, -0.7557613140761708}, {
0.2886751345948129, 0.5, -0.7557613140761708}, {
0.5773502691896258, 0, 0.7557613140761708}, {
0.4670861794813579, -0.8090169943749475, 0.17841104488654497`}, {
0.4670861794813579, 0.8090169943749475,
0.17841104488654497`}, {-0.9341723589627157, 0,
0.17841104488654497`}}],
Polygon3DBox[{{9, 2, 3}, {1, 5, 4}, {3, 2, 6}, {3, 6, 8}, {2, 7,
6}, {2, 9, 1, 4, 7}, {5, 1, 9, 3, 8}, {8, 6, 7, 4, 5}}]],
TagBox[
GridBox[{{"63"}, {"\"TridiminishedIcosahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{63, "TridiminishedIcosahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {981.818181818182, -3630.545454545454},
ImageScaled[{0.5, 0.5}], {360, 443},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, 0, Root[
9 - 2472 #^2 + 8752 #^4 - 8832 #^6 + 2304 #^8& , 1, 0]}, {-3^
Rational[-1, 2], 0, Root[1 - 84 #^2 + 144 #^4& , 1, 0]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[
1 - 84 #^2 + 144 #^4& , 4, 0]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[
1 - 84 #^2 + 144 #^4& , 4, 0]}, {
Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2], Root[
1 - 84 #^2 + 144 #^4& , 1, 0]}, {
Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Root[
1 - 84 #^2 + 144 #^4& , 1, 0]}, {
3^Rational[-1, 2], 0, Root[1 - 84 #^2 + 144 #^4& , 4, 0]}, {
Root[1 - 9 #^2 + 9 #^4& , 1, 0], 0, Root[
1 - 36 #^2 + 144 #^4& , 3, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 3, 0]}, {
Root[1 - 36 #^2 + 144 #^4& , 4, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 3, 0]}}, {{
0, 0, -1.5722578950038968`}, {-0.5773502691896258,
0, -0.7557613140761708}, {-0.2886751345948129, -0.5,
0.7557613140761708}, {-0.2886751345948129, 0.5,
0.7557613140761708}, {
0.2886751345948129, -0.5, -0.7557613140761708}, {
0.2886751345948129, 0.5, -0.7557613140761708}, {
0.5773502691896258, 0, 0.7557613140761708}, {-0.9341723589627157,
0, 0.17841104488654497`}, {
0.4670861794813579, -0.8090169943749475, 0.17841104488654497`}, {
0.4670861794813579, 0.8090169943749475, 0.17841104488654497`}}],
Polygon3DBox[{{8, 3, 4}, {4, 3, 7}, {4, 7, 10}, {3, 9, 7}, {3, 8, 2,
5, 9}, {6, 2, 8, 4, 10}, {10, 7, 9, 5, 6}, {1, 2, 6}, {1, 6,
5}, {1, 5, 2}}]],
TagBox[
GridBox[{{"64"}, {"\"AugmentedTridiminishedIcosahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{64, "AugmentedTridiminishedIcosahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -3630.545454545454},
ImageScaled[{0.5, 0.5}], {360, 485},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, -1, Rational[-1, 2] Rational[3, 2]^Rational[1, 2]}, {
0, 1, Rational[-1, 2]
Rational[3, 2]^Rational[1, 2]}, {-3^Rational[-1, 2], -1,
Rational[1, 2] 6^Rational[-1, 2]}, {-3^Rational[-1, 2], 1,
Rational[1, 2] 6^Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[5, 2] 6^Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[5, 2]
6^Rational[-1, 2]}, {
Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[-7, 2] 6^Rational[-1, 2]}, {
3^Rational[-1, 2], 0, Rational[5, 2] 6^Rational[-1, 2]}, {
2 3^Rational[-1, 2], 0, Rational[1, 2] 6^Rational[-1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[-1, 2],
Rational[-1, 2] Rational[3, 2]^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[-1, 2]
Rational[3, 2]^Rational[1, 2]}, {
Rational[1, 2] 3^Rational[1, 2], Rational[-1, 2], Rational[-1, 2]
Rational[3, 2]^Rational[1, 2]}, {
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2], Rational[-1, 2]
Rational[3, 2]^Rational[1, 2]}, {-3^Rational[-1, 2], 0,
Rational[-7, 2] 6^Rational[-1, 2]}, {
Rational[1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[-7, 2]
6^Rational[-1, 2]}}, {{0, -1, -0.6123724356957945}, {
0, 1, -0.6123724356957945}, {-0.5773502691896258, -1,
0.20412414523193154`}, {-0.5773502691896258, 1,
0.20412414523193154`}, {-0.2886751345948129, -0.5,
1.0206207261596576`}, {-0.2886751345948129, 0.5,
1.0206207261596576`}, {
0.2886751345948129, -0.5, -1.4288690166235207`}, {
0.5773502691896258, 0, 1.0206207261596576`}, {
1.1547005383792517`, 0,
0.20412414523193154`}, {-0.8660254037844386, -0.5, \
-0.6123724356957945}, {-0.8660254037844386, 0.5, -0.6123724356957945}, {
0.8660254037844386, -0.5, -0.6123724356957945}, {
0.8660254037844386,
0.5, -0.6123724356957945}, {-0.5773502691896258,
0, -1.4288690166235207`}, {0.2886751345948129,
0.5, -1.4288690166235207`}}],
Polygon3DBox[{{12, 13, 9}, {3, 10, 1}, {2, 11, 4}, {6, 5, 8}, {12,
9, 8, 5, 3, 1}, {2, 4, 6, 8, 9, 13}, {10, 3, 5, 6, 4, 11}, {7, 14,
15}, {11, 2, 15, 14}, {1, 10, 14, 7}, {13, 12, 7, 15}, {15, 2,
13}, {14, 10, 11}, {7, 12, 1}}]],
TagBox[
GridBox[{{"65"}, {"\"AugmentedTruncatedTetrahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{65, "AugmentedTruncatedTetrahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -3630.545454545454},
ImageScaled[{0.5, 0.5}], {360, 440},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
0, -2^Rational[-1, 2], Rational[1, 2] (1 + 2 2^Rational[1, 2])}, {
0, 2^Rational[-1, 2], Rational[1, 2] (1 + 2 2^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2])}, {-2^Rational[-1, 2], 0,
Rational[1, 2] (1 + 2 2^Rational[1, 2])}, {
2^Rational[-1, 2], 0, Rational[1, 2] (1 + 2 2^Rational[1, 2])}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2],
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2],
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2],
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2]}, {
Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2]}, {
Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2]}, {
Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2]}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2],
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2],
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2],
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2]}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2]}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2]}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2]}}, {{-0.5,
1.2071067811865475`, -1.2071067811865475`}, {-0.5,
1.2071067811865475`,
1.2071067811865475`}, {-0.5, -1.2071067811865475`, \
-1.2071067811865475`}, {-0.5, -1.2071067811865475`, 1.2071067811865475`}, {
0, -0.7071067811865475, 1.9142135623730951`}, {
0, 0.7071067811865475, 1.9142135623730951`}, {0.5,
1.2071067811865475`, -1.2071067811865475`}, {0.5,
1.2071067811865475`, 1.2071067811865475`}, {
0.5, -1.2071067811865475`, -1.2071067811865475`}, {
0.5, -1.2071067811865475`,
1.2071067811865475`}, {-0.7071067811865475, 0,
1.9142135623730951`}, {
0.7071067811865475, 0, 1.9142135623730951`}, {
1.2071067811865475`, -0.5, -1.2071067811865475`}, {
1.2071067811865475`, -0.5, 1.2071067811865475`}, {
1.2071067811865475`, 0.5, -1.2071067811865475`}, {
1.2071067811865475`, 0.5, 1.2071067811865475`}, {
1.2071067811865475`, 1.2071067811865475`, -0.5}, {
1.2071067811865475`, 1.2071067811865475`, 0.5}, {
1.2071067811865475`, -1.2071067811865475`, -0.5}, {
1.2071067811865475`, -1.2071067811865475`,
0.5}, {-1.2071067811865475`, -0.5, -1.2071067811865475`}, \
{-1.2071067811865475`, -0.5, 1.2071067811865475`}, {-1.2071067811865475`,
0.5, -1.2071067811865475`}, {-1.2071067811865475`, 0.5,
1.2071067811865475`}, {-1.2071067811865475`,
1.2071067811865475`, -0.5}, {-1.2071067811865475`,
1.2071067811865475`,
0.5}, {-1.2071067811865475`, -1.2071067811865475`, -0.5}, \
{-1.2071067811865475`, -1.2071067811865475`, 0.5}}],
Polygon3DBox[{{7, 15, 13, 9, 3, 21, 23, 1}, {9, 19, 20, 10, 4, 28,
27, 3}, {1, 25, 26, 2, 8, 18, 17, 7}, {15, 17, 18, 16, 14, 20, 19,
13}, {21, 27, 28, 22, 24, 26, 25, 23}, {9, 13, 19}, {17, 15,
7}, {27, 21, 3}, {1, 23, 25}, {20, 14, 10}, {8, 16, 18}, {4, 22,
28}, {26, 24, 2}, {6, 11, 5, 12}, {11, 6, 2, 24}, {5, 11, 22,
4}, {12, 5, 10, 14}, {6, 12, 16, 8}, {8, 2, 6}, {24, 22, 11}, {4,
10, 5}, {14, 16, 12}}]],
TagBox[
GridBox[{{"66"}, {"\"AugmentedTruncatedCube\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{66, "AugmentedTruncatedCube"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2160., -3630.545454545454},
ImageScaled[{0.5, 0.5}], {360, 407},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
0, -2^Rational[-1, 2], Rational[1, 2] (1 + 2 2^Rational[1, 2])}, {
0, -2^Rational[-1, 2],
Rational[1, 2] (-1 - 2 2^Rational[1, 2])}, {
0, 2^Rational[-1, 2], Rational[1, 2] (1 + 2 2^Rational[1, 2])}, {
0, 2^Rational[-1, 2], Rational[1, 2] (-1 - 2 2^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {-2^Rational[-1, 2], 0,
Rational[1, 2] (1 + 2 2^Rational[1, 2])}, {-2^Rational[-1, 2], 0,
Rational[1, 2] (-1 - 2 2^Rational[1, 2])}, {
2^Rational[-1, 2], 0, Rational[1, 2] (1 + 2 2^Rational[1, 2])}, {
2^Rational[-1, 2], 0, Rational[1, 2] (-1 - 2 2^Rational[1, 2])}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2],
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2],
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2],
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2]}, {
Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2]}, {
Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2]}, {
Rational[1, 2] (1 + 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2]}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2],
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2],
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2],
Rational[1, 2] (1 + 2^Rational[1, 2])}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2],
Rational[1, 2] (-1 - 2^Rational[1, 2])}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[-1, 2]}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (1 + 2^Rational[1, 2]), Rational[1, 2]}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[-1, 2]}, {
Rational[1, 2] (-1 - 2^Rational[1, 2]),
Rational[1, 2] (-1 - 2^Rational[1, 2]), Rational[1, 2]}}, {{-0.5,
1.2071067811865475`, 1.2071067811865475`}, {-0.5,
1.2071067811865475`, -1.2071067811865475`}, {-0.5, \
-1.2071067811865475`,
1.2071067811865475`}, {-0.5, -1.2071067811865475`, \
-1.2071067811865475`}, {0, -0.7071067811865475, 1.9142135623730951`}, {
0, -0.7071067811865475, -1.9142135623730951`}, {
0, 0.7071067811865475, 1.9142135623730951`}, {
0, 0.7071067811865475, -1.9142135623730951`}, {0.5,
1.2071067811865475`, 1.2071067811865475`}, {0.5,
1.2071067811865475`, -1.2071067811865475`}, {
0.5, -1.2071067811865475`, 1.2071067811865475`}, {
0.5, -1.2071067811865475`, -1.2071067811865475`}, \
{-0.7071067811865475, 0, 1.9142135623730951`}, {-0.7071067811865475,
0, -1.9142135623730951`}, {
0.7071067811865475, 0, 1.9142135623730951`}, {
0.7071067811865475, 0, -1.9142135623730951`}, {
1.2071067811865475`, -0.5, 1.2071067811865475`}, {
1.2071067811865475`, -0.5, -1.2071067811865475`}, {
1.2071067811865475`, 0.5, 1.2071067811865475`}, {
1.2071067811865475`, 0.5, -1.2071067811865475`}, {
1.2071067811865475`, 1.2071067811865475`, -0.5}, {
1.2071067811865475`, 1.2071067811865475`, 0.5}, {
1.2071067811865475`, -1.2071067811865475`, -0.5}, {
1.2071067811865475`, -1.2071067811865475`,
0.5}, {-1.2071067811865475`, -0.5,
1.2071067811865475`}, {-1.2071067811865475`, -0.5, \
-1.2071067811865475`}, {-1.2071067811865475`, 0.5,
1.2071067811865475`}, {-1.2071067811865475`,
0.5, -1.2071067811865475`}, {-1.2071067811865475`,
1.2071067811865475`, -0.5}, {-1.2071067811865475`,
1.2071067811865475`,
0.5}, {-1.2071067811865475`, -1.2071067811865475`, -0.5}, \
{-1.2071067811865475`, -1.2071067811865475`, 0.5}}],
Polygon3DBox[{{3, 32, 31, 4, 12, 23, 24, 11}, {9, 22, 21, 10, 2, 29,
30, 1}, {17, 24, 23, 18, 20, 21, 22, 19}, {27, 30, 29, 28, 26,
31, 32, 25}, {24, 17, 11}, {9, 19, 22}, {3, 25, 32}, {30, 27,
1}, {12, 18, 23}, {21, 20, 10}, {31, 26, 4}, {2, 28, 29}, {16, 6,
14, 8}, {28, 2, 8, 14}, {4, 26, 14, 6}, {18, 12, 6, 16}, {10, 20,
16, 8}, {8, 2, 10}, {14, 26, 28}, {6, 12, 4}, {16, 20, 18}, {7,
13, 5, 15}, {13, 7, 1, 27}, {5, 13, 25, 3}, {15, 5, 11, 17}, {7,
15, 19, 9}, {9, 1, 7}, {27, 25, 13}, {3, 11, 5}, {17, 19, 15}}]],
TagBox[
GridBox[{{"67"}, {"\"BiaugmentedTruncatedCube\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{67, "BiaugmentedTruncatedCube"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2552.727272727273, -3630.545454545454},
ImageScaled[{0.5, 0.5}], {360, 412},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[
5 - 100 #^2 + 16 #^4& , 1, 0]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Root[
5 - 100 #^2 + 16 #^4& , 1, 0]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (5 + 3 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2], Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {-(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {-(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 +
Rational[-1, 2]
5^Rational[1, 2], -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (2 +
5^Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {(1 +
2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[5, 2] +
Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[5, 2] +
Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[5, 2] +
Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1,
0]}, {-(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3,
0]}, {-(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[29, 8] +
Rational[61, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[29, 8] +
Rational[61, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[17, 4] +
Rational[19, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[17, 4] +
Rational[19, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[-1, 2] (17 + 38 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[-1, 2] (17 + 38 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
5 - 100 #^2 + 16 #^4& , 1, 0]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
5 - 100 #^2 + 16 #^4& , 1, 0]}, {(
Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (-3 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (3 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
5 - 100 #^2 + 16 #^4& , 1, 0]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
5 - 100 #^2 + 16 #^4& , 1, 0]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
0, -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (3 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (5 + 3 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[41, 8] +
Rational[71, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
0, (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[41, 8] +
Rational[71, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[41, 8] +
Rational[71, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^
Rational[1, 2]}}, {{0, -1.618033988749895, 2.48989828488278}, {
0, -1.618033988749895, -2.48989828488278}, {
0, 1.618033988749895, 2.48989828488278}, {
0, 1.618033988749895, -2.48989828488278}, {
0.42532540417601994`, -2.9270509831248424`, 0.2628655560595668}, {
0.42532540417601994`, 2.9270509831248424`, 0.2628655560595668}, {
0.6881909602355868, -2.118033988749895, 1.9641671727636467`}, {
0.6881909602355868, 2.118033988749895,
1.9641671727636467`}, {-2.752763840942347,
0, -1.1135163644116066`}, {-2.0645728807067605`, \
-2.118033988749895, 0.2628655560595668}, {-2.0645728807067605`,
2.118033988749895,
0.2628655560595668}, {-1.3763819204711736`, -2.618033988749895, \
-0.2628655560595668}, {-1.3763819204711736`,
2.618033988749895, -0.2628655560595668}, {-0.6881909602355868, \
-2.118033988749895, -1.9641671727636467`}, {-0.6881909602355868,
2.118033988749895, -1.9641671727636467`}, {
1.3763819204711736`, -2.618033988749895, 0.2628655560595668}, {
1.3763819204711736`, 2.618033988749895, 0.2628655560595668}, {
2.752763840942347, 0, 1.1135163644116066`}, {
1.8017073246471935`, -1.3090169943749475`, -1.9641671727636467`}, \
{1.8017073246471935`, 1.3090169943749475`, -1.9641671727636467`}, {
2.0645728807067605`, -2.118033988749895, -0.2628655560595668}, {
2.0645728807067605`, 2.118033988749895, -0.2628655560595668}, {
2.2270327288232132`, 0, 1.9641671727636467`}, {
2.2270327288232132`, -1.618033988749895, -1.1135163644116066`}, {
2.2270327288232132`,
1.618033988749895, -1.1135163644116066`}, {-2.6523581329992334`, \
-1.3090169943749475`, 0.2628655560595668}, {-2.6523581329992334`,
1.3090169943749475`, 0.2628655560595668}, {
2.6523581329992334`, -1.3090169943749475`, -0.2628655560595668}, {
2.6523581329992334`, 1.3090169943749475`, -0.2628655560595668}, {
2.9152236890588, -0.5, 0.2628655560595668}, {2.9152236890588, 0.5,
0.2628655560595668}, {-2.9152236890588, -0.5, \
-0.2628655560595668}, {-2.9152236890588, 0.5, -0.2628655560595668}, {
0.9510565162951535, -1.3090169943749475`, 2.48989828488278}, {
0.9510565162951535, -1.3090169943749475`, -2.48989828488278}, {
0.9510565162951535, 1.3090169943749475`, 2.48989828488278}, {
0.9510565162951535, 1.3090169943749475`, -2.48989828488278}, {
0.85065080835204, -2.618033988749895, 1.1135163644116066`}, {
0.85065080835204, 2.618033988749895,
1.1135163644116066`}, {-0.9510565162951535, -1.3090169943749475`,
2.48989828488278}, {-0.9510565162951535, -1.3090169943749475`, \
-2.48989828488278}, {-0.9510565162951535, 1.3090169943749475`,
2.48989828488278}, {-0.9510565162951535,
1.3090169943749475`, -2.48989828488278}, {-1.5388417685876268`, \
-0.5, 2.48989828488278}, {-1.5388417685876268`, -0.5, -2.48989828488278}, \
{-1.5388417685876268`, 0.5, 2.48989828488278}, {-1.5388417685876268`,
0.5, -2.48989828488278}, {1.5388417685876268`, -0.5,
2.48989828488278}, {
1.5388417685876268`, -0.5, -2.48989828488278}, {
1.5388417685876268`, 0.5, 2.48989828488278}, {1.5388417685876268`,
0.5, -2.48989828488278}, {-2.2270327288232132`,
0, -1.9641671727636467`}, {-2.2270327288232132`, \
-1.618033988749895, 1.1135163644116066`}, {-2.2270327288232132`,
1.618033988749895,
1.1135163644116066`}, {-0.8506508083520399, -2.618033988749895, \
-1.1135163644116066`}, {-0.8506508083520399,
2.618033988749895, -1.1135163644116066`}, {-1.8017073246471935`, \
-1.3090169943749475`, 1.9641671727636467`}, {-1.8017073246471935`,
1.3090169943749475`,
1.9641671727636467`}, {-0.42532540417602, -2.9270509831248424`, \
-0.2628655560595668}, {-0.42532540417602,
2.9270509831248424`, -0.2628655560595668}, {-0.2628655560595668,
0.8090169943749475,
3.0156293970019137`}, {-0.8506508083520399, 0,
3.0156293970019137`}, {-0.2628655560595668, -0.8090169943749475,
3.0156293970019137`}, {0.6881909602355868, -0.5,
3.0156293970019137`}, {0.6881909602355868, 0.5,
3.0156293970019137`}}],
Polygon3DBox[{{1, 7, 34}, {1, 63, 40}, {2, 14, 41}, {3, 36, 8}, {3,
42, 61}, {4, 43, 15}, {5, 16, 38}, {6, 39, 17}, {9, 32, 33}, {10,
53, 26}, {11, 27, 54}, {12, 55, 59}, {13, 60, 56}, {18, 30, 31}, {
19, 35, 49}, {20, 51, 37}, {21, 24, 28}, {22, 29, 25}, {23, 50,
48}, {34, 48, 64}, {36, 65, 50}, {40, 44, 57}, {42, 58, 46}, {44,
62, 46}, {45, 52, 47}, {1, 34, 64, 63}, {3, 61, 65, 36}, {40, 63,
62, 44}, {42, 46, 62, 61}, {48, 50, 65, 64}, {61, 62, 63, 64,
65}, {1, 40, 57, 53, 10, 12, 59, 5, 38, 7}, {2, 35, 19, 24, 21,
16, 5, 59, 55, 14}, {2, 41, 45, 47, 43, 4, 37, 51, 49, 35}, {3, 8,
39, 6, 60, 13, 11, 54, 58, 42}, {4, 15, 56, 60, 6, 17, 22, 25,
20, 37}, {7, 38, 16, 21, 28, 30, 18, 23, 48, 34}, {8, 36, 50, 23,
18, 31, 29, 22, 17, 39}, {9, 33, 27, 11, 13, 56, 15, 43, 47,
52}, {9, 52, 45, 41, 14, 55, 12, 10, 26, 32}, {19, 49, 51, 20, 25,
29, 31, 30, 28, 24}, {26, 53, 57, 44, 46, 58, 54, 27, 33, 32}}]],
TagBox[
GridBox[{{"68"}, {"\"AugmentedTruncatedDodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{68, "AugmentedTruncatedDodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -3630.545454545454},
ImageScaled[{0.5, 0.5}], {360, 366},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[
5 - 100 #^2 + 16 #^4& , 1, 0]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]), Root[
5 - 100 #^2 + 16 #^4& , 1, 0]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 8] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (5 + 3 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(-2) (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
0, Root[1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2], Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {-(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {-(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 +
Rational[-1, 2]
5^Rational[1, 2], -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (2 +
5^Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {(1 +
2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {
2 (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2], Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[5, 2] +
Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
0, (Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[5, 2] +
Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0]}, {(Rational[5, 2] +
Rational[11, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1,
0]}, {-(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3,
0]}, {-(Rational[29, 8] + Rational[61, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[29, 8] +
Rational[61, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[29, 8] +
Rational[61, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[17, 4] +
Rational[19, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], Root[
1 - 20 #^2 + 80 #^4& , 3, 0]}, {(Rational[17, 4] +
Rational[19, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], Root[1 - 20 #^2 + 80 #^4& , 3, 0]}, {
Rational[-1, 2] (17 + 38 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], Root[1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Rational[-1, 2] (17 + 38 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2], Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
5 - 100 #^2 + 16 #^4& , 1, 0]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {(Rational[5, 8] +
Rational[1, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
5 - 100 #^2 + 16 #^4& , 1, 0]}, {(
Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (-3 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (3 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]), Root[
5 - 100 #^2 + 16 #^4& , 1, 0]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
5 - 100 #^2 + 16 #^4& , 1, 0]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[25, 8] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], (Rational[25, 8] + Rational[11, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Root[5 - 100 #^2 + 16 #^4& , 1, 0]}, {
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
0, -(Rational[17, 8] + Rational[31, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (-3 - 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (3 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0]}, {
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (5 + 3 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[41, 8] +
Rational[71, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
0, (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[41, 8] +
Rational[71, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[41, 8] +
Rational[71, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], (Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 +
5^Rational[1, 2]), -(Rational[41, 8] +
Rational[71, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2], -(Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1,
2], -(Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[41, 8] +
Rational[71, 8] 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2],
0, -(Rational[41, 8] + Rational[71, 8] 5^Rational[-1, 2])^
Rational[1, 2]}}, {{0, -1.618033988749895, 2.48989828488278}, {
0, -1.618033988749895, -2.48989828488278}, {
0, 1.618033988749895, 2.48989828488278}, {
0, 1.618033988749895, -2.48989828488278}, {
0.42532540417601994`, -2.9270509831248424`, 0.2628655560595668}, {
0.42532540417601994`, 2.9270509831248424`, 0.2628655560595668}, {
0.6881909602355868, -2.118033988749895, 1.9641671727636467`}, {
0.6881909602355868, 2.118033988749895,
1.9641671727636467`}, {-2.752763840942347,
0, -1.1135163644116066`}, {-2.0645728807067605`, \
-2.118033988749895, 0.2628655560595668}, {-2.0645728807067605`,
2.118033988749895,
0.2628655560595668}, {-1.3763819204711736`, -2.618033988749895, \
-0.2628655560595668}, {-1.3763819204711736`,
2.618033988749895, -0.2628655560595668}, {-0.6881909602355868, \
-2.118033988749895, -1.9641671727636467`}, {-0.6881909602355868,
2.118033988749895, -1.9641671727636467`}, {
1.3763819204711736`, -2.618033988749895, 0.2628655560595668}, {
1.3763819204711736`, 2.618033988749895, 0.2628655560595668}, {
2.752763840942347, 0, 1.1135163644116066`}, {
1.8017073246471935`, -1.3090169943749475`, -1.9641671727636467`}, \
{1.8017073246471935`, 1.3090169943749475`, -1.9641671727636467`}, {
2.0645728807067605`, -2.118033988749895, -0.2628655560595668}, {
2.0645728807067605`, 2.118033988749895, -0.2628655560595668}, {
2.2270327288232132`, 0, 1.9641671727636467`}, {
2.2270327288232132`, -1.618033988749895, -1.1135163644116066`}, {
2.2270327288232132`,
1.618033988749895, -1.1135163644116066`}, {-2.6523581329992334`, \
-1.3090169943749475`, 0.2628655560595668}, {-2.6523581329992334`,
1.3090169943749475`, 0.2628655560595668}, {
2.6523581329992334`, -1.3090169943749475`, -0.2628655560595668}, {
2.6523581329992334`, 1.3090169943749475`, -0.2628655560595668}, {
2.9152236890588, -0.5, 0.2628655560595668}, {2.9152236890588, 0.5,
0.2628655560595668}, {-2.9152236890588, -0.5, \
-0.2628655560595668}, {-2.9152236890588, 0.5, -0.2628655560595668}, {
0.9510565162951535, -1.3090169943749475`, 2.48989828488278}, {
0.9510565162951535, -1.3090169943749475`, -2.48989828488278}, {
0.9510565162951535, 1.3090169943749475`, 2.48989828488278}, {
0.9510565162951535, 1.3090169943749475`, -2.48989828488278}, {
0.85065080835204, -2.618033988749895, 1.1135163644116066`}, {
0.85065080835204, 2.618033988749895,
1.1135163644116066`}, {-0.9510565162951535, -1.3090169943749475`,
2.48989828488278}, {-0.9510565162951535, -1.3090169943749475`, \
-2.48989828488278}, {-0.9510565162951535, 1.3090169943749475`,
2.48989828488278}, {-0.9510565162951535,
1.3090169943749475`, -2.48989828488278}, {-1.5388417685876268`, \
-0.5, 2.48989828488278}, {-1.5388417685876268`, -0.5, -2.48989828488278}, \
{-1.5388417685876268`, 0.5, 2.48989828488278}, {-1.5388417685876268`,
0.5, -2.48989828488278}, {1.5388417685876268`, -0.5,
2.48989828488278}, {
1.5388417685876268`, -0.5, -2.48989828488278}, {
1.5388417685876268`, 0.5, 2.48989828488278}, {1.5388417685876268`,
0.5, -2.48989828488278}, {-2.2270327288232132`,
0, -1.9641671727636467`}, {-2.2270327288232132`, \
-1.618033988749895, 1.1135163644116066`}, {-2.2270327288232132`,
1.618033988749895,
1.1135163644116066`}, {-0.8506508083520399, -2.618033988749895, \
-1.1135163644116066`}, {-0.8506508083520399,
2.618033988749895, -1.1135163644116066`}, {-1.8017073246471935`, \
-1.3090169943749475`, 1.9641671727636467`}, {-1.8017073246471935`,
1.3090169943749475`,
1.9641671727636467`}, {-0.42532540417602, -2.9270509831248424`, \
-0.2628655560595668}, {-0.42532540417602,
2.9270509831248424`, -0.2628655560595668}, {-0.2628655560595668,
0.8090169943749475,
3.0156293970019137`}, {-0.8506508083520399, 0,
3.0156293970019137`}, {-0.2628655560595668, -0.8090169943749475,
3.0156293970019137`}, {0.6881909602355868, -0.5,
3.0156293970019137`}, {0.6881909602355868, 0.5,
3.0156293970019137`}, {0.2628655560595668,
0.8090169943749475, -3.0156293970019137`}, {-0.6881909602355868,
0.5, -3.0156293970019137`}, {-0.6881909602355868, -0.5, \
-3.0156293970019137`}, {
0.2628655560595668, -0.8090169943749475, -3.0156293970019137`}, {
0.85065080835204, 0, -3.0156293970019137`}}],
Polygon3DBox[{{1, 7, 34}, {1, 63, 40}, {2, 14, 41}, {2, 69, 35}, {3,
36, 8}, {3, 42, 61}, {4, 37, 66}, {4, 43, 15}, {5, 16, 38}, {6,
39, 17}, {9, 32, 33}, {10, 53, 26}, {11, 27, 54}, {12, 55, 59}, {
13, 60, 56}, {18, 30, 31}, {19, 35, 49}, {20, 51, 37}, {21, 24,
28}, {22, 29, 25}, {23, 50, 48}, {34, 48, 64}, {36, 65, 50}, {40,
44, 57}, {41, 45, 68}, {42, 58, 46}, {43, 67, 47}, {44, 62, 46}, {
45, 52, 47}, {49, 70, 51}, {1, 34, 64, 63}, {2, 41, 68, 69}, {3,
61, 65, 36}, {4, 66, 67, 43}, {35, 69, 70, 49}, {37, 51, 70,
66}, {40, 63, 62, 44}, {42, 46, 62, 61}, {45, 47, 67, 68}, {48,
50, 65, 64}, {61, 62, 63, 64, 65}, {66, 70, 69, 68, 67}, {1, 40,
57, 53, 10, 12, 59, 5, 38, 7}, {2, 35, 19, 24, 21, 16, 5, 59, 55,
14}, {3, 8, 39, 6, 60, 13, 11, 54, 58, 42}, {4, 15, 56, 60, 6, 17,
22, 25, 20, 37}, {7, 38, 16, 21, 28, 30, 18, 23, 48, 34}, {8, 36,
50, 23, 18, 31, 29, 22, 17, 39}, {9, 33, 27, 11, 13, 56, 15, 43,
47, 52}, {9, 52, 45, 41, 14, 55, 12, 10, 26, 32}, {19, 49, 51, 20,
25, 29, 31, 30, 28, 24}, {26, 53, 57, 44, 46, 58, 54, 27, 33,
32}}]],
TagBox[
GridBox[{{"69"}, {"\"ParabiaugmentedTruncatedDodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{69, "ParabiaugmentedTruncatedDodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -3630.545454545454},
ImageScaled[{0.5, 0.5}], {360, 366},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 2] (-3 - 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {
Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]), -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), -1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2],
Rational[1, 2] (3 + 5^Rational[1, 2])}, {
0, Rational[1, 4] (5 + 3 5^Rational[1, 2]), Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
0, Rational[1, 4] (5 + 3 5^Rational[1, 2]), Rational[-1, 2]}, {
Rational[1, 2] (-3 - 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {
0, Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]), -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), -1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {
Rational[-1, 2], 0, Rational[1, 4] (-5 - 3 5^Rational[1, 2])}, {
0, Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Rational[-1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2],
Rational[1, 2] (-3 - 5^Rational[1, 2])}, {
Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2]}, {
Rational[-1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {
Rational[1, 2], 0, Rational[1, 4] (-5 - 3 5^Rational[1, 2])}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2],
Rational[1, 2] (3 + 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2],
Rational[1, 2] (-3 - 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), -1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2]), -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2])}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {
Rational[1, 4] (5 + 3 5^Rational[1, 2]), Rational[1, 2], 0}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2],
Rational[1, 2] (-3 - 5^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2],
Rational[1, 2] (3 + 5^Rational[1, 2])}, {
Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Rational[-1, 2], 0}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2])}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2],
Rational[1, 2] (3 + 5^Rational[1, 2])}, {
Rational[1, 4] (-5 - 3 5^Rational[1, 2]), Rational[1, 2], 0}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 2] (-3 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 2]}, {
Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2]), -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[1, 4] (5 + 3 5^Rational[1, 2]), Rational[-1, 2], 0}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[-1, 2],
Rational[1, 2] (-3 - 5^Rational[1, 2])}, {
Rational[1, 2] (-3 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 2]}, {
Rational[-1, 2], 0, Rational[1, 4] (5 + 3 5^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2])}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {
Rational[1, 2], 0, Rational[1, 4] (5 + 3 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), -1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2])}, {
Rational[3, 4] + Rational[13, 4] 5^Rational[-1, 2], Rational[
1, 2], Rational[3, 10] (5 + 5^Rational[1, 2])}, {
Rational[3, 4] + Rational[13, 4] 5^Rational[-1, 2],
Rational[-1, 2], Rational[3, 10] (5 + 5^Rational[1, 2])}, {
Rational[5, 4] + Rational[13, 4] 5^Rational[-1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 20] (25 + 5^Rational[1, 2])}, {
1 + Rational[9, 2] 5^Rational[-1, 2], 0,
Rational[1, 20] (15 + 5^Rational[1, 2])}, {
Rational[5, 4] + Rational[13, 4] 5^Rational[-1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 20] (25 + 5^Rational[1, 2])}, {
Rational[-3, 4] + Rational[-13, 4] 5^Rational[-1, 2], Rational[
1, 2], Rational[3, 10] (5 + 5^Rational[1, 2])}, {
Rational[-3, 4] + Rational[-13, 4] 5^Rational[-1, 2],
Rational[-1, 2], Rational[3, 10] (5 + 5^Rational[1, 2])}, {
Rational[-5, 4] + Rational[-13, 4] 5^Rational[-1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 20] (25 + 5^Rational[1, 2])}, {-1 +
Rational[-9, 2] 5^Rational[-1, 2], 0,
Rational[1, 20] (15 + 5^Rational[1, 2])}, {
Rational[-5, 4] + Rational[-13, 4] 5^Rational[-1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 20] (25 + 5^Rational[1, 2])}}, {{
1.618033988749895, -1.3090169943749475`,
2.118033988749895}, {-2.618033988749895, -1.3090169943749475`, \
-0.5}, {2.618033988749895, 1.3090169943749475`, 0.5}, {-1.618033988749895,
1.3090169943749475`, -2.118033988749895}, {-0.5, \
-2.618033988749895, 1.3090169943749475`}, {1.3090169943749475`,
2.118033988749895, -1.618033988749895}, {
1.3090169943749475`, -2.118033988749895, 1.618033988749895}, {
2.618033988749895,
1.3090169943749475`, -0.5}, {-2.118033988749895,
1.618033988749895,
1.3090169943749475`}, {-1.3090169943749475`, -0.5,
2.618033988749895}, {
0, 2.9270509831248424`,
0.5}, {-1.618033988749895, -1.3090169943749475`,
2.118033988749895}, {
0, 2.9270509831248424`, -0.5}, {-2.618033988749895, \
-1.3090169943749475`, 0.5}, {-1.3090169943749475`,
2.118033988749895, -1.618033988749895}, {
0, -2.9270509831248424`, 0.5}, {1.618033988749895,
1.3090169943749475`, -2.118033988749895}, {
2.118033988749895, -1.618033988749895, -1.3090169943749475`}, \
{-1.3090169943749475`, -2.118033988749895, -1.618033988749895}, {-0.5,
0, -2.9270509831248424`}, {0, -2.9270509831248424`, -0.5}, {
1.3090169943749475`, 0.5, -2.618033988749895}, {
2.618033988749895, -1.3090169943749475`, -0.5}, {-0.5, \
-2.618033988749895, -1.3090169943749475`}, {
0.5, 0, -2.9270509831248424`}, {-1.3090169943749475`, 0.5,
2.618033988749895}, {-0.5, 2.618033988749895,
1.3090169943749475`}, {
0.5, -2.618033988749895, -1.3090169943749475`}, {
1.3090169943749475`, -0.5, -2.618033988749895}, {
1.3090169943749475`, -2.118033988749895, -1.618033988749895}, {
1.618033988749895, -1.3090169943749475`, -2.118033988749895}, \
{-1.618033988749895, 1.3090169943749475`,
2.118033988749895}, {-1.3090169943749475`, 2.118033988749895,
1.618033988749895}, {2.118033988749895, -1.618033988749895,
1.3090169943749475`}, {-2.118033988749895, -1.618033988749895, \
-1.3090169943749475`}, {2.9270509831248424`, 0.5, 0}, {-1.3090169943749475`,
0.5, -2.618033988749895}, {0.5, -2.618033988749895,
1.3090169943749475`}, {2.118033988749895,
1.618033988749895, -1.3090169943749475`}, {
1.3090169943749475`, -0.5,
2.618033988749895}, {-2.9270509831248424`, -0.5, 0}, {
2.118033988749895, 1.618033988749895,
1.3090169943749475`}, {-2.118033988749895,
1.618033988749895, -1.3090169943749475`}, {1.3090169943749475`,
0.5, 2.618033988749895}, {-2.9270509831248424`, 0.5, 0}, {
1.618033988749895, 1.3090169943749475`,
2.118033988749895}, {-2.618033988749895,
1.3090169943749475`, -0.5}, {
2.618033988749895, -1.3090169943749475`,
0.5}, {-1.618033988749895, -1.3090169943749475`, \
-2.118033988749895}, {
2.9270509831248424`, -0.5,
0}, {-1.3090169943749475`, -0.5, -2.618033988749895}, \
{-2.618033988749895, 1.3090169943749475`,
0.5}, {-0.5, 0, 2.9270509831248424`}, {0.5, 2.618033988749895,
1.3090169943749475`}, {-2.118033988749895, -1.618033988749895,
1.3090169943749475`}, {-0.5,
2.618033988749895, -1.3090169943749475`}, {
0.5, 0, 2.9270509831248424`}, {1.3090169943749475`,
2.118033988749895,
1.618033988749895}, {-1.3090169943749475`, -2.118033988749895,
1.618033988749895}, {0.5,
2.618033988749895, -1.3090169943749475`}, {2.203444185374863, 0.5,
2.170820393249937}, {2.203444185374863, -0.5,
2.170820393249937}, {2.703444185374863, -0.8090169943749475,
1.3618033988749896`}, {
3.0124611797498106`, 0, 0.8618033988749896}, {2.703444185374863,
0.8090169943749475, 1.3618033988749896`}, {-2.203444185374863,
0.5, 2.170820393249937}, {-2.203444185374863, -0.5,
2.170820393249937}, {-2.703444185374863, -0.8090169943749475,
1.3618033988749896`}, {-3.0124611797498106`, 0,
0.8618033988749896}, {-2.703444185374863, 0.8090169943749475,
1.3618033988749896`}}],
Polygon3DBox[{{1, 7, 34}, {1, 62, 40}, {2, 14, 41}, {3, 36, 8}, {3,
42, 65}, {4, 43, 15}, {5, 16, 38}, {6, 39, 17}, {9, 32, 33}, {9,
52, 70}, {10, 53, 26}, {10, 67, 12}, {11, 27, 54}, {12, 55, 59}, {
13, 60, 56}, {14, 55, 68}, {18, 30, 31}, {19, 35, 49}, {20, 51,
37}, {21, 24, 28}, {22, 29, 25}, {23, 50, 48}, {26, 32, 66}, {34,
48, 63}, {36, 64, 50}, {40, 44, 57}, {41, 69, 45}, {42, 58, 46}, {
44, 61, 46}, {45, 52, 47}, {1, 34, 63, 62}, {3, 65, 64, 36}, {9,
70, 66, 32}, {10, 26, 66, 67}, {12, 67, 68, 55}, {14, 68, 69,
41}, {40, 62, 61, 44}, {42, 46, 61, 65}, {45, 69, 70, 52}, {48,
50, 64, 63}, {61, 62, 63, 64, 65}, {66, 70, 69, 68, 67}, {1, 40,
57, 53, 10, 12, 59, 5, 38, 7}, {2, 35, 19, 24, 21, 16, 5, 59, 55,
14}, {2, 41, 45, 47, 43, 4, 37, 51, 49, 35}, {3, 8, 39, 6, 60, 13,
11, 54, 58, 42}, {4, 15, 56, 60, 6, 17, 22, 25, 20, 37}, {7, 38,
16, 21, 28, 30, 18, 23, 48, 34}, {8, 36, 50, 23, 18, 31, 29, 22,
17, 39}, {9, 33, 27, 11, 13, 56, 15, 43, 47, 52}, {19, 49, 51, 20,
25, 29, 31, 30, 28, 24}, {26, 53, 57, 44, 46, 58, 54, 27, 33,
32}}]],
TagBox[
GridBox[{{"70"}, {"\"MetabiaugmentedTruncatedDodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{70, "MetabiaugmentedTruncatedDodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -3630.545454545454},
ImageScaled[{0.5, 0.5}], {360, 348},
ContentSelectable->True]}, {InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{(3 + Rational[4, 3] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {-(3 + Rational[4, 3] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {(3 + Rational[4, 3] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {-(3 + Rational[4, 3] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Root[1 - 36 #^2 + 144 #^4& , 3, 0],
Rational[1, 4] (-5 - 3 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Root[1 - 36 #^2 + 144 #^4& , 3, 0],
Rational[1, 4] (5 + 3 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2], Rational[1, 4]
3^Rational[-1, 2] (5 + 5^Rational[1, 2])}, {(Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 4]
3^Rational[-1, 2] (5 + 5^Rational[1, 2])}, {-3^Rational[-1, 2],
0, Rational[-1, 4] 3^Rational[-1, 2] (9 + 5 5^Rational[1, 2])}, {
Rational[1, 2] Rational[5, 3]^Rational[1, 2], -1 +
Rational[-1, 2]
5^Rational[1, 2], -(Rational[47, 24] +
Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] Rational[5, 3]^Rational[1, 2],
Rational[1, 2] (2 +
5^Rational[1, 2]), -(Rational[47, 24] +
Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
0, Rational[1, 2] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
0, Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2]), -1 +
Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 4]
3^Rational[-1, 2] (5 + 5^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2]),
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 4]
3^Rational[-1, 2] (5 + 5^Rational[1, 2])}, {
0, Rational[1, 2] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
0, Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
3^Rational[-1, 2], 0, Rational[1, 4]
3^Rational[-1, 2] (9 + 5 5^Rational[1, 2])}, {
Rational[-1, 4] 3^Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 4] (3^Rational[1, 2] + 15^Rational[1, 2])}, {
Rational[-1, 4] 3^Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (3^Rational[1, 2] + 15^Rational[1, 2])}, {
Rational[-1, 2] Rational[5, 3]^Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[47, 24] +
Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] Rational[5, 3]^Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[47, 24] +
Rational[7, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {(Rational[1, 6] (7 + 3 5^Rational[1, 2]))^
Rational[1, 2],
0, (Rational[83, 24] + Rational[11, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[47, 24] +
Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[47, 24] +
Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^
Rational[1, 2]), -(Rational[83, 24] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (3 +
5^Rational[1, 2]), -(Rational[83, 24] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 4] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[83, 24] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 4] 3^Rational[-1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[83, 24] +
Rational[11, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2],
Rational[1, 4] 3^Rational[-1, 2] (9 + 5 5^Rational[1, 2])}, {
Rational[-1, 2] 3^Rational[-1, 2], Rational[1, 2], Rational[1, 4]
3^Rational[-1, 2] (9 + 5 5^Rational[1, 2])}, {
Rational[1, 2] 3^Rational[-1, 2],
Rational[-1,
2], -(Rational[103, 24] + Rational[15, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] 3^Rational[-1, 2], Rational[
1, 2], -(Rational[103, 24] + Rational[15, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {(Rational[21, 8] +
Rational[9, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[29, 8] +
Rational[35, 24] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[21, 8] +
Rational[9, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[29, 8] +
Rational[35, 24] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[29, 8] +
Rational[35, 24] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Root[9 - 84 #^2 + 16 #^4& , 1, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[29, 8] +
Rational[35, 24] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Root[9 - 84 #^2 + 16 #^4& , 1, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[15, 4] +
Rational[5, 3] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2],
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2] (3 + 2 5^Rational[1, 2]),
Rational[-1,
2], -(Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {(Rational[15, 4] +
Rational[5, 3] 5^Rational[1, 2])^Rational[1, 2], Rational[1, 2],
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2] (3 + 2 5^Rational[1, 2]),
Rational[
1, 2], -(Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^
Rational[1, 2],
Rational[-1, 2], (Rational[47, 24] +
Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2] (5 + 2 5^Rational[1, 2]),
Rational[-1, 2],
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^
Rational[1, 2], Rational[
1, 2], (Rational[47, 24] + Rational[7, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] 3^Rational[-1, 2] (5 + 2 5^Rational[1, 2]),
Rational[1, 2],
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Root[1 - 21 #^2 + 9 #^4& , 1, 0], 0, Rational[-1, 4]
3^Rational[-1, 2] (11 + 3 5^Rational[1, 2])}, {(
Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(Rational[47, 24] +
Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2]}, {(
Rational[1, 6] (7 + 3 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 2] (1 +
5^Rational[1, 2]), -(Rational[47, 24] +
Rational[7, 8] 5^Rational[1, 2])^
Rational[1, 2]}, {-(Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 2] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 2] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[21, 8] +
Rational[9, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {(Rational[21, 8] +
Rational[9, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[3, 2] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] 15^Rational[-1, 2] (-5 + 5^Rational[1, 2]),
Rational[1, 4] (-5 - 3 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 4] 15^Rational[-1, 2] (-5 + 5^Rational[1, 2]),
Rational[1, 4] (5 + 3 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2]}, {-(Rational[49, 10] +
Rational[13, 6] 5^Rational[1, 2])^Rational[1, 2], 0,
Rational[
1, 2] (Rational[29, 10] + Rational[-7, 6] 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 30] (603 + 217 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 4] 15^Rational[-1, 2] (-7 + 5^Rational[1, 2])}, {
Rational[-1, 2] 15^Rational[-1, 2] (13 + 4 5^Rational[1, 2]),
Rational[1, 2], Rational[-1, 20]
3^Rational[-1, 2] (5 + 17 5^Rational[1, 2])}, {
Rational[-1, 2] 15^Rational[-1, 2] (13 + 4 5^Rational[1, 2]),
Rational[-1, 2], Rational[-1, 20]
3^Rational[-1, 2] (5 + 17 5^Rational[1, 2])}, {
Rational[-1, 2] (Rational[1, 30] (603 + 217 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4]
15^Rational[-1, 2] (-7 + 5^Rational[1, 2])}, {(Rational[49, 40] +
Rational[13, 24] 5^Rational[1, 2])^Rational[1, 2],
Rational[-5, 4] + Rational[-13, 4] 5^Rational[-1, 2],
Rational[
1, 2] (Rational[29, 10] + Rational[-7, 6] 5^Rational[1, 2])^
Rational[1, 2]}, {(Rational[7, 20] +
Rational[2, 3] 5^Rational[-1, 2])^Rational[1, 2], -1 +
Rational[-9, 2] 5^Rational[-1, 2], Rational[1, 4]
15^Rational[-1, 2] (-7 + 5^Rational[1, 2])}, {
Rational[1, 20] 3^Rational[-1, 2] (5 + 13 5^Rational[1, 2]),
Rational[-5, 4] + Rational[-13, 4] 5^Rational[-1, 2],
Rational[-1, 20]
3^Rational[-1, 2] (5 + 17 5^Rational[1, 2])}, {(Rational[69, 40] +
Rational[91, 24] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 4] + Rational[-13, 4] 5^Rational[-1, 2],
Rational[-1, 20]
3^Rational[-1, 2] (5 + 17 5^Rational[1, 2])}, {(
Rational[109, 40] + Rational[23, 24] 5^Rational[1, 2])^
Rational[1, 2], Rational[-3, 4] +
Rational[-13, 4] 5^Rational[-1, 2], Rational[1, 4]
15^Rational[-1, 2] (-7 + 5^Rational[1, 2])}, {(Rational[49, 40] +
Rational[13, 24] 5^Rational[1, 2])^Rational[1, 2],
Rational[5, 4] + Rational[13, 4] 5^Rational[-1, 2],
Rational[
1, 2] (Rational[29, 10] + Rational[-7, 6] 5^Rational[1, 2])^
Rational[1, 2]}, {(Rational[109, 40] +
Rational[23, 24] 5^Rational[1, 2])^Rational[1, 2],
Rational[3, 4] + Rational[13, 4] 5^Rational[-1, 2],
Rational[1, 4]
15^Rational[-1, 2] (-7 + 5^Rational[1, 2])}, {(Rational[69, 40] +
Rational[91, 24] 5^Rational[-1, 2])^Rational[1, 2],
Rational[3, 4] + Rational[13, 4] 5^Rational[-1, 2],
Rational[-1, 20] 3^Rational[-1, 2] (5 + 17 5^Rational[1, 2])}, {
Rational[1, 20] 3^Rational[-1, 2] (5 + 13 5^Rational[1, 2]),
Rational[5, 4] + Rational[13, 4] 5^Rational[-1, 2],
Rational[-1, 20]
3^Rational[-1, 2] (5 + 17 5^Rational[1, 2])}, {(Rational[7, 20] +
Rational[2, 3] 5^Rational[-1, 2])^Rational[1, 2], 1 +
Rational[9, 2] 5^Rational[-1, 2], Rational[1, 4]
15^Rational[-1, 2] (-7 + 5^Rational[1, 2])}}, {{
2.4456949871150573`, -1.618033988749895,
0.46708617948135783`}, {-2.4456949871150573`, -1.618033988749895, \
-0.46708617948135783`}, {2.4456949871150573`, 1.618033988749895,
0.46708617948135783`}, {-2.4456949871150573`,
1.618033988749895, -0.46708617948135783`}, {
0.17841104488654497`, -2.9270509831248424`,
0.46708617948135783`}, {0.17841104488654497`, 2.9270509831248424`,
0.46708617948135783`}, {1.8001977627471544`, -2.118033988749895,
1.0444364486709838`}, {1.8001977627471544`, 2.118033988749895,
1.0444364486709838`}, {-0.5773502691896258,
0, -2.9127811665964156`}, {
0.6454972243679028, -2.118033988749895, -1.9786088076336994`}, {
0.6454972243679028, 2.118033988749895, -1.9786088076336994`}, {
0, -2.618033988749895, -1.4012585384440737`}, {
0, 2.618033988749895, -1.4012585384440737`}, \
{-1.8001977627471546`, -2.118033988749895, -1.0444364486709838`}, \
{-1.8001977627471546`, 2.118033988749895, -1.0444364486709838`}, {
0, -2.618033988749895, 1.4012585384440737`}, {
0, 2.618033988749895, 1.4012585384440737`}, {
0.5773502691896258, 0,
2.9127811665964156`}, {-2.267283942228512, -1.3090169943749475`,
1.4012585384440737`}, {-2.267283942228512, 1.3090169943749475`,
1.4012585384440737`}, {-0.6454972243679028, -2.118033988749895,
1.9786088076336994`}, {-0.6454972243679028, 2.118033988749895,
1.9786088076336994`}, {
1.5115226281523415`, 0,
2.555959076823325}, {-1.5115226281523417`, -1.618033988749895,
1.9786088076336994`}, {-1.5115226281523417`, 1.618033988749895,
1.9786088076336994`}, {
0.7557613140761709, -1.3090169943749475`, -2.555959076823325}, {
0.7557613140761709,
1.3090169943749475`, -2.555959076823325}, {-0.7557613140761709, \
-1.3090169943749475`, 2.555959076823325}, {-0.7557613140761709,
1.3090169943749475`,
2.555959076823325}, {-0.2886751345948129, -0.5,
2.9127811665964156`}, {-0.2886751345948129, 0.5,
2.9127811665964156`}, {
0.2886751345948129, -0.5, -2.912781166596415}, {
0.2886751345948129, 0.5, -2.912781166596415}, {
2.267283942228512, -1.3090169943749475`,
1.4012585384440737`}, {-2.624106032001602, -1.3090169943749475`,
0.46708617948135783`}, {2.267283942228512, 1.3090169943749475`,
1.4012585384440737`}, {-2.624106032001602, 1.3090169943749475`,
0.46708617948135783`}, {0.9341723589627157, -2.618033988749895,
1.0444364486709836`}, {0.9341723589627157, 2.618033988749895,
1.0444364486709836`}, {
2.624106032001602, -1.3090169943749475`, -0.46708617948135783`}, \
{-2.267283942228512, -1.3090169943749475`, -1.4012585384440737`}, {
2.624106032001602,
1.3090169943749475`, -0.46708617948135783`}, {-2.267283942228512,
1.3090169943749475`, -1.4012585384440737`}, {
2.7343701217098704`, -0.5, -1.0444364486709836`}, \
{-2.1570198525202446`, -0.5, -1.9786088076336994`}, {2.7343701217098704`,
0.5, -1.0444364486709836`}, {-2.1570198525202446`,
0.5, -1.9786088076336994`}, {2.157019852520244, -0.5,
1.9786088076336994`}, {-2.7343701217098704`, -0.5,
1.0444364486709836`}, {2.157019852520244, 0.5,
1.9786088076336994`}, {-2.7343701217098704`, 0.5,
1.0444364486709836`}, {-1.5115226281523415`,
0, -2.5559590768233256`}, {
1.5115226281523415`, -1.618033988749895, -1.9786088076336994`}, {
1.5115226281523415`,
1.618033988749895, -1.9786088076336994`}, {-0.9341723589627157, \
-2.618033988749895, -1.0444364486709836`}, {-0.9341723589627157,
2.618033988749895, -1.0444364486709836`}, {
2.267283942228512, -1.3090169943749475`, -1.4012585384440737`}, {
2.267283942228512,
1.3090169943749475`, -1.4012585384440737`}, \
{-0.17841104488654494`, -2.9270509831248424`, -0.46708617948135783`}, \
{-0.17841104488654494`,
2.9270509831248424`, -0.46708617948135783`}, \
{-3.1216684563306116`, 0, 0.26983977942950005`}, {-3.011404366622344,
0.8090169943749475, -0.3075104897601255}, {-2.8329933217357985`,
0.5, -1.2416828487228415`}, {-2.8329933217357985`, -0.5, \
-1.2416828487228415`}, {-3.011404366622344, -0.8090169943749475, \
-0.3075104897601255}, {1.5608342281653058`, -2.703444185374863,
0.26983977942950005`}, {
0.8050729140891351, -3.0124611797498106`, -0.3075104897601255}, {
0.9834839589756802, -2.703444185374863, -1.2416828487228415`}, {
1.8495093627601187`, -2.203444185374863, -1.2416828487228415`}, {
2.2063314525332087`, -2.203444185374863, -0.3075104897601255}, {
1.5608342281653058`, 2.703444185374863, 0.26983977942950005`}, {
2.2063314525332087`, 2.203444185374863, -0.3075104897601255}, {
1.8495093627601187`, 2.203444185374863, -1.2416828487228415`}, {
0.9834839589756802, 2.703444185374863, -1.2416828487228415`}, {
0.8050729140891351, 3.0124611797498106`, -0.3075104897601255}}],
Polygon3DBox[{{1, 34, 7}, {1, 70, 40}, {2, 35, 65}, {2, 41, 14}, {3,
8, 36}, {3, 42, 72}, {4, 15, 43}, {4, 62, 37}, {5, 38, 16}, {5,
59, 67}, {6, 17, 39}, {6, 75, 60}, {7, 38, 66}, {8, 71, 39}, {9,
33, 32}, {10, 26, 53}, {10, 68, 12}, {11, 13, 74}, {11, 54, 27}, {
12, 59, 55}, {13, 56, 60}, {18, 31, 30}, {19, 49, 35}, {20, 37,
51}, {21, 28, 24}, {22, 25, 29}, {23, 48, 50}, {40, 57, 44}, {41,
64, 45}, {42, 46, 58}, {43, 47, 63}, {45, 47, 52}, {49, 51, 61}, {
53, 57, 69}, {54, 73, 58}, {1, 7, 66, 70}, {2, 65, 64, 41}, {3,
72, 71, 8}, {4, 43, 63, 62}, {5, 67, 66, 38}, {6, 39, 71, 75}, {
10, 53, 69, 68}, {11, 74, 73, 54}, {12, 68, 67, 59}, {13, 60, 75,
74}, {35, 49, 61, 65}, {37, 62, 61, 51}, {40, 70, 69, 57}, {42,
58, 73, 72}, {45, 64, 63, 47}, {61, 62, 63, 64, 65}, {66, 67, 68,
69, 70}, {71, 72, 73, 74, 75}, {1, 40, 44, 46, 42, 3, 36, 50, 48,
34}, {2, 14, 55, 59, 5, 16, 21, 24, 19, 35}, {4, 37, 20, 25, 22,
17, 6, 60, 56, 15}, {7, 34, 48, 23, 18, 30, 28, 21, 16, 38}, {8,
39, 17, 22, 29, 31, 18, 23, 50, 36}, {9, 32, 26, 10, 12, 55, 14,
41, 45, 52}, {9, 52, 47, 43, 15, 56, 13, 11, 27, 33}, {19, 24, 28,
30, 31, 29, 25, 20, 51, 49}, {26, 32, 33, 27, 54, 58, 46, 44, 57,
53}}]],
TagBox[
GridBox[{{"71"}, {"\"TriaugmentedTruncatedDodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{71, "TriaugmentedTruncatedDodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {196.36363636363637, -4189.090909090909},
ImageScaled[{0.5, 0.5}], {360, 364},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, Root[1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, Root[1 - 5 #^2 + 5 #^4& , 1, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{
0, -0.8506508083520399, 2.0645728807067605`}, {
1.618033988749895,
0, -1.5388417685876268`}, {-0.8090169943749475, \
-0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, \
-0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
0.8090169943749475, -0.2628655560595668, -2.0645728807067605`}, \
{-1.618033988749895, 0, 1.5388417685876268`}, {0.5,
0.6881909602355868, -2.0645728807067605`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, \
{-1.3090169943749475`, 1.8017073246471935`,
0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.5,
0.6881909602355868, 2.0645728807067605`}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {
0.5, -1.5388417685876268`, 1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-0.5, 1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, {
0.5, 1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {
0.8090169943749475, -0.2628655560595668, 2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \
{-0.5, 0.6881909602355868, 2.0645728807067605`}, {1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5,
2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, \
{-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \
{-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {
0, -0.8506508083520399, -2.0645728807067605`}, \
{-2.118033988749895, 0.16245984811645317`, 0.6881909602355868}, {-0.5,
0.6881909602355868, -2.0645728807067605`}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \
-0.6881909602355868,
0.16245984811645317`}, {-0.8090169943749475, -0.2628655560595668, \
-2.0645728807067605`}}],
Polygon3DBox[{{37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {39, 26, 30}, {
10, 14, 2}, {12, 4, 16}, {54, 45, 41}, {55, 42, 46}, {58, 19,
20}, {53, 18, 17}, {56, 43, 47}, {57, 48, 44}, {34, 32, 22}, {59,
51, 49}, {60, 50, 52}, {10, 2, 37, 24}, {37, 22, 32, 28}, {8, 40,
30, 26}, {25, 29, 40, 7}, {35, 27, 23, 5}, {6, 24, 28, 35}, {39,
30, 34, 22}, {12, 26, 39, 4}, {55, 14, 10, 42}, {41, 9, 13, 54}, {
57, 44, 12, 16}, {15, 11, 43, 56}, {45, 54, 59, 49}, {50, 60, 55,
46}, {48, 58, 20, 44}, {43, 19, 58, 47}, {53, 17, 41, 45}, {46,
42, 18, 53}, {59, 56, 47, 51}, {52, 48, 57, 60}, {31, 32, 34,
33}, {17, 18, 6, 5}, {14, 16, 4, 2}, {7, 8, 20, 19}, {51, 52, 50,
49}, {3, 1, 36, 21, 38}, {22, 37, 2, 4, 39}, {29, 33, 34, 30,
40}, {27, 35, 28, 32, 31}, {42, 10, 24, 6, 18}, {41, 17, 5, 23,
9}, {20, 8, 26, 12, 44}, {11, 25, 7, 19, 43}, {56, 59, 54, 13,
15}, {57, 16, 14, 55, 60}, {58, 48, 52, 51, 47}, {49, 50, 46, 53,
45}, {36, 27, 31}, {38, 25, 11}, {23, 1, 9}, {15, 13, 3}, {29, 21,
33}, {31, 33, 21, 36}, {27, 36, 1, 23}, {3, 38, 11, 15}, {21, 29,
25, 38}, {1, 3, 13, 9}}]],
TagBox[
GridBox[{{"72"}, {"\"GyrateRhombicosidodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{72, "GyrateRhombicosidodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {589.0909090909091, -4189.090909090909},
ImageScaled[{0.5, 0.5}], {360, 365},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, Root[1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{
0, -0.8506508083520399, 2.0645728807067605`}, {
1.618033988749895,
0, -1.5388417685876268`}, {-0.8090169943749475, \
-0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, \
-0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
0.5, -0.6881909602355868, -2.0645728807067605`}, \
{-1.618033988749895, 0, 1.5388417685876268`}, {0.8090169943749475,
0.2628655560595668, -2.0645728807067605`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, \
{-1.3090169943749475`, 1.8017073246471935`,
0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.5,
0.6881909602355868, 2.0645728807067605`}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {
0.5, -1.5388417685876268`, 1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-0.5, 1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, {
0.5, 1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {
0.8090169943749475, -0.2628655560595668, 2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \
{-0.5, 0.6881909602355868, 2.0645728807067605`}, {1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5,
2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, \
{-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \
{-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {-0.5, -0.6881909602355868, \
-2.0645728807067605`}, {-2.118033988749895, 0.16245984811645317`,
0.6881909602355868}, {
0, 0.85065080835204, -2.0645728807067605`}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \
-0.6881909602355868, 0.16245984811645317`}, {-0.8090169943749475,
0.2628655560595668, -2.0645728807067605`}}],
Polygon3DBox[{{37, 28, 24}, {40, 8, 7}, {35, 5, 6}, {39, 26, 30}, {
54, 45, 41}, {58, 19, 20}, {53, 18, 17}, {56, 43, 47}, {34, 32,
22}, {59, 51, 49}, {10, 2, 37, 24}, {37, 22, 32, 28}, {8, 40, 30,
26}, {25, 29, 40, 7}, {35, 27, 23, 5}, {6, 24, 28, 35}, {39, 30,
34, 22}, {12, 26, 39, 4}, {41, 9, 13, 54}, {15, 11, 43, 56}, {45,
54, 59, 49}, {48, 58, 20, 44}, {43, 19, 58, 47}, {53, 17, 41,
45}, {46, 42, 18, 53}, {59, 56, 47, 51}, {31, 32, 34, 33}, {17,
18, 6, 5}, {7, 8, 20, 19}, {51, 52, 50, 49}, {3, 1, 36, 21, 38}, {
22, 37, 2, 4, 39}, {29, 33, 34, 30, 40}, {27, 35, 28, 32, 31}, {
42, 10, 24, 6, 18}, {41, 17, 5, 23, 9}, {20, 8, 26, 12, 44}, {11,
25, 7, 19, 43}, {56, 59, 54, 13, 15}, {57, 16, 14, 55, 60}, {58,
48, 52, 51, 47}, {49, 50, 46, 53, 45}, {36, 27, 31}, {38, 25,
11}, {23, 1, 9}, {15, 13, 3}, {29, 21, 33}, {31, 33, 21, 36}, {27,
36, 1, 23}, {3, 38, 11, 15}, {21, 29, 25, 38}, {1, 3, 13, 9}, {
42, 14, 10}, {4, 2, 16}, {55, 46, 50}, {57, 44, 12}, {60, 52,
48}, {55, 14, 42, 46}, {57, 12, 4, 16}, {52, 60, 55, 50}, {48, 44,
57, 60}, {14, 16, 2, 10}}]],
TagBox[
GridBox[{{"73"}, {"\"ParabigyrateRhombicosidodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{73, "ParabigyrateRhombicosidodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {981.818181818182, -4189.090909090909},
ImageScaled[{0.5, 0.5}], {360, 365},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], Rational[-1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[-1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2]}, {
0, Rational[-3, 4] + Rational[-13, 4] 5^Rational[-1, 2],
Rational[1, 20] (5 + 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), 1 + 2 5^Rational[-1, 2],
Rational[1, 20] (15 + 5^Rational[1, 2])}, {
0, (-3 + 5^Rational[1, 2])^(-1),
Rational[1, 4] (-5 - 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[-1, 2] - 2 5^Rational[-1, 2], 1 +
Rational[3, 2] 5^Rational[-1, 2]}, {
0, Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-5 - 5^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] + 2 5^Rational[-1, 2], 1 +
Rational[3, 2] 5^Rational[-1, 2]}, {
Rational[1, 2], Rational[-1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), -1 - 2 5^Rational[-1, 2],
Rational[1, 20] (15 + 5^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2]}, {
0, Rational[3, 4] + Rational[13, 4] 5^Rational[-1, 2],
Rational[1, 20] (5 + 5^Rational[1, 2])}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
0, (-3 + 5^Rational[1, 2])^(-1)}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), 0,
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1)}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), -1 - 2 5^Rational[-1, 2],
Rational[1, 20] (15 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1)}, {
Rational[-1, 2], Rational[1, 2] + 2 5^Rational[-1, 2], 1 +
Rational[3, 2] 5^Rational[-1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2],
Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2], Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2],
Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2], Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1),
Rational[1, 4] (-5 - 5^Rational[1, 2]),
0}, {(-3 + 5^Rational[1, 2])^(-1),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[1, 4] (5 + 5^Rational[1, 2]),
0}, {Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1)}, {
Rational[1, 2], Rational[-1, 2] - 2 5^Rational[-1, 2], 1 +
Rational[3, 2] 5^Rational[-1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1)}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), 1 + 2 5^Rational[-1, 2],
Rational[1, 20] (15 + 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2],
Rational[-1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2], Rational[
1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2], Rational[
1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-5 - 5^Rational[1, 2]), 0}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (5 + 5^Rational[1, 2]), 0}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
0, (-3 + 5^Rational[1, 2])^(-1)}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), 0,
Rational[1, 4] (3 +
5^Rational[
1, 2])}}, {{-0.5, -0.5, -2.118033988749895}, {-0.5, -0.5,
2.118033988749895}, {-0.5, 0.5, -2.118033988749895}, {-0.5, 0.5,
2.118033988749895}, {-0.5, -2.118033988749895, -0.5}, {
0, -2.203444185374863, 0.3618033988749895}, {-0.5,
2.118033988749895, -0.5}, {-0.8090169943749475,
1.8944271909999157`, 0.8618033988749896}, {
0, -1.3090169943749477`, -1.8090169943749475`}, {-0.5, \
-1.3944271909999157`, 1.670820393249937}, {
0, 1.3090169943749475`, -1.8090169943749475`}, {0.5,
1.3944271909999157`, 1.670820393249937}, {
0.5, -0.5, -2.118033988749895}, {0.5, -0.5, 2.118033988749895}, {
0.5, 0.5, -2.118033988749895}, {0.5, 0.5, 2.118033988749895}, {
0.5, -2.118033988749895, -0.5}, {
0.8090169943749475, -1.8944271909999157`, 0.8618033988749896}, {
0.5, 2.118033988749895, -0.5}, {
0, 2.203444185374863, 0.3618033988749895}, {-1.8090169943749475`,
0, -1.3090169943749477`}, {-1.8090169943749475`, 0,
1.3090169943749475`}, {-0.8090169943749475, -1.618033988749895, \
-1.3090169943749477`}, {-0.8090169943749475, -1.8944271909999157`,
0.8618033988749896}, {-0.8090169943749475,
1.618033988749895, -1.3090169943749477`}, {-0.5,
1.3944271909999157`,
1.670820393249937}, {-1.618033988749895, -1.3090169943749477`, \
-0.8090169943749475}, {-1.618033988749895, -1.3090169943749477`,
0.8090169943749475}, {-1.618033988749895,
1.3090169943749475`, -0.8090169943749475}, {-1.618033988749895,
1.3090169943749475`,
0.8090169943749475}, {-2.118033988749895, -0.5, -0.5}, \
{-2.118033988749895, -0.5, 0.5}, {-2.118033988749895,
0.5, -0.5}, {-2.118033988749895, 0.5,
0.5}, {-1.3090169943749477`, -1.8090169943749475`,
0}, {-1.3090169943749477`, -0.8090169943749475, \
-1.618033988749895}, {-1.3090169943749477`, -0.8090169943749475,
1.618033988749895}, {-1.3090169943749477`,
0.8090169943749475, -1.618033988749895}, {-1.3090169943749477`,
0.8090169943749475,
1.618033988749895}, {-1.3090169943749477`, 1.8090169943749475`,
0}, {0.8090169943749475, -1.618033988749895, \
-1.3090169943749477`}, {0.5, -1.3944271909999157`, 1.670820393249937}, {
0.8090169943749475, 1.618033988749895, -1.3090169943749477`}, {
0.8090169943749475, 1.8944271909999157`, 0.8618033988749896}, {
1.618033988749895, -1.3090169943749477`, -0.8090169943749475}, {
1.618033988749895, -1.3090169943749477`, 0.8090169943749475}, {
1.618033988749895, 1.3090169943749475`, -0.8090169943749475}, {
1.618033988749895, 1.3090169943749475`, 0.8090169943749475}, {
2.118033988749895, -0.5, -0.5}, {2.118033988749895, -0.5, 0.5}, {
2.118033988749895, 0.5, -0.5}, {2.118033988749895, 0.5, 0.5}, {
1.3090169943749475`, -1.8090169943749475`, 0}, {
1.3090169943749475`, -0.8090169943749475, -1.618033988749895}, {
1.3090169943749475`, -0.8090169943749475, 1.618033988749895}, {
1.3090169943749475`, 0.8090169943749475, -1.618033988749895}, {
1.3090169943749475`, 0.8090169943749475, 1.618033988749895}, {
1.3090169943749475`, 1.8090169943749475`, 0}, {
1.8090169943749475`, 0, -1.3090169943749477`}, {
1.8090169943749475`, 0, 1.3090169943749475`}}],
Polygon3DBox[{{36, 23, 27}, {38, 29, 25}, {9, 1, 13}, {11, 15, 3}, {
54, 45, 41}, {56, 43, 47}, {34, 32, 22}, {33, 21, 31}, {59, 51,
49}, {60, 50, 52}, {27, 31, 21, 36}, {23, 36, 1, 9}, {37, 22, 32,
28}, {25, 29, 40, 7}, {35, 27, 23, 5}, {3, 38, 25, 11}, {21, 33,
29, 38}, {39, 30, 34, 22}, {41, 9, 13, 54}, {15, 11, 43, 56}, {45,
54, 59, 49}, {50, 60, 55, 46}, {43, 19, 58, 47}, {53, 17, 41,
45}, {59, 56, 47, 51}, {52, 48, 57, 60}, {31, 32, 34, 33}, {1, 3,
15, 13}, {14, 16, 4, 2}, {51, 52, 50, 49}, {3, 1, 36, 21, 38}, {
22, 37, 2, 4, 39}, {29, 33, 34, 30, 40}, {27, 35, 28, 32, 31}, {
42, 10, 24, 6, 18}, {41, 17, 5, 23, 9}, {20, 8, 26, 12, 44}, {11,
25, 7, 19, 43}, {56, 59, 54, 13, 15}, {57, 16, 14, 55, 60}, {58,
48, 52, 51, 47}, {49, 50, 46, 53, 45}, {28, 35, 24}, {5, 17, 6}, {
10, 2, 37}, {14, 42, 55}, {46, 18, 53}, {10, 37, 28, 24}, {6, 24,
35, 5}, {14, 2, 10, 42}, {55, 42, 18, 46}, {53, 18, 6, 17}, {30,
8, 40}, {4, 26, 39}, {12, 16, 57}, {19, 7, 20}, {48, 58, 44}, {8,
30, 39, 26}, {12, 26, 4, 16}, {48, 44, 12, 57}, {58, 19, 20,
44}, {40, 8, 20, 7}}]],
TagBox[
GridBox[{{"74"}, {"\"MetabigyrateRhombicosidodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{74, "MetabigyrateRhombicosidodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -4189.090909090909},
ImageScaled[{0.5, 0.5}], {360, 366},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], Rational[1, 2] 3^Rational[-1, 2],
Rational[-1, 2] 3^Rational[-1, 2] (3 + 2 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2]), (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2]
3^Rational[-1, 2] (4 + 5^Rational[1, 2]), Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
0, Rational[-2, 5] 3^Rational[-1, 2] (5 + 2 5^Rational[1, 2]),
Rational[1, 10] 3^Rational[-1, 2] (-10 + 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[5, 3]^Rational[1, 2] +
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2]
3^Rational[-1, 2]}, {
Rational[-1, 2], (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^
Rational[1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
0, -3^Rational[-1, 2],
Rational[-1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2] - 4
15^Rational[-1, 2], (Rational[41, 60] + 5^Rational[-1, 2])^
Rational[1, 2]}, {
0, (Rational[2, 3] (3 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
0, 3^Rational[-1, 2], Rational[5, 3]^Rational[1, 2] +
Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2]
3^Rational[-1, 2] (3 + 2 5^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2]), (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2]
3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2]
3^Rational[-1, 2] (4 + 5^Rational[1, 2]), Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[-1, 20]
3^Rational[-1, 2] (25 + 21 5^Rational[1, 2]), Rational[1, 2]
15^Rational[-1, 2]}, {
Rational[1, 2], Rational[5, 3]^Rational[1, 2] +
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2]
3^Rational[-1, 2]}, {
Rational[
1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^
Rational[1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], -(Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], -(Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[-1, 20]
3^Rational[-1, 2] (25 + 21 5^Rational[1, 2]), Rational[1, 2]
15^Rational[-1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[47, 24] +
Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], -(Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 2 3^Rational[-1, 2]/(-3 +
5^Rational[1, 2]), Rational[1, 2] 3^Rational[-1, 2]}, {-1 - 2
5^Rational[-1, 2], (Rational[1, 15] (9 + 4 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 10]
3^Rational[-1, 2] (-10 + 5^Rational[1, 2])}, {
Rational[-1, 2] - 2
5^Rational[-1, 2], (Rational[61, 60] + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[41, 60] + 5^Rational[-1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] 3^Rational[-1, 2], Rational[-1, 2]
Rational[5, 3]^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2]
Rational[5, 3]^Rational[1, 2], Rational[1, 2]
3^Rational[-1, 2]}, {
Rational[-3, 4] +
Rational[-13, 4] 5^Rational[-1, 2], (Rational[7, 120] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] 15^Rational[-1, 2]}, {-1 - 2 5^Rational[-1, 2], 2
15^Rational[-1, 2], (Rational[41, 60] + 5^Rational[-1, 2])^
Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1),
Rational[-1, 2] (Rational[5, 6] (7 + 3 5^Rational[1, 2]))^
Rational[1, 2], Rational[-1, 2]
Rational[5, 3]^Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1),
Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[-1, 2]
3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[-1, 4]
3^Rational[-1, 2] (7 + 5^Rational[1, 2]), (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^
Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4]
3^Rational[-1, 2] (7 + 5^Rational[1, 2]), Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Root[
1 - 36 #^2 + 144 #^4& , 3, 0], (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2
5^Rational[-1, 2], (Rational[101, 60] + 3 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2] 15^Rational[-1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], -(Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2] - 4
15^Rational[-1, 2], (Rational[41, 60] + 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[47, 24] +
Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], -(Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 2 3^Rational[-1, 2]/(-3 +
5^Rational[1, 2]), Rational[1, 2] 3^Rational[-1, 2]}, {
Rational[1, 2] +
2 5^Rational[-1, 2], (Rational[101, 60] + 3 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2] 15^Rational[-1, 2]}, {
1 + 2 5^Rational[-1, 2], 2
15^Rational[-1, 2], (Rational[41, 60] + 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2]
3^Rational[-1, 2], Rational[-1, 2]
Rational[5, 3]^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2]
Rational[5, 3]^Rational[1, 2], Rational[1, 2]
3^Rational[-1, 2]}, {
1 + 2 5^Rational[-1, 2], (
Rational[1, 15] (9 + 4 5^Rational[1, 2]))^Rational[1, 2],
Rational[1, 10] 3^Rational[-1, 2] (-10 + 5^Rational[1, 2])}, {
Rational[3, 4] +
Rational[13, 4] 5^Rational[-1, 2], (Rational[7, 120] +
Rational[1, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] 15^Rational[-1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (7 + 3 5^Rational[1, 2]))^
Rational[1, 2], Rational[-1, 2]
Rational[5, 3]^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 2, 0], Rational[-1, 2]
3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4]
3^Rational[-1, 2] (7 + 5^Rational[1, 2]), (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4]
3^Rational[-1, 2] (7 + 5^Rational[1, 2]), Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 3, 0], (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] +
2 5^Rational[-1, 2], (Rational[61, 60] + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[41, 60] + 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], -(Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}}, {{-0.5,
0.2886751345948129, -2.1570198525202446`}, {-0.5, \
-1.2228474935575289`, 1.8001977627471544`}, {-0.5,
1.2228474935575286`, -1.8001977627471546`}, {-0.5, \
-0.2886751345948129,
2.157019852520244}, {-0.5, -1.8001977627471546`, \
-1.2228474935575289`}, {0, -2.1874960973678967`, -0.4482508243160453}, {-0.5,
2.157019852520244, 0.2886751345948129}, {-0.5,
1.8001977627471544`, 1.2228474935575286`}, {
0, -0.5773502691896258, -2.157019852520244}, {-0.5, \
-1.898820962773083, 1.0632718038362963`}, {
0, 1.8683447179254313`, -1.2228474935575289`}, {
0, 0.5773502691896258, 2.157019852520244}, {0.5,
0.2886751345948129, -2.1570198525202446`}, {
0.5, -1.2228474935575289`, 1.8001977627471544`}, {0.5,
1.2228474935575286`, -1.8001977627471546`}, {
0.5, -0.2886751345948129, 2.157019852520244}, {
0.5, -1.8001977627471546`, -1.2228474935575289`}, {
0.8090169943749475, -2.0772320076596285`, 0.12909944487358055`}, {
0.5, 2.157019852520244, 0.2886751345948129}, {0.5,
1.8001977627471544`, 1.2228474935575286`}, {-1.8090169943749475`,
0.46708617948135783`, -1.2228474935575286`}, \
{-1.8090169943749475`, -0.46708617948135783`,
1.2228474935575286`}, {-0.8090169943749475, -1.0444364486709836`, \
-1.8001977627471544`}, {-0.8090169943749475, -2.0772320076596285`,
0.12909944487358055`}, {-0.8090169943749475,
1.9786088076336994`, -0.6454972243679028}, {-0.8090169943749475,
1.0444364486709836`,
1.8001977627471544`}, {-1.618033988749895, -0.9341723589627157, \
-1.2228474935575286`}, {-1.618033988749895, -1.511522628152342,
0.2886751345948129}, {-1.8944271909999157`,
1.093748048683948, -0.4482508243160453}, {-1.3944271909999157`,
1.3824231832787608`,
1.0632718038362963`}, {-2.118033988749895, -0.2886751345948129, \
-0.6454972243679028}, {-2.118033988749895, -0.6454972243679028,
0.2886751345948129}, {-2.203444185374863, 0.3379867346077773,
0.12909944487358055`}, {-1.8944271909999157`, 0.5163977794943222,
1.0632718038362963`}, {-1.3090169943749477`, \
-1.6899336730388865`, -0.6454972243679028}, {-1.3090169943749477`, \
-0.17841104488654497`, -1.8001977627471546`}, {-1.3090169943749477`, \
-1.3331115832657967`, 1.2228474935575286`}, {-1.3090169943749477`,
1.3331115832657967`, -1.2228474935575289`}, {-1.3090169943749477`,
0.17841104488654497`,
1.8001977627471544`}, {-1.3944271909999157`, 1.7392452730518508`,
0.12909944487358055`}, {
0.8090169943749475, -1.0444364486709836`, -1.8001977627471544`}, {
0.5, -1.898820962773083, 1.0632718038362963`}, {
0.8090169943749475, 1.9786088076336994`, -0.6454972243679028}, {
0.8090169943749475, 1.0444364486709836`, 1.8001977627471544`}, {
1.618033988749895, -0.9341723589627157, -1.2228474935575286`}, {
1.618033988749895, -1.511522628152342, 0.2886751345948129}, {
1.3944271909999157`, 1.7392452730518508`, 0.12909944487358055`}, {
1.8944271909999157`, 0.5163977794943222, 1.0632718038362963`}, {
2.118033988749895, -0.2886751345948129, -0.6454972243679028}, {
2.118033988749895, -0.6454972243679028, 0.2886751345948129}, {
1.8944271909999157`, 1.093748048683948, -0.4482508243160453}, {
2.203444185374863, 0.3379867346077773, 0.12909944487358055`}, {
1.3090169943749475`, -1.6899336730388865`, -0.6454972243679028}, {
1.3090169943749475`, -0.17841104488654497`, \
-1.8001977627471546`}, {1.3090169943749475`, -1.3331115832657967`,
1.2228474935575286`}, {1.3090169943749475`,
1.3331115832657967`, -1.2228474935575289`}, {1.3090169943749475`,
0.17841104488654497`, 1.8001977627471544`}, {1.3944271909999157`,
1.3824231832787608`, 1.0632718038362963`}, {1.8090169943749475`,
0.46708617948135783`, -1.2228474935575286`}, {
1.8090169943749475`, -0.46708617948135783`,
1.2228474935575286`}}],
Polygon3DBox[{{1, 13, 9}, {2, 37, 10}, {3, 11, 15}, {4, 16, 12}, {5,
17, 6}, {7, 25, 40}, {8, 30, 26}, {14, 42, 55}, {18, 53, 46}, {
19, 47, 43}, {20, 44, 58}, {21, 29, 38}, {22, 39, 34}, {23, 27,
36}, {24, 28, 35}, {31, 32, 33}, {41, 54, 45}, {48, 57, 60}, {49,
52, 50}, {51, 59, 56}, {1, 3, 15, 13}, {1, 9, 23, 36}, {2, 10, 42,
14}, {2, 14, 16, 4}, {3, 38, 25, 11}, {4, 12, 26, 39}, {5, 6, 24,
35}, {5, 35, 27, 23}, {6, 17, 53, 18}, {7, 8, 20, 19}, {7, 40,
30, 8}, {9, 13, 54, 41}, {10, 37, 28, 24}, {11, 43, 56, 15}, {12,
16, 57, 44}, {17, 41, 45, 53}, {18, 46, 55, 42}, {19, 20, 58,
47}, {21, 31, 33, 29}, {21, 36, 27, 31}, {22, 32, 28, 37}, {22,
34, 33, 32}, {25, 38, 29, 40}, {26, 30, 34, 39}, {43, 47, 51,
56}, {44, 57, 48, 58}, {45, 54, 59, 49}, {46, 50, 60, 55}, {48,
60, 50, 52}, {49, 59, 51, 52}, {1, 36, 21, 38, 3}, {2, 4, 39, 22,
37}, {5, 23, 9, 41, 17}, {6, 18, 42, 10, 24}, {7, 19, 43, 11,
25}, {8, 26, 12, 44, 20}, {13, 15, 56, 59, 54}, {14, 55, 60, 57,
16}, {27, 35, 28, 32, 31}, {29, 33, 34, 30, 40}, {45, 49, 50, 46,
53}, {47, 58, 48, 52, 51}}]],
TagBox[
GridBox[{{"75"}, {"\"TrigyrateRhombicosidodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{75, "TrigyrateRhombicosidodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -4189.090909090909},
ImageScaled[{0.5, 0.5}], {360, 361},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}}, {{-0.5, -0.6881909602355868,
2.0645728807067605`}, {
1.618033988749895, 0, -1.5388417685876268`}, {-0.8090169943749475,
0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, \
-0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749475`, -0.9510565162951535,
1.5388417685876268`}, {-1.618033988749895, 0,
1.5388417685876268`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, \
{-1.3090169943749475`, 1.8017073246471935`,
0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.8090169943749475,
0.2628655560595668, 2.0645728807067605`}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {
0.5, -1.5388417685876268`, 1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-0.5, 1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, {
0.5, 1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {
0.5, -0.6881909602355868, 2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, {
0, 0.85065080835204, 2.0645728807067605`}, {1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5,
2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, \
{-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \
{-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {-2.118033988749895, 0.16245984811645317`,
0.6881909602355868}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \
-0.6881909602355868, 0.16245984811645317`}}],
Polygon3DBox[{{1, 13, 9}, {3, 11, 14}, {5, 6, 33}, {7, 38, 8}, {15,
51, 16}, {17, 18, 54}, {19, 29, 31}, {20, 32, 30}, {21, 25, 34}, {
22, 35, 26}, {23, 36, 27}, {24, 28, 37}, {39, 52, 43}, {41, 45,
53}, {47, 55, 49}, {1, 3, 14, 13}, {1, 9, 21, 34}, {2, 35, 22,
10}, {3, 36, 23, 11}, {4, 12, 24, 37}, {5, 15, 16, 6}, {5, 33, 25,
21}, {6, 22, 26, 33}, {7, 8, 18, 17}, {7, 23, 27, 38}, {8, 38,
28, 24}, {9, 13, 52, 39}, {11, 41, 53, 14}, {15, 39, 43, 51}, {16,
51, 44, 40}, {17, 54, 45, 41}, {18, 42, 46, 54}, {19, 31, 27,
36}, {19, 34, 25, 29}, {20, 30, 26, 35}, {20, 37, 28, 32}, {29,
30, 32, 31}, {43, 52, 55, 47}, {45, 49, 55, 53}, {47, 49, 50,
48}, {1, 34, 19, 36, 3}, {2, 4, 37, 20, 35}, {5, 21, 9, 39, 15}, {
6, 16, 40, 10, 22}, {7, 17, 41, 11, 23}, {8, 24, 12, 42, 18}, {13,
14, 53, 55, 52}, {25, 33, 26, 30, 29}, {27, 31, 32, 28, 38}, {43,
47, 48, 44, 51}, {45, 54, 46, 50, 49}, {2, 10, 40, 44, 48, 50,
46, 42, 12, 4}}]],
TagBox[
GridBox[{{"76"}, {"\"DiminishedRhombicosidodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{76, "DiminishedRhombicosidodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2160., -4189.090909090909},
ImageScaled[{0.5, 0.5}], {360, 362},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
0, Root[1 - 5 #^2 + 5 #^4& , 1, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 2, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{
0, -0.8506508083520399, 2.0645728807067605`}, {
1.618033988749895,
0, -1.5388417685876268`}, {-0.8090169943749475, \
-0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, \
-0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749475`, -0.9510565162951535,
1.5388417685876268`}, {-1.618033988749895, 0,
1.5388417685876268`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, \
{-1.3090169943749475`, 1.8017073246471935`,
0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.5,
0.6881909602355868, 2.0645728807067605`}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {
0.5, -1.5388417685876268`, 1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-0.5, 1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, {
0.5, 1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {
0.8090169943749475, -0.2628655560595668, 2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \
{-0.5, 0.6881909602355868, 2.0645728807067605`}, {1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5,
2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, \
{-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \
{-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {-2.118033988749895, 0.16245984811645317`,
0.6881909602355868}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \
-0.6881909602355868, 0.16245984811645317`}}],
Polygon3DBox[{{1, 9, 21}, {3, 14, 13}, {5, 6, 33}, {7, 38, 8}, {11,
36, 23}, {15, 51, 16}, {17, 18, 54}, {19, 31, 27}, {20, 32, 30}, {
22, 35, 26}, {24, 28, 37}, {25, 29, 34}, {39, 52, 43}, {41, 45,
53}, {47, 55, 49}, {1, 3, 13, 9}, {1, 21, 25, 34}, {2, 35, 22,
10}, {3, 36, 11, 14}, {4, 12, 24, 37}, {5, 15, 16, 6}, {5, 33, 25,
21}, {6, 22, 26, 33}, {7, 8, 18, 17}, {7, 23, 27, 38}, {8, 38,
28, 24}, {9, 13, 52, 39}, {11, 41, 53, 14}, {15, 39, 43, 51}, {16,
51, 44, 40}, {17, 54, 45, 41}, {18, 42, 46, 54}, {19, 27, 23,
36}, {19, 34, 29, 31}, {20, 30, 26, 35}, {20, 37, 28, 32}, {29,
30, 32, 31}, {43, 52, 55, 47}, {45, 49, 55, 53}, {47, 49, 50,
48}, {1, 34, 19, 36, 3}, {2, 4, 37, 20, 35}, {5, 21, 9, 39, 15}, {
6, 16, 40, 10, 22}, {7, 17, 41, 11, 23}, {8, 24, 12, 42, 18}, {13,
14, 53, 55, 52}, {25, 33, 26, 30, 29}, {27, 31, 32, 28, 38}, {43,
47, 48, 44, 51}, {45, 54, 46, 50, 49}, {2, 10, 40, 44, 48, 50,
46, 42, 12, 4}}]],
TagBox[
GridBox[{{"77"}, {
"\"ParagyrateDiminishedRhombicosidodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{77, "ParagyrateDiminishedRhombicosidodecahedron"}],
"Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2552.727272727273, -4189.090909090909},
ImageScaled[{0.5, 0.5}], {360, 366},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{(Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(
Rational[61, 40] + Rational[131, 40] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 10] (85 + 22 5^Rational[1, 2])^Rational[1, 2]}, {(
Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 25 #^2 + 5 #^4& , 1, 0], 0,
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 20] (610 + 262 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 10] (85 + 22 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[7, 10] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Rational[1, 10] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {(Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^
Rational[1, 2]}, {-(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 20 #^2 + 80 #^4& , 2, 0],
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 10] (130 + 38 5^Rational[1, 2])^Rational[1, 2], 0,
Rational[1, 10] (145 + 62 5^Rational[1, 2])^Rational[1, 2]}, {(
Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (5 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {-(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {(Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2], Rational[
1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Root[1 - 5 #^2 + 5 #^4& , 1, 0],
0, (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[
1, 2], (Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[7, 10] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2],
Rational[1, 10] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2], Rational[
1, 2], Rational[-1, 2] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}, {
Root[1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(
Rational[13, 8] + Rational[29, 8] 5^Rational[-1, 2])^
Rational[1, 2], (-3 + 5^Rational[1, 2])^(-1),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(
Rational[5, 8] + Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2], Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], Rational[-1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(1 +
2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-(1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {(
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{
0.6881909602355868, -0.5, 2.0645728807067605`}, {
0, 1.618033988749895, -1.5388417685876268`}, \
{-0.2628655560595668, -0.8090169943749475,
2.0645728807067605`}, {-0.9510565162951535,
1.3090169943749475`, -1.5388417685876268`}, {1.7290530718466575`,
0.8090169943749475, 1.1584191620695654`}, {1.8017073246471935`,
1.3090169943749475`, -0.16245984811645317`}, \
{-2.0645728807067605`, -0.5,
0.6881909602355868}, {-2.2270327288232132`,
0, -0.16245984811645317`}, {
1.7290530718466575`, -0.8090169943749475, 1.1584191620695654`}, {
0.9510565162951535,
1.3090169943749475`, -1.5388417685876268`}, {-0.9510565162951535, \
-1.3090169943749475`, 1.5388417685876268`}, {-1.5388417685876268`,
0.5, -1.5388417685876268`}, {
0.9510565162951535, -1.3090169943749475`, 1.5388417685876268`}, {
0, -1.618033988749895, 1.5388417685876268`}, {2.154378476022677,
0.5, 0.30776835371752537`}, {2.0645728807067605`,
0.5, -0.6881909602355868}, {-1.8017073246471935`, \
-1.3090169943749475`,
0.16245984811645317`}, {-1.9641671727636467`, \
-0.8090169943749475, -0.6881909602355868}, {-0.2628655560595668,
0.8090169943749475, 2.0645728807067605`}, {-0.6881909602355868,
2.118033988749895, -0.16245984811645317`}, {
1.4661875157870907`, 0, 1.6841502741886991`}, {
1.1135163644116066`,
1.8090169943749475`, -0.6881909602355868}, {-1.5388417685876268`, \
-0.5, 1.5388417685876268`}, {-1.9641671727636467`,
0.8090169943749475, -0.6881909602355868}, {0.9510565162951535,
1.3090169943749475`, 1.5388417685876268`}, {0.6881909602355868,
2.118033988749895, 0.16245984811645317`}, {-1.5388417685876268`,
0.5, 1.5388417685876268`}, {-1.8017073246471935`,
1.3090169943749475`, 0.16245984811645317`}, {
0, 1.618033988749895,
1.5388417685876268`}, {-0.16245984811645317`, 2.118033988749895,
0.6881909602355868}, {-0.9510565162951535, 1.3090169943749475`,
1.5388417685876268`}, {-1.1135163644116066`, 1.8090169943749475`,
0.6881909602355868}, {1.3763819204711736`, 1.618033988749895,
0.6881909602355868}, {0.6881909602355868, 0.5,
2.0645728807067605`}, {0.16245984811645317`,
2.118033988749895, -0.6881909602355868}, {-0.8506508083520399, 0,
2.0645728807067605`}, {-1.3763819204711736`,
1.618033988749895, -0.6881909602355868}, {-2.0645728807067605`,
0.5, 0.6881909602355868}, {2.154378476022677, -0.5,
0.30776835371752537`}, {1.5388417685876268`,
0.5, -1.5388417685876268`}, {-1.1135163644116066`, \
-1.8090169943749475`,
0.6881909602355868}, {-1.5388417685876268`, -0.5, \
-1.5388417685876268`}, {
1.8017073246471935`, -1.3090169943749477`, \
-0.16245984811645317`}, {
1.5388417685876268`, -0.5, -1.5388417685876268`}, \
{-0.6881909602355868, -2.118033988749895, -0.16245984811645317`}, \
{-0.9510565162951535, -1.3090169943749475`, -1.5388417685876268`}, {
1.1135163644116066`, -1.8090169943749475`, -0.6881909602355868}, {
0.9510565162951535, -1.3090169943749475`, -1.5388417685876268`}, {
0.16245984811645317`, -2.118033988749895, -0.6881909602355868}, {
0, -1.618033988749895, -1.5388417685876268`}, {
2.0645728807067605`, -0.5, -0.6881909602355868}, {
1.3763819204711736`, -1.618033988749895,
0.6881909602355868}, {-0.16245984811645317`, -2.118033988749895,
0.6881909602355868}, {-1.3763819204711736`, -1.618033988749895, \
-0.6881909602355868}, {0.6881909602355868, -2.118033988749895,
0.16245984811645317`}}],
Polygon3DBox[{{1, 21, 34}, {3, 11, 14}, {5, 33, 25}, {6, 15, 16}, {
7, 38, 8}, {9, 13, 52}, {17, 18, 54}, {19, 29, 31}, {20, 32,
30}, {22, 35, 26}, {23, 36, 27}, {24, 28, 37}, {39, 43, 51}, {41,
45, 53}, {47, 55, 49}, {1, 3, 14, 13}, {1, 13, 9, 21}, {2, 35, 22,
10}, {3, 36, 23, 11}, {4, 12, 24, 37}, {5, 15, 6, 33}, {5, 25,
34, 21}, {6, 22, 26, 33}, {7, 8, 18, 17}, {7, 23, 27, 38}, {8, 38,
28, 24}, {9, 52, 43, 39}, {11, 41, 53, 14}, {15, 39, 51, 16}, {
16, 51, 44, 40}, {17, 54, 45, 41}, {18, 42, 46, 54}, {19, 31, 27,
36}, {19, 34, 25, 29}, {20, 30, 26, 35}, {20, 37, 28, 32}, {29,
30, 32, 31}, {43, 52, 55, 47}, {45, 49, 55, 53}, {47, 49, 50,
48}, {1, 34, 19, 36, 3}, {2, 4, 37, 20, 35}, {5, 21, 9, 39, 15}, {
6, 16, 40, 10, 22}, {7, 17, 41, 11, 23}, {8, 24, 12, 42, 18}, {13,
14, 53, 55, 52}, {25, 33, 26, 30, 29}, {27, 31, 32, 28, 38}, {43,
47, 48, 44, 51}, {45, 54, 46, 50, 49}, {2, 10, 40, 44, 48, 50,
46, 42, 12, 4}}]],
TagBox[
GridBox[{{"78"}, {
"\"MetagyrateDiminishedRhombicosidodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{78, "MetagyrateDiminishedRhombicosidodecahedron"}],
"Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -4189.090909090909},
ImageScaled[{0.5, 0.5}], {360, 360},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (2 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2 5^Rational[-1, 2],
Rational[-1, 10] (25 - 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 10] (145 + 62 5^Rational[1, 2])^Rational[1, 2]}, {-1 -
2 5^Rational[-1, 2], Root[1 - 25 #^2 + 125 #^4& , 3, 0],
Rational[1, 10] (85 + 22 5^Rational[1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Root[
1 - 20 #^2 + 80 #^4& , 3, 0], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] + 2 5^Rational[-1, 2],
Rational[-1, 10] (85 + 38 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 10] (85 + 22 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[3, 4] + Rational[13, 4] 5^Rational[-1, 2],
Rational[-1, 10] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 10] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] + 2 5^Rational[-1, 2],
Rational[-1, 10] (25 - 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 10] (145 + 62 5^Rational[1, 2])^Rational[1, 2]}, {
1 + 2 5^Rational[-1, 2],
Rational[1, 10] (10 - 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 10] (85 + 22 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
1 + 2 5^Rational[-1, 2],
Rational[-3, 5] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 10] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[1, 10] (5 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2] - 2 5^Rational[-1, 2],
Rational[-1, 10] (85 + 38 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 10] (85 + 22 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-3, 4] + Rational[-13, 4] 5^Rational[-1, 2],
Rational[-1, 10] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 10] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 -
2 5^Rational[-1, 2],
Rational[-3, 5] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 10] (5 + 2 5^Rational[1, 2])^
Rational[1, 2]}}, {{-0.5, -0.6881909602355868,
2.0645728807067605`}, {
1.618033988749895, 0, -1.5388417685876268`}, {-0.8090169943749475,
0.2628655560595668, 2.0645728807067605`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, \
-0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3944271909999157`, -0.45307685931859754`,
1.6841502741886991`}, {-1.8944271909999157`, 0.23511410091698925`,
1.1584191620695654`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, \
{-1.3090169943749475`, 1.8017073246471935`,
0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {0.8090169943749475,
0.2628655560595668, 2.0645728807067605`}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {
0.5, -1.5388417685876268`, 1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-0.5, 1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3944271909999157`, -1.3037276676706375`, 1.1584191620695654`}, {
2.203444185374863, -0.1902113032590307, 0.30776835371752537`}, {
0.5, 1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, {
1.3944271909999157`, -0.45307685931859754`,
1.6841502741886991`}, {1.8944271909999157`, 0.23511410091698925`,
1.1584191620695654`}, {1.3090169943749475`, 0.9510565162951535,
1.5388417685876268`}, {1.8090169943749475`, 1.1135163644116066`,
0.6881909602355868}, {1.8944271909999157`, -1.141267819554184,
0.30776835371752537`}, {0.5, -0.6881909602355868,
2.0645728807067605`}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, {
0, 0.85065080835204, 2.0645728807067605`}, {1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {0.5,
2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, \
{-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \
{-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.3944271909999157`, -1.3037276676706375`,
1.1584191620695654`}, {-2.203444185374863, -0.1902113032590307,
0.30776835371752537`}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-1.8944271909999157`, \
-1.141267819554184, 0.30776835371752537`}}],
Polygon3DBox[{{1, 3, 13}, {5, 25, 21}, {6, 22, 33}, {7, 38, 8}, {9,
52, 39}, {11, 41, 14}, {15, 51, 16}, {17, 18, 54}, {19, 34, 29}, {
20, 26, 35}, {23, 36, 27}, {24, 28, 37}, {30, 32, 31}, {43, 55,
47}, {45, 49, 53}, {1, 9, 21, 34}, {1, 13, 52, 9}, {2, 35, 22,
10}, {3, 11, 14, 13}, {3, 36, 23, 11}, {4, 12, 24, 37}, {5, 6, 33,
25}, {5, 15, 16, 6}, {7, 8, 18, 17}, {7, 23, 27, 38}, {8, 38, 28,
24}, {14, 41, 45, 53}, {15, 39, 43, 51}, {16, 51, 44, 40}, {17,
54, 45, 41}, {18, 42, 46, 54}, {19, 29, 30, 31}, {19, 31, 27,
36}, {20, 32, 30, 26}, {20, 37, 28, 32}, {21, 25, 29, 34}, {22,
35, 26, 33}, {39, 52, 55, 43}, {47, 49, 50, 48}, {47, 55, 53,
49}, {1, 34, 19, 36, 3}, {2, 4, 37, 20, 35}, {5, 21, 9, 39, 15}, {
6, 16, 40, 10, 22}, {7, 17, 41, 11, 23}, {8, 24, 12, 42, 18}, {13,
14, 53, 55, 52}, {25, 33, 26, 30, 29}, {27, 31, 32, 28, 38}, {43,
47, 48, 44, 51}, {45, 54, 46, 50, 49}, {2, 10, 40, 44, 48, 50,
46, 42, 12, 4}}]],
TagBox[
GridBox[{{"79"}, {"\"BigyrateDiminishedRhombicosidodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{79, "BigyrateDiminishedRhombicosidodecahedron"}],
"Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -4189.090909090909},
ImageScaled[{0.5, 0.5}], {360, 357},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 4] (34 + 62 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 4] (26 + 58 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[9, 4] +
Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
0, (Rational[5, 2] + Rational[11, 2] 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
0, Root[1 - 25 #^2 + 5 #^4& , 1, 0],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), Root[
1 - 100 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), (Rational[13, 8] +
Rational[29, 8] 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 0,
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[9, 4] + Rational[9, 2] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^
Rational[1, 2]), -(Rational[17, 8] +
Rational[31, 8] 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), (Rational[5, 8] +
Rational[11, 8] 5^Rational[-1, 2])^
Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {(-3 +
5^Rational[1, 2])^(-1), Root[1 - 260 #^2 + 80 #^4& , 1, 0],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], (Rational[1, 4] +
Rational[1, 2] 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 4] (10 + 22 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 2] (5 + 5^Rational[1, 2]))^
Rational[1, 2],
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 0,
Rational[-1, 2] (5 + 2 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2],
Rational[-3, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(1 + 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2], (
Rational[1, 4] + Rational[1, 2] 5^Rational[-1, 2])^
Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (1 + 2 5^Rational[-1, 2])^
Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2] (1 + 2 5^Rational[-1, 2])^Rational[1, 2],
Rational[1, 2] (1 - 2 5^Rational[-1, 2])^Rational[1, 2]}}, {{
1.618033988749895, 0, -1.5388417685876268`}, {1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, {
0.8090169943749475, -1.9641671727636467`, 0.6881909602355868}, {
1.3090169943749475`, -1.8017073246471935`, \
-0.16245984811645317`}, {-0.5, 2.0645728807067605`, 0.6881909602355868}, {
0, 2.2270327288232132`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-1.3090169943749475`, 0.9510565162951535, 1.5388417685876268`}, {0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749475`, -0.9510565162951535,
1.5388417685876268`}, {-1.618033988749895, 0,
1.5388417685876268`}, {
0, -2.2270327288232132`, 0.16245984811645317`}, {
0.5, -2.0645728807067605`, -0.6881909602355868}, \
{-1.3090169943749475`, 1.8017073246471935`,
0.16245984811645317`}, {-0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {
0.5, -1.5388417685876268`, 1.5388417685876268`}, {
1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-0.5, 1.5388417685876268`, 1.5388417685876268`}, {0.8090169943749475,
1.9641671727636467`, -0.6881909602355868}, {
1.3090169943749475`, -0.9510565162951535, 1.5388417685876268`}, {
2.118033988749895, -0.6881909602355868, 0.16245984811645317`}, {
0.5, 1.5388417685876268`, 1.5388417685876268`}, {
1.3090169943749475`, 1.8017073246471935`, 0.16245984811645317`}, {
1.618033988749895, 0, 1.5388417685876268`}, {2.118033988749895,
0.16245984811645317`, 0.6881909602355868}, {1.3090169943749475`,
0.9510565162951535, 1.5388417685876268`}, {1.8090169943749475`,
1.1135163644116066`, 0.6881909602355868}, {
1.618033988749895, -1.3763819204711736`, 0.6881909602355868}, {
2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, {
1.618033988749895, 1.3763819204711736`, -0.6881909602355868}, {
0.5, 2.0645728807067605`,
0.6881909602355868}, {-0.8090169943749475, -1.9641671727636467`,
0.6881909602355868}, {
0.5, -1.5388417685876268`, -1.5388417685876268`}, \
{-1.8090169943749475`, 1.1135163644116066`, 0.6881909602355868}, {-0.5,
1.5388417685876268`, -1.5388417685876268`}, \
{-1.3090169943749477`, -1.8017073246471935`, -0.16245984811645317`}, {-0.5, \
-1.5388417685876268`, -1.5388417685876268`}, {-2.118033988749895,
0.6881909602355868, -0.16245984811645317`}, {-1.3090169943749475`,
0.9510565162951535, -1.5388417685876268`}, \
{-1.8090169943749475`, -1.1135163644116066`, -0.6881909602355868}, \
{-1.3090169943749475`, -0.9510565162951535, -1.5388417685876268`}, \
{-2.118033988749895, -0.16245984811645317`, -0.6881909602355868}, \
{-1.618033988749895,
0, -1.5388417685876268`}, {-0.5, -2.0645728807067605`, \
-0.6881909602355868}, {-1.618033988749895, -1.3763819204711736`,
0.6881909602355868}, {-2.118033988749895, 0.16245984811645317`,
0.6881909602355868}, {-1.618033988749895,
1.3763819204711736`, -0.6881909602355868}, {-2.118033988749895, \
-0.6881909602355868, 0.16245984811645317`}}],
Polygon3DBox[{{3, 4, 30}, {5, 33, 6}, {13, 46, 14}, {15, 16, 49}, {
17, 29, 27}, {19, 31, 23}, {21, 25, 32}, {34, 47, 38}, {36, 40,
48}, {42, 50, 44}, {1, 31, 19, 8}, {2, 10, 21, 32}, {3, 13, 14,
4}, {3, 30, 22, 18}, {4, 19, 23, 30}, {5, 6, 16, 15}, {5, 20, 24,
33}, {6, 33, 25, 21}, {7, 11, 47, 34}, {9, 36, 48, 12}, {13, 34,
38, 46}, {14, 46, 39, 35}, {15, 49, 40, 36}, {16, 37, 41, 49}, {
17, 27, 23, 31}, {17, 32, 25, 29}, {26, 27, 29, 28}, {38, 47, 50,
42}, {40, 44, 50, 48}, {42, 44, 45, 43}, {1, 2, 32, 17, 31}, {3,
18, 7, 34, 13}, {4, 14, 35, 8, 19}, {5, 15, 36, 9, 20}, {6, 21,
10, 37, 16}, {11, 12, 48, 50, 47}, {22, 30, 23, 27, 26}, {24, 28,
29, 25, 33}, {38, 42, 43, 39, 46}, {40, 49, 41, 45, 44}, {1, 8,
35, 39, 43, 45, 41, 37, 10, 2}, {7, 18, 22, 26, 28, 24, 20, 9, 12,
11}}]],
TagBox[
GridBox[{{"80"}, {"\"ParabidiminishedRhombicosidodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{80, "ParabidiminishedRhombicosidodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -4189.090909090909},
ImageScaled[{0.5, 0.5}], {360, 357},
ContentSelectable->True]}, {InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], Rational[-1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[-1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2]}, {
0, (-3 + 5^Rational[1, 2])^(-1),
Rational[1, 4] (-5 - 5^Rational[1, 2])}, {
0, Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-5 - 5^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
0, (-3 + 5^Rational[1, 2])^(-1)}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), 0,
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1)}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1)}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2],
Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2], Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2],
Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2], Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1),
Rational[1, 4] (-5 - 5^Rational[1, 2]),
0}, {(-3 + 5^Rational[1, 2])^(-1),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[1, 4] (5 + 5^Rational[1, 2]),
0}, {Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1)}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1)}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2],
Rational[-1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2], Rational[
1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2], Rational[
1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-5 - 5^Rational[1, 2]), 0}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (5 + 5^Rational[1, 2]), 0}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
0, (-3 + 5^Rational[1, 2])^(-1)}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), 0,
Rational[1, 4] (3 +
5^Rational[
1, 2])}}, {{-0.5, -0.5, -2.118033988749895}, {-0.5, -0.5,
2.118033988749895}, {-0.5, 0.5, -2.118033988749895}, {-0.5, 0.5,
2.118033988749895}, {-0.5, -2.118033988749895, -0.5}, {-0.5,
2.118033988749895, -0.5}, {
0, -1.3090169943749477`, -1.8090169943749475`}, {
0, 1.3090169943749475`, -1.8090169943749475`}, {
0.5, -0.5, -2.118033988749895}, {0.5, -0.5, 2.118033988749895}, {
0.5, 0.5, -2.118033988749895}, {0.5, 0.5, 2.118033988749895}, {
0.5, -2.118033988749895, -0.5}, {0.5,
2.118033988749895, -0.5}, {-1.8090169943749475`,
0, -1.3090169943749477`}, {-1.8090169943749475`, 0,
1.3090169943749475`}, {-0.8090169943749475, -1.618033988749895, \
-1.3090169943749477`}, {-0.8090169943749475,
1.618033988749895, -1.3090169943749477`}, {-1.618033988749895, \
-1.3090169943749477`, -0.8090169943749475}, {-1.618033988749895, \
-1.3090169943749477`, 0.8090169943749475}, {-1.618033988749895,
1.3090169943749475`, -0.8090169943749475}, {-1.618033988749895,
1.3090169943749475`,
0.8090169943749475}, {-2.118033988749895, -0.5, -0.5}, \
{-2.118033988749895, -0.5, 0.5}, {-2.118033988749895,
0.5, -0.5}, {-2.118033988749895, 0.5,
0.5}, {-1.3090169943749477`, -1.8090169943749475`,
0}, {-1.3090169943749477`, -0.8090169943749475, \
-1.618033988749895}, {-1.3090169943749477`, -0.8090169943749475,
1.618033988749895}, {-1.3090169943749477`,
0.8090169943749475, -1.618033988749895}, {-1.3090169943749477`,
0.8090169943749475,
1.618033988749895}, {-1.3090169943749477`, 1.8090169943749475`,
0}, {0.8090169943749475, -1.618033988749895, \
-1.3090169943749477`}, {0.8090169943749475,
1.618033988749895, -1.3090169943749477`}, {
1.618033988749895, -1.3090169943749477`, -0.8090169943749475}, {
1.618033988749895, -1.3090169943749477`, 0.8090169943749475}, {
1.618033988749895, 1.3090169943749475`, -0.8090169943749475}, {
1.618033988749895, 1.3090169943749475`, 0.8090169943749475}, {
2.118033988749895, -0.5, -0.5}, {2.118033988749895, -0.5, 0.5}, {
2.118033988749895, 0.5, -0.5}, {2.118033988749895, 0.5, 0.5}, {
1.3090169943749475`, -1.8090169943749475`, 0}, {
1.3090169943749475`, -0.8090169943749475, -1.618033988749895}, {
1.3090169943749475`, -0.8090169943749475, 1.618033988749895}, {
1.3090169943749475`, 0.8090169943749475, -1.618033988749895}, {
1.3090169943749475`, 0.8090169943749475, 1.618033988749895}, {
1.3090169943749475`, 1.8090169943749475`, 0}, {
1.8090169943749475`, 0, -1.3090169943749477`}, {
1.8090169943749475`, 0, 1.3090169943749475`}}],
Polygon3DBox[{{1, 9, 7}, {3, 8, 11}, {15, 23, 25}, {16, 26, 24}, {
17, 19, 28}, {18, 30, 21}, {33, 44, 35}, {34, 37, 46}, {39, 49,
41}, {40, 42, 50}, {1, 3, 11, 9}, {1, 7, 17, 28}, {2, 10, 12,
4}, {3, 30, 18, 8}, {5, 27, 19, 17}, {6, 18, 21, 32}, {7, 9, 44,
33}, {8, 34, 46, 11}, {13, 33, 35, 43}, {14, 48, 37, 34}, {15, 25,
21, 30}, {15, 28, 19, 23}, {16, 24, 20, 29}, {16, 31, 22, 26}, {
23, 24, 26, 25}, {35, 44, 49, 39}, {36, 40, 50, 45}, {37, 41, 49,
46}, {38, 47, 50, 42}, {39, 41, 42, 40}, {1, 28, 15, 30, 3}, {2,
4, 31, 16, 29}, {5, 17, 7, 33, 13}, {6, 14, 34, 8, 18}, {9, 11,
46, 49, 44}, {10, 45, 50, 47, 12}, {19, 27, 20, 24, 23}, {21, 25,
26, 22, 32}, {35, 39, 40, 36, 43}, {37, 48, 38, 42, 41}, {2, 29,
20, 27, 5, 13, 43, 36, 45, 10}, {4, 12, 47, 38, 48, 14, 6, 32, 22,
31}}]],
TagBox[
GridBox[{{"81"}, {"\"MetabidiminishedRhombicosidodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{81, "MetabidiminishedRhombicosidodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {196.36363636363637, -4747.636363636363},
ImageScaled[{0.5, 0.5}], {360, 365},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], Rational[-1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2], -1 +
Rational[-1, 2] 5^Rational[1, 2]}, {
Rational[-1, 2], Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[-1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2]}, {
Rational[-1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2]}, {
0, (-3 + 5^Rational[1, 2])^(-1),
Rational[1, 4] (-5 - 5^Rational[1, 2])}, {
0, Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-5 - 5^Rational[1, 2])}, {
Rational[1, 20] (5 + 5^Rational[1, 2]), 0, Rational[-3, 4] +
Rational[-13, 4] 5^Rational[-1, 2]}, {
Rational[1, 2], Rational[-1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 20] (15 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]), -1 - 2
5^Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2],
Rational[1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 2], -1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2], Rational[1, 2] (2 + 5^Rational[1, 2]),
Rational[-1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
0, (-3 + 5^Rational[1, 2])^(-1)}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]), 0,
Rational[1, 4] (3 + 5^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1)}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1)}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2],
Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[-1, 2], Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], Rational[1, 2],
Rational[-1, 2]}, {-1 + Rational[-1, 2] 5^Rational[1, 2],
Rational[1, 2], Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1),
Rational[1, 4] (-5 - 5^Rational[1, 2]),
0}, {(-3 + 5^Rational[1, 2])^(-1),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[1, 4] (5 + 5^Rational[1, 2]),
0}, {Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (-1 - 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1)}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1)}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), (-3 +
5^Rational[1, 2])^(-1),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2])}, {
Rational[1, 2] (1 + 5^Rational[1, 2]),
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2])}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2],
Rational[-1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2], Rational[
1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2],
Rational[-1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[1, 2], Rational[
1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-5 - 5^Rational[1, 2]), 0}, {
Rational[1, 20] (15 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]), -1 - 2
5^Rational[-1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {
1 + Rational[3, 2] 5^Rational[-1, 2], Rational[1, 2],
Rational[-1, 2] - 2 5^Rational[-1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (1 + 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 4] (5 + 5^Rational[1, 2]), 0}, {
1 + Rational[3, 2] 5^Rational[-1, 2], Rational[-1, 2],
Rational[-1, 2] - 2 5^Rational[-1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]), 0,
Rational[1, 4] (3 +
5^Rational[
1, 2])}}, {{-0.5, -0.5, -2.118033988749895}, {-0.5, -0.5,
2.118033988749895}, {-0.5, 0.5, -2.118033988749895}, {-0.5, 0.5,
2.118033988749895}, {-0.5, -2.118033988749895, -0.5}, {-0.5,
2.118033988749895, -0.5}, {
0, -1.3090169943749477`, -1.8090169943749475`}, {
0, 1.3090169943749475`, -1.8090169943749475`}, {
0.3618033988749895, 0, -2.203444185374863}, {0.5, -0.5,
2.118033988749895}, {0.8618033988749896,
0.8090169943749475, -1.8944271909999157`}, {0.5, 0.5,
2.118033988749895}, {0.5, -2.118033988749895, -0.5}, {0.5,
2.118033988749895, -0.5}, {-1.8090169943749475`,
0, -1.3090169943749477`}, {-1.8090169943749475`, 0,
1.3090169943749475`}, {-0.8090169943749475, -1.618033988749895, \
-1.3090169943749477`}, {-0.8090169943749475,
1.618033988749895, -1.3090169943749477`}, {-1.618033988749895, \
-1.3090169943749477`, -0.8090169943749475}, {-1.618033988749895, \
-1.3090169943749477`, 0.8090169943749475}, {-1.618033988749895,
1.3090169943749475`, -0.8090169943749475}, {-1.618033988749895,
1.3090169943749475`,
0.8090169943749475}, {-2.118033988749895, -0.5, -0.5}, \
{-2.118033988749895, -0.5, 0.5}, {-2.118033988749895,
0.5, -0.5}, {-2.118033988749895, 0.5,
0.5}, {-1.3090169943749477`, -1.8090169943749475`,
0}, {-1.3090169943749477`, -0.8090169943749475, \
-1.618033988749895}, {-1.3090169943749477`, -0.8090169943749475,
1.618033988749895}, {-1.3090169943749477`,
0.8090169943749475, -1.618033988749895}, {-1.3090169943749477`,
0.8090169943749475,
1.618033988749895}, {-1.3090169943749477`, 1.8090169943749475`,
0}, {0.8090169943749475, -1.618033988749895, \
-1.3090169943749477`}, {0.8090169943749475,
1.618033988749895, -1.3090169943749477`}, {
1.618033988749895, -1.3090169943749477`, -0.8090169943749475}, {
1.618033988749895, -1.3090169943749477`, 0.8090169943749475}, {
1.618033988749895, 1.3090169943749475`, -0.8090169943749475}, {
1.618033988749895, 1.3090169943749475`, 0.8090169943749475}, {
2.118033988749895, -0.5, -0.5}, {2.118033988749895, -0.5, 0.5}, {
2.118033988749895, 0.5, -0.5}, {2.118033988749895, 0.5, 0.5}, {
1.3090169943749475`, -1.8090169943749475`, 0}, {
0.8618033988749896, -0.8090169943749475, -1.8944271909999157`}, {
1.3090169943749475`, -0.8090169943749475, 1.618033988749895}, {
1.670820393249937, 0.5, -1.3944271909999157`}, {
1.3090169943749475`, 0.8090169943749475, 1.618033988749895}, {
1.3090169943749475`, 1.8090169943749475`, 0}, {
1.670820393249937, -0.5, -1.3944271909999157`}, {
1.8090169943749475`, 0, 1.3090169943749475`}}],
Polygon3DBox[{{1, 3, 9}, {7, 44, 33}, {8, 34, 11}, {15, 23, 25}, {
16, 26, 24}, {17, 19, 28}, {18, 30, 21}, {35, 49, 39}, {37, 41,
46}, {40, 42, 50}, {1, 7, 17, 28}, {1, 9, 44, 7}, {2, 10, 12,
4}, {3, 8, 11, 9}, {3, 30, 18, 8}, {5, 27, 19, 17}, {6, 18, 21,
32}, {11, 34, 37, 46}, {13, 33, 35, 43}, {14, 48, 37, 34}, {15,
25, 21, 30}, {15, 28, 19, 23}, {16, 24, 20, 29}, {16, 31, 22,
26}, {23, 24, 26, 25}, {33, 44, 49, 35}, {36, 40, 50, 45}, {38,
47, 50, 42}, {39, 41, 42, 40}, {39, 49, 46, 41}, {1, 28, 15, 30,
3}, {2, 4, 31, 16, 29}, {5, 17, 7, 33, 13}, {6, 14, 34, 8, 18}, {
9, 11, 46, 49, 44}, {10, 45, 50, 47, 12}, {19, 27, 20, 24, 23}, {
21, 25, 26, 22, 32}, {35, 39, 40, 36, 43}, {37, 48, 38, 42, 41}, {
2, 29, 20, 27, 5, 13, 43, 36, 45, 10}, {4, 12, 47, 38, 48, 14, 6,
32, 22, 31}}]],
TagBox[
GridBox[{{"82"}, {"\"GyrateBidiminishedRhombicosidodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{82, "GyrateBidiminishedRhombicosidodecahedron"}],
"Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {589.0909090909091, -4747.636363636363},
ImageScaled[{0.5, 0.5}], {360, 366},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], Rational[1, 2] 3^Rational[-1, 2],
Rational[-1, 2] 3^Rational[-1, 2] (3 + 2 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2]), (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[-1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] 3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2]
3^Rational[-1, 2] (4 + 5^Rational[1, 2]), Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[5, 3]^Rational[1, 2] +
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2]
3^Rational[-1, 2]}, {
Rational[-1, 2], (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^
Rational[1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
0, -3^Rational[-1, 2],
Rational[-1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^
Rational[1, 2]}, {
0, (Rational[2, 3] (3 + 5^Rational[1, 2]))^Rational[1, 2],
Rational[-1, 2] 3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
0, 3^Rational[-1, 2], Rational[5, 3]^Rational[1, 2] +
Rational[1, 2] 3^Rational[1, 2]}, {
Rational[1, 2], Rational[1, 2] 3^Rational[-1, 2], Rational[-1, 2]
3^Rational[-1, 2] (3 + 2 5^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2]), (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[
1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^
Rational[1, 2], Rational[-1, 2]
3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 2] (Rational[29, 3] + 4 5^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], Rational[-1, 2]
3^Rational[-1, 2] (4 + 5^Rational[1, 2]), Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 2], Rational[5, 3]^Rational[1, 2] +
Rational[1, 2] 3^Rational[1, 2], Rational[1, 2]
3^Rational[-1, 2]}, {
Rational[
1, 2], (Rational[7, 4] + Rational[2, 3] 5^Rational[1, 2])^
Rational[1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], -(Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-5 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], -(Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), (Rational[47, 24] +
Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^
Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], -(Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (-1 - 5^Rational[1, 2]), 2 3^Rational[-1, 2]/(-3 +
5^Rational[1, 2]), Rational[1, 2] 3^Rational[-1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2]
3^Rational[-1, 2], Rational[-1, 2]
Rational[5, 3]^Rational[1, 2]}, {-1 +
Rational[-1, 2] 5^Rational[1, 2], Rational[-1, 2]
Rational[5, 3]^Rational[1, 2], Rational[1, 2]
3^Rational[-1, 2]}, {(-3 + 5^Rational[1, 2])^(-1),
Rational[-1, 2] (Rational[5, 6] (7 + 3 5^Rational[1, 2]))^
Rational[1, 2], Rational[-1, 2]
Rational[5, 3]^Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1),
Root[1 - 36 #^2 + 144 #^4& , 2, 0], Rational[-1, 2]
3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Rational[-1, 4]
3^Rational[-1, 2] (7 + 5^Rational[1, 2]), (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^
Rational[1, 2]}, {(-3 + 5^Rational[1, 2])^(-1), Rational[1, 4]
3^Rational[-1, 2] (7 + 5^Rational[1, 2]), Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {(-3 +
5^Rational[1, 2])^(-1), Root[
1 - 36 #^2 + 144 #^4& , 3, 0], (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], -(Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), (Rational[47, 24] +
Rational[7, 8] 5^Rational[1, 2])^Rational[1, 2],
Rational[-1, 2] Rational[5, 3]^Rational[1, 2]}, {
Rational[1, 4] (1 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[5, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 +
5^Rational[1, 2]), -(Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], -(Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 2] (1 + 5^Rational[1, 2]), 2 3^Rational[-1, 2]/(-3 +
5^Rational[1, 2]), Rational[1, 2] 3^Rational[-1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2]
3^Rational[-1, 2], Rational[-1, 2]
Rational[5, 3]^Rational[1, 2]}, {
Rational[1, 2] (2 + 5^Rational[1, 2]), Rational[-1, 2]
Rational[5, 3]^Rational[1, 2], Rational[1, 2]
3^Rational[-1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[5, 6] (7 + 3 5^Rational[1, 2]))^
Rational[1, 2], Rational[-1, 2]
Rational[5, 3]^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 2, 0], Rational[-1, 2]
3^Rational[-1, 2] (4 + 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[-1, 4]
3^Rational[-1, 2] (7 + 5^Rational[1, 2]), (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4]
3^Rational[-1, 2] (7 + 5^Rational[1, 2]), Rational[-1, 2]
3^Rational[-1, 2] (2 + 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Root[
1 - 36 #^2 + 144 #^4& , 3, 0], (Rational[7, 4] +
Rational[2, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
Rational[1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], -(Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}, {
Rational[1, 4] (5 + 5^Rational[1, 2]),
Rational[-1, 2] (Rational[1, 6] (3 + 5^Rational[1, 2]))^
Rational[1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2]}}, {{-0.5,
0.2886751345948129, -2.1570198525202446`}, {-0.5, \
-1.2228474935575289`, 1.8001977627471544`}, {-0.5,
1.2228474935575286`, -1.8001977627471546`}, {-0.5, \
-0.2886751345948129,
2.157019852520244}, {-0.5, -1.8001977627471546`, \
-1.2228474935575289`}, {-0.5, 2.157019852520244, 0.2886751345948129}, {-0.5,
1.8001977627471544`, 1.2228474935575286`}, {
0, -0.5773502691896258, -2.157019852520244}, {
0, 1.8683447179254313`, -1.2228474935575289`}, {
0, 0.5773502691896258, 2.157019852520244}, {0.5,
0.2886751345948129, -2.1570198525202446`}, {
0.5, -1.2228474935575289`, 1.8001977627471544`}, {0.5,
1.2228474935575286`, -1.8001977627471546`}, {
0.5, -0.2886751345948129, 2.157019852520244}, {
0.5, -1.8001977627471546`, -1.2228474935575289`}, {0.5,
2.157019852520244, 0.2886751345948129}, {0.5, 1.8001977627471544`,
1.2228474935575286`}, {-1.8090169943749475`,
0.46708617948135783`, -1.2228474935575286`}, \
{-1.8090169943749475`, -0.46708617948135783`,
1.2228474935575286`}, {-0.8090169943749475, -1.0444364486709836`, \
-1.8001977627471544`}, {-0.8090169943749475,
1.9786088076336994`, -0.6454972243679028}, {-0.8090169943749475,
1.0444364486709836`,
1.8001977627471544`}, {-1.618033988749895, -0.9341723589627157, \
-1.2228474935575286`}, {-1.618033988749895, -1.511522628152342,
0.2886751345948129}, {-2.118033988749895, -0.2886751345948129, \
-0.6454972243679028}, {-2.118033988749895, -0.6454972243679028,
0.2886751345948129}, {-1.3090169943749477`, -1.6899336730388865`, \
-0.6454972243679028}, {-1.3090169943749477`, -0.17841104488654497`, \
-1.8001977627471546`}, {-1.3090169943749477`, -1.3331115832657967`,
1.2228474935575286`}, {-1.3090169943749477`,
1.3331115832657967`, -1.2228474935575289`}, {-1.3090169943749477`,
0.17841104488654497`, 1.8001977627471544`}, {
0.8090169943749475, -1.0444364486709836`, -1.8001977627471544`}, {
0.8090169943749475, 1.9786088076336994`, -0.6454972243679028}, {
0.8090169943749475, 1.0444364486709836`, 1.8001977627471544`}, {
1.618033988749895, -0.9341723589627157, -1.2228474935575286`}, {
1.618033988749895, -1.511522628152342, 0.2886751345948129}, {
2.118033988749895, -0.2886751345948129, -0.6454972243679028}, {
2.118033988749895, -0.6454972243679028, 0.2886751345948129}, {
1.3090169943749475`, -1.6899336730388865`, -0.6454972243679028}, {
1.3090169943749475`, -0.17841104488654497`, \
-1.8001977627471546`}, {1.3090169943749475`, -1.3331115832657967`,
1.2228474935575286`}, {1.3090169943749475`,
1.3331115832657967`, -1.2228474935575289`}, {1.3090169943749475`,
0.17841104488654497`, 1.8001977627471544`}, {1.8090169943749475`,
0.46708617948135783`, -1.2228474935575286`}, {
1.8090169943749475`, -0.46708617948135783`,
1.2228474935575286`}}],
Polygon3DBox[{{1, 11, 8}, {3, 9, 13}, {4, 14, 10}, {20, 23, 28}, {
32, 40, 35}, {1, 3, 13, 11}, {1, 8, 20, 28}, {2, 12, 14, 4}, {3,
30, 21, 9}, {4, 10, 22, 31}, {5, 27, 23, 20}, {6, 7, 17, 16}, {8,
11, 40, 32}, {9, 33, 42, 13}, {10, 14, 43, 34}, {15, 32, 35,
39}, {18, 28, 23, 25}, {19, 26, 24, 29}, {35, 40, 44, 37}, {36,
38, 45, 41}, {1, 28, 18, 30, 3}, {2, 4, 31, 19, 29}, {5, 20, 8,
32, 15}, {6, 16, 33, 9, 21}, {7, 22, 10, 34, 17}, {11, 13, 42, 44,
40}, {12, 41, 45, 43, 14}, {23, 27, 24, 26, 25}, {35, 37, 38, 36,
39}, {2, 29, 24, 27, 5, 15, 39, 36, 41, 12}, {6, 21, 30, 18, 25,
26, 19, 31, 22, 7}, {16, 17, 34, 43, 45, 38, 37, 44, 42, 33}}]],
TagBox[
GridBox[{{"83"}, {"\"TridiminishedRhombicosidodecahedron\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{83, "TridiminishedRhombicosidodecahedron"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {981.818181818182, -4747.636363636363},
ImageScaled[{0.5, 0.5}], {360, 397},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{Rational[-1, 2], 0, 0}, {
0, Rational[-1, 2], Root[-4 - 8 #^2 - #^4 + 2 #^6& , 2, 0]}, {
0, Rational[1, 2], Root[-4 - 8 #^2 - #^4 + 2 #^6& , 2, 0]}, {
0, Root[-2 - 2 # + 3 #^2 + 2 #^3& , 2, 0],
Root[-1 - 22 #^2 + 64 #^4 + 32 #^6& , 2, 0]}, {
0, Root[2 - 2 # - 3 #^2 + 2 #^3& , 2, 0],
Root[-1 - 22 #^2 + 64 #^4 + 32 #^6& , 2, 0]}, {
Rational[1, 2], 0, 0}, {
Root[-2 - 2 # + 3 #^2 + 2 #^3& , 2, 0], 0,
Root[-8 - 15 #^2 + 8 #^4 + 16 #^6& , 2, 0]}, {
Root[2 - 2 # - 3 #^2 + 2 #^3& , 2, 0], 0,
Root[-8 - 15 #^2 + 8 #^4 + 16 #^6& , 2, 0]}}, {{-0.5, 0, 0}, {
0, -0.5, 1.5678618484651274`}, {0, 0.5, 1.5678618484651274`}, {
0, -0.644584273224155, 0.5783693583793041}, {
0, 0.6445842732241549, 0.5783693583793041}, {
0.5, 0, 0}, {-0.644584273224155, 0, 0.9894924900858232}, {
0.6445842732241549, 0, 0.9894924900858232}}],
Polygon3DBox[{{2, 3, 7}, {3, 2, 8}, {4, 2, 7}, {2, 4, 8}, {6, 8,
4}, {4, 1, 6}, {7, 1, 4}, {3, 5, 7}, {8, 5, 3}, {5, 8, 6}, {5, 6,
1}, {5, 1, 7}}]],
TagBox[
GridBox[{{"84"}, {"\"SnubDisphenoid\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{84, "SnubDisphenoid"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1374.5454545454545, -4747.636363636363},
ImageScaled[{0.5, 0.5}], {360, 509},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Root[1 - 8 # + 12 #^2 + 12 #^3 - 11 #^4 - 4 #^5 + 2 #^6& , 2, 0],
0, Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 +
73728 #^10 + 8192 #^12& , 4, 0]}, {
Root[-1 + 4 # + 32 #^2 - 16 #^3 - 52 #^4 + 16 #^5 + 16 #^6& , 2,
0], Root[-1 + 4 # + 32 #^2 - 16 #^3 - 52 #^4 + 16 #^5 +
16 #^6& , 2, 0],
Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 +
73728 #^10 + 8192 #^12& , 3, 0]}, {
Root[-1 + 4 # + 32 #^2 - 16 #^3 - 52 #^4 + 16 #^5 + 16 #^6& , 2,
0], Root[-1 - 4 # + 32 #^2 + 16 #^3 - 52 #^4 - 16 #^5 +
16 #^6& , 5, 0],
Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 +
73728 #^10 + 8192 #^12& , 3, 0]}, {-2^Rational[-1, 2], 0,
Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 +
8192 #^12& , 1, 0]}, {
Rational[-1, 2], Rational[-1, 2],
Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 +
8192 #^12& , 6, 0]}, {
Rational[-1, 2], Rational[1, 2],
Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 +
8192 #^12& , 6, 0]}, {
0, Root[1 - 8 # + 12 #^2 + 12 #^3 - 11 #^4 - 4 #^5 + 2 #^6& , 2,
0], Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 +
73728 #^10 + 8192 #^12& , 4, 0]}, {
0, -2^Rational[-1, 2],
Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 +
8192 #^12& , 1, 0]}, {
0, 2^Rational[-1, 2],
Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 +
8192 #^12& , 1, 0]}, {
0, Root[1 + 8 # + 12 #^2 - 12 #^3 - 11 #^4 + 4 #^5 + 2 #^6& , 5,
0], Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 +
73728 #^10 + 8192 #^12& , 4, 0]}, {
Rational[1, 2], Rational[-1, 2],
Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 +
8192 #^12& , 6, 0]}, {
Rational[1, 2], Rational[1, 2],
Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 +
8192 #^12& , 6, 0]}, {
2^Rational[-1, 2], 0,
Root[-1 + 688 #^2 - 512 #^4 - 8448 #^6 + 768 #^8 + 24576 #^10 +
8192 #^12& , 1, 0]}, {
Root[-1 - 4 # + 32 #^2 + 16 #^3 - 52 #^4 - 16 #^5 + 16 #^6& , 5,
0], Root[-1 + 4 # + 32 #^2 - 16 #^3 - 52 #^4 + 16 #^5 +
16 #^6& , 2, 0],
Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 +
73728 #^10 + 8192 #^12& , 3, 0]}, {
Root[-1 - 4 # + 32 #^2 + 16 #^3 - 52 #^4 - 16 #^5 + 16 #^6& , 5,
0], Root[-1 - 4 # + 32 #^2 + 16 #^3 - 52 #^4 - 16 #^5 +
16 #^6& , 5, 0],
Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 +
73728 #^10 + 8192 #^12& , 3, 0]}, {
Root[1 + 8 # + 12 #^2 - 12 #^3 - 11 #^4 + 4 #^5 + 2 #^6& , 5, 0],
0, Root[-1 - 112 #^2 + 5632 #^4 - 47872 #^6 + 90880 #^8 +
73728 #^10 + 8192 #^12& , 4, 0]}}, {{-1.2132055458663134`, 0,
0.18560702128217985`}, {-0.8578658684551972, \
-0.8578658684551972, -0.18560702128217985`}, {-0.8578658684551972,
0.8578658684551972, -0.18560702128217985`}, {-0.7071067811865475,
0, -0.6768685090313561}, {-0.5, -0.5, 0.6768685090313561}, {-0.5,
0.5, 0.6768685090313561}, {
0, -1.2132055458663134`, 0.18560702128217985`}, {
0, -0.7071067811865475, -0.6768685090313561}, {
0, 0.7071067811865475, -0.6768685090313561}, {
0, 1.2132055458663134`, 0.18560702128217985`}, {0.5, -0.5,
0.6768685090313561}, {0.5, 0.5, 0.6768685090313561}, {
0.7071067811865475, 0, -0.6768685090313561}, {
0.8578658684551972, -0.8578658684551972, -0.18560702128217985`}, {
0.8578658684551972, 0.8578658684551972, -0.18560702128217985`}, {
1.2132055458663134`, 0, 0.18560702128217985`}}],
Polygon3DBox[{{11, 12, 6, 5}, {4, 9, 13, 8}, {11, 7, 14}, {13, 14,
8}, {8, 14, 7}, {5, 7, 11}, {11, 14, 16}, {13, 16, 14}, {12, 16,
15}, {9, 15, 13}, {13, 15, 16}, {11, 16, 12}, {12, 15, 10}, {9,
10, 15}, {6, 10, 3}, {4, 3, 9}, {9, 3, 10}, {12, 10, 6}, {6, 3,
1}, {4, 1, 3}, {5, 1, 2}, {8, 2, 4}, {4, 2, 1}, {6, 1, 5}, {5, 2,
7}, {8, 7, 2}}]],
TagBox[
GridBox[{{"85"}, {"\"SnubSquareAntiprism\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{85, "SnubSquareAntiprism"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {1767.2727272727275, -4747.636363636363},
ImageScaled[{0.5, 0.5}], {360, 287},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[-1, 2], 0}, {0, Rational[1, 2], 0}, {
Rational[1, 30] (-6 - 6^Rational[1, 2] -
2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[1, 2],
Rational[
1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] +
Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], 0, (Rational[1, 2] (1 + 6^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 30] (-6 - 6^Rational[1, 2] -
2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2],
Rational[
1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] +
Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 30] (6 + 6^Rational[1, 2] +
2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[1, 2],
Rational[
1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] +
Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], 0, (Rational[1, 2] (1 + 6^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 30] (6 + 6^Rational[1, 2] +
2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2],
Rational[
1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] +
Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
0, Rational[1, 30] (9 - 6^Rational[1, 2] +
2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] +
Rational[1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
0, Rational[1, 30] (-9 + 6^Rational[1, 2] -
2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] +
Rational[1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}}, {{0, -0.5, 0}, {
0, 0.5, 0}, {-0.8527269428464169, 0.5,
0.5223569286836384}, {-0.5, 0,
1.3132954242635542`}, {-0.8527269428464169, -0.5,
0.5223569286836384}, {0.8527269428464169, 0.5,
0.5223569286836384}, {0.5, 0, 1.3132954242635542`}, {
0.8527269428464169, -0.5, 0.5223569286836384}, {
0, 0.7894276266608717, 0.9571999001908928}, {
0, -0.7894276266608717, 0.9571999001908928}}],
Polygon3DBox[{{3, 2, 1, 5}, {2, 6, 8, 1}, {3, 9, 2}, {9, 6, 2}, {9,
3, 4}, {6, 9, 7}, {3, 5, 4}, {6, 7, 8}, {4, 7, 9}, {10, 7, 4}, {
10, 8, 7}, {5, 10, 4}, {1, 8, 10}, {5, 1, 10}}]],
TagBox[
GridBox[{{"86"}, {"\"Sphenocorona\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{86, "Sphenocorona"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2160., -4747.636363636363},
ImageScaled[{0.5, 0.5}], {360, 273},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{0, Rational[-1, 2], 0}, {0, Rational[1, 2], 0}, {
Root[23 - 56 # - 100 #^2 + 48 #^3 + 60 #^4& , 2, 0], Rational[
1, 2], Rational[
1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] +
Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[-1, 2], 0, (Rational[1, 2] (1 + 6^Rational[1, 2]))^
Rational[1, 2]}, {
Root[23 - 56 # - 100 #^2 + 48 #^3 + 60 #^4& , 2, 0],
Rational[-1, 2],
Rational[
1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] +
Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 30] (6 + 6^Rational[1, 2] +
2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[1, 2],
Rational[
1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] +
Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 2], 0, (Rational[1, 2] (1 + 6^Rational[1, 2]))^
Rational[1, 2]}, {
Rational[1, 30] (6 + 6^Rational[1, 2] +
2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]), Rational[-1, 2],
Rational[
1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] +
Rational[-1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
0, Rational[1, 30] (9 - 6^Rational[1, 2] +
2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] +
Rational[1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
0, Rational[1, 30] (-9 + 6^Rational[1, 2] -
2 (213 - 57 6^Rational[1, 2])^Rational[1, 2]),
Rational[
1, 5] (Rational[1, 6] + 6 6^Rational[1, 2] +
Rational[1, 3] (538 + 18 6^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]}, {
Rational[1, 60] (6 + 6^Rational[1, 2] +
2 (213 - 57 6^Rational[1, 2])^Rational[1, 2] +
2 (3 + 108 6^Rational[1, 2] -
6 (538 + 18 6^Rational[1, 2])^Rational[1, 2])^
Rational[1, 2]), 0, Root[
197037369 - 5651497536 #^2 + 55632772864 #^4 - 243092221952 #^6 +
578722553856 #^8 - 828332834816 #^10 + 727828135936 #^12 -
376229068800 #^14 + 94371840000 #^16& , 3, 0]}}, {{
0, -0.5, 0}, {0, 0.5, 0}, {-0.8527269428464169, 0.5,
0.5223569286836384}, {-0.5, 0,
1.3132954242635542`}, {-0.8527269428464169, -0.5,
0.5223569286836384}, {0.8527269428464169, 0.5,
0.5223569286836384}, {0.5, 0, 1.3132954242635542`}, {
0.8527269428464169, -0.5, 0.5223569286836384}, {
0, 0.7894276266608717, 0.9571999001908928}, {
0, -0.7894276266608717, 0.9571999001908928}, {
0.7957255978951869, 0, -0.3417905394453557}}],
Polygon3DBox[{{1, 2, 11}, {1, 8, 10}, {1, 10, 5}, {1, 11, 8}, {2, 3,
9}, {2, 6, 11}, {2, 9, 6}, {3, 4, 9}, {3, 5, 4}, {4, 5, 10}, {4,
7, 9}, {4, 10, 7}, {6, 7, 8}, {6, 8, 11}, {6, 9, 7}, {7, 10, 8}, {
1, 5, 3, 2}}]],
TagBox[
GridBox[{{"87"}, {"\"AugmentedSphenocorona\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{87, "AugmentedSphenocorona"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2552.727272727273, -4747.636363636363},
ImageScaled[{0.5, 0.5}], {360, 312},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], 0, -
Root[196249 - 739504 #^2 - 45773760 #^4 + 112811072 #^6 +
220764736 #^8 - 241050368 #^10 - 1829933056 #^12 +
1323041792 #^14 + 5642255872 #^16 - 4412968960 #^18 -
8240873472 #^20 + 6431883264 #^22 + 6638747648 #^24 -
4433969152 #^26 - 3086483456 #^28 + 1246494720 #^30 +
722534400 #^32& , 12, 0]}, {
0, Rational[-1, 2], Root[
225 - 7440 #^2 + 111664 #^4 - 1002976 #^6 + 5980816 #^8 -
24790592 #^10 + 72449088 #^12 - 146991616 #^14 + 193093472 #^16 -
121877248 #^18 - 69881600 #^20 + 233392640 #^22 -
227413760 #^24 + 103437312 #^26 - 9675776 #^28 - 9646080 #^30 +
2822400 #^32& , 11, 0]}, {
0, Rational[1, 2], Root[
225 - 7440 #^2 + 111664 #^4 - 1002976 #^6 + 5980816 #^8 -
24790592 #^10 + 72449088 #^12 - 146991616 #^14 + 193093472 #^16 -
121877248 #^18 - 69881600 #^20 + 233392640 #^22 -
227413760 #^24 + 103437312 #^26 - 9675776 #^28 - 9646080 #^30 +
2822400 #^32& , 11, 0]}, {
0, -Root[-81 - 144 # + 3968 #^2 - 29440 #^3 - 57920 #^4 +
625920 #^5 - 6144 #^6 - 4438016 #^7 + 4651520 #^8 +
11030528 #^9 - 24870912 #^10 + 6291456 #^11 + 29999104 #^12 -
42008576 #^13 + 25690112 #^14 - 7864320 #^15 + 983040 #^16& ,
7, 0], Root[
2401 - 282240 #^2 + 13754560 #^4 - 377069824 #^6 +
6727235840 #^8 - 84324296704 #^10 + 772426682368 #^12 -
5262207467520 #^14 + 26761473384448 #^16 - 100903793983488 #^18 +
276682587242496 #^20 - 528565132066816 #^22 +
633482930814976 #^24 - 329536776437760 #^26 -
142452405043200 #^28 + 179608485888000 #^30 +
41617981440000 #^32& , 8, 0]}, {
0, Root[-81 - 144 # + 3968 #^2 - 29440 #^3 - 57920 #^4 +
625920 #^5 - 6144 #^6 - 4438016 #^7 + 4651520 #^8 +
11030528 #^9 - 24870912 #^10 + 6291456 #^11 + 29999104 #^12 -
42008576 #^13 + 25690112 #^14 - 7864320 #^15 + 983040 #^16& , 7,
0], Root[
2401 - 282240 #^2 + 13754560 #^4 - 377069824 #^6 +
6727235840 #^8 - 84324296704 #^10 + 772426682368 #^12 -
5262207467520 #^14 + 26761473384448 #^16 - 100903793983488 #^18 +
276682587242496 #^20 - 528565132066816 #^22 +
633482930814976 #^24 - 329536776437760 #^26 -
142452405043200 #^28 + 179608485888000 #^30 +
41617981440000 #^32& , 8, 0]}, {
0, -Root[
125495 + 7459792 # + 114590272 #^2 + 173683520 #^3 -
1314165568 #^4 - 1200348928 #^5 + 6202611712 #^6 +
1850213376 #^7 - 14698614272 #^8 + 2453762048 #^9 +
17003921408 #^10 - 8458223616 #^11 - 8008646656 #^12 +
6489309184 #^13 + 401604608 #^14 - 1238630400 #^15 +
221184000 #^16& , 7, 0], -
Root[256 - 110592 #^2 + 12491776 #^4 - 122358272 #^6 -
1040984320 #^8 + 22955173888 #^10 - 54157925888 #^12 -
1102427274624 #^14 + 9203072912224 #^16 - 29118781861632 #^18 +
37490052242112 #^20 + 1334845174432 #^22 - 39976383006224 #^24 +
9052033486080 #^26 + 17011005753600 #^28 + 2852072775000 #^30 +
125581640625 #^32& , 12, 0]}, {
0, Root[125495 + 7459792 # + 114590272 #^2 + 173683520 #^3 -
1314165568 #^4 - 1200348928 #^5 + 6202611712 #^6 +
1850213376 #^7 - 14698614272 #^8 + 2453762048 #^9 +
17003921408 #^10 - 8458223616 #^11 - 8008646656 #^12 +
6489309184 #^13 + 401604608 #^14 - 1238630400 #^15 +
221184000 #^16& , 7, 0], -
Root[256 - 110592 #^2 + 12491776 #^4 - 122358272 #^6 -
1040984320 #^8 + 22955173888 #^10 - 54157925888 #^12 -
1102427274624 #^14 + 9203072912224 #^16 - 29118781861632 #^18 +
37490052242112 #^20 + 1334845174432 #^22 - 39976383006224 #^24 +
9052033486080 #^26 + 17011005753600 #^28 + 2852072775000 #^30 +
125581640625 #^32& , 12, 0]}, {
Rational[1, 2], 0, -
Root[196249 - 739504 #^2 - 45773760 #^4 + 112811072 #^6 +
220764736 #^8 - 241050368 #^10 - 1829933056 #^12 +
1323041792 #^14 + 5642255872 #^16 - 4412968960 #^18 -
8240873472 #^20 + 6431883264 #^22 + 6638747648 #^24 -
4433969152 #^26 - 3086483456 #^28 + 1246494720 #^30 +
722534400 #^32& , 12, 0]}, {-
Root[-23 - 56 # + 200 #^2 + 304 #^3 - 776 #^4 + 240 #^5 +
2000 #^6 - 5584 #^7 - 3384 #^8 + 17248 #^9 + 2464 #^10 -
24576 #^11 + 1568 #^12 + 17216 #^13 - 3712 #^14 - 4800 #^15 +
1680 #^16& , 2, 0], Rational[-1, 2], 0}, {-
Root[-23 - 56 # + 200 #^2 + 304 #^3 - 776 #^4 + 240 #^5 +
2000 #^6 - 5584 #^7 - 3384 #^8 + 17248 #^9 + 2464 #^10 -
24576 #^11 + 1568 #^12 + 17216 #^13 - 3712 #^14 - 4800 #^15 +
1680 #^16& , 2, 0], Rational[1, 2], 0}, {
Root[-23 - 56 # + 200 #^2 + 304 #^3 - 776 #^4 + 240 #^5 +
2000 #^6 - 5584 #^7 - 3384 #^8 + 17248 #^9 + 2464 #^10 -
24576 #^11 + 1568 #^12 + 17216 #^13 - 3712 #^14 - 4800 #^15 +
1680 #^16& , 2, 0], Rational[-1, 2], 0}, {
Root[-23 - 56 # + 200 #^2 + 304 #^3 - 776 #^4 + 240 #^5 +
2000 #^6 - 5584 #^7 - 3384 #^8 + 17248 #^9 + 2464 #^10 -
24576 #^11 + 1568 #^12 + 17216 #^13 - 3712 #^14 - 4800 #^15 +
1680 #^16& , 2, 0], Rational[1, 2], 0}}, {{-0.5,
0, -0.8608394343819528}, {0, -0.5, 0.8039970125282816}, {
0, 0.5, 0.8039970125282816}, {
0, -1.283102338831269, 0.18210415445946904`}, {
0, 1.283102338831269, 0.18210415445946904`}, {
0, -0.8547430824889651, -0.721504360056562}, {
0, 0.8547430824889651, -0.721504360056562}, {
0.5, 0, -0.8608394343819528}, {-0.5946333356326385, -0.5,
0}, {-0.5946333356326385, 0.5, 0}, {
0.5946333356326385, -0.5, 0}, {0.5946333356326385, 0.5, 0}}],
Polygon3DBox[{{1, 6, 9}, {1, 7, 8}, {1, 8, 6}, {1, 9, 10}, {1, 10,
7}, {2, 4, 11}, {2, 9, 4}, {3, 5, 10}, {3, 12, 5}, {4, 6, 11}, {4,
9, 6}, {5, 7, 10}, {5, 12, 7}, {6, 8, 11}, {7, 12, 8}, {8, 12,
11}, {2, 3, 10, 9}, {2, 11, 12, 3}}]],
TagBox[
GridBox[{{"88"}, {"\"Sphenomegacorona\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{88, "Sphenomegacorona"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {2945.4545454545455, -4747.636363636363},
ImageScaled[{0.5, 0.5}], {360, 465},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], Rational[-1, 2], Root[
5308416 - 60378624 #^2 + 354890305 #^4 - 1551068256 #^6 +
5171166400 #^8 - 12174590464 #^10 + 19238761984 #^12 -
19788308480 #^14 + 12682706944 #^16 - 4601020416 #^18 +
722534400 #^20& , 7, 0]}, {
Rational[-1, 2], 0, -
Root[529 - 15032 #^2 + 105616 #^4 - 303984 #^6 + 415496 #^8 -
1085888 #^10 + 5304000 #^12 - 13361088 #^14 + 17041168 #^16 -
10916736 #^18 + 2822400 #^20& , 7, 0]}, {
Rational[-1, 2], Rational[1, 2], Root[
5308416 - 60378624 #^2 + 354890305 #^4 - 1551068256 #^6 +
5171166400 #^8 - 12174590464 #^10 + 19238761984 #^12 -
19788308480 #^14 + 12682706944 #^16 - 4601020416 #^18 +
722534400 #^20& , 7, 0]}, {
0, -Root[
345 + 4464 # + 12976 #^2 - 10560 #^3 - 47008 #^4 + 68352 #^5 -
3328 #^6 - 207872 #^7 + 387328 #^8 - 270336 #^9 + 65536 #^10& ,
4, 0], Root[
6561 - 347328 #^2 + 6973168 #^4 - 81591424 #^6 + 690379360 #^8 -
4494628864 #^10 + 21900300032 #^12 - 78744037376 #^14 +
200126890240 #^16 - 298144628736 #^18 + 184968806400 #^20& , 6,
0]}, {0, Root[
345 + 4464 # + 12976 #^2 - 10560 #^3 - 47008 #^4 + 68352 #^5 -
3328 #^6 - 207872 #^7 + 387328 #^8 - 270336 #^9 + 65536 #^10& ,
4, 0], Root[
6561 - 347328 #^2 + 6973168 #^4 - 81591424 #^6 + 690379360 #^8 -
4494628864 #^10 + 21900300032 #^12 - 78744037376 #^14 +
200126890240 #^16 - 298144628736 #^18 + 184968806400 #^20& , 6,
0]}, {0, -
Root[67 - 26384 # + 99216 #^2 - 9920 #^3 - 426592 #^4 +
643840 #^5 + 70912 #^6 - 1201152 #^7 + 1514240 #^8 -
860160 #^9 + 196608 #^10& , 3, 0], -
Root[1600 - 309888 #^2 + 10362496 #^4 - 150640320 #^6 +
1108772352 #^8 - 4874307760 #^10 + 13891942264 #^12 -
26107499520 #^14 + 31258427913 #^16 - 21590613504 #^18 +
6502809600 #^20& , 6, 0]}, {
0, Root[67 - 26384 # + 99216 #^2 - 9920 #^3 - 426592 #^4 +
643840 #^5 + 70912 #^6 - 1201152 #^7 + 1514240 #^8 - 860160 #^9 +
196608 #^10& , 3, 0], -
Root[1600 - 309888 #^2 + 10362496 #^4 - 150640320 #^6 +
1108772352 #^8 - 4874307760 #^10 + 13891942264 #^12 -
26107499520 #^14 + 31258427913 #^16 - 21590613504 #^18 +
6502809600 #^20& , 6, 0]}, {
Rational[1, 2], Rational[-1, 2], Root[
5308416 - 60378624 #^2 + 354890305 #^4 - 1551068256 #^6 +
5171166400 #^8 - 12174590464 #^10 + 19238761984 #^12 -
19788308480 #^14 + 12682706944 #^16 - 4601020416 #^18 +
722534400 #^20& , 7, 0]}, {
Rational[1, 2], 0, -
Root[529 - 15032 #^2 + 105616 #^4 - 303984 #^6 + 415496 #^8 -
1085888 #^10 + 5304000 #^12 - 13361088 #^14 + 17041168 #^16 -
10916736 #^18 + 2822400 #^20& , 7, 0]}, {
Rational[1, 2], Rational[1, 2], Root[
5308416 - 60378624 #^2 + 354890305 #^4 - 1551068256 #^6 +
5171166400 #^8 - 12174590464 #^10 + 19238761984 #^12 -
19788308480 #^14 + 12682706944 #^16 - 4601020416 #^18 +
722534400 #^20& , 7, 0]}, {-
Root[-95 + 76 # + 756 #^2 - 1984 #^3 + 376 #^4 + 8192 #^5 -
13088 #^6 - 5632 #^7 + 29456 #^8 - 24768 #^9 + 6720 #^10& , 3,
0], Rational[-1, 2], 0}, {-
Root[-95 + 76 # + 756 #^2 - 1984 #^3 + 376 #^4 + 8192 #^5 -
13088 #^6 - 5632 #^7 + 29456 #^8 - 24768 #^9 + 6720 #^10& , 3,
0], Rational[1, 2], 0}, {
Root[-95 + 76 # + 756 #^2 - 1984 #^3 + 376 #^4 + 8192 #^5 -
13088 #^6 - 5632 #^7 + 29456 #^8 - 24768 #^9 + 6720 #^10& , 3,
0], Rational[-1, 2], 0}, {
Root[-95 + 76 # + 756 #^2 - 1984 #^3 + 376 #^4 + 8192 #^5 -
13088 #^6 - 5632 #^7 + 29456 #^8 - 24768 #^9 + 6720 #^10& , 3,
0], Rational[1, 2], 0}}, {{-0.5, -0.5,
0.9762060878207004}, {-0.5, 0, -0.8384380274642825}, {-0.5, 0.5,
0.9762060878207004}, {
0, -1.101296042047277, 0.35295407633716075`}, {
0, 1.101296042047277, 0.35295407633716075`}, {
0, -0.8356590717227328, -0.6111190536673023}, {
0, 0.8356590717227328, -0.6111190536673023}, {0.5, -0.5,
0.9762060878207004}, {0.5, 0, -0.8384380274642825}, {0.5, 0.5,
0.9762060878207004}, {-0.7168448157135572, -0.5,
0}, {-0.7168448157135572, 0.5, 0}, {
0.7168448157135572, -0.5, 0}, {0.7168448157135572, 0.5, 0}}],
Polygon3DBox[{{1, 4, 8}, {1, 11, 4}, {2, 6, 11}, {2, 7, 9}, {2, 9,
6}, {2, 11, 12}, {2, 12, 7}, {3, 5, 12}, {3, 10, 5}, {4, 6, 13}, {
4, 11, 6}, {4, 13, 8}, {5, 7, 12}, {5, 10, 14}, {5, 14, 7}, {6, 9,
13}, {7, 14, 9}, {9, 14, 13}, {1, 3, 12, 11}, {1, 8, 10, 3}, {8,
13, 14, 10}}]],
TagBox[
GridBox[{{"89"}, {"\"Hebesphenomegacorona\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{89, "Hebesphenomegacorona"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3338.1818181818185, -4747.636363636363},
ImageScaled[{0.5, 0.5}], {360, 445},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[-1, 2], 0, Root[
14641 + 631136 #^2 - 4124152 #^4 + 48951424 #^6 - 111801072 #^8 -
526660608 #^10 + 166375424 #^12 + 799604736 #^14 +
70647808 #^16 - 79691776 #^18 - 352321536 #^20 - 268435456 #^22 +
268435456 #^24& , 7, 0]}, {
Rational[-1, 2], -
Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 + 4352 #^5 +
1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 - 1664 #^10 -
512 #^11 + 256 #^12& , 5, 0], Root[
5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 - 421654272 #^8 +
36028416 #^10 + 4095672320 #^12 - 3897556992 #^14 -
17811111936 #^16 + 8925478912 #^18 + 41070624768 #^20 +
25769803776 #^22 + 4294967296 #^24& , 7, 0]}, {
Rational[-1, 2],
Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 + 4352 #^5 +
1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 - 1664 #^10 -
512 #^11 + 256 #^12& , 5, 0], Root[
5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 - 421654272 #^8 +
36028416 #^10 + 4095672320 #^12 - 3897556992 #^14 -
17811111936 #^16 + 8925478912 #^18 + 41070624768 #^20 +
25769803776 #^22 + 4294967296 #^24& , 7, 0]}, {
0, Rational[-1, 2], -
Root[14641 + 631136 #^2 - 4124152 #^4 + 48951424 #^6 -
111801072 #^8 - 526660608 #^10 + 166375424 #^12 +
799604736 #^14 + 70647808 #^16 - 79691776 #^18 -
352321536 #^20 - 268435456 #^22 + 268435456 #^24& , 7, 0]}, {
0, Rational[1, 2], -
Root[14641 + 631136 #^2 - 4124152 #^4 + 48951424 #^6 -
111801072 #^8 - 526660608 #^10 + 166375424 #^12 +
799604736 #^14 + 70647808 #^16 - 79691776 #^18 -
352321536 #^20 - 268435456 #^22 + 268435456 #^24& , 7, 0]}, {
0, -Root[-3337 + 11048 # + 129208 #^2 + 31520 #^3 - 688112 #^4 -
14080 #^5 + 1587456 #^6 - 711680 #^7 - 1328896 #^8 +
1230848 #^9 - 83968 #^10 - 221184 #^11 + 61440 #^12& , 7, 0], -
Root[2209 - 1436544 #^2 + 216014664 #^4 + 376397056 #^6 -
12078370032 #^8 - 65149629440 #^10 - 258660978688 #^12 -
50417041408 #^14 + 1208931975168 #^16 + 2202231898112 #^18 +
1595228028928 #^20 + 512980156416 #^22 + 60397977600 #^24& , 7,
0]}, {0,
Root[-3337 + 11048 # + 129208 #^2 + 31520 #^3 - 688112 #^4 -
14080 #^5 + 1587456 #^6 - 711680 #^7 - 1328896 #^8 +
1230848 #^9 - 83968 #^10 - 221184 #^11 + 61440 #^12& , 7, 0], -
Root[2209 - 1436544 #^2 + 216014664 #^4 + 376397056 #^6 -
12078370032 #^8 - 65149629440 #^10 - 258660978688 #^12 -
50417041408 #^14 + 1208931975168 #^16 + 2202231898112 #^18 +
1595228028928 #^20 + 512980156416 #^22 + 60397977600 #^24& , 7,
0]}, {Rational[1, 2], 0, Root[
14641 + 631136 #^2 - 4124152 #^4 + 48951424 #^6 - 111801072 #^8 -
526660608 #^10 + 166375424 #^12 + 799604736 #^14 +
70647808 #^16 - 79691776 #^18 - 352321536 #^20 - 268435456 #^22 +
268435456 #^24& , 7, 0]}, {
Rational[1, 2], -
Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 + 4352 #^5 +
1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 - 1664 #^10 -
512 #^11 + 256 #^12& , 5, 0], Root[
5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 - 421654272 #^8 +
36028416 #^10 + 4095672320 #^12 - 3897556992 #^14 -
17811111936 #^16 + 8925478912 #^18 + 41070624768 #^20 +
25769803776 #^22 + 4294967296 #^24& , 7, 0]}, {
Rational[1, 2],
Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 + 4352 #^5 +
1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 - 1664 #^10 -
512 #^11 + 256 #^12& , 5, 0], Root[
5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 - 421654272 #^8 +
36028416 #^10 + 4095672320 #^12 - 3897556992 #^14 -
17811111936 #^16 + 8925478912 #^18 + 41070624768 #^20 +
25769803776 #^22 + 4294967296 #^24& , 7, 0]}, {-
Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 + 4352 #^5 +
1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 - 1664 #^10 -
512 #^11 + 256 #^12& , 5, 0], Rational[-1, 2], -
Root[5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 -
421654272 #^8 + 36028416 #^10 + 4095672320 #^12 -
3897556992 #^14 - 17811111936 #^16 + 8925478912 #^18 +
41070624768 #^20 + 25769803776 #^22 + 4294967296 #^24& , 7,
0]}, {-Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 +
4352 #^5 + 1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 -
1664 #^10 - 512 #^11 + 256 #^12& , 5, 0], Rational[1, 2], -
Root[5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 -
421654272 #^8 + 36028416 #^10 + 4095672320 #^12 -
3897556992 #^14 - 17811111936 #^16 + 8925478912 #^18 +
41070624768 #^20 + 25769803776 #^22 + 4294967296 #^24& , 7,
0]}, {Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 +
4352 #^5 + 1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 -
1664 #^10 - 512 #^11 + 256 #^12& , 5, 0], Rational[-1, 2], -
Root[5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 -
421654272 #^8 + 36028416 #^10 + 4095672320 #^12 -
3897556992 #^14 - 17811111936 #^16 + 8925478912 #^18 +
41070624768 #^20 + 25769803776 #^22 + 4294967296 #^24& , 7,
0]}, {Root[-23 - 24 # + 672 #^2 - 944 #^3 - 2024 #^4 +
4352 #^5 + 1248 #^6 - 6592 #^7 + 1552 #^8 + 3712 #^9 -
1664 #^10 - 512 #^11 + 256 #^12& , 5, 0], Rational[1, 2], -
Root[5041 - 51280 #^2 - 5653664 #^4 + 89818880 #^6 -
421654272 #^8 + 36028416 #^10 + 4095672320 #^12 -
3897556992 #^14 - 17811111936 #^16 + 8925478912 #^18 +
41070624768 #^20 + 25769803776 #^22 + 4294967296 #^24& , 7,
0]}, {-Root[-3337 + 11048 # + 129208 #^2 + 31520 #^3 -
688112 #^4 - 14080 #^5 + 1587456 #^6 - 711680 #^7 -
1328896 #^8 + 1230848 #^9 - 83968 #^10 - 221184 #^11 +
61440 #^12& , 7, 0], 0, Root[
2209 - 1436544 #^2 + 216014664 #^4 + 376397056 #^6 -
12078370032 #^8 - 65149629440 #^10 - 258660978688 #^12 -
50417041408 #^14 + 1208931975168 #^16 + 2202231898112 #^18 +
1595228028928 #^20 + 512980156416 #^22 + 60397977600 #^24& , 7,
0]}, {Root[-3337 + 11048 # + 129208 #^2 + 31520 #^3 -
688112 #^4 - 14080 #^5 + 1587456 #^6 - 711680 #^7 - 1328896 #^8 +
1230848 #^9 - 83968 #^10 - 221184 #^11 + 61440 #^12& , 7, 0], 0,
Root[2209 - 1436544 #^2 + 216014664 #^4 + 376397056 #^6 -
12078370032 #^8 - 65149629440 #^10 - 258660978688 #^12 -
50417041408 #^14 + 1208931975168 #^16 + 2202231898112 #^18 +
1595228028928 #^20 + 512980156416 #^22 + 60397977600 #^24& , 7,
0]}}, {{-0.5, 0, 1.104437942079934}, {-0.5, -0.7671311139834615,
0.46294760391536477`}, {-0.5, 0.7671311139834615,
0.46294760391536477`}, {0, -0.5, -1.104437942079934}, {
0, 0.5, -1.104437942079934}, {
0, -1.1264831470789796`, -0.3250029759499703}, {
0, 1.1264831470789796`, -0.3250029759499703}, {
0.5, 0, 1.104437942079934}, {0.5, -0.7671311139834615,
0.46294760391536477`}, {0.5, 0.7671311139834615,
0.46294760391536477`}, {-0.7671311139834615, -0.5, \
-0.46294760391536477`}, {-0.7671311139834615, 0.5, -0.46294760391536477`}, {
0.7671311139834615, -0.5, -0.46294760391536477`}, {
0.7671311139834615,
0.5, -0.46294760391536477`}, {-1.1264831470789796`, 0,
0.3250029759499703}, {
1.1264831470789796`, 0, 0.3250029759499703}}],
Polygon3DBox[{{1, 3, 15}, {1, 15, 2}, {2, 6, 9}, {2, 11, 6}, {2, 15,
11}, {3, 7, 12}, {3, 10, 7}, {3, 12, 15}, {4, 6, 11}, {4, 13,
6}, {5, 7, 14}, {5, 12, 7}, {6, 13, 9}, {7, 10, 14}, {8, 9, 16}, {
8, 16, 10}, {9, 13, 16}, {10, 16, 14}, {11, 15, 12}, {13, 14,
16}, {1, 2, 9, 8}, {1, 8, 10, 3}, {4, 5, 14, 13}, {4, 11, 12,
5}}]],
TagBox[
GridBox[{{"90"}, {"\"Disphenocingulum\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{90, "Disphenocingulum"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {3730.9090909090914, -4747.636363636363},
ImageScaled[{0.5, 0.5}], {360, 389},
ContentSelectable->True]}, {InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{Rational[-1, 2] GoldenRatio^2, 0, Rational[-1, 2]}, {
Rational[-1, 2] GoldenRatio^2, 0, Rational[1, 2]}, {
Rational[-1, 2], Rational[-1, 2], Rational[-1, 2] GoldenRatio}, {
Rational[-1, 2], Rational[-1, 2], Rational[1, 2] GoldenRatio}, {
Rational[-1, 2], Rational[1, 2], Rational[-1, 2] GoldenRatio}, {
Rational[-1, 2], Rational[1, 2], Rational[1, 2] GoldenRatio}, {
0, Rational[-1, 2] GoldenRatio, 0}, {
0, Rational[1, 2] GoldenRatio, 0}, {
Rational[1, 2], Rational[-1, 2], Rational[-1, 2] GoldenRatio}, {
Rational[1, 2], Rational[-1, 2], Rational[1, 2] GoldenRatio}, {
Rational[1, 2], Rational[1, 2], Rational[-1, 2] GoldenRatio}, {
Rational[1, 2], Rational[1, 2], Rational[1, 2] GoldenRatio}, {
Rational[1, 2] GoldenRatio^2, 0, Rational[-1, 2]}, {
Rational[1, 2] GoldenRatio^2, 0, Rational[
1, 2]}}, {{-1.3090169943749475`, 0, -0.5}, {-1.3090169943749475`,
0, 0.5}, {-0.5, -0.5, -0.8090169943749475}, {-0.5, -0.5,
0.8090169943749475}, {-0.5, 0.5, -0.8090169943749475}, {-0.5, 0.5,
0.8090169943749475}, {0, -0.8090169943749475, 0}, {
0, 0.8090169943749475, 0}, {0.5, -0.5, -0.8090169943749475}, {
0.5, -0.5, 0.8090169943749475}, {0.5, 0.5, -0.8090169943749475}, {
0.5, 0.5, 0.8090169943749475}, {1.3090169943749475`, 0, -0.5}, {
1.3090169943749475`, 0, 0.5}}],
Polygon3DBox[{{6, 4, 10, 12}, {4, 6, 2}, {10, 4, 7}, {12, 10, 14}, {
6, 12, 8}, {2, 6, 8, 5, 1}, {4, 2, 1, 3, 7}, {14, 10, 7, 9, 13}, {
12, 14, 13, 11, 8}, {3, 1, 5}, {7, 3, 9}, {11, 13, 9}, {8, 11,
5}, {5, 11, 9, 3}}]],
TagBox[
GridBox[{{"91"}, {"\"Bilunabirotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{91, "Bilunabirotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {196.36363636363637, -5306.181818181817},
ImageScaled[{0.5, 0.5}], {360, 318},
ContentSelectable->True], InsetBox[
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[
NCache[{{
Rational[1, 4] (-3 - 5^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 15^Rational[1, 2]),
Rational[1, 32] 3^Rational[-1, 2] (-13 - 5^Rational[1, 2])}, {
Rational[1, 4] (-3 - 5^Rational[1, 2]), Rational[1, 4]
3^Rational[-1, 2] (3 + 5^Rational[1, 2]), Rational[1, 32]
3^Rational[-1, 2] (-29 + 15 5^Rational[1, 2])}, {-1, 0,
Rational[1, 32] (3^Rational[1, 2] + 5 15^Rational[1, 2])}, {
Rational[1, 4] (-1 - 5^Rational[1, 2]), Rational[1, 4]
3^Rational[-1, 2] (-5 - 5^Rational[1, 2]), Rational[1, 32]
3^Rational[-1, 2] (-13 - 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[1, 2],
Rational[1, 32] (3^Rational[1, 2] + 5 15^Rational[1, 2])}, {
Rational[-1, 2], Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 32] 3^Rational[-1, 2] (-45 - 5^Rational[1, 2])}, {
Rational[-1, 2], Rational[1, 2] 3^Rational[1, 2],
Rational[1, 32] (3^Rational[1, 2] + 5 15^Rational[1, 2])}, {
Rational[-1, 2], (Rational[3, 4] +
Rational[1, 3] 5^Rational[1, 2])^Rational[1, 2],
Rational[1, 32] 3^Rational[-1, 2] (-13 - 5^Rational[1, 2])}, {
0, Rational[1, 2] 3^Rational[-1, 2] (-3 - 5^Rational[1, 2]),
Rational[1, 32] 3^Rational[-1, 2] (-29 + 15 5^Rational[1, 2])}, {
0, 3^Rational[-1, 2], Rational[1, 32]
3^Rational[-1, 2] (-45 - 5^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[1, 2],
Rational[1, 32] (3^Rational[1, 2] + 5 15^Rational[1, 2])}, {
Rational[1, 2], Rational[-1, 2] 3^Rational[-1, 2],
Rational[1, 32] 3^Rational[-1, 2] (-45 - 5^Rational[1, 2])}, {
Rational[1, 2], Rational[1, 2] 3^Rational[1, 2],
Rational[1, 32] (3^Rational[1, 2] + 5 15^Rational[1, 2])}, {
Rational[
1, 2], (Rational[3, 4] + Rational[1, 3] 5^Rational[1, 2])^
Rational[1, 2], Rational[1, 32]
3^Rational[-1, 2] (-13 - 5^Rational[1, 2])}, {
Rational[1, 4] (1 + 5^Rational[1, 2]), Rational[1, 4]
3^Rational[-1, 2] (-5 - 5^Rational[1, 2]), Rational[1, 32]
3^Rational[-1, 2] (-13 - 5^Rational[1, 2])}, {
1, 0, Rational[1, 32] (3^Rational[1, 2] + 5 15^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]),
Rational[1, 12] (3^Rational[1, 2] - 15^Rational[1, 2]),
Rational[1, 32] 3^Rational[-1, 2] (-13 - 5^Rational[1, 2])}, {
Rational[1, 4] (3 + 5^Rational[1, 2]), Rational[1, 4]
3^Rational[-1, 2] (3 + 5^Rational[1, 2]), Rational[1, 32]
3^Rational[-1, 2] (-29 +
15 5^Rational[
1, 2])}}, {{-1.3090169943749475`, -0.17841104488654497`, \
-0.27489212338127944`}, {-1.3090169943749475`, 0.7557613140761709,
0.08192996639181065}, {-1, 0,
0.6592802355814363}, {-0.8090169943749475, -1.0444364486709838`, \
-0.27489212338127944`}, {-0.5, -0.8660254037844386,
0.6592802355814363}, {-0.5, -0.2886751345948129, \
-0.8522423925709052}, {-0.5, 0.8660254037844386, 0.6592802355814363}, {-0.5,
1.2228474935575286`, -0.27489212338127944`}, {
0, -1.5115226281523417`, 0.08192996639181065}, {
0, 0.5773502691896258, -0.8522423925709052}, {
0.5, -0.8660254037844386, 0.6592802355814363}, {
0.5, -0.2886751345948129, -0.8522423925709052}, {0.5,
0.8660254037844386, 0.6592802355814363}, {0.5,
1.2228474935575286`, -0.27489212338127944`}, {
0.8090169943749475, -1.0444364486709838`, -0.27489212338127944`}, \
{1, 0, 0.6592802355814363}, {
1.3090169943749475`, -0.17841104488654497`, \
-0.27489212338127944`}, {1.3090169943749475`, 0.7557613140761709,
0.08192996639181065}}],
Polygon3DBox[{{2, 8, 10, 6, 1}, {8, 2, 7}, {2, 3, 7}, {3, 2, 1}, {3,
1, 4, 5}, {4, 1, 6}, {9, 4, 6, 12, 15}, {5, 4, 9}, {11, 5, 9}, {
11, 9, 15}, {17, 15, 12}, {11, 15, 17, 16}, {10, 12, 6}, {10, 14,
18, 17, 12}, {18, 16, 17}, {18, 13, 16}, {13, 18, 14}, {8, 7, 13,
14}, {8, 14, 10}, {13, 7, 3, 5, 11, 16}}]],
TagBox[
GridBox[{{"92"}, {"\"TriangularHebesphenorotunda\""}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
"Column",
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"]],
Annotation[#,
Column[{92, "TriangularHebesphenorotunda"}], "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], {589.0909090909091, -5306.181818181817},
ImageScaled[{0.5, 0.5}], {360, 281},
ContentSelectable->True],
TagBox[
InsetBox["", {981.818181818182, -5306.181818181817}, {Center, Center}, {360.0000000000001, 512.}],
"InsetString"],
TagBox[
InsetBox["", {1374.5454545454545, -5306.181818181817}, {
Center, Center}, {360.0000000000002, 512.}],
"InsetString"],
TagBox[
InsetBox["", {1767.2727272727275, -5306.181818181817}, {
Center, Center}, {360.0000000000002, 512.}],
"InsetString"],
TagBox[InsetBox["", {2160., -5306.181818181817}, {Center, Center}, {360., 512.}],
"InsetString"],
TagBox[
InsetBox["", {2552.727272727273, -5306.181818181817}, {
Center, Center}, {359.99999999999955, 512.}],
"InsetString"],
TagBox[
InsetBox["", {2945.4545454545455, -5306.181818181817}, {
Center, Center}, {360., 512.}],
"InsetString"],
TagBox[
InsetBox["", {3338.1818181818185, -5306.181818181817}, {
Center, Center}, {360., 512.}],
"InsetString"],
TagBox[
InsetBox["", {3730.9090909090914, -5306.181818181817}, {
Center, Center}, {360., 512.}],
"InsetString"]}}, {}},
ImageSize->500,
PlotRangePadding->{6, 5}]], "Output",
CellLabel->"Out[237]=",ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzsvQmUXOd131mpvbq7et/XAhroRmNfGsRONEiC4CJwA0kRFEU2aZqiForU
YlK7WqatoWRria3NkmUoJ1JsJVYsW5HlxIrbTia2kjOJ7UwUZbGnJpNlMnG2
cTLJzGRy3tz//e793n2vbhVA2WfOnBzjnFfoqu763rfc392+5V1+8p3P/uBz
T77zjT/wZOvS25984dk3/sA7Wrc//3b6qPSnCoXSvywUKh9vFcr0c1Io9Hj5
g0LhTz79k0//v/r0EL/WW/SyRVcbvx4ZnkrkZ3y20fnlvxS+vJ9fh/DlTbq2
R+oDycrYXHJsdleyONlKXnrhZ5JXtr7J/9+28Wiys3XAFtxyqvX1UPIavza0
5Gv4dbPa4JKfOXZHcvXAeb1DoYp7FMrxLlR93KG41Vn610Lpq/xa0UbHki+v
3FQoovxCKXOHPr5DLd4BV66D8nf6arjTruydYg/hTmXnTkN8p6rtsba0H99/
TTpa2i3bcsdkZm5JK5SrywOhLjvSumzqF9HyjdYBumNnXcZMqx+6721uq2/D
S5EHsrmlhU5Pzyd3XLqSvPTijyWf+NjPJpuPP5/8wJvfm3ztV7+H/3sN/72h
qov8Wm3JbTLDT1WsObWdzo2RyNq2vdk5LrZku4/Gm6pLZaGSqOz2t/8neofX
RnL40MnkU1/6leQ3//5/4ksaoF296TTgcmjAfHbc20O1vjjuDaf2CzLuz2y+
YmV4S+5yExdX6xh309OFulTdVJpELLyi4nfd91gX+bg71HkmW+coq5CPfqfO
O3I9fuzwbR3ycZDLrOtAdhORPqn7z37lr6FzudY1fq3ETpd2bzidfkdowGTa
gM2CEXCSmkLTNAD6DQ1Y6Q3bns5O53qjg0VaCoNScUjOkePnuMp90unv+/Dn
8VmXTr891Hk8rXNGyiEog7k6o7Z7jbIDlPQ5emS5s67tvICMSl0VR9RyINvJ
vdC8NVR4lF/LrRdO3mGletip6wF+LUEwNgvyb/EGBIKkYMIR5sGcQPSg8EK4
2YjUFTcZawwk84Mj3ep6UOpKcrCldQ0QVzdtHc3gzzh1HLkh4M5nqofyk9t3
7kueOnQW4z/kVO+QVI+G/JpWL8drohfkct4BavzGgTob7jAcOgB3SAZrjeSF
my7y9eDaejLbHM0zhSoedio6xa81rWh7sq8vuXt5dzLWaCSfevGt6MBYYQvS
1A2BdNrWtcQQoX5UT9LteC0lJ+eW1XMgOjsrfUQqTdp3WysdlEljw1b4R85e
SD578S7u5X/9V7+e/OLHf4QrP+eQNWMkQchKOit/MtxsKFSeOxpCimqXpfIi
tFztulP5o1J50ghtrXzQKkHwUebKyCgqX0TtSbGiHYvTk9wGbQeEG5KjUg0Y
0fFoxRy/lrgtXSTmRKYhTJuOQsVpSNVpyLo0pGD+GYJ56CEyb1s/UeaGlPBj
cubQfjSCBhuvpeS3v/L55MqlO7gx0w6i2hi8n55b2u7emMHQGDQ32Ts+y82o
SmOEVW5GxWnMcWkMvW9pY4acxpBYVZ3GlExj8BkaM+kwPW8QueOBx5LDJ85t
dLYnuA+FZiplPEBoSV3aI0hLSzrbc5PTHumfTYMIlRcaA1xefOIRbkZFGoOG
QL+jGeM9GgOENt/6nuSTX/6V7es1Bjdn5YlmNGSITGNitEAVPyltIDu/oW2Q
Yvg+p2bngQYV09mGqrTh6qVbGHPUfszRWfOiZPGe6p/8+j/+P3RQ8g05Hmow
kI5Ke7jex03oFw0AxUXulzbglGNQ5eus91BhVL1PGgDswTaqXpMGoEHAAVX3
PAJtAAbl537973MDZCB6N4BFWpkfMMyrCJ1yTKytPbq/W+3rUnvRuFzvkR5w
Q1MR3Kg9KQa8luIwOC05Fj7tT4ciquGmacnk8ChsRGyJNXIDRh5H63UWJG0J
QAfJaEPDtAQ6F20YlpbguxJrZNQU1TzTknd95KfifXu2JKOHB0QbQ3WhJT/9
wgeT1dYau8Inr9OiEzNTyeP7DkY0jAUhYU11lVqRwa54Z1tUuv7YHA2f9oXa
4K+iMm5Ki9DC/a1dyS9t/WluFUlcbJG16QOmjMf2rkLC3BYNOKak2RX2UlRY
tkU9xijbIh4jjEnaoiq38Pn7XsctwvWjm89BbZ1wbL1osOTOHUs8TGRGoha2
JqXpmJSBrgqgZDUYaaLrDtOR8GnDCA20F5ozKAjBhcTwUINIlPFa0oZlbEzB
/JMh45a99eghKAm3dUOOjelzFESv1vUYMmldPdSmVTC6etBYUBFCKjG07urG
HRxZdvMIpHXt8wuzyU/eenOye2TYtaDDxvrAMQvpie5Kw6q/qrSO3sf75lp3
ONM6Hjs1qYPGhUZr0K6KtA6tRcLCOm+drStvT/f3c+uAHCmRmtPAEWmghAPc
tFoPHeI1sMfwSQNr6fBpPEOCk+p3CCOaVnUaeMxxHqSBbL3QQFykU2qOARt1
DFi1h0qxSrJ2/RE8lGlgJggaNB4r1D6aVncaeLSrc1HZQnkfOnMTNxAkwrhV
nVaO5YwbDR1JS3cdYxVn7frDKK2smmFUUzDkyKm2UkxCppWdTkhl07ZSdU3V
MeHjRpMeP3SUNWn5BnVN/fpjeTDTyox58IS14WjSI13NeWglSFSBJWeFxqjT
CE469qLk6JxerewxltLKSmjlpjeWVmL7nVZ6uYbQyupGvpWie8pOQ6clSDGm
Q3VOYcHRN33XH8ID4dNyKqjRXAxL46Bgbz18EzdrQBoHi48sqs34WP8lmPoK
m3ptGC4IqhcSz/BrOQYtomh6NarHiGUbxSOmVmLYkcumYwMPdvVfqqxXbKNE
z5SkXTR43A60aNbEMlAzpEbiSFnF2X/9kdqfaZTNcrliOOQozoNd3ZZqe+/Y
aKZREEMarZJjAqck0AFv0J/4HCLamp9g3mACqaFzjursv/7gSTtL4XXLGzzr
wAw77TyQmvhcO0vRxNNFrh1eqxwFIVumF+I7su8TEo6inTD3GFS0cePE3mTr
rQ8l7d/4FBWR/N5XSdDpZ/5M2o7BJVw79c2AdIAdglwH7OvsALWQnvSOOB2w
v3sHWBcgdoDonNgBYilHJaGQ74DNK+eTax99U53bXo1tR79o+4nYiR7NJ3nY
uqHmZxwET85HHdO5N4VXpx5sCohNJhpe4teKxvO26eKmp22HpjJtH8yNO34l
bSffIjQct0JSAk1uXn/c92YaznmevDW1gj/m2JldeC3KXDNaLjNdSWtpLtk4
fwKqTBKfVouJHJRVk2nquGn6AJDbPtj+ygfHc31g2Kcad2ruAYlhkKwhBYDP
t643/m43WNdp3OmGJTP1pPOU9LsiuoGas/n4A8m1L76SJP/lHyXt39tu715m
pTvUFZByBESscV+XjkEvUMfMOh1z132PIfcp81hZ7d+Q6EA7BvnRxcXZ5OzZ
49c6OyirIDGkHYbA6ocJx2TP8ms9AoLP0XkiJsnWB54j5+LLFXQRO8QPbKrQ
DhmOxG0RjkqaTUIPSRqyFo0EdAdLYtpNhZb0E/HEMmWVZ8OxHlVx2dBP0Cja
T1cfvTf59Kd/JPmd3/3L7Z07F31vQPorYzi9iGNK+gsuD/oGPTXRo79Umqi/
6tJf9DZatxEZJg2cU6kKiRAYVhKfQqmLroVSpf5Z6a1rq9JbkDJIUJosqHBv
oQdFotBTVIN/++/+Hv299FjLUUfSbcVQf/xFRyRqOZx2zNCw023Q0blu65du
A4vabaNGzCTSETGrsxihe7qo5v09VHNYZtDIJL1xaR+BSPTTS+96E/1t2kcX
L57z+uhgZx9pNtZDccbpo75UZde4k2Q5SKaTqGdIVtNeuvOO8xu45bjIdKcu
ryBDE70yUdgUU6Jrmp7G5igJ752uSL7xjWtUYqY7NpzuOJTpDvxFjJQ80maN
6b758BlOWFd7qW7WRJAY7opR6RBSVlsqNtIhbDU82tBodMEJfq1l3DZ8xza4
HhrcfuUj797Q8q/f4Hwq0UZPcxJDGV8lrjrroYYnHbUyYfhQd0YbCrWMEUcT
T/FrCaPP8KNJDRlJamjsOD8NVTR3yTfMCvacZDHQMDQWjXP044wDenBQq1Y/
xviDGnFa6o9BwsCg5jIwUGTd6n8kU3/8VQwimo4kBjBrXH/YSbRBuWFte/5E
Yd7hbzpUno205mM0J0MaWisPZU0SxdWuXb/yRzsrrx5w03EEJyUTiMpDG+Nz
ow5LRgIgVGjFrIOOtIWF2OYjcm1ByaQCuBXVVCV0i+aOZdpyzWuLFaRRMxD4
DAOh7VGvoSY1Ya+BhAtNmZYGkZDFHMQsv1YykS0GicqKWIB/MJ9rDWyi15r1
TGsyvumAI1bDXcRKbDq3pl9qwqMVnNLCpBE1cU4Lc6E1m3lRw6ce5JXrt+Z4
Z2vUMRpw5Kxp5AytycnZsBF2VdHjDjMLfLtyJoti2mBBvwELfFOmDZq7yrTB
zFCFFGQRTaAOysOC4Rh3WjHm0BJaUckk1OH+Iidw0sG+dH3reSLTlIyf2u8I
V81YTxEusgAQ7pKiwvWYclo04ijiRSNgyj98CPSKtgi/o3bYFvUyj9Ki4Hpj
9MC6q8PKvWVrwWnDkANJK8hWNCaQMfr6CYf20vWN4Mke1e+zzm+cznUkqmXu
vfnw7ah+rLqNq6Tq0ZTkqm7RLl6/6qds1TE8oECqXmONi6pCH0GcrHbdZeoL
842aNh0HZKeIKURF6ipeVdUyzJfYulwdz3TUkbpURL3Koo4uxueqL6lOe5zq
efFDWGYalJo4flK9iuUymq5c3c7aum1q3RqmbtAqixPN5N1X1pNvvv9eFLrP
sbQNR0rDUvsSF4uuI0mRupUjYX4oe85Wi7uUIKIBDWtwABSGFtX67LO3lJI/
/Nk30q3/3k88xk3GDfY6Vaw76m23jC5uoa7kcamiUuRX8Wa3imWzogOOGKp5
du8seo76M63nYxcPda1n1ZHClXCvayoltp74LtVTLUeveqpfIuswK1H69s9P
Jq87v8r1bOTqCVr2Or5I2RHHVTPkuCCOx1OL1y74axXPy9d5vju6G1o5FT+q
UFPqhj5Vxb9mLCoiCdSq6BjksIOF185uaf2MRjhowmlN1HSp7oZUtxKra6pJ
RifUEf2ZrWPVej98iSweyFZt21aN6rJqojitGklBW0Z006niLVLFsn7CF1Vv
TGqHDtUocU0kSc2OeJdHsrXSFJ3OCwSNz64At9Op1UZnxS6GehWdss04D0st
Ce/I5R7DJXWOqpng3bE/7w3rNL5VZH+lqhmltvRxlyreGaoYpnsrsWCjBSk4
DPUTjcg125UTINMXsiS66wCPGm0vXy0UGSoOi1Te8hUNm49khU+67NxWdMCp
6FKnOOUHTYjsOvb9jkQWwg6HawUfmvtDZc3iShTc3jk9RLRSdfuM2rn58E5W
O7NOTe88f7hdMBtaLvUe/9KrZ+ehUNOhbLfymEHvgPG6oyMnUkmrWEmLt7mH
C+xzheD64DwSajWaHZjtQhacqqMgh29gvHM3+0a42UR6s81CTrroZmVzMxSM
23iSIY3b6nKzb4Wb5XdPWDEuOlqrau6EpnpdnrvTr4Y7hW0kcdk3ZBAlF6Fu
qAGicOLlAN2t334t3GApN9J75oO3AnpQOtSX6ZBcIX8tFCKepxbitec3w1/m
Pv3/0WbWP/n0Tz79b/TTF/nHqBuv4fOh4emkkFrL8PK8+dLb+cfObaP44sEj
dySXH3iJdN17X94udJtCf8588Fa8hL2+1S2nqOSxpz5RkdLo41bv0t7MP+b3
4tL36NvnLmyiMC6rLiXSTTZ7l/iGG2htU0qjn6/1Lu3ptLRujSXfu0vfBesZ
Ns7J1S6kWyv5bwbN3292Vj3RG0pnkMHv0rXhZg2u4ZV73pecXH8gGRwYS246
fA/+1xtvxC/0my8/dgOdNtNtCF7LPw7iw2Tv6s3J889+hS/UAjV4y5NfSJ54
6BWuydz0qtsNNVPe1Rvo8/luI/gw/yiL7Yamkydf90n6M6oOvdLPXKH773wn
vaNqkTnXipku2ox1qGhdt23vfcXc7qEbGLId3eQjfDlMQmC4UMuyqev87Fpy
27knqRqoay3WdW3X6XwnFh7ksvp5EAYHxpMrd77I/8+OtpJjuzbwf0dDvmTq
cn9nQzokYHc32Xsw7fRksDnBTahJQyARqHRoQs9Ovy8thu+9tusMKYO3PvlF
iihOHL6XOxZteebODyVXN96WXD7xpG3bNdO2L5ja3ZM2bctpFo/Rnm7CLU2L
WKFRdWkaxgwCjUY1eo8R93cInUqbKiQ0RjTeaF+J29dsDKM9OBLizg9xDv1t
ycbB+20bw3kWYTo0/vuUqe9dnePYIZD7u8FzpRALZ+FDM/uksUoz4BngxpYt
1W2t2x3pILaHag0IIY04GllONh/6iG1ozbQTbXTa2bLt/ISp6u1pOzcKXeT1
SDfw7jd1VCUxYMBbWznH7RzMDSqu/KDeZgb12OxiMj+9SgLS2V4S1gbaW0Rz
qUfQ2JW5w3koPxaq+Ydp68sbMpab8mclNLa4PdI/Uqi1F0cXk9nh2WSF5JD+
z1TtXFYWYv8s7TgcBX9d+og+2/D6CIVF5dTMKSfqD7J+3WUhlMgxT3txaCSZ
bQ5B6PtM91B3afcMsDjUPbRtD92ZFrplPpaM979P27xVSO1u0qw3uY821m4h
nXL5yL3UjKunHkueufBGXDTIeK3wZ8da6+hX1SdhrqLIvVKKAobOOymdR2Bt
ZTrPaLKoEIeN1oB2QLeN3oCAnRUBWx6eSDZaKwxUM9eD0PLUbUOmB3OKwyrH
cIZDHTLRHmoMob3U7tdxu+n9lsiLTNH8G35tZqRorDmc3H10I/ns0x9MfuSR
5/nnlZlW7OlQ4mM4b4N7lfpbezW2K8xehzkxXOPjsyyZb3nHzxZOddNQ0rEZ
dTwiHXvxwhuiOp7oIZUnUwFKVsamkssrB9GJQ6KJ1XJCE49dT0OZs2QAJBqJ
jeAXnmVR4i4Fliq/Oi0cfPr0vA/056mVw8nb7n6CpIF6laqu/YrfUZ8WUVbo
zypLKUky96kZ2ING7Gabg0mQ2xffhWahe2EA0LEnuynGYCqzBmDMMQBTNyC3
YT6/zHKLLoZyJGU4YgxeIRj0wiR3c0m7Gb0l2Utuy7UJQgg929fZs3pLXdix
mg7upvTu9ki9P7S1anWJVhR/GrzGWv5bpLRGg0z3jYgCCEUsTywrUJtSzL3p
kG4VDCaPn7+XMMCQ1uKQ4ioYVKCOmp0KKErN3rRsqhaOhpnn72Nki8kXv/R3
qe/uve+NauQLJ7p5M5fTTt0eG5nHmBYmckod4zvbA5/DaWUYn2eOnVPFTrLS
6c3o4Kpc4N9N6ShtqfWiQR3k8a3G8TXijT+VFYF8glWIQIfsaFEthqlG06Ql
95DEHaZuaiXrey4mb7z3o8ljF9/NP9NIctetzO6lrju28yTVjH5uL461WOzE
79BR5X/B4vRv5KSj435XD5zUe1LZdFcSWL2vDvfKzCoN92Wil7TJjqhvg9vG
ef+oECAlUAhjLD3VjKJVc0Y9VGRNW2YdC50geqGI31Pj0L34a26cRNaLrcPJ
/iOXuMFhhqpCmI5RA44ma+OTycHJmeSpp1+mv4RslZOP/PivWPk63k07i3ih
kzQSJFURxEv8BRasuZx4kVpBQWHFX/naRF+TqnKcL9LEE773OC5ytf/Ihe3x
ibBmZN3IFY9ykKtx0RuXj9yTV5m6JH4pleqt2YEwrhhLGlc+om0D6onGd3Z4
hse3wuNbi+M7O75MFRuERCVXzz6ZPHPb89Td9BPmxPdd5M/pgpyx9biY1pRl
Se5VcW5VzYkSRJg1x4715Jlb3pBcPf2oFaXbTEsKcgAURAaKaMaIEr2PiggD
S0JRhFRgD9yFJ5K77n+Jr6tPfiJ5w9v/HH364g//Gmr25CfaOuhhhjgkOKCT
ID+LQ8MqPxVHfMhtOibiQz9uZ8RH4iMuTr2mGSfWCuJTYvEZHuPsl+iGrFYS
i0Mi6LrjoyJAi6391NLnILViRdIsPdwjkpqZrOHRrmYBCgeE6dKrjADRKIYB
LUfdADmhgWzwmFZd8bl87EqZ5YfgHZlvL06vctUupL2jEgOvlcUFJUMsqDgS
FBRd8cQFEnn6Ufx9Ki4yWZ/NKar6ITlZZJEpQROx3oAUNEUWSC7a2g1h4QWb
0O1jM/NUsVMk0PuScws7oj6pGYFY3bOu7t7RbnmFcCQdxzvs3UEUZnPuCAlB
NFdkupKl3UeSQyfvRJ3CDHcl6hNrqWb8GGTYyMSLP/wX2zt3H5Up6dKmysPG
2oXCoi8QPFBhfYcsKuwQiKoh/NjCGhM+yEPW300aIAz8/+zEzuTejWe202ET
/4gaaMUBZW8sH+Gyh64rDmUWB3HNUV5Y4FRmACbJA4JnStpip0gClAm0Qk4S
IB0sCXIKHTV6kDUCJAHa4XX7j7A0kCooNMRrIQ9GPdMYrnd4LXelTY16Yd54
LXMze9hrmRExgJ54/Qs/kdzz+HsgOmFPT1Y1iGmhYtxAapDFoKxioOrB+NfR
21/OSYL128JsmkwyGqsUJEFHC64DdD3gHc3p+tXF9SgJ+J9GP3nsrpfaZ47c
g77OOMkiBPWcCbn3zLPkQmSFgAWstxCESCXE/6IKCrscXTAkEkDv46gFivl4
Px55SAAu+BbvOX2LSkG/47oe6uZb3Gn6Xl3XRSdZGkKTSjQO7/vMX+eLflZJ
4K6CFOBCSI1E46IT/jVzYiAa4YCRR1zD5FSVkx07DpXxIyeNq+jeMpyvCpyQ
KkSjzJqjxl4I/aSeWSaNGxaKysL9rMSQmFi+1dGcFkeEhjk6t5CSN1L76X/u
xBPXEZNsWUEPQfK0gXt2HGNxQY0LuTDvSE5OICErjqZQOSEPY0sHNjhddZTD
tgIyoj4E5OQ1u9aSM2fvHfDd0IPdotiAXTw3FmKpedDtKJ0lfBy91JbJVmty
ZkKy1WpVVJLIuuC7e9O7RLViLEzLiXP7JZ1g5In652XmJshmWKN6aOduvp56
6mMDycsvf7uavOMdXynjbSV54IEXq8mFC4+XkyNHLlUgdRyYiuBM+IKT1wnp
YKeq5tJ9b07e9+O/muzaczxZ33cbCxBUDfkf6MVjqQyxOYMMNUyxq1M7uNgZ
LnaAixwdn+MiUTRs9QN3viN57qmfSp54+MP88wkKhOamV1D8ITMosDcQoFUR
I3irGHMI0LCIEbmo0XmU00S5wWpwIE4wOEaMBn13dH837yMUywsqVIS2R8hN
aNYGkpXJXcnG7jPJ1XWyykPsgi6lHRSTyjud1NS4iJVaKRUr+vlaFKsKu3gq
Umqtlp3wuuHIFC56L7FN2HbSrNaTxy/enfzqRz6jsrUG2aLiSIaSu+57E/dn
cGMLY1k5au+bnEvlKPVmUfAtRx4OolRiUdq/5xzGm959/Et/n5qJsW+SrSRR
YpG65fhDKPGwuYGIE0r1bkCayN5AZFVuUIoyS8JEXyTxKpTaS3P74ljuT8eF
/VrI1JpIFiQNQY6VLFJYUbJCb9Q56aJGDIm1nGQN+37t3m4OTXAI4vG3Kl0Z
ybp84BJFAWefQGeQkA2PzySHz9zdinKZ9YqXnSTdaC5MIiFDd/ErvY8dFFJm
QZHBGqrUSV50V6/Jm2qH3Ik+W0vHN+ZKfvwNLxQhf3R/kUAWwBV+Zc2WnDh7
X/KpL3032b3nOHpGVk3lDwDliaVoD4O0IAmDm8yOjReTZ+65Dx7N6h42iZAY
Mo/jRoiWFvcnb37Xl+iuEKIaCxG0laP4VDPnRTXcvC9/c9w7+cYrP87/o0vh
axEj9u63n91kEa6KCKt+JL1I76II6wCJTgiqBQ45fLF9IsK4BQluXoRjXCbr
zraXR8aiCM8PDhUhv/SnkGSILAR4xHHK1xx/7LAhqllrtIfqfYUqXgfai0MT
FRy6Sb1Pv4kOREGXjWUPrXe0aV1kHm9J3pMnXvzMtQhiNgTY7SQuR0Tmjc2O
Mk/hQMRQZD6jZY3xXvEzBpVsdIgL+XV65c8K2dJLuFtygURjamSM/iJI/pff
9XJynu5E0k8tCAqYrHty7PhdyfMkkUXIP32mBOBf2G2XPzlWKQgRZTUKImw+
BPHy6bPJT73zXeXkf/jCl+jXKpOWChLGYZFLElG11+QbprobMafqbqJjK8u2
BeI69ahwPSr4kT/SOtCNC8M5NAFH3eh3VAz6vRjgAChRR685cOwXOOCQIpkF
LEZM0mLn7hMbaceG0FADFXgQBydnCh4hYyZiwXdAyB7HDT2QHSlm4fKeE5PJ
M8dx4M/VgxeSlfH5ZG52gW5z/z0Pw6afujnm1UImusUiqrAQX4PWODQFFHgf
BEnywS9+B0ZCQMlMkK06KdghAcV4IThAGKDEnsW/kMwILoQ1DuKSrPlplFIP
UMhAbGnpK2k/JaskLvesHoZpKBtWKKJiSnYJK8ZKRFY+9ON/JfadsDKYSgW7
PsjjBgGtROdihUYckrj15NOkx7OUQHANJQMioHh7nO4O0ewT20F2pKvtWMlV
g279qqphQSETNpDjBLD2G1jJmWbnWpxsjOSetAbbMyMTPKNw0LEdBo+YyZHV
0Tz4Gp9ttHYBCRePCSegX3Hca2NRWYmFZPvuccajwnjQWz68mRBJPvzDn6Db
fe93/jn9jmBJXvn4Tydf/vO/Gk1cWAvC5xPqrNyW/i4shOxtdoimYaapGl0t
0IRLXK6QyyuhhBgyrjmZ6abjclXE/JA5ih0gVHWYH3G59jFV1XxWihc+EVIV
x+SEEsPcyesQ5QV/q+KQtNNYneVdR0EPERxIIgsU8Z/JkIQe5VJDyJdV9Tnf
Z6g3TDXHmx/MmRyAZEyO7JljnxfS8n1UIucN1g3RaveaUgklGvEpUKJYFXde
NT2hqQ5FCbMp+49cYojG0pTYlnbmVCqjMUZFJPHmY6cjSvQz+12AaNIPVnc5
IYWZHY7meKO1CgtDMQCQqjJSGzsORqTe/Ozbkz/z0z9fZqqqyU3rp0BU8o/+
6f/F/xfsQhFrxpoEy2uKybHFYyTXs0Mz/FEhXSRp16dFaX+Sf8FvozljCA2A
EwIg/Zi0Vo9GAMX/C1o9G1zvy8U8QG/A8f8qqf8XXVjZJopqqlnjZz6d48kU
njZiBveLfTNZQRqKSSXwDW//3Fa2yKAs4fQ9u77BKp/Qo3YFDIlIjrYB4A7H
oFUc5y+cHWGP7adia2zQisaS5Lwt0sXB3XIYpPZ0ulvDRvYRr2sOUayZ7Pnd
DFpgKHN7JLD923f1OkuOChjhGlSiIRPyWM53O+gdFvQQ1MNqWfTI6YtjHZ7h
Uc4E8UO1esmhbjoXyIM6CuR3OkHQWkod27CrB07wRa4etSQYMnL51M9jw0XE
kb8A5Gr82fZv/SNGzmDH4nTBcDc7MMrUEmzkOJz9wSLZqEfI6G/sPg8M+RIQ
FcL80hRZoR2N4FbBN4IzzGCJP7r3qfeDPxpjvJZgFLXlIpHZpYH7nTXW/Y6P
WRUYC+af7ic31jDCKAEZY7gHr0VYRRqii+eeQt6eL7KRxZB1D1juP3KhpYXv
TMeJbwAsYSARk9UdLJeMdYQNAJA1B0s5/HEg7VoKscc5E6yOHegHE+TYzTEO
9UxiwOCgztxoLqdFlhArSR56Bb0zlJ43uZTetb1vcqbjrqDNuau1w5gvkDzE
mIAH9DVNS6Zvw4wNxCbmZY84Nm9cwLvr/peiAyHJ6DbS+RpZnVvYURbwUCTh
xsjNGPB0pRqB5y2dDy51TeAI5u6ZY+cZvtnmCEwdnpmV8SQRf8HGwZNsMICl
5Nu//J1kbn4J8NG78CoQXtu7fFx2oyrgyPPcHB6Etvs8yj/7g+wuPgKDGEFc
mVwBjGEbbSXvjLJM3p1WH52asYXHFg+DQ8wuM4gmtosgEpg5GQzzbAXJjCDI
g4sKMJEdJOu45iRKGo6nWhM2Zfrc4BMMJbxTy6bEgMzmsscmfFdmc3xijko/
d/7+5Jk3fZiv937wzyQPPPTmZB/JBfxYY1GvZe8dVogiMgS66zTaj1+8m+rf
ie6ioHvhwuPIZ2fQtY5tBt2qzFOH2S7jP7YYnnIGWeJywsCidpIu7rBWKJGc
cCiyszdSIgWTWqJCD9u3tvsUl7jDdD9m0wDeMWd2bTzpXJ0zlgpwTG7IPHzB
Y3DORG+a/ms50dvuVIKj5VMAV8ZmYPXID+vudxJ4/cIgGUQkPpi+sjAIo0gd
u728sF+W12YZfObYJdYHk6k1LFkISTwJQVI7hexazyI6MVjWzJassBww0LdD
wDNhINWLwYtSyfcO4G3o13/8J38m+bmv/xr//8KLH0wefOSJ5OSZ82HJaDly
CSbpKgLKZScpUxMobzv3JCDMQGm9V5EKtEKNJkdDee91oRuURG2AshyhBJB0
VZMvf/V78vFbPvBJvs5ceG3Fsawt05dI3gBPXBJ69gmhP/Tw45iqZDbnHePa
EEIfe/pHcy6bbFEL6aGN1m6SrkmYtd3MUQk/xmRMHqLV1jFYT65jmDDhfRSk
ww7kiwGOqAwKmOTXcjSFhaC5zdxenENad6zgROp+RlkZzdx9ny6EqDgELjj5
k0Un4ltOqxPnYjH+5wthKRhMHvhr5CjM+aKDDoUVYVEobA81x1Bzc5ZEBsTL
K8dB22LKYjXjmYpXilYGlnk6lbOTiBz1T8VuBreInFIyfAgyDzPZlwAlg6kO
Kuzkxr1PWzwzDmoQn+CgXlicBY7E0f/8B/+V/vq//zu/z6gCU7qK4FTOBgKm
uMh8FsGpxJYwm2B1zkn4VB0Xt57OscUaBVZKmwVjRkuOiztlMj/47Aag/cSn
vj3A0FaStb03JR/63M8nP/+3/gUb1qtPvqyGNaO+gjhXYrLI+sQDgi3mimFI
AeycYAuMCVMGts/xiYPDJ480CnN/8ImBLsWFq8IbnFPwlfJGCvfpD7PSxxfN
Skp2bnNfh+VEiGi/LtS3U9qz8wE39TCZi63DeVZZcMxiFGWVokb2UEHpopOg
ofjQ25hqDlVQgxlxlUQNg1rPea17dqwwqvBaR4RVGNDn3vZ+prRqWL3ttnvb
izO8lOKkkTU4rMQpu2yXWDvsYuDgvraMEwsQ9+7am5w+eUZ13hkzDEAeXyVO
K11cX4lBi+CX6mTcWVzjjkdbdjxaidU5z/fz919MJvsaILYJeIv4ie6sRhYX
wZvML/A6gSLYpd5T5xeX4Bv3ONhFo2XHA26kHvBmFpZSlGaLrvWAR2Wnahd0
QS4DmmN3hNkt4cdkcmYB7FJT8FpKTt96b5w+KTkWWB6Qjd6LKSdcMo3SFJRv
P3aSs0yAeMaxwAOCMr2PRY9nUGYfmU3n7Bzs5apjOqey83XcfzL5zA4xXGz5
+h5HE0wZTaCVmDNdr3MXJ5w1iIoydjfkUI5ZH1mL7KHcMiifOXuv5lrnnODT
CEO0vGVBWbI/YnN7+r9jQrPOZoDjWo7mgyscAoStMsGWhafXXmLxu8SWY5QZ
BJGLhkvwCJpf++DV5G/9jd9OvvbVXyomR0+dy+2nDcsCs961FAkHnoqru5gX
elvpfseJrjpOtKQHtheaA8z6W47tg6WeSFkf6MZ6t0h3yFkVXHKcauVc1lzZ
oYXcdphoWSQqhH9fnE8J53gL22w5/+wv/k2dKiUB6LTX84YDyWHRd/FaYs8b
LjZQbzqra6bNIi8KgjPA26BYgA/nenW43GuOy63E4n1BXJyQp+9wtfXrmPuH
d44vTsvXRyZmt7QSM2lDry1OzPKelVPGdmMuH5tRRrMbEPifLFnjWRUT6irw
SEJhYQtQ3+mv15px9kJbb0JttwVeM07l3q72pABvJloIrhR4zP4L8Os9gBd3
m9lc4NdKBvh3vPASgCfh+F//yb+hoj/5sU8ldz/0uuTrv/VdDPTJFHh5bPEl
hp7sNra6qgtfzvvlnlEnuqsCuq7VMaBn3HEBPdk3PsKg46IPFtgjr0aP3A2e
q/ngWVGv55Ja2ItedLzxPmfFm1lNxPvSAXnZ8carPVBHH3ZBfUFQR37r4R98
h0AeXuGeUzydMen0PsrbvNFCkvOKqEtgzZAPOqhPOrZ9UFC/6770PNtAijzo
scNN39fDTQfqFx98djtltcNN3+e46aop0Cj6+oZBncVcZ3QC6hVGHY9NwJMD
YIwRTnvLM0fTKsQMF4XWVQf5Xc7atmnHVzeqNhr4iuFdE1ylnK+urMNXnxHY
zRQPiWHIbhnQdem83GsUtPO98o76XI70hfnFSHqZSa9E0v/mP/0PyWf//C/z
WAfXgadcNRDga4NMDZE96wXtGok79l18d3JUOv32YD1CLujhPcsRc0TfxPUu
Rr2WD74VdSY9+O8ly3qBM2VFORhHD04Qh33AWda3YOhRGx7AHlQ/na9XAfQu
gVkTYsC4LDBLjG1hzthtM2utGbIIs8TbjPGwA/OEY7eHnJh7NANz3lHf1yPH
BTqJxuThN76MDguuc4evvr+HOkC7PvJzv9tePXwmMymY5bnOC/jl2a184cFV
4FvYHuyO9kZBsmYSiSvasqOQoV5xsmaTDtommoimvMpo1wm3HWy2CeqO5Ufk
s885c0YDDtGHckQTaXyLvLMeLHg5T3SNYa4y3D/4tnczzLjIdUfxnmdQdEpv
5UJ0MC3rNJLnP/ILdccXDyYhRJKW3w+dWweg+1KfvGQBLoT0WTWTPuOLgmxy
tpvOikI7DGp8K/wanj7Ug8W9wqLJc9FXO1ksOoZVWGT/WXJekUWZVMqwaNfp
jguLYJPYYwpHnKA5LFOXw8zULC2qE3zAsYyatkbUe+z8PaAp2bl3nUuczCBw
IF+M9aUVaSD+rp/8VvKGD3xxK5aQTVufNptq9HnKJX6tRC7x9yDprvtfomgu
prS3cnCysjGxtQfnqp8mm3Bi6+kMPMNxR+t5euV1kuRSO2uYyI/sTGM3HTjN
tj0NdyOc4gUzONM+nA2Gs2ThJAHCa1a+zep4JTX67/Y2O3IBO26DgH2G/m+t
Hq07jnSgNCgAkEmEIoa8H098gHMNMmFoj1hcger80hKWQxWazlpEXduo57Sk
cW+Z81tYTwAWib9DTq6q6sSwYgvjsQxmdFmawVsgr9OxHXFWLI45tnDEiWGF
v2rKHzu2gIfM1yHHko07/BFAXKLZS2cdXC0GK53wNYux8odi1NGdMA3XKdzT
Jomlz/wOj5krM4R41JwYx0aapt7I8RdzWxLqevyt+bmtMWdWaSrDR7CPgb8K
p6nRALuSqeVwN2i4k3S07ELLcldz3NxJn7t+4Q5sfODjn7PcRU8X//K2F9yV
nbh5iV8bHd403YWTZeCPysUEk+vqCoQ8h/XZS2czEEoKiyE8JhNO4O/t731f
8vHPfwEmccCZz7V+omwlFQSrjODZhR1Ji0zlJ972luTUgX1A8aCTTqqZGFNR
VFN41/3PxRaYgY7ppJLjlo45KI44pnDMiTGHMyjy6TLGLT3k2LBxswCRTCAz
hEvc0xBhdLinh6UkLLNA5tlCjWiVvq0lsZsqNKKe0U09bXaL6LPp645J1OxT
1UHS7FCzoWhNkJQd7wzjPj/7NOK4rBMZmQ4msSpIIhrV9V6CZmHZmSUaEiQf
eOj1EUm7Z0aRrDue5LiPZFOQxGwRUAkwhlfxVfmfsbgkaAPAMAa49jYL/m1K
Ett+7au/hGLVFbZBaMaJledaxoRyYDK8ykRSah4l8QTL+M/+0//J16lzNyNt
NOAsUZRsRcZIFsVpVUI/ePZWpvTnX/nh5J9/82tK6gEnG1QXUvE+57RmjKY4
cJD/mA1SUmWShxkdd1ZDDTmbyyacADLsKgvPFel0Wo841m7MzPSMTMyCLao9
XkvReTVM4E7WgT3SA/4csnBkrxWyj56EzbTUwqbigb/gtV9saC55VA7AxlRx
HljsaZEA0wP2gJM7GhZaCdxY7HiGKpsrbmRonRwgFXaY1MAVfhJ08t6nryIx
XNjpJImHDb2yFiOzvVAneOuOhznmYzXk0FsO9GZ6yLPbFec28/5tKg69uNYO
n4h2lfzcPL02SxzpRUgKOwpuD/Nriel98NHHk7/wK3+F3hG/9CoEZxK/djWj
CTGioS1KBGoxxhVqQyCj3IAyk7zPSQg1xBU2QaieG7NRyMZhmgcqO7HnhIPx
oLNNYMLZ9yYYl1Oxtr7vMcdMjglzhZDFiZf4vwYQdn9zJVkvWhWCZpSsQlA3
OGUuG4+eMXvRJD9EYQpea/k8ka7y5zbLdA/K5vhTYlCP30NOgmjIWdhoqpdb
VlWN/CJUMfwWk2888RD9GigvzUwm//k730j+8mc+zH4y+cUth+gRIZrsMxrC
nWO3N2hmp+G4yCMGNWR1BLURIRpvv/5b37VEZ1xku488HwFbF3nWv42mp2yu
WfLNmP+pOs6yHXHkgoFzRaDGZ4Qy43xIoMYc0EOPvV5wDq+/9b1/mOw/ciJ5
7uW/EKG23rM+KNYe86VbVAnoImhGoLh+JlmYmhSiU66RWwLRXnKpYYLboeHJ
rnZa7ZNNLpWd4HbSAXzA2Y435QS3gxnA2aPmCdrgBx9zjKpiaaLSiKV41UZ1
lONC6FyRNnesRZp4md7xK7vX+i+4/37QazNPwzk3W4z2tiE8ZpkkylXC5ewN
Zvuwf0JQ04lyQ836hIHs6uU84B++tFFhwGsZwHH9g1/4YnLz0QMcCC8J5Wis
bOcpjArlr3z8pyPlyw7lfY47POTgR8yNCeX4uqBHPdfpde8xfS+zvG68Pe3f
RvNchvIYbyPvpcu3Ko4Hbodd0sgRd5kKYtAPGhsuHjj9XcCd7HncutfnLKUM
xrTz3CXBvSS4P0H+HPAG6GXB/eHbLkTc9zi5rH4x4yaAtmZcojFNX3WNm6ed
lc/9jhmfduLmsM0vPDkxnlE9qa7zccf4jjqUlxxvvGmKNA7+cWdlx2h3ymN2
zAw3C3Q+mLaprTHJMhPhsaEarOm5JBQskxPbifZRfyNsvxMtBw3ZQAvNuRQu
1tgURVyX8DNzTEzTu/CK94igQfW8M/Mz7rAdujmbfep3nOVBH7oJh+2q+OQL
rZ1R+FccFeIF7pP+bfqdHLYG7re85mHddRuXZlr/3A62Jp+VbZkmyrCN92AZ
VFcdtr21loHt7ImdwjXqxGDfu3svgwykKwZs+ONAetXJjA3IVBHibVl9gYtt
+LhplyyijLYb77F6EjzPOAujG86Ki1knxh6wVAf1CAQJ48IJ4Q+fEXVM3ojw
B0NOETCTVw78ZaYa5LmGm155VkVoeSa1puXBEYjVHBImC06YbZNjyjPxHb+b
T4BJPO0hve4nwPqcOaHQwrDXqFAIe//zKPc7KJcFZQmtGeI5J189kW78iyib
JV8kiIM8iTsgjMnSCaZrwDAGz1kYmxTGNJcMumqpMx61lefz1x1nfMK/TbMH
ynDIZRO9u8p62IyzprCrzjzSfscrrwvKSGnffPeTmR0PdjllMJadp64C5Yqg
vLG4I3n7o69liKuCMnLcivKKkzprCso21Nbktp0fy6Ns3fBZZ2F03THQs06c
nUWZu1D85YieNaWKnklsWfQ2cyjzlE6+POuAjzi5t4qUR+8jOPa4gHyobTNm
PVDGexta150TX25yUmMNJ7QOO7nC8Re4LL+Dwu8LZ44nr7/7Via3IvyaWJpG
o5PfSYdfs4QrRrlNx0b2CVh4r2B97au/NO3wW3fcbLOrI1r8PsfNHnP4pdsM
OdNaZcfN9rYfqp62ie6qMwW1z3Gz+5xUWd1ZI5nOtzQtu1VB1yS6Sbul6CJ6
BrS7nWha0TXRdDxkW9C9ZtH1fOt5Z6lU1bHC804ELU+8Kxo0cOHcpVOO1Ry+
QXT7e5Rn13oouoU03xbLIy87jy7jp7GzoguUESsD2lFBl95H7WQ3MAFbOazS
Q/ekc5ZZzQmYpXn8NzCxgHVYkAXCMLGAtSrI2sh4xpmPmnKQtce75JG13nND
WMJqRbCEFDaxNCssmVQz/Wmn99xykO13NMNI7jaC7IiTODcBONZWibHt9J7t
eWSS4cYsUMfc1F7He+53kK05qx/Noa1yIsTxZGFwuOYgWxdk8V6R3eUgOyjI
2ohYn5WgEdxYo9GBrJ2cWnCQrTg7CheccLgvgyyLNRAFXKcc6zjsJKIVMZlK
sjKdKe90DxXQBdlWDlkuLx8I23TXWFdkS3ExBwLhhnM2zWkni11xomDLK0xq
N17rTrQ75eSrpx1e7TyKppgGHRe5lgMJxo5Amu/OK8CKCtvstmK1gPljL6ge
9m8z1oNXpMnVRS45LnIvXm0ma81xkQdM4lp3FtadlZDpyPcrq/R3AVbcF5PI
wLThwLrTSV8Ny+JkE+XCtlpO8yuv7OzTosNpyTGtS06A28hwyqEaMtGWK+sV
DzkJJvFiM45On5FlcG7Ls5nuYZMDy3NqJ6CEUzfA9RJW5CXnViSHhJUEty6n
Z/yEVdmJbvtMd3ETDaq37moln3//Cwxpw4lmvR1FM+kRGhFVu4RAJ4uHHJtX
NpsMwBHYEo5IMjpTwn0CEr2P3Wv31agZH3Bc4kGf1wlnGkuSYOwi65b/kuMS
W6dJM88NZ6Jp1bjEJ8+eB6NUnc7sVM1ZKWkns5Busbza2aV+wytWToLUHU5W
akR41VBWjs6W22zvHhvvuVJy0VmpXHLs6pITxTq8ElVM1hk5pQafnTizwdfc
You3YxVBWBHYFcFyEYa2CIoLIbkEu7tz7zqNWmeyqq/HvbC6hO6RCAi525Tk
vHdoC9zlzXxMMg5s9Il34moes3wc7KW0bIo6n9KSo0/7nJM7zvoHxxWdUFj6
gSOdh1aXAboLfZ8TAk84M02zDvQ2p6m5pSHHcJZy0JtNw4WWk2DqFxopLo7j
mt1W0T3c7s/dy4BPfkdn+rtmPOv8IVjWs7a+l+alG04yS8lHcIy1mGB+yElm
VZ0pZkUS9yDqmfm6M9E0IOR/52c+G8lvOUmsUZlXhuV+w9s/xydgyT3areGR
iL23WajFr1W7KpMvMdE7ncC3fj3aRaL+dYKL3tFrMdn+7XYx+fIvbheTVz51
rZg89+JWMXng6ib9WlQC2zJBvT02nYqENdse6nIj5zYl3AaddXVTlQ91At1L
Sstlw4F6xFVQBwAdcfOrTXlJ3OyhfjO/VjNH1RHlGjPLmUUsjm86sj+ZoODu
i1fuGhLCD0xPMNFgu9+JmMec+aZ5Q/j5C5c2jESCuhjKjsi6EeOB8+UcCUD+
Y3e6rQsukTlaxjTjDl5k3tdFk4DuGYfuulh3e9gyLvHBBw1wmqFuOBmuFYEa
kCM8Bs4jTrjsHTs5ZORluBZwbjhQN3NQkwknm9oZK4+KOddYWcy5JNuTveOT
HVzbMHkHv1YyXMuGh8KyExrXukN92oTG4BRQDwnaRFoyTQ4WMk6aOIbJvj67
ITRWJaHlgdILr3k4Q+W7fvJbUXUKlcyDhsavjsrwXbjcQ7U6CWknkhtifTWV
tbTj8LUURZZdWFrgSBbWQ7HpBMMjTr55wRxSR59ZOcqgOCqrLtQAepv0dzkZ
4IE0Axx7we6sVGPuBdv1HsZ81klqm4g7bt8vOq61Tk3YbHOfk7ra5SzMHHNY
rDgLM4dMG8GeZdHOEg0aFu+55XZmcdFhccwssEYoDANrxik5ObeIlZiuX73T
LNICiBTnFnY7MW81A2AGmO4AlhnAwyfOJpvPvwvmzEsnfT8MfvU3/i5z7IXR
khJyw95Xk57SR2P0O4foXJD0lJrFVHLKyfmF2eSr99xOKnAUKWSd8MEkEGwf
0Bt0QtxhB8A5OaUOAOLkHHxekLPHTc4mbjcYY1D4mXwdAK44+aFm6nXG4bDH
yeW9aevhVnsAOO8A2CcZKePh8gXv1s7fATLg1u8YQIVOdxkBtzFn4aR3CLoA
sYl7YFWFhe7w5AzP5wC3IQOdrISm9nTmnybMVlyCbis3Jh3Q4TM8jiz1asts
/ZCQgrcLuJL5hSXSo/hThHrYcoTZWRzvivgWxnHBiW+/LzYrkc3f+P1/z/+T
ISuU0jzS9wlome+DMt/90c+gHG8tR5/pqHyg6qWmPEaRmtITXj1Gz/NrJaam
llqLuK4ZVtmPAKsfPHMcFlJZxcey9pFa1RmZDjkzPTNyrhVYxWdnzp5LNjev
JteufRrlsXwYOc9Gj0XZlISlELBybOnG5hg4VEYg3tODYevHmr0Z0UgPO35s
xTlVRxledNLW/cLw2uET1ofdTLs0m0MecHJSO51p2gknJ1VxVkMKXxsoD8xa
hu2Ez4izk2HWyUlNGob1Hja3dpG8VTDsebAhIVXPMLw4PZm8a/OR5Hd/7gvJ
v/v1XwxM/y//6r+QWPzm3/695Ktf/3bysZ/4YvK2H/pA8tAjj5vDQIh2ajB4
B+u4sPMXi6MnnQi38v3xThFncseVR5lNNaAlJ4vUMCOJLRQo8WxX3iuRd9Uj
ZOdjuXaVRp/p2XzI6mWnbD46n52Sp4l43J/j11rk/igZ2PduvSf5z8l/TG7e
CP52EFY+szz51G3nWAfAbmOFRtNRAsMmeL36mjtZCQw6OelJOf5GDfYDD70+
aZHe2dp6KWm3fydJkn/LCuHoOj8sxTCT3aLA+qAINVCEHijwY+Z48ml6sJ+v
I/OTJDd3rmF90XsunsBPycbxAzp7W/BUxWDqb8fBHk2rwOu/0tA6uzCr5KgK
dS1aPVSFWZ2Fy2jfbPp6wJlu2uH42FOOqig7iyvF3KuayCSxEP/CvENJjDqq
YsZJYk2azRGFrDrndlxZ259RFXauiVdgFfnZKBVPV1ADSFvQlx694xZWEEFl
0GsReoP6BpoDWgNXOBlwqZeXMOw48OXrKw1MMsG7TuGuZpSGMerezopeegPv
e+kNXNAVpe5BOrq8I6i+say2PvpmFwfVA86JWWEeq96hNP5B+7usOOj/dhzx
sLILATb0Bi5y7qnYoDfM5gmSrmzSixwG0i+demPcOPo554H+krQGiQj0x8zs
dPLpL/5pNCeEObxYlAcTdl3dBz69ltRGkZ9OGQZbFEdQGkXoDPrFT1y5JfkL
m5eTv/7WR+ju4fXJE/uTrTc9mrT/ys+wRiHKC6vOZNWQs0xs2FFoo5KoM8FD
R6JONclOZ+5tQFaLmXVi0Cg21aKZ8AFnhfYOZ8562smEl5xlnaJE2E1UJVJz
5sDGnR1W006gPmXOLCjICh27rDmvRGygPmUmwPDZ7cdO0t+RFqHPjM9ByAZd
8ul3Pc9OBnTJEL9WuzkhenK/ahPxQYpQJQ1HlZTs/4p7RL1Ti5SsFqFK47Wi
roLufN4yqN+gCgm7Oa0K+dN/7i9BdRS7pxkyaYHvJzUHLXJuYYerRU7lQg6j
RegvSY9AvjZft6nlykM5NvPqBPm7q4f39TsaZdxJHfR33ZJVYQ2T80Lo06BR
4Incfc8dyftefrfRKFZbwM1g1wJKASqjCJUxxJqiFjVF8t1v8oWfoSFA8m4n
DT7khComT5XTGHUbqnjHAe5ysvpNURa6Qk2iE5sTUmXRdKbNlpzgZNbJ6nlP
lpbg5Nr1lMWEsz9rylEW02lwklvUWWVBfPLQenwShUyZTZrZMtER7GecPbwf
+mBAVAM+giqAUpjk13JUDeJl2CcFQC3wAwIxB056geRHohN+erVmIsqvWis8
9+IWJwahD0r8Wk7WjpzUKe5rr1ohlKxCiIpGco96TlEr7ciSJh86NmfrstMe
2oCThJqAGHBOIzphtAE+s9qgLNpA/AojQNWYQNRLJtX6nJ0fE7nkxLd/+Tvu
I5+Gc/4FPt/YOMv+RS3nX/zW7/5G8gPPbmoiHL0BNwHIT/BryYJPvYzXErsL
rbkpdheWnfzfSBp8bGmLvXyI5jDhywB+A310QzziTaCRToeU2jP9fTGP33RS
ikvOEtQ5h/iiswTVEg/CLfF2Tm3S2bg14aQUZ7Ixhks8XAJz6v1Yb+KHHGdg
IQ0sqtETyAUWISORnUH8U38sfIuFBozbhWxOQNemapEFM0vv8a1FSu5SYxG7
JFTRPi1n7SJc2HzidWwNMQ9AoQIJZtccIz/MDakGwO0hftxBnAw8I14VxD9/
LX3IlyAe8456yWSdh/ikCSFOHzvGqYd618PIfIPfyBl8Qrx96swJG4fD0HdD
vCyI4z3yCbDvO3ogjghBW2zdW12R1zXlKXELhwrC/Jozb2jyGLxMDlMIdtTV
wg8683YLTjgw7yxhLTlLWJumLTqFUHPm7aac3V3jTvpxJg0H8hY+6JSbzkTe
JRQYNrxjx3WO9zHhHd8mypn33fxaAurxLsU/EstlwU8MK6+G+eMAWZKSOZAZ
Fjx3Kj1kt8Egb33gPUny//xHvtq//11+j79FPuB9H/48DX8n2HZV48rYBK9r
bTpg667NHNR1YVrziCnTJZtLJP2J15LOATLWdWfn15STH6g5cPf3sN/9DHcl
Y78FcJVYrhuyhGB7XAiHW3/tR9/GbFeE8O0vvRKNuJfVG04Jb5+6cPtGSnh5
q5BOGJoUJuHNeUy6hdKthDerjYIstERioh6DDRNwcBAiWYg1J6VpkhCY1t9M
EcpO4avpt2crzTurYxed9GLRWR1rU39A36oCO5s47ewWG3PSizPpFP5WXhVM
9vezKtgzPmWfs9zsogqQRCRVMCmqAJoBjj2UwC5RBXD2C7J6MhPMK74RXaxj
x/K0bqqgIgDDBmuuv/EqVQEW6KgqUNWCNCOpgi07nviuPpX1pHkeHQw66QAI
Mb9CD+AzMfDgX85K8+YUdIP6PEf1TedEpaNGF2C5q+iChuPCDxneJKCPukDm
GDO6wG5RmXEi+4oz0dgwuiBv6JuiC4yhx7W9Y7mleorVqeb8xhxdUMtZe0Dn
TQYOZXXBVqoLKnyPgiyiw6xFQSkvAnKdt1DGcUkmkloXspDQBTangDmN1R4K
AD7H8PjMNSMwgFWVQPQFCmYqcs5ZJLskRziY1CBf5PdvFfxpBW+X6Iyzi2XU
CfJn0iB/I8t9hbewKPf6wLr+3tDPOP7+soH+ysOPdMbqNwQ93gNKCz3stVb6
jwK9USLRU7YLx0frfKp+fBoWVvFA6oF7XaBXB8B69o3uEwJbCj2Cdw/6ww70
f3n7W/1OFs+uLFHoS44DUHOgn3UC+LIzQVDNOQBwDNBUOABDDH017wAkf/Fb
X0Uz7aS5evke93XjAyhxC04+ftAQp8G8XZYOqlF6uFM1kozLzCl465HUvYCj
n6UhC3PTmSycdRbH7pCzlkwgz5cZtfZovdFBsp0gnHVIHnmVJGNzi5Ksz3Su
9yZ5wcnV7Uw9+WT9pqNbf3wkIyrPkczijPXrlmRZUnBdksk9iGa2z5S3e2SY
H3N1kyH52P6DoJfi6yzJBXHlyWTLceHd03Br45PMcNM5gOVgbreKkDzgmG8p
0mbgovmGa6/mu+bsYJlz4vSSQ3K5i/ne3v4GyVUgOWe+2x//zEc3CtkTazQl
N+qQ3DApOdBGiMUleTZ1Nuik5Aade2hOwJAc037WPu9yZgk1J2A30XhIe1N3
M46DvuwgrWtrvQx8xcnAzztb1oacfNysIF0w/wRp3rgCpOeaQxqb0716It0S
pDFbh3wbYN5hjPPs3Ez76usf1uU9XZDGIQvwwLshXTbGeXZ+vr3YamUQfLVI
W498/eSJLTOAXN5je/mw/MJxB+lh45FvnD+X8chL3ZEml7HG82rdkN6fP1OJ
GCKkBwVp+jHv5Len+/si0mqcgbluGq866+Tnnei8yEg37FwbX55hHuttmM1k
OYe5FmegBkMMyPodwzzbNRPOOOdnsFmK8ik+3FNxLuVUhs3iF8wUnrHQUWWY
LP72qbmpDM52cm3aWb2rOJvUW1y166XXPZwXnH1ogz3SbZ/9xb8ZNb4u2sZ+
FeA8WKvBzy71JnmXk2ZrCclQXi+/8n5uQYZkpa8nyUi7wRjn02JHT55OvvDV
P2dS5jcMsy7xzRd5z4NXkmdfeH4j9gIZkR1LbKLx6NljhufbSai3/+q3INDE
c81ztkEz96pZUMapc0TVgw7De32Gh50M24gRBGW4LAzjMyKX6a04DC/K9lIT
VeusmGeCJ/wAmpNpo6bjYW5B0YjD60COpdc+eDXuCrO8mu0veQ8EbEVHetzh
tZIzv3YZnk3JG17zOoFHSFfqeqvtp5zJ8N38Wrb5MXA7aLpGM+MVZyZs0dld
1uyRDrOZ8SCkfbywHqjODw7xYtwujK46+a8lmeyGA33P/XeD040/MqY6zQym
7rryCDDFxerRLl1DOa+GVVsu8P/tf/L7YLaV9gXVY2aKDfCplcOFowbYNz/w
OAClIQSwZetTt1NGN5RRBMGDzqlJe3LP0xFGRxzXedQwqllwZRRBMYLebowu
yZFKGgSDT2NHp3wzql6xfUSNeqzDDpaDggy8ZDWjU87sUr+DpdzDzZ1ZLKvO
ZPiSg6XNneXQd7G0M1gTzqrY1RyWshLWTlhplto7jnDJ2Wg20CPG7cxS17na
Fk1d4yo47nUyU4tm7Qk5v8nv/sPvtM/cfKr6x4IjMtRk3hgbMXM9cZQJL1Nu
w+IYV80D8W/+jd9Aue0zG+e1j9t7x0aTn7yV92dFFM0sFfUdXkuwo3nnlA/9
1hDW43DF4fDz1z43Jhy+d+s9cTiskdJkVMUko7CWDASWnW1pC8Ih3sNewudt
zU+wjSXbOOPYRnJl2a6YHSfRl/UgHHL8zEknE9SX2i0A0jL3YK2VT2RZCOu5
BDZs44KTwDaJLByc1jKgZyDsc7JNE8408h6zqpQgtD5sJl9cdghsObvO+nsQ
eOE1D29mCQyHj2LHihJIcWbhoJNGWhDsgCFZwOSLf/YzKCuDnSIS8YCniVWc
dvWlwS6uDSfUimCDvqLU4V/jVZFX7SDvqedfhFGVojOz8rLxmS0PAIRNfPz8
vYcdBmeFQXofgbFpJI05PQZ35U46EgbHjS1c3t0pRJJKigxiFghpI8sg/k53
mvAsUBEIkhxbCLfe+lCy/ZUPJsnvfZX/39g4O91j5tdu41RHcsgBcsTJ44w7
QJr90wCSB1bu4eaj8JkC2TABrFpF71S0pgOkeShYB5AFM5cz5jire806LlUi
qq53k3nKA2kncHY6+0LqPXJETtqXFRWWdGPd1v5J3skXgbRbPeZzbqnYwdqr
BLKSAVJCPPpLRoZt1fdHYyWzAUTsakEpJ1sYIwuJpjdR7ofO3KSu6SFnsnZO
UNw435n+kbAxg6I9dGyngyLZwEkn/SM2g9dQauhYceZmis5Sa7s4A1ne1999
K/0dsQhcUhqxPIpeS0olQznZaSvVX9UnEmawGTR2DLYRwIw6tnLMSbHWDTaL
i9N8DzlGgRGhkjOxqkWz37GVs103YWQXfpgnK0Y0vbOIxpwllvtSNDez0hP6
pReayw6aNSff0z19W41o4npk/y7G8xuf/NGDTmJnll8rbD5vOnky+dav/QIu
FvpXi2jYHA00JaorC522jkInGzRM4PSmsxzpFPMrwMcYNA8moBRH9aAzoTov
YNL7ln7dZipxIV4ccsBs+WBOOzkdAdOuhMzYSJ1q8cAcN36qgMkmcvPK+eTa
R9/U5/A47phK9V3tw3rVr/R4HHdM5YiTI62lrCQiFvGRigUnd2R5HHBMpZc7
6nd4nDHtyJ/iafM6o47vuj/1XXPaPJt/VR7xmZ7YucvZ/VTtkdTpzL+GHTBg
ERHkj144QT7sQZjIg04SR3lU95WspSZysjxuirhmNi/j0IM8jzCZyLCQKSul
Vs2dwMwvbZDJ1Uw0Ch7V+pYdX1gWybQsjOK00jh0J7L9+x3JAh5rbH4Gi8PO
YUELPpEzTgZnwgy3ZnCq8ip7ozXTqguUR3Mgqq8qIA4KiPQj72YEgmP+UmQ5
eQusxIWKTYfBCccmDnd/nAwzODO/uLW+vlfP7nMTRZbBwZxNROlTPRi006ez
PRi0SZxhx13db5YhF8TF9pYcl5w5kBWzxQDMgb5Kj/ixM7Fa476Hq4rYEQz+
4mvvTCb7G7xD+YCTvpkREAHm+k1HGURxXXOH8HH3qqN5uiuNIScqOdSIjrVj
dpW3Hrl75jooSu40lrd+8kRLy5PHRLUh38BQHNZ9zlzmQo/8DaqjsaNH4ZxP
4ZyTv5kwA675m5pYR+RqcgTK8SSdORsgSAZwVBBkIgk5wDfi2ELZAqiMZBKd
Aw4jU44tbDqJzhyHbFvMIytirkhDU9wTdg+lD+fmPW2uyHLY53A4bzjURzHW
HFs47CwB3J/6plE59uLQTnCsCofI6+jS//INZlLtjmbkcI5OYycwUQjWgz1k
Cg84OZ0ps8NXnVTwKLmdLI6s4scbNX7uymmzSA/44fhJPoSyyedRyo6Kj300
w5A1Z7pM/9DESNyid8a4q0jW4pzLfryW4RAjxJuf1yyqFpqJUGWjPdcUkSTg
1GWAa87M5GJ3Olnfazjp0Tnj0zlvbOSlO4OLNWnESjM7Sic27cpqAl3jL4de
1jKeKr5rEjoIFRnRjRN7kWVlOIdzVhKu6p69q1aq1VP16Jx2rOSAQ2clS+f2
8vK8PhCKpVATR4MOnSPmHmIpCxPOdErDoXOxB50Fk9QZ7OGpgtb1E+s82t6q
XH0Sqn2C2h5nY06xR1LHoZNX40tCh/4i0Ik647wfcLnfSfBMiaXEqp9nn3s6
Yymzh1Ozgrl/1yJPeehDHxAEbm4+QjLxr3ix579Ct7f/NkMEdCqOZes3qJ+b
m8w8pwWHA125dBFlktLe2vqhEv+ImG9B50wi6tYTDtls33Pd41C55ORbvVhy
xDnGZ8qnctFJ8kgighM6GkvWZAYSiR9DZL136DjnsDjYuT+2/fDVBxaNdlFv
st9hcdaZqe9zkp9lw+JrHnigffWRO/URLpl7NB0Wx3KW8pMf+1TBex5EPZ1V
iVFey2Gx6sx4NJ3FePtl2hEe602nTyXPvvUNWymOmRxr0Zn0WJNnoZnNMXxJ
EmfOSa1qjghr4yV3Eym8Zccc+6eWQpyKgT2t6Vb3qp1u5EuSOQKiPOsseebg
7mRtdAhuZubZZGAECA4LiNvbXwd4FsSMJbNr5d5z4gAHpPaBSYRfpryNjTO8
hMAyaF1geX5xnG+EdRxrDu9xpjuWnByrfWitBo4efhM+fi0nlSP4ZVI5ip9s
bNU175XeAeOSg1/TP6xiSYapYBKcfQ5+c86MfMPBryQQGvxaOTrU4noEjpvb
bN53G1vDUYdAkxuKvuVOc4/8c4TtcthmV1+1zNbxhz/yIVjEjYJ/cE3RSaXu
lQeLmsXtmrIpKH5kFFt5/LCgHakaix9CRuRprItq8zbj2X0ocE2pTgQg/Mnn
no7iVM9wyG4luMEa2JtyBozY42gmz6Fnu8SDZ2MItmFgTzgGdqQ3h5tZDivM
tXqoWDtHAFI03gljq3teFWzH+HHEOVdmzIdxh5PFkWRmJotTNxMegJFApJ7v
GTfuFBLbv/GpZPO1d/Dq9IGcIRSnVBDhjtDUZsNBZNGZaqh1ffx2IPGDP/aJ
9pnTvO1yp2mYZojU94VthJ+LG0w6q2WHnVmTapZEbsUuQyKiREuindHod/aa
WFs4Ozeb/PKv/6V2OsSZJKpHoj67W0mUYHHWyZnqFCaWoEuuhr4YIJR5jIwN
tDmbcbGBOU8UNnB7edeOPsteeEAA2BM7eNwxW4oL3juu41a20mUW9U9srOeL
tJZ1pIeLawPP0LVV9kDVEz2xY5LPdCHylp1Zx1b3VGomTPQgHMlBKMe5LDvH
PEwbJDSJU5dXTG7gc3ieTji4YsDjBDAhF3Z4l9QEwvtUHDKuYd2hbsmZUKg6
SRR96D2II9u3YXDIJIP6HeSmcuEmjN+Qk5Q14Wac319xkCs7iZo+Z9XbfrN4
/MrVR5Kf/vIXcG2lwhGGQM9YLzqTF8odFt4gTMTvDHc2T6rcHZ6aQW6GiSv3
yM8UzCTiaHafB5s9NX5kCKNMixNaltGdG2gwLTidYd0xVqM36DTq3t/bl2ai
MV13jOlo7+hSi5PerbP0ad70rbccSH79nffy/4LgAiNY5ZgQGOKcNQghvkbx
4Y7rJG2w/MbSaA9oGOpx1Noux0m1k3ywg+cXZmkA6JXNYhFxYpgpDt4npiwA
4l4Hx0biHshoHpEb05oekTuc6YUyv9YskXwRjck9lzd4HHebFqgr6tE44xjA
pkNjOUsj99SeHjTa6YuGs5VDaYRres8Dl5Pf+cd/B/9vpPISpvkkfcqXTGGs
yWM6ASGCQYCImQ3VixgNigIVyrd84JNR1apbhw0cmKwAjhWBUiYvuqZlRhyP
tBSg5NSMC2U4gxgpGlxkCo86JmysB5f3PHglSmXgMszLG0N7zDG0o739XN7n
lQIUinzr0UOM5gNHdxaTf/yjj1LPKKH4NdxTJFSn5FAVYIrPFNPN+29Ltv/M
K0nyvW8m7W//DAAo7Oi+hE7jya7MNnsciLbbyevYScHnLuxJ/uHL91Et8VpK
7j+yyKIBPPc5E/51YzOPrh+Go6r2jLtGU5s1h9CdTjqlxARVbWqTSQWd6+tU
eKq21Bz3OXDO5kwl9ob0O5lZC6fO7+811dcjjkrOuSb1rnOLleidAk662mfO
n5Hhq7JcmwyqzmusyGOvFU5MdZiYHaqRbpaOgC6/me6eROVbwXVFErUqtGIZ
DrZGWlrhyiL8tbSaVXLRhOp6HPwTHzZs6iiz8MCEynzHYcfqjTlWT9H60Mc+
GmsvPsX2ienxaJWVfsxGgnZLv+MTt1/a+mCkX9Zqs+OKEJKcVxoicFpmRudG
+vnAE+JyhBGtMaI4vRQfw8hCZLfe/CgwxZ6g77Fhoff5FFA3XLF6pxuu/T0O
N1t1TKx5Nt41QTbi+soDR1lguuFazdpUuLgoZ7eDVdUhdtlJvxQZq0pMv4Ba
obWwJl0gdjoTs1pc5509Iw0H15JzJsL+HrgWzCRH1fFsDwiumtYBrhRQbqdS
U/FQDatWi0CV/gBpVgsrJpvqDqhT3fOsDCr2RCLRU+sx22ETPUOOr1tyEj0C
alh3HnxTTcwcdgygR6lZrhP5t0+3Q3ky+2HBP3XsCIrhVWEoEu60TnF6y+dk
QXdcYo53NQH1I1dOMqigkXzcAQMqXF6ACinduOlAcu3Db4MdhQPJoOJz7MwC
ootd18OGle0FyddShKpzmPa4kj7/vLI9ToZoMR3a7V0TTca0Lpj+2afOsvtr
MbWrdypiVfGeIlHIdiaCU7+06rC0W04XMn4ps4m8D3F57coDFzMmLp9LQtIH
bKOUBceM1rtmdbOTjwccLovOhEe16+RjlZexrp9YVzOKiY/NFE2bdtUJj8we
K/Fx3dXE/Q6h5jklrRyhGyocyALVesyEdJ4HHlbkktObN6XRAeu3hHZ4qQed
gHTc8VLNSvE4M2I37f3ZO88yUYfNwiB835ZnHWlv5fm4qSK8XqwVIFe3LpDC
6yUnWCGtmbg07/ASpE3hE7xq5kj5LJh/YbjDYuK7984mT59ctpx6xwrV/bPE
9jpJpFY6wO2l0X6wSQPcnVMIEXYxB0LDK8wpfZ+9X4ntwEH0fisOpyuywRic
4jP8PfHJE5L7zbDls06WzyXHblYdPosOn4dCr1o++ZKpkOp1Vs5JIoiKJjDp
M8I0MhMUalhVonxKElYOBal2c3NHjDbEEyAB5Hj35GzEEkDWesyQFEySqOl4
uGo4dYWrwbImgwF3VJM6B5xgdMJxR4upOxp7JzCZxrdijA86tjgUGc7fxwZL
vQRxnRHEEhk4t2QjyUIBxYEMivI0j+jVWhbFqx0RFmE/t//qt7ouiA0KgLeh
bu8YG0g+8+Dx5BeeOsdMCo84fqDPYbLqH/W133FxdxqGbtoxnvzaO7A6NjBJ
P7PAWCbtsrtiajvbC4tz3O1rhifNsJYdJpdlYyPsHZgCZ4szI9z/68f2tV/6
oadQnuDJI5hPQVk8W876oIoEuGYqhi9ZKxAeQR3OobZUyrRIxdnjocYSCSIy
kNFYysxIELfwLBWZGYkwTpuYEzMiSAjlXdkJh8ix7kSyPtEMUb3HdInNEA04
rmzZyRBliOyYN9nnxJyTQpBxPfmin1HTsNCszJ1jpkv298Db+sVFJ9qUtWus
/BTKAYaylsnbqreqYeW4ECgZoAyBNnMbym9wlUHdd164PRII66gUUshJd+w8
EKTsn9N1wEkM7UrlnG8HF9Zi+PDZNRaRgGHVridQk4hOFm+Th0s9V4++Jdkq
BVxgFYERfgcCX3fXseRz73so+e7XXkpOHV3RdQOFg0ZT5HNNFsWdJhuslrIk
kavNBstG6EJ4LJIsjBQOZZ6E6t59uZxJ/ETTqHMl+CeuK1OiGVo5Bk+eWFHL
pGdBoibK0dUzRuO95QOfzDz43ZlE4X4BfZZGO4niZYAGHLe15GSAgmssCwmy
kyj7HGMWUKxYHzNOXcq0QWbiZJ8TSSrOxu+1ONsJQSwSIANYGGT2Sswe5zG+
xzNpHSmcOSeFY7betU+1JsAajSpeq5G5mcGGZa7sIFf0z+A55BxyuZLeMSZ3
KgY5WMMUuXJEjqwdxn6/UT7qOJa6Jlxq0dApZueO7GTMvvWpZ+gb//E3X6FX
Qi9OVR6WsbblaxBqj7JfdixfUaZgFDdZEXATF1nOkIZ7OOvgDpiNxpiEtJDJ
ihwDWfCwEBfK9MeYcT3zSRvia9FBa8RJrlq0kEwFVI0eORu7frzPcT3V0F19
/cOxBRm0OqZC1pxk6BS/lqOriDU5y7t3h81qHTHlXrN18tq1n8jwafzXyKdM
EXDEDa8SSClYMGgAyYJlUy56GgCFeFHMp1MxVzcSk8MvYIG3AxaNMqiqWary
NFFc25mEWTP30SSM4iQoZeYfCae4SuWAabMmL4uOaZnOsYTP0X41W2CpKiwR
W1how/1wJJSPMe9I6FiWNKFjTBdPj+DgHJ3eP5GDSBIsxR7bLsz8YYRIXEb+
p1u6kf/UvOeQY6EK2YUVhZ1mcaFuwxh2Up82gkMixWJ0vcRKw/iLsg1DMcok
VsI9ZGKxzMSaOYpVx8BMCQTq5Umk1TIQZOYl1pzkjKKoIAmKkrePaUbQMyQM
YT2NTAGCw460yKyTtpTqMNriCFLF8dqIDBUkTYL5BuweNqdLFY46yZB96aDE
ZEjZ8KJTgbvNfD0nLq+cLxQhOofMqGpm0YNmwkADwXb8PPJXAjTw+QqywfeY
6URdnlZxoNHsihogAgfV484L8UQ1wlKQWQJZZnbAuHJYbU1Q0LvoykXh0q3V
ONlYARnond1YddgYctiw57ypiVHv7Quv2WCT0i27URc2zL7dyIbNbggbYXag
HKcFkBUkIHY7sdS0yLU4Xxr1BLlOozGZCFh1YigtAUaLXDYly8xodZDx5adv
5TDJWhebpJhxEoamPLYuRAOU1gtYKQ0yECbhPiT56072QRQ/5C1mH0oCAebH
dYKtxa81hgCGBJ+LAYFsYfQ0nrcOE1/CwqhjO/CnQOE9P3Ab245+gwF9zhgc
F9krGNtU7uaHFVE8DLtwVgin03F7z3BBFT4fGIUhpsm7WyaxEEGg97G/xg2T
moav30BmYZ9Dw2CgIVoh/LMHvyN2eTWZhZrQYDbPWksRswuDloaQFIUsz4/0
8SVULDthzbRJ+5HF4OFZkF5FSCRpd96zh91BuxyrMyNlECftq5tPbKRlhCEG
BBYK63JNOnmDSXMe4bWf+RzMCMpZMoKtFiNwUWIu8pbBelKHUqb4+/CkSmbW
WdPk8wYKWAYBYluA4KYFl79ip4VVamVXeC0mARzjQN0QiCBCouUSIlB+NDwe
ETYnJ8Th+a4zI/TXIA7Gh6IgtPFcKJLZnV9ogYPCASfOL6chSJTZcdPVyLaR
MaAGXz++P+QwMeBk2+xZrbKJPOa/rxffV3t7T+3FpQXDnT6vlN0eeE7tH7uS
/OyzNzMXKtStrso+JMzINeKRCpOi4WnKCGZQ3l9/z53Jg+tLXBaOddnpxCYK
iEhfIS0rDA+AuJ4/ZYP90U5AktbiTDHZfN3duXPPzCbKmAOw0Nx/9jBDc8SJ
5o+k0FzbNzvM0BSduaWpHDTQkIWgpa8pNKcDNJtGwCM0/Y4Z0XBezciICUG0
fidMF+bTBfak+3y6IB/iAMpSCmUcoptD+az/8kcS2Umkchp/xL63O/RxIV9d
7B3Brzvw9DvJMXuIah4ebzGjjeArAo9Z2V8wqy5QJoZbFjHptjSMoAo7tYIQ
gnLKCv4cy32FGUI4AfnH12AglCXiob179w7uYL5NoY6fOaxHcWAT/79w+5oW
u+REKAZNFMfysCPUlIvLh/ieE2ZD/EF+rUaccAg94QSakmuffX8xSf4Q/bP1
7qejaLRSNGIGwGJ1dH6UsTrk2KKgZnklnUb1gIqRInEYy/llCFryflmYHi9H
yReSao6g561PE4Je5AilBrLYZOBCouzZh063bz8Zjuo/lTYxThN5dE2bWacu
Jg93qziAbRiAFbC9ToCvgP3wRz4UvxsAq28oYADKCehPmFDvofsuAaQIlU2L
2aUGClW1h0Wy8XzZ8dLMQon2S+9/+1YKbuYEsx977TrjVDJQGemfzEEFR040
Bt2BdEahpCk0sxCizEaLPlecZUKybe8YMK7EO+J3cAxx2sMU35azDJylw+fm
1ig6pglwK3IeNe+0HG4FKWUzZjkEl0gLdEsT9BsO9WEQyuH2Nz9TEQ43zh7d
0GHbaW6X9wnBIMVITOABJ1sQ/DhemKHZgjg9S5Iz2N0V3FLZvSVwyIwgCSYc
lrvkpxWHmFPLcwhrZzjc3rNjqlBEhYtoYRH3vNm0WKeMig6W42nsVM0waaxq
3fFEbzHSqUm3PY7bWHEy1zJ5yLIkbmHhrAFQT07oc86nHe8BYMHJSxdM0qDY
Y9Mo/QyXsJVCnlm2eHJ5QkDojsOQwcGaNhsNZo93PGMW42cQQVfZBeYwoOnt
y3xrE7GN5u6sEKJzNWNZdO481nlnyKxdhJeHE6sTEYRZOG2motYFTrKKgLPu
wLmc9nMukVHiJAZW9QNLbw3FSX4N8/7IYgBOnbBtOP4m9UrG37zE3+/j78N6
gQAvTSEp7lcHYujCltb1Dn7tzJLICbqjXWO2koLIHPY5Lu5toQuvWRpXhUaz
7Ne6oPG7Zvpve9/uee66cw6NDSeFJ+7r9sLQQKSx0iO9bZMWRWf3qDGDoWj7
PBgeJJL8Qs2noHEdcwQ103AoGMpRIK6n7MLYsvhX5c65yHDgBsivOXcecRze
NQe+puOhehmRcg4+fG7g6xP42n/vF+Lor5hWqmWsCnx4j4UTwG6v46FKsBbH
BttodOqWFV2R93NUPd8UX7pbpIe7Kuzkk2f4Aib6BeF0Tb7jEvVAIArvdXLJ
EjV4A37uYJp3jO263aFpt3mWryzWjbbN5stnTJt0399ZM/S6CreeHoigX41H
YIMmnJdn94Ta5X7htc86l3zZs0gkxdGKxdontbRbY/2Q4UhSTp7LN2BPmqZR
mgxppiS177zz1i0ZKzM/2cFwLjys3gDDAw5Jg75Ha2Z62HL9+jvvjTB1Zk8a
MXsCgGDR4HKydApERA4ayRQRUHHUV8194E9ait5/+36YLOZnzTmk7yy/craI
0ycqOR2zToHSDf3e1/k1mD7x8FTwSTauH2yRPelPnctq3qbhb1GnOxwYlp3s
RtXJmds9dzqf4MFQdXJ/1iwJENG0dObDazF9YZw7mBXu5jARnzlhUTV6kMNG
Xg5dFT5qrKKKfJ/vvB3oCttAPniDxGcsR460YUfc+/27HjR3XRprwl5EcUdj
sPcSgh5W4VXZdiCyUhEnrwyZjBEnk7HHDIdmMlTCsTxWJXzVsRMhDRFO+iqk
Cb9NfPrL/LuQosCiVZHgfIrCiUrot1DdTZ4y6pKhUAuyVUgT86hG4TVGqnXP
8U4npSBSzVsb9Z9MvKGsmNv0pLriJOXMkpC4Ys3b9h+kuhpVvDylFctn0JZg
Zezj0ViooVjrkihQgcamkClHcGu+73+kKyPVTNBjFPKEI6CNdL4oejYmT8zD
DekccDybYX6tsXRCQWMjBX6nt0SLxh0Rtft9sksFgohi4gfCueIsAv2/gxjy
mEIERQxLPWYuddVLsYsStTLIMUGo2oZchYdNT+sCy5YTQVedtPGCEUHJQ7gi
WE43ucdumukhgh15YXbHyCVZ3rWjlS3APqUnqjgVPmSPFI3JnPBhkr2S7uyJ
4rHuCHNDyoMk6iqmSUfcqlnzj++30iJV2ljW+h3zP2AkDvpQpc3OWWn8zKvy
//A7LH+jTjS7z0i5RrOV3PSj3aNuo9n/wq8N1kq4YLrzjis0IIke1SfMRxht
1z30fLwQ5S/K2pKzzrDqZFDtFj+NDz1ZK6Xp0k39rj3BWmXNO2FvT5A1HA5d
5n3bcHVFEMI5pZln0GQVU4ndV0/cwmFTX+fdEioem5uPbEvXnOghwVCdug5o
0nF1S74FtnNN2MwJWetz1ubWcxIHHVfIuRtVuS0+z0tcwfyzKzngbIYlIKnE
nTy4ypMMy45p/q94kZgLP3J2wrOYb3QkaMGJiWpOvq9lOkVjojPOhouik2Gw
xlYX0HknpepTVKG9IFVkSF2vWaIt411yv6UhSbCcZw+0zHm61ShNmKqV4UZX
nOkhlJ06sGYNcN7wSjQdXBKd6VXRgShBRELInzWPiFmsebRpDr4fOXYQmrEg
OnHo8e+g6V2NW8rO/NROJ25hGXy7IxZzztKympN4svufNDo4I/0N9ORRD3zJ
ZlVr93TJWNHRJy0JCow0IEDIeJ7h9tYcRiVQNZIgpgceB9WsYvP8caL+5h7S
1KmbyqpI1PSdMx2hk5Jh5BvRTHmmSUPxAWe0h/m1jIgVkSomR8Cf9cHUja+Y
iRAabB7qJee8ah7wd5oB19PqZp0lVLU0NxLnDOykj3bJGekSsx4do7TEfxqW
KMlqKL7ER17g8a3z+CIQFJORTzCFEx9Uh3D/ZjN5wbNQnZSfysktdeNOuOU6
4qLe2IhRHN3Kkq7QLF/V7C+GtwLo6XfigoVNEOIDDVkfiII2jHXIS1TtiNv+
WDd3VO+47EyBeWcicw1+KBSwYUd+2vFX6zLyelwT/tmzENFDSAuqBZB1DHyz
Vhh2Hil9aoR5csR06iZU7ZjbybaQbBKvgafcuDTELTRWFRkqvFWd480T5GfS
73BEqOJoiYEbKCsk62sbOvZ2vIE/Tm4pJosTTarZoxuryWfftJF8c+ty8j9+
+tHkXQ+tJ2f3zWbWog86wtDXWxhOplIcndSyM+Wy4DipLAwvOsIw5TiUdSd+
3m0Q2t2a5jacEjWg/SZ1Dcs1wgY1lQdRAYWJG7T4YbeQuLFVFQh2RpDyFMEo
Ola7fAODeTnUsCUdY4tEczp0THDq6r3K3IjyFk4D0MvIQj353//8G6gsiARE
A2JREK1KYtFvnCvMikMWakYirn32/XmJsDZInciSMw8w5ziRLBHvciRiwsmo
1J1wdtWIYyE4iYX1G+j8YFBC8kjFg34ecax/zjqIIRQnIKoJlYqipFJEm3er
wIP87YZ+eysnALxQSTSNxI/1Xut10Hf3BHnakOLaO6eHeHRplCl0TUfdUQQ6
w8RnN7z7aXEAeo76BTNo6v+VnLz1rLMugkf93c6ojzn+XyPNDm9pATItwHBr
qHXwxnppNTfw4vsNXN8twLdlAWuY+qplRi/3l4XXpZKpf0MjyRJC1SqU80U/
lP377T3zI/T3NFj5sQPM6rFTI4Oq6bNjx1eXcbuY3ia6cSUnGzvTTX+/xxm3
UWfCuOGEc5Jn4/5SVblmp/u6LIPR8z6QzYfzTiNDY3V9ix6MVeEP+JUV+IYO
FxlJpSN0cDN2cKGQLvDi6A0dTT2b601u1V2hZujZ6BsVnczhVDff6H1Odw47
0XGfmMOC+WfnqPTIh647jwIucSh0pyq6VCZFCPkbs4tikP9dKkr4dV5ia2xf
IK2FbPaey7kn/fL2rbun2Y8oOmvtJ7vJ4fudjht0ZpcaqdWADmElZGY7otvd
cqxGITflEBZ0NVh5wDT0MhNS2z/kV7bym4Ws7FF7SeSKsMzkEVJHtd9w54H2
xSOLmkmxCbn4735+rW1B6ULCcL6BnnGga63Hu5naDzqd1nRMbU3WfKDTCOj2
4tLiVio0PGgoAv02dwPWNiQowmx7rk9RlVtDDf9T+ldbhc48UlCowfmFp2kb
rtmGsW7WZstpeL8TgmjDSXLgeV6Te8u2Om60GpyJG/PHPmxqcdX0nyrfohND
j3QT+g+ZZuipQ32O81wx4ydPJ8J3gvxm9e/wjdnNj5pahJEIsZYesYFLgsHh
brru5bT5sfZ1R9eVTe0J2bZU4ZRpvNa+v3vtrSH4uKnFY6H2PAjQPFp7yBT5
qkPOPgX+3o84ta923QuZqT2qcdbUXnVO9QZs30+YKoRkfCXDvjhbhHEX5j/s
1Lsife+ciWPrfD79auS9eIMG5tOmCk+EenPbFV1xNiju7YLsf5erNw6kLHG9
a/nzY62OEm0SFss5Svzz5hZhgFk5x9OatF793Rh8xXTK7rU1rldRpEEZFO5U
ffwz8/WnZAwLAo96CZjZqXcbw0Bf3d5TnzwGna2E/AvzlR8wbRMDG/P5tW4y
/mPmS7gP9Xtb++lfmr/7Qf6xzIIIARTlVelW/4+lfbalv/jfzO+fCeWhDSwg
Ul65m2wYTzT8/IZQAFccI4nP6VulboPYUUCYpQg6DZfkMbQp6ZfeZ770JtNd
+Ayhria6/W+8JXSE3qbQ/S/Tlz/4k0//5NP/Vj+1K8abtT7GnCej+UHAvJ0v
5EpYOeAX2/J/cYu/ib/YKGSC7uhtJ+bP83+PvxFfgPXqhnxHb4HvtuVn+Wr8
WmzEEv/Yjw+39HvNxlBybPlcsjJ7MJkdWcJ7LcfUo2zrje+zbS+2YlM3pUx8
8h/CLZfT1m3NDgy2F4dGkpWxSa5JMZkdGq8kK5OLpO7oR/zE78rySp2LP7w2
MTiJAu4xZaGlQ7VG0qzWUWsq6+rZt5CRuLz+WLKx7zK3JtciMfk1bdVWwVkq
dU/au9cm+prJbHM4WZlY4rLoDlp+CR8UUXKh3B7qG7G91aWzwiIs9uHimI3U
+7kVK2PTxWSjtYc822OzrWR9z8XksYvv5v9XF0N0vzK7l243nxzbeRI/txfH
WrYherf7nSHRYQkLJrZH+kcK1fbi6GIyOzybrEyvtgup63aFa1nWWqp03EjX
BZmvxQai+6hhaBeN7hQPUCV55uJ7i/KjM1YF7tNwt3L+bvelN7BNCz1JEjtU
b9L3VyZ34Ny6XTclxxb2J7MTy8n63kvaxCvp8JI4DrP4QDxyotKlAkXcNrgE
8d/96bBuFTpxMu3p3XsykxPmAKLioArWcBXppUGUrC2fSh649A5c1MjbzmzW
khOHLlNf4heDgxOqAVB84c7sgEDaeEAurxzmQUF/D2BAqGCVbboKRrhL3BZt
66W0wC0tEPL6zLEN/p++Rj7ojYxwIbvv+2LaiSl1IjpU2xLugEoeOEkyOwMu
SDu88d6PUh+Ak1uOPMysNBuDzMfGvovF5Jnbnid9cPXsk8nlY1f4Y7qADfE6
zAMiiTBtjugkvFaSY631ZGPtluTykXv5unrqMSrtmQtvpFvSz/g9ENoupBrP
TI5E2UdD0CultFf6uukoX4+UVEpY9sJMSV2rzMoDnYQR4N4JnI2ktyvH29Et
8B1e7x80RP9GIUVIMaIyJgER4wOMLu+/kFw99hqwexqngOD3955/U/LGBz/G
F342iF1OxzJKHYQDUkfCVOstcL42zUmyq1qq328Xy9KI3JRZWyQC4FH9d1HJ
ByCDs6PzyRMPfDh57vGfKgzxazWZm15Jbr/9TcnJkw8BQu2JINXprCyEgWpc
NNIMutAfE9IrVO+2jvWtqTxlGk0dWdAyhLpMGdTW7YL8M3sxWd/h+3Tfqvl6
s28EEBUaDFQluff/Ze1NwOS6qnvfenVq7nke1GqVJEuWZMmSrHkuWx4Fsjzb
kgc12BjZjmfwjN3GRgGDjQEDZrCbECZjSCCGAAHScUgg5IZHAiRkgPS9uXnJ
vXm59+W+m5d330tuzlv/tdfatc6pXadLfvH31VFXubvOPnuv9Vv/tfY+++w5
4Z1JAg6GnrwJMOhd6OsZ4uadl2wejbNLYXoqfYjGu2+BFy3fi/f06mGPIk8C
cc7G/zNeNCvf0RFgepvjHA731Keh/rOGmLNjoAY0Jv1HdpLqPzfh2VPuYr/A
i/yCvoM8o5udIoKDxD1dg3AIoImOxfi6Qw/DMeLT69s8ky80V6gDAs9QB4ZO
GQx4r1qF6/UmAKb7BkMA4K9AJze9TP1f5aBbM8CTrnNq52LrMHUw9yI2kdMQ
YtjS+/lY5Qg0NXVGfNddn+fXG9/4QbZ9+So+wYE2vU+NzEUBDxgzXNDOaiQd
SGlXCBi//rnpKt0QoJ3x4+yitsionPGr6kKHqPG7UFJAVKGh3BJvPePc2Vxi
bQz332QPphK2TK5Ay8jubz7nAbxwsXQswyP488n+afET5xOILF0msiDqwC9y
TVHWSPZlkAQS0LkbRpuWPKeWbDsj14RRIeAIE/Ln1Le+L10TJOeB5iaVNSC2
jwABnQWrL6dsnz6fl2ZbZ2oxiRAUR41JqPGe3eF3QLMjtIwlr4VN05FelusW
6ic2XUiWVaMegSudWRLDJx+Ie7uH2OQH+ejkF0BPRk9nw7Hojd+AX2abuLPt
YBXbdnZBL1I7fE/GdRYD9j/RDCBE9P65kf5JKd82h1zsvxxQU4NGTaXsH9DP
03jen4sWpsdPb6hBpb6d+U/Wjzi5l/O5cXUDIgaOJe8CqZBQhfXn2RGKLLbw
Of1/DcHpU6U5YE1/PGC7nfSlHZIlyb7kEd1nmuBYMoaAMCguYDQRqY+EC1DA
HJlVFzBfYw2jELD+iaYT+ytpbUXLn6vhTzSB6Hkqy4HtTq080D2DGCK2ejgB
8A57HxKrx+8I6nEfMh/F6rVl21uMgbvYobbADcMogRzUw1PSttOXbKT8djO3
bWegZ+hP0rCGRpwSl+GgNrx8Yc+ZhxrJb/DmTp1TCWidUTb3QsLcCe35+JYr
cXusED7XbJdlby998yR98xYGzrkwlNVb2KYhenrF4tXWV0+454Ag19akAv9S
3o1UiNzUbfDb1z/Or+n6pny8fvMF9LWHLr0/3nP28flAMxJiphjwg0kz/GrD
MhllLUf+tuxHCGGhv2dIAMCJsfhDQf1hYXpsNfrb3BDNI3Z0w3Z2C2ijMvwi
z2lDieMDEgkVT3AWNIRMvZ+OK5dvZOlEvpLrEQGV8p3U0CbNK+y8ACMZh7nw
zD9vrNjYcq305/Mrl6zHn7lFtbKQvsDmJZ5DvbijIs5DP3IuALcZFuehHD1e
t67BblPmY6Q6if/b0nRGPyiuYRVv9HAbDMrm03f5gaGB1bZizM/echnGBV+z
zQyziGcZ5qofZpwJ34RvXT652lcs0IOTJiLBQy/e98ZZ/7Vt3Yu/eeVmjibj
7F41714XXHIbv3q6BuIjjZvhZQgoCCf11m/mYEyRJBLvoniCtxBO1KvwLkSJ
Y95ryEXgKkg63vDeSnzf238Tf/SG9/p4vzXVcpE+rk9KLX2CfqDhD1i96d16
TuJQM4h0N8cLmcIIGXrvaHz21tfHT5x4Pn7jxffwz8axJlIdTWPYNPYePsPu
6ZX03fvZt/Ct5FWcaqhLIUdXl6L/T30AnypSllqnr9wUn33mJfy6eMcM/b8T
F82SDV7buCseGBiPnzr5rfjBt346Pu/gDd7/etn/Ivgfjc6aRqr7WsVMuUlm
Qw4xp3betC38jSUxVf1G9TJ805SVSY756Cun4WT7DK0yD9Jfr5TXabmK0XOn
T6zi0tmoOCec9YorZtktSxLZoO9Ey+H7zD0E3psKAWhidLZMredxp3Gm3qZR
hzykcYffqoeR33rNh/c06OQjZ882UcCOKzmhnKrX9PIQnwKnWjo8Hd977TvY
vPAvzAsjYJx53OSBYmKKb7myptudMbqk6dDJmH1kzwnn0xH79Pl7Z+DPdI3P
fOJP6LNH3vPN+LQ12xA3c6EYKmeayYlMlPhZsA6+ZC3CpXdwhM7+/rH43js/
wf+++Z7PkIM536afFwYGl/BFnJUanqY7diX6DK6IvlE3tNBryqWmLyaHxHu7
Y12TzunRv3nHNRRKdmDEi8YAUo4vKrWgQ5L0i14h9zLv+TmpPjjX6vfevfW0
hno3vLrCDh5ZB6d3OBYSjk5CVf2cfL6RHCV3rbCFpvn1JBipdIP54eKs+Vnn
n2iVaTNtutSqcOlSoIyAVmLnCXx9Okpde8G98wM9I4nbdXn1BoeToxv28QtV
dJW6lOtxQgcUKBBMZUOidYHfX3DBrQv1+iZ8n9k11wNBTQJea7voMIm9FpMo
+cuxXKBeGjMdRrKYL4ksQ29Sh1Wgg3CqvEFlygYRBzcdpiatI5eS8aEvTZ45
hQk9M+yTwr1GojNThMBweUI4B9CgOdg3HF+491Jn5cMrEfZHDDGWTa9nYhSZ
GOWQGpgf6BvDmbSDGeQoSAESRYMKZJYU/yk9ceUVVdrnNK6la3/ysa9hHI/c
AxHNwDDYgLpme9+UMYghv6Ye1f6MUl2ZIslYa1A3g5hwLjuIKavB/9uB3etw
YgwWzlnJIApX/CFmmnOUfkIrh2kNAppbw+H/c33QnAtr1E/3xNk2tSreMLkG
pOkzVJmmj4gkdJ4mVSDfUf0hydAjVDln2zX+TMZdSM2saulpG9TgJnAX9Dhd
oBI0BJd0N4v7t2dYuUWdwTmle8U/wqeaMLAm59B00+UCLbtSkOzggT1fkmnk
BOCNLSuBPPiriUBZqWTKSpjQu/vul5Boc3+6e5+rM8ZqfeFX8wQEOupH9HEb
A2pruq7u0MV9mrKfeHB4Mj7t9G1Qwuhr1V926xcFlLfrAA19s2SIg81KwckU
/CPbLjoPtYrOg/aReXO7RKXLsv0WdJXTtkA91lPujg+etjfetnQTEEZf++z9
n6Sv/YWjDzLSUDRAFnPO5qvIzZJMI+VD39aZCnJ3BBSYa436GVw1mOwZUBWE
FEeLCBZt6+rbGG0FQZuoIYZaj6CNsDajp9GH9K7sH/Fo64Q0dkRK2YYyxIZS
9oaCj2UQ1DskdlSs36d6vQt2WjBmKnqWgN2ec5WmMVTaGum2PUfio298Mh/f
9tYXpbxCAkQZ4bhXq+d8Brfdc2+qbyR+/RnnxA+ed2t87dYj4F9PgH9V4d+J
m55mpXU6jRHxr1v4RwJrPjkctUQ/aF8EooyOhiiGBPdDcOpv7xxsBpZYiR2T
QkHItgcMyQcGp5zRmKFmY0q+Meqd1BAUPWR/tgHTFJfvN7HZqFMaNbSEgVng
Y8VjE5/3yUzjgbP2cYV+x8bDTr8VeWYWs1X436i6EFU9UUHYdesOMFGvvPIx
HiF3O0rFO0ubUWlvpW19pLSYoYqRwkaj+JmP/5haiI/7yJwEZjBWbaEFbIj3
xYDddKeGynA1V05NELZyNbItRKpHTSzhZzfkFAegFCVPMhtmcauaVaxqqk+7
mbM3bLkivm33THzJ+gvj06bxAC8wtxQ/euIZZu52aHXhLiWfPYJdvB0cXsLY
rTF2S15KkoRkKUmSElLS9VtNYuUKQJZfrCB7BvzPjRWboR6HDXGXjq+Obzz+
LmpUq5jsFeLSe1/CkyGyBbdEVSSFOjtEtWwjqvEo9bZTdd6OLrj4Fh4pJR18
baR/0kWcsvf3gGXnisa0ReESVFzbAgAONSVkL2WxF7Rsw5YL46kla7j4IChy
VOQbY3yNyzL41r3X0xcShQFex2HGcM3A+IyVOwFgMnOX6F51xX0MY9Sxupt1
LDKGcTtM9ZxRTwFNWAgIp7QnWehVjCehU5Ke1D8wQS6waeuh+MjVj8THTzwX
P/bu7+LTuH9okrM8Ka+KPKhaOLek3Tpo2kY0+bKzjxtTSrZRo2ZXtoSq2KGz
4XJhw4qdGCOXTsummrYEPImsWrmNBBuSFwtl8sztHs9tfA5unzl+Wnx4zZ74
F3ZeHo8MDMcvnfxU/Nxb3xtfefAyZbnMttYY5pDGY+NL42tn7o3vuf/ZeHBk
Kt7RuJylMWZdSSYXRDcjTyeuM99vvPE5zdcdmkqMePRjarjLga7s42O1nVcu
CsuKgeX0ik3x3vNmfI+SQF3bdMtZNca0W5YCVujcsjdkhYlm4bOUFEJTtFX4
+HVXPcgtk0gDlMlt6XM5qe03UyerG7vjNaOnAdvUNgI4HYHyZaN1oJsuPIlx
QrvFeMWoZ5kXIBNpqmeg3ajnhT2bL24oZO2mo8LznJshKHimy5yzstzUEIlH
juXLyRaPvuG9CZYfuvR+L9dkbPwcWdr7oJiLgbHpzQZ5niFRa0mt2gxVUQQB
3kIQKD3JHSWzae7BYLV8JaDlXfvKvhCNv0mdDoPApoGm3PLAS95g6ZwNT85y
oi6ptO6r9jCti0JrqGfUJsHpSoDWfUJrO+vQFZh1WCtuq+aYil2lgCJz/tG1
qH9o9ASb82AzJHuTznQpOJaZ0ne+46vxkeOPs95BqZ56xTTPhVbI+nQpA6NR
CoxGb0ZuE52iJnNWEtkYS79H8SRV6HFaW59AiCbLYo2V7ODn0zjJZAnjGv9a
XF+36YJ8/HDjOJ0J1N66fH382E2YYiV2UxuU3rgSSG+iNsXLphzHBCjmWUBx
Ijj93a/P/y317oZNu+M7Zz8TP/6hV+NDV93JZBeqy9qayBZB6DMcI18MwX+r
JCCd2HmN9wXq7WpbN3AOqm5gOrOX+7LMnnHsze9jLxAp7tMn2YdhNuV1lYCC
GjZn00kxPdsj7/pGr/gbPn7gXa+yv4mFoVi4yrBusqfPrPMqpoQlVy4QaRjF
UsFgCHdloJj4WwhM5/QbRT05siKhqHOJ51hz5HfsxbHEBK6Tl66eqHMRA+g9
vPlYf6BEWxUSk8JG3YIZ3JectTXAdzcd4mJNkTBXDnj/IHd5ZAnsV3On8i0M
AXVQMhzCg6DHhHlmlxY3CTm1nvjtTovKIQCPEw5LfR2nXbV8Q3xg38VwyH6x
J5UAGGXYFUZZcqbELsNYkkA45WHezznw6YxWQLUcQGvJoPW8bdcAp7mBwFwP
4VXo6sma82PpOrddELGKaChgz/WVmxWb3UzMitO5RMvHnv8hk7O+eqv1IBlS
hiYqL3bWohLo28FUHiL3IjAwA1HTjij6Gl4l8yjIhuRJQ/qMhRObLozFlLn6
thJ34KyXcqLybx8ZKPGPPnUAhHRF2QHoK/GxwPCDlIV8veyCeyupUgS4d+6F
V8fvfO8X6VOwL8LP8aozdsTPvfxzGnEcC56DOD0xj0EXCfMuuKBZUDIPEHHt
H1nekWHecvPb0TMDYpiKHsWPCfe6ZxVbR2+5xlZRCzBVT4HxWbd2K79oHNT2
MSzwKpwCPBXBCQksV6HZzgQvHAoVCqA0y0ZpYp4JYOuTIq3iDZ8L3qhHscYr
0kknptqAsO22Bz6hMlMnnqB4T2t2KpejmmyrebY9ec2d8Ydveoz/fd1ZjTTr
ug3rzt18ObOuK6A6+8wsdk7W9UkcszEMbKsGPHFYMIf36G8a0px2OGGNg1YI
NhoqAZshAsuFKzehdlQNaNkR0SgIk7Caz33qD3Vo/anUx+zYkq8hetlAISWr
JtcgHzGxBKJVhWt7V27jqWwQrShcw3swDEQbCnDtnG3X1AJz2HbrvbRztFqu
S5ZHR6fij73warx+w464cf6NJIYBMycJN+26GDCj5uNYiBuvP6G92kh2qp4O
zlINhKcRGTe0YITYZTszFCRECqh4s49nWtE/FJ9bX0XNccct41P82bL+ccCq
bMSapNjU1Y5VEGvrlq9lVpEwKzCrCulMuyqYArauu+0pARSORY8pudkMGXdO
MSVZNzd1eZP1bG9v2nwwXto7lIgwrf2TZXSVBFBSNj7jyejuyMepcErypmqg
7mbHH3D8wHt/nc+ILxiQs1kTN5TU9TPuAktzI7Uusu294rs+P64aaG1Yuh6z
SWTIrdDCn6GcOcKAKnrxBTgRpNiyVzQHn5U7VljbxTPrJ5bHd7/uOP018Ykg
14ZQlVSNE4TqDqix/sCEebpvERYModr5Fiw9hA+kLOjPED6cDzttsmtqdXzv
ztczreDL5YDWHhFtAiJCfeF8eD368MfbBTy8oPnIeOabcCwprXyCC1oRnboF
VAAX1ts4RLWCalRyW4Bq61kXAFS5WmBO3OzDt9BPwi+DxcNG1a5euRGgIhh9
+ZWf0WfXHL2Dc1QSYBRpWqEVCbRUicly2JWpSIA+Tp092bXNAC8uol0K7YVu
DAX45MNS+VKHqrX4/h3n0B++88Dr6EwDlSpDCrgqCbTAMMouGVddfKwwtMxc
Tzqj7BZaYYCJUcIpHCOmFRLLA4eupM9wjOJ1m3fpQOjOu2xrGAXYGl5CqtIp
mBsQQqK0HT20f3BzRpMe3gTAKpz4qnW7MBjltmG5xAIPtq0nBi1pJPqlGmBE
ALY2o2PBZ7N08oa/are3zeHVG/SGfLCKOr01lxzhY8Q55OjoEogosnXwqsCC
CtMvxCqs513eHG9eKg9U6eIdlO2AJUCqkoGqxtrXFQRVWOerJbzegJgaCEyA
15uRx3etdGswy7C5+vYzG75vEwNaDoYDBnLPiAKaO/SMkaUYSep7HCM1JT5x
sS0uI4tLeueOgk1uQZ+MrwmCifEl41I9uSKAM/wrOOtlnJUszvglKJsUioFg
oxPTQAedgqBS5B8jzFx4lNk9a9HJxoaDWbrKIATiO+96SkjmjlaE1YRndz70
RZ4pAcmKQjURYabnk8EiLTNae7vUEvjFidR7tRCaUhoa+10pLVdrGvv8WBcl
ABt30t86uJE04+wRWAtlj71GkUGlAWaUFvYKzDDXgXmONMxGJqbiz373r+kz
HKP4bc+97DND81jzFiuUMXlNVih9k7BCS5lIjuiknLunSJ+CMGfA6tuCcZLF
srnQzPqISXGEsJkeYcSEb4t4J0NhqWEtck0gr07S6/iGPfGSvvFaIL10xCvE
xw69KT54zqXxK1/6Kb5uTKCHyQoINVCuebG8sgereprZYxJ63YI+hd4u3BLf
hB7/S3TrF9Bh7TNucADiBpvzzt73JHjZPrb+FyqR2yzkistOcKfmpWvxHl1p
u9ZkJu1gs6zpBIpbVB1a2Be1leGRRS9Zp2sOrooakWiOYXB6pBtNq2sFH5Yz
Evj6GXyFeHpgktdMA35EuUnJLyHjjr7x/viFL/whmFONZxk3lxx/PHWCaGYx
0BfaCgdn1uccvJyhVwpIuaqgD+dAIc2i7/g9H0PTrIvhHz73YkHHdry2xWgJ
bwchF8uwAxUVPQkmMpDBQNCwKkzEZ0RCoWEzS11FwZ84SGdrMnFyfEm8ZdN2
MLFPmKgzBs10NOL0lGQd07AkTLz8xnsa6iNTGdYpScVrss5OOWScRfmcMJ4s
TwmVfSyfC9IWSXS4Ff0ZniJ8nm32S5mz16MbttL5B+I7tp4XP7r3SHyAZB7J
PwJVawo7YqYVIAUBRrzuuuNkvG3vJeMymwtVqD4zbSxCZ26VjlgHCQqCi/0p
OkIS4m+g/zZvOg/pKtJUlYH4CHdIWjrq3ZJN6id7O8ro7XauqhGokDHyJhEK
ckm6wKokP/JSpeBWhFZ9h5Bd7DAyF4wV0mezzba0MlKWPg5KrgtGorlA4wQf
S7zC5uCho/Erv/tf+SWgrAgoZwhOy1Zvnl+75WwbFbhWsJitt9MiKM4BkZWA
RqwIKHWeFogsNzWir64uDTAgCvR+aOVPlhbp1O+sFnF1vFzVGKdSsiaURDkP
StFSEkoS8wzgo1ISdbyPvu+X+UVo7AvMLURGOe4+9wqoReo1R0mbBsszY+at
fRb5WLKjxS/pndEMs1ysYwrNjllINSFhMMUMF2lnMCLqqeGuLRg0pEztolkh
CWquAMrOEDAeFotbJqcBxQh0pF+FdsTCRdAxNPWq6TIWMYKLxEdqNo4Uw9Zv
ZzgCk2MCy8HhJb4bpoxhpGGJUt9Qj8PkEB+7GJLvecdc/KmPfyN+651Pxjcc
vTXeuH5bCJxkYI6c+H/EyzQ5/XrGrKGwvrvYUGicyjILk2hlxKkkxUtyNDmN
Fbkhly13GLaL0gSyhJlkd4SBeeve6x0wizyLcdb6TfGbrn4DL0PEjOyYKQgi
lSZo0jt3FHgyO8tCUFzlDfc+N5uiFpfp6GozHaKdctmx6Zz4HSc/TbbSKjVL
QlAzbwuqeqmpBJVRQLt8NlcIZJb5jFgasoiQc7aLXzQkbKGuopirGCPF5AfY
2SUEvX/HOTx7C3bmA7MhfTJ/e+sVN8eHL7w0/sGrf8Yv/EyJd0hv5oWkeE/k
ZIZWAjn4ZMBey+JB6juh3jEVVm+si6HLGKv3XfOAN281en7rL1IAyynGzbSL
Pz9GC6PRTunY0clJfHNLbV1p2+TaRUEnugXrvgHNQtu8O+J7b4BKB013fOGj
3+KpW4tO3G9z3hUn5tLYSq5PSaJzmI+RR+c3f+0n9Hs4VjvCqC4Lx3vsPWAx
iimUgeFJawqJoVB0GQe2N4iOBDKOTq2hEMg4TBM8ySvivajCIMMQSwy5aeUU
hQ5OPTAyiVdn1KwwNUHM7//Kb/PrS89/3hP0xE1PDxuArlm7DdCk/ncAPfnc
KzytAXSW+FhgoN5+8gvxgcNvbKS4JdVBGYJiS/TAbYBW1ICTIGZ3QHkWhZv0
M1cjQcyqcBNKlJrRMP3fCEWvtK6SKJplAiGHtOVgBQK994LCKc1cuWkJfh6m
h3FZYnxet+kCTs3NCj9HyYiz8Y1rN8WvvAQLJ06KHxMkGZQ9gsu5z/4+z7VY
XEKIEh4ZlNVAem6fEJ42UB0gSYNHAiKvmlEras3JXMlixbqt8ZYDF9ebsEyY
R9o9MkRFJZCFZekaiIyrbnliznASeyIzIyX/Vk5KaVII2S4NjzgN3731YHzy
yV+CXzAnJRVnQuosDd7TqXHxjWSUSC13iexyF49KpORjo5MMyRofuzpBJUDJ
gnpI8Ihq5uU3PzFjfCPR+eXU0GfkGpWMoQ/lGvARcClldZ7MNZEzsELZKCJY
AKp1iGM1OZggRSj0frPnk1jUtX6ExQHJvulHRSONK4GRvglohMDEDdfEwwGD
xl27DwOH1H+taCwKGjErfPHMw/HbPvK7yNBDIr8D29fCZV9ATUaBOeiaUJHe
e41iup/zcXtqpaIExNDIlzPcLjTyGBEa+bqhYckYgE7c9DINi/iZZ6FBQ5mw
oa93KMTkzeyD7xQIuuObZ27nu1MAQTd7U+T3WCSD6WiZtaE44vPuuvbEaIYh
YhAwONhMJlSurXZIHy3XwgHe/OgLeM21IW9VBgHqhN2Z/IBOH8rpahkJVWux
uMitqa8+K37X5/5I6StX79LsRn2VptllYaCUIZl++Yw0G++PXnMb068USLNH
UgykJiwMjU9bK3RbhIQX1YwIA+ln5hzo1yeiMcVAvecWNwvqLdpuuV+B35My
jN/xy380nyRwqvubI98uPwiNfPt5uYKXZXTxM82RT4C3KvgFeDedtjqeufAw
/ysWwHNHAwFf7MpQJjavViPcuOMQmwC9mkZY9DTUSeoNk2tygwaFV+08zCis
MAqj+MNPvC+eGHU5dr+5oQSzNyBgJcDBgtAQ0zkbdx0CB32unc6aUCFUPzSO
EKxMDgT0YV5IiDtKcH5LwiNuOsmSUH3fkLCZ41tdatVHtUMPTGsfsYIkCSEX
fSGyT9Jo6EIQkNJmT0CdmgH7ikJAvIf4axKwwNPZulSQBF93IFUezbBDXPz4
4FD8ubedZFu0gzAQ6Iyutp1RSqyu1JU45A55GCGuct1WbZHsIxaygzI3EU3R
JlnX6A8IBW2SLCMxfK62rCWBSCAqsmsIn6UtLZl0lelYtEVIzaDJTJqqUCZn
IAmYiKQQOVtuEtGtNYQ2sae1ISm01nBXfW18w4EjdC6HRczUAH8A4jAfi/x+
87Z98cSSZbpDn9xsV7QcjM/a5+7vG2vb7UVOmy7cvoutQS1gMJAKtLeA8JIZ
dLmJBqYJLTyGMa6eWIqRpz//rfdidb9agW1Wb4DV3W2jdDGxyATWQBaQU6vU
GGmsUvaF24i18n57B4hEbFYBVvYZYu44fQsTs0uIaauSPQFi1gLEjCS1vosy
2mWrNzMx8ZLkOiuOoEiIUUs7S/Pu8mRxcpghWrRykm+Uxhm6DDj7h8ZnjMXM
tJ676IfLDs1QhoRpddBw7ILFQEDBW4gfAtCiMRwsaAQ6+wWgV56+0c3i3/Rw
zmbT5+4+F7M21LUOoDKDYwDqFgAhe4Z07A1kzsPmvDr7bw12W311/Oxt99K7
pMFabPUEeqW7bc2nmMCW5DXeYCWsJAy2dXQiT3a0qhNnsmpD22ZXqmjbcmZ5
L1TGAx/4Wi6E+CGH1XTirVjFHDhWcdtke9QsfwRGAdSKYBXCU+8xGZZ7TI7e
dNLTHC9JuqVXuKVZq4RGA/VJR9YKC9DnPvH1+Lt/8k/xF7/50/jG2x72e6AS
WbsEslgeuZwIBMje9JAD+1jbQal6d6Xh4JcNu8g5LmOAt8a4To1F1L81lpAh
t2gvwP+BozNiJkljQdtQtUbbaoGA0Ns2IBQTkgDGQm7t26aBsNk2t7oQ25r0
livxeSvWxZevxbWs7B/Oue0plMA9hsBrpldBp9JnzfRdKXzVFffVBMLYQmjD
5r2M3+62EC5yZVMBLCm8DmmjHQOSflbyXZdS9j2BqucIHwtW1QLM3cJiOuPC
yjN2Wm9nEmno1HqCGcDEwEks6MuwqZCT24iJf2nsgjZVTrCZ+0fniAbMWiTM
B1158DJZixnZ+SCKYY7NsgappdIJgYsp9D5hc878Z/aE8wsObFqPXgiZtOVf
lknb2pNGLOUfuqTgumTetmnI9IWWokMCpxRws3SbrMDpbZsBFrzuktQjCoQK
11UtNYAuUwcFjrEvm2LYrMmEbGnJ94dkbshgWI0ESi/dI+5xFjJfFAV4PCY8
xvwREv4mjyPLYzoHjkXPZVW/2Ju6KmAGp8+59ASDGS+CtCruRb1YrYWiOsPa
aqquQLTsabuus5i4U1AjuQyPh5/pIwZgOpKboEGfubbB123boDJKASfvy9Be
ekM2onYhEMEHTX9NUfR2ML5j+0E6/44ly+Pzl6+N333OZcAz4NwCZQIxnasJ
5dedfZFON5UD8/W9ASjnRRmjyonpJgWz1BMMEb3/h7RZ2tdC/g9fA4CB43FT
dMXVH7/nY14dIz4cOPwGRmBWSLWjVpDzh6o93RkW1errxZZ7GNtZVCmBZl5x
hIprE83FeJSw/PGHnomPnn+pR3RXoP5QCcjnLqnAAtGowm48a088Tkwh6exR
TZK6njKmxDp1HSothlkDD2GxHJhD78sojOmuLsj3Cs18r5FqU8J8Qooo3aZ2
Tqfho6+tWnNOh+GDEtLwMTa10g+bu52rpRrRbWTz5JC7m1G2Apa7HZPViK5A
NWLIrBlFgcrwOiHGBptNiLdNLucX6eh8YCnpWGDeSpENhAPNgHWJjwVG9qFL
rlMpXWZal7iOe/nNT3hay9TVcGB8Qu5dyZZd5UD2lWU2mpOaCJ8oE1guhiK8
xpHuDOoUAl7fH4gjPSaOwJxR2sB5jfkEwryLI8RrprUyGww/sXkfM/uh3Rdi
KizXbZiNQi+YPRSeBysElgj0M7NL8V0Pf5AZTbTmF+bqL555OAKsoaNcIYP/
GzIg0FJsNaDZQiDQNMQ6nd6sOWGE9OTSerx19wE0w8yLUYsemjPY5k7KSpvL
GQNYzZBoWcs42hmV4LrQNHlf5RjkY5lx/Wvv/iS/0tiuBibOqoJtWW3FwK7I
pkCKbSD7DW9+IP78Kz/ify2+6WdvV7KN6Ew7m1dV29MGldBOUaCe3B8o23VL
PRk2j2gHX0D3scXc8oT23gMf+FoKWcl1tSH51IlL2rm//kBu2x1wSUgrtKAY
iDJC9HQhxCnvKhN914o18Ufe8kD8Bx/7RPzKO98T33zxJX6jd2z31h9Y6Not
hIdChwIH2wfNHm+YiHKNcUfSCb5JbjT5KdrxkdM3x7duPSexVycpcPKn1uk4
RTuqJag7A+qVlBrHd6oaL5jVWjc99ALYTjTCkTKEsWaGYMVBFhO6Ohg+G4j7
Aw7ZKzmTWheGjoarEAiEdu/crPjTL7QIaBYNOgTV1oBTkVkKa0loJvB15Orj
8RPPvsgYI6NXy0qkmq59JZKeXUC8f81s3EPwqEUgPSofxHzcZZDeCgS8B+lH
A5N9+cCih0GGfTEBe5nko/5k0nO1pFNmKGZ7MnKayDjlO05+2qjzMpP+/ENX
xy988TfjH/3t/4xvufcxVudQ6xW5JR+1bFLr1MaL6rlk6M4q5qYNLdcspeSK
GYZmOWELBpoeRwErS5Kfm6Y1lEGpoRjy08jgWEhHgJIEANzTj1IK0N8VWERW
lHnDVACI4t/+wT/Qr0oM4Aig1fATjzzjG9vfdIlUDcotWUfOjK7rS7lESpIl
XMJ2mtvOthZ0CbgCxhjjDdegTi0G0tb+Ds0uy2slRNEAtKbPlUAT8bfWa9FE
NJfGuRjIzdxtzU5hoxAjxZhusyADIYDCAb3DsejDAsS/Cv+ewCLeXgkLSAQQ
BmxYwOmkVq6WuHD6pj2pnivzHmkICXghPKBooyvVJtpOR0b8HiEAAaErrPjz
EhHQFFH7GhH8LOWpsMPZWaXFUeV2Pk0VBwOmVg3EcTE1PMZj9wEXx9M9FrK1
oO6wgcs1NrLNpHOM8FMV0CbIIch+vKi59P9QvIn8XfPtFgnzhuZ53mavnGWM
NBBEyLAJBMSK82/kC838IeJ8ArUeF1Xc8eq1W/w2U2UTW2SpMZkLjkU7LarT
oWQ2iCcFvtMNcQTxpH9oQkIJ8oeZLOyE5Ge/lFtSAiHPCiHSontLjQdUQf/k
pZe+/vs/Z/elKCc3urlIQlEkvv3ky7O5sDYIlZ57M0o/+QzFaYnTJWhsB0XU
N0IkdLUfjSyJElAoshTCkSUKTKh2S2RBqoHNq1y5vhlZ8JlElmIgsoRq+X3S
SrtEJyThh1JDjKt6Dd5UDvRzJHzP0mPkTEWxEnxMSUjCl2wu3reI0arYGDZw
wFU24RD5y0EwyuOCJFeCudhVsrZmEAXMJcWEnF6DxFFuvakB1/Uaeg2HEaXq
fcM5DVNai0KAKqfCVE7qU8cOvYmuuXUNdV+gPpURphKCycGgxNsXapi6fsNu
d1PXgSOTbad1kxGqJ5C4YNpggO2IQ1IiaC82nMqgIePxKmfxN80hLNghhAV2
B4yx2JkxRqdmjDyQWQF1VFqP3/utb3yfX5968Qvxu558FoHglnup9ZcduSre
sW0Xv5ZMLs135n/u/+nOsJLU0/9DvI38JeFqKnJN+EyWDvlrslm/RIUG2ooJ
CRuszAQFtdgFK5mokM0pWheAT0kipJMV+PZRmZXQIEUJBl0JR6iApAuvMLa1
ZIsvcXaEoAmzuBFDiQ6wPqp5Tak5L0yN+A6WC2koCmbPdmgHUmVSzZ6hkWjI
hgIoKXVmhPkMdWGNUAJSZDxJi1xDEpDWr1zjA1KJj+V0QOJnGeDfN8/cTvHV
TSKb6WOOQJinQAR6cPZD9H/bh6ADh65shGC3uI+U+P1f/Phv0n6yuJv0hdyE
YYDPdKfdNp1NTXK9DdUiqwqV3Yl51x7TzQBWetG7SpQRM9+JtprLwfyAXlBk
LyhnriY7SuE38rgeOkMoEtWyATabGpx5GIyU0HJdJhJJDY0+a0aiw7v3Jupo
pcBK9v7AzPZA84Zx36bQBJJrE29Oz7MkGo3Oqa+NcfPXrtWbfMJkp0hGArPa
/XyMOFnC9930ECr8LjNavrYlIi8KmhFRFYDMvw3Ae7yAUkRoDQ3WqhXatLWW
21trophlrRWvdLFNw+uoUUvUdjggjTkd8zBaugC5WFwqv+hi6QLoUnUpp6kj
0DVl6iDfOgmfsMbUvEpk51Xo9K2hJh9YYD9tlovu2LkPK5MSoUZWIWldbW5y
eo1vS69pS9ZagRETapZMTMW/8KY7MMM9ZkKNlM/8INnEpyiJj7vV82XMnszk
FhcSOk4jJtrgd429eXPLw9roFCl7C+n1gixMNBk8vxaJTKWAlAhNu7ocSSMT
HNwX4UKRqRJIlXIo/x++8NIK4lIeqZF7z6FIw9H7PvoV6q324ejEI8+0EM/2
dCWQP4yJR+D3EI4694ic2wnb9FdvRiS3MwhpbwWF2ofKyMeWVNsi37Ymnkoe
T2Iq2r7eDF/VOw7xn93CuadURjktFyqt9WSU1qLAnPqgRAp8L8UHjhH9GZHC
Kh83lhX2WZ1xQc5S7xuMP3zeYY4WFCHGM4IF/hTLUZvBosB5yw2/8EC8cfte
TJpHEi/ox7QVLUoLHSkUKdSKKp1ZUcWP1IibB/OVCYwcWVVPh9Una1WI82T1
vq02toViwDAfI1YuqqD7Tyk5ajuRUmaol3nSfPnAGIMcK1Ht+v9lMmmOCfPP
fPbX+UVQV6Zj5aksXsrprDjmTV6bP5XYn7Zv2RH/6e//LP7k85/mm6QojRgJ
FLWqgTRCdyyWWXGkEhRiTu9NtcJW90P9b4mT97aSZ+VYSBuLEsfaio8BVY4B
ss9+2yqmakWU13UFSyFApyTNOTHCLQLZNI88zetLp6iLX3z23ZX4sXvvjOLj
V11O/5c+ZYQD3jVBOGUXfle8fofwRFYow8o7ASzvH+RhrQQkeAjhatD4DNNb
uPS+9uEscV5BIDqEz0vyPxE6NEjreTGwoK49L4YP57GOFHJg60jdBja4cQrQ
tUtMt5y+hqE7IEWjQLlIV//TSLXeZt9vtiORW0SycJuYyYAov+GMTYzbXWSD
Nxw4Mp4xmWGXLw1IqUhx+60//Yf4gkuPYcYip8zV3UjMsM9ZP6oEvHkswFzt
fgTArGEPFUTced0i37PGlqjJlQO4HwsEZj01SA9625EPBN22yWbWxEFZZLJO
StsV/I6hJa6/TE1Nxz9f+O/8EpbqfAE2dJpcuoyauA+LQs0io3qqNdwRK6kT
lvYOZUincgKneH37y6+qXCY7dEzF9LP2SldKL2O/5rxsIOrWPjFTMfVcT/dO
zq2AzAzCNrD1tQUrfoPGRYdIJhzbQsHhMJc3bdHqy3CAimVDxe1nbgIKqS/+
59/8JX32m1/4bIucDbCQb6pKjQmf86aN23lM1DLtCtCxUwzuoWBgV1Z1G6c4
uOw0flGflwNxTU8NLKOD7anxXkNqf4cYlk35nYhdtZlBWDM1i7VLpoFAknhu
qhc4BCJ5mHAsQHxybYIX+hRQtciDiFw5z7lpXl390ydwNPff50LLWmT22dfP
oUMpQEUgozQWj9/JvkUquQhoQFZ54v3Tn/wKAxKv+37xQyhe5Ju6dCZlDpzd
XHH6BtZ65YCLjsuYaLHNjgnMI83IkDnYTD5tDm/dfgDhsRTA83iHjBw4taSJ
T51Vr66YyVX8LhZl1s0iHRQMiIv0tzhG8VPvfl63C6W2uEU6gOQFFx+LP/bF
r8df/f0/4UJxFJhZtSHjqjXr463jkzZkhEQKvOXS118OUNI7dzQalLyjWWDY
tGUPIJnrlYo2RkdEqM6o0mUQKsOe40eJoJEZQS0sRjKEUyh3tLBIMpJPr3WA
ECOLqToANOLPv//bI4JJ+jE+sGsnMn1qfXtM0vv0gHDsPrn/Qo7jhKtiQL2N
d0jKgUCAMOrNd7xzjeKMuiROD1qjFFcMRKvxU8TlYqSWQV8YIbWs6rEWSNxH
+ViIZ99wU3zl5dfE//Fnf4dXIf7eqz+I4s9/+ktR/MxT7y/Ed9/x1jx+gcx4
xx76jqmppTpdrPVrytvzUJOybQnuMJVXHlzN8yM4Ir8PPW62KLYVXu5ZsVoI
XjM0Ab2ZU66uHhjixZSLcdXOUQ5IURhC9NPf/hGYSo3Gscic1Rv86cVtEbQz
VDF6IgBLAW/O4qr1nJC6aC/9nfHAY3F6/EvnTGzBrFyfyEg9QnDtMOWZzS1S
oS2JAEUyD+CO9/fxy0IWVdk773pQ8NoKWV32jpv6T9z7UPzDv/2/+IWfSYZG
gflBCTvcvBObtsVPNc5HN2eFHYwURCgIWxDOWmHaF0j2HecKVpjiXn5BLOM2
6W3NQChBuJQRg0OBMASaxeotScom8nOl7MGt+1ILU5wSfX3jXFaiE4JY+pmC
zF6GaykDsXYRY7fxVsWssC6x/64uZjxVHbBYgdL1vLvbWTkLRQwJVAgYhLoK
uAvtb88P19F58yzOWwFoOXtB/TQukFYDWfqYyFLDWTovjkzZeMeeRvznfx+T
m9ExH8//cIEylC/P0zW887m5+Pb7ZvWVjy87OpPH70O0Tdc9hUuBiSDxFAYJ
SqUiTwuCUaTwevvRyCnOrWGpxzhpbgC0IBgFVoFRrE+nfB5GoTGYyzYYHGhE
MohixtjkFqncdJpHu7EpJWxDSU7njQIkn8gIw7aIo+YBNujdAe0TpkWqoSUG
6LrxifgN+3fHv/3IW+IHL74IqyaUoVoIBT0LAYbq7Z5YTX7x1deBn/QOxyJn
9jfc+5y/3bN/aEJCW5FD24MkgAFQCNa006g4mghQtBRQq92B9H6QjyUWLDgf
VpAjnZcpsJBO0upeMSPUdorPwFRpgh/5BD4X0AzsxNwOn5EcVaBS8p5bEkjk
iwF8DgRW6omJMj6hTtVEJYBEAaU40SFBBzusM1ovATmtl9Ao5AMxbPIUIbrY
jLB7/kohHiSB/MzZF/G/lNOXA+n9uHAU+pU0aVuO9vExYmriynCTXzHACCGk
r25Cad69dXdRCClzSYk9mO1dPEpIEBNEtIQEMTGZ5NjoOAlC4jOi45yHY5Ez
A+13qankogxHXCxLyRp7m0W3G3upKeUDkJ7sMFEZ7DBRMg9bzCx26moA1Zmf
v/1mekewlMuUzZhzS83CMyl8En1amdlttrRHBRS0LPCxxEk+cdIzc+OuQ3U/
WiXefRPI1NdK5ylRoApm5cYvPvoUM7Mc0J+1QJ4/LHk+ru7KG3+Bt7O6/eTL
8yMTdcVmYuAksmbKnlCG0Knh2M1KBJtOfeJTpPaUirm7Kw0x/R2WSPUhNqcD
+Xwhg5b2xvd0JYOummwFx6LiCteuV05k7mxKZrB9XpSQU45T7uFl1l2k5/OB
eKXugoos6JyelpAbrnwTFpP7aVTetnkH8ntF5cbRaZaYgORrQeXMnQ/Em3bs
9Yl5YC3AwnTfIAtJSsLJVxwnZRIowcnOZoIiOxNEtoNjxIwMEUJSDBn1EoPz
XnmEHF7S9ZOnyMnFEmJ5QJgd+BbDs5xekhEgQ5BcLMupGcPPqnbqrSSakJOe
hBRhSF60cX386O0PJiBpK6BlgeTlV1zLQtLusGcqoNTpTlg+/uxH/J6kWgW1
y0VARaIjbn+kY4mFptwnyC/RNEuMg0BLgo3VlLbEbnv6MCVs5qz6YoiPZVbh
IxNL4s9/90/j2ec+yT8TLRtN62kNceBHSt7o6E12WE7p1Hr+lwxYlhKwNLJy
eSApz2dw0tY9szgpoT2h55Z0mPUMBaKD7noBaKXOz/kF2Ng8f0HljTJ66hT5
aD0llI87Tyl6PuJ1Glki5eI53age00dYzgo8TmRA8pmn3o9k20Cy4CH5vs98
BRK2fem1uecH5oZIUpYDc0JDpzQnlERlRVBJSXiaEwFUFrUqYn3PD/xiuURo
4M2io/T5EwMfyRHLpgXPuaxRtwnEUCAqGoNbSBkcO3lWwTJv+Cj5NipdzEfJ
uRN8tMXLSoCPVeGjKV4SjpyUNIn3XAqNmBgCFCM+FuLz6ivb+YQisWZEI2bX
IRr1QZx4JrG66LApTAgS6apxjOLGoUvj1EjNtbpoMV7W16S0iNlMRISY2GZ+
IsxEgAuPkBMmFpiDOg9EADyNWViyGTZIqBwcbG7UPBuyCKkreEtEoo3rspa4
WDozFEhnzIY/aUv0swb2vBArGmP0vCzQSZGkp2Ixfoshl/rTX6/b2dUVEsA7
Zd8juxpxf7lWCKTSk6eEviK/f/CpD8Wv/vwf+F+zW1Zo6mlG+QedWAlM3PSb
iqM8O1O2CC5wPo0cG/qRQDiQMZ9j5sk9E0k+ppnUyDVLLDIibmKQn6jqRuVU
cRjKbVvrGmFjQBzUZRqnikMbBNsbYduqY17u5LLTNpROVwSEMoPDCJwKVCCr
ARCWAxXIqtQhJZPmdfd2MR2o5/jnWAj3UEUSQmB3QBVGgbx5JAOBH/zit+ey
RkdVCpCBYCWBMosSIYG0mGFk0c/dSAwViHR5NaOvaNNlxR6drXWVpH2UsWYq
anJ4j8+tyS2WoWSZHAEgzT1f5k/zVquXet5coMbfyr2y1db8Epk5a67VMo/a
hmOkczGMvXwgOVb4QQcCdtnwKyXghxclyRhh0xWNVFdwSXEDcYy0n+efnXHp
4eNA4tnBU6Mj8d1Hr4pfOjkbP33XbfHVRy6Pf/8br8ZfnPt0fO+td8S7t+3g
rkvxkXyjdaYmNOEtgPTDlgakZgs6dJAG+Nz65GJpUZbJBLKEhMmo/+G8a4aH
4zMnRnHuTrOEYZlsyDWjJb+2n33xwpnbd7evNZZsrdHKw1pAHSoUscHPq9/5
Y8ZhLQDFYqDEWBMoYi0RCnpYuG6n22U+20MR0zLpMAHNAB0IHPYEdGFeoIgt
OLVnRowuO2Pz9jQUZ9NQRI0z7ceIllpQ/LfghzWGREGRe+Lc+ipqtSMinvJx
/KrLmYVrTWKM31uEhIGajTOvnVNL42s3r7d4X2w+Q83LpCNqXvNLlq2UcbTV
fH9GtOC8VcvTBh3CYM5MdSoGjZzmF4LLmo1bZtphMOJjkd/rI9Il7aWha48+
6ECkuLYuaNBHl4NjUec8+aXlSa0Poh2oB4J41cA8SpWPpXbcK8R/9crL0g1/
+5Of4UXvcKx2hMJyh5PWqhUJjekoNhNCISTBWHfXolmD1QPtDAYRjYZPeyxE
QJz+nv3b+WVMNJQvhAho4ybOTGeDidrKULKQ2NyH2M6wdAdmWCYDMyzdgj8U
E7HpcPqhwVo87Bb8ITmWWZVEyiSz0R5/0Ijp+IP3sricbNSt6FFNiOogXfpY
Bu1mn/tkmnZB1QI+dCLQLe3ajbe4a5QJOSyORIYLvK2zsyRS6RtsD7lApa3o
LehrN17NhmsL050GUoNtvqBLbrjZmBEjJ11nUrZ+4urXx+86dDZO5U+7WD1+
RE5r9DPP3tNpZzJJV9CJEN1JZekpQg6TIajpWchJjU89dtZAzgFt78EE5Owk
SCkbcmWB3M4NZzDQgLfKKUAuL5CTuZS2884KOUqQ/UxWqDRiBw+2ErKZxUok
IZuR6BjvPf+wLIVJrBLTyTOKinmck75RAmRi8iwUJW2yoGe2URLmc9NbZ421
8gWHqoOQfagE9gZmSiYDMyU9AdjlA5XAHoEdab+ZtMOaOWQPO8yY3LD1zFaP
mZhizPUL7FTr4XrokseMxEKJLwW79KntACTyXYghSBTS950WJELRxgx5mHe6
rgbrbJDmgnTrhXd4//4vfs/ObAR4V7I5uzcislc1IgmapzQDO2Km25U7D7zn
I/PGZQK8KzFm0XVwGbzEgDudghwJeA26j07dSCFv2/gSgZ0DHxDYX67xVh3K
O6w3xOTuqfAu4mOB5zXgNrIaW1GHmh1u9APkaoFJjHw26mqCOk1nAbkeAV47
1OHfR05+NGvag97PhoiWnp5F8QFhCEMjZtEx0dImIUIKpi3nLFuT8JaI8Efn
zKk5Shg8JabpuTUUwiY+8c0/mGteb5nre6jp4fE+a4cnGGb4XsCsT2D2vuuv
5uqdhZmd1ujlY9HCjP8lhUbf4QBGQPN9rRRBkpMEWIE/+9R1l8YbJ8daXEAY
1pvKV5dNT1M3vfAhPIlXVHMiXw1B7dZHftFDrdrWM4u+iIChhxrBkpAsHW3J
ljX0CazpimuPNeSqyE0t1pC7nnjkGYu10MISm3VbQ4oCsXGiw4RAL0QR3WpH
rasPhaZRwHyzVh9arI3KafEe5ksKDuG4YUyoEWLa0bVncp+DZv9/mFYQskmd
ji9XgcbwSgCt4icm2kCsN5CU9vOxzBDbt3t3PPfi8/HM8WtZk4FYlGySuWcS
zJuxjETLyiL8TKOuIyGS7JRWsqcNAC8KLqiHZS4/pZhWCNhd6Eap0F1ielo0
A5oMzpPiF//+cLUS710yEb9pw7r4we1n8c8PXnwR9a7j16ZlS1l8NXdATc5G
9MmqaPCLd9Pethfr9/qaiWYjxApdneLQVeTEc6ynO/7mLdcxwsCKEL+6RYNh
MZ/wK/7WV34tiv/5H/4L/SreJgnuliBj/V4KYcFm6QSVigsbvfASfbbkNTq/
iGIe+2yK2WRUKfbis+9OLzsJUKxos2m2JGp0rpDBklyHoVAX2xOD4/d86pVZ
4zjMEr1VypAzy4IXm+UbNZ2H05LTZCJMM1FMuY73dMUPHNyJ9PPfgmIvvfoj
ONF8mmKyB4NQrMjv8bkhF41Ua6rZJ1U1oOvYFVfF89/Ggyfjf/lH+o6Fn/9x
PPvoQ3G9Pq0oI6vPnGv1pqwTj7lmOcLWA6KAPJ/oMNVQI9AcT+KYwVixxQgI
l/QX7pwiANoyLBTEXGZVcOUcGn0xOp24wOl+6cKDeFHv4RgxxpA/Al59gbmD
8UDxTCUY5hKwRBlzCPhuFMz6mzlkPQUMvtzkJGqJ5w8gv8AxvM4/fSWAYcO2
bM4gS0qaKLvh2FGgrCgoI03m65hZKKP3KZQlvVHDGFFAvTHnJiEXhUAIZZon
2fFPoIyN7+aNO/32NNinGVOngNiZgjL8DgHM3tYWQFnzzmGxplIGTkIXkDMB
cTTLmJL3eio0s2x3sVm4UQNNfDf1FURYPU0vTJQ2J05LTK+900vjZy85GP/W
bUfjTUtGkWBOZVAM97PhLjVLMdyZBmq5SpqjGCYRkqRIThbUzCIRfA5uDQWy
x15Dr/vuvBvCixqepBf+HrSiLDJXbT8Rmlg9J0ORKC5Idu+HIjTyi1UWdOQx
NCKD5rcdODdELdgbMkc1NIn3i24zE5LeOvIUs1Lh0k2KPX1gj0DLHaHEPn/7
zQl05UzdfyxQCuuSpXFAFzJKfF6vL4uPH78+fvHFj/G/jz/7EVVjJMz8XItd
qZCe9QTVUAkjgqHUScckNMYCOHO3VRQ5s0whjRromGb9UVfKgXEkxxZhWmtw
oczSWwXqP+k71EIC2aoaywNjFdkss8nlmYGaWScsExsrBRSZtl3a3ZZlFsaT
dPpWEyvwuAJkgs5yhkUvNo2mFg0HOhWW4f3MtvXMMbzANALYvxHLWta+rBsa
jAcrFcwLyJxAAYs/4i31JfHhTWvAsOFAHtkjOEMRDOgCyKqCMxJmLTllscPJ
TLm1LXHnrYlhoXHvNJ/QW+KhxGG3S5at1HGf0XGXIFYJxPzQTpZZJOPtD6+6
MkQyPh1ElyVZSITZov5YoA5WlmNahIFmjz76SPztb/8G/cW//Mv/oCPea5G/
t7mgw3udXXrQCdrwPmtnmGIKbbt37PJoqwna8D5Zlg+jrXHo0noKbX7INOCR
PvcRyJYcsnaICaEN50fhR0wkG2024zzTrPHQbV0FbaGlS5wmq2iqBCL1WAbX
xNgS8xm4kG2798a33ns3XwDptZkU2iBphaRZJt5piRlDBxPHi0zclJhLMwZt
fk0vJZgFMA3ywym0xLI27L/6vVd/cEpos8nm1p07bLLJlrxjYow3YalIsonp
zwPLl8cfnbkkniWyXnmwkVO+0c/xs08+xWTrDvCtOyPZjDLmMYlv3svSfJPR
KGeM/2KrrdOjoXwLxTVUlkmYVwISYLRDjW7nfnC6uS+8xKdMmJsLbSiLAW4F
QRw+w04BgFtvoNQ/1nbrgJJHXEqslYVu0G26hre3/QwAO3BoCvM9R84Trrkj
ympKEOsWupNA1IZuP/vRDyk2tgo3u8gWd3ul6ObhUE15q0w0lwNFiJC0zipq
Ih5uo5TSxr9Wut2/4xz/cCCbhG4M1NMWo5tYm6ebTQm19dLyRekGLD/57NPx
N77/XTW3Ri6ZG+CUgGk1w7oXW/qXhilOB6CiAHneJdeE6KbJ5+duuFjpRj/6
J+Nk0W3Xjj3YMKUt3XSSE+/P2rk7/thLn5nNJbc6enzPdnOzQomradBtP5i9
jV+T/T3xd1/4UCgl7RLGgXnQa6BbPx8LiZSUGJcXyOnmp/a216c/+RU/3a11
PmAtHdusdsva7za0SALvodl/8jd/ZYvydg4V83jQALVAYBvJCGyWbcOyctGe
Di9jcP4SBW4JDSfzAAkNZ+cC3JM2a4nNTQE2wA7azcKNtFtN4EY/8uIzCzc7
R9B+ejPy05sWbm89Z3dqx9GqhVtiB1QLtr6AbMsC2xmbtwfBBsuQ6moloNhC
SntkEeFz5KrrOBIZ40iwbSHNti3jU8wyUG1TICnty2AbvksWqXnY2BRxNINt
YmotC2VBZjU3XIQW7e1CQ+Vplol3CjjlKc6Hf2WGxVb2MK0JwElGSn/k6Ibs
VLfimzhFuuF75XYEv2RN6fbV3301fvzpp4yXucTsjrM2xqsG+qHd9NZ9yDiQ
jQhHX4NjpNlqogKXMylr1VTgIN0AuuEA7i649Fg1sF7DLpSW1WaZg79YOSI0
EGBOsl7PgU1PVwuogCy0ta7qLSdOh9fw2KS3tW5ja2m0LTZH4NBWZrRpKgqU
HTiwn8UZUtFe4Rm+X7bM84trbZXNXrumopEczZwnmU6rWHP9Ufabl1iOPfrA
/cyxAeEYpaItN4AAMB/84rctxxY279yf4phrm9ZZq4FxCcnpLIjBPyE0UmYQ
hthAYDXa5sCyjSyIIdWQGdpMoEjj20JMb541FKaOo8vgC51Kg2zBwjPLoDu7
r7A1Vks+YubYCrNKM6y3pcyzIiDDhCe2XLYbj+BXZT/RDJDVLMj4BYgdomSV
JFr8w//w8/jEXXc2csndhq9bdzq/dk0utVuQIA21HJO0NMExm5pWAhwb4yOl
Egf2xVdffx0YFpzrtPOw6Qhm1XkWxKz1totg+JkE02w6guk5uwJhf5CP7pnb
8Bq0Bed3TxvjB0i4p1cBa7AMvCgx7s64g8e0K2iUtlSgUwuFjKkFe5tpN455
3je0wAoPlTpU5wiJeeSw8nQdk60OnhoA6zmz6EMBaCZLPQCtoNOnucF/dLGH
gm9YwHdg757gJj4dgG8+FJBs2WKkQ/C1818pJs166um/cZp+Nj3dHEhPQ0+Z
tRIuTT8bxUPGiL8hg/SPTsLV6fNN+Cl52J0/0loNX3ItA5haQLG2CVvVSQJb
LEbT2vmNe6yje8wXBkEeipvntjoRKi3NtfGgrkDVPAvrkoPbCjojFkJx3cgw
0l9FrKwneQ2ILbUgFkt9Cat58BV9unOHH1blGsp9Hzi4n4dct8PT2QzQtSCM
layY6ToYSI3LhrFYJkf6kJrvyn9g7n/6H/8Uv+9jH+WpDMp/qbHtWau3JrQz
tdADjZV2/PhFSVK1BtgbcCY7WlK28KMFG0uxeMY6cVcgCKcfqw6YTI+Pxtde
dJD/Xfij34nnX/lcPp774Hvy8ewDd2El9rEr4sbenfyqT0/lQ0bonhkFIywm
jFDY7bltrS4y10FWVzd9y9ehEynK7UtOW657kgYnUiLP7Tw+k4eTQ8ei7ohX
jlten5qk72zs3BLPXHE4nr3rzfHcu2fz8fxnP0pfES/8gKEOng8J1QF67MJn
qf74s67j08FGZW0+MMNSEqrLimTj5E0eYUDwPZSKU/BvXfxi98TDDlOW6uNL
l6WpzqpM1ux5I7UFm1CaMZKR0uIzKDFLdTXC8CK+gcCUylmBlS+97anO3yW3
NXizzhlN25tyNTHrPOwaT2wmCxbL5hcZd25R614kGtj14XYDXgl5WdbNgwJV
1k4q90quo0aBz+Gd+6gLHnzjUfxMbaQror+T6+GreW0e2wwbEieGAoFML0du
3bSjwyECW1xRTKDLaZ0HGsuID9i6f/6HC4m9XcYp1dTYgGU6FBvoNzk4LEzX
66ngUFg4sHSSgwOCBAWFyNQSZEqIvrSzWkIxsBbRxYcy1xKWLlvGMQKvf/dn
P41379+HYoJsqZpMyOxoqwuGjNcxuZQw3mWTo/GjNx/Dv1H82H335OPjR68E
tfbswojy33dkqAUrWxBadDrW5KU+ouA92eqMaX1Q3VtZ2BVoPWwVdvrrH3hH
Pv7vv/Nr9Ccw3fj/+Pd4kY3QMW2/TZ8sJewX50dEJLscDDQ95Gb6QCJbyW0/
VVXiZACfa6jAVgoaKfIIEngkhQsTiBJ41RAoJDRQkOBAoUmALDNKhIuLr76u
kbILNDW1L2HEm3FB9NtwgSksxXVvIFzAVm44jFWf3/rIL0oSQIGDg8doYCn4
QPsQkliqIyEE1tCiU60FWJ2qtKpPjXRMUqurK6eoq1HxUotNhB/0Nu9s2B8o
qWyR8IMk423PvcyBp6e5b1dqUjecVNhJqJrhNXoFPYDEwvhBzjoCbB6O0OUd
IY/P6OqF5PxSL4C/wwPI7O0+xhKFvQfAI1INX3ToasZ5baCBHHz+oTu1zX/8
8se5FWhzd7bzFn2z1XGxC1IoQBaaaXt6rQpHlAvXLOdYohFF1kslIgqix+IR
peAjCpayX3zF5RJMUJj2p5ZHA8yPd3VxMJGCTmT2ypHpNx9MsNYAC9nbFXQK
gWAyIQUdrKVC8KBAQu/c8S2PPOzXGOQDa6h6zKhKlc+PqjXH7hSSYYoaUAgR
+fif/+ArkJWzdyGqxP/6939NtkvHfPyXP/weWeKXX6amzz33DAIPv+i38gg9
SJKawYdfeHrnYIb8EQdtpK1SXMq332rSSnZIKYpV4is0pAzzscCGt7Dw07jR
2Ad/6c+wO+sv+jjPnCmQa8RYMzjAixkQK3r4WOCIsZ38Cr+/8J1XRiQa4G0n
0cDO8ck+3jZ58Pt4E/krgZyh1kYwUBDA+BZkfA9s2cCVcBsHbCqhTqmb1baL
AzXTOWnVaoetNwUTfE5xIJ65nGD11K2UW/3sJQLHq8+RiX36MZjYU7fGs3dc
yS/6JTKxHesQU+lvxERs/Cim4wcuJJFYaoIcsr3kk2m04M6xoTdQdtoSKDtp
hLj8xntmUqBlYKUTFFvLKWUoegItCJsrBiKEs2sH1dnZh/klaijx6DONiwVz
6SHjzkoFy4HxM8GgGAgGI+J27AfkdpBDxu1smCo0K2F+VUHNAAE1e4C+S3AP
/Ov+aKOnhPuIcY+6/eTUFLbRZ9bLEgvLevY5rLMA7wcrlbxJHNZTLvHKXTdQ
p3RWWCoE1pUp6/EebAflC3wsxb/yG1/XIhMvvJA9MfoCYxWyp3JAceBvFPM/
e+UFOonjAD4jsDPnB/hY5PeNfbvj+flXiJV72ZX6AzUaHTWMYs6pqsQDHtM2
b8VF1IEqKrc1qpJ7H/8Tv9Tuybh6M4wrYPbBKQA76dllsgCUl6ZHB+MfPv94
fPTsHVD8ynbKBeKf//zPEmy3i9O6AuV+ebRNPddU+vp8sFw1oO7LGZkggb0s
A0o/qsj3NSIr8Ptl6tGAnV+y3+RrFYeW5wTwoRTPS2me8y8b0WpmqD2iMYDD
Y5MBRGv9KIFoW0PaYnYlGpmYSiB63eZd9ZQdxKHwZYsuUbYWroqlapW0Secy
q475+a+zpar6gHlC+nYHAlSxefVBcZc1KlEbcYRmkkdVpJn0IzfLNhPNBqGt
U+F0KND2BCbWis3c2qPTPvkWcwAW2fiMQM2wHjJPvkUdiEcWt5gWsANS0T3M
8Xuv/qCSgXF8n6wf8RiX6VfjXmWW6lr/sQ8Cn73kIGnJ9oUf3JgKbQ5y5wP8
nhR+Yw0dJgVA7qIcTfEHD8Pl/ukzQ5hVhC8ELA1uDsFGorwW0OcDotJR/wGz
aUT5NTf3QT+EvQE9oEOo7M41/R/vUzK8ZvVAllapBbDtrCyyVobbeGPEPDiF
kS5dGS1t5xM6G1AMzOJWzboVyPL7rsZtN3//Kx+gz567/Tqu84Piw8JyvAe7
F2O5vY3CDa7TDNgHU9ar1AL6PO2iqfyrK0OfY0I3+XTVku4Zl8a4DcNpWWen
/ENBxWB8GTAOkULQlgjrlaVNm0KWlHxeGRsUlt+B1T1CbBAcn5OQzm0zy/G0
6t8lxH7/F7/nu9r5tRPVSRRWvAhqI1K72+aGERsqDLFpmBFTW0Srf/a7LS/q
VRO1U1E9pKer3n+0iYH0lc7j2ghfgq63bYTuR/RwrXNHo33oPK3RpNRMaNOY
Xjh/2YSrNRtM26nbfj5WGNNQ2/i8Tqbc2LqB/5259qp49sF7CvihSAFlF7px
Ke9Ew8yWrsbaZnrRKXbsaRSwSSck89QUL/0DuBXfF19xeQrfpfnNYyOMbywH
BLZlDWBVyE0qnEndJHfJVln4JSudp8xqGQhsoLpsiis5t791rt+MYLK2XbWx
tgXQSLCJykRa58H4e+Iys7mPj1yspxF7AHSmq8Yx4vc6gl0B3yo1faueYl9A
ZRe5jSl5Qm1qF/iTSC4YJBudUgk0q+yaFZrUYF/X20CKgVXSZVMpgaqGmiZV
HWVQGSV23MxmqQzFrbsVdwVu/xAqo9d4AacsonFUrurmKZlpUq8Jt1gAbVV1
zqzrdANX4x4CIvT+z8mpJay0sRUBFkrLBsZZes6uEsi3yZKAaDAZ0nolM7oA
re05TbGzO5CwhUxJMB0Zq9faR5c84wKYvmLH+vjd1x3CQsOtRlsvq09DT5OQ
9Q/cTXV/SFsX2bHwuRGn3kgX0w3FAPpCFlpqj2fu+GSV1DkO2mNxrG3Ce5Td
bZu4FE9tSDuO0TKVQNQoNdNR7zh27evNZ65CfQOF2pbJ0m4+ljyRUfJmEh85
N5574m4KXD/6KmTSE3cznOP/838jKuIYAdTUsrdSO/+OcIQjAtyXsKCG8VuU
OdQ9jQO5ZG+5G19MKYS3FP3ozCW1tuWPoi1/8F4uRN3cUiEwvk7mST2BQWQ9
bb8ZpFxCg5bYcBAzbVmTnHNA/BR+C8gCt70C3fkvv8xlDOC2JOhdWPgjD14a
p2ogC9VxInPyztJjACdmLSZdYBN/3QaK5iP9MJ3+DgN5KSA2yhnNIT/2JTKx
5sRcZjEwl6kPVtMKBiRwSWCL38O6FmB2SGCLucz0OpecWb1YC5Sq+40JA7Y3
bD3T3TWcB2jzKGXkMXtJF4clL9jtBS+s4jbpDZ2uvf61d6C4Luplh0daiq7C
YC6rL40ffvS++Bvf/lK8/8Ce+OOf+6X413/nW5Qa3kamvh0wnm32XEIfq4rE
Z6npShSfuYJBkF1jeAuZLNNYtUDaEjKhJG8ThYwaH4uetwvP3ccv/KaDboFr
ztfPXBs/MvsQas1dzZqGHwmbaWpwqaaM9Oj+jUjZ+jN0QauRJvFGF1oMxBjV
BfvObtRTLUr0tm0RXGbv2jooqy1CUMDkYTvglsJKpZgdB1KTt+5OEwB37WAf
5hC7AtOJVcNc3ABjmTv/wjtLwlyI4vmvfoFpOyDMnfvwe+OZmWuYtv3CXDD4
xF13JpibM/+5vir6RY2oXwCwqDfXMhaLQwUDtPX6tAetWZTiQYtaxa7d2xbO
PmdfbtCMS3p1PsYJnxNRcyMBSdstdNViMREVe0GwpAVdQVzLMls7MiOCUWqx
kaTVFlni3k+u9l8/86jaCcWwziJzJaAWCtltWpheXm9pU5qvduZPn+4LPYs7
/8DXivAVvF34zisJvmKdCG6RabeOsNbcSsvbheOrKxfjBXDixUyJlwx05+Md
K8bz8WVbTqM23nHupvhdV+7j16duvoh/aySgZRWtP/vRD/1eFgWzRptpRmgF
VoHTj774gfhPf/6/0l/83//yv9MRnwOvf/jvf0qtwBEKorl+3AbMpN4q8Kia
KcAzpdYArkpxeDFZ541HqsMF90brDIzTiqk1CFSxPI6OEb/X2wHPkscXYZLv
N+a/Fv+P+B/j/QSWtz33Mtmhr0N4Xx1w50pMfFZEpFh7feWR46woCbFZWZil
bcWwbWbmOhUpUUaEIZUwm7QUx3/tc22Z8h+tQuvQSkJtX9vZxcjWr70zWbGi
zmSnXErNINBImUK8j/TsQzs2QNcGNW6Bj2VfHLbMnb3lGJgL0DB06WfUHRi3
/QLdhZ/8HrVtKeN2QKALCD/+9FOJaoNd32HFC6BLL3aqLlG3ereOFozxe4Rd
Rq/btbDAChgLPrBSnMC7NLCWoySzfGDwlVcfib/3B99AEwbNgOVE79rwuKU+
ET8zcxE0kfowZC8WYYDBXYbEx6+9GiVgLMTxxYWclIALgfJQuVnF9wPVZ3xW
rDtxOzcITLZDHYRjxDYEw4EJ9XQYvqtiTql8ifNpoybKzepVunmJqTsH5Yqd
uuOXnbb78hN3VIXJMnuXKDDkAsszwGg8/sg+I85O4Q2aphB847945xtoNHCM
wGEmLcZr2Ey2grRN8lbtXTktxL3++DUgLtmNoy2RlysKhrbx299zcibVNQGd
5aq+wCoge5Yp66p1lNq7caL7k6hN1AvKZjXdFAkqB1l3lNpB4rYdTNYBsYRa
uhwcI0UuA7fcXHXnU54B4ysqE8rmEiElrXH+4fvuiI+ds52T+Z4OJUNNFKZZ
K+SHhyJOOaAUrJLSntdmmWjgm/XBE0dafGYx+GqzjJLhZkk8KLdNEJ3MBXMT
MrfL7ljBr1ChV5HbE9C5vQa5M9ddhXoC+Y5DbqOxR2+LDC6zcMitctNQ3OU5
uuWj8V+841j8W285El921gpG75sb2/w6C9zQg+fNAbi9Uu0FdlFsYPQuIVl+
6blA8HRgeYVOzyl+//o//zh++Vdf5CYNmQHUimrFFIZevvfq+K8/8pZ41+ql
vJI2JIlrgSpvb6rKS4NFRtC+KkRGlbb1hCQuGVvftnwJ7Ju61xmVSg2YU3eH
RtUlJTWbR0m7cuVA4mTFhc66lYTBOuumC+Agg7sEufQz13AtckOrJuyKuGpg
pk3GifsdwtYiF5/RqPDIDLUVuyV/BzheBrNVpmyJywcoFxBf+UX6dmG6vkxG
AyBMySo3GhdvPYPrsdsCc2ZRdsLhR7yQgCt3MrQsnkVSCsC1KHDF7xFSE9ta
ALYfm3s+Adc/W/jjeOuuPdCxHq62cjBooK6atphhcIAr1ACmGLoz4Ir619zc
R9nUukXc6voCDAKp11CkHwz0uNo/0lUUMdCQtP2D9VlzffyZW+Yg9p+sbKQY
TyLWmv78jvHh+L2NrViUJgK2xLtjgJqpguxAQKf2BgqyCk3o1vSsmF3UIDaY
uOMxAjKxbICgecc5GxSaxUCtwD3gpMzMBEex8bbl5vwvvROTnz9Fk2dvO+bX
OoSmznStmoUpXve89ZZG00957HKiacumhnvlrvXMU7zA1jbathqo4fbzschV
hpmZY147IhlMjVs9bUZi2YldaxGLYUBFY9VqRl0ZGLVTxt2SGGnKhjNWApUw
HcDWim2BP0P1QNaYdZ/iGgW71WM1MBsmI/KaxOoQH4v8HqsQsKAM3/ONb3+J
Lt1hU6utgs2F+2cfauQWV0bAJIC5nY/lxDQWRjWQrSR6VJBZdEey/lp8y353
myQWhAGd+QA6S4ESwMbUxBagWRB0oiRAqGRoFprlAEx4cTowbJCtsboYMLKS
GBnYhSQJ5lXrMFZ3G1Y1Dux2I/D974bqm8OBXi8EZHIpRXLYfKfrd7pT6Kwv
m7I61JLcodNtiAEdihrAAwd3dpm9hfC/iJhY4NmiM7sFmXgPXWmRubDwA15M
YOqpmNNKIbPgU3vMXxEqC2FqFgIJfslQE0oTNAUxG9s3MCVBzZJQE5+j6gpe
LglQMzJVWKEmmSeOEVdkU86akKM2Ek8N9QGd9M4dRZYmpM/PXnmBxw8ErQSq
tUMiTbFkjHu/Wb1HRJ4JgUNNuxAIw+UMW8qZMDzU1paK3rRnH72T7ckuYbE1
LqEK3vOzWGxlFu/xOeRnb8Ys12ILvQpyRFUWVQDIUvp/eRd1vYGZLnpNqnRA
VKmy9cB+uvzH7iXB9CyYqng1ub+q0rlcMs6mNRIcHxNXAOsuM2uFz4BX8lCT
NPq+Ldp/Kjzs37j9YPzjR14fv3j9rgRdiaaVQIJvt43EZBUQWuRj1YKUAYpk
HzdRLJ0cjndvW8utGHEXlVhEFQUsrhLIpqsdRmyb5Cu9Fn72ajxzw+WwtFIg
1AwH+joyTimFVWqCa5ZMVXCDKhlQtbVfm4/NHD/KjhD/M2+PH5zI0vC6pLsa
//JFe/n33E1xBV7Ldc2e9fH7b7wIglTJuvD1F7FOi5naZTL4xn5wgf2jZXWA
itHHn34q5YOuuIBZKiFricla8WTF/yay8lIt7E0pSXzB5O9pHTp38u6aAJXg
ygC1S27ttJa9PS4FVC2vtoxdTkSgDYiH1p8GHUqfOaCKJk0oIitMS4Gi67DJ
9ZeROWGFR2gRirSlrm3BYxSiQHCuBewodE9EKDg78y63mDdsSUw8sX5RC1nS
toUzR4ZSN7sVOd+/etfq+C2v2+KXEXRnTHPZZQQOsDW7qyWDVaDKn01PL4n3
7t0WHzt2ST7+8IdP5pJP1JSmwf46ErAMXrnVuZePlRbILvzl9+P4X/+Gf6a8
38G2yKsHsFpAtSymtARKbSXVjjV10DW3V/J/TGvp4o1QT5csZp1hAq2EWfpa
HKN427KheOeq6fg7j78ZQ9mS659pblWWOSsyOBzLvEAAnBWuxu9/8ub4D77x
3rmN6+q5UXdO9lyN6PkMA9TEGjeiKcjsrQ6hiF4zGZFEdOSW/wyKAGpa+CoE
ovtooKvzJmfQamrNzEComC5nTLK1zkAk1ev8tz6jTRTxYZuYmM0S+LEPYwGB
rNqqSD0AldWlw33x3734Fn7tWbMURQBFMJcHPvxehm81UEQdDiDY3Jfs3UK9
FZtcoCbwrst30veBv93M3iUDXcxevCBbNfHHzwpckbC9AlyoWsxZ2XvULHDz
BriU6wtq3VGLqfjPuovaWGTG8J7Duxm1xQwFi/e4qcEC1xZXh2Q1F250uP6G
K+KPf/xpZCAau4+98Q2NZHPKVsTyy8bt7sCEVqnDuF0Vc0eZS809Eluae+Gp
lnswbXZkYxP2MWoyt8zvwdv/9OE3xf/uyWs8e3/4/ONk/q3TWaElBgN8rHCt
FQJX4w54S6wFauOvfvUTUfzf/tuf0J/++MffxP/m5o25pnUsbLH+DnwFbbtT
RQMUt4S56Jp/xVYOjcYuhi2w2yXwRTn27e85yfDV2a0R00Uh6aXF132m+Jpe
pm+7vGT/cSEF2tbCF+9RTbjr0J5gtWBDoFpQNIVWAJjgS+/+808+RUeC78I5
+zbmmt1asoCzBdZum0mRcSKT6tQQKwGuUeAP2WIUiErSMu5os4eZTvz2BBS3
tiy00jG0EsdGhII0SyRJ+va/FOhcFg+ZKxNZJbP1+rblk/EPnrqZAEXApc++
dP/VXEQAcZW7+HOiLRO3EqjDKnftIq18k7t+gyExR1dLI+4Sa+EWxN2y5y7+
n5YJSNBymWBAILvwrRf9Lp4OsiW7UIBfAtiisFXqqvb0jZwRs/aB4lJcpS9t
L2bxHlVVULUgbIW4RUW1yVZXZYWY/X/+3/8Qf/NbL2H6wt6O5UfIxWz3gFZr
1hKve42UUMMpdhiqyymThrGQSReyTTrVMjdYWiuwe7e/74YDwCsiGx0jxuzS
oR6Wt52uGOjhY4kRi0Is0Fuvu90wHnjgtoqgldTtjDZrzLBnyUD3KcnZKh8L
abQWhapQtZjYAk+dpC3YxbDzK1edNmY6JSSxtCyrQMXi13QMs51ctv8k1WxR
gIr3KL8CqIVA1WBDYOYqkiKsAnXv7i3xW2+9zDL15IM38EnH+eg2MddtjsX4
cr2BCavQlgUhoJYDkb0kpodzyWZ3dp8s76jSJr/A0k6i9QZmrYoZk2i2Epxe
jyuQLwb0dT4AefGIxFKsokHpYRKzhE86gUOpqFeG6HBAwpYDS69G+Fi26wD4
BYzuaRyom3YwM7DX+2VnrSBPAkYjxiikKYA5HJiT0o05zQS/IhPca6moCp+s
HvWLq7538uZKhzI0Mnk/E9yj0i17PUAW8ud/8bvU7QTMNhZiJxWdhbjABquV
ONsfMI5Ch3G2GDAOsohye5tNVLmEDIkKQN4sev2Vu1/PoCwILlWRfvmJO2i4
289Z2dn+mlGkFpezj1GcnH+JAPZdqFPFJglUD5oJaR6D68p9iypSvkHkQ88x
MMthbJYFm/PzX2BMWjFqyq4LR2eubzR7yIW6tEZq7FjXEGTajo4CHS3IrBhk
Htm41CCzwHVXxeZn7zyqi6nwFrITvDwjIEOVmqCoEBOoNNScP33lEj7vpDu7
d4uj+7EpZ+scVdRhrE4bn8RqZ3wlm1bzS0KIa0XB9yg8gUy/P7CIS70gtMLQ
IlLvEsN7xXY5oBhC2HasaFk2VTDTVW89spvhqIgk5ckT/+3UZjFQaB1lRJbS
iFy4f/axhkdDxJuOycooT0e8R2nU0tHOPY3JIy507knIWHZg9FXR5sW6p4bm
RA1oNbTaVkCWrYDkV6gSCjGJpBwsVCIuM5UVs1PfTMrBuS0aKwcCU0tRh7Gy
YKfmXUUd2XrQHKUINWFcUhPyEAKLAkIoxt2rJ+I961chMS8KBbFRDKjXbua+
xMcyUxB1UdRKcUpDQpTM/vWvWNJ9N76BfInydPoLn6gDg3Xjx2yyp6omC2Es
Vtvm6AW/RkpmoVyHFTmKqc7ReqjiEItPA+M+q+PuOKgbS+Ki5i9YO8EgLPGx
zDg0NVG+OUpS8tx65mDFzjnxC8oRi0qvPrIP4Cs4BkI1+jMvMcONF2xtMJDo
5jMCsF3ipBZngq+3uMaBHXaLZA0IS4zRa/U1bfQQrVHG7FbOLGuKUhjGaQnD
rhVFG5r8bJIG1o0jA355UxQgXkmIh/dYHGpFId4jn7bEw7on1DHBOkc8d34V
hDqlNGEsGC+Lu0/ddJDzaIs7OzOkT8KAIsOTMIwIxCzQwttPPmDZwtEOceae
w7vJpNspv5JVfvyS4qPiTeuODmw4lvi9fdSOdG96gFFvHJIlGGZ+h18S2kYC
MEvvmSJV65qMqymjeMHvzuyEr6yX5xdWaxK4KiLjwDTNeosdzppHJuvVZ2gD
Xo3GTuqbp0vCLvqR64ygVjmQCUvfvCZJlw+zq6stuyKWeG9/z0me1NFhUdGB
GuLZDKySBZbtULcvnX/AycqRHl86LIl4M6VDzXCFTyU/V2NKhPGvzj1cSGa0
zPRpY61qM4NiM2ZKhm1GomB7m4n8El/gqCtgMArjqSaBufvJPL2pGknIL+FQ
aAYyCuTNeloTd70kdr5ZZgqbNUL+cdiUhBJFHXvYMH/01QR7oL6grhx1Wm/A
VPaYBUN+LsV6JxagW/ZgITrqd5Y9dpJk1NzVrhMixSR7uFtF4/oogyU8xJ9a
W4lV8BJL6nLDJs+Ukhz9ksOOTH34uCJzH1Pmwpb0dyGcyVgW7TSHjqNsr1e2
sST2G5fJIHbLIJoqg79/yJ2vYJNHfFdXIFeM2s4cV+3MsYeL5ogzx68EUVC/
9coIMxmWLjZhnDJxJUsZDYmuxbIprG+EOkpRBZfeUmBTSaSZIqGlkTIpXYSj
ZDFTw/yS3EPIok+MWDfZ78lSTtXQ8BtnyB2LyPxwFqUJZXv0aWuqt8wY4Pb6
CL8II4NiDmayQSOQNwezcCYdesQcCj6pEkwKvFgS3tZYZyhSsKIKLXdnqdiq
W+JMkkPqiZRZsmbJXVzRroDR6ddcTXghK2ASvLCbZOQDBawxPhb8HKzU/8Wc
uBc1K+sVVKDsj9I+IDEUKPUPmmdJz734PMsXfM+u3dvScsWQ2MnqnaeNxndf
sEGx4VOzUMEKJs0PA6BRsNDQ4lSRoVFMQENr+UudleD88aWb6vwi6uvQaf1e
pv9DuwemipK4cyhtIHPNE3FHyp0kECDdpgovOZXfrq11orPE7/WRg4oHSpy6
hA6QIpQzMRdKgbxJzLRD7VFg7YFb9oQIvW1LRxHrDgLCfLNXJXD97CXmgEuM
ira07kvqTl0k9gnScno5VRuCoCAErDXVc6VAKZDsLHfdzqLil2YOMAUoEgzK
+GqygfElfxyRLYbt2Goc6JVxJQjwTS1CMcEMfzFOIMplMFXRJKT4zVy1gJSq
WPaayUH6claz4hJsNbruAj9j5q+rbbm6ZNWBrcGMi5PLhN/C0Znj9eZwNVzM
6Fo0F7GF6V4+VvzTReHk9ekJYs3r4vmvfojyo5vsvJ71d3faClrAF/XSbQfj
7z5yhP0e77Fm4nsnbw5N67kNcIocvXh16WEOvJANifr08ePXYBqPrKhZn9Z6
tIwc+8K37joUn7xkG2xB9QKojf+FYIAXaUzyTEp83eb+EZfj5Ck67gk0VbEe
BbuVgn1iPViURt+qMtBqXmQrRATqUVdsQYqCz3EvmVSYUdJb+EEeAiLnFj2A
B/TKuWdzRPwoJxRh8LV4aMcIqmIUj3UP2tnH7u7pME+ZNt6IVzsl0cfHSmIs
dBMZ/At2EDB6M3KUhx+9zyNKjJGJjFZbdlC+ojeUeSEt7Og1NoyiCahRMWsb
dq9fxYWT1aaADJYYcCSykZXG8xAUfjp7BQd2VIwHTamCTYS6mddJ85pbyUdQ
IqGXfxaEMRd+4akRJdkzHLwxMaS/OXfhdZ2zVhccwRlYrEga3x5I3ER78u6R
RzBd2TddnqeBl3tQBaw30qVt0hx35OduzFynVcR+U02eXDrVaI5Vya9TmBpw
Dw1FsYQQVQ2sTXCEKlo9wv/Ozb0fawN0PQK0R6N53S49A5uIRx2XhWuy1iDN
JjCJ2IS06fcAXELVM+9/MrG2y3JKmsBXeeW2FfFfPXOMOg7HgtMog12sS4hV
oeVdPXyssX9gwRAYZjYC4QCpt6bPzj4wYJbVvu1tdzG4yqaYrMVj1yq3W5ka
qAYgMkw7mXDtedtwphzvUA1wkBvhzO4zOnfOrd+Ex+K5A3nzzJp2Bu2erAXD
Fb2q9iGE4zbWXc9xFRnqBmDrSyVHeARd3j12rh3CIo8weuGXqd3uKrC+36HB
VV3xe5hRA+FqJmPav38HdFAwY6obBmdpIt6LOM/7JBZDA5mLUjcdgHSUOnVn
F2dmU7zlc+p12ck1LVi4hEl3P0DrtSrjgQexhMk1AlxupWylBeA9du+dWoFR
5hH/ZndvXcNftsoxxoslmJRExVzanlA64guO2hpV0RqVhoMWMEWqf9h++s2c
vo6N03BFzujRJLxExyWapfs9pJ+uUUzsxi47sudCj9hw/C74Rw1J0mdNmxq2
0HS/MtdthquUErz78viu89cyArEUlnIwGo72CwrAQ3BvZuYazz3UahoNZxHL
zfCeNtaX4B6aS7RLJF62PlwyT2lD3QbsQ1Jm2IffYfg19p6FhazpOwk8/JYb
q4RAA/YigR/eA35I0p6ZuSgKCLWqKTNYoWa39Cyl9ucg8vmNBGzNuSIUpPd+
Ss85b2nBmixC465VkwiNfSYy6hqfXm8ebVDI1npgR8IeMfRkDbZLmLyoIVPu
Rr/n5sZUtAmsQqzqD7CqKqxCOof1qen8bcWKZcYVmnM37TSZPh7BdLtnqXS7
3IDqkIX3rNkcsqqBwk/N7Mpy/fFrFgw6Z3MtWo39yq/AEWTZ3Uw0v7MaDZth
/+YXPpurG422b8emFo1247Hz0QO5050P4hwMBIWDycNyPQYQDx47l8djTO9Z
oMiFO0QwxL1GoNPgqxxd4eyLrxAo1FOIFLQrrfZvWsVGNWruiIBYwvf2Gayp
GdVNb4Ag33kIO7UTR6gV9HN8xdZlTBISU6XAtPsgHwt8fxPEFIBCX6UpHliC
NI/UN8620uAEJwROugUn77p8J9+H1K7kmzc4QR0HzwAASoAO4GThJ7/Ky0t/
j0tKvxpPLZ1si5MVxmJUSxUFJ8j98JnUfPIBLVWUmao2WqrbkATAA0m6AmXk
khST//wvfpfpQq1Z8I0r84iopFKgwL5QTu4JEGXMRGm1px5jTxLMzDh4ByYV
5BUR2KG107EAJMoCCbzHjUM2caNEbkaZKH3M44yd8doJmii7M3tTbJg5fhWA
oMuHcMMm1q6DCmVz1ybmysEM9OmK+kS9SS2GtFJwf3P/u4WLDmzi33D1H73J
j201pGyQ3pGSyS0NKBvCQzGZzbHZrXMj67MnO7KXb1vVcj9EemRx/XI/ma8A
m5FdWLFswomnUkKlGAHVHSCFfjsCkLCoxW6OXnb2bHNMuQvfffVWxkRkYAHp
IbAoCixwLyTAAEy47YyqDAsoEcxc8772Jg/BOJP6kJkjR5Abrrs0np4aQwtW
G6sCMcCOrkAi5gRJxVeC09RAtjX34bd1MzDKFhj8srA4zVy0ao+SHLVQJLBQ
0ZHvQG/0p7YQF1JUAnWjgqRfAAWSMQBkemo0fuiua9S41aWtaib04RgxRdK3
b6GwpMFyfBH72rdnczy9ZBS94ezLLRrLifIgYvSYdEqtdjwAj2LGyhqbDaUB
1YRH1SuMrM4dks6FRbmCE98CUwwkQQVhB6iBnTZRUZbOjb/22Xegg7U5jGTt
tH0GHavq4zwIrvyTuGkyrTDwXhXG5CIK45x9G9EDuTOaKFKF4cfWRoVagB3j
AR3QlRpb8u65TWesXG2uUlSGP40VM9VAEjYRCD56GgCEzAd4mm2OLZ9m58oR
xkdRjgqRXLN8Q1/aOv/s9qIsJ2SHVvvUBgrSJCGK2cCi6HUJUSW+9srz2M9d
9ukKLFgIDajUBC24rxo1HUBlkI8lRgvmqPG5QUofI6XEZeddu7elcbLKXL1K
jwofq4myM16h9H40jA23x3rV1mv4BWRgxmn/gZ1q1TSmf/ydjxHQYNkhhxPR
QZftjjKTmLj732a6EwET08UxGkAw/r/4thu5o09vMoQjKyLp7tUTOgmFEo1m
BhMBhhSEIVit98ADt7XNUqSn3TT8QDduX8bjUOhY8LyQXp2wis3hgk/zNxSy
UDgGG4gS/Epz4torzgEn4n9c+DL6lXt1lQkZKjX2BHjhqid6a5HvkHZSY6xz
qXGmMWYNB5EJB+n9Q2w4mAgIgmrreMZf/tQTs3u3r1fH4asVvdGCJ3CjHEiC
JgO2Y8+FDPi+26/2trPKdNWqsZ74syf257jsQUctfKDQgRwF9wDLJHSulAIG
JqaRw5jnLuG8LcDok+XCFhgP3X1t/Pwz96A96wzpsWbFMsMmND18LHpm4POc
r5GjEBRxEkPoYHw4iBR13iqhR0433a16pCYVEdADl4TLWRImRcSkqPiaRpoQ
Ys95GDR9I5n03KYNDg9WfKWNSgNEeoMjVZmTGUaFyUzEITvQrmcL7A+ImRAa
pC5qAgm8Vc+aaHpWPHP1BbyENwosVCnyscD32qK8QdlLo9mfPIbTw93xr913
iPrzv7xwI/350T2rtDqODdno2N0sEJGmwDYGWp4AGCAqkI6YjowCHWmDgHrd
bsOHnOTlbgunxF1r7fQEMYHS5uYeryE9sXx6jL92k5DRVCv8OEqi0LI5m8J+
SSDQl43DyjjGP5x/nuGw1lwqAgnOUpBziW5JnMtql5DN6E0NKRDBbjCYa0xX
QVygnKF8IFbYwij/Cx6ADHn8hFnxQEpCI9ITQEOPoGFu7v3x/r1bGQv/+B+/
pmhYby5c16zUAplKhY9lRgM+w7Q26h6tNX2h5IffxnDo52OB6x/PvP9JxcMa
c1rVF11CB1RJ1WmcNdfSdOC8A38LNBgrLgSsWBwH3e41Q8FwX/ViIYCDqYAZ
lVJDu2fHepiRIsF1aJGH9smLN3kqUPqBBy34BSxJSy1bLAAKidwjEvVgkKBl
GJxnrYk2OO39RzYTtBwaCBO+TjItp1I0oEiBf/ft2Rrv27k+fv7duPXR9+Ds
3p3rbQ8mdMLOptEv5OQ/V7LUm1PQ4Qv7Vo5CGyR0Apa/QicMpHQCtiJpoxO2
CApQL4B7kvu3IB03g0QBFExZcUYIdxBodU8aQ9YKOc1knP7SU9JpQsokCgAh
ZDX2jNcfO6zwgdVg3NY1h5Ath0QCygI+20B9E5/zTAgJhVB9eiDg/TW51RLC
AKtdKYuI//h7n7AEUBHWsAioBjKKokEA1IG6v81mSrazKbVoIgDTRRMLb7jx
GJ9TrpfNlbw+oQ6ePrrTh5tpmbHUJ+qwuYqploypqgmuC49cSOflA/nh0oDO
05HDew0bf//nv6Iod73n7i2Gv6sSRrGyFChWOuPoSfi7ri6Bf2NFGn4+dtWF
8fTkUHz08M6FFdNc1chtMJ61YqyXHb0ijr7n9GY+Mm001f4dZ3CRgHop1GEW
xNrpO5p5hi91uDqj3kvENtouxtML9rl0qoo51QIvcY800rNzq4u//8mbfbTf
yt/c6z0AL4RBHcXUZBU/osKgemkgCBeMz9mRe+njb5v1vVlNnNEAJjGjmw8k
IHpKW4+KJPqn4r51dR1F/OyTg4oUKeHruGp491jAn8upGQsIffLjPByaflVd
Gv9tNG6tC9WqEt/NHdT/H3tvGh3XdZ2J3lVzFeYZBECgSHAASZAACZIA59JA
kbREUSJFiRoowRMly5Ylz5Il2/CyHcvykHiejQweWrYTO5EdD3EHT53Efp05
cfI68Yob66WzOp3hpTN1kl693rvvfPvsfe6+t3YV6f5trFUXqELdc8895/v2
/vY+w7XEvsQaNYPN3ezQkYt0n8H44xKsI8hHQN5/96lzgdD4TGY2SqMJNBHj
lw1c+vI68X5doLA4PUjsRQcJk+VZKmx/Jw0YZPvk7vPXkbFnElOfeK3p9zbh
lbbacxeMxOFGJU0aDl04FY6ZSRt/eOX++Pefe9v6lUsN3MVexRzR7yXm7ode
dLwJVVYDOasXGkhbUM4p6v3Fw/f8LpAy55xAh2DFmarUcKKYJz0qBIes6crJ
PtiK6BCVV0v1z6M3zRCB4B/xm/be8pZ1iort0C6RXlkHzH2ykvRJLfDzwv5J
egEGKB7dD8cPTroWmDJsd051vbIARMcbTuxTXZ/W4kJHjB5IxwwbdCyqTWFY
XLt3zVzcm7R+mJhFmyHm4GHdn4jC8Y+MpO7WJsYRDtTr4KCbCYiEHnpgNeG8
z1kpJlaYiFDa6Tjx6jjzRVbBDLJW6IFn7tobOpvw7HoB+Ku36GXpYd38wrx9
VD6NS8uizuBDkWPDhAHZfgU7DKbrXw2RAWj3hgdvjp/7xGPx3/3ORzT12Lck
6srFy4F74KKI2vFrbJPZpJlXFP/2GfTzSXY9a3h90sU3yJ2VDfpVVQ0+/a6X
ZRdsBEHsN6+g6cCru8d7qTeef+NJ+i01ci01xTZKuSidxpDOwN+N0E4VInV9
oINKk76OWCC4mnkjW9JGVhM5hyJh1Z5+BMn0KOllS9/mKeCV+9ckk9UWOeXz
QDxEsE7DWjzzcQJtv0ATgUArSFj8Pr9vcw761rXxpDOAR3eNxfc0tscffbgR
P35xP32mx2YkliYsc76rwklzg3rL4eoEC8poYl3Gsy+/oWy4wbE2SHNqLdyQ
ajfpZ/eNH777HOJkZ3JRWwSqk5mOVknJ0Mnojyv3vwBlHfCkDmkr2cAXoZls
KccJ7qYEHRMtB5ZBPiueLSW1JacAfVowfFybu19/98pLw91721MMqMFL7ni3
KkMI5/crkDmodIqI1JIKQCUyLKsijh3cCTkaFQyyXZeQbWVp8yDRwXUBEQ7m
kGGzkRmMuwQVlNVDu6/xXYBo0aIvEn+TVZUi8Rv9ykzzRVZCt/IwGHWl818C
vINJu2fSzV5R0ulhtk3JP0fPsUuryG988V0Fg1EHEkaFAR9QB7T5+srZcvwP
X3wQycoP30Mswr9oPqxrD1GPGHUSBhUVg5AiyjBoKWEQ9R5SQS4cLBr+a4OB
IRXgBBaptpHOcxYFDCrEn3/oiKhtlCsukWZiOvLgxBza2+taqSTXkpaj4hKB
RRGPNOO/Y9fOmqMKrqIM88yaSNmMUeOOfbqmQHfsPNT6TY19KMcb8sKKEJFv
kJ5PK7P5UCtndqkKPnUrs6zwi5YYuptKEefikRmeJJqIRB7difwOMgX8Da+F
zWRRzo2q+VET3/yOOe4EgF2k6waVBkMXwyFw7VeFNMrpteRhGCZLisLkusgL
osC/I6rNRfSVFGMuHd9Jdzqo2pyrJZNy7739uGuIowe2E33ca31zfYxyYV4b
B7O1NjPRR+RwnHEmGoQpgTv0WZTIB1ykZHAm154zxwzOON2XZ85g7EW8q4Ug
nzItagSFBvc3kkTIojIM48e2pUJlw3szvHQnLku5Xu5RkfLSrnfw2rlzIlMc
siC/9667wB4ZFTHvOp+564eWb87QO3HjXLVpCwrrAUb+xhIubU6AH0ZLiwaX
cmk/RoqvYMyuOOPBj0uRNoMu04qPAdSfAT/PKk/ZrxuSqkm3mpwcyNwxzQT3
dxwgknRCWtyJ+wG5JC3VzUddt8nR3vjo/Kb48RdeH3/t/S+O//4/vD3+wy++
Bn+vv+vRm9dPLm6Ta/lHx5bkMnQpqDbQyPmfKjMr44oEVXnGJwYiwKwWbLre
ZlOO2QRJJ7cz3BJXBZqSozB1ItN5cDxCItXifYpDhhEU/pyi0oJ9CTzyw7Su
nO4WsRHHRfh7/eRhb/pvSAqTwQNiD0HZuMOc8jg8swvlZK1QShOl4RhlzLpf
tykT2OhsBH8YNijyrhl4L9PCodRAknx6kjPdzFnfzlQL8RASwChH35mxVQZJ
UDNFuSDSpDRlszvb3yNKi25KKEIAAEXE3yC3L0mlqkERwrmjyT1n9mYpAtpo
ityURkbwPM7bRJ4fHYEfCH50+p4nB6WqfSpNOWGDpOiHFc4YHzLBRGOjnuCM
FG+IWHXUyg3akaGAakztwM8lHb0sNyuwU+MRZVWaEIFzc3Ahcp+nPXiXI1Zg
eLmLD6mz5fYyQgt1uS4D/chb45FrgEXdQ39bAn3KDkB3FTi3DugD8tBVDvD0
G3lz5xfw/fMJsOj0EzMjjqLOMXPWSIBVtN1zFvKqXVFcIBFybiouKV2Dl7nF
Yyd0DxgEqGP+i5NYOUY/3oo+KRidj/8J+j/yxHmgPwf4uy8r8OMqZ9NgJd8N
J8D+oUD4rxL+ob4QweDleLC+ebQnZZLOqg6pD3VxJOBXvMj0X++8XVW7VWMA
JphmlVVSZ9LtGjJpaNco8d6tGiBKm8y7qLTeOr8N6I/SQooiB4E+YXtsAHZf
irkljR2+Swrf3EVzfk2OO5cW5uR4FRvnyhSoSuG57BklxX5KOmONX15BxKmL
YYkkj6DyS120Pc683+CBrA66mf31QQrI5NlE+Js3upTYhE717RjGnJra0CCL
NkL6dBBFVvSyl2lXa5zjqVtM9SKTxLUMPESVOv8qbIiEDu69psNFKj5IY2Ac
dFg/uXdyjWsS5agZ0g+sukD/WKF/6G7z0i/3I/RbgUIvpgGudC4NODSaLxC6
bHGn1daC1eX0qb5CdCoNgSzz13yj5vC1XENukG4mh5JydJ4fpeKXt5MOymrl
/zpfJVuadxEr6qVKLWRtqZ82IcspQj/AwI/11sSA4/PovvR3VrhuqZD1/vR3
BKypwOpe+k4h+x0W7dSTM/Wh1fntY77m3sSFn/+jbePxziBcNr7lIRbkhjQb
VYXa9gFfbpw+/M2PP/3xpz/+tO2n3iKEnfYa6W++R31TcX6tr1KNu0rltat8
2c9WadS3xtsGhuNds0eX08W/W51xD/3pE8BjXT3xlYWj8cLYZHzoyG3xxMaZ
dieVqT53795PJ+Fy7lLxq1/306vpyz3jz/yf/pbjSP34ZvCPgsdVURBeZ7ft
pqu7wuJTZ15CzfNA0mTrEXuM5CJsjf/Nf2llrLMXH69k2nq9p1zBBVw1cPQT
iXAR91rbuv2AN8JF/9Vaf9zYcz7ePr43c0Nez0f/qhp7YazueqYS795/spF0
RH51qNZBN5Ncs4gejF9y5T103YuX/HTqjGWPu6pOBDRek4sfPPM2d6Krx7q0
WVIPlkb/QkffhajHlYXrXMePxrfc9Zr1zTMHfGf5iSLAg79xHEv03rWvNAE6
EMXcnbTYWl/nULx/y3Wu3r4qrlaoSiNdFT8XM/ofdPTbGKEKqIqqTvzwG38G
bXlJl+8w5NvFt5GqklMAOKY3rb4zuR3qorOLL3IKMtQtHuvfRC36DfoeTS9A
D61P9rjvbptzON3uWmkK71ejxKHRXSz7S/xzUj0HGFTvOlcVHIvUwEdvui9+
4t3fxB1RM3ih6FMb0tlyO4oWcjsB0fi5I9Pxrvq4jRrfkWv5cPd3Jf28yjVe
i7JyNb/sGxWwmyPIHXe9jRvfNjAS91S74t1jM15ZkaJZybaBR2L0T6ku6nA0
P0SloQ0a9R0AOrUBXpPTe6RbuOeHGV/NbZD3x/X6pj2hS8/razHcurgBXPei
mvifl64qysK1cEe37Lo+fvjo5fjoNM2bzTn2dLu7mxyoy93hlNsyd+RAQL2K
NP/duw/iPVF4sm8MJbr/PXHyYadcpWRXaLxtbGd8duFCvLB5KR7rm0DNWEqH
Do2kIX3PpqZfyo08n1TFWYguatwCNW5eNy6q4I5p/Kcay9tfh3/f0DChuI6z
LtLQ+HtFzr09qUvgTo/itfuM7sM3FZnBVWlkNMG9+8+5xkKz1KjRHZSoWdAc
dx99IX6v75qc16h8ARVVC7eKVnZtTi0OKo519YbiXUuXqPQO3Z2h9Cs3Pkq/
uQPQv2QUqQfipG14fq/HyVhn9/qu4Q2EQfi3sb5xd5u9y4wf8RVnt+2l9pde
wHsHa90L8b0PPbOc6QW8p6ITuBfoPcwE/nekcWeBO8J51ACSW+nYxPo+w47d
kvSFVFpA73rB94VuLfRHY9dJq7UsqPrsVpXbqjfVP8piUNd30uUKdCl8zpcq
4FoOg7garsxX0yjw3ePTLjyfvZMh0UGoFRWB3zAfrpviKycfcWU+sH545gTK
+Q53V5S4ObKy6C5HoLinb4Q7yh/FFSeA9taJVQ53Vyl0F/wU/u98FLQHd9va
wOB4aCyVUQmGasiw1KeTPgv8kUbsoUYsUp9l+AMDeyMmPguXDm9v6FbUA6TS
V2K5hEcOFn3cTZkrlFU34YLcTdoJSlKvHiVR+UqUpHcYQMvydfxcaj5lWZ9C
FM3LVaiAHL7IetJrKcFf99rCho1CKAKDqNieSidrx5K/oelFDQ6c/80o1C4A
pMwAwWfsrgQgazNzyTOCOHWhFS278EoKIAISlOXsAUgthtZJudAoN/vi8D4Y
2pG0R6Pv3pgAZTnKkHtQASXDOFQtAEURXFp5MQMUgEODhG35kAKKeDhXUpUK
LwSgRJ6+lOH32YNlqrV0MdW6q9wZj/WMOmO5bXgLjODWY/HZ3Wfiu/dfxO9c
vDA5D8E5vAVfw9fXoyQFRMB6QeYCeX0BePVyZ7Z0vK4cfWEOl4EwcR+769CL
r2IC8B2+l3hIClcUQ4QJIc6h9gV/4XAX7xndEp+dORK/YulCPDY6Hq888XS8
2LgQv/Ujz8cvuPNRjUf8Fv8SfT0pX9RwVGkNSABqRRB0awrMkylNCYAKwEWX
QrnAcqFM6FOHxiABnDULQOexkHqU9jwb0p6HwHldAs6VKGPFNtg2JkdmrEKY
hCuAXnI6ie62b2gsXjhxK4ry81fKAnvS5oJNucKYDU7vbCrB2eAKXHJ858ve
Fj/+wW8ALseTpscF1wOC3D0CGcChQ4v7zEGoBxiCCvRYFRgR7PyQWxh1WOtz
gRljHYXkqJS8AJEK6kkgmaey3HepQd/uu8BvARMmPq9N9w0S3MTcadjdN38q
Fz/ZeMAVCvQtzSzEn3j/z8W/8/yfxgvzB+NHVz4ff+hLPwxI7B+aSFnHXZOU
hIx+KWmOENFUGYkKOa65PRIdghqCmFtS51aakCjI9tFBKYVEvGb3Xg8Rmkv0
6KoUfSopOvjTjYxE0T/4OZogEXgJZtLhIprMyHSB2uad+wMoHnzzp/Pxu/7d
H7hi3cfhzvy07WIoUhc7RcVWm4SogTnXar5sd5lQ9qEEN6F84AamySFjjJBC
uAmq4br2p4zzKYKm0DdkMqM8zhGL6XDd1zviOmNh/sZ4cz3ZzIGDmJwnq/sL
BfZNhB7x01p4iiV55SDRENnidwaeDgvAZ4ks5NnTtxM28QJOt+5aLACgzg8L
RJNa7BDnHX3FgGfNgGfRwxNZDamwuNpUpqVgwFOUPewMPHei7EtQ6SEFghdL
dR7Vb0TKi08Zci8zISxlxjYTjvKEoZN3PERIKXu8pMI6ntq/ljl/izod/wLc
KgaU1TxOCzuTBtyOpU9Z1ae4700ZcLupPdzyBLeLt70qvrL8tGvwp1ewqvAN
j30G7+MbG/fgWxScM/5gyvMw5Y79fiGLt436QSR0O85E4hznnwsBf8fq88Bf
meCXD87ZQc+980fA8b6XP0MILNIxr502xMrYDkSA/RN1uccvJpcOiY8Oxo6k
sRQWgc3QpC9IAJNJtaWddrElFvMSfqTyX1u3J3jPzmBiB77JUJcHk69q27a1
NSRhwpblSnoh22BnH8F5hs+F+XNn0FmMx7WRielQy73twbWZweW8YzA9h+lI
u0yHr8NNu69H0wYY/YyTsmCQsIWXxmAXYbBKGAT+8IrYAMGaO52CIIvKZAT4
JZB+6QVsCvqRItI07GoMu6neUfHIrqs97HAFeGUArpSBnfPQnKDKQyeuyN38
O9/YqWSEBbsSw0Ryj/g5nYJstQl2gJn3zc3l5blUwFBngp1+XA5oS3voLWmt
SHhRS3BWR7uHyIVuZ6wgUwRXqbAC21WX6u/KnIvgZ0drnAGjodnm2oBmG4MG
mJPv+8iogPPXeyrd8l35qjOV65N9PuA/kUBY0q3kShlbwwStfICW+5d0bIA0
fvzSINk9A6UtR0lIUyq7IhSsok7GlfubFB4QVWRcSdwBRFUZXdqtRskY7eHk
cvHYwCBePJ5eAuxgbyUiQnXQfi9UCBRD1cmIUVlvZyo8bian94QuZCGH4jLD
HWkElg0EFhiBHLUEBDojWI8k0ZCvPzS/tB55e+cK2D6+twIwljA0UobVKwGP
VYamjNngZ5+qG0wegGVBs2p45Z3GuRY0+VyY04acu1udK5CcIZwVKNLocbZq
du4mNP+BpLcIlYgpdiQmEl+jCOZoAkmP4HLNNeW4a95+YHCCIFnQHhd34zfT
5v2dKOgKeAbyYMGAPudAo27lTHfUt8fPPfurrs88+lS84SyTiT5UCuVz/oHM
8sdf+3j825/86fi5p98TX7n1NkJjiBad/SUp4Izhrsl5yRrqnHqAmBreCPDs
MnLmFc7uDI5MhW48mbRv8MsWPCsG3It8RBijNCLB64Tqt/ENk/HrH0Uw4I6V
+P5LLyvFp64/V47nZveX4tHhsYqMTfR6F7EutZtXdwbZB3jNtAZoykfvMM7d
yefiMwFozZ+7vn3+SGgVvSnFWPcoZWg86koE0PER53Yf+bn4dW/6drxxiqap
L6iGhKnFl3eo6BmYxtcv3f8e6kg/1z7M4/SytFR1HQYbcdo19BagtM621IE2
0I+nDfuNCdLCVlDrIo5+BiwA/ODyIwRVASwHIATVrgxgEShHyUDyftWMZw8f
BWCx1sUdSxZwIVkpV+vzHVVJeyOgEhBnzavkoBsawN2tAZzKBjGAU+nJXAbA
EKpVA8AlAfDciQBgGYE8lvQntaxDbbQr/s4v/qErw4E3XF8PYmF8TNtBDdGa
4d63K8xAgeKsXa0hKhkc+lFb35BhhA3dkfhqgah751DnjgxT+tELvyEBEqzm
NVZdO/pzj5y4HO7X4yGJ6IBZYPXu3Seo3U9TGxN2CbqbDADzsIHfNScR4ZxM
HDTClqphaXs4eFGWVnx8atk50Am8VtqjtqIGAWQgU8bSnC4gq2ZZXzXBPUTU
PcZYWdUYfOH1KMuRGiuzwFszyCDghTyVCSHuRcPHDF5yZs7IEmxnGbzO3obr
zxoAFBvpYhrKFLUC4DYFwL5aD9JB7hrN4O3gc118HkCkgE/gRUJQA3Bmah6G
0hkaD0AH5OAT5q4CXgF+wQC+hwXNZXQGo5MUwtltB/OMW4dhwa6T8s249QEQ
7/rm5x2NdHTGm3sHgNshI+4R3Dq1QIYViO2nY0HjtpHcl1YGru3aQraTIFsL
kL0WW5vJJfUaw4Q1YxToOoUUGSbUSMWAqM4HaKSWFVJFxsrsHr0c0SEz/twn
vxntZqQ6tYDGwTV1JBTQtstAqkLbstR9i3HubgOpnUb2SO8ECKmaRZsgtcRo
E/eOH8WuoCJ2GkgtGUjdk5y7NlDthJml3IjA9MadRwim2wyYbkjBdGVzb398
ZW6JXg6bYl5VUtK1mocpdAIgmcA0T+Z2595Da6pW1BoiBnraY7Q3EQN5ADME
H9rBSjap3xgCqhpO36OxTFkIGR9Pxsg9EjtbCogivRck8sQuTlXml6cdm4Fw
OPw5RqKzoZbjDbmfWQOJnYbD32ycu4fPhf119pXO6mJNOjA6KafKDsBog2D3
dNCEcRYIT+e8K4bfZgKJuaUTBYwMYjqrZJhcH6/5uX+9lVp8x4799HLBVaRt
566NOwiUMwYo/d54vKNuie7iRufxnj5xM71gQ11g32/4/i4GJ97DZgKWfWxD
EfM/9NT78EKR2p+J2x+4BnxGlOpvSF2PGNAcMKBZM8aEfODjn9is521qaHa1
lAcFHUxhgsWSviOHSofEaJ5R6WylhJaCSmpXCccFlRio4ZA8oFJ78s3GuW1Q
iSgrMyqSX45Yw8GTbydYVQlmQOr26V3xgcXj8duf+UT8skef9OG1k5gOnqbt
43shTyg215dZoTJ54DAem5iicrksQNgyw7tUFbud23vRHFzXYwdPuosvjU+T
x0fEJQh2qN1pAJhXN+snCC6MTgC8rjQc8/HF7XMkYoHhPkYy3iM7pZGss1W9
Kvwa2jARf+G7f0EvZ3IbSeVTqmC4PaK7GNHI4GYQncqhCqIxjCSI7jCGkbyh
puyIjHKqOSjbUF6I1rSMqLKxVWn7EF2p/Pv6ZE9fvGViM+C8l5HtbC9Ooa/q
7X8FnbsNZHcZnr9unDtnILvbSFLVVRWRTWrUZ4HGLSoNoIEIYH/r+T8pxN//
4b+6m3Z/NmHdUqS81zqBE2oU4ZQreqvKHNCUDXeFcxcux5/5/Lcc2nCJUriE
psCZW18rV3F/BpZq67BzcIzAX+DjRHcfJR0mh+vA+6wBfd5dhh+8ixaJEW4D
9AWGPt7DaPsB+eZEbU/LAK5E41AnXnAxQP8DP/89AJeTMNQ0IjbG6Fi0oB91
JpY83PghdeOSWRhsjfvUkBWPAmLulWRuNeZ7Wirngsx/knjsQAIlylPALziI
LyTqQlK6Kb0pWas5Q6t2GeqCHw0IbIVUxLyB9h7jXJ8RLFDEeHbbAXdvp3C9
zQqHNEFJ4bBGOKxYUKdMFysIj/Bi4BFKhsmFGtbFZ8iEPfpSMMdlFcxzLcnE
e5s4y+5tPI6+8ZD9Bbp3Gxj3OWB5zjx1FWK7Nyxe7+rXbN51OpinnjhT3pxd
61aDXIdvvCN+04e+5N45lLuj+3s1U3XiliiXyQzYo2R4LqomI8QSQMomVMsa
7ENqPFXA3pko6tB03kH4lRKcB+a1KwT2vpbqp0CjFRDTPJ2aE4aBNi6qi/Yz
0t/7jk8D6TRqq6KykHuYb4N0rVg2Gufu5XOBfKdQUkjX506m7nSc8IgX/nYY
nMxYXprR5CDpxIvr4DQkBfEOgyjeZ0SKKQ4xj6J6GyJ1ZYgkSJ+du4nQzhDn
hMuqRneZ0Q1d4zBNuN5joHswhe7V8a5uCgeB6xKjG8U6TBOuu4wYsc+YOdCV
jhEJ1wVGNwsY+tEPJhAVs6kNusuMbuTfpAy1nVXIsw2rQTOBZZcxCKemHMkw
cEC3Y4oVdnYwuqHPgW6e+OKHzAoB3XundwDVB5QpdxoHPNDBXkg77DUA3m0I
l3Hj3H0GwHv53IUTt4bGVjNEKMl19+7jFKWd4uvKZLwxhqShYpzZACQLGuno
CM1Z5g5lgU5RHxB/qNDxNiQaUApJRQTUz+rpIUGnVJQBF4jPe4inBiR5n2b/
oG/vAzjAdHDyEIdeB6QB7k4j0hwwZil0MsRh0J3BJnAXPcTXRzcGhEnToAeD
WtnaBuJFhrh7H5yAmipA6gSoHFEGXMYtuo2BPG/8/e77olYY3imlLxPGxAlw
vEmT+SU9ihSIn9pNOmWRwY2iZSp3vQ1ANbjFAjuVHqq6QQFUsiALbcDtiBGa
aEI1sw/cBIEVej/S3RXvnhj3Tc0zHnhmTWeYfOqnplbClGu8cMJg3zD9hqJ2
hnmckJrH24ZcXz9wV8jlr1/G38QC49rOejZPpMULk7ZzND08nyLgBr62q0ZA
uTxCDvlApF+uwo6QG1DsqOnm4+i1ajiADiOXPWAkCTuUvOHo1TmUIG+yVSdk
i7zZ0YYduSSGjbu7B6n51QhrSF+P8ARGiPCpiQl6OYR3GzlDP/JOOjQoHAAc
BBlsSZBCCF8Z+Wqj4bA8x0mcJeIIjXDTgj7nLvCVyTZQh3DJ0kTbcaYJbiAE
rxZN+gyK+b/8M28RUooUAURBk3sW8RiJr7/y5Q62n1m+P37VyRvwWYo6fs0C
ZHohC1lBrJDGvdxXj9I0lpfe8Yr4iZe+lV4/884vx+99/UfjPc4tAtUbDUbV
6djnIekZHap6bNMMVctVtF01iWWgdIFYVstOV9drK0KdZzbvoirnUGNmn6sd
1VCY7/xTsDz6ocpZ3/SiuaM0wQ6828vsO3DifLxl52JDsa+qWCABdM3wTTVD
fg0ZWdAas0+yoOBdmdnnAurQxKxEUvJrlo5li320frO3d0TvwRvyoCM8TROM
W9oxG3/r2S/En3jvu5FSxwKupnwoZ3rC+DxTbshgXFfCWllkLw+ZINJjsSKK
YM0VHVKiy7GToorJNqSxCKdzmaPGufv5XMTimC+vCefIupwmXGl1qNYdtD8Q
PD04DMRWiWsVAvHTF24jEOMFd+WACBwChjmwpgrauOJBJIQCgKIQx5EoCOKp
NhzHZR1ZXP/iusXUdW/c4fcu8Is+KpoQVI/bbrgzkNiRt8TVwb+g13R1mnns
vRP40J4fBXAjft8XfiAc4UfoVBLIrQ9UaxR/dzBFeACLyFE1pmMNG/F31XBQ
1SRCqWdqj/4M8m3ecFDutTo8XJcpFDiNFu8iCTrKU0kx4nT54h3xv/75Or3Y
KfUYuVXerpYuK4rLsWNYiT6ZBd2dkAshBqF2NmFHiGtYtEWH2SNxzC3h+UQb
kGuC9BpeZVg1kiSnDrQhiCaX92YldHUIu0WwOXR2E1DzBFSAEZjrYOTBg7B1
jqYMXcQRfYi7xclliobTYKcUisZ7qD1dtAb1pLpjMfpVBjUkGGa9JqAuBlAr
YMtD4soJYiiz5NCMSdiEbB79IkxXjHlbI0b2tMLIVtnTgGwtvaaS6wbptcDT
uIDs0YnJeGJiO6qamlrBCSSJP0RhOUA7y4FjXux+Cp4OrqHP1bbwNHjFy0Wl
SD3VtSeJ2qGfqOH4YVQUa8Pus9Q6ysDGIAHcBAuzsTbghFzKAltLLfWAz5BP
OmgAu98ghR8XEg52piRWH0MPugX2E6CrGfa0ztBz6n9FyvVELQbCKD3k7qE1
W2DGHTtSkNZuQ+XOyFYDzLU2kO4fGg+QfuoDa+vNkCa8SKzdZSRLrYUoo8bM
mIoRa9cY0hdenGzNzqxM6ZkspOcXj0LD7DEgParwBwh7MPvj8aUly+IGpLAk
Cku/ED2MGnjuTcLrsEbFj8IUQ+5Ia5ljDGrMgcEOOBw/jLYBpgVqbXEHk3ND
iL7YBtQ6/+RBXeBm2yIyZsAwpRXDSm82TOmYwRORKf1cLiQK8IsSLRm0ybD+
OiNwkzu3PZ5L5MUFz3i9/E2fRVn8qN+SKk0C5B5jjKto5P/HjAxpyciQdhoZ
Un0Xoj/2s/4AxB2c4+d/+Pfx/qWTpD/0TAdJFQkOMcALHAPRBcY1ZLpMNVC2
Vi4veqbhyysDy9GGNriGZo94WyC/hNpbKpnyICrkeEaF8G5Sas1HEzY1rq3Y
tj85N8TUS8bCrQF/buADfryhL3CzVUUiDDH+8BY4BvLKhj3dbNhTXzEv4VSR
gwZVyooqEhJPc5EO4svpIn3nIrMPMHcwpAFxrOPSoaaCtPPNOOYF1vTjB26j
oipWws9ew1wXjfBz3Ag/i4a5Fmx/4Oe/l5nu6zt7cngEJtp5Zj+HQWP7/Z//
migRPWcDcjqrRDjydAW0Nts6+TOnqhD5AQTkv5tmhPepEDTiqICHdeoa3ixF
ogbDm0NQEdkslKljMCdMm23MWQDEsV7VMr0M7xV9bht4p0ZxWceQYwTwAMFh
w7aWDNu6xbCtnIIiTHMeJpSnuSLlIXREBlOXp32ATmlJBrMdsBEzCrDzfDx1
4ZHQrX48Kyqo3pWgsd/IauYNHTJhzMkpGEFjt6FDmKcUeKy88CUEaQvYeJ2+
cA/0iMznQTqFd00JwFZxYwC2Zbd7+kakBpHWNzIqZgG7P9EywSD6IQsaFaPc
igCbNYnHdpGmmXX3DMq03YYCmh8xO/lwCuAA6aGloxDYpg3uUyCVc9sBXJND
aRoCIKA4yoAEQAFAQLFgWNpthsgeUT0oAB8xCFM0RM5WwxlovSaWu5MBjjFb
WRVhAbzAAJe4ET9+NCvKJ8WG2HHASBzmjUlnG43YMW8kDnsMVcK3g+YPquQg
HfMa4M7p4OjM8MnbSJ3gh5+v2tDItILJCiMdyBeVISbcvQ9drx4BGxTPuDHH
dyBRN+E+NidIT43/skq5npEuyXu10QE/RdJS4EVC66tf9UT8F3/+j85xTWKa
QTDpziy3RfyicgezW3cRW4YMtgwohCKMBDY3GNoib5jg7YYJ1qGuMGhDGwbp
MHWb4SI0g8SkXyviiwbiaynEr0QqtBzk+QpRYtLpxfPMpoz0X86w5L2JRFnP
3AVaJUiURQY6LLuz3imgQ6rIuNSM6l2ZW6lHbWHCAfEqAz1SswwY6Kken1Ut
KuWNK5Muk80GDXfgBymKIWWitcqNGa3CUtwCuM+blGgB28WL9xLA8cLfzhxb
soUxvh41eQS/T9eRPYfiLz379cCTQUO+KGUfsDlmpDpyhjXewdh070N57C3Q
S0EOjRncyRnZwBnDW2juiHXvYqxjGmU61MzTe8F6ycC6Hw+Kcr5YNGWIOYcY
68q661x3nbBeSu10hBcnA/sZ4s62B2gNK1iJWLEgnufj8qOP0yAQftRar6aJ
CVq11BjiT77qsexkBdjn0DG7jPLGM0O5LOkHk9NDu/lySjRPQc/MZOFyI5tz
FXOGvZX6FSRkjuR+ZYoBT4d0Bwkc8wRZWdHRb5hnnwmzhFDaPTBzAuwNxZ+C
qT+WtAihF5vjnYYlZrSTHcJpV2OPDmx3GJ5Cs0fmm3XypGEM6Az39sfvWH4E
KJcxHeh3jHvyi9CeQwaRNliopeDu6+mXfzDci3qIRxLg0SbGusoU0ovDzgFD
twwqRoluWTKwXmCsOx0TepXnIK1EKvQcVrpldnpL/Cff/TXXFM3mXI1ghvJ0
KCsZSMG6uAdXHsz4kOENfPq+mFpLIsmVmxjop64/F3YoEYXep24jOxAqmuN7
3/0jVwkPdLbLqayLts0+P2bpoGY3waQZMraN0FJIQDpBx0IwyWyGZ41BeMtD
TPAYp6YKB7bRbOIVQhUGVBXSiqVI72frW+JfWnl/fHfjNK1mmlPbmeCcwzde
dKL1k7/8X9xn7u9we5XW8B5W4zyw5i74jKZ5YxyZTsMZwiGGs240dddBnRxi
OGNg0pnqFJyfff4Pw6RgNWVPgs5gugFHmGoAubPNmI5OFMrT1/0+2ntVwNk8
8MluYDApJsDJp/CLKTUuQuU0w1py4VqO9xqw3qdgzTLDne1hzXY3BWttey1Y
HzD8Qd6gyUAykhTuq9cA6KTKmCAYxZzf3QxM6SbFDdSNBulx1kbFDYCag9nZ
JGsY8Ke5kVYnJVInsNXANV7A+JXlp3erbVFmZvbHq1/6XdRI0P3CV78v7h3w
+0pdA7qRQ8TnyIVvUflCGG3Me28D7ZQqsaBdVKpEzuVJZahe04xgHWF2M7R5
HD5lqXWEqVZ2hn1Pxozy8obl7zfK8yNt8vSByaxMOW1Endg+ZXi0LjCiZpYk
4D6VI2FZ4XrWwxLfy+TMU15Er1qzZE/WG7zvvR8NO1dYeZheA6qTKm8iqlxg
jtjLGTcN85QL0BSR6HU2UeA4d0XBhe5DxuM71SQTaBKHb/fOHxnnBPOdPACk
wf7Lv/438e69R+LXPv1FAT2Kntq2F73GA5wC+nUL9FAs9Y0T8QN3XnBlu2Ml
PnFoqYzPyiirSsbeF8sLnJwIbCZCn7qzhe0zRIHDBhFKhmTR87vEJg8bEWh3
axufmkvMEW0qAhUiWIOmujxOv6z3DSQjNjyUvezLk7nJW6FbohcwC1RUGpZk
9xgskBn0SnNE5WvUMBYLFgznYbGKWRCMT7Z+guQpRjLHkSkk43syMGI5CjkX
jJKcyyzPxMd7TPNgmavlXTbtokSMO7GZCDNK0BxacnD+4FddUOCo4D579Rs/
CFFDXCgnIie+9YE3rg1tqF8LIxCyfuan3h3/v//1P0db6Xh19KvWCArnSBv0
a4WjpmQHsz1sBKe9xlhRV5IWb0hd9FIsCU4F/XpotWi4lX4jWvXoL9Bmxkrm
3Gyk153aWVbAouYFMPXaKK1KKoa5tlQOA58IKHNjFtq4E6TvZXqxpXK6DfDW
Gbz4LA38ArkDB3wMnjSS2yPwStZ9SuUg0x4gwb7DDdZciAPh2StNKUcId439
Tz32ljD7cLvC/r3O3Nz7ote773nsozoO8YT6Eh0LJIHmDp2JL7/6g6huKQX/
WMN/iOH/hsXrySEA+NsY/s4thDy7wN+5xCz8UypI4I/49YlnPkLALzP83ftg
iOqqMcVYDxmqpc8YUbLSj9sUVkRVbVDlZYdetfHvN+JfP/rrh09lL2+Z9XJL
ZioXpyR7VPNKUmXOUCu1a1Q/XaqJskGDhn+5vfoJZXYb+G0N/2KAP6/rr6s6
4e+1qYE++I9QBvL8MiwrZSBTwxNIwsJRbidQihR+Nh/Jit+d7YnA2RqigGwc
g/y8IwFRQIhw45lLBPzECRTigZGJ+JF3fCk+fsuLcL3i1YkAZeSkUIoI8Asy
WVERoS4tq+9IVNBRgwgVQwWptRbBbg8bqqW/jR/QSUq9aFGItcHwK2WjvH4j
cuaJIpSbVwro1szMr1NnXlJP4yMEpnOGVukwTHafYbK5PDIx0E5aS0Fb4XyU
VG2tfVIeu0u1jmifulLxWN6n8Qs8swkMGqhL9bYkPi0O7OYyokRFiCtJcTEr
hHREUDY4sMXgQLGlECqIEIqf+tivr0/vWmIO+LEq6qi+SjUaMWTQdkMGDRjw
V341yKBjBvyrDP9IZQ94XudyFDWv/tayZcDwA1Y0rNdiiqzaYPiVilGeFQ37
uR/Jlh8sg841TxBbzUBDpPqcYbI7rlEBabhKKGEpqlp7BRRau9OA7qaW8C+l
4M8mfCUpxmQR3sto1G4uRjNAeRO5u6spogqTgFObBP/NTAJs3gzDD/iXmQQj
oxvjp1e/lyIBquAIAGeAOyiYJBg2xNAMkwDv2Ru2I0FKDAkJ4BMw9qpJ4N5n
JzfLaqXUfh9avAwZkw6EBHo8lbOnuNEmH2CN7Ro+IJX+9hMqCgQb2H8WQrel
VzIhADYZsMcIfrtai6DUpTXUhAHtHMrVRJDsJYDyZGKCMACMkKElncZxRps6
PGeM2ejFcRJTSHkYvkqnlEopUaWcitrAo60mqhqBsdpsl7JCIEGlpSYqxtsd
olxgQHRwQUI98KAlH7QmEj685TWPhoax+KCBIJrouMGHmqGJ1NTLYMSHDA0j
fOCBqKxTCJ2k1vGGNbiWJqoZ5fUbGosnGNEwgGSEzqvl5rJfFPfqShTZm0CJ
+e5uk/bXaojLSwXYQgYEyAA/Supso4b0nGTedUCAmwJvczYnryPaQAaAOUOG
5UjlVze3jDDymgyhPN4Tj35qqv3aqaQKayWEzHASYAdh2IXPcBjOSUQbVQgN
BwF+VFuqpmIIocESSaymWELI3tw7kBom+9UvfyHFEh05qCHfbI8SMkU6nTBY
0sEsGZ2YDKjW8zjFyg8aUmektddIxZucj6X7khB6VJWXHULW0yX6jBBazU6i
dVQYJLugNkl17oJGDSyWzBpxc0970ZQ18ak4fI8hwroM1inRdE0sac775HXM
G1ANDMwvzGmWpFxQa5aUm0QYGHP9zbevbp/ZLnW7qoTysXR3iiFTY8Pxm6/c
E3/n4++M/9dvfy3+s+c+Te/vP3tDij2OMUNEnjKRB4pLP4UKZEI+qnYN6ssR
qdGSR1YqaqehvvoNN6zduqivdjzS6ktt7BEi8CFDLY0aA2idhnewxjWER3rs
usvIxPYZak6vX0W4jRTUHUp6dfcM1hVOU1JplyGV+lpLr1SsXFPtIrG8JeW6
20uvlSyPUF6WR825ozIFI3pvSfT/6VtOrS8ePih1W7M41BzINHMIfy+/9IFV
XS/WXSkOae2Vo2OpFYcqIJH7t9AI/xIKOWlGTy7KgUGu44VDqD5EAJoSzQfT
dOjI8fjLX/12/JrXPSXcgoMK0Q3e33rvq8wQn+nUnl9aze00Ur0Wv7iNqCxR
cw2DX53JgHewx3o6tkxNGjRC/A1GarbT8CvWyMmo4fesccM+I8QfVljCnCQw
64701m/LV+OX9it9bdScVl8Wvyx12GuME8pcVr1y8lr5ZUXlzp/EP/kxUl6a
WpImbkctFSERRUc3jMZvePPrG+oWCTbpyXhVLeBaUcp1YZpTJxZ2h0eCOV6V
1EQQ5ZZyaCruAJHEec6TIEMCdv3Xv/43ev3H3/lTYtqdly4Htj39wa8WrzK4
4hxZ3D80upwlG4F8YXQikE2Lwp2GKLTIpoARROF1TDashccwImjWlYRO4VwW
XamVOgOGiBs3nE+nkf6t+/JWNHmtJW3WMGWfITL1EhxHMaLZxWT/3BD7cxuk
Qp2dBtn624hCvZhBI1HyEpbItMgrZHPkM8mGOF+TzUqBIdRRjmf96Z96Zz1D
tmzE1ByBlXQEFt/54kfA2bXGjSe4NsvNPCvRCjXwLMOtQaJWF1Hr0yuP0cdR
OmYKMk+7KCgIGXFyDRZv3DgFIjmFiWMpEApuTBFKRup52kpqpB6DNAcbp5cD
i5rYNGhIw1kjO91nbCOkg0gMyoNH7dikpeGwQo2ERIOGlBtv47q0q6kb7LRm
pPca2ek+Q2oym0j2IqQCj+5MnpgS0M8hh7gZwv0OYxhl0HA1vUYiwmKTJTUt
dg4YWb5aGzY1Z9GSocnd+/bHX/jFz4ECKfd8LVSSMA1rgJ2sBJUaUXonxmzO
AWoQ0RFc0zjxpxhcE74v/JBkJGYUgwdgRoWOhSw/cjyWz+kHipzcKwcvk6NJ
uwVK2KH403cur2QpQvW8sb41UESrO6EI3stSZ0WRAEtpflZ2LSnSbag7vXg3
u0e7VmMbDQfRaczi0ttBt1uAZ42H9iaUC/XTi5rF4Yi6+9wnv4nHvKXaQFNk
xlBjQ4aDsDZn0WZHshqWWhxore5Ss7Y0RWTMpXXWwI9cQpY5WAu0BdvkVGX4
Z3PLTIbf7BTfhTp0NKPIS0fa1mJo8APMmKRjnrILYl6EF7h3cACM6KBjPvDC
+RP/YMtcPD45lYvP33M5Fz/94U84Hnz2uW/Fjzz+5LXxQAuvWUN4teMBbziU
4gHK51XRUY8hvPSCNMkiDBpZhI2GaVdZhFCe3i2m3fq8/jauQmcRhhQeMXFF
88C9X8m2gebBdkMoDRumXW19mm3TFA92GlmEwTbCy4ia4t5y5RqyZwXiwfzC
XLz2m/8e+JUUen+lGsZrNrcMknzmykUzgD8gr4ejZLu4mspI765PwSNEdQP9
epCWQxAnOjz68X7x6PH4B/8dIRWOeYAesmg1YLwJ6wOGLNpjyKLe1linsrKy
yMK68wHBHjHWUVYICgYMGTPV2uanggK193PTQj2dIRg0MtnK5gfusM0nO4eJ
ikD5eWXz5XvaHgLv2JNlmyFjRg0b3dMa62Qbs09VtHyIsUzPxHq9p8fMcgnW
dyl7ffb2i8A6AIu+DWNGW/v6JDNgAj5r88EXF6Q0VBmEesmQ1VSWGfoHeN/E
qMd78W8VI1boZtTD3sOgW6jfuHn7VVCPhRvIW2nU6zyxhXrd49hzS+exNOp7
kymLAal9CUrDmiQrtK63sfB6MZHePKndkj1rlLNNaE3lSR7rfJInDuzwbeAf
mvG6E/vjuQ1DGD2c5mVxACpiAgwoArDoSAfUEcM+W9uResz6vYpGumrCK8uF
jBi0soY9hQbzwyNmRipNAz/xFooeEH7lax7pUqdnGaBDde0xYPLd6Qgs+HR6
hJiAv6pMPmJqwH6awQ8BJFmnsiF4BPwIAKBoDPCvjU7U0+CnznKAD+DX8maP
kcQV8DsJmAU/AUTWl1rg1yZ/8YSXJHoJi8jyASMS3mSY/A4jEmbwpyLhYaO8
YWOwsdcgk07iImkL2N+WJHFDtOlNmd/Q86ZtU/GvvOQCkYBhOqlIAHUCEowN
DsYHduzwmvSNb3jc/fvY0aOp3D1zpN+w6z0tk0cFqux7bj4uDBTXI5sOoLCR
NvktiyONyUkz+hWO7My4CoQHiKDrm+qRJgrklYu8Qxk6CtfuBtleuBsJMaQM
XsqXYguWPiHVBJ5sYbYgoyv3WmojkBAeuHiAeFJhtoA9W3bNr80farRgS78h
kOaMYECxZSWNlPR2jTKBRbZr1K7CBcXh3H51roj3fiOI3WyY9k5jKdKYYl92
sYgub9TI6va0HvKg8uRJu+eUQDq47wj1pp/UViJ3Cabg9dlLZwiwTsx7hVNt
Ysu5Y8fit1+5Ev/Rz302/tZP/mQ8NTnp7Or/+Lt/cKD5v37/+/HHP/xREElo
FFHCPgcWMXl4SXYIGA3hZeSPSrg/YnOG1XXlfLiePsZ09dEUlvyN6LNIjZBK
bKMftqb1mZBOp62mxsdoDbcQRjmmMESiZzhbpMPnWHorzg3eCqTleIanHaYG
L2X/aoTn4BeYts3gW+EapZnwbe0P/gSDHuvHz5xP841wjt2d+g1pNm8EJD2t
+UaYzE4Y03zrMaSZXkQs/Og3Rim2GAFEhxFAWFNrrKWJo0bet9cIvi3vdGsy
FSbch17xxDh2QMXR6Yp9O0KQMtTCTTHxCmCeO2X1jU8Sx8C8Co450M87sXLK
icHkagZYa0qYeKnHu3pPViKDYBiICapnf0sDAbf6zee+njIK9919Tyv/2qsc
hPG4leUsL8Gn9DTnAsU8l8+fjX/ls58El3YY/pCFX6o3OARL+dQ3PfIg0Xun
4Q+dT11WPSrLflOPv4J6POKQjnTyjMHPvJITkka21GOGn1CQV+GnVo/zhnq0
+Knnoos/PGbws7t1wmAlMvyhThhsNabYdBihjt6wLrtoRpc3ZqjRHiPZZvnD
s0bCQPbNEeWo+algj/CsHT/LzM+Hbz9PkAc/u+lYIyqAElehQt5wUd1GCoE1
P1ky1NCyKNjGdiRTY6QvVI3zXGN8hBp6X34Vj87RItc45L+uMWNIVU5PqS4S
m8Hc//mD3yX64ZGLM4Z3FTmq105Hfq5QKEs8NMpia8A7CjV5WVnax2OrKRbr
pLewGINC2T04rqZqa8xiVBMMpmY0WdxnqNq9hqoVFusptXqBluyrb7G4S7F4
vL65rliMv8M0akvVbjNito6EdfUMi9HxTWt/dHnjRkKl17AKlpe9hVl86vpz
AWB63apwoqA4Iam7zvacqDEnxImBDYPsaw1OBD+LGhgRnI7O2b64byS2BckU
2JYBVSsk1HWtnMMvcq1Yd1N9OoLvd/eZqVZL7W1ZGJX0DIjSD+eKOL1Sz4hg
RzF3IRydLV7cH1ZZbFWec9+Bg/CaQjnpJYo90stVS8GJg7p4ferptyJts72N
IxYK82brqaes6sz9Tp5ypDL39GKR3GMk7BVz13fsXWxmLt0DtvftM/TxPkMf
dxvM1UsGJWEvi0z1rqadRvZGb4omTBPm6kWm2434UR4Xr6fgJQsgkgVLQ0Z5
E238r55lxMwFF2iKKzh7s+F/9V5DwpEicwSJFNHHlTbMdRzpYo6gGMcM4sg4
HfNEi+NnLqQcaqs1GCIBLOPR3YKm8PmuChVDovdlJHohazqEpsDl1XOwNiUh
XEEXT8ZmSm5p40214ZR4V8pVnrkN1dOe9fxdt4ui0vq4ZOSLdvF0C01L1sVR
j6GJhZPOu1J+6Oqc1Jp4nzGcoDgZGlrveCHDCUfacFLniGTjQ82hPmPQa8aI
MTuuwqHsoildnjUAbeWI9Ba5MrfoBcZwQr9BiGJGEyPhUmjPyR7Db00wJ1H0
s9/4Nk3osx56r+ckwAy0MgtVqkI5NcRBzZXw0jVtszYfoWMppc3xQj1dnXpb
pnjTk3EnDa9YYKr8YO1rIb863cYrWrutTanBDFBOl6spOG27x1VFbaqv8LBo
jHL4bFIh8JBHNroNQdtxNQr6uSzqcQ5a0C4YYWkbClKDyKCGRcGOJG2UpWCK
Mn1G2min4cZqrdOqqbSRtY53ykhD9RhzoUZUp8jcpdNG2kjvti34L9OxEtKg
oJwhF/sNPzSuArsJ15n/9z//G9EPO8F2GQGbztyJVy4ZUXGxzeCK09M9hp7W
XvmxNz5F67J6W08gRM8GsTipRrlZLLoqeFpwvKcej5L2eKIa+9vQWHu8djTW
Hu+Vr3mkrunWV6mEx/8UFN2oxz/+zmhOjajjMyc7QwpIS1DhmntPI+dX5xq2
J8caXs01HTxaXNP7+0kK6LDBtVoiQUMv6amqwo0+I2Wz03BPHQY3NHezq7b0
AOKUMcRipYBGFIJkftSp9DzBurpuCuwVVoHgHj5nbg0ZrmScXQkAvnTsOHEL
rzvuvQwJ12kEWDIAHSkH69ld1UnhVmFq1N9S7XqBCWozvVuneNObPWw0KFBi
CnBahsBfb+HJnPBLTSJK7xua9pAlg7Kb1PZCPLkreDL2kPHC6CjRC6TKsT8D
tZDDQSwNq+TUZTTPyhL1qE9tpJEQjH44VxYmJ+rREEW10EXtqaaV5X5DWXYl
zz/MUo1glt1YUe8FXU3naTTVUtToM/Iqs23cms7TWNGjtdB4k5H3sR6wOKoA
LdOzbjKmIg61BL6n2kPH98T7p0Y01SzfAerBdziaOSDgmCfqyQhCzYiguhQ4
ZSCmwroSLi1i1chMd83RrF7HlWoUN4oX6uKu1SZbSy0tAxcThrqrGOpuynZj
q6oHUxyeMNxj2eBa3XBjMjHMc622PlCtxnfObCdXpjkG8yRjsfefvcFTrUJi
cv1Pf5deK0+9PkU759UqRjwnrDt/z+UWrJNng/UYYvKAISYt1ulNXsXBHTJY
V0nnWIgpepmusKTPGDOcbe3gUtlMveF3Vkzq8jYbORtrC+wRVT+ZHnbSyLHo
+xDolxn6ZDMvn4z/4Kn7hHnRQJvATdyLpt5v/PGfOutyiNDf0Xrbu9QYi7Ae
1Bvr7cyyvlm85rWDNVkvnlYvErP2NRo3XF3VoN9GI7gSV2c9vWZcubpbXDmu
7FAu6CjLVSZtV0cTdrw6LZKmelfjBE0C2DowANpFkjpm6hHz5tQg49q3vxrH
//Y3rm1wLAUuNo4f0VwstAnsMN7ovGDCwZZc1GLzgCE2FReDYFTTLcNIRRsu
rr/yLe9azmA4Nbus18iF7GnjATV3rPkFg4Z4nW6zHb0OFCV/GqmRihuN3IoE
gJoLRWYEuAAegIt4feOR2+NzC7PEyf6W7iiv3ZFjlCcGJ1e0O0yFV3rsV0ZM
xCYAYG+79XDKJgy2VL5pd5zn45nzl8L8ng5jCw6xCZEKwzYYWrFmhGETvN4L
xIQuzfhGhspKpCLHMcPl1tpwXrnGMK/HQ6ZA5T6+tOhEYC94KWkpfIxNN0DI
PWrm6OonP0iELNKx2oqWtHaZVakzZZ6P7u/Qa+35qBXpQWP8odPgo37Co4w/
yNNJ9GbHZSPRYq2j7FUKUqY6zxnBmpVo0XWxFp1JeVsNflu7x46o+sn4/w3G
7FHNW+FBURla5oEzqjjmiZMHttTBQ6cFrs1ZFRUn5aGCVUMraonKOos5WYrP
7KhbdmHgKhkWcdX51q7aoiVVQUK4DYas7DBk5QYeDxBaogznN3MgkbPmvD5a
o4fiAFkdusFwy3IZWAPZpSB7GViF5DI0zUd+vMPx+71DzCJ43DM6iFAjjPBA
1GJwX9MWuRlQFISt0DGvaevAgDVteZGyRNaqmvA9Nu6fVZHak5DaA6sdug05
u2gEkRZlB1TDyfDEokFZtT95oIVO/wvFeo38yryRy6wZ+Rq9V7pMHhAXqocM
txry2HoYl+VCrzOmsG4waCKUVTRx7xLKIrIDU3qv0Y2VmC+cxCGmlI1Mjt4h
OjtUgoD21rnpq5qPVuMjHF0Glw7uZlx6irvdqv1E644YmrTL4O4wHauBVPX6
ZPyWlcfj1dWPavdKGpX7CX0RQtpRw3V3GtcZoWMlXOfw0WN0HVxP/K377aNb
P6cfxJ0Z7I+/tXwrkddZaVHCEFEynCjcxfvly5eItTU6FgJ3l5cvItysKbXr
qLp+7Pii7CPtN1Ynel2a3U7dAM/qaNthCN9FQ/haD57WiTEZ0bBYWzRSP3rP
NUn99Bqpmn3GRLuqMRFWp6Gyyz50edsNR2s9VkyjQRztdcaIxpjBFD0ZhoWv
a4Nm1l5tHEG8XNmICotGLkiPemdHF1VA3NaCXE2Il5TTl7lxlWSkM2tBqH8l
khwx1CqNwOegg5lSGPJ3L/cP55RZxoJ6KC4X1yfG/Hx4vycjuIY5533Evw7i
H1ZFCc//v/gf4v+8/v34rrvvaEoJbWhjV6CvkR4OaV1fw2qoIf4J0SC105UZ
yHhyrkwONcFG5EnMDa/uQ+4iZYFHOmtkD372jhvRYdG1GoSqCo0bJw7HKyuv
iuP4v5BhcI7bT7stkGE4eGgxfvs7n0ALiG2gPTeWxTZ85a6z8duuO5y1E66T
mxW5ZSiqdCzK8yiwcwXsTv0vf281tQWDZK0OGgajYGStrM25eo0s0z4jt1sz
lLR+uIy18kWGQGfauHk9c35UkU9mIZwwslbjBkmln+H2haQlJinew0CAnl1t
XCvew5Vqg6FlcSEZ+287S6mgjBcyWFczXpgdj+m/raIEqQskiEQJpURyZLMo
MCAhvB1S7hcu2bHN2QAc/Xp3Zw3o1VhayMXLd5zNxavvXoEH/MIn4vVfey6O
138HaSN3rOLf8eqnPhqv/+CP4pU3PeEErx+81MztUMyFawdznVTIw464Rlhb
+3pqEAf7Wo4r+y8B/zDP28VnGYPB1a+ISdO3QFVceexB3EQO9xDRE65a1rbL
tjNS2weW75HVoWFelCdgaf3w+HgwNni9+/QRACBnpOL2qA0CENvr4IFS4vWJ
eH39e+6dszju2GgcCrnwojI8t991Z/yZn30/VEn6KS+kSmB13Ms1D45F0wIV
jI1jDhkBRpGOZW2B4o1jg/Fd546tX39sjhpCx/kyaiWWSD8JoJDk7BoZpqdy
dj1Gjm2/ke+uGgGCftqP5OysTQp2tNlU3cjZUXkyR/GEMbt4XLWBsD9nsL9i
WKLONjkCLReqRt4upyzRwKgfrNYBYFZG6XyFZRW7uS4Y4sKc4VbBT8UIfiyr
qOsiUfwAL8qBUNjvAh38z1mYHjIueTDWOeN74/h/YiIyjuWUoQFtYVBAU0dX
V1CSg0f+XIyNszDuU8/fRuNok2YZVwZb8hiDdCwHI2lYk8ibk7wYRap1mY4d
9H3U1dWaXq3qDZNTViZH6awCVxlSS83XoqSF5EQw8sYmx1UHx2J8eX67+ED6
fWJhd0j9I3mB4TavbNLJCqdv8FmTvSnwESPgL3vFMuwNmiptb8jDPHJwni0N
jpWUvUEOEuEQHrjDTxk5bAzL5VjuZM3M6x4+H39l9cn4t7/1k+ubJkfq2mRE
SvgcMMxN3khJ6khEIpseI4V4wEjpV5PIJpSnp2eLkLIWR+w0UpxWSnJUlSfz
UY4Zwocf16kpHjr+1rnpmsFsa4qjpTFqHJqoTCRl6Z3FQf/rx1VnFyvC0HF2
xTR0XdcYo1WNGC2XNi7EYD1FQbIMfbxYAAyG9DkyuzX+vY+9Nb77ukWw1zIy
JToWiaxrv/J1Imx9apJW+eVosZHfXQKJCAgBZ1hKLVRM0jfpWKhPrT5CrSaH
++NffNsrKfrq5SrBzuDyqEyBjl2pKhm2jxb4ZwRWVDI0i4xP6LmKSJTAdOTp
WJCsJ+HI/X+ebQe+6iwGp0kS28GxEUwf2Q6nW8JYYZ5tBxKd524/HX//T56H
VuEHMvpRinw83FELWqVMx0L88VtuCLbDvY6QraiEoKiFfcjFf/VHDljrP/HE
/YGaeoNvGUm0zETOSIPqcFbimR4jbXnQSIBUjZFEGUnTKqffiLd2GfGW9bgv
rl9qiuhRYySRzYQmK704gdFhcNRa32QJgA7OO4oA4HyFB1hJj11eq2G6Wrak
gw2TGjak37vm5pMrJzsYY0l9NysNTbvX33UmF//tL3zQlf6hR+4jzw7+iWEg
uHvvjVRAMAwwFo0TPnBA7qFiK4u6sgApu9SrsiEQPa4akdQD1ZIQq5vrISEW
alBRKihjoILSKbeRDXqWY5r1RUqPYHwDncTjHEE2yIwdT/rmMKVK1K+6639R
5qTSi5OmoD3yI4BflOY+GSDRDWQFuOkRe/zql7/AsUgx/uF//A/0uSK7+yax
nUSBYzwVP6HKlUcB7KdjSbOdXpw6lWgTGVNZitFt+O7FNlpAhwp6QrRoCyG5
nn6wu80mzK68rAEj8srUnSNG1tSPthQC5Tjc6GKqQe1DzYNk1Wt0wB0q5xH5
XDeDqKRHQa/Vllxt8LODh0Bxub6hMWK1+726c+c0K6IiXTbi/KfQu6ZGHYVT
hf8dbt9/j3Nlr3M4/ir43IpLq0lrF1es+nQocwPeu/pAe+S5SixBUjTXOqTG
rh9VgqlBlRy9xdLocRbx53p6lzC7wEfkIdA5nPD0pC5rUtNLxwGdROhCIDQn
OV2I8e+fzSjVUorPMHvx7PAAMbnK0QB8eX1sKF5/7v1xY2EHPXbczzsoEK8x
RAJeOx4XFaVF5/NemNTKsi/nAlNaPX1AJzY9pQuhc0DthbF6p5GKPNTadafu
U0+Ezs5g1xHDHsNKWE9pY1anpsEeMmac1/2tBLrBfT90fE830wyzYKHkQbDy
j+RAC0Qz99k6X8XXzY+Ai0jg0ZaonRG52vhoJxuR937sk2REjhzZx3dfIbhM
9HXGzz9+e/zoyTn6WzGpqIiE0BzMcUQqMZGIxxx5C5FU5M3+Mh+I5HiN1GX8
1yDc6gdIGXtOtfbhvv3L1P7P3HnYqqXDYbO8cKq+yNUE/ZE0aMX3KkcfUs11
3FL812KGSsoKLR3y0+jFo4sAVHlH5n2eEgHg/Zuv3MOevKQnGWnx3k18L9IY
Bxy2i/FB9fXJqXHePZznJ3jHisDeh/hesgvB49/+PL1WVx4KDlxWl4Doxxbn
4bxdPTzL3d8rwocpZcFk3NOzvKhZHpKGLGnxd3zzzrH4JUvThAd4XBeBV41c
3yFj1KHM1IQDBl1RqH4cnwyjigPXkx/mDNPRaQyjWg78kDHjnakeCMgetYe5
h/kBvK+Wa8Fr86g1pjq4GHkH3gg1KgTBhzESR23LqFR+JKngrzQ2NgyW4378
UG6Vumlx80j8w3ddppdBeEdNkCkfKORct7v8tUnjcobqjkOIUonq8J88cBnl
27h0P4heIap//sGbWtUzZwcT5WsUHFZN81xTZjzVsdDG3TOiqFXF3ReZ9nif
HmcoBtpj2q+Ids/5EsXr+Ezi83sun0fHpWlPV7p+00ZF+7ymPcyqO+aDj3c+
nfcWauvjJVDXT82SXN4+OhYC+zl/5w0FuY61TQOd8UfuOBC/6aZZMgLs5+GQ
i4aCP2IQtsBHGAAXaoMhuIqe3CYJPWsVzbxhU6zH6+lMgkxYWjQSetwQhBiZ
5tBrGIDiNTrfipLU+OxVr7wcX7xwEzW63ucM9sYFC+a1ym1MgB4hrWau5a4D
M0CInVA4YjsAp+COxRTH8H/n5Z3hujatXGI2IRyu1zcSm0rMpkbjCCXmwKNc
czIsuHhuc/y9Xh/oRn24bqVQt4glPocXtWtUIFI9mCmpXtEge06ZJZlXIT6e
41N0Gfl07eOh7fE5VovqGYlI8jcah2CAiORw7FMbR+kF5/6yVyyjK/zCWZ60
4MEpvr1skLzAJF+5ciH4993s3zF9IevftYqfVgCQwcF96hlisqEfG2G6W/j0
//Oxm+KvvOgY/b2huyoUzxtZuCNGcj1Hx6LQW5wgVUkmwelsnLVmZ28bP693
odVWWaY3LRrZuM2KdzIG18e84zn0xLjCNbresuLd0uGDxPH3PvNaak49uAVv
73htXsvaOKj12GNyLcfxeGlxbmX//lkJ1KjrwBkwqMBH8GjjQFd8eNsG8Kd6
jdK4yPyhvLejM5hT4aOit+XOtySsJsvibY23O8LoI7Nbg6WxFIZOxeuqLC9f
okqU6VjVVKaXHg4Qny17HuO6oK1OueP94a1j8dHZaSTedmsmO9cMDnfRsUzu
Gmx+8vUviv/kd78UHzg4D0aTQe9I0ZlwKD5b6Ax6wz+DyEXDZ+/M+OzDB3aA
xsLor6w+uSIw3qpuSHz23uS5MWv1rTORYj6Z10P1ITDa0RLHUmB2xFIbdHY0
O06MK+tRefq9a9eu9caRPStL+2fCInpOsaXmLmnVv8/w0NbTmcbU7YiHPmCs
AtiivifziixG5a+RvaUMo777/M/hRYqAE8jx1a5lbflphQMV41rOWqxNT28M
T6eKEvUbvCDeg7n/7aMvjV9788KPKnnzijoQ4yBNjQkkLFYyNzjmrQrIIhoK
TGS8/4VX3UIv/B85v2sNFgpGfapcH5UXCPkA8cRs4NbHujtCtJ1jCr/26N74
rqXt8W++jR7+Oat2SmmcWIzXvvNZOOROxeITxw4Qi//1b349vnzpDDLkFHD7
8JMTa0wv54TB35LB4rJyypjB45gbbVdzCC2nLLJ7u7KRMja2W+0HiAy6C8Z5
u2TqiPDDPFjZN9FPGhyEzvNR0dpdt7G4s+JU0VAV76uQzhWQvAqKVhFNF+HC
eW4XKOrovb58ye/OIAv6xUI4358aqRchvt+YyGNtpm056f3GyoFtLWle0tTT
u1xPGP6yxEfo4YmJkcDuxomDjYTgvgN4alB/G2NyNbkvUkBf7tnPvWd9cnJD
KsYSgufoWCGHCGKD4Hj91tsvBaK3TbiVNdFTU10cschp/TUl1o40RduMPeAw
qAVvb8qB3FIdqcovvu2VUekaI4OcirOlPp1UnxL5b5A846P108ckrNbTal5z
8/74Lz/yYPzzj52laTWyWyCm1Zw4tC9e/7O1OP5fPxCy14jsFcqiQ3jDXYPs
+O0ugZFwdHya78uR8toW3yvM97WPPxU34Px/6t3RlozXvuvcMe21Qfnrj82R
Td3hL5MaIPNqvKwpD00OF4TvoUrRTtU2rMvdBT3dQf/lCyfi+M+ejYZwrMbr
z3/I3fjn3lKNV595uBqvvPJiAV9xpzhrEE+MDcbvfetL4Mf9xLAS6kbIhDlR
YXynofP3Gzq/pvJ4rPNTY4Eye3jBGDjblpBwbXqoFzNymYTFFNXZu4bZwdqz
6oU3HGc76Pz5n33bfeb+XpZraYhJfG8RPneN6qHItNfxvbsq2Zh6fYxMmYpv
gxLOKSXMxHfv/BHkh1aHSy22dKml1CQ3/F791EfAMiE90tjwruLVsRZ+R0sb
5I0LE959llSFQ4ZQFa02xAgp4isj9HjKCKE+iMHZo9NM47pHHxkhjq3pxWzP
ge7ukkz41C6/lFP79NMgPGyNO+aF+Bx0J/NhINiPH9nr3jn+w0ldOgP2U+/4
TBOPi6cn7hYN+leVaF8+exwuP9rM7l6SbHD35YT7K4f3eyW+y18jNZI2TccK
cR8qHksGMtxHNfcojnDWLUV/sBr0P0THIvgP0sd3nD26vvL6e9HAMieELJyk
7CWkVyl7PUZ+0JgIU+GMHby8oz+whGpprSxzYfYaGbYZxQZxuX3MdrVaVlxt
YLu1cl1F3IHtEnlHUXjiq8H2ZhHBm2tbQXexzeUQfMvlfKTlx0R0sp3daYlJ
pb1p6zHpYmp2P49DM5lKRKb7L99Brc2EQr96L1FsSqE7cxJlLw9Oy+UxBw7B
dhJBFIOwkMs7ZZ66PLjMokJ2VtukLs8xdnxyy8b4p+5vuIs0c3mbXvdz/3li
ccHgckFx+YHLt0O2By6zN6dO6E5xmYDOy39MLncoVy75tEk1XgY5n+FykO67
1TVkvGwKxxw9MbykibzG9QMw/H4nXnaJH9eyXYi8qIh83+3HQeS1rdPjhGg/
F6NMxuCGraMhR6dS8KhA01j7kjHjpajy7077S/59SlVTJsDuNebb71BsFoZ5
NhfCAlowy/nQq21LwwFxYJYE4fjZbBDZMhryvBsrFNDbbbA2N42Gj3qLKRYz
gx0SwKFy8Isyq9WxSCjM/CkQnTFXlAeZNHWOH1uMP/ahtwT6LB4+OEtXLQTm
csjvL1jIBgS5lgFBIciCNteFJOBHFHqbVQgxNXS3o2jBYOuW1Cz2ceJpidkK
T4yVeeBpTrEVQfa3vvpB9xnYWiC2fuKDb4yZFX7BWlTx3ZtyvgUmLGanwdGC
qp1GxmzcGOX6yuqTGc4Sb+b8ZVIZs3Er3F4P4G8IKpYSoIcsmubt+aXt0NvR
AeJtAbIbMhtxNMrxWriio/VU8o2HzfPGMPeSMaMlr9LqPGwe0uqbVGPKzJY5
wxHvaskpP3sMn0Nu++2w8yKD1Z68PviUndVkd7UstzjcprptUdeU9fZZc4Fh
L3fddn4f753jpQtY5iIb2+JdjZhUpLiW1bVIWcR05PKgsLHODi/Qd+WxByNa
hBf5YSWUhyGkLk5WCaf++Pd+iXi1/NIHwrI0JjRZRqh+JnSVqlHSIp+sBwv8
DtQkh78wq52rAc8so1dCZ6S8Jyc30KWPHVnAZaHwfQMXqIFBZaZzkensHHEY
nN6s6PzA+dNwuGgIR+fOQGcRzwifHY2Jupf9DnxaofamaEzNLpNKLRp3G+NY
o8rv3nfHLVm/S5NOUfpehSAZxxq5hvj5BNdNp8tyBn/3Kb/7qadfRgLacZjQ
q4NH+FqdSTeGwOFn/ZhYRY9dhRgZ5qE+OYLm4hw9ahqmqMwZQ1ezBmdlyBhD
WcgC4C5yEP8Yo3FqAt/FkBJeWNQKQmFJmeNzn7FJoopkC55a629988OhBltV
H6cHzzyD2Wqg9HE2EsrhZ6/gqt1sJHSQCoqAMB0Z8Ypv5PyiUlojS6tl8WER
mU66b7zQHmiJHOwxlN7n3kKWeXn5Eiejyikm/dPf/lZ88Y4XgE2Ucd6j2hsv
d3muSiFUBS+qCEibD6T1S9SkclQvWR07JHXEFy6cgHFx7MaUM9Sog+uF2B3M
Rp1QNyTLZGdk3Qt4/ebb7nHd6DmOLJn1TOCVNz9C7K6wy0a2DKlxjFPnfYJZ
1B/1ts8M8USU9CqRvEHqHsM3D7X3zR94+xWMT9PVFlSni2/uz8TGBq9x7g2q
k7KSGnRHp4PUc+yaQe2jB3bQSFYU/CWgF0JrK5FOmfNqOnNehVeuQlyXaPZp
mbw0cuhMcAnA66rXUp55t5EQ06gTLylzw8CxO47MEsuLuKEc7gcpGAdrRPyA
vKZ91oXLA6SqvM84TAEWj+jglomP1PWKVIp9KmXzJCHfq4iPSuH67trCRG1x
8HKX52f0lFJGQV3aMjk7FTTuOrRN2YNCGH7CXbsX8TyHxumgzs5Ts8jIdZVH
rjWzFLtkReo8Ix62h7PgrB6ShJi3P47G7jMxNKByUgFQwQHN1YJh5+uDz5jt
YQwO9Xni9VdCffA3/DkeObDdXwnHAtUIg1yguPPqElLjI9lKY8oQ6UUOrMF4
8uwu1HbM51Gl9RffdiBAbyRFeups8eRCekTU8Nyge1/Gk2Pwq9+YcVpOZ8IJ
VAcS3oXBr+42EbTQ/XSGr46jga/wwOhxtPVubneAkpU4zmEJuqytRUFZC5wO
RpVwrKZz6FX0cRUdjuzrkOza8tiDt8XPfvJxGhbfrooXTz5rzCufV9/DfE8Q
qSvjyVH/TjpSQp8MGe6GaUZeRGjueGYq9RzvNQ4ekmz2UXYh8buru3d7w6T9
rjC8x6hSno7UPsHqSJUIrP6Js8J81Ma9Og2toUJxy+TMKhQC+vC+QkQQU3Il
fVwttI9wvawmnzK3XM1wzMf33n0LhpwI9FpPRikPnyeii/PoNfgr15BMu7sO
X6NANgVKgoe2fNazY9nbsE3xB+5fil9386y7xLCfl7N1TFhNf2NC2aSiMg9v
caa7BZULWc/Iw67yRE5eGKI2pUizuV+5cMw5gwvvsSeRWqPZS6q7ZGirdo3h
9dkofBZYKfIc0lqwt1P5cJbnoJ0aSJeMWCA1bIL0os6qOQkA1sI7NxT8yTsn
+iw1eF7D3hNVKPISyJ2ZYzqv7kGkcYdy24d3bSLLMsjEbsEf8dpEIPydYQgP
LdHFdhmU7TIuWbOUgojkqIVSEBNS4KOMt3H0XUzqs7Z1q08YeuVSoCY4MDVA
0HYus6LUO66M++83SFswCFVg0qLI07ecogvs85dBd6+LcXj//SeqBm/7MrzV
M0Bxmc98+n10mTxf5pd/8WPQAjQ65YVHhWwDiPpXH72bXr/99lvjr7zqBiGw
uAGIbNmecpyOHRRsQ3grrtKdHJ6bWt801qczwxxepp7AKbNBLbYOZiaegKed
bVZ7aKoeYYsQqZGoohFFR+k4P7qQ8Cwzlyw9DDXDNEUvOPJIFoyVnDlnBawX
170/M4oFB/sbX3sPOdhZxTLB0g7uZPd+RdioAwqhRs3wZmPKoqC6+NwxTqF7
ZWnJ43q3UWSnUWSfcpBZnx2JgyylgnH8Da/oJHAxHRIr0+LTOufmNsZjvTWQ
qWwAfsDgVc4AvHdURXJUcJBOEAP0hEQ/SFFEN6/JJXENR+UwjAQlDDOpr4kb
bhzZRwu98uqayJFlnSPyZS7sRn/NJqha276hB9wCaj96t6seeEcGamyYCAbH
OMzLKkA2TPCS5/NsHOlxl3DUclbckWtViLU5RSxqRJnhYRFryBgWqrZbS1GQ
DNXq3M467uIoXcl7ex4cole7BNXddE5pdWa4O2SI8WJabVMw5YHd1d0767vV
PUlKKq/8pjBEp7WeesWF1LiwDjeFwNuSHl3/wJtfSN87aMC/YjibCYWGo4uz
lAxWcV1gqKTjMecjy1CUJ+gaTZxXMeW8UBGEq5Yn2pdAmDzRy45vk4DOfd9D
GO85RgtOWdEmQBd6EX4Bv5Ep4m5Dg3nNU1jdOdZLl2BiFg2VOqiswvJdpynv
pK6SAyswHOe5KNio65bCzcDxeGrgWCYndO+J7fETF/bHRx0CNFF6lYJEgIhJ
U3miSYj6CHt+Bo48T54uw56HXiDL6spDI5kMD9YRl9vMdPzK6pMhvePTr34Z
Z4spDtFl/x3CoSw9kHESYAEAmFY0gGOJvP+cUxYkm8PRfmmeaYBeZv0XRlXn
kzLC5bYoGmytj9L3lgwalA0vIDTA+/c+89qmwQqhwl5Vd1BB0wDZH3GKUh7e
Y9o/SrKiJm28T+3YEH/rkRuIAc6AR3nDeA+rNgHyoZKQHZkcG3D1Pbqw1WmR
+Z2TDSn/sC8f3RZ/5vKhFLPyhtDzV6kF3GOGr1wD5sFdYX3z5LCA3RPX+3dg
W2Md2AfW//ELL4v/6AP3acy7qjrUVzOAd/KLc5sF8ghzW0eX+To7Upgn0LFT
0JjfwJjXS2rz9my/opHjuD65mdB+L/QwD1gFvAXmMgqxSeUuIiyL8qt4dNtk
oyQN893N+ilY+wUFt11bJ+hymw39dJhhrq1z0bDOFiwzMK9nrtu0C59VHuqO
yEfBPOU9/JOeK65+XQRDvCIfwNM0Nja9w6o4NIVH9YdXsND1DQ/eHJDtH6Ti
R/2BaGEN8gE5Q2b5ylY8qh3DcZ4rDyWvP/36O1cYZZzkomIhZSBtPJrzhGag
16HZXQLHUkA1XjgHY+8O1zmezq5wjX/psP/yzfuWGWZeFPDEVj8bh2ewC6yh
emnuusrWA9WpKWzWQtEverpoBNKL8+yTaZUi5lml+kJ4nh18g7ndlQnPdfJc
qw8xiZOGSjmqriXmVHCLRJuYpXEDZ7l0iE3X1WlKGXIrG+ZZl3ffhethkqO8
wQPPqzLquj7Z30Fgk1AZAMNw1WAGXA60AFb8+8+9TYP2Ok8BvtWuVFGgAesb
XRpTQErTUD3k4YK3pMIBVxhgQDbHkEXke/eR6fjrbzrnGhWQLeBvMsqRV+mS
VY6Utt2XAiQ+CrZWALlBiQsIb3wmgTXGfh0UGY5BcQsoUfkve1yiVSQwDbh0
PTTRLBtw1hL3hZ6VkTXFOzJpZLajvrW8Kc56fK0Wjhvwybc0e7RYA9ChScQ8
kRjxJ4uOhi6mnTVGbXkusonqY74r6kxQuo3ICx8/eNzbGoIAjUDwZHJ7Uk7o
NtQhnT5tWZx0o69WFX82uLgsFulv4M+bzAqZzI8+dD2Z0iidr0AZnr88zZdM
JRlD5EIdzgZ4IqCCHY1owibiq5OjvfGx+Xp87+n5+I3LDdhGh4Uk6PvA269I
0PcVD0FioyyMB5hgJl1TbLBN4xHVsVmXrgcvtxrzEsQ06jJEAowlQFjjxmUJ
kgZRrqUpK2mXjpe438NGMQU1h16qfBULG9IqXiRVNIbWoiQJKziqUnHlFITE
41651KBU7C1XgzUnRmRUrtKmzJOHdxKcb6QyO5owiXJh9xh3qVDmUAp0+Jgy
DAy6rh8BdB97w7n4Gz/5gGvgf17DmKL7mxaFAoK5tOKkKz/nW2BZ4YkSAchm
jygIuvfrXFtPunTwlFPJc4GFjr3gnXkFibZw6DIYzRHDMfth+qKGjZiuYP0U
VMRp4vtHFeKyj2mBNhXQWz44Z2jHUwniQpcqqAji8hl0UN+MDQgyqL3PJ0Ut
twFv4RqKesZXjpfFk6ViwPAiwx8NMTVCTInMlnhQIOXF99D2E7+cUCWEIRxD
sLj1mp5visVGs/Jj87a5ebQ13BhjC2cCHENpN4lmYz9SCD3M5mhc4YI7lHDx
wgduQ5Eeen5FgzwFT56E564kqFLOUKPKP46nVuc7XNUIcH2kx53xHUrQ5ep0
jokY45z36i7tWZYz0IXYqOlH6c5e6s4CdSd2fWfx823fcNQt4Dm60FWo3/Y2
noPeR8nMcZVknGoeXUOS0VtAHtjLDN9w4dQsnlbJnnz4LiCETt+g8IG+4IFn
j6pCmFXCbG5lD1i+fCNB1Qq3dvR+39T6KU8Ywwzv3FE1qWOUO9bQmgV85v7r
Gn1F7uQ7/k6AEpKTIMehnZN0Jz1pLSne9Sa+ea0lhU8bM/KTyeFP4V2r2YT1
pONV/C96gS+6HiU2ZpWBxpNQCjLTTexNn7oiGvC9z7w26X8fRCFdi/sZV8pC
cYzcMzUcP7bq/0lqQQYDaGOFglmpGg1U6zMea2jD1E4inFvbkMlRwGg0jvjd
PHiKB50qyrYrbTXoErdTC9ApZWmZlShDTT+Om/h+yfiWVRO5+8ZYC849mYB4
LUobc18Mze4ZTMNZvAu11znfXv+djt754/65rWrNzMQN3OxbK7QuoKPCEO26
n3rFBWlkf5Yfj3ONQn3RYTDzHvpeyuHJDerx7uT+/HwlXYYHYacUkQVicHgC
RCZ+p6o4rqYb6jbfUH/vG4puHUYJa9JcCRWjw88lnRMwJRgcah5zRJFnkyaS
3EFUMUj24qs0ETfD+aSfrGbI0pFboZAxAOy/qBVu963wj76eZD/wwmyyYjNW
GuEMYmIIdjnQjbKGn7fr8KekTXjRaODfwMEzqmDeG89YXYvUj76Nf/IXavDH
RJu8Hh5c9Kr6ou/0YC5ZRvQ2B+ooisedlyNlKaVU17wB53E4+ClN0T/TsRx6
n09GUwVDdZevClUZ1WC53K1Cafnqnb736ausdaWlxeb4g5+QEv1LFFpS+wo/
1ucRL6bUXbHDdtqX1Ld3bZ1YP3OCNtpOLjajuuFOble8R9uyta2k21WS7UkZ
71Bl3JVccH1jb01sUMkw8kkB71QF+PtLpif76ZCm3UsKeFoV4O2VHwqKkoRf
CqrJmc+oM++lP5Oha20FkzPerc64nFQ2/NjfTA5/8+NPf/zpjz/VH/wdvSdL
uxwx+bo7B0C+lYgJeD99hwzLCv8/Hh/dlkkZ419RrhGJHQllrg7VOuKFsUl8
fX3XpB9im81W5G/pPeVrVuUiO6YPxedPvSZ+5P6Pxw+c/4l4ce4sPl+TivkL
BYUtlcf3nNtzZ2HrQj6vq9oTbxvfE589gCTEwpZjLk4Z65/StUcZqP/t6n7H
OrvXdw1viM9u252LrywcdSWOdfXEZ/efj+8++sD64ZkTdDs7s7fzVy2qduOR
ZSdhUbUC3Zpq64vJKaGZuQVcXdN3g/+7e4jvPv4KdzdXTj0Z1fA37o4+x4vv
bi1zd17g0/S40DN3796Pm6PfjfpW3KLv3ZJrt+54YXoRd4vfq0Pdw6jh9uwN
/2VS+2z/OW3rb5hrLzd8W5vu6+RTuMup+xqzZ0u41xxu1fdhXt9llKO+SG+4
5JMNfdnODLeL20eP9lQ64z2jW+KzM0fisdHxeGH+YHzfy5+JX3Dno9IGrqVd
vzvETw5MrUj5W7IN8Rdter63uRtREL7LQYHd/b2qAfEZWsPdfi20BnYLmj0r
3R5zV0uKua762t2Eu+1oMHXjx+rz8X3zp+InGw/Er1i6EC/NLMSfeP/Pxc89
+6tx/9BE/KEv/TB+60eep8bYumsxgMI1h1BgOtsOf97mfobSvbvObXVTG0AM
tWFAJzEgD36vSr/4geaa9PvawoaNAer43VUq61sv4N7xtAvX/WdP3x7/zvN/
Sq8Hlx/BXefRBC4AkUZAo6ARto3tQENIJ9azjbDe5o7G0p0qrLi+TbuN2ayo
8f0DAtL1B5JiqOu3DQwTtd1vBwF358isuHtHd+PWi3TM03vg3928e+ePeI87
RxsU6FgOLSFQGOsbX++p9eIuZUps0gw/bHNPk+mOTXmeo22ab8rmREW1xez8
dWvbdx3igcyQ7V3DY9UAfbQJMDDVO4qOr3ETwAysPPF0qgnwfrFxgW6+lGkC
YYQDQzANE9km+EGbW5nOYJt9HLXlUpumm07bVWmCMjcBvn5p+a0EBz/Vinwy
mWfAP2P2HI38/cMSwPzhzot8/3j/6MrnmQbp+wcZGOuh5/yGcX6muw9M88tR
KgGGYyHuGxrX5yXt9bNt7ntGOVDFnIU2TTxjmA/IAZiPArcXmu/KYx9d37R1
L+uTtC7CS7dXt6IMW0yHDd9esJ7ABVqqg1Ej7cVlrUb6CRLsUfvliqvhDsrV
eKK7P941NB6f2rwnfvXiGfq9fBc9aCx+44e+Hd908eF4/4nbpCEaqZb8VJtm
2W175rl046/3dg+HxpdTnD8LNsiBzquQAjXqmdteAeDhan6+Vil0o25Dh7M+
bkJYIphaNF6ZmxBmGB4YjddFx2Kgm4IbP0mWpwtXm9pP2lDa7+KORVdN14qu
uJfMN2h+WPzf/ixeee0r0Y4Ome9+9o8xAOPa9a6H34HPtIyiJh1MN2nKj/8a
/S9kuckDKKm8HPFPMjCRo89KqRrzmfiPl0mF+jsbpzUL9rbREn6BiX8yMXc1
vudPyWt7EYmOOtK4M37dypfjjfVdnJkohM5iHzlguIgqdxa+CpWAburmzlL2
IXQWL0/e+CN0VpU6q0QkWPuFz1Fn4YWOc51U5P566C0/TTxQ0GhE4k79hg7q
4+/SxyQPGlyBuKfaFe8em6Hfp257edw/OC598Kv09U6p75p8/ej0gfjho5fp
N0556r3fiQ8cvV0qcD70sc8mrap7zbnyx3LxgSPnnEG9+0Vvj1/++s/E7/v0
96kNMuWobCg9ExTvDnJnihbAZ7wYCqfQs4odVKID9L1yyvI5x0id7awd9Qrv
5Ycq0nNGnUN0gsv3NpwjrJnube0N+1gWKOuGFvU7kPKmR6GjV9p1dBd1dD5Y
N9fJWAPhjvl49f3PwMJRX5cVQ9Hj0zsPSEPhGl7x+73Q8XLNHJ+69WXxlu0H
NDCep68lNq6v1hNP9o3Ft+y63l31iZMPu+vg/ft+5j/RK9Ml0bfo/JLcWQpB
9+4/l6ciqgEZuhi8jxIHIGMuAkYpDg21LkhxLeygQkBhsJSBFocdXLhF6cuh
cJ92HqjW4jcsXk99jHhEMARHOrRhgsSz90M+r4rv4dmz7u9F+mqJrI/7Kuw7
QchBCUVvSa4SzgICndmIxG4obe18YrOu8EjKE5LcJdbnl64TGHmDW9Gtk4LQ
oYktgFAfIwh2fc+WrfH6bz2PIRFCUOPwItkIYKfKOFK+s0nBZIXXoYlt8Uv3
3kB9kYvf96nvu8Z46l3fsqD1K2loZK1FgaCR1+hCie5Y1B0YavK1TE0EZUBq
ictSMHN37I93v/QnxIbhPD9omxoK0igjnrgbCTCDPXI32EUwy2uYuXfJFRQn
eCR5dbyrmx6NDhDg9/joNoZaAX/Hb/rQl/A8UtRia9JUhE6cIk87dgg9oPQJ
UPeF7/5FPL1jXw7Qi/Ih2MPPphYlXdw+B7XRr5zXjvp2hLZO8DaLNTFnUB54
ZqqrK1qI98rx7quwEqXN1zDjDm9hqYC4gmG5ujKWS6lfNMZ+dQu9lQ6C3GuW
bhHYFduj7v4EJlknmB3/yhqrsoHIIvex8oQo7itpMGps4wlwTWAspYFtUMxE
ZLDcBiIHGJH4d7q2Nn94+Jw6jZ+m7fiGY55sFKcYowWlqARs7kV2yNs3Px45
0tEJKxrKgEWFB8bZ++lYIXUM+KAMwF08rpNZ9Si9e4kUl+fi4OAlKu81QtIu
w3T2suQCinE5XPbCi19Nfc+7tfUnlyS6O5MZjTBunekk+wjElgx72UPHgsYt
ytmnigReHU5dozjEutPv3HmI+g6QLbcHrh82qjKpavRq8VVWQrbXrhkoLreB
37MJKZYzUAYpOgw0VzIwUxLRT3WXWbQKstGYgdeKza6Gb1GUJ2404AKGDN43
gWqJBB2e6MxQFWvFG1NpQxyKaUZ8JRhlKQbIZQe/Ojo2zWhd2dzbT7XI1gro
BE57jAChm9GqUonue97RA714FnXyDPs83tcj/ulKIbchZsEZ3GhYefqju/Yg
MMDUEEIuggSnCQmzfXTMwwIHb6FX/ANrgG3egG2tNWzRQSpfvxqxQIC13tg9
AAfZDvGn2iDPCYROA8jVNsj7nK9JQ2qiLLtr/2YUdzD4MpLW509CqBQ/+eK7
UfEJA761NrRSSznIlgEnRWXbYF4BOx2Nbt4yj6eTu3ceBWK7Iik0Y74LXB6r
CyppnxKzgipfXoHew/yeue0VKHfKKFKqSHfeeICg3GVkeHoZ0JwZVhFvXpvf
AGh3W2s2oNcGqh3x0vimFKChZJGKAJQrhinuZUBzqEs/apvpFUaiu51mQHdl
UOmMlAb07QnPyJyfnp4P5tyBGidTAYX2vLguAbeFyB4D3J02IH86YRjektsS
Y99n4LqrjQiYT2pFXfwv33su/uaHf4JQ7Yy0ZaM7bcqhSFlIguIkqnIt0myo
BeRKD7j7bDZ1epNCMfwlw2JLecpiB5Dj/cb6LgAdae92ReI9wjENch2e9RmZ
/850eJa6FcfXFbkVfjKDj9y8Ndk5uIFeTmcMKcPNqTfs8EU4d+EapEUK50jB
SR/uVo3O+tjdkQeoAys5XUCztz3Ob0lqRnQBtp0PyBtQLzPgMyXRQKManCB0
ainSz+gE7gVO3W3QeSlBJ2ooClj+f9T4t/IXAwYXem2B4U1FeVnTAK//9Auf
jo/t2016ZYPBhZ42Bl+vE4SYdUbZma7EmmL4HqidN7BbMKykfryLOJCywa15
5UAEkEUuFaIICobHPybaFAn5jiwnWNBpKJh+I+klXIADYP3FlyZaN+RWOlJc
ILRd2LEvywWV2cSeP8QFJMCA/UR+ey5s3rFAQkZvqCIipmxwYcDmgqSz1bZs
gVJFgwhZLYSXKuZge4AOGnToswHq5wx2SEmrmZLiLTMHm/TPYvrqWY8zbNCj
vw2eeXsmKmZqwzD44c72R3Dk1LmXEUNGDJ70tZFpC6rLRHVUlEGGjwCi5wxc
lwxDO676TnxQ1RBaUh5489BT70uVB2EkY17tyuNcHtGjwwhKB4ygtKYcxvY9
SyTwSgbfmSQ+xeLzF93lSvzowRuEKNGgkRruZKbg+44fxJFuZgrU0sLxW9ZG
JjbJ9kX1SKmjKkMcmh1QBriHFcRf/rrPZCF+o0G4ksGUbjoWrSK0CGkYQB0x
aDLQBqi3Ji3WpPvznMIGXzLZ4SBi1IDpij4fHmyDQZrBNuCWbQgBPCFNgUnD
gQTRZdggzaAt//RmiyJgaoZf2WPgu2wYY3lyr46Kq/8/e28aZVlWnQfe9eYx
4sU8ZsTLjMzIOTOycqqcKqMmah6zRpKqCkBVFBRFQWGGogoIBAUUo0AgCgEK
JCGQBDIWSJYQaqclWZOtJSRrcFu2Omy32u5Bbq1Wuwd3r9W3z7fP3ufue99+
N16Afnk51no3472Md8655+zv2+M519ArRwz8VVmvOLklG4vTmzOJbEmzYYjo
AskTgKVhpNbHjeijQEaij/pW3K0F6DdSkKEZunHXAYLM/NAIQWbMiIW3GTKc
61SQ8bEdBxm8cDvqgS9BMTQM1MzmiPtFA3k1AzIjvW0EGT2YltGUlTVr4GUi
R0ZvSbd1Zbw1EtqSQLrCS25QXh/uI/HPeQMzU7Zsq6dnxbNOcJxecUPwcBG3
xBERbqcHLpP2sEjO1aFcwdBpGjrmsCHjNYObWcBp+URnNQ0MHjb8nFqisyi9
jNRyXntax9SMcP2kURhQNzzvmoH9egow5HkDLAIYB5IAGB3EH2LAcK45pWOc
JRY//sLLJFl8kuVqpCKhTQMtO3Ik/VymDa2nNFrGuQ0xxXQbnLzrRmmrad4A
yrQtmF7N9bXkagZMJFOQyTexKKIV0ir44g4DITNqICzOeKmIe7x3bIIQUmWE
wFtZOXSMvJVxRggpGB7RDGep0JwbKUakzYBg3bSMMJIlyXWDgqfU7Yl2auUg
TXs9dWV93XL3G9e3ak8HWWtGycyUUYVRNdz1hu93M1I//vEPnCXw8RFYXRl0
jBqZgmEjwyXgGJmYiT/01X9GBtiywjz72u7OvGAfnNhBcXKIdJeuRS3YclJb
N0r76g0DF1MZFyVKJ3T1o9RB+locNS5me8UR37mYxkXW3moauMjLPehKDYCh
HzjmWZIdrgIn6ycTQne86rbrnVQkyGAfJRozkDHH7THicWf6ebbBfx8yYk8H
lc5YWbke0uxIrpdrJ9T4RAe1jVzZISNg21B21nBnUsoLrCaHlKsj+bKK4b9P
GwFbAQf8eTEZGRy4rZAqSIGjTIsO/13A4dyUaNTIRIwYaqPNdhYCXA4ZYmep
53yTMID1hwxw7GJwjE4kgqACL0FjtAxkzGaiWDAmovTjufIQoWQwMIcV/BLX
YcjAgpG+uMJQSj33Z0AsxDfd+/RGlLkHYMG5Gm4hE7eDwiBfIhOzLxbQ/slr
CA+psYh9MmT4CAcN2W0m9lOYp3G1RKJ1hnOwpbVEM9E6sJ82tmpPa4mKUb01
YwR1y4aWaBmY9g/nk1MuCIfQDA4EzkrGtUg+O4pTAYeOkc0Y6VsQUaJ0HUDB
9pRiuCDYw0qwYT5lQBHfdOlpkib9qD7x09sGKHbId8dnA6C6/rtop8dk6YOI
+KkX/BOsfEYgVLpmDaeOAQpJezz13E9qE4wfOEJs4/C0BR5KNIoXfuQfARP4
+k4DEk2GxI+/8ObgiXf6QoILe665B81uJiOieRHbpGNEmg4YUtwyaFXVIgSN
0zFQdsDwUtrKdnIeRbdfeyNGPq9kpDpmDTe8bLjh0q8bh9wGP31aUEHTw254
QAVQIqgYNnIfY0aOr8WoAEre/qlviSElaXgt2Z2+qCgRKj7+tb9w4KJn5qoT
S6mJLKgMYMQPPfnhdQUM+l6WonuBUSIpd8AQ+TmZYGMtiw1nPI0Z2MjLluza
FkDKYTSf+Jl/CaleU3dEKMFmCIcMN+9pBxzuxXBflJQDStCua59oROnzYKmM
GKK93xDtIYN4R9TMi0IaMRSItKcqQkJ7zpBCGceW7emsYNFwwOeNIG9RKZCz
N9xHRuFQAvlArWmoaAdcKZB6D1R0amTMqO/wUClrqIhlJTnVlMCP9sWLf3Qu
8MKYoTbUEcVBE3X6gqZEYvKGd38lPnnxXizhYo6kRqqgUiTVaYH44dd9OCVR
2bKMTFZDg6ZPToVlnWDnvrkFXiqpUSjM8M2sCWQcTBwrpv0OZ64Cun0gUyFV
t3v/qdA036SqhwtmzZgRZtpnhHqHDWIeVkMVhTVqoHCfgcLhRHrF+eO4kd2e
zh8WjdTIvFEBVTQqoKRfXftS9v/4uhFPVuyc48s9qBky0iQThoJpMmoQA77v
yfdq00tnX4PEjw2Imuc/fYVE9nAisoQ81lYjfYFTJkPdaRutsATAptz2oqdX
blm4lOKjEhKneZxT2IueMbbqWOXQnSxuCzpFPQSEj38GC+/kPSwoz+66xtAw
Y8j58cFfaeX4KxgfdLvuQ8hCTRvuN1hD40Zkaq8h/B2DurXRLypt3LD+9hqR
s06i0gZor6JjwPTihMmiEfotGKHfjqFBSykMaR/exFDbMNImDc0jGEJSXjAk
Ea95hVex1MZZ+KW6NcFQhYwNh52AI6dBMFsHt4BiHoZcc5sT04vbxJAtwFq4
jiTQ3hypD8UPH7kRgLLwNCFe0sRcsPxZ/gmHSOdvhSe8d34ND6QXT/MZPDk9
5ISg19lpMp4IX5lbpmnwlGHeMo+Z/k5MpnEjnmXJ/wgLJG930JIYduPo9tA+
TDjdnvamRhJll22Pxpdur6KTkLqKscube6MkYCwhAKfXeimAMdRSyBX3XzD0
6qPnyFrTekinUqaMwpYG74fA++svPSEYEguOCxJI1lFZC8nvD6OihpFbSFyL
CAusy13sU8KShWUvniq+0OXS01lY5smwBSlLhrV8+URJOUDqdSfvIVgtjMya
ekpwBdfDtbPx/eBKuS6o5+zB1ZyaqsjXiTnZ63WPGgPiyrrveTVm3q3j7q3X
tVk2cDBqEL2vI/Gsi++jpUnDiNxjxO6U0IfYnZZ20VOTXH4seoojCTsZT6pG
TGLLjrF7S3eKqR7WIkMnaTy1jezLtFE0KXji8peAJ6ef0IcUQKA7wdMEyz8t
Fsu/4EmcGY8kfxXbDD/LasIZo6E9K6KAWLZzjFL4dO2HWRG8oz0nulsCyxJi
LWA+5VdJAevtF14l4OqPrVLwUZwqXE9E1RzZVvAqG/DSKyHVMqMZVwrwqufA
S8J++u7dcIOq1bOZhZdOeFpwGEv7QFvCS5uVewy4jiVqcC3TngEv76NBbc1O
z0VLKuoA2w86asJIZBZSmEpFGCxMtYy8zaxRH1PnjKbUxzg8OeHFtUi2nvxM
c7+DgksZa275esG1R7WHRNB2wFVMlF9oT5UqUewNwrswILjKhnjpAiEGl5sX
By/8nQcYtT7VF2Vl8WLo5TTkmoKGOc6toFYxoDZjQG3cqOasDgg1ay5mDahN
Kk0Giw7HbdDJPVUgpQa40ab8hgGXcS/egcjww8/BwxyFEMRkBs7oo5zuo6L7
0J7e+ICQnFIalA/GcvfhrjUovhrSqlXovSrtjvFl0ghzuHbzYKrZREIaJYYp
VCFMRw1TnUmaMyo/66z6UJUjak+ZkiwFmxqdYvrx9lrC0VIOOuFSyV3o6hQk
vhxC3Wr0RyeiJg7dfdE+/QOgs2JIpK4vQ3AK6CwyOm9dPhuyW/3RWUmhU4UB
84jEAqgK+YWhIi+w/+g1qwqgRHQAJKA5YVSOVnIAqiL8oQ9Oh/VMb1awAVA8
QAnPTS7hWsUz8mp4OmsVEYBqTNh2Xh6vBe+S3DZK4ZshooCOyumOKviPmu5I
Ng9voT0JP1ltLB3hsWdlXGt40l8tdFlFl5EvT8D3YaVuDVXSqGKlWlBtGpGT
eSPpG6B64EQKqmylsjyQh7ZdqJYTqzIsC2dkIAvENIiiDApVbo8iKfIzpWZe
lFweVLX8V1k2JQuFH00lgCpAWmKonls4EvJt/aFqhzBcH6uDjNnCrA4xVg3M
amNHMDtplK+WczCrI03WvEwZmM1KOB7pt4cfZon3KBvaApokBxLGkfbwnh+m
Fu1WD8eUME6OsjQRCPvVAW2r9iy0NdRtS4ylrNAGRajRpjNkO4y6o1qoyJsT
pJn266Tql6EX7E0Ldio44rDcG2zxLfvzr2Wjq4NeHvIQz+GktYnk7SJPS3HN
kDBdSCfIK28TeTANs0EObX5ODoi8HQaSNfIyc0DIQ8IAmJsyymJLAyLPmhct
ClnkaaQI8iDpko3bLvKAHKehUu1FSsmq6EkYXx7yBm1Pjy+NPBqm6DkLeQ0j
y7Zg6DlBnhQ3KeSFHHVWRLJhFL19e8nw9KqGLekb9ic4oRwFyLt5acVC3gI3
GSVJPI289cwQaWoEFSLFhIAc5NUNVHSVhAnyKoy8Q1NLIVe+FfKy8Q/dB9eM
QmqCuTso8moG8ngOyIWAXQrMTRtlt8Uc5OlQsDUvE9uUbEOnbIm8CUOHLhtI
tuKWTTWnYt7mtad1cg7y6ok4SNzGiYNHHiRYkFc3LMyukd+uJqd+SFVIQB5b
mXpJabr5+I6BkVczkOeNxFKIPcHcdO0MiryKEbaZUCuYhzxLii0J06cCCPKq
jLyF4amQI8xDHj7LhkN0H+NKSgZBnkZy3UAez0EKebN0LesiX3oBgQuGk9zo
P06aC0GbJc17++uRlAXHaKNQk5yTM2HozWUDvdtFm9WehV49vjTa6LahG7Jo
41NmA9p0Fq9rZMIttBUNC1OL8veLNh2D8aLsNwzLlhVGnOngCeR0mtDSn+Nq
GUURDQo5S8zm1TICYgBbbZuQg8mWDXDoPsbU3GZpYivIyZh16oTngO4NeXSA
bY439eI9eQMebhbamv2HSGKXRZuWZkHbxTNXZ/MHA6NN60oLvaP90UZTmNWV
ur089OrxpdFGOgH5B402PvyHcFYzcny7DN1WUQcAcd2JoC1lVWq0AV1boU2H
PeqG8+UzzP4hXrIHBv7pdtDGKN7ct3IxTBOLRapAJQ9tWnItMZtVaIMpCZzV
FdokO74V2jKhiRD6wM+ogTZJB6J9KD3XblBE1pg12sYU2hA+Ac7mlWnJByGG
9nRIqWXMwaiag6zisKBhiLIFNVoj2Tk/bijKfYbZJ1DTeyctqG23PV3uyVDz
u7XSoZOqAbWqsTV+yVBsAjVV4hWgps3ICTU9Wajps1iWjDhHwwid+Mytz1t3
3XLpvZiPH7s+D206Za90ZlbSUmibo2uZJBefQXrx/05nmBJsSdy0gboGow5m
piTN81AHHZUNCOqgI0t1Si/P8jHLGDs+Q4iFnwRLj4CjvWKuXYeYUD+pkwUt
A40jSowYkQ7d3twEGmFy8vxQu1agt23M0YiBSkvq9/dXWAOjUivUfYZ5qFAZ
ckZ5qBy0PYfKro1KalbCKhqVUHgalTrTt9tQgGWFSi4ac0YJoXJjbte+MD3j
anqyCXmNyt2GJ9YwzEKvWPyTsOWwDUalE+v+kNT5CUuxslinSrd8aUozBUl5
VCeeqiePX8V3WMRN8bbEcNKAapOhGqn6lvEcWphUNp/EM2ppyGqRT9GNp4CK
Cdnw+O5KuEXcsqD4hY//+rShotsGiDsZEKMw1PuMTQIxjFjET6VnzKrRXThK
QEe0hoxZ7QwInv05Km1QcGsVvs9Q4TngTlnL223PAHdVTTMf2hTVDHBXjMjN
HqOCTcCtKtgE3CnrVvwTnSQUcOsDNyxwNw1w+6Rj+mAQ2eE9KLiVKl+TdhkA
KWBNKAAY4K5kHrEcKVWTJ/1aVWrjP4txVMFJ3n50GzwjYxgzsG9FbToG9sfz
sV/P3Dr+S+ht0rj1IQP4vPVnVYCfJEgqAfgI1Srgl3O6nTacfGvG8/Cv8bU/
R3ka+CetIEXdsiMKfADvGC0dMPhkZED8jxnGxwHD+BjZEv8027L1VfDPh7el
8K+zlctGRbjgX1Wvmib3WIp3fLZycpv417EkXSAi5UjJvsRsIUKZMqL4W9jb
6AvJbklj6syoxTXDqi8B4lgGGBkgtlhCLQ1lOa1DhoTqEBGym2CDlsEJw4PR
kzWUTk7gVVPDsBJuMXlG8qlhOIcVx5QDIYw0bBRFDRnUMJ5DDa7bptEtTfTj
HzQTUXriJ6YXu+puU9SQB2VL9Q5KDdrUOGBQzXapwWrPohp9lnGaGlKFuJoa
YAr4x3D1plP3GRV+JXXullCDZferwwAy6dQEtvJMoKfe9hPBK9eBqlb/6gNa
RvFjLIrwW4xpdwlRET/Lm546nmiX0P+sEe1uJXGyMKtaeKWQoNOHNVivjeTo
tTGDNYYNqOr94sIabcUaMpRWPoFlcaSHMqT852wA2Q3lSmYGUqwxlM8aE9sk
q47BGnrzrRQQjyjWQDggwxoy8TCh8JHudtRgDWvih9TE56HyYL7CNllDapRH
DQPgoMFC0p4+w0OqAiPloIwZBo/FajmsUVHoFUVcV2dpCGuUDIdiv1G+H1gj
KTY0HQr9kAlJTo0zkgXFkCLtlmomcQbAokEkbYNI9GFW2UN0kCEQ0hpV0foj
S4voNiqb3vGs2CFT/ckkFQa0yKSdTyZThiZEqAGasGMo4E5/vZ8ikyFjz0B9
e7wWKVugqfz1bIhcuwl606Q4Zk3VLcL6GTKZHYDDNJmMGKVVeseXkAmdoVCg
CEU5xSboxPWL7cd9O+4YUR9r6vX25yydaLgezDEaDDqJLTrRRs0hg546A9KJ
1V4ePenNgGk6odsWpZ1HJzrXfcCopiwa1ZQlwz/RGSKhE8GzGAbAs7emS5ml
nS0AzPNGTH+of756LTIME80n/tySUugf3OH69U53NWWjRBkbacxIElrU1lZD
kcqPRj6Yd7Bwo+usrmznoMoAc3fzQ2uUbbh1+azTqQmvyFAqg1GcZS3URW0n
myJMXmGAizdFHdb68ArjuzsAnWnbaNTgFV0qIgXZDZVBRFYR50QW0DFUpO+a
ep4z+hd6aRtmorUCLYNe8ujAgq8OL+TRC3In+L5uTxcLWGdY5NGL1Z72caxD
JZheyix4kQp/NoyTv4pGcv+gUTJaVKU0Qi9lw8fRVrlkHEdU+IOlC0+TCNjG
0lrYnjZCmcMGzUjq0Dq6yW8D8ZsUh9U4xGwZzjdbOga9DCXR1PWMlNFtS969
mo/pXTm6s2nQy+gWtsJ9J5bIGS+AaAqwYphjsLFYF9Nhl5WMsZg/xvmcMVYN
3rHyHU2Dd8r5vLOcQ3c1I6c5lqQ9Au/oAlMpR69mQiqSZmFXcClztzpF2zDo
xlqRQeF8OMf60HSjClBDxbvlHB026CuHblIhmpGc9rS1Je3pI0PSdIPZD9FW
i24KRoHDYcOaKRiVe2XDOdJpPKGbYWXNwMIAzDv5MJ/IYRo+r4a61BGc7HFX
mmnayqDBZ+yfjQ1g0LSMUgyL9HRsTGoOSvlo3pejTmuGOh/hCnYEA2DB81G0
bTUJVy9NxZsfeZVbr9967p5C/OYbQTr4EP/peCiyiKjApU9wtHjo/YYcZVky
YhMEzl3J2OlC5RkFDNnNA4CKmwFPYC4jf86WWELs1NGkFfIZ6WAOEVb6JmLL
YerUSPyTOHVJg1QOl/rQU2r5+uafq4arO8RlmRgGhoDPeTLURKTIyiKDIzm2
x6BkpW0tIRe4dnKwg7TX+/wdm6ys9izy609WKXshj6x03cdhwzYqqMLHLFlp
10uTFZgBHDGUsY3gVY8PQBMjBmN1DL9nRNFE9iAXv3XIu4DNjAuGsTiZm+nD
m+jWDaVhJLEssvLKuKEzrnmoP5KjiMuG/m8moK+lQI/+Fhdm42vOn8DvQJs+
403Yq0zXOjgMFEYvRWKUqAZZuX/dYrvBAguKpPbxgmGsGU+Rasnc+6iYjLEU
xsjjLGCQbpYfuXxX/IXPvT/+tV/+El6bN914rhtgWgt81YejjuV4ayUjWayo
stpDlTJrbkjult2gHAyXdi10Myuq+Ss8rs9IZGdXVPNn2TB267yuWeKSBcVM
vfDc6zGwzTc8+UoMI5fNNFscyTFtdNw3j810YMpix+H+bJbyHEcM0/CIYRoO
J2wW6ITZzJ+Alj6vQjYqKTajF8ekV/h52qp4jV7IdT/+wstVw6/jKgI67U/y
SS3D0JrN+HUSjdbp6LaRjh4xuEunoyUcLdv7/earZY6DJ+O4cGAfjWNBjUMq
qLIcWslhL52C97JeJcECW1l2yvF85VwwbIRKro0ARihqRnCf/d9/+8/dEnzi
I+9ct6ZI2KxO1wqx2UcfOEtsNj/SEi/nMI20qKHomvYU1TuEUhgCD6PkRxH/
yz/91UAI3iIsk4uXIaXotOLGzKQQN3pMGNzITJQdBrjR9V00huEJoLohnGTk
v6ITOcmCgkFEJaYjIaKsZhEiwgLpMTnqXkumxjZhLNBbJoxBSoR22atimWxH
DZJTpBRk2yKlTk57Opy1NSmlzA6LlNQZV0JKqs49kJKzoqqG96elX2ptWoZB
tcix7Eyiu6BNGJ2YGmUScO8D0vRR+tmzRngfM/VcMwwp1+9SJpzOhhQNoajS
c6m9zgXQUAH2XQFj8UYVq+cZAuhMpvLai0eJllPR0xnqvWapXwFhAsF6XxNK
s1FZCbswknaPhY2adC0SC6FrDGRFgRB/q9utG8DmuadJk9jwuT63hPbU+PvQ
R60vi5U2Ze6Ywc4yX6o0gJt6GC4NeRJFX2bgHqvp3lbVPaWIwQLeSo510fsc
OZsYtPVz1CCa7RLDoO0ZxFBUIiI6vcUHGvABePTimpvoKmKFcspUwb/XX3oi
qho+lqYESS81DDtl9wDx54pBDc00Lj1JECzpJuNkCCn3UjOFxKmqalgSjt6X
kerssPCvM5F836XQN/dPjFCIX/Xw7YX4xz/7Hjdtv/rtl+N/8Ue/GP+f/+s/
xe+U1GwpyUM/6PGCoRbx6meLNNLop+lXTwAK6G8w+mGHADwJ+r0BAqCgpUYa
IXopCfXuG/Sta3KYo220wSgjPQQzMLnXNHMYoG0aFCFD2goUKznad1DQahdj
pb9LYNC//YyPrdqTZ2Po80zSoMXHQfe1WK4FtOxaHGe8qtJ5OaDSTXmvX6Hr
PcSe76NC9+fHIooGWst8egGKXpCoRqREMMO2pccLNg9/9j0EF/fveoZIxK0q
GyguG4N1Izyc0fdo5sL5476zYujMvZzGc+iEy/GOx9dlWnTWUuT2ooGbISWk
zg8mwdKH5KR9AhuHUGzQ7mhJad+Nq1b8MbXs+tGdpXHYdyxZF868D91v2wCb
9GuBzRLmPhooCzaS4uyzorTGPdbf1N0SbHntaQ2+NdhS6iMLNi4GOUFgK+k6
dQCtZpjK2nwVnFUNv9kHasb7+s1AFwxQIApogv+uNCAABTmHmAchdwqobMi4
yMZks91zqhGflsDYSrbGiZ5M65AZar3FfbjuNj/+4beuq9vG78H63Er+OOqW
qrwXHNUYR1978kbRS2EsaB+uIFpS9mUoJNI7brI4ssbidFD4bifnPoBn6Cx8
q2XgSPplGSUJHTbk9KocpTAojrQSPNYflwPjyGpPK1WFoyBXBf1POi7WZvEC
frjiITqVqejetf+4aKqUZalFKY/83VL6YFDdsDBmCBgOBQIO1ML0SK3eIihG
ckUlKCR5UMh0D0lwfR5TAomu0EFTdfOKG892FQBpIUUpXDSE2RIqfRiygKPK
4EDgiZVFAAfAAt8LLVUTAQ+LNpoDDmssTuDDd/X25ex96H61RZft1wKHFr6r
DKUwZLg5dSUlsqXCUlp5YDPAQVIsFqLVngW2rcFBIU3h3naQsNGQmz+VKVze
deCEk+teM04XcWZ5W6uX04ZotpVoLu3a0c0uqYyvwhu0gQAOQaeAh/avUnrh
4pkjaDMl+tJ+R02r8PhWIiOiP58j+lp8jxrtVQzx5fKllD92Tc5YHBSysEmJ
vmWbNZN+NzP9mqJviaolWluJvqVnjufYQ1uJfl57kYKSPBNTn+3Bou8NLFo9
bJAfVk9akiTvaaUSuJ42soyqtkJRP05mlXBaLcqj999A1G8JPi9oyvqrhPjI
SBB6AdQJZUDA7kKLolLE4VftmvyqhaxhCLx6bFcQ+Ioh8EcMwasYQjueI/CY
Ltd3aiz6u2M5Aq+NKPXdjUy/IkwkSkM5AvWDCLw+Z/d4juGiK9fzBF7rIqu9
LQWeRumo1IeiCqi/LuB9Aam0AiykAuHBPy4Zf+ymw/EaHf/t7KQavAyCSBWu
Rx1x+irpiCLQQgURdBOG6eRxUnVC3Q7MnRXkM4YgtwyvQW+HkTPiquweYeQK
cyeVfMMPQWOWs60PORJZvjBgkKprYKPM2EDSTeTbwkbZSOjpE3sk1J03FgNX
NDWi1Cwbqm58dyIHG1r2Thjk3TacWZZlMgik7NpSLnlYM7CB9oPTMWh7W2KD
mMghIPIQKAUIzHUaeBXiU93xQnzPsYVC/MF7jhXin3z1Odferz97I37DXPtI
cg1LVoPfXMeEV8FQdfx3FSLptVvZaZQZ2iqKI2LwevyFl81Sah8DqoQtnBmN
ctaQbjZ1giOhpHtDAAMOINBHPpAF3yi5d48CcTFPpiTPu9k1w2HR52CmQ8pp
qdXhJRmfPutaEFTKQZBm+ZKBoEl1v+mQb/q7OgUk39fHrmYRpLVkzUDQZA6C
tISeyGHvrRBkaauTOebPVggatL1WgqCwboIgSvViFoAPYGI4/hc/fJf7Y4aG
EiQft7/m1IH4e9/9EXp968svOMF7x1P3uqU8d3I/W1yEjwLleGhXdQYSJcri
qLTJOUNMLb9aSC5iaDtURwRr99lT1+4DtvGKNMDf9tA1KShApODDo/Wq4VRv
V/ycRR6mVD9wQaBQ5CvK+6W9IwapFwxxns4Zi/5u1fiufsiBOPMWFKoGFPi7
ImYkZO0cUbPI2oBCqrJryDC0TuZAy4ACCa0YbnntaWWXA4VCMmXUtBOpyALD
cbUETvTj//jnP+OmEdeygII+f/jua8hZk/Q3FAGnF6LzhjjWDX9Cnw3gxB0i
7fryY4J4P3Dep1VOGNqk0r+9gUVKi4V+9E9SON5PvKtazOjF4rmKVmbUfYm2
knHogGglLdqrChYp0ba0VcWAhTwDxhJtLTqnclhUx2PyRFtrjTyo9BNtfN+N
Kbc9DZUc0S4lU3Zl90SbRHvIEG0dl//SS68nZm+QaBch2psfftejdOv6nBUx
c88bIlgzRFA95inArMZjgThLe8cMrSAizUm+SInDWqRcygsG01murLfWKlqk
6cXVLkc5ZYn/zkgxvjI7YM+61kayE/rJbuK0yAxqPWPV6ejvIvrjODAIsRYS
EWId9GwZxrSuOuL2IHgtg/JP5+DiwLEzGTn2E4vXdTt36KYbRtOnDIg0k8qW
INb8iFPegL3qLpuLo01S+W3FjCLS2nNj08UxLUS6JCKNZjFSFbcXBy6ybJOa
4YSqqOLGwdkOSXXVkGqdbZIIqpVdm8mRLR1kKRtS7fO+5ZRUc+aYp6OiiVLL
5VxOtwoFkVVGqp8LmhVprVtKaTisJ9+tEKG8/9qz8UOH9mpxrOeIopaXBl1L
Ii8QSTTPFcCQlfjQ5Bi1npHIqG5ogdOGAdFQIuk0AbE3V/hvyOg/f/v1Vh/V
Abuo0rVM74Fb3F3k3Vx5YLY++1TsgpYh/YcUpSzMTZD01xLpB8FvrBzchfUb
V02KSj5jSGvFsMy7CjnQLwBjhYeD4Yn0HzHQVDLam0vaCyr+fOq7/UMw/qnX
pSD9LPmyhUHI1UgJkHzIzFndWVKvHzadlXqtBDIVz6vJd+uENsjLNx+8g14i
PwoBbjp7hedqg40rfFUQiHfMjuNvMEVeVOvEb+hGd5eFRMXQKacNw6OqugQk
0CXL61ro0s8uunBdOrsR10q/rksD9lzm/tEzUIIbPev80Le94d7NnQtTXYUY
laYmEQdBW4jZr9adLXzWF8X4Mx983eauxWlaO/3MMPnu1YYJVDbEWz85UNBb
5rHACxe4HFbolaBq0TCp+CHtKeY9p74rxkTRMCaOKqhFnvUZpiW6/0cu3yWy
viMHlf26EZjo58hnYRIpxVIwvrugvssQcX+Ba9mEStGQnqsNni3StdYDlQfv
uhB/+gNPbH7wObJ29dkjIr/FfPktGPrqakNfldQIBDkYgZNfGgHLMHuQBFro
F/Rdomut3wik6zNGr4VMr3hyL3p1Pcb/059+Bb3jvr2FpZ/dG3yHpuGC7lXA
effT9xFwasp3uP7CUUyhLj24cnDPPFlZpwxBLxuCvqyAg4gPRlHiseC9uKCH
DCAWjPa0ZEmg8pzSeX2iM3Qfx+i7pTUBDtf7qq5DqnYxB5/9upEMhR5i9rta
N1nAWVSS+/SpFZbZtOQq4EBezpK8tDXLmvj45sbzJCt/8J1PBqaVyuko0S1u
Fb2wajGNUOrswOlGy4fNKYC0NERNYEjXLKYdA57VDDtwr/R4Wn+HTXqfRQCa
d3cU7owZgI+c1Cf2kc+BYGPDgMIew+eoKig8cfmmdbW2NGEiulYkp5QWXfqW
ekz6OnQIYClQQCBUrPcDhslVMNzoRTWW9CaNqo7IaIcB8xCdoO+Rs4G2SE4x
diQF96iwMe6PMUFu3M6+mKiYkaMoWJlXer9S1fonfEVgoLsS/VFTcgnp4Mca
e7qsEF1C5jIiX4RkgPw3ng8TZ8lfnZUEyHqy2VByVyFk6aZZpAvctBa7UXXD
Aqg6Dxxivf7EJXLu//L3f9NbR2X8SveppDkqqqYFq96BSB2ch5A6DPd6RqJB
0EuKrRDohyxXjMDQTtWeSOBVhgSWDJf3YCLRpGiArqIRpJJCchU7xUusKx5C
KsRpCZbyeq+mr1REhmm+1bmMO1jGRIzdjYkYY9UJBmzSGTRd1v56SJ3pUWbF
X6kELfq71NwKm4s04P3q8f30cgLmpaFE0gABIcnfeL5kyJguXxJwSKvwla98
/gUBh7QK0r5wekUkt2SIl67zSIOiTO/jP/iqb3l2gh5bfkINGM1DfF3TZQNv
9RTsZM2I/yzJ7Rr2fCUd/1nnCeY1XJXl11FIHagvGCb90eS7pBpg0hcM4ZVD
XITedRt6gcUDFxmK2EbWvHY+R2zdrU8qsZWtk8zA6yK2e32XKUo9q1hbQkRS
8Larr9iWAri4SG2P/1MSojTrVgJ5QQw21p8UATueLwUQsOsuHKV712cTpsFQ
ph7R8ua3P0WAAPtmBYy50RIwnQ3PDlxkV17MwFJjh9YZGVHZAJu3pfVGy42s
7Opg4Y6MHQHZLWeiNyy7KjkTrOoVlYhhU4JekLnXP/Eg5i66ysuQQAiDoBfL
7N6ULMykjOcltQTC9VnZ0eK6mhbX9Yy46jOeDJY9aEjeWZY8Uf4cBF3qK6RF
GpTkbJfV34lbVWP7UUuoliWQ1TFjtSvJaq+fPeGNM/1g37QgVckq0IKkaDa0
LxDoJ01TagE4fMTtF7WgOh7CtZjq44gBNYUHzeU+fqP3BwY/sGbE+OaMkGNJ
Ca0KovhAtWcfIbzDirXYWghCK5J3Ii1JQXDB+06illX4wnG2fI3T86sid8jD
aglyoiGyeiP9aTBqwylzMGr1saYip7dcXLkSKVo9oiQLo8ARE1Lwg/euK1pB
P6RSCgquXflTFv9ICSuGJJQaFlsJq3vnr3iPxXYLzAcs5S62yBRn02hEwqvS
jZLZIFMaF0cULmB1ZHARuHvGwEWV+xDu1rcifTjDJpyjibhOFnsgccGed9V0
RVDIElUNoZ02rISyEfU7rKYnHWMv6yA5pBUCoS1LAY22TpZUtyw/rJLpeZhZ
jc5VLKWg0pkjb02L66b6GhbqX/9cgYS9rE0A4dXIl+fQ48d6ZF0ft6FOX1hP
BLJidZpsoilrmOC/KSay389iKp5VNWS5pARALMWD+eS7+dpXvoKETJKkENqs
kGlBLmXwAnI8YNshFsfPGnixZLnM3Shrhx+JlXSDyHUfWHo/LYVOCRxbeZZJ
JVeSxy+lY3HU7EoCj3DaxkFlzsFqYBftXCImEvsINvZEkLECva+EvYdYdbzQ
mOugsBkWfkPk/UBajoLM85MWj2bMgoz43knfrmW/nfXPzqQREmuEHMkQeqaH
1bxBsrB7CqhZprY00w2tpDMhltxXlExK5e5em8MtmeTsWcqusUS/bHD4vi3g
JQIpKQcNr4oh9xWjD/2gY6sP0RPexTMLRiyhH89Yy4633bveGMXxpL2Q5t+f
sgNmxCXzDxssBbwhROL+pJFwqrdzIDbQ8QVIbYEqikuSAtvkfgpYj8JakIBu
xD9+PJVVQzbRhY6rM5FGjKN1EU/8fCYtopuZZpZ7zRYZYWjmWB8pZ3WQbYIl
PGX5sB+cCllVlE0K/oNEVA2bdI+h26teLoLcadnTnqX0gX5F9qqGKbR7SxgF
DbKgYJSOnqdFvGZ0syvTDeKHqhttqfi9cjrlHczrsiHlo8qMFPO6YEj5aTV6
sa1FlGA2OKOYZNHLT5oZsbhARYGEumwxOYtgWahc6JzaLKyGewk/F3PEM5xV
nxbPrKXyxT7iyU0s9o93hCa8PVbt8o2HO1ZA6Tl7TiFlQyaMOQRtBia3xLyW
oT+EIrKywWo/w7I0eYtqEYXJLUmvGYbSLoPJq4a28KuURlPZEPO60UfX8FQt
beHDgQJczGCwxktKxiVcO2xY4wW7ZuuMWggxyGe1yavoWeQ48gxdlo3dmywF
NBPXR0F2Yxay/tR9Zx+JZMKcSQZSscQRbf0UNVHKNlEI39+CcLfA1dQAuPKg
sPJ2aWFuGJy9aOhyJWVX9i7NaSlbtQCjJblhmD4LNmdbqkGH1QUwZcP0aRrd
zBvua9XQCz4QIthE18EWL6oiDhHmtrINOYgHUc6WX51XEySm+NAAdkZKikU6
lMQWVoM8h58v0zWfBUcHNDt+Ni1/oS2GwGi+/FEzr0g3keX1ztbGNZrxDkoR
b0M0TPMYpFYvvbZI5211bUkYR8BTYClxN3gPakQHLQMs8/0NnBTt60SEgMWS
YquPGdt3lW4+/YEnAvP7QLcu3qPVg+VhCXJTLaVsAoIg6/jIxaQtmiEvrH9H
UvyttJxkqa45ANX9om+in9TrJvqIWXQ7NWETdmMAwl71U5SKfpUMOW0bgYkZ
Q98qAcJ7al6HOkWALCFtZ7CACFtWgNg8UQKErqmDPQoL6bqktJxmu4EVNKXY
9lX33d6Dhes4RDGVgh1mPdRXF5SQSgKirnKobB7r6iOv3Uuy9iJtBRK3ijZi
Zb3R4z9OC142RFEajKB+JUd83VdLAzhol9JNZEW4OIDleoOfSAwqeDWW+A0Z
NDm5hYYUntRZReHIoiF+w0ZQbDLfoAhysTdHxCNlUAwbHDm2ZXwv3IoPPjCg
0nFcZBy40qaqglSyLUwV+mBAzLbNLktEdu1MrvhHXlyzIkNc40N0Wsgu01+H
WFhoPfNnt/iZSxFQ0ZCATsZGgl87mjdzJeEgMc73KVlLV06m5aBjyFp2jTIe
tF4jnUbKipsWBaubkb7xrpLuA3fjQ70c9y7TTXHJjIhBpB/4DhWJLYDikJMQ
6MJ2WeTfTi+yLP43/Z/SSgpQrWUa0QLOflknh1y5rpS6PmiIQsFYoFEjxNEZ
0Pc7lCMEenWyfQCo7bzElRc3dzsbRw90MXu8jc5LXYkmjivjsDhFXhswNLDE
2OyGtaHL5/1oU95wQak0yA7GOWY4EK2taUXY67CaFFlc6QaaFOKpu9FOd7tv
mi0BIM/IkZz15bXt6UaQ0dwiEuxuhWTIh8k4p1MXKSZo8IMg5RRCoQU13V/w
A0z5a9Z0jxss3hgwVO2THBU9CfTieZ40VrKev5Lu1wChFbWS4nZYUzxhsGl1
67ysczrpJrp+lj1gKVonVsgm84Wa1S/5MeGvQq7YmtWJzLLD/BtgTDKxunaE
hVhP7JSxZlWDmCx8cFKyZ83cjCJX20N4ZcNqsIbszUg1VX/oO9ICSC98OmOY
JyXDhSvb4OPKWJ0ikakJ96At4tLW1U9yGyd905o+wvTMckRQyTO9Moq0ZCu5
pT4TBAkT+g4TJF0p2kh1lUloas1zyph33MnaHddws1UtOKFZY8718H3Uu5Sa
czcpc5zvkhZRg5utrNGj25Odhe/5drWJEcsEFHD/rk/IIhrnIZYNsT7DwxPt
wnc8y6kyzCMJ26w/cJKxV7LVHTe2oYXArcJEMqYyteY6oBdWaGG64085z4wO
ksQmde9dp9be/T4eeiigAzdw1Ty9Lt+8ku1ERPecGjUWnqdgnNccU4BVkoGj
VUyHH/iFla5rDtOCCn3feK9G4lBamGUAblivVKbxArVepVG//I676PUrn3ws
/k9X3kv/OjFO9SO3sj87X3/kOw5SAjgOWR1z59RxAf26llWv7k5xrdJc8p32
7Em4kFkcnsghjgzlTCSmMdwsuvyzrz3jeyzK/dLdFgw95DOiicLG3Na3nNtS
trsqdVeJ37W2SqWYmZs72Gdm1+RmMbO1rWZWdctd17lbkaAMY19U64deHIVy
amXb81nLv8FV31NXesI0FhULGD31mck2dVSmMSA2o26HTW81jX/sZcb7kYlx
sr1JHKYeS8LuArtr/S2tcl80eYWcycPf9Jm8ofQ9aYKPrqNuarRGaKbPWhTQ
HsuzaxEvN7XuWsdH8r/uC4Hzj/SZrDW5oTAr9DF1hNXF2N2/1G6T23Xv0S4h
5gYlVBgkllrakAGjnXQbJfrM/f8VvnEqSawDd3U021wLsx1+eu7gn+NSDX/e
wl/fhM/IZmuFzz6b/SJd/pf/+ul//fS/kE8fwaWwmvr/j6n/96GzpApidnQn
XuvpFj+qvvFK+tVnOkZaE/GJ3dc6WL/ulvc7+Lvfr0RRdlAvqQ8eTr69OdwY
je84/RoHef9t9zsIejX97Q+rbz9Iv4aIUdyud+JXrr61wg24XzH4TAMfUg08
kHS/MTE0S4Nv8LfdNzd6B/+i/+Cl5Ivome6SsjQUp/Ieyap6dZOpSkID/MWN
KIm2h7+9nJmY1SP3Ov3hR+Z+34x6Qggf8CPzt+dD47OtTtyu1OK9cyvudrrx
dScfKsR3XXxDwf924sBNhXhv92Qhnp1YKsTt5qg/0b64Fqkfn9sPInFlxE3y
7PB0vLrnglvoh0+gEvyOw7fExxdW6LU8uZv+P0oSWDSPBZqZdN3APf4uaTZ4
8ZyhGFYPd74abvCD1Ap9lxJXa1ESQZY5/E++3ReTMW9MNNrx8dnFeLW7FxPh
xvzkLeu0vl3MRfz6+z7uZhbXUvyqW5/HrIjY3ZY0s8a3ErerLdym+8oT51+N
J46euJ9u301H6vbd30WcJ5bB0QTcmiws3TZEbiQtsOvhll9IFtO64wJG5Bau
Ui/Ey2OzzkY7PrvL3ehBvIsP7L0Qz8/uj+em96xzA/+bn573J81eGak1aXqe
OH5N/PDhU1iGkjFD7fQMXeFVVCnr7AxhZiYxSV5IijRD+D984+ZkFki8MQvj
/Vjjnckf417j2fZIRDdcwL2CKZaPu7Gfd/dwg7OWcK3TLGAGnnndV+JXv/KT
8f7lc/EN514Vn1q5ZbMz5Eu3/8Z38sP+JlJToaajYkzHEF2LNB0OPNTadem5
2NBz4SRkjgSmRG/PXXwkfujRj10JM5iGwGQ/Bnwb/bEnvNnWKC23u/EW3XNR
37ObIFxrdO9D7k/f+NiP0uuxS+/DHFzhUf61n4J1NQqeAtcCrkWZBpqFqjEX
w2ouHIdQUxfSghvmAuhwc7GD5qIS5uJt7/41ernf8XVVe0QjgnTM9MPIs2pO
REKcQLR5TjBFMicluhb1nLi7xLUk8yKy8T/7eXkvzwuY1JoXIP3y6pudvPXO
S4fnxb3fHG57icvUX28O14ZkTqJFmpSinhT3zl93LHqXPopSPlPAznw/7Dzj
/3iN/rjawHQ44U2m5uoT99KkVIypKdG1GN9z05uCJvwf/T/kUREX+3IwCmBd
4demCJRCOc3gHctHXXO9s9c0Zm+EZ4/pmNrL7LEnVYTZgyraacxe2Zg9dty9
qDDeFvrh7Y3JDTh2aNHsDRuzV8uZPSdYV8Y6fsfCf/Bj8GG1UHe0FiWUfkW6
LsSd9lghPrb3jGv93msfi19z57P0kkcQq4m+ITPPbm7NeW4b8zyanme6d1//
7F01UfVLxvxWeH6fePqnN0dGZ9G/BJ1kjUg6d/YzyF5Pf5xgF2rL8Zk1xQ2e
4kt3PA+Nlp3izcW5A9Tuv/dTvCMjoA2Z3E3uG9Mb75xdxgzH1564Xea4Fr//
yZfdlONxbJ/44p/Q64WXviNTfiVSaekgGc2+Uz6sptwZXWrKe6yNwxlhgwWx
m2cduvPQ0VfQfNd41lmB0M/Z5LuBE3b3M2Qfz8w6M2bHmPWWMetlnvX9u0+v
Srt/5f9Rz2wTwfZmMYeMZd6DaBeDaL/18otusjD3RT33kX8eXhlPssQaiMiv
ZWTNkVudpz9ZhL2T3fjO02uOS/wiwA6WRRhTi+BsYDFofMTNBzuWx+bo5SZ/
l7EODWMduITUTyuzy3I/s30iI6PlHhkdao5yjKQoN05TztK3GilWHzGWbyhn
+ZyyW5dh//f+H1/N5M3mKA0RNwy3Uu5rWCu3SrRSE8Z6lelaCZhx/6eHfrVa
soOTs32XbMxYsnHD6NqfDJnk+InjN9ELn+40Fq3Fi8aWBv2cTMZECwfw7O/n
hbTCoiVeyEaUJu8CFq4QH9x50lHuzacfih+47g3x424N3vrQx+n9matvjd/6
5s/EndGZ+OIrXht3l66SSaKWzyUjcv7LEK3vqLG+nZz11Vr73/l/fPk5AX+z
40gL54+7tZ03lrGWWUandfQynkgGGOwivYzH5/fG1x6520lIsoyO6mgBJxK7
KNiLPuVChWeOik6GZTw+uxsaR0wjOFvDnSlawyFDufOwAn72zh2jzo/VsKgV
QLAKLV/FujYNi/KiEgVo0tl2Rzuu4efX6ZrS4CIIAmAvBW45dkwuQRRo4VkY
8GzQh+BUQSjGxmbiz3/2d+i1vOdY/NjrPxu/52O/G7/p+b9PwuGEJCUcp5JV
JHF17hCUpiUfoznyoe2Sf+vvyp/HUA7yIY9qcOoxsoSk2V9I0IYuCbCEZHXp
qFuWVTdKJyQFqMsCCU2JxEXW0InNJEuMI4JgSevSztk2bv4mahxXEAFEBUIz
Q9dyj5+Ob48YInQsmd2gsvbvOVeKb7zw2lp8+thdFbytxvPT+6rO1huv4i8q
IHsi6vPpxSGOc/fqfYaSx4abiuWxKcyUJVrfSkRLG9WiDyBOkeeWouYWhweI
VJFEatfCgfiDP/wL7p0TKneFiEGcnFi57+Ja6Sde6v7pBqBenF8p0gU3myXM
ATlXuoJJ9m/8jfkNXr5MAmfA86OmRMIsARvKCNjo+KweK5dUpbyzEgsY3jvh
Iv5ppAWsQHGgEtlkUcYi8WqurK1skBSkMBBXpMr+eaMFiQuMtocP+yHcRO74
IXJPIIAjdO3khYt6rFL8i3Hgcyei0FlDyuJOSyxtlI9H3Ux8+rEX4t3Ti/Gl
W94RHYzf9JqfwKNVH/hIvLJyQzwxtQN/x+biWsSGExyzkkZmd6+nPoJJiTg3
UmXCaOObiaAQ3440hyGPUyyGYLy1R15gAfRXqDyn6kgAy3w1xFDKtcKkQv2N
KQG8dvk0CeCUIYAVwzrlfQT6FnxsrgJkkdapoeMKJoSOR6bIxSf9t9UjlGmO
nbziXuihgAcndpAFC9GdYwHGkokAj7BNZAiw7P4n6cWE95Pe4nalN22kldmh
UcPSDo1I92gi3MFs2JmICWliiHWZhRucC0GGWNfoOrwt4VYuF9n+JR4m/g9P
58Uw2ean70IEHQBahtHt99pWaSKXHdOd3n2UQLB+6em4O70E4Y8OEBDKIPD4
0iNvjZ/8ez8ScHw6JW5NhYbRQNi4hb0Tu+Nrd5+Lu1O74g+89fPx8s5D8eXH
Pha/4U1fiW+/623x+YuPxgvdoyJm2lX8OeqiEsCyMDIdP37xoXiXkx9H4BMM
mjOHborvuPW1BJcygwa24l0PvUBwqWZAE6lgy/4Ejzo26Im7FIg7CiZqexwP
45vdT+ExWAx43bj6hPs/BygxLd0HwFIKWzece9V6Rka6RAGdyfgdT3/B/YW7
VuInHn2xEt9/5zO1+IaLD1Xi40evq8a7Fg9V8HekNqsYPG2d9YFuOeCVpgkG
CKBWGhBq43QtadmG4O5R6JXYSFmhDF4ajI7twqptDKGYQbuCV4iS4rPDJ27E
eFJPXWPnxc0xrqNaefwguGrxMBWszGEyvIJTq/0jH5goMQ3shGaIn77pkQJA
5v4UMHOGEAFsH10rAWZf+7X/QC+ndzZHJuaUpyXRdrYIy1rv0I2dmKdczRlo
YyDv0Xufjj/3/m8S8txo3afPvee7UZ3QB+TloC/6aX8H6zLRJ2b3xMe7hwrx
h+57mxsAo5BAOMpQFDcNIKwaZlQ9B4oic0+urEpwhd3zMuEQcXpY7bjNueFp
d5u7F3Bq6R23PhO/8XVfiF/18Iv4vRBfOPeQ6/bIoevixYVDeHmNvCV4ORSJ
3IdHcX8sazdRyyOw/OF3/2J0nq6E6Fj+7l3+n3YGrc6g40dJF8m1ZLiYaJ1k
SYS1J80uZaQDUNVWCeDqRD3qi8kJo6NKDiZbjMnhkan4uY/6Ayl5DsjkZk+U
MdmAcRfckhzMjRuYs4YhmKsZbgjHoWgpoNPuWD4Go67EmHPwgwdCaFumaxEO
ipPEB4E3N0W4FgmDR05Ruo7LlCWoQElRzmVUaHqd2oNfElTdnQdvKhL+iqT1
zhy7DvhzX8G1GL/lNe8nvAGFtXwsbmgsZk4vICxePnxtfHB6J1SiYPLttz5B
7g7QOKJcG/aWceJ3j03Z6sUk7hzEldqv6pBIaPSJkFrAJMLPuPt9jl/vPnRL
/Kjj3cXJbiF+75OfgJgMT8bPv/0X8XJfctcC0Or6Y7wCrvRygHXTBLjW6Uvo
0yGWXhqzeO/w6Pil1yVf9OPFlEFpEgovMBYj5YA85//hhwvQjLJz5ZZ1e1iE
XB6/eOcVNV2EbXgICRa9Ezvn6CsTPtJN1jOOm0Idwnc1Dr4y8EQhLqh7RuA1
wV6RsDfnbE78hfQI3KH1pEcbYBUDYCpwuLkwDCvpOlFseOQIoeyWlWtIkwFf
uxll8KScNiN8lRhl6OvyG/2DhNRzBMQvZZSVA4nNunWfHZoGrNynHmKXr7ok
hqVr10NMDEyAq4lrAQhz4gJ8HT76CiEjjbHocwm+yHkHvp48cWt8bfcIdF6J
8QXrE5EpIGtY4Wtl/3lgyrGdxxfMUWAJyBqia4kiVEdP3ib6Tosqyk0AqrZS
dzA7BVbX77ngGn3qHLK/eH/51sfjT73jp+j19MPPATTjCbSqKWhBD5J8O+vW
QSWoMB1rYBEC5GFwpmCza//xoOoYNg21WhH7djWGDT2w9PKLW8CmRBTvYBM/
8Pr3YwhdhRyJcJdYALD4Evq4eWmFAusWfFq9cQ8Nn3IGPm9410/ixtRzKWjl
EYvw8CmR+yY9O9xaCMp2qhCEeEPBCD3sS0BEGhsgevjwWYQh8DQSAhGHIgg+
uxSIlnYfiz/903i+gYcSVNftr3x7fOHmxzCNPrbT0DgKRRkZMxHYqTKMACto
JgCobMBomK4l0lT4jDVVJskC8Yk+RSOosljXSUkBSEpZ4YG3PWgaMiIgTUaT
iu+6oeBapPcR15DJSfiYTNwhQNTIQEksx5MLK8iLnUNgHNrK2ZCAkXvnrzef
v4dgA3VFiguAcdbl0u6r4retf9VbMU7jnVq5pWoETfiBPgQL578lSCoASGwC
qqfJBIet/n3i56Wf/eN414ETi0mTdmrBfYZuCtwNhw9T3QAv0s1wPpYKjKWF
pSOEJbzc7zvU3cMV8yhKVBHwpEeBmxUzdNYA1zBnVfQoFLgknsGAIvsMQAKg
YP5dPncnHlTSA6iuAhTie+/+2C/gyUcEKIQ4nO0Xv+tH/pvNXftPHVBUlygm
r9czZl/dMPsqDCZ2vwhG48rsU2AyXTBfo0DbvlcjO2OifSj6jkqD0ULMtkcR
DTtxK8bm1Rnhr8IovP7AOQqhAH8tI6TSMmzGIWUzHj97Z/y2l74uoQP9MDvW
253Iq7dKj83o0AgUVhiQMB0PO5/N6TTXuAckAAp9BiiSknNTB0BedfxmAuQX
v/6X8bnVS/Fdj70vvnj763r0nA676LMN77/zmZSew5OH73vyvTSFPpTq/YiI
dWKfQEwmGEo1rHxgVS0Dc1iXDZZ8tCqS3x/mPoHv4E0wf+eP/grRHaNsrR/W
YWXqcOtWWB/NwboDdQHohq315EfWZCLVY3hCDKaUsTn1ELYCujUE4MXZnrhl
3jXP5VDHUhqzYQB8kQG+f885AjSgXWWAwwx96j0/gxdWzedQw7EHZHzAp2PJ
JSl1iG4qg3PMOfmAdc3w6abpWg7RTbY3FTBHtgKz5KtIFQKIkq/C7wiuOHXo
OMhBMVPfoCKyFMt0NmwAvla/NSOA02Dg4z3ULSA/ZBizbc6D4f2dl5+Nv/gr
fxWfu5E2aHcVwDwTn4JhS8ZUP6O2zsAHD0DzAvIVA/hjdG2QZr7zgWcI9Hi9
9GO/Qdr4PS//YfymF39JNLMVpmGR9a7soy/2YP9DX/1nGwn2vQ6TcM4ErlUj
PlsCLXg4d6UjPpKxqtoR37KZg36NyEkFh5GJWUI/Xjfe9+RqMssUKcsSgDKW
QxB4KwKYYFdW2bDunUe9IwC5MTlLlbJLEuWR7LEylUO/+jYt1E9kgs9uTAAE
H5fC/LaT0I4XfnfOZcOIoC4w4FUE1Yk5rmWt0eFvElS4lhBdkB8LVa5tY6fO
UffXYxzXGfLQ74B3AnlvHI87cjl/4wMQMtqEruqUKoLzKxmcW2npCmtjXemg
9G+I1WRKYNThtOLFwqTpUf11gwFqRia8YxjgTc6pILsC5IMB8HrNs5+Ij565
9crEzE7GmsThpsgFcVRQzLHJm8oEGB0eJw6oMhO898lPSBjJaQpci5oJ3Dtc
q8EMABvgpc0BnWLvDE1oeSbiRaQ2Ey0CJcBq1zWGTsZroIXopFBHZ3Itg/xy
8ueEfijCFkMCniSCoADDvAHFKdb7+J6g3r02966cSyld7+aky6rFxq/k5H56
+6oQwxw+cWMw5G9/8K1rUfohwhJXKhjGfGVAtE+pgFnEKssHzPyTnjXUWbm3
jMDtvBG4bTDU0QxgjtfCbn8O9K6ETa7IzCmrfdiw2puGCzxJ1wqh/KrTt8fv
/Og36MWL7EWErL+NKMoWJYfCtgTlqGdqG5ArGEo3W3ySQT0Hz0jW2OUOqNd6
v2mgvmIEsUZ4CG44VGuHzhvsdmMI41PzQDxgR1f0++hbP7OWQKpBQgMzCsjH
79kEDhv+LcPwrzPqObBFeO8w6mEP7D14mvBeZtSjeUF8xg4wy/r4GHz6nsOw
Qn0poN45ArgFLpWBqMZXz+2E+R+A734PuXQGfikBaPDr29sCfiULfBj9G2Fe
q8Gw0rttxN6vbgv3RcK9syhg2Eds5F8Zn1qUm9J1yaRNsgQgRn7FuMW5LQjA
9Xtlan5JJ8Kd6b0D4Kc+YFStdvdLVUJkMcGsEVxuMhNIXIzZ4Mr4dJcttOT4
G8IL50xHDPu+ZTjvngaqZNf/kDMsvvydf08vKP6jV99CpKaO+9+QfqSUUZUt
WLU+WtGW8kvOdGQi8hkh98e9ur5ppIYqhps/ykPAkI6evI06rynUL+07Gb/0
ZQwLqC+R7r9z7fl4cflYN6CqygFNL5gywZwZioYZ7c7yj08dvkA4bxhxtyFG
O9z88Yl5wnmFNb3S8e6dv0LPo5IJer6UBOW6hiAHk/6aDOLZ/GfEXxmrN+NL
+69KIR5RAJ78DOJ1Zd42Ee8/cygH2p3o41oUQ1+N3kdU9UY7benXcpJWvX1W
A8sgtPCGd/2kqH3q05+ZSRv/JYgX9L30V90W5JNo5eve8yW0q6KVvAXhOnIk
cOV0EuG9baSUpo1oeItQX0EgD3o/2ACcXvLxYX9qjFL9Y4aB3zZ8eh+wK1Kg
7m7nXDi8u4XCtUgc4HB/Zf+xVU6OJTkk6OItypVKhqqt5uNePcqJqtw17rW2
bxtB9pJRpjFuUE9F4Z7De1C3hHu28+N3f/63Yet7aaGifqnHo3/x3mG+Y5j1
LcPBbynII9TuHHsn1B7yUaLgA+Qfe/YLQckz5IOCxw8/ho+GJYlggTwo4O2f
+paY97po4MD4jMBeo/74NbevKdQX/ZUQAt8aWBhiRDxwwJegbgf1RX8lI19+
xhNhSnEqG/mNbQG+FACPLpOY3sb03B6rR6kNJ9yf9HZ+fVuQL6cSFEJnKtfG
tSpnA+65VoMQP2zE9CYN3A8x7g8cPQusB9xzNmxeCQFe8OrHDXt/mEF/27UP
EcgB91EGPZUo3vgAwb3EoEdbT7//57H+HD/0bAnAQ/UC8A58onJdn72VGBXD
zq/nIz9dXdBAV9ha3KPxhwzkF4whTBjkI8hX8T2oXkI+7P6nP/gN2PqYUtZL
PRr/LkckHTc8B/mg8eeGp8me1/CHV7/TeT1IWTcV/Dmw72bDwx9ePjQ8gF82
NH4h2Zq1ujX8yyn4s53PxlSJVhH4v3HXAQBfOACZvOsvPbExt2vf3yUHIODv
NKLmALwPRMY7y9aWOhPkTGljv7ktAqhpvqE+z7/iVaT13b+rYcLKIbQn9v3N
SyshZ6FvS7qCn8F7DwLydc5CYheSGVQRfFPjdwzkjxvpumEuIlHBPScIuBaR
tgukpqO+9yyv0PbQMcPWHzFc/g5TgAT2AP4yEwEo4c5Hn4uvue3VmD51wjNJ
hJSPgEdVeZZG5Ijh/Nf6xtv6ksKCkkNx/quGOdDhnJ/K9umupwzrv8RcoCJ9
rmlcy8H6d1aAeAAsrpRKCVE//AsyeO/5u+LHDp8DEQwZXsCQ4fM3jEhfwzAJ
yoZJwJwQ6sKS4aVT8xYnSCJA1zp1O2PxM6eupyCA+y67BCVKIjrjAC/8XSfF
DSR0AI3mBi5g2ZIbAKoHXv9+YoWS4RWoXWc0ydobaOXUEuDv87hBvILLT35E
qjuFhiI2DLQj0NwWN1Sy3CA5Tc5oUBccBwz0wLFAIoYRI/Y/bsT+O2wYSLJP
DAP3+5XACn7y8Hr1kbP0cp4A9tX1eAUjRiRgWLHD0t4T8cd+6vddh54d2CuI
X/ix39xcOnB6KWGHVHHZnXtPw1YoGYl4q7isbuhrKS7LsIPOweMFVqgZpsII
XUtkscAp4K5mDB4qGBHAGrMB0v+OBYgN4Bco5RUiVr5QdjruDo+7thwfuLZW
nQeASCAIwUoAdIzgQI1pAfVtCAaAEJqGqVBlclCmAmoBCEBsHqTqAIQKYC48
/sLLQgWAtlABvkumQR4VuO+uff9U0AvPNBWUDVdhRPUhOYChbVGAFYQoxV23
oqrO1DNOUhTBfkF7WwxQ1DnNEO7gIkD64fDsqqaCElMBF/UQCYwaEcFRgwpG
2FJQEUGxFEL5adKvd2Q7tUb8vgt30GvFUYhzFjqG3zBmBAvaihY4T+BE1tMC
jAjnN+AF0ePYJ0YQVHeBQcqGA8OzN24/ZAQTrOLTjrLnI066zKoZRvRl79i8
aTKMsMkAN+a+k7dI3Syxwpmrby2gI+ySdCYDcpN4OWoaY/cGf4lUpaQrOY7Q
YMoQZwKUwQ4FS5h4oLTriCjj+GwXVFFk1nAMQqV74IuG4WCMGPGFihFSbDNr
4D2SBglrlLQxgSrZCQUxKR7whEE7tOBHBMJgn4KL0iiSCL6wOANN7dp/nEwO
51ukOYPSkhJUHDJS+R1cC7QPsEY+AOCG/5RtsHDT0cj4yGQh3rfrYCGenV9k
sMNdd1AMuX8OymuSSfkifmxF3BmRCkhmOKecwSIZ7e8IyeA9ko9cjTuqmBnd
wP+w+NJimGnuJkpSKIFhnM0RGEaHg8EommG0sTFuMEzHyD6OqYJ2NjQCw3Ak
gn6mFN7BKo5d3N/hCpkeQ3iCSKZt+CcTRoiiZcQla+yliH/iLBD8S2NYSO6b
xqDrg9gUSRUGar5pGZHDlmEliD0iPoN7bQbKKVG3t+8+SLTjqMbKVwxxhYKw
Dj4fc2SwPNONZ2fm41/+B78Tf+FzPxe/7z2Iajz5+Fvc3d552/3xiauuphf+
Bp0VEOcoULFUhYYMWsRL+MpxVY33jOrSCng/r3n2E7ApKPah4p3a2+F9+YQH
mDaIed7hHEzwlnN0hKuecaKNkDNYqm44PmMGV5WMWOgQc9VrnvqIG80dxFJ1
FQyJuPhyvC9RFTVRudnBNR0z3aPoF4FQYS387qybk2wgoVKCC6bE75EnjDNz
ERJwSEE/5qolzFUJzAVoK+YqgLaw32HXwfj88Wvju69/IH78vjfGzz3+vvjj
b/9cIf7JD33D0b/7Nb7+wq3xT3z1O/Gf/OX/FX/nN/7b+PXPPA+mCzznnI5R
5gYVlXRt97pVw2r+hHu3S3PaXismfZBLhXKqEcU/4kcN/wAcx31QPlV+xpM+
QoalbORVJ4wMy5CRVx1njlORVveuN94yqeYPHpXmOPawiN1aiuMOLx6BCeXm
rzcG0zDCsHXmOJRfLO5ZIY5jT6tnN4eugNI2VcXIijaNGGnb8LnaKiLDnhAy
o2CGJFXvue7yoRPEd87EKvfN0dRoFPD+wHNnHIk8evGu+HM/9F7613FbI/7e
7/+7ApivAOpzXTvyA/XRS8jPER/vc3WDd42ymZbiPdwWCO7Oy8+22RDDMIXb
xHfzElqW/aRkhIHc4LuVmdk4mkOcVlW+2+Jkl3b+jRvFW0UjzNsxrDBhNiR6
RbLGFLdI2UYOswVqUsxGS4LwrjDb/NAIWPKUXf3BpFbIwFVTgi61ID6jDbb+
lLYKMVnk7S96MZUVwGPuy8xkRGR1uhaJ4e669AiozA0I10qgtJOnr9GUNmxQ
WtVwD4cUJIWUZfycyNkWpZUSkyrUhLN1CBqliLTuw6o+tSjNyIhJvlgLANYh
JI/KymxbHJ1GXMiNuTeE3DKSRxNGCJkpTeJE9DOh1p8dQzcHntJWF/ZSvSjI
rGl4iFNG4KhuhJWbTGn7jpyJH3nzp4jSnJdIY9CxsWx5lzbbakaQuW6EkYaN
UG/TSPgWuLxrrxvTnWvPY23ZSabDJ+J3nb2RXmzLmYWmDbqWA8FhrCC5265a
xX7NH8JDQ2DYwaBzHOfWRJjO3Q5beT1Eh84DgVVofM6DDCTG3qRHb5KYBoc9
fPhqcSYrRghKtqGoLZZuRL2R6YIRme7kGGh4PzY1R3Q0qqRJalEu5tCYZKjw
s1shYM/YFCgMJxa7a1GojFo62ZvohnuZw2feSCvJRkfxHAvedcxwlmMqYqsO
cxY4DOYW2KqWw1mOqFqMdRUGFs4Cv4Q7Zc7a/EE4S3u0wlmc/iYz7O+as/pH
6dNpL8sMmzY4q2GkvaaYs1RcO3CW1LbjR+c64FqCrcqGq1k3XM0ZI6pVNYLd
LeKsig52a3dzOhEzGgaiTBXDEqsbtFUzSuSsWvSGka0W2hK/zVllQlubI46+
hbZgluXvkEkiX4q24rfc9liZmcv9SoQE5lqga4neHzx2jgxDx6LNzGgcQbkR
4loMeTP8+FNBKnKSkhOOfU5MVsWdrBqhr5Kxi3WKrmUdMBeWcq5m/3AX3juG
im+//Ka1RGwJGpI+v5jOhTM9eS8SeXH50Y8f51h5DkmlU29isw2lmCqF0LZi
quPz3fiVp0+CpGaZi+ApfuAjP04s1MxwEewqAJZPqasbAekcLko5tdvlIm2j
lZM+wEPUD7ud+J1syu+Hi3R0zUoTdBQnSGC9YqTgp1WOTQ4Cqysuuub8Q7CZ
3N/12k8l5qKF3cmZEWy3kc0Ae0lz0VtOXk/hEbBQzXAJ54ywV9mIsA+x/YQ+
hIfwcu6hhN0gWFTeoAvmtP3UNNJwFSPsZZXH141UeUmVx3OxXCr0uDA8AiJC
qNBdK2RHISsoL7ajKhkukngY/ERHQDXDivJcVCbjafXWh+Mf+8b3iJMcRUbN
9Kg0IQWLFz9NT0g0UkiH33CyKm5gzYhvFQ0vcEbFt3ASxbnVS84z7DWVhIi6
yyfiZ1/6SvzYsy+tb5+IUk4fE5EOwAciwi4e2fFz0kj8idWVJqIUPH2SvUJ5
rz0TU/GHL90d//KbniJCuvv6B6YN42hYERLiVSAlNMkGUtWI7VQSRyjE6tQJ
UsGA6zBZcAZuW4RUSRy6IAJDiiykvMlyevMIychb4j5CH5r0soSkqwFnjaR/
zcj0zRhxeCYkqv+XHx1/i3ycyslfb4xKTseAgwcCAhXNGzGqkhGHH+JSQRWH
d8KHaxpmyqmleJUjpJCL01ZSy4jJl4x41Zjh3FWNzL1U84rzxE6Trpu7sGMp
xU8wmMBJmdM8ShkXT8WwnH3myekDDz1DcXnQ0iJdq4Gcvv7b/5FeD7zmHWI0
ofSPSEpVGQWr6eIdr1nLkFR4WhHICSTFPl7dCFUVjB3HlDD051VVyNGD84f/
RJQezDU6PM5nnZD1BJ8PQXnLoirzVSyql3/lX+FF4BVvIFIVSMJmUj6g2Uz7
fqr4U4LzoN++bJbJSpKJlmazFLYbyqzCZ4fn5+KfWHu0CEpzPeAtu37RJDMb
olkcdXczgWs5mFqK1Vyj/WmNdzdti9am6FqhsgbJHeCF7zm/crp/WAxm3mqm
u78zhrOyCfqWJNNYNUyuOSPTWDEyjbNGLUPJqGVghoPwhJBVzXD/yob7t8AM
h/cwscBtBSMKP5zeAaEZDiGs1fRY0s/NcPRRNSywIYPkCkaZ5IThCpaNCFaF
qU6n8NLFin6KwGzguCJdS8ESYwuskBPEajPDwTNEjArc1mWGA+PB9BKG02ZY
Lccv1AynjtqiU8KWx6Zpf9wqSxCoDSTnqa6sHUSppHImn3cKEYkXdsPLsRsf
ojlihamzGbfgW+kUm9ChjuRru07oUOw6pkNQ48B0WPJ0eGVqfqdMS6p2hiP6
gQ4jlSE42adIgw3Fdn9G1PsdYN85u87dh6dDx4w0UyDCCaZDzBKiXSDCKbpW
LTokd9P97tr3WbtI/fB5hMBOcHgtChxK8qedrSo/wnLiXyyZhOTYDZ7ICckZ
VidVZiBLqflSF6GPJGOr5o3NBxdxdnA6UztpcGs1sVC7Mp5mgoyQ4awaVRw7
mFtRN4bzYPzR7r0ZzjnmVrWHzK13bxUHu9Hkzkporc7cCq4Fl3pW7XVnF/lQ
KBVaoxenAkaZUqVOTFOq82S7mSHQCnMtaaju1Eaj59OqTnKGum/JBkwa3mzZ
CKtV2WCMEr8RHq0ONCLZmdBoUSJsMBTdbTjflQtNVSRtSBmIh5cPUeB/J9Fn
kcL9Tz3/GVCne+ev2kiscvxfV5Ixw68F+fAFGv58xVV6IQfQqTZaRJglIkwU
ZPDu80IwBQvgyAKRZFmMQI2piOLiUTFQpHu5Vej1+oqczNMhcUebBfCmlHVg
TztKzrJb3JaPnAZdur5wLYYsQlYQJaiWQ58p37ibgEf840Cfrz56LmQmTjF9
Kl9b+8dp+kwVudZU9GpqqA3KdCvm6ROuMtgIczWmZozrOBwU09YkZhJtO2vR
tesjW2PTCwPRJhdTEDWVE2oqpUxHOhnZcZMDcrS1InStYsxNs/bE8Oupzm7E
iDbWDFprGXNp0Wxty3sZG0ipI5mjpDUlpfg+awnXWm9WpZpY8ZsZWqbv8ll8
gZZ1+e4C0zIyIDBxQcgFg5Z3GBmPchJlDDKgDsGnvlcX9kYNw6kvGk59lw++
lCijznIIJ8Oxv+a2VzMbe0d+YiYsmwQzqG/2kiPLxu2wManSHVLE69yKXue9
aEQWa2oTjmQ+5QAOHW3lVAdcBHctk+mNz1X4EFsbenIZwsDKRXdteAbWRmyF
GVhvBuplYB/45XyG8s5byjuXJ9x6c7SoJTfqyT9KzcSw4YhWMjF/gSLbqU3D
RBW+VSZq4NszN967NgjfqkLewLePv/ByMJ66iqEkKdKfb9P8XTCSLM3+xKtP
4wD5wm5tGG78qFFxssAKC+DP2oKOtLKEi6kJ8dAORxBg4sE1Zz7ytTDlYPkp
PjI1aMsYVjmzqBmLcSiHWo9fvHMAai1rapXAQlT4fsbfMBJRUsjTRzdYhTyi
5iL1w77ghqbWimHxdula0clkXfiyYORtykndS+hySMlsxGHSJjFqRde90IsD
CEsqOgoCRWpmXG2a5rSMjhOsZbrDalHo0ZGVadSOcJAAuRAQ6Jmrb41mec+B
fhCc7Dtw5mGjTymvc7Rxd+yH6uxwsGGfOn4+3jM6Bsp0d9KbatnFVIlRs5/v
JrPXWC31GcLo5PRasrQ015xpMd38BlutSLugcgWAdhp91vBBs9lPxYLw1mt8
qoqyPOnFVmeJCfCxZ1/KEiAVZUi40SLAMhPgyMRMkN1Fxp5OxmyTAFMGbJoA
U1slyobj3mIChCUq6kOXrxxxroubqEgsdjDPxVvvh6UTCNCgkvUoyu7+TkKo
zBR91deo0X/d8BUcUxRAFS0jjqrGtpoZm7F9pELv8XkmPtB3jIOU+GTYuNWf
zVI6RLMZSmE0m+nSmJ10LRGbwVDkUpiukeyx7EIOWxDpSyi0xTloCYVqF53O
gqCCPfcH8NPxBB15OQPRSeOZY9cVQHEFUB67xAtzc/Jyk3nypPv4lXff7efY
Wa6OCMeYB1WJnxiS4eSoZMClVeHBI5OzMCCtjHWHt4dJYBIPkwMo4u6CLgUu
W6XACKw69987/vwgTT5wvaKDATqg2lR7t3TJ8H6nBXVSTTLbJb7iNt5w6nh8
cHIcduaokRVaYh5VMVM3jl6Ts5TZPobX7oMra4lESQ3NStbjbxJ3VohLlz0v
UMKWjaJpwxEdNqrZFIeWmUNxDDWsR+HQ4xfugiUpHOp+DYageixe4LxV9bAg
3lgRONRxXpAMtX8npIBKzKF8aE2KQzUnW+WEaQ5N1beUDO+9bXjvwg/wKjFB
mK5F5jC8v/TaZ+MDx84gkFgZkEbbTOKSV8cy8RJFM4Zx2Opj8TMl1XNY07H7
WmYoqVmQWiMZyg379+HOZw2/I6ttJciKKKYaxYCkuKZJ0apxFlJEShxbN/D3
zkPeaeSHLFJsKUlqV6rYjeZu1pOilORoB7kAPiyADgvgwQL+I+HByCeLIm8n
oqu5OWxBO3mSOFBe73zqDa6hz37wxUL87S9/uRD/8Xd/rRr/zZ//GazvhW78
e3+6GZ85v0r8CMd7xMgvCV9KabTiS5IhjkDCXrRKDbPbLcCji7OT8XueeGX8
r7/9pfjXP/+hePXcmWL8//31XxXi/+57iIRe+cWvxxuf+UT83rc/S6/HHr7f
3YX7K3iMC/Phrrem2qqm2rDljGOsToxtX9r59bg1XawqifkiJ+Zho040G/HP
P3AvvZhmxbOHpw9PXtOsjq3WDHO1wDSL6K+zkinKcOpa/+hzptlQEZRx6+uG
ieroo2CkTqYMOI/2oVzYqY52/VG/pWC24uWc9Iqn2pS7pB2KPKqtGFvh9BH7
kl7Ko1rdnlUU2eB/aYMcjWio2ggsq131Ds8TlxHRDA0ZVliXWRY+JizVr/3O
X8Fur/SntpTf68/tqGbz/aQQeYkiq4RpxPAqlPFXVnXRWbbVNZUqeRNy/a2c
IYkCmDYcnWGVbMNsWNHXspHkskIEmn+lJMmq1/bRywbxLyKa+Hx2fDy+68KF
+OT+/fHKyQs0BhCx87MX+ueWUrvndCA7Ypd7iDecwOWWz4lvxNQsgF0LoNeE
XV1fjl7BrsSwE3T1xz7+D38b0+sbv3yFeBeBTfBtJ8dP5wML6MfzbZnsdjAP
+JZtVHNbStOopRbSdYRbiv/fP/glqKzjh4lrHfU6nh6IgCuBgFH9hFdE5vZ8
m5PrOJbESK6vZhiCpjtdA1CJTzhDdP3aC4FUP3vbzQgCdAzbdbcRLq0btmtB
pdBAqJff+Nx61J9P2e/XlZbLmTz0W268ngJNOg+t0TpJ10ZPYkJsWIRBYbiy
wVpJskyRNUfCetdmzkjv5/Qzi6acfmFRPmGNWjpttKec/tBeL4vuGBqLioa/
P2oEPNtGZK7L8UXNou/+zNfBCbpOO/CWRaUNo/+SYStPGv2P52+XKeTT6boM
y6LTZs6wdBikfzlXXxe/MGDAVUe1pPyp3Lf8qWKy6QeeeKIQ/+lPf8V14H6N
b7nrVfFv/sn/ET/3gc/T70gLof7z0z/9T+eNLcpcHIWn6GZJdn22NeRGMUz0
2lb7+a7qzpMHv0ykWdSk6aQSV+fSPbcu5BkKoYxSTzj6WeK8Ml5vhU0oMFix
McbaomxtQgFxPnrH9SDOKhPnl9bfDE4k4pyhaxnMGa9eOBuvr7+TTDqc29xi
UlTp8lD4DQc+Pcx0Rr+gMvqr3UUQonvnryBJRETBi5LO533LxIt7jAhpg65V
bXJSJSrOkHr6fZ9aT4SnbOXuo2rGxmQXtWqgftzwUGf75JedIemaDpmfIMfM
gWCBwFl5HCiPkcKPPoMUx7+A/co5HKi2w5hOu3AgPVxqNUoy3sFu4skYMwzu
lqEjdqrkBFx1UCBecN2d214y6MZiwVom+smjqOQsiR7FtLFXJ+L0s2OeulGQ
1FQzK1n/uj2KskHHE4bzMZUTfh0ghqCL9bw2Tw6W0QXtM/l8VyG+86lacJ28
fv47fx6/+vXviqdnF4X3QkWosQnHIr0rI7V6CIM2lccP4nvtxavj333PM+S+
W+RXUuSHz0F+bSY/dRaDJr8gMry/TUKD4YX3lw9fW+h7DE1644viv6ZhOE7R
tUr899jlB+MrV74dx/HfxJubfxx3uwupDTDIxGRry9nZ1iNObXXGizNCFaa/
+w/up2ImEF/bSBAJ/SG3vv6ZbxHxNTm8KcYhqA/dvPdzdKawMB8+yjjXUUVZ
g6d27Exld/H3sjd31MCYZHch2VyaHlWMPI/e+yF1mRbdWY4zb1ZPmXxCd3z6
VV+6sxznOv9bwQUjpHyz2vw3aZjCTcOk2cWcjyaE4vBylKd3B4ebsbIoVcOk
qhsm1ZjR/zxPPt6DVpBZYlZLTaC2mYTVaka/NSNOoGupJKOUraUSF0DVUlme
OQvfdX0P6p3M57A6cViRnOFP/cSvgr/cNONaDjyGLmC7YWPzdP+NzakKWW3p
Lo9NUplPU20mvGXvQfCYQ7RjMr4N8YJ3M6chT4NoI9isojgNiRpwmmxsVmWY
9GI+00X9cHyze2TkdE91/m9JURnMO01lzn4bMkw5T2VFcnlhxjkac+/8Vcw6
ROokt62O36SXM/E2ApYrqZ3PeHFKpsosxiFD4q+mURG0bLi4ba4LwnvMxae+
8ZsbfdiLXdlwdozYbE4fu+56dfOoASBhL7hOsFOWj5zW7BVAxOxF8Qk52/Na
g22YvegBX/Kjn7CFvcrgrUoOe6ktg1HRcFiFveiJYOsCad4t6GS+1zayzoFZ
YtsoS12f/oXfRTCrZLCIRrFkMypGTqeRM/k6xiaTjyFNzMzDDhP2SMGT2Ytu
VRI61Zx+By1IggozzotYz9zvpmatglEaM57PWi1mLeVpuu48d4GxENZjy2vS
SLXkEFbwNhHSayjC2j81Hb9wF5yrwQiryqYY3ivSavQ/jEFx1mrUkz5Idruw
7VXM7HYBT8HGcuTklsgTFT6DjQWKmmCiQoxube2VRFFlJirYXaur58nuqqvj
WnS5trO5NsII/X5jbSRycqPGRMVhuBRR6QSHRVQtrsqBuXXDHQ/GM/PzMLU2
EoEtcbnq1eJhlpSZBbKCxh0yZLZjYEXynxJTQjzp9stvYq5KCYcuTpCSwjyu
0o4gcxXehxSFcBWf2JfiKn24jLXBULiKHmlE7MkB+FnDvKwalsZuhVVQk6Mo
h0FcnXvywidC1XChf2kbrb4EsHQdD2gTayA5aGRiwRPZGhVJ3Fs5aGfxyPFY
unjcoiyr65ZBlSOGlb2opoFv29xPoylLqvmEsnSh9Eg+ZQ0blFU3DC1xGMf5
ZPQoqZuRk9ETGKbLZeqqjHqmMxT//Tfh8BFPV3jPmYZAV0j8IrsAoqrbdFU3
zmu45rZXrytQ0IKkt5TUwx5kiZMZmVxHSL3W1DiTFEgLjiDoqWZYU9X+lYKK
pDSNBi92/doLdSMkVjcSBvuMYpcmkxRCYj/0zJvj2y7dRyS1Y2lvD0llzkNW
BS0hfajdEatOelG5BVDo7AohC+A+7U0DtJW0Su2fxVRVwyeUxwZrn3BQpioZ
7dX432JgKtz5nIHPqmFSWDRVpGtZSlXC0wlQmqFrJYSasuUxsOaGDfUwbPSf
VQ+Y+dPX32OVWesSOdlyZ3U9ZPiCwoo62yBdYyigJg7xWZuxZWc9upYnrqsH
s3bySWmMSQkfgYRAR80MKanIPZ/R3vscpzQpkfDJlrtaJmIPOirnkBIqUD75
uQ2io6ZBSs5wqhqH8DlSWlPyr7OeXN5WcZ7CKEEzk9mcNoylUcVDHKBy1mDa
WHIGUnjMCprNcJDkEVIkxIF5d2e9UamaEZTfZ9SBNFRUCibS7/3lZvzuj3wU
aUqwkBfGujMXq/qgY3qyS6bWw61nLxaHDCzsZIGMlGdz4eb7ykYMnheA/lQ2
915ruGFVw63TjxSQGHzVOJJKCEifLFMy3LpeAnL2SDRv2CZlw0DYo3wpoBDU
U+KrfjSK+93a2FYwikby5lubaJLu1LF+SXeqU2DCpDMBpQL9ef1r7utftFLW
ty6mmfRvuJMVXSNMLy7FaOez0CSzEN4iXwj+aWdYSMfSh5mF9APjmYXWo3TR
HA1oYW84NkaF0N1nnoVuO3oA9Rh9WaitWOiBy2tSJ1xmFtKenPtXs5BOITIL
FckGgZ/mmMfpQk89YCIEkDT16IBSi6kHcXLcEvy0srG5DM91n97RFerBbJBp
JrsjnFfm2uoNJVWNgPi+vtUSVaKeIyfOxt/8jd/K0g/LQpX4BwaQPFVK10WM
G4qwZbgHVjAYtgBiSlK1y0fh0Y9eeikluy6HfLRfxeRD1g92OmxFPtbWXd1e
inyuCPnsMBBYMkyA/uRTJiZgJy2k8b0dUEXvstOLXqo6NxozZr1tsH1X5fjE
5lSZxnLfCoKqJqCe7keNROeQYfIK+YhPKIvujC8hH8Mn9RvI5dn0MH8OOWF+
+qZHGvnkM2P4ZZ0+fhlO02vzg6v1E6vkSBerLKxiBL1rAzLPsGIeVXJbyjym
hllHNK+KyoTYEeyO+88ciufHhlFBO8+8g0E6tiHG6RjxoeGM64X6hKJxWMux
87dcWTmzKjW+JAbgHI5et42gUMWIXh8wShBqTDmgINAM6AavH/vq11DpSnQn
lVk7hoapDGFlckGXG0wamGsacr+L5V55HEHzOpYpGkFsveJSdXWd4R7VDPdI
nzEoQezagIRTNtqr9hCOu+FAONrkKBoqf1klHRl1rhdPO3B/4G7xkUnsc0Dk
ybLIFIJO5Ey37lGmO+rN9OmCBn1OEy90SPZleh43coyiVnTkT0optGunTKxy
XxfPP1uPS6SkVMAtWi7D7GCGiZIyAceFCcNkyqOcfe8ZRps3GYahqZewT9mI
UteZYVAq8M6n3pBiGLyHNwVuGWGGkSJTZphC5umZi3tWVqO0epW9Q0Xesw64
g13+6vN/L/7E2i1ImUVCM0ifgVZAMMNGhGdEeVaS/i9mzjE5cQ1RjLasOOTs
muwN55QNi+aAEc6pcv0nnCuEchy1uHf+KvSCHx91LRHFYEigFqfUpg2d1jBk
fUlt2IaU6Zgrh3P0fnYrRzQox6Q8IOYYElsJPgvH6NPohGOs7aG6PZtjFgzD
omBoduEYhTsHGz8L515xKeS3/R2XSMphzLAFMWVMdtOwnXblBLhxUEv2mVM6
ra5DeCqNP2VwWqOvwZq+Q+mazafUcxOcE5elGFpnrkqSTL5bi1yK6RpZ/PEc
D6pOFFMKwWVHL2tRul5M4jclI6jcYHZxTEP2imYX2DPwksArY3Qtp0rYHbHQ
dvMCnflLUp2ZAXvzDDL44BXwC145lkzbCN6McyhZBZHpeTCyjWf3wZVALwWQ
G/MJl5U7Q7U3YFM0QsYHjYCN3h/JARsYdcQx3K/imGJ8aMJv0kKEZtaAVt2Q
+SXDX5Bo6YWb7wvnucmZbjp4L9nyPFLRno08O0jHiYVUIhX2EVKx9kvq9lKk
sjlaq4Ndo0W687KGnChx55smRTocHwlEAnqNfBZfqJPiEpLSnjGMhHoOZVss
gj4kzd2fRYqx7jdPVfRaoUXtffFKFnXcO/Tb64Ylj/5kC6WYzx5Lhgs0ZbhA
vEkGM03sISl191qN0jsz5ZFSRSP62xyQPSa48EeVMZJ9Evl6Wm0KZeuf8f7M
8g4QhfsM16IYJcQXc4Zh0jbiLhN0rer8OPk9KOK5+YFXb+4/djq4XUjPS831
iBFjKRgnUB40YixlxRbIgjtHx33m2cKxR1+2gHTNGWqqasj27r5sUZH4SmAL
Du62FJQkEXSdEYetG57JuOJ1ievWDcK4un+tdqq9Soow9ozQsZiBMARgWi/v
M0BVTfRyaF0HUkEQaHHWmNSaYd1YNp5MqtL99OLnJel0uqzhrOGw6ePqsmn8
KHGfQnfKytFRIr+GvmBZagT7cIKz1TwpfOeTnyTTAXQwy6RgbOpA10QKsnWO
SaGZuUPnpITnzOlgbHtAUphih0VIIUUGVSID2ewmVSnndnXjr7/1QfclTwRs
ORAFzDIR4D02qYECWkYgZJrLZcR8QD8ggGtuvRQIAFt7EeEA9EfpWqHPYB7g
IXHq7MTDRqCjpLb3IrEMxAvunWeyOTEzl8K9eCLQLXOGbqkaIrrbME91VPH2
y28SzK9FUdoglHBEDuhTJ78w6Dcmm+0e10OfJHPGyE5broeAvhRA33EOjLvj
RQUY3LwjNefq9YKjkijRVQvvfM5EAKA1mTqKYJGoTKZOUEu61gJ7HmFbyXAL
7MoYoRfvdPBr52MleGUAfsBI/c7luAwFtWtLnhrCQWf8nnoUt451DjGwP/vY
JSo40cD+9pe/THFNDWzEOs+eP48hJ5RVSW3GkrrYZ+84W85R7nrDQcOIOszS
tURJFXx2+Y3PAc8CZ9blCs5lHWGQwGV0xNg4UDSiCpUBsTxv2KdlQ/z2GFiW
gJ2EFPjpHHkw1lHFumGcqwcfhChlfZsw1u2lYByvTE5lYQzY0Vw4tX3AsMHL
iQ0e0gBNdYNI62poaT1aNlx2mUcr8ImgBMMqKZlO4vt6uXQhT142Wd+KsAW6
5SOUgxsh+xpOzkwTRqGTDxuJ0gW6FrWh7rAKxBYFQ4rpfNCWn+6jI4bDDFPn
3lMZq4YpSjTgvgOgk+zSC0y/96e/FbrxQy5v7hoZSylgp3AdqfVXvnycB0G0
bvjucwxUKN/FxXlRvAJUGNkC1DG6loKbzuG/I4adXTC88ipj1OnfIFtZjKKQ
Jy+Lp/Xtnhw/FV75i1/+xxtqsVPGsAXQhrHzhk/Fg9AEPZsHUJ0HtXYGlXsA
2h0exl17gJaImB659474mtMncGP7+wp2kd67+17XAq0xOp8zj1r95XGdUn9X
DIxiueZzqMBKumoLXlMqNDpXs4s7NN1sUjcA5mHDj96pqtKhThkrnrD88znh
K+vo2khOhTk+k21+4+wfA4oLznYFFP/6bzfTXfQWauN3Zw5XB9ScNcMtnuV4
/cbGZ+NHHr0v/uIX8fyHU9feoot/BJLjyheWKNmRPs+W0T5vjbH47o98tAeL
qC2A2nCiGILP6FPKnguGDC0bLmBFySl8pihKeyyCnev7YzFl8zIWU5ExwaI+
juaMEWmrGDZvGourCwuER3fXgkUA57tf+UL8F1d+CQDcbwiwYNGZqJtzO7zd
IXyDOUQTaGyHocgKht+ZF8TnOmqq29ZHtMha7TCimXnJSG1a60SB1GfroARe
zll1stWbbtvJStKhMGszkOHK4SmnPvoXJmrojfFuNIGeg52bK1wtpdtbAnj/
mUNOLvprRF0SXTXcUTFdEZeCRvzP/8+/jb/76z+nMUhzgsP8NAbxHp8/+fhb
oqP88Dn99BP2Pd3YPPaQZM9iL6LkwLDCXlUTK720vOzLccU4VqvmKp3mut5I
SzUMo1IfaigBpsY2cafb64s7f8MVMlIX52bj//wXf0gvYNCBbl/fuJrnGMc7
G3v37Q0hA8wj8Kbxp5VUHo9pm0JCWXifWa+13vVK69u8RJ2FP9a3Gn9rgj8Y
qUeMXFSX8Qej9e777ryiOQjf4x3tA+NvlPGHQhnBXzHBX/jhePh6pOrgHN4a
A+q+cl+v0YeEH3vsIcCO4PcX/4oOCYZxKstL0yIh4XFlmT73mofpdedt9x/h
x9FKvgge5FWnr24wAFFgZwEQ4oiaKol5qlpWEZbIMsxEUJwgRpl2twRe03i8
Dx93R2QjxqcAT5+accYIGllbEEo9wMPL3alILm70ix9+H0DnJBdXJ5FPvy4c
GWKVsQgC8X7tcf+EGF3KgC7wzppM1kphMiPFYtZk+qo/n5WQRRLSyLIke/P7
DIVaTRRqKLRtKqkardXgBQawaZNzkU1OeIRz87Pxd//JP1zP4A3BGI03pGYQ
jOm3mXFE7b5++PJ9hLTSAHjjpG1zQFVX6uv8+RK0d7/7zcAaFt5dixKFjdSC
Gpgr0/uX3/VM/L//k2/RvwjbHGbgwQTF2Q5cztpk4Om7qqmZu3vPMtVxdhWT
QlYgI1a0QrFmWEi9k01yr9cbudKmYWHqc2klHNPMAZy2WKuGhdkLOL7DHSoc
w5rOzZYHHHt+fV2zglJ5K8ePbp4+eyq1G18A11VWLMDAvpiFNWse62oeZV0E
w2JhWkmgPkALRKQLbk7NTNFQjxpW5Q4VLj1+6gyAFn/5Z7+4qsSRvN2r5seA
uIA2q+xTo62j0Pb2595MOCv3RZuvheKMZ9TKUW16g0txALfOg8xfYWU645J6
tLw8H3ipkpf3D3/0RYIaXvgdFuYXPvdzIdv5y//gd+i78PJaSWZzILyBQ/G5
W8OAN22llJXoOWtoTa3nwHhzlmCQBf3sW1Fwgjd90kAe3vQxU2m84e4yeJPo
CpBWNvBmpXAEb9fddk/8jve8fS1ZJF8KgC6MZAk/aC43ysrzuKrkbcNaF0AY
8NWGhxX1QnuRz9kxRvwQd3eG6bXxruePGJmJebpW6P1t9zwImMV//m/+KH7q
zVQcyi3RyH7s0llC3At33TiaAzi9+XXYAFzFAy64i2oCCNSHZqfi3/3gE1F7
QN1W6OvGFbUbB47tBziKFnFREgOuqAHn+sC1GP/Z178YXzh2iEC3n0GHkgN8
H0BrM+icodkDOsjJ2uEjVNfXzYTknVGVCzqEGKQ9HZKXnMMNRn5fQKfPo+Sj
QVJhlDzQaSvVqrQu9oCO71DHceHCadBxSEWBrtpz9hp8oZtvv2nz3gfv4UH7
5wEowGmAiJFqWebWHArBT7h5yK6JECFc7P05oS3HEUFhCnHDenzl/uWUBalz
CvOs2BC0dAgjpLnX5oXVc3Kb8W37d8S/96Y76F+Hr5GcgmO9pWHIgFq1P9To
Fp+94yyBrN1Xt5W1bhN3LZiOgNfFi2fhomF1CV7Qb85d09Oyjr7gnml4IYEP
OAFYJYYXoCUVPHs4igKdRhnA9eed2fr/s/emQZZc13lgztvX2veurnrd1dUr
Gt1A70ADXVgJECDWxk6QRUokQVCgIEIiSJAES6LFfbNEGpQpqiyPKIqWPSMN
RZOUKZVo2vJYM2FZobEV45FUtsMxMTHy2OMJ2+EYR0zO/c495+bJ+05mvab0
y2FEvId6r1/evMv5vrPem98maPWyKEoQR3HiIB0vnj1HlW5iBsFmgS8TBda1
K6MD6wgmoDEru1eGNP2oAm2VyaMKesaW70uGupTSQL2DcxhpPEgdgsf4gLEm
I42DJwpp2aYADBRq7Wu/TjuMNciAiCgcKsZqNIPDGfqgiLDogauAs/yieH2M
5lB2aFUV1AzFxvxFeuJHbrgeoRDTU9uXD4sAY47D8W49btZnC4A5vD5012kK
WU6UFM5o4PVUyJLBl7T3AB7X2zrQFum4etBx2mfTeo1jJG5JPfDgw0XA20yU
zybAw3dsRLq7eOBxzEQ90KlJwAMYB+56AC9N/yOBEGHMXpZyDxIvAERIbOvy
Lcrx91G9+91asyoQMbL8Bll2ANNpgA0FRFp2KawvA6J+8JyO2uYOsq8giZf4
MCYcPIdKJyPO9eNG90100sHyLJ6SszzbwldtpC2aCOW04A62oS6bQHID9BD1
xbJR8yAGxHiilo0gTMsA8VqEE4c912dnmUb13my2bZporgc+VEuRWBHWWqbq
oIk3NKRPOCNSlnkQJU04blSWwHTUE5ImzD20vJ+//RbSot/53OesfMOiSsoj
BKOALeEYtep+1yYALeCGDSvpwLERAd5VAP/8a18mgHcKAe736C1PdQnUTsMW
K1c/NHYUzXiMYPvnf/4zwUFlDsw5iVIWiyq5lYU5QnWTsc1xGfVgdu8o3nTp
ZuA5wZl6/9G9b26+UfYBJipKGttMJr6V8qEXm3gWvnXU/vSZUzsbd14J5hNn
BXP4xneCqZ5h0nKBIm26ESgznCmO4753EuLA7K47P5hJH75hJf3owzcgOv+W
myvpH/0UDpBxX6Q7X/1wmv7x191yu/d2uvu9LzTxXSvd/uTz7XTr3Y81081H
r9TTjQvHcfD+8iytAF7Q24i9Otqx8v4VjXriIZ6+fUYkqGN4prJZW3B08saz
6c7v/RZNnXejaxB80rC5qO5wOiVaGCuYizs44qXWhXhRFGhxum464vTh02V8
hsOtOc0Od5zm49WbzlE8yKlwy2peUKDncJD75EHv/NXNPDKa5KQK4PH67zfv
SG9cWaBQUb+kak7v3+so0L/0/g8S6Lse9DkLgqt/NjCMx84dTH/3gw+mP/a6
kwL+nqHg/bEoNfoMJQ8L21nV+9RRBLc6Yx/Ibxbjn9hSqmIt/LcY/zpQtJ9j
s1q37+7+UY0pYGPjFspMagpwn7cihgsUwJ7YiuHsVQztZSXYqpk+CCkEHQZD
3sS9nLzl1G4LarcNtduERTBbQhZaAQtZoGUhAyYE0EH63ffc5QY+zAnn6X2M
Pr/8rkfS/+uffpVev/93Pk+fbz53LDABglTMBtQXZ8VLbIqyn5sCVZ69UBar
A1RdgwYOMA1gOgHaz33ps3htKDQFGuAo0orRdNnKWETNsa+NbP5qgQ8iAbBy
SHoEVvazwmaB+CN8K00PsPTZq7aM/XlFDxzCcu15euAwlgYONQlKcNTg7o73
qqcIH9tyglNcsacr5tuKIp545o3pF177lLt2mCK8xdQiu+Dr77oj/ZeffTrQ
BNHGpesQ8GobdoI/ya0dqAI5VGgep4iglqCVKH8K+2HBiHm1mD+QQ7WmQcoY
hD8QA4MTDuZoq5jXE6+/l/hjnyr3E/uhweQBLuFjSwJ5OGc9TL+Qh5i9LDtl
6RDIUj4739QuYi5ShFSIflSLU9OAq+teTom3MHdt/GsTM9kOdj3V7/GJKAJh
vBx9OClxYHb94fLbwgo/VeG0c2i2n77rtqPJONMJ6AVLBiI5S+/V9CufeKfQ
iWvPv4NSvvDRdwRaAaUkWXg7oxAVCsvtpBEG7qpw200XLuWOP0I8C9h3yhiW
BE3ehKIQrE9EIbrpqpEfLktX6TXqjy4GVSNgWEwhvkjK0QdZLjwamilwB/yK
xM42zWU1TBKUE/6gwFwEHJIuDtKhrJ74A5+l1qJrlBmuGfzRUvyBit9f/+bX
nHlSxB+8yevQHPjDXYX3WvqZpy4GX8MRR8swNybpvUGfcRyS5hAHjRrJYg32
rqaTWSPS0Mmyw+E/K9JgsUkniqA7BnGMlbdG4IE4a0QIxf0Z6oeVQxKl7TNJ
4mra/YYysvI96wahqKAYcJBLCoNQMFW3R+B1YIUP/i7kw5966FYCLV4r+8hD
cP8Gd6VBcfSIWPAv49nq7q66lXQ84QyNYc64gW+LdcKtcdsucUYVnLH78Vfe
RF1mopBnmqoy47BBV4cK+4Y1sJ9nRp4nd5O3/MEUYWYYX8GdKUluFyfbWkMn
IUULIGQBr8ZYYm3W1IyBrPNd9IFHcpeFxQWxnvxY6jmu4BhEYuXMZo3oYt2I
LvLSkqXOvkggjB++kO3b7YxIGM2IMH7/f/m+E5VhwtBxazY43H39OwwP+Cns
nzQMo6NP783wQFB8Tz6KIw0wBLRq22CN7e0vThsxjE6Wdws9tGIYE+ogAMQj
wRc9Zo1n7r0jxCdnDB/G2SEtZg3OEeRY40Of/NRGxBq7FxaXSKQ4NLZsCG6z
UHCbuaOMWO/sfvzzH9vIsOHNgBPryzRhVwz4tgHfCtDr6OF/+GsfDHpfuRRc
gAkwkMcCD6Wv6AGTj5ZPqfZvPX+cGu0QPdSEHoBV9KmeYwhCME9CYAit7McM
YPnnR7XDMzXAEG/efNqJwGtiU2BGBjFTwDWJMoSaphslE65pWib83S+9QLeI
bQoeTlkSUpsucov41CL87SiCzBa/Dr7g+J4DK8QRHLIwM30zRqCybgQqWVaI
ezhQiU1AxBESrAQ7tI0CTuEIvduvYXDEuOeInKmqz9cSo6JB7/U4hkHZeGuP
b1sRBbwTEAVIApoSasvJopOejChgcYAodna+MWFUxHSLiSIX7LCIom8EO6dU
sPPqI0+Qs9Jhltje/qth/yCzxO6lK4EkhCWCeotYQiuepmFnS7JNtgtEUbtp
BT0JMVw2ADym9Psdt5wioVHbBokU4GNoQsAko6WT3J4KWXjC8YSA77ZPnziI
dpo5QiBRlLrmBYMWJ3jAmADZ4OOfG9YJhIBl/rBTAn+6+4fp/5f+OzrjAfEK
zjZ6NHnr3MhlWiQ8XDWQz2WCdlzrmF7JJ+DAE2PxrEypZpw1gw44KBrMH6aD
QcKVbKCDOPGvYxTTRgizYYQwme5DEYCmA8QoAH+EMVsldKB3FdYNOpgw6EBn
yeBTgAiaMR046xRnf4AOrLM/GsrRMIIVM4oJwBAQCedd9I2wRZsLdhC2gBlx
65WLu0m+JloiF0IGqhLVwWY48jluWA3OVOgyH3Bik5ignfkaYY7ihBqH2ZcN
DVOWt1PnjrspdICI8nZ6y6Fo9psUMTzz8K0E4b5h+M9nxBCCDz1FDOK/nDCC
D21uzxkguwdXF6hP7WFWgK+OuusFgwYnDST5h7vWYlaoghKcYO3sfDNEIJzt
NFAzoJOjicW6ZbMMmmD9bc4yLyZmTedMyhZzOB2Tr1linyWYgH4YNaq8AzeU
hB8mjfBl0whfMjWQVS/hy0YUvgQ1NEtKz3GtbPWoRlutQA2TxdSA1SEKACl0
mCDgXahUpz4/zLVcGndYVPqJPIut9yH1NlRX1OREiOKCdGV5Ln3m6u27BweL
JDTaiJIgxIRRxjduhDT7bCXgLEMJafaNfEg728G8EU2Nru7O7Y4XLdMxhFWS
eqAE+KY6FMfngG0kKuxwkecLtCCw7Rk0sC9brhBP6DINOOchtHc0ckgQwGjn
7Q3MJ1tCXLrgJUg2Gc8pdc3VHc7oGraGphQNYLhMA3WigVpsG3gDJzO9OEC4
z0Bnu2Re8Vm0tswrJxVITlSFsJWHbRtmxxo3jcs5pBnysL7X9d3ZdjsAvsw/
mDSCjk0j6DipRBsxA+C9xagH4iXoWC+pyNWol+c3o0JXNnhNGajXWQIxCLr8
rv0DGAR86LoZKFhRYiuZijbDHNW6yGxm1bltgjm+E5i/8uKT6be+9tPpP/n+
l3fv3rhxkJFrPnowbsB9wog5diI7ABDf3f2jMSOJ0VJFEOIbiD+C6EGMeO3J
dg0bWfJ3+MzRp2BPauWNkAFcp3MGQnu2S+8f5pSPEnQM0B82nIyW4WT0c6Df
tkCv+W3awOG4Aj2+8xGi1xqs++EYYBK07p9W8FQJ0iXjjmXzC4phfRyFK71Z
Ea+bqoYqZWp0C+0iuCF5V4F9wqVLe/kBE0bosMWw1/BjEc+FDltG6LBWCPuG
hj29UM908+WL07zhxen7LbmdTA8uQXoSOO9xTECnKpVnf9DOGzQKd5U1hrDt
VDiwXUn//S6S94C40+hJNq95v3/cqByeMgKETVWYz8FBOm89zim0jSpiTXtS
GL5kqIe+YReusFcqYXOoDRHxd7/0wmIEcbDjGYXHD71wFUFADurnnHSI2kEF
cWfaE7jbCuI/8eSt1NghZVchHYHGmoadMJ6DOGFODiyYM1TtjAGMHkMcgxWI
O5u+xXodAcGXX32v6PVZljHATzISVt6yZ0ztqqJOTOvm294s0yoasnDJzh87
Ai0e2tUj0PlQtIvuirHgj1mrb2tosxlv2vFjRsSvlUX8QoReB38Q4QOo2yri
J9CuFhb+16ksQWDNW0cThetAJXpuRIuPcQIRmBYfc90O5/vH7bZ1SVIRiN3F
wyieUbcXh33cKEOeNqJ3NRW94/p/Os68CMW61GBMCTVsc5SdW1U2EtoGqiEC
EIZ9KjMlyS9YqBcvnddW6j4FR0nRnTa0a9fwrNczJtiCtoanrqH8+OVj1NJB
w+RvGFCeHIYyXgDYrMFdc0YIvKWAICADfh2ccXJUocpmUJM9FCcRLL7UbsFy
NNMAJWaa75GPFfphAd96Ma1MpuYNncmU536r5jczIW2EQkTBeVSFrBOAfSOa
186ieVsR1LHooWKgEwX34bJXCiuRawHqvLXAQjnfJqe9BeX4zkmRsv66cSw+
PB0gcq8J1o0M1tunT64latE9vNjdHjMqEGe5DlHicICyA3Ucg5syMnctowBZ
23C4NUSgLGGlXbfFKD4tCSvINJJW4iWyXC9rmeOA+vWGYu0YDvOxDN0Uh0Ox
cctA96ph3jds895bg5za97tVlid78qgEAvqUYczOG4ioK6BHE+Ekw1TcHI0w
E4X6dlaiUM+7sCnzijXv4tnBRhhlifXIlhSdqChDGA1u88gTD3vh9Q81QmFh
5KxbvnrPiNB1jAgdq7tchK7DcToVoQPYBerratOsbB6yIM5Ng1lIcWuII50v
KshHdRohyI7fKzi3DDTPK/YQb7pvVPDM8Y4hmN4Xb7wxVwM4Y4TR1TFjgRAZ
wnKyNK3sgsHlE4YozUWSq1JM2ANshZJWFP+KC3ydoVTbhgt8Mrs2xNEExoCw
5O2WDaVft/NsfhE5/+4f6fXJx29Kf/SuU+mFg/M5OI8ZOnTRsFYqJZPSK9Hb
+vElcprKgmE0Fy9Ey+RS5Prwf2ctVbAKUVSJdTmZC/H666GOG+bCgqISFVAI
t4z0usa5FPUo79xyzntGTE5wfu5i9jyRGTV5krPvcXUPFxHL/oI54JtSchUE
46mepwJzvgL0E+4ZenL6CwfjUA0Y0M+rRd6wKPg+ox8heCum+wuffBeCZ24A
AfIBhguqPfGuLcjP8EYiQB62Obxs2fjCgbMAfR0rbxkZ9QnFYPHSa2qfNKzT
aTuPVCvJI6362+Hv4G0f2yPkLfb0Daqr2B0A0DcN6C8piwDlOmipbtj7cxr3
HerS+vxE+svvuDv9k088m37vfQ9bHNA1eHGRk9bKtIknBc+BIi4U9cpcyGtO
QTWJ5c0btyief5tlJJlnaPOcq4v76jXX0VKLZWbt4EKVR4fbSxTAaXWdMWG0
O27Eu0eXA3vuJNFEOe4dIybXNWJyEsBYHOsEx72n6n8Rg3PWuuvcMObdl/Dh
YdzzS7AP+54x4T45dFUA5yrMzgqUVAW6nWQsoS+xzYAognN1+BxiC7LIyMmJ
mSBEgSofkdzDJUTxpU/9aCCKRbWA4sALUeAzCAEUMUnvDSIKlOSAQFTqv8Lh
Bcn1MXdMGdTRNAp9tQco1DFvaI1pwyqcsKmjYRsMHGQj1WzNlRUzF9Y4mzEO
MQe8eos1FgwDpGb4EX4t+VhvTr86o98xhvsh3htFzNEyaHUW7xXS6U36EtjD
C5MFKhH6mCixGrTeiDlE32zqz70QWsWWLfmUwRyTUSwD30ssozY8uhAI0I+N
5BK/wCF8gk6OQ7SL0DaCf10j+KfusXNgug8ewaExZDrAlMC9wQjuVUmHGQFn
dTuxgbXPL2EGSKf4+eNKwuQokImMLYJF5tFdCxLLrNFjwkDAUJzf9REJY0mt
m4QG+oX1ennLAmEDnTpsRqwB58KxxgSzBm7BzyzVx4tvSFd0ltAJTi6yrd3W
GUNY+3bGulmCDe9MeaNBwqqHDOpo2i7+BSUYUr3TYPZAjFDYY9awYTR7vP2Z
121lC8GlfV4vgiXAG/Vy9qgZMOtl7FHV7OHw8ewjb+DJw49xtwodm9AgqxTy
ozerORxO2vaJVjVxIkJ3Za/lUtzSLLEPRZlb0qFDxNOGOTQWEYwKaiSNaHRs
n3jmbIRawRG8kZYRZOwZQUZ5vHai8glilsBUYWZI1lhysBTibIwbrLDfswLa
J6KHHfG7H3yww6wAkoibNFhh91NbbwtdXFaTLSGGnsEKnYgVIjOCsuI9XVDg
WSEZM/IClg8ypWRMFn3W8HpnjQhi16AEt8htW3+tK9yJd6bD+RJAbNjJvpuz
y0PwoW6wwbRBMFXDNuGCan2GKpAPHmjSe7uIDWie2FZPqhYNOGSU0EBV00BC
xix7TCJETSWXQBHmc0wR7RNPXaUqfEEuE8UmBiFHPM8ZTsXMHouoiKJgEbXb
HXOElRvVlNQtibNqNYK0EhcqbCo068LBkR2ZhhGn7BtxykUlBlJT1FXFBaK+
1rR/e/kicQXvN4JdERhj4BljM2KMlmFHHByRMZiEaHjI94MlnMPRNap8Goo0
8B1MCU0cMCWmFPTQJEijZ6QdmkbpL5d4EJRF5gAO7LudNhzoOcMkbbHcQTpU
7KpTYk8c9ouEv2ko4D6dMmD3IeT2dcDhilpgKQeqMX0goCH0Mamgh+2KoI+K
QR8+jionPJGm4eCFIw5vUsT04RnAzYnrIDMCDUP2h2Bl3BBMRtCrBT8fk9S3
rYZ9Sk4Ua00bhkPZukR2XqfEcNCkwHcMOsQSA00KrZI4Sts2HDRWOTsZ+IAz
lDk+0GnKhhHP7BvxTG20x2lKOCUCXq3upXawn/FBAK83hcmv8Lkqp8G+/q47
moYFMTD4oK0qCYQTPMX41Nf5wWz68OmBcIObDscOTYMZqgXhS6liAjPMG8zQ
MbIZwgz6xDPOHBMzwDWH/Ku83KShKuYNc7Jm+KvQRDAne3ZK7mhGDiG6ub8w
n5iPK9yeXUtSBU9Dk4OkksYMsqnknZctXhkfbM0980/4ocsBC3wWQ0gWncw6
H8EPA2UVLHDz+G7iT0Lco2fWhnIlE4bZbs1z3a5I7NnKf0FJHO6o8T5lrOyc
YW40bHPDuONmgOGwj1CSmawboUtB+Ec//VMBkWyAk6Ty6UgB4ZaPgN/hiUfA
dtdA+OEM4duCcKfm60Zp0aqB8CYhvAaEI3qw+9zmfdsZb5BUfvShc+kfbV1N
v/vi6yvpuzaOR7aAe1UJ8e1QDigvI/4YsOFrm3xJoGwY1ueeNYyyA0/4LRon
0nU6ZK+Eol+YsWtrHRBC9rHj2C+xBY775aMuyLwuGaZ/3chj3p3BffvE0gTB
vcpwRx2hwN37VS1NH/qII8lh8hMq9CHEAvUOQx2TJCrjgAH1Dou/aFcGnDf5
2hsCuKLUCOyuvgHABUPhVuwkQtlce4XbDCMzltrMzi4Y5kXVxn8/mgBW9Z7r
/IMEdSFSSYygZoQd+0bYUSfCgXddcwiNL0Ig+Ad2+KlnctRhDv/HMvxvCf4d
6GtG0dF+A/8NhX/3eZebYZN3E5dDwTv8Q1Tdews8ABqglyYC/O30ujibHDtU
akYXNRLwG0bWoZGVAocxzhsiXomsXS0UHcMHXeJt7ZBJyGDkCY5HySxGwnX+
zjSzAiTJGmBwYqrXDFP99RncKY6IyIE+5VDoo8O+t6IPgrt2I9ZyWB8kKgMh
WMckSJPi29HJS060Mba2rda1PEpYshKFJXWFkwNa27Cx4+mNov3jtvG0ZIzH
WliQC2qduoZ9IYlYZV/ETkRIxEZq3uvi+pCax7dWXXHFiAMqjGO3EBHXQK28
pBZaJVa8xnjbwPh1NsYrRtXRsoFxXw9cDxi/e+NGNLOR0Qc/B8RZ84B4g95r
AeiJ13VHbBDXjCRAw6gE1sFRAXGtZK0bRWnF4uB3ncQv4eiAuHNlaTRVWhRs
4jkjK2hF8h6ga31ZC7v2QDdhm0428/VfyqPXxr8PS+YOfxD4tRnR+CwMumYg
uslSLQNjUA0UZ0loMZ5ohWicL22nDf1Ed3I5SqBMHowqwQTGeNk87zOGKX2C
MMCZ0I5EUy2+7Gecz/rUCH1CH1QMeMLW596gGdbnucLiprbn6aWjd2NchvDK
1stBpA+U4DxRivegMr2kZqBl4PyU72aMcykssrBdUdiG/e6wvS3YPqm6d2h2
HHhGGpxUOYx6oaGjNrArBOyahPHlVYFJjhypM9RxbofDOKwGi8qbBSsMeFeL
dpL7Fa5bUsdhrLoVxnL/RnUa8DFqIYaFlxONgkTXKTVB4rvrOL747lU7Ufgw
XV6npeJ9QHLuB45iDNWfQiQqKXjEL7g+sg0ThOlqMfoxieIMHjLQ79NbVa3P
c0UTwrGNEkOpanBs+9oTjPVcgpHT4u7fsnw44InuTth2wH6DHkbMjWojpPfn
lp9ojidsu8HbTHm7AWUKzz/8CG81bGjfgF4c+RszQgKH1KpJ2rBhuAQWjTQN
GjmjFAC/EipgAgJ8sE0AMqtczTc9uiH7e3UoAAO+IWKSX9y8Ephk30QWQzym
mhMmwfk+oBDFFxWnEOfcpTdfuM5ZuIvUcR0XERHwUOgFEYi0BGksLC8CPSoH
9ucRVKHstqIBEV6dCuNkUVBwp9UMJb5kKcT0xbCPwnY6y3jVSxQxP+9DkpNC
En8sZD0w0lMP3RpsEG++5fZKcmCEcV+lyYOMp6qASst4zbYi1gwqaUUJyoTN
NeZ0mnBeCzdQcEYjZzCoBRk1JdnZYx1iQ0Nvvx4lrwrmQ0KRjZ/kB8irji5U
dWP6x6LpZ4tlVekWsVhkN7N3TWrBNeGQ41jmiYSM2WE1HZJfrBueiFCLrkho
GNRCtTEV+kjHQuzwa5dmI+EqqWhdqzb31JWKBPc4ztEhiPNKpjkEicT7kPVy
guWEJIQrop965Lb0Cx9/If31X/pI+q//2X+X/v7Ol0A0g8T2dztsj2rr2JDR
oiTZnCGjBUkyTc3irI9FNKFTfzoG8CRdW2MS7lOGwHWtoqw311+xME74BRs3
YFw3mOGIIZpVfmdlTVt8D2U8tzuYHkMbucQC08I1Q2Nm9DkcGEOKc5/i3/iu
/Plyn3pK+sP2y2boUt4gsI4txbOi9y0vJQqqu6sDL5KcSEJzIfVXN5yJAwZU
6wZUN8JCeWnf5JeXvgL41rzIY9vwlrRxSXUM4QANRK38j+taxxeeAPBco3iv
EgA/9qEfojsfUBgQihYR0kGsgSESBbmps6qL4sb3OKyG5sT/5ih6SMC9ka5r
bvAU0LXu90JBNHk++CKbJozwRT6jdpRNICU1uX0x+aok3CG4S10Dl9YkdJXK
EDvEqQzL+C+bVy3XXUMLXbjpvF+qvBaSo3ROshZC2hvPQefHMIuf/MzmUwMR
RR1kkpxXzch5iWjrKpdqtgUviPfPqPYkaFVjiYSEykiP7SGRrBJMW8cKqx4w
FqMghXJedRFrmZ3U28z5hCKRUiy66a8jrScSeH1OAnMiUzN6eYz1qpZADmtD
TI6onuUVYF6QywYbMfLBEmG25k9LXsdmVN9kLT7R8ZgSOhSBO48LwieaWj3I
MRRouu82RRBPqI5K8qVqlFvpsUt5RUXtBf3YJ7dotb6Qtbe7OtXPCWKiOPsI
r/xXPvG8CGKwS4QWDxtCaEUCDxrrUhDb15XMCTslTWV1SXJRRTV/1k/UpCEk
VaMzx1Rrm0/cQ4KhWI51GvGHUH3bEAxrTC1FSVJ46MT3UIn4WtOkZa1ls5xO
dgvLYUFI1joka/DmQXJiN6jkFv3thKxvFATrCJwECCuF5ndDJ/u1nP0V1Yy4
31UWM2TnJECgtwawqAW+c6bwztFD+4lQjhh4lWXRYrtmLEvT5rublPTKqmrH
lf3f4Lh+0U/QlLGaFWM1j3OD+Lxx8xlR0McNzEj8DMGCOJk6wkDWjR6VzY0V
kFf0COrxIptxGVuGBzjqLPKF6DOMRF0tqT1Gfh603swSjEcffmiIkIXnbbF2
PcgrgaYj2Up+zg+YNI4TLBKrisFha0p7aR7THHbcmLymYdWsG+thxTMvK/4Q
vVRRUuW+h+YMXoEHitSJatqhF3UxH+zeXR8sbGVIzUlS0xDEQyP0HE9KPqJ6
no9D2DOhxahu2HeOptYjmmJDbD+JUStWiXG1fsuQpI6Ru7zRz50ORkoQMpGD
xjhfufv25zbRmy974aOOsYNAL6YmLTjPPrIRnHLnoG+fPrFGd73OEBwJYGmj
5LAx/QUBrFuoSbLtZbaltFCibsmXvLz46sFartDEXRLlRYR0ThuiIn3VgLGE
vGaTztGSJq3hW/G7iHTYnCApkcDRksE4kUYLmzrwvZMLLSe53NcZJY0wnVid
qRj17h13baAnyVe8SNFKsLlOuWXYbKL5MEm3XDhBwqEY5ZQBIwlfaAPiiDHX
cfgCsLziez1gocCSolt/1Y9pVi0DWkf09bAtBB4meRVaFlexOqb5wtJkZQPV
ElAxLCXHF5qCwBf4NGdIQEQWYc8iuiyVTB0jbXHOt48lJobAJ3piJ00WBXmq
fssx7Z12zVd9vIr2USb8mNnoQGiWFZpXBBcgK5AZiOZAMT9kxckJtBB16EZj
/sQ50paAuOdqPSz3/E9yAkG9SbxlwxpgSCB4NkjI8xluOz6wRweOZ3cOcTaR
B62PisINimCwQEQwFZBB4svWZPPKON4rFKhqmKrD3WjKEIi2EWz27oZ/cDnP
VunSV7BaZHhQRLmyKRNYwbC/5lvDn2T0QrO4NlYjIXCEAbLAtRIGyglBmddC
1qQDISYMLIHCL0ehf+qHo6vOEs8XnEbLhy732QJxUcFDcrtVA9HahRKBQKfg
DLvOWJqxVjImLQhCMI4MOASDjlGqEupgjCOTigwSq3pPNrri87mLZ+PjFMMh
yZcymd3iV7yovxXNaVYtXwsr+tQjt+HS8wYCZP4SpWaPs0DIYuL3bsC4LuGV
9IWkLd2xHV5Rrfvm7YXkHYC55Fqxj1IPC4m7DA4MqCO6zij2c7S6OMFdQK8Q
s3GMgLA7xy1ImaMJrFt7BCqXymQAOT7jVitzHyenP/0pmzIzHCP3AoGjRVQK
h2PlnObMEhAHVxc3gvw39JBTKSR2PzuhrnKtih3+z32HuGAHc7ehV4z7RjCc
tJfrVn+pJgF68VLF9n+ijTpvw2qXgXt7naJAEW1dG4qX59BsUQrYNFcBH503
ntOvtCj+oLmaTARem3JXv1Y7ST6Ov1cerqoX0Q/J76EKN/a+fD23cqzCmGbq
sftEQv4v/OU+dJdDW8i7SBrI3bpjL8RtfsCxLX7M/rW3Quu5xZauykpDuu69
cnqbp89HU7vUJaUJcziS7opRrGvn3RLRYjUMDUhLRt5nceKlqhctqXgbKOXO
0X/e663RxEEWWVscsafgX/mLDmezvpkMI0aGop8xCRudf3qHvyWuJnOWZ73g
luejNcp1sB4gzZNOM+Hx1aQxARQGOHK+sLiodSPYQbP8VvrTaxL0GMu0bnf3
f/cz5Em0PSiaHZ4OWireqrEhrUOeClq/mE0d6SnuzHo0GRooJLUEU7HkowNu
9AzUDCedLv1hunE9NwYR2IHd1//Dz4Sqe9uSEftq9VquNdfvwbC84Oc3K3lJ
2NRz9z1Ywg5eaEJx45bciBWwBFbwtYTwa0Wq6m30554Kfcmehf/Tt/Sh4UYs
nlq0Z+DW/NXbBVcXGIe35CdjN8mjVO/UEou7ZsSXaTKez9raSAp0JVtvYjNN
2izwr32rPzlCg9OqBTfj4kjfmcnFprrUsipn7Jm5PT8z8bIuGzNTVdtsDq2v
ZTPz4mhi0h8eCzr/b/xsfLRETFQjvUzb4GvRNveNJiZj9mTcUy4meieKGOaV
Irr4iWsXk5q9yP+3n5hPjtBgPc+Cema4fHZPjdWyp+YNBXLCkyo+i7Z8K0V0
8gr92dtLTmQEMg//j2/ic/TeLRUQ1gBh7L6Wp5/rvSEWtBLRwJNH6Nqmnvch
g2WSvUFlY9KL7Usa9Vbx+uHzv/ej8wnBuv4VeoLPyZuynsQrGHqrqpb0vJJ0
jLF0KLMqmFNpePugWqmnsjsOzbWMXQxLUaJsOmQNfkg1+Gw2Cbp7smhy8BVH
Q6WqwW5rM9+5HNbRHlnaSs25IW/mh/qqas2r98AcMfbFDcku/rC6+B3GrOd+
vKV+nL392X/99r+Mb9Wu8N3xzlS6NHVgQ/7te/GPfWLJ+7799kT69MZL6Tvu
/Qgu2pLf/E58EdfM4A70o7OHbnM4cZc54XZ/7ySJuuK346tVxQj1D1c3+Oo3
XHirMKz/8W/FV3MF2abqcNLiq9F57rj/8XfV1X/LX0hwOLN6Gi+nFdx7Iz08
f6iZLk0suCb6rd7ueHsML6ct3Ds5aRRRoGcTkB93TzT+I/tuSHpF4/9N9fff
VJ3H6+23biZH6D3vBd5pTNFY0RR9R93gV7ML08PTc/TdUb6BG2Xomff5/MlW
uAFmcSI/i5uh0W8P32BnstVOnzp5FvMVbrBx5HI6Nj5DPWNXPkyRaxANT/M9
3Ixt52bpb6u//4a/lmbpDYdP0sutzrFsotIT13lH+Uo23u3ZsSWaqDm+x8b1
j2CiBqHdb6p7fJ3+rIeJevuZy+mZpRWSCrmRu2f62JPv255bGLDJn62IazxZ
yCYM32Ur8hvDN6IJw02Gb1SjiXMjSl937w+jEZ35FhFfKhLxb6h7/Qr92QgT
J/db6o+nbzh1z3E1ge/5ib+2OzhwvdRuhHXCBK4UiTLd1asl9HOTX1jJnSQr
mzymLvla1r7Ms0Md3h3WGs30qfNXqVcyFTzn6Q+//dNo7mI07ejeoAgIL+ON
Qs1JS/q3rfpHA5/oT6cHlg5X0huOXEqa6SO3vRkf00NHzqVTM0u7ahhMpHoc
jdwy4rUxWMe/N9Izp25vpgdXr2ukkxNz9Jz0JsBBvELYc7YOBod1dpOfXrr5
Ier5eWOxDxYt9o/Sj4P5t5lk1gYGuEsTgCG6m2FUbow0Qrze+sB7XDc/8tyX
kjZ9/9Rb/1L62Z//w/SDn/hO+roH3jk0+jU1+l/298X9coIFBlgem8KQk+vS
j3/o1zmIgBV0g9xZP3IuPo8XK3jYELAHh4e27edkLHSJ+jIeVpnyC0lXRh8v
MY3ytrP3y+jTl5756aRPM1DVM+A+4b1uzYQctEF3vpoNZZe75xeuio5UNqRf
nr0JJoFbZLb29SfSt56+BTPmJ6yeHjx+Nl09dD1JhZs4kgreKyAyT/N1xJD7
e7NbBWGYHZvbXZkepIeXjqcbJ+5K33DmUYe4O/GUuqcuvyU9c5D2bG7KqPgZ
6wM9e+7lAVINkwfxmTUmrxFNXqLs/xU1ed5zocCyA5EPwR7Zdzrtd6dciw9e
eb6S3n7uSScTx19XSY8MzlXSpdk11677993xPmXrQ7s+glLfnu1048l14u+m
17XoJhjzS3N8XM30O179SsAgtIja3ob2gWOYBRaa2xNNwLFJ+p5oNPzn9Wnw
hlJ5YQ3c/GPinW+CRaji8+6JldNbYWpaqgsTfmqSZWOq28NTLbTLm6x9ex5K
bekMTffG4IhTO6tOmDbS5+7dSh+4sEkTPJ6+8+pn3H3c3GOaqS2vE9o0EEE7
pvfozALJ7osX7hYZZtS7aZpdSj/xK3+Q3nX1OUE/9KbeZTvd7qVjzXZyki7J
Gzz+jx7+R6gfb/fTlcmldGpqMb373rela4dupPl0bJAuTS5DiDGP7bxc72i5
5uwJmnS37aRvu+GOdP/YtDWxPZ7Yd/3EL8jEbnFTcv43NfmGbJXx77vjzbab
oFNugm6VyXUtu+l17zzBNL0yyU62BXqcMCfnc/fE3GKQ49vcQl095sTfzbK7
xP0JOaQpO0HvzTDXeEGkna4U04GTjf5IqLnuGF3vGFrm3F26e+S0j+B6FOWd
TMz5/SduT99/1/Pp85efxfxX00//zD90K/yBrV9L3/nCa/FyVDDxXqqxGLQg
dZZ0UM14ZyKT9P+GbumL89xapC9dvJ9e7m9T4sd5YbAo525+UAiARjqrFuZ+
L2ZbS70Jx7jzWBSyMm5FJzKpd5JStDi19I2v/4AsENr3NR15joHddnF5zTVQ
vDjokizO+372W+ny/qPB2OLF2YLKvPvgdQQkhwi1OKCnnQyDJB6bGhSX185h
YapYIXcJrxEtUVMtFBapYKGAFVmoSC9gbnHH/+ynUyQjvbR82F3oFsq9A0pu
oWixlnjJoGSxRFisSdYKQlLOsNLLNqVWTR+SA4566uR515hfNfAV1APWq2Gs
2kR+1Xa451zBiCkj00xMtOOzS+7HRavWyq0aXtASzkITM/SEatYJAC0cLx7T
WS004RhwI+C7HtA12RlPTy4dBbrcgIZXr0fvrdzq4d8ixos1OcPrP2VTSSoE
K1YbccVmIrUCU5ink/ed+OW6V90DzOcXani5WsZyTTIDYrmccidGOJ3NUGBA
Nihdb/xaASVOF6u1quq1cgKM91pQO2xV601HbumpMWFUfCeGwQk2DPTyO0Yl
fjmTR+BOhMAWr+EzZx8klGH1Jui9X0SVZA3wOmIBd286siGQ45Cr7zKrK9cx
v4L4rmwF59mMdYZrsKf5wbIUoPY+EZXDYihDPtHM5JykJINBgf+eyFZIrpXr
kwp+6S+q4aRFDXJ12N3uTStrOUlxICc/BzLSMSRlSkmK+4764tP2NeJiSAjb
eo0SIYH5B/qFeFT5/YZL94hXoo/uBIq5pdEkxL1omm/IpmdLpAMQdyKRdA3x
mKX3DonHk8+8aopHkpm5d4alI0ensh0WSOx09vVq+ir8/nHqWMdaN3ET874w
tRzMa/zH9Vw0LtbUjrauTRxBJGeuPIAuiDh+LIzJVwdJt7Q4Vkgex9KjB0+k
l8/clr7t6o/Q6/1v+8n0Fz/2N+lvHPuDw75wwiA/UVQk9w35afNhu5x/6JpH
4xW07nhX2pb2cV+0K8cFnrtwqxZudXAr2RZFwt0zhHuahdu5O8HaZt2CpklV
KUs7EQmHzrnzypN7SHgtGBzsRqrDq51W6FCTtUIhb+gmRQuiiyczOd9M8kzo
lmlYzpeKDRFM5M0jyYC4oBV4oG4y4YOy0NFLzMSC8MV9e0pBLhBUzQUJqiTU
TfqJDpEkygc9l80tgQQat8kAgauBa9HKvhKAOJM2ffydH4HKEYB82JicrSSP
XQ+QugUQp3ydCLumP/Pe19LrrztLj+yTk40NsHhpjkmmloOKe3moVDVUwp3w
OX/SZqMIOhxE3VybmC2FzpgBnRnDhzqaCWawINh/cmsxGnRqDCCx+BATUBu0
yWvVuGHHl1q6zmivwu2xGUj/Hcv6GQx5URQTBoAG9J73kE+PJBjFob+uIYeV
yFaPMLRRLhslgSK5mQAou5kdKNJBGDFfW9cEploAk1sIdNEfi5N8gN5rNoQa
AUIP3fF4EG4HnXGWbaVqnEAVo4irJjeTYSbztyIAVdAeIwaKBvfoK7zeccvr
0TrfqRBFHLInZ9dC0dL4QvrMxovJhIGi2TyKaIU5XxisK/ZyWyUAgvsEwEDU
6yzwiERItuQQdxGOLtwttDQqgKpZewMR/vUMQFu8ggQiOFPT5QAK4Q4uw95S
UsCAaRRFi6cMcauXY8bbTSGaWqTPqlqfOe9oGC71ErjwUCBuwVdoM1weP36J
hlMOFx9SgdekXFY+ki55P737nHDCSkCBY06JbP6JLjY4vKbMTjbE2SyitlyT
8wbWOuUI0LoXKEC4p2YgYKoQAUOBA94HjtbJCsPLSb44BnAiH3vgRwtB0FAu
hoTiDmYCJ0GD4NdaINDtCQiYzJKsvcKQ0Gw5DsSY0+cgyAqH2JsWlFa5oKs1
IDgCSMuGHLdKgtZHo66cmN3vJKlYjgFN0LyWY9iAzskQm5XgznL8ciR4OPNL
zvtygrfAggdZxJHF+plilhwrd293aWI8HCEGTbJgmF1j5UKsdB4JMaJflhDP
GEI8lxdiWZOBF2Lq4cr4JLG5k9xOiRDDb4bW1EIMIXReBIUsdbmFCHHDCKRZ
QqxMqy0R4tVsEvFdLiy2UCjBNQqFQUMwVamTz8VgABNactwtl2O/DDUSEHDp
PWunIXeWKHeH0wRBOA5lq7k9150gC6Z3TaLciEUZ4wXI/THByXsV4Fj8EjnD
E5QK0YMQzhr0PFUi1kovUjs42L+iDtiEiYQWhfZhKsmzPCbLRVwfgSEBXkvE
5wwRnzfiQF54qmSpIDGFfF93ROFuZnY5GFq3h/5RGhstNUcUbmX2bIhw8+Oy
8Fkz89IIco2Y0smLd7FHE6QRxi8SJO5vk6THyoXbb1PKGBAwQXMskZaQj5UI
+UCJIFDnsOIMWC/kwA1MqHIhr1K7MBWLfCX/9BquWM5LZc2QSpF2Cdpkz6y2
pT1WOUBRXT0yAFYIWpwxUDRbLu3H1OxIfFxL+5G5ASTcGaxO2isQ/Ep62/UP
udsjcr40NSA17egcMp+Tf5mbZSVfsNK5mEAgABF++5t+uhACLWWpO34fZCKb
hYjQUqsEAoa+CBZ21sUqGSfgdUj+vkL5r9NnhlTQE8r9FqlNqiPGHuP0UwSI
o7nhekezUiLBGhmTJcjgYQ9evPhQsMjHuF2ADl3cCxnoMqd2xf7LTa1/7lvy
kiHBcmQ6TBLwM2R32rCrF0uQoTRY0C/6eHj2WkO7GnEL0RPVFDJyQcgTc0uF
sPDx0jpwQYrAQYNeDhxuiRw8ePU5JJX4mFSLxoe+YIy4N9Da704JkMTjle7g
P39eOVfINlsUbnXC3ivBETxgdpecq+WXaPXQ9ZRLwH/7slGGkFH72nAUcr9K
oMh/hBrROEKC/tyF+xSOGvSZ29MunarUHcoL7gWlGQ6sRFDSx8qKqFdHhJA0
qSCUhvXwg+WSgJHRs8DoSYaygjSh2xF63mNIeduQ8knDoN/PMU5IvZMyzG/O
yRM91TL01JQRLV3m9gQ1EQpDcEejZWPtFJWZ1DmBZqCFVAlCqYKWkOvIB3Dr
hoqrRCpOg+nBK89PZWBKV9auV2BCOGqMqt1QING/RiRBA0jlsHqYgFSwJB0j
02chSYw89zkCu2T6WuRpLBciqaqRJIK0M7+8Js2JEbSh5b9WEqu0qN59jtz6
vLarlwg/PAnBk0r8hvHqZ638RYCpahhpvmIt+TE1FSL8HfVYAQifBpNWRSss
/ADD7OIyzaqyx2kqAE792B946mhpwgiarnJ7CW+uxn/aeRUw1em9Q58BFIAG
5UEjAsfdMsRsdeCgPmwbauCMK+A889wn0SN5/i/NHkqhAZwxFnSkpF9+4cs5
4MC7YffQ9T/zZhxwEtUezZy46mXA0UBsGd6Mbo/6ffbBUuAgzSftKQYOgrkS
rS6KvhrXCBwoDdfHLbW6aC/otsa1AyekqBk4uxZwTszup/7sBRy0F2WWcjZc
0//P+2V7FlaElDz1T53oSfPn1FV4Ap9WNeMGrws6gL5Hf+g9O9F6BFXYN1Sh
lQxRaEuf++BnqX8Dlhedl/Cqq+29feetMKqsnIvpcrVLYHX7uSd7DCt89f5P
fXv34NFzsow0rMTX/7ghjAarbgaDYDjwUUCbGlZdIzdiwYr12+70wkoQAeHn
6XaXHLi9YIVKEemfcLGILP4T1yMhy7OfS0SPFnmqhcgTczzzMP4MKq55jchC
8QcM2pMX7wpPU/8LRlbOvmNkHdoLWdwNHAiPo+H9ox269KgHPPIBLzzGYrC6
P9393/5RuvWh96YbV27OAfFMNuPb63OzBJxxAzhjhp5Y5WdRQpgdEAU86gko
hEVo0nEjuNc3zNIBNwnM/Mzf+gfp8RsuDTJ4S4JEwbFOcFyboZ5Lj51vOOzX
9aInZwL+DmsV4K/NMWjGXnr/Ey9tZHDZSlRh1bXCD+sskz2nZFFK+Xol8NPt
KfMy2AS+fz5Bd96xFEzC5y8/OyoCa4ZFqCxMUkQOdSF7fa0I5BSGCsvQTEJX
tksQM4zALCHOOngua5JAjcbGuUlUeHFC0icjK1QH06AvcS84dXjhPk5PV8kD
9yIHYEItO59uLo/9XJxUm48N/z8v9LkytS3GqmRoNVblKSwKqv6pYYl/wDSg
mv6/f+YgjfeGBV/cQm1JIKjhgWSTBnp7hjoasK0HNF95/WPp1373Xwnc2FzK
djyiLQfjCUNDWwakoBga7kNf+FUgeSfJsXuUJWoSiqFo2fSm3FackNL+5kSk
TNnnpJC7A3QjArR77czMr2oAAsCIbEwUFpHlAdjLALgriz+Tk0NPEP0RAd0x
hEn37+Gj/gkk+0vQjMJcCUBbGSpt9o6SXLeSkirIDTKjtlWEKGSIOgb+iiFd
D5DWSftZNX6p1LRw3Q64phIEX7bjSx+SLKwm1pmvVemIcUb1KgoJOYPMMUAF
FDAdlbUVxYjr/n+eiXtlkKenRwHbgnmnmsfVE96hpT3Y85DffNOTOrZ5Qi2p
+KlTBi57hgq0IM/Y1KZmMASmjVBs16CSA9wuVKozAqhd938wVC4EMtvpD+XN
bjmwTvcqS4ho39hIiIgVDUA41Nc16kWVi2hRYkDKeMqgj1CPQKufmdIBWlPZ
uEI96piRv7Ogr0zzAH05sxem9JuvP4+cWyn0UZAqEfa6YUorFUmyAoh2rym/
1dBRfA3TxdzQfeqse43o1yU7UupQjP6G1/LP/HQomcXf7j6+AqkW9DkzQHmd
WstQWXG1p4gW1L/r60QxHeQssrpeTF91tDo/TS0p2M8z7PEV4A3Ad+i9nu58
99cI9omqkVJpB2oSeJk1sNkxvNsDPDDgxal3wiZeTi9v5cUkWBCzhgXRMehE
mtawV1YEi4nkD3O1fTDiYbTrByTr280YI1mIlkghH/+vAu5JdXth37qsRu6x
DJIUnxwR9GNG7Z56dA1lRhDPHS8BvW5POQRBXFjiyXeGvl+ZXDJBf0DVPkks
s25Y78oeCWGk3jXFS4d2hxAyWTmQ8Ikd0bsmxA9XhLCdwl3eTHzNlPKnmxRJ
w/dsqetYZmJlASYN3dQy9AWb+Y7Xs0ichDmaxrL77bf8OIasAuGVZ9+Q/ofv
/Fz67U+9BAW/yKiGrgeKgec+o1qUuUa1PjtGYlbzBhasMvg1xgK6IbBj6G1k
k0q9FCNhzghmtw3L+iA3rY0EZShIyAc1MILqCjvkYsSzu9AynP4pY4mWI888
8YHligd0evnuN4aV0IAWD1q0uFWHCA9dtORYxtfBgJ9QE8W7WEcGtHIItqQ9
LyK+qgGAZlALppH9RGh5D0wbTeax178mTDdiTEs1ljoWnpoHXUgsSync0DS0
bBwbU7A2a2CmVPe5ZIe7XyN8r8/Ok7w4HbZk6JiuQfripTvzpG30QhDsPscI
1kbb2tIcEOx+6DDs3oFmmOcA8Zxhl09GdrmCMtrbb0BuwYBcy9BsayoCzXBz
c4n3alAVSlrDeoExFg27uWnYzXIPBWu5h9gC9B/LxCbal1BbRdnrHGoLuTEr
MawNK50bO+SQA0wzsrf12CbVfSU0PSqyx1kV6vbG1HrE7elUroXsfiZBkRzX
qD3Y53ceOIKioDJkq3q4YCxqk5+HnGpolGU3oWVhjxaFki34MXuEwlJ9j1Eh
rsvcrGIeHgfVScG1QOs9tttxTx3TieqVteIZN/L1CuqNEqi7EW9Kb2q5TtF6
wQT/p3/9o45ePdRvuf4wmeIA+SxDHd759s//LIF8JoK6owAN9UUlqhgPgLBk
wKFh6LpDDAcJcBfBcELJBmr59D20cdAooRNl8rtP/p0NBC0bGBKdNKGhjk3w
QmM9w9WYMMamE3OgmJNn7xKo4+9BJC8mNDXU1eEqQUOyEg8KHP/5Ennbyreg
bhkF2tzz/auRK/4j526l0LrD96hQbxqGuV7OUbJGe0G9BIY0DWJJS/AsUfVR
1wh1MRb0PaggAwFEtC6BP2hzwF0Xc2vNN2dopekSzLu+VI1uqbqYGPPjmUCT
cEG9txjz4ACoc6B92lDvC/ReizG/YGB9n4GHuqH6DinVhzB4EQ71s61RGqLv
oW3nWgmfYAJnF5ep9ZphOnj11ZAQHJnuYq47frFSfuOGObbK2wfF5Ufaz5nq
FGl7/pVf3M5ulbepBd66fLAE3qnuel8tgdj81wpvzsIpLPrjEgFtQPzYzDwV
U5VhXJX3BiHUhrqSvtKkVBnGdbbJ2jelrSRR53IPrjnZE+O6NrdmmAz6CdGC
8bbCOCx2XWquq5lmDXU0x354FGYXjEt/Whmuw5QyrseymQ1me5txzc53Dtc6
rraP3quk25N8HpYkFADDOJYNBFQNwK0rJcdBLwHc7oJ/LKnuM80ib9YKoNZG
Qs0gjnXDH6gaRoKXBtpCTQpbQM02+oRBwmOG4SXpOsnjcyBBqe4wKpYNMvXi
KPqo2HZrHWObVkJMgUkjw75He2HaPQb9ARTwvYFtKUwpw7YulLTqx5QEliam
yrCtY8e1TNhj3G39INi2ih2tmi3mKMpN8X6ckN5XpnppsbxGw9JwsTxhG3dp
ZRwZ7Ifa8LKLcd41AD1lhNQE0BtXbsazIndjQOOlAa2lv2qotBJA58A2pqZO
LPJlwxKoGNN02LD6a4WWgD9Ib2V8KhzGx8syZTBuz7CqDjDjRnk+lDmTpuaq
TW3MjQJm2OVl4PuLALO2wxnMwQ7/QcDcLjYoNv6iwKy2z8VAI6IUJXqtYLbK
xLQxwPfIORUNwxjvlMRhrVAN2osMnVyopur/5w9bzVvbY0YwbYJBDI8boM1A
7LNd8uTCnZ1v0tBmDTDvp/eGlnx9ftIRI7hVN/DVNzAsTSuq00cnHTGgWy/U
97VQogbYusm3cmldw0gSyMZpOjDS/U+8RLB18NWQ5eNLA2R1XXQZZDXE+kpM
xVa/VsjqKJmfBSIwgqrANleZVqPDArGjDib1O1947YBRdd3OCMYEbqwhrWCW
BVyd66kXgypn/co9uFzmmoBbNzR9P0NO8BQahoXdNexFK8e1qmQUTqADrwA3
Fyhh4Hay2wdzesIIjY0Xat8GAVk/p/XNm09vJvnE04Rbc9gSKzSKeoCAzmNZ
wG0Y6OoxcKda7eCG7+d2lYIXszY5aij1uqHU/Ur4CkqEwNhynjcYs60mXrp/
0PC+K6zdgWK4xg69mBm27oh6+MjNa0auRlpfyakobyu1vUd7m3nk5i1nvPCt
3/TdIdgiLY2TdZdmZug+r7z8vvSWy5d9YmZqEZCuAMiJr05zwCZwLxr1p+2s
G4NoWFt7QXzKquxEwDxX2UltaWczmTOiyA0Dotp9E0PZooGsH6oSrRoy1qv7
lmT/g5SSUAes6tKGYUaw3NOqiKlSU9kzZbP3S6K0wyGcTKFduOPhEM7QZMtk
0coQQovC5vqUEVbrG2E1sdYRVjOeGx7mm4NG25o4VhUKMSIH5gBsHdtuZMAO
dgpPXDoYHw8uvieiWqBTNpctrmgYxkNPiUSc4dMMLUShD5coyfCJVb5z9NQt
IU7MxaR7sgRM9DJU/0WwhE6uMEuQJAhDSLXaPLFEK7AEFDxYAg8i3X7lA/Rw
0nPHjlXT//Bv/h0eFPuP/zD99je+SQQSkUhiMcjMD8Agko2ywuB0kDDA5CvJ
5IA5j+DpUEuK6s2SCk6IfFCQqko7RzrTJakrjXZtnopBb5FOVv7q+h+RXwW/
TKq6735jSAXddiaFdFyhVBed6ZRbUlIFmwupWjRVVQbNmeUBGTQThjVcFpES
SCJ67sTQYkimKb9lxldmHVtdJJtmxogo9EtChPi8vf1ajqPEKdEctdTtE684
0AeOgmOC0aPfRw2roMlgd0ZO6Do7UOnpufng6KyqGRLfQNpT8bnQnms/tMd2
HcA6lJfUWqFpmJDFeckazf7lu98opbQ6FiZF78Ipuui9jKM0p2iOEp/mWjlK
B42Zo3YOTc4OcdQMcVTD5Ki/9Pa3V9WT5FdXVoipWvTeJr4yuIp8GDgujqtc
t4fr8tt7DDnvZNQ0R2UwbxfZOLrCXOO8KlY8yXvT0MzV4a0lhH1gXVW87pV6
6+WkwfsyE+zRcI2xWbTrebalLSWLZysYR9sAbdx9DEtxrlWwqwqDYgxCeIK9
KYeoYGXgigHnk4ait867tErhgVm4ZHVDWzF9+V1Efs8cXDJHWc5GHKavrlrI
Nz3+MIjbNLHqTF8f3npfwIXEDmbbXaIc1N6uKnrA7DuKSY4Ztor4To4agl8m
JtbGyopJX+gzpuRosY8Hagn02jXoa5+hMBpG6Mqir2pGuXDEqDBYc1dcKgDu
ArfgqTl1vLdBZU3UALaQZGwiGtJWJzWUkZBW5WLIyY3043zKSNK1F+xZJrWQ
sMRLKoYnFanhXKKI1BpMarDBQFygs75hhEWkZhphbWP3QdtgBU1w4j75eod6
rqqXrSx3L9gpjSIra9LYGuf3yTRJ7JHcs+yXnpHytFK3msTyEeFm2M4/EuGK
KzRu4LRZQLjorLMMy4qRNWN4mDQ1YwVXkAtvzY07vcKoYz2X+cPr5rsfNTc7
Mlvx44jQJeoGgkbOJ1wwgr+dwuCvT8m+efNpoqqG4RNKIloT1ooK+tzvhAXt
xkRjhGrDQQExceWDVN43RHtYONeOxV2KC2F+bagmtyzu0irDOqemLAF16Y6H
wg4mq8xJl03h+09/5FNuKt27M8uee7GZXn3gaiu9ePZiM11eWm5xIAL8k/gY
v5ROWtyVc0Kvlbt00s+359PUOrTEJZTjRF/1EBQGdTk/EdTluMVz1/MPP0Ic
BdaaovdOmQNJKSA2yppGnXXL4ADL+dKFyidX9kt0dMkwp7rl9kjHSNAqTyqO
W2xoJupHAR/EXBwD7TOg1bE3D0rsqVPiiGqce46ph4pOHZSeM1RypzA2OryP
AN6EMyhrhtbI0YufK95j4fyY4fh024hPLyljaOPK5fRPd//QjdBzi/s7Lvwn
bgEPYGQrnAkSDmDrWfjFygTVFBcsLC5onBr04mPgYpjj/4hVHzFCWoq2dvft
36dFgzgmrlrRRF8zgn57JLkRg9qOOUZqrcYVx9y0vJI+sH40OZX+8z/Ydd85
fklPX7hMVGJBP+8deF9xqoRKLLNKw4OpZCumEi7R7CkqQWYYB5eCTkAlPaYS
UAtoAySyoHy7n/via6W+XaWER4a7WBVniLDbVbaEINgpTNo9xBKdLBpOzliJ
yeBIpWmQipWw7apVFSdHCrTRpZvXD8ebmZYMbElvCqJFZQXaGuX8kM4doTiO
pUrORddrdIxQ6kEDLpUMLiGcXtmbYJYnezT9oJZ9BsFYbrNlvLSMYJHkEU84
8XvIze+dx44GgtEsgBcbG0dKQHr7fQ8HIhAJQ7MSh9qvZg/WKTpeUVazzN5h
w7mr5klMEwEBLckl4fPMXzGsysNGvEoRWjo+OT9Q5IDVCfUiY/x8BZDNgYnp
9Muvfwiko/nmt//Zv01vu/9xkx8034iNJHzD5SyFfGPtIukpvhGuUfWibeV5
gW8kMQZz5Tuf+9wYUw6+AsWAbPbv4XkRQoyeqGqLEGfpqhArzBO9nQn0IoKw
YIA53s4k1MKWQk2lsiNqyZ0AZcVPpFvCdAhmVI1gxrwBr6lyM6pazjFbUbfI
mJPqS2unVMuwx9eM8G2VoxYgnOipUtuBUJhefDYZ3PKjd53CmuwzlqRpeLS6
so1z6043DftFUom2PjkZqMXCf1UZiBJZtwwBwT8+33P/67bVPah98b32q1g3
nHR9D7aR9ixfdTyWbr7tzRuKY3I5P3+PZi6pL+d1jFA0gAUKZKBlU/ilz4+u
0PzCHMNGTQ3+EpHML+/QExTHitG4oXlmUuXpEk+bfhJa/sHLjn+a+bBSHWGl
yIEaN+o2mIW257r9HAtxMVyjhIW2X/nAhBHUXqP3KrHQ8soqZVQ6xfAmiRZ3
pBPBW++s0vC2NlHO0nuL4F1gRuBvq/hHr6bk9XRZOroDAmxwV9541yWypXRX
9Cav2WjDBxMgnf6S2HFvrWk0w/DmNnODVrMkWqkBUlFKODpTPmfLVTTV1APV
/Mknnk0vHJwnrt1nLEa9xJRRRXiOuz3fDAYrA7mleMbgm82T19NhjfuV4yGx
npphbxwybAHJK2GoJ288m7786ns39qAcZTGF22jKKdtWB1pzlLOzcecVuUeO
csQ3U3pBzJnS2DXuYwmn1NH1lN8Eqvn4bXhwqyMb9x38KEc2RDgn6b0eaAev
z/3SN+CQy07UHBto7rH2wE+3O2jLzZNrt5X+vW99v5n+yle+1syHheh+sIGX
loO8jRuwY+7JFeEq7qlGCbWIe6aN2LPnnhpZPxdvuTV98ZUPQo+WYJ6GKlva
WgbmW0bk0drYuTi8yQtLqMoI4lvnCnhbhr3VMvyGGQNsiyowgVu7l68Mahsg
7yhyKdsRVjdy5+sGFKpsg3MeXZQNqbSc7dLIEYoilX3GDAsQrVy6tmG6hnsk
nHJh0Qnw2XMYVa5i//yxI5g+J1nDYC/byv74D72Qfu5LnyWwS300OEtiPMvK
CLS4MZ8Pb+m9e6GMHpz1tV//6mbGWWZJADgLPOKaDDk17bQ2M5coXniSOqnX
6Ro8Ui3kkUaOR/B68wvvA756xfjCSIKFNK48MDT/4xcuo0nxwBx/BHYq5ov6
7ur4VI4vxpott0iOJtx0a6Lg6iCnoocjvZ4p6vQZLPEv/v1/IsZAtKmVYXZg
DUecEX18rGC2Y2DW2hO6HGVWYSWV3DeX7WoYQVtnKbWVL3DrjSdJxmcMHC2r
MANujeluGYYoC0xqMYWVeLCCgsMBTV+9ypEUGIQGSYAYhCS+976HMcBlY16r
hu+5FM0r6KFvZKwlUQNrYOsyZThMADcNkjho7IERADsnRwCsOUJ8qWXD6GgY
vtRatBlWboHbOQ7affdLL4QwkM5hDRSTi0k4atJdi5oQREcRxKn5ZSKIWiFB
VDVBOEjivSpBXJKwzh7Wdz5Wk/elmC2CLyUBm9c98jTat/Yg+FVuU0xFMwZu
FbPEohHEFZaAffH1b/0mscTf/yf/K3W/BK00FHEk6hFaOaPZMwR6qhCtNVLs
ToDp5RBbnFrJP9KgbtgVvZL9rcMF+f6Eqc03PUVKF8a83gOgPTpNGBIZsbII
1ZLAnt7QLkJ6+PoLZFZg1nNs4a03Zgsnb3ivpr/8jruj0GtDz3IIizoqFirU
5XljRlhEl9PFbKGh3DTU/UGGst5+A6ZAuGLn935r95EnHg61uZoq9hlhl5bh
Bh00qEIxERl/FlWsRu0jX3S8hCp0mltLmtTVtSOqcHB1145GFVV+v+3+x0O0
om3g2fKF+vywxTjs8pbrbwRFnGIXSNgCL0kr9Qsh3MTnXEUMyvzwnTMi3NIP
B189VfjzsEAT8gJtuPaLsxV+NOIH1Ay8jhlBvuLtqw2t++jFmG0UdyGXUaoZ
QZgxgzImld6SJPGysfnuT3f/kKBrlSVblCFxunjXnBWnK9iEQ24nXK4Suqga
dLHEdKFmml7s6FnlcGNZBpi4GTfyaqcW6ILDAUsGotuG8pf0tqAQA3z51fcK
moksKuAKZh8cfqSj0DqI2jbslwPMGGK/KDaCcbERM4Y4OKtcyCLtc5+PFdp6
IZCxkc2KJw2p/Wgp0rhv/SSRRuMaSYNjqYVV+9rdFrumLIDCxEF3vN5gD7yO
nb5oHuXl79Ui9kANik4if+SBm9Kzq/MwNpZGiJs68nCf/PvVZ54dOinegHGu
6LdiewkTBpKtbbTaS5BkZCWL4FkPmdiKUE2zIAklXbOPeAuIbbJkS68mtuWC
nYH42618w1h0IRZAL96OGycA2A6xauEbmfILNmu1mFNqzCmPnllLf+7HNxWn
1MKER6aHnt8eF9gKl1y59UJ65fKNO4pTKKphcIoOlnYMK+GA4hSA8vSZU4R3
DpCKAQLjQ2Immq64Hi4UCWs6GUTVOEJXMG4u3HReymF0tnrVqFnh3oa4qLYE
dapaVlj2bfLjOHNPpdV00mRYH5maKaWTGtMJIhBCJ61CiOfdpLI4yjCdNIbo
hCmslxn1EbTbJGa6LAVB0q88e1f6Bx98o7BKcGGGQ6LVEBIFodSYVvC57GEx
bAvp4EOoCeXCDuc4DPNJ8e7eqnYmErUTZuhZAzohovlEUkX6caSgNge30Bft
U42VBF90dkLtHBx6Mrdbj1JiWVGKEckYTvkeM4KJEplznoC0mM+7VLHyRCCg
kjoTCodKc/VqYE3MsHNecrMrtWk+NtoMbLK6spi++r63pX/8B78GVtlQrEK6
Ebhn52DRCJf2CqFfJ9WP8KizUAT2sicgEBY+LRkRlq7hMwml4D7Ikwtbufa3
MrbKZalXjKYrRpcPG5ajOgAJtyLsWZWqQi+glgfWjxLAR6WXOtMLQqZxDfYw
3vOuVVkUZpheqppeQhSGA6u5KMywCVHf1DwDn2dpoud+6VjGvTPPEMvMFwZV
qzqoGrgGYRPBeL0wL9HQNbK6ymPWSL1am4ItaNey+F+YgprRBf/sU19MzCmh
YD25+84Z7GLt+Vs28hQ1g12qxioIuwCHUuytg/6IsTo6SSxqUcnD3dMXb1Oc
YlJLw6CWRXqvk+2C32JWEXjCHoNFw2Bp8+BAMfiOKaaS/ud/i3pGxzSRuq5R
F1QadtGAbd+A7Yo6zRGWwebb3iyMgCb1ObEx2egATc9wt1bVQVO43rlARGKI
sQqJ6fz0itFuWa2KZhqdiocxg3voIzuk4EOYBvFQYZrWiEzTMOKuJb5/bh9R
HMQB09RHZJqqYji5r9rAsxUxDT4Tw0i9/nO3Xh+Y5lsvPJw+eOY6smrmCwOz
VR2Ydf30TPOZL305hrmR16jJieeS6V0w4N1TlrSUUlnwrhfDO3dWq2cYfxIG
bqujPPNGlKenGE72+sSZI31/DrXsSS/w6KXOe1UhEP3SKQPrKAQnymE6R6AX
zt/Q4PQQYb1sPnrFIWL3e19wv95692PpxoXjOdpxQ5w1Zruh3CREbTHrYJ6v
fPFVt6yeehwLBYETVQ7KkVjGogHivmGJ6AcIAMjo3sLiQgUM4bAD/Mp/E4rh
wBXsoS0YUZ8xw0Pbx1kl3Am0DnpCU4jjMtPtDA4MtFklnppVoVczBrNuaI2o
lEVX6OYYqWEwUruEkVD8IczQNBipXsgMeZurZYSVGyMyUs24r3V0oOxJ0UVw
7F+5NjJGQrwXXDRnxH8PGuGbpvKzYq2vM2CdMO5OoAOx8vUpKJ0RDZ5GMR3k
EjaejmqYf/KrOES0WLI72AoR6exJw3DprKccy5BhCiRJfocv3CrEF4syElZw
MR/opRGhRBYc1DQCvTMclBEmGizPgoEaafrHX0cE/XtfIELC10JGzu6ZNOa6
bsRs3vT0fel3v/Ga+3bYDtJlYkJGFkWMG5bKgiIjoQinAiqYffe1Ygo0P61o
TwrSFoxw0bhhu/g7dcLhmzc5mwoGnqQA2UaScPGkupWYX1YZX90YlJTDWNl0
lMPwLaztQ3WDkzrXyEkIvcQPOxvmBtsPtMJMe3GS+IE61VVcBJqdFM++WMOg
o5mSaLIO+7SYjkBP8YMddFKmregfLySArMLPzojOT7OEE4z7EjTEZLCKwzpK
YK3wklhFLcMqs+pe+b6ktIWL9GZgyQTJrjqroEI4yUlwgHoJJ7WYk7iMnwY5
payjZ19/MwgIWz8dITUDITmLacgx6xtTXo1YScV+XGuelZy5FKaBWWlTWAkR
FYsrJgzDxT82sWdyheT/Ll46L8EhAbQ8PgSGjNS3zRsh50mDnmaVrYRbYsUx
TNxKEgOnz5wSKw3hKPlPIt1WKl+Hu5rGSKUqJz5JE9kBVOXgPmOKp6SapabK
94WnuiPyVMsIS1uxWh0jFZutVRKvwmcU3GmesuJVOrtWXCVWC0V5iB09cGqt
yTyFEDUcNzBUccVuPmQkPAXHLuYLneNpq6nm/XbJssFT1mZeiy/abMGoOBG9
+J4dhWNO8CRWWVqrxEqTKp7sdnVNT3jRiorWUX5E2OKn0rshOe2Up3VEQbT9
DvCW50harNQ2QkLjhqW089UPTxAx1QIxwXVzg61ghG1jbit2pKjDXCTxaPwn
dXMgBYmwzxkW0pRBDFMqlhMRQ+BEmKpiKkmwmg8XJdWD+6JAZt4ITU0aXtV0
5CLyPWtqecVc4miVPPEpLhDYZ9yxZYxSSn7UNrK4+DDH6MJDVcVDyK6DCXoj
8lDbiCNbj3GxeKgsmrUXDzUM/msW81Ao9WP/rWXw0FRJ6FoHlNr03iBe0nzA
NXd8R6IfIIb9i2XDYmmO6D11DEqQ5BPfjkRUVc9bDCS30/sTLMKT2ynDTKpy
cwwk6tmKfJblWKyn0yDqKfq4hIo6BhX1dYHzmaNkIM1GBhJeSWQg1fk4H5lp
K27UNVw1STPpk4HnDIhOG1MwbpNCnVUMuvDEU1djP0o/sTTxZde553bGhaLa
jxpX1KecQ/IN62qhJZcmtYfTSq4MLtK3tYqJDvJtEzaGUUjkOIiaHlcLK+V6
FfUUAOGg/ogc1GEu4IrfXJhVc4E2DMRXLItf7cVBTRXZjp/YbsRTiPtQ8cM+
W8fgoMmSoHaSlRC6IfvQtgohhYiuZwQfTeawa6lh0hiRFrrKeZBndEf3DCxk
bQ7UEexGiTGkM0ldtg+AS3mUr6MkzULxxj1rPzJuc9OFS1QjaGV6K/lML2mt
Ro6FaGSffPymHAvpIHbXMIgc+yyVGET+fC6aY7SOMeowUZ+5x33ejLiHeiOR
+jkDktOGQdJn7olYoGmTAO1n4qec5OowZ415lv0k2ivqRTaX8v+SZokRxMRD
ZIdINmsZq0qyY4xSiAefsZzICObrnf3ZClyjQy/ewzjOuMd2xjK+6Rrx40oh
7vM+X1lsai++aRn3ldiUjhtrvkEGDb7X2dX5rsE3slMbP3UsUxiy7jLf8C4H
wf5Whv1Gjm/2sERqI8K/x/AXS4TpxmIbxqLp6Ul80do2qAuP+lFkCKXCQjWq
DCZQDdwQqTqoGbp3neMR8XYdqazlKjtmGj7jjtZCznJwjNM24tSypwsJeTF5
VolpWqbJA3MGtOLMmDHDotHPeEs40mXBfNYYY9uwLwTmbQPmUkk8p5hM3LlZ
I7Q0axgX7RJ3rqW0lPNtDXfOm+aq2MAqluwaQz2gqEUKo3kJ5clBuppYaMWB
7Np4BbGVY6cv5gIcw/j2yxXHkjSvdEfklbbBKxJLGg7EZo8aZ1+qx7yCQmbs
mgKjjI0Ye+5xMZDEdNhl1OdKS+a4UlLzpk2Lsj3CVoU+hNUBXVPZjiYWvEp8
OH02QBxF0gkhuZ3s6sxu57kl3i6scWdtBTzEzn58kCaX2ZL6bmpiaW14Yumk
L959LL16djVHNI4+GwbRNCKrBoFmRzCHiGuqZM04OiFKGTfix3x+uZAKDW3G
QNucYT80DJALsXRKbJZ5JTtCLDNGJHfeIJaG7Z6J5YvbcwlzMFf42VEUrxb9
sGisYd8Yoq5eAneCWJgnMRR+bGio+dNlxKNySo+jtipOIka0uW2qLBY0Ko/o
3JnwiBGg9Svk7BPUEo4ZJNIfMTDc58AwB2S2FbRMBtFmu5XAqijrJC6v0dbJ
eGYubEdj0wwS7quzOtbhbxUF8zgcpLM4QiX4LPfVVBLvKtYbf8ryF/HD+6A+
RcyZSnxopoOl3Lnv1HK6+6lH6fX9V+4lWgG9CKU4HqkZI6/aOfZ1phSYLzBX
QCYTRhjYU4ovE8Od4AWBSoC7SQN3CwbMqwrmyn7ol5grCwqLCTtfuG18Urt1
0pi4JtWSUEyvxGzRplJcqKTvOWYMVZcPiReG8ck9eHxcpBSohmlmckSW6XNd
jWYZh3hNMLInomIQTH9EgukYQd9qMcFsCcE458eB1RPMA6fWcDgnUUtvxIjv
WFawsxPdI0cw1t5B2WqsbIaQNXagXjbckDGVFIFZ62REGUU5aqkaRlHR5ma2
UKzKIGu3Ii1eBWTCno4ocKuAtjgd0cilReWggkeeeNg/5kmeQ0CMsj7fB5tg
Otx7I7DKxbVZwjpG6aikwvU7atD00hnyI0wn8IKQ4dYWyne/8VpYRu8S+L0s
CO+AqbCc+IwBAmtjBo8uMpuqAdP/BdNuFnlW85hGuR6slEW6r98RiKFBJ+He
GJOitDFjrhd4xpU1aAVZ5O5Yz6gsWhhlUxgF2sIqfSyuAWqbSXZtIDm7LNRJ
4z5iuUyVcAp+J2Afi6KrmTPeyHlZRgBnLx7pqqYlaSWOlt50IZUnKABE4Bal
yBMGj3SNqK0VRRlXpcgWV0mWQ9QmBBI7GzJU13OoZkSbxX49lVLQpR7u/xsF
ZFIr9LDqua3PHLVJ9hu2idZjktB909P37QRGSXyNhVTNW7lNCevhfpAyvVFR
cpvRUQZMJi0eFYjka8/dSjRSo/cukQm+A6EkyvPB/xFHUVns5Kjybxxb5NhD
GyPe+O/QLIL0tb+ItpO8pdAxIEauT4VPnsKXUBKwGABtLKab2QnD/5DAgw8L
dPD30AE5Bpl1DBNpngkF64oewHPGWiguw3qOl5goC7y0Ojk/b9xqwjCL5mxr
rGKzJ4FTCgsxMJz/AtiPyivjKtqRd8QzT8uK3sBY+fRHPlVIKj3OS6soik6R
COBQuCdFxJPGBqpOSURWR07GMqcH9LqRDSPPJbJVUO891s4HFrsIzJ2CrYJw
+UWJ6u0iMZFABm86uqoqBbP9zrx3wtq2IDsUo2Qs3dZxyYa6La1YzCUaXvpp
IPmDFHxukvOSAU6tPPPjJ0IkTXqv56wS/DvMjWOG9zJuRFpZ8Q6EgLLZqsUm
QAVwbRRFEjxjVANe8UAYejYMa2v8GLeqgNNc42AyBG/wcnM6WWKa+Me7WTvY
G0XE1jBiOnt0s667ScTruuh+ic0fVal8UG52vkDH2ZBEBMw7uVz8vBGdnzTE
YNrmnRpb38puAsVNqVlBQvpaKGcioxwRBAmmhmMvmG4mS9hm2OOq59gmn4z1
VLM04cOzUwbVtEqCtDq+IkFaJH/w3cULp7aS/Dk1wjbW7kF90gF+C4ZxcLeC
pAUbB6uG6tUHVgrv1BXvxAEe2bu4/fM/a9bY6LyBEI9kYq2Ni3r0IKD4aIR4
r9ZwIqFGGpAlGshr50a2pbmnzX4RuAdYAdscNVycftZTfLe7dnA/uxp5PDfY
hRLOiTGNwsJKUZbLg7oWQA3E01Op8ICqWsAzY7oCSFfS7U8+j8X+6oeJI9Hz
Ovcf34kAjBtOi1DzfsXJkolvlHBnxQj61q6dO6uaO5OygeB3+RhdPa7oIWNp
UQ0kTuJr0ZEkvo7VTZQVENnG0rTBXGWBncQwln555w+C5EtpL07YMGJFozKX
ihJHqWTfBedsEWdNG8zVLIkM68BNVzHXxZvOp489evf2yZPr+rk28XYgzVwL
6twnTrPq/T9UxLFQuLPB05gyYGrFNJKjMSsRs8B5Xx01JV0e7Y2EOzhv2FRN
JSDxfiRrc6Q+2JQ3YwV603EQK62xX9WhSpwzijey+svdBjZVzHVP3nqcHLIj
hkPma/PqgesS/2y4AXXV4Lx2xHk6eozfjWpCQQIcCVTQsUnul/sc0gL9Ettq
1fdLO4y86aNtcjG4F/1gik2ulWMnDGqS/unkmSzLolqPhCsB5oxlnzECQ6X1
RTVtvoEFZxUGJWEtrha+GyU0BFbat3pwoCSJfheHmvaipLEofM0bKDQb8Zk6
buDDbNQoCSPDrgL7ZEV7GRt9/auf3t24cl4/lEL0WtOwZObsCrPqCKWu04Wb
w4e3S4MRGkbpmZ5gYSrpps7vyHkYuhy3FvWRq+CINHlHd+ijzrDFuyj1fiVr
F6Xe0i37I6y4ppUpWeIcjQqlOri5nrjvlNyyVOQem4dkehFzWXmtTp65MKXb
wlz7FS5EN3WVlQM/nsnfAvwS3w5EJaZtz3CgxKgaGITUZWMatwNJKtJLiPWW
DVaRUi2VPMN07VNSIwmEWWNF9irzkfS4VABoc112kUXRbRqTRIfGr41adh9+
0zs2LMl3tJJz/faiFjGgmFp0bprawzldmlf0CReNEcPKUgwM32x5eT793e/9
t7s/+erzA4WIHLm0DPti2s7Ktg3gJuzDCbmMFz7MPiMXbW40DeD21JQIubQM
i8zqputbi+1wdBNoUEZaQlbauCJAOQirpqw0RS4to45FHi6Mw+riPdM6cj1h
SPF8UXjT9yGy1ju5GxK7IM4Uswu+A7scMnzAlmIXzLlrI0QIi+HuSRztoMWB
gfCO4dKIXXPAt4vmQ1yrp9bPtUYtrio23Lj5jDqQzLZHNH2wrZYr5hFXac6I
KzcLCpBxz45tlCwYzDE2InP0s6TSViTWtIxx0Ggv5pCg0eseeTpOOlN7sEDA
GbMGc9RHDCK3eCuTRHZ+7N3Ppv/yj38z/cwnfxzCqA8lEPJoGyp/0lD543xm
gsBRVD5YwgGyW7gZcNhHgbZvG6i0SMPaqzhhc9vYCIZT1zBKKjZvWHsW9TMN
wRuoFlkwtJ+VFpm1eaNqS67XUfpp81Kf42Td8wZzBo36oOFPNUp4Y83gDdkF
AYsE/g9aPGDwRrvE/DioBFr8NOEjfCe8MVC8kd+mNmRx+PC1f2JEwkaUoo9J
I6o1b8ToaiU1xrGtw9y9oEgQgZVrYY9eZicE+R5T0iMu0qhRlgmDjXRNHNLX
MXvIwRHVEePCTcUeV598LLCHsz8wBjkr2pIZDc8xW6dPK3hCvCx4Nvnhbgqe
lq/QURbH2kH/XAtxFdSThwJ56LzVuMFtMwVW0XDXmrnDiaOwdthdqAtS9AZd
vPReP2ubs5bZqbKMxpDixi3YtpW1It5A8tzZGCZvDAxvps7vSNE58ksv3XBo
d7B/lsRuXUFC7AItAxYfCW+0hlG2feTokUNqgqTwSi+chMelSR1etjYHiKnh
Ha+WpqIQklH80TfWYpET6CoIlqvK4XWQui5l6ICwdKxKjIR+CW0s7FuxtgwE
W1pOVk6UESORFbT/K1/52p7uyssf/2KsZskKQHluEW1URgzKNhRtcBhEaAPh
EDmJQ0TGzX9QCZo2rA13DoyLI2Czop6IAG8AC6Ioo2/Asq96xRtzgiBrP6pn
k5nVqzgAIr2ShFiU/u4b9sW46pU8i2nOyMVamYSCrcgN277wQiCFF8QRn3ri
bM4vAU+IHbBq+CUVtjJgX4Arnrl6J3HFWx67FVxxVMEgH7L1JC0RjjWDKhrD
LsTuxz//sQ1FQYUeMNrR7Wq+kNilKryBu7NqdLWigiYRZSQdI4K6xDvT4Coi
uKGWIJmw7Qt2hjBZwR7ojUgUHUUUF67cBUKW3RlmnGQvohgziGdMtSfxUk8U
Db3pkF4cK7WebtBQ5fwcznCz6xgiqYawRsZzfsuV1GIIYbQMTd5RmlzKRL2c
tk1cwlNBm6KtrQIwTwtkbNKwEQlUe/esSEvb5q0V6knHCmGEB0dCPjiKYm3j
08Rv7daVJKgVa+vZwXtDB28GlSDnlUAgdwfTXcrgOFZoMSFgMiSgsMITrRyO
EP68fP5E+tjrzwsRJCcMeDUNDX/IcAoattFwRE2N2KI6eC3dPGSQgJVbFaNh
oCCZr960maBZVGTrc9J1nZOOkj71XLEM/o/Y9KRtU+w3oN29NqrIhUCZKjDc
4NqUUUViBEZ0tkaLap4q6jmq4NBn6eMKVPDCffI88Yu/8NNR35u0RtBZUr+l
+cI6lrZpH3G0pnb0Q0zwtVNnE4bRMK7YQTSmbL5zd67g1g0lhRJPaRo+xyF1
WwTkOVUzYWRqJpRQxltrdbRyzuCB1p7beYdkzXMgV9LT86G3ZMCgZTdgmFrE
CBg8Oo+hLCvqxWBiNvipFx/ZEoSd9CMySj/yOnzdYITaMHyDbXDUoIWGQQvr
ypyRc7pqtm1wsLDJhsUIIOaKsTaN0kKVsjSwGyona0g8OTmUVA2zadxm9xWD
POSMAtgAZeTRNuIOM4rPxcEZG5E8enm7ZUORkUEe2eEGqysrDjLDMYuqIo3P
fPFnNWnA0Ij67MuqOb2X2+imyAPLau38qdmK/vCIG928qV3TJai4e4UA5SeJ
98OYhfvW3d0tDxuGuVWoyqqd6lLw4vLx6aIK9ih4GW/e1Yd/dG2pYxqZj2gk
YesOo64xjYBHhUb2sWcFeadFWZwi+vjrn3n79smjPtZz2sBk3aCPw4b2r0Yw
Z4PimG9yIHIQFz9KYEOa1PlYq7JdDAor0NpKiwtXsBDOTnBtOnLYkxsqoXBl
TEnh5hP3DO07E6Z0/L6qhiq6f1Q6aBlhTU7PYnWDG9O/RjrQ9KJsk521WV9Z
P8duB+IVuP6NTz1NNPBzX3wNNsTACEtUFDMgLBExw876+qru/kAEM9uw1ja3
wWLVEEtiBZ9UDTfEKuW0UMmlfIBLcL+rXJau97YIMVRYfqydcoqSyra7DG/n
b27ILXQ1uGyWGy/Zg6tjldUR4uuRoeH9S67tCgyx7SFIxxrgsQGBIQTVfbz7
5wnUCZegCoko+5pOX3oudjWar6SB/xDMBK1g2GcMeNYMg+EIGzeKSUIEODZC
jvs2w6xqdtKBjyN8wIvS4PRSkRoYIIcMZooLSPBvw5ywaHBCf5j+IH0D1WdR
6e0ROaGZ9weoJSvx2huRE7pGzHJGTYKUwHsToU2pD7GQ5PBkiRIi3eFIwS2/
Ywv2N+Qo/wV6b+qSrvAoV4lT1Nj/eMubHxpIX+YVP0lsva42pcWEIWCN/I6w
x8RCqS7d1OaWVCbVORMYkwSEgf0d7W1Y21nYRtm9565LG3k+amvRTeP9b0IM
PSMuKbtodeA8IoQiI5XJwNuqdPjUliICIYDqSNinrUCV3SCC2/xKKrhTBY1f
NFBVM/T9UTZHNPC16YBWrvNtUX8laCAGpI5vHOO2BPC61kkSqOsGeXSNtqwE
atfW9zonGx/Luhe2G0aYccnAdndEbHeMMKNWwILtaZWPkCH7svxeLqIWYnxM
9cByZBtM8RObVUiSXrzzpZ5FIgMMZIR622kj2sMOwUzYJHO9OG4gTMX0pCxQ
k8fuxtEFtRGtkQMzQMwm/nHDmIia3lXzaIhh3QRwq2jrqN69CjcV/6jC2RO2
mPngCFcOBW0e5ggquRyXXkQHsgi3G0ioGgg9xoUpmB4gU6ljtHVSSato+IoB
qOMsY5AmNMObkaka6ojRFZ0sEsvkgAHKjq1w2S/Y1iBqXhsod1/40CdikSUQ
iVE/KijbRkBvQQ1ZKpOm1FZ5SQz11Cl1JQrY0r8deq+HGKCO+9UNF35ZybeV
q8oLRB4vPXqvxXsLFrNZE7CHJoFGWdjjhqrWTb7p6fvQ5GaSt3zyvqmNwnrR
Joxr29VUz+8I9RomRJMj4WOovs8Qa4EGvku5WOeYqsYUonXwIByfojYaerjB
YnC9OMGXSrEHrH93KYntUbWe8dH02vY+aKCqZXPQupp8QVVjRFTVM7MzFjma
ITGLxVUGyv7et75fiKqWEenSpQGCqglD1U3/YKquToiq0Vd4lji7vQpM2C1F
fVhRPYk36mgwWa5kxwaT5Ci01mypGldWZ6FJ3AL1JdnenyEw7TPA1CwAEwpr
KkY4q2qByYdYfvAtgo3CLYJDMumj98n76b2uQ96if4IKk6wlfnPphkPbzzx4
ExboBn9pDmMMkNyl6IxKwIPVjhsTqOuwZZnLkuXij3JI6zA3udijIA+hoV6C
MexoFkzUMkwE105LYnxi96gY0+GjfQbGxg3NtXRtmguhJfEKFaBgQtINB+q2
cYW3TpweNqS/bQNqoAhSFJ4GVLyZDr3ncxVyTSpAMUbR8u5gegwSyJaMPwsA
/qPeQxfij81ctpINOtlJYkJk0oBIQfSBIfIKvdeCsLIOOWKgY3lxCtFgzLYP
4ZDBGYr/uISVZ6aeQ8dtF4+RrFxfyC15aBSnkGvagwPUj2SzG9TFqNCoGlEU
LQCizlol0LCiMjqKovciyXbcvqF+DqgZF/WDpWb5V+K/Oxh4nXYwG3oIirSN
8P66IatNW/zXFKLiHVlaRemyAXG9WqpJh7IIUVpWcrE0rDvkRCJo3KoYQkvq
ThJQ69ms77M9yQeUkKFxgGV9WJ7RP5Fn/8yM7HkjLIvrSpT58WBBlE8bwxJR
TpQht26Ics1meV29JawszyLHKTllolwxggY6jRr7O3uJcsMIGnASg9SpFDH2
DJZfU0v2xkdvR3Gi6VyI5WgZL9oTWDOETRfax/StC2ZjtaAL7NYMtdCwhVjj
Ig4R6dr9gSGt3Wi1c8/VFmmlzuIFaV0rllb87pKiFBY1viQvqlJAfMbovD7m
QyjoiCGqeqMG1z0DasdVF0S0qtcmqjlXWlJ22sBpjCiqdcOVPqBEX9LbHYN1
9d4vLr0P8eeffPX5IKpH1HgtUbUKpkWkaiWiejRb/XByo4iqLvSw9prU+J1r
xqXdw6qr1iN/hMKtwEnb1rE+Z5V8SE1q4q0S7Ax892P7I3l1/6BH6Q/saeAa
fS391PVmvxJdJe009+cN0ZWQsY4CHWXDMs4VSfaLGfaEGoGIbaVQbBtabOnF
fqomGLE5RpXWmuGi6oS1SGu7hFjx+bFH72ZKzQwDJ7GbaMmjkx7/EWoKnXHQ
VHbs5ZMDUrYHDMGqlAisjrtLwrBlJAytTQ5VW2CPqdGLUSgxiURp0rKYRMSt
LLAfpvcQF90aEtx5JXqYVCW4HAttysWW5CbztujSImiWjjMUOtQi3qQ6/kLy
NMCej6XWNTPSy4lrcorkq54TU3HzdPw0totHlVHt4h0yZLRpMKpW1pcvXEe+
m5ZRyeqdzK+NllPOtOV36eoqYxYoXQBL+lGE1NtmNWlbBLVh2BarijiYsOkV
yeh1hoxeazltpEJ93i/5CL23LBkNhwaEQ1JqsZTes4eQwiGbLBHSy8a4JByp
7Zrj6vZ89PXuu1964fpsEUXIIuGsBeFk9XxMwQIPdNZGLr4TCrbkspr5V0Eu
FReHypVmCXdi4Xm3jFTE55yqG2zZqRv2436Vp4TsKL8/iOI539wWf0dOlePJ
WmQ7QMJXmAjQQ4hfJIKnjKUatX5TfGdRh44mNxJJPScfy0RwUwuSRBxYBLta
Bi4cl349kMlAGGWiSbZryx86kFyhi4dD2WyoiNjxpbvrgwXcg/G9ocXOiZyW
OOUH6XhcbKvuJXHKrdoRidMRB8md1kuYUGvriuEGnbMlrmoEspZVwoxFI0ja
pfw6kDkJQkV+pWJEsPbz3CaJ357B192gRhcX5Wm1ZdX51bjaT6kvrqRIPpXJ
2EaJjNXVgisZu5of29aQjEVBg0okcu532yJyt3mR0wOkF5cJHbVFjn2oLRGi
jOHIuQnOjCgKqGs556RSKGxNLWyaJWlFmSpJzCWqWjOoTRtGCBcpQcs5MV5C
mptJnouoKpadjYRqGvcu9GpKSmSXXzuJ0ipX8hItur1Cyj0fSFKFZVV9v4Tr
qqjCKhnKYNNcn1XzE/u1w4Vktl8bOQgsrZ+j9+6QtCZJzv4TEaVBP51dIzK6
m0SK3A0MAhVGcKefKD0C/P5IJIPcHDtDoSdXH7jqfuTeOzipvY297G0kndsw
7uoZmwUBYOEk0RebsFg4G7Fwym4WvbdI5LJiEOBB1o8qDhQ2qYqrcgu11ZBZ
C6wF2aS1D+JRi8WxwufcqgQdi0ldxGSbm6VbVTbC6MN/d+dvH6xQcDAFJPeU
TidxBhSSCm6dlT6xnYXPYcP1qKVPkUPAB6YnX/CyE7rOw6SheqrcTDKVTKN+
nVo4DruyuTAka+y9EE9Q3TXlGtx7xx9p5L6jjWhtjJ5ce2+f+EemalsQ3542
HBVxLrwj0NDSRC9mOImFqQiNPpzptmy4MguRMNRiYbAKXx7LN5MON1NU1BYJ
1F1q3mSXjXh9uhBVvD5ZaAllMw/xGtP9vYzWtpI8+RywF44ljX6ddzFJQez+
zKtvoWlnO5emnYPNaVipzGr/3C99Yyssrn+gKBaGYS5RR2XiBGM69es6ZNqx
u3SdsiaxcE6ycaM5NXAvrnu6Rkv2RHgl5IVdwmhH1EQ4HiZBOKNWDJo9CbNQ
FUtyJ5swP7Ew+4CIg8rOYM1Lpt3Fi9dzCbSXq9wksLGeFBi3C2oG7stmYDMp
tppm7BnQ1Vyxd+Cuws/QMhugXq9wyizYNk4FhHzCjX4wQ3E8DEasMNkyhbss
qtlh/g/2CA3PPxc4n0aU2Smww5bU7DzoJQyXbyTDWrqSHVA0NDUMU1y6c2J9
mQxibUa5n1I3uWQ1DNVXKrj3Nr7qYLrasAXbUMMNqGF/Du1Gwv/R3FZo+uqy
hLqj4WRUZSKgN9Pcb3zlkCX6ki7xDxDLrAa2dQ7bQ11WM3Y1kyfpiF5Fkaem
3dI9xqQN8oiiSbtk/I5q1mhnNhX0tzHOGsuMGzqupauuDK+pTNdukhVeyWyJ
IQYN3VG9xs9ZQ9DA/aPXPBTwys59GxrlipqvJ+nPvu6NaQfC74iaSe73tyRe
yUcMPPrciEksLqvfxeV0PKv0O8+GtXhmKkRO1WEwUjK1ooMBPmzkR0bnGPEG
jZhQV+yJGaiJeTZbYpkUbo0IMvz3hiR8F7TRkoGzK8bv1OOnQpse8h2ZhM0k
s3BiStqSvvpNcXuS6II96oNq1N/wvcSdA6EuqKW698pp6ultxu9UZDDoYGr0
R2juaHJroW+JorDItx23+3lI9fM31P3FGJ8zRO8Oo58HDdGjRt+TTeNWEllb
RpQo6t5h1b1v+tuipcAP04ZQ3G38bmAIBTX6Mv1Zrgx0dAGkw787qpr5lr8n
XSponDCWWHMh/zage2iJX6Ufd/TUDRky3J/NRAJW/tJv+/sQOwgwxoylvE/9
Ll9tZSyljzkTlWwmmYd0nbrvd3x71FWxnrrGGj1g/G6haI1+Q/39m/5CrFWQ
vbYx0Q8Zv5stmui/rW7wd9SFEmJtGjP3SPQ7/GK6aOa+pW7wXX8h/jGIZy0/
RcSLjxm/m8ymaCc3Rd9Wf/82/emfq8drKpomTI/XUHl57RdNz2+qxv1t60Gw
9JT4UEZe6Lr5KdmI5tn//Tv+wk3+TI290X+HXgQJaWfDD1aomlP/N70dUKsj
y98oGt9vx1frbTgiA7X8QDajGVFXc1oWvQsLVynq+e/EV/vEhK+sY1NlS/7t
78Y/5qQ9/t5KEvWvQ7+ktz/7r9/+l/Etb4aAKG0kifrX349/qQ/GHG/3d8M/
/GP7l17wnjn7YPr85Wd3C5v1e6Mam/h8culo+v67nqeXu3BHfvOP4ovU7rHd
yc447uBk113m3vnC7Ir/ueBqfUsHyoKr/6f46tn8PNB1Db76/hO3b+eu/r2C
q4nZ3K/puiZffXnt3Fbu6n/o//48vVOOFX2maZmZXhCsDsLvP2h0rc2Nu4Fu
5hr/H/3fn6X3EDVO+81uenj2YLo0Np8+dN9b0ssX701XDt6Qjk8u7HIH/PW+
cLcaVhm36fDNViaXNnI3+wf+b583I397I8nChfTbx+nfgpW8I505s3wyffvF
Z9I3HL8zPbp+upL+4l/5u27C3Z/pU2/7mfS59/5qevLMvbtJZtawKVZFM2GB
e0Vd+13/N9lg3goek75tJ5FlP9GfTg8sHU5vOHKJPh86ck5ujCsfzoaXm0vX
dcfbbhDu/k/d8JBr4lD6mY/8jcSPpZW+/8W/THP88se+Ty+M6fIdb8mN6cez
tQ0iP1Y0pr/v/z4QxsQhRxkMgbeC4ThXVgb0yG1vptdbH3iPg8NHnvuS6xn+
7V0/8QvpBz/xnfR1D7wznZr5/9l70yDbrupM8Padh7w3b87jy8yX+eZZeu/p
ze+lhGb0NEtIaErASDJYEiBmMyQlZJCEAAM22GCewYCLsl0G2zRguzpN2Nhd
XR12uT10eMxwRUX/cUVVdFU5osod0af3t/Za+6x97ronbwoc9adfxL3Km7p5
hr2/71vj3mdW3/Cr0xvOzpk7RHrDR3YexU263+GGSx5Yr3odbtZdBt7L5k2/
zZjI4X43/Xv+Z7UoTubRJ8NZkWQe3auI+3aH4rtOnn3oeedm4M5L4c4//oU/
cZeI94o1ChwV23Ne5SEAhHHLuPkKD4HgFzdfoveKDEEvsX2dnGKLK3IPeA0P
T+K/maLDeiFbdLgtHZMgDF0eR6izA1R6Mh5Hr1T+4cYKNlkeFDF67jAYPzdy
NHojxhhWMmNYUE12KofeA6O6ghFEz7Pfj6HjEHSJRq/KMML4sVatyh35ZeaN
zPGHkpMLx5LR4fHkqQffkywuHEp+/J3fdHP9Y0983l3nww8+n1y+9ZnkwrkH
6HXk0HXu/7lvqWpgOTviNNiZhPwlP/aR4o+osZfv0ZX+rv9Z7XywPt8Zp/81
bwxqvXdQw8SfTwd1vZABZsMQozoPqhIjZ5lSbrrfRdz0G1GT4bgiA7pvcldy
56FbkkdP3JccdgOKgf3Jd305ufn8XRhERy43xH6Ey9kRpsF108iY3iykxSwc
v4gTq8RewPFYP8vNnqvnDsWam916KzkzTw/CsoazxcOJoTx57g65XZrUa9Lh
VBjyGB3i4cTwvvHR99BANgye13OkrmIefyh51e4L7ihvPvc69w68YijdkDos
4r2U7FrYRyMJ7I6lw5sCGMDmA0o2ObLZ4/3G73v+Z9/K6MtqnVozeeNVr6IX
jIcMIszHg6//MA1fm96rAZMZG3lVDizbPI6rK2fI78AItngcwX2MG0awkTOO
/1N6/Cws3V/4cQQ8wXuMYNkYxwl6r9LwnVu9J3nH+tcEkhgGLldgmoJVmuw3
ir/jf/bN9lW6zB2dseTZ07fRi0fSGshujtU5lIPGYUMxhwxyt3Kszj/moLGq
RpFJ7o7iR/GDT36cCIzxG6f3OuCYjE/MJ1/4pb+h196Dp5I7HvtQsrTnBM7H
5S+cKjg20/38aR5btdM5jajjtPu2G0/3fv+BM0RqDOicMaxjOYZobw44u4Y/
0zH8mXZsiDZ4SK8PV+wLJ2uFNPfla/V0b+lmbXh1hkY5qS3Yo39fTC+zB+N1
QyuqPDvazo3Se4lmZ2XX1ckLP/097D/2S3/jvg28u9lJPvC5P0wu3fbEZkFT
t4SrDrifMWKXW3h2njx2enO40cHL3Zd7p1psFZdcx5cp6KONqHwFDn/l05r6
ERgi2m5IB5vgSXov0QQ7zuAknEmx+TJmeGnDhnp3eGLxWUVDaYGtiFthT3u9
oIv1G2EOZVrdWOO9nMxP7U4Orpyi15kjtxaTm84+XEzuu+EZp3I/cteHkrc9
/Bl64edjh1aTd73v5+kYi7uO04B/3rwzz9SmoXd1AwtdAwtlxgLY+tjbPk9Y
ePr530i6Y7M479F0goIlnjNCzZvU9/C6fPRmmMuLa7XkwWvureJzLVnde76W
HF885izo1C6fhAr/6INPxEcPVGJT5Ig8GCqmGBXOrieMZy4opb0bw/V2oPu4
YYu6ht/ZVbZIxaFeoMty3xv84lYOQQEjwWGgCAC4/+EgAATgVfAwKGkYOHXB
e52+d+fdb06ufPXPkzc88RPJkVO3JRdueVxO/9n0znoUomXod5NRwY4a4aGj
UHH18ZuhCm60gYoSEAIkABXuMvFeglIE06f3ehWnd94I3LjCsjFSbyTtKmGi
cADwcN9r14fWLRToB7+yKXU49Si4eeUYzfogKLjh3ifpev0C2WqGQT7x4MR+
wjCnowwEOHtu0gkCI7ZTsj8FwrqQwE3eAs1jSc8jFlS792qyb//J5OGnPpf8
2PqvyZxiwD7tj6SukVjeMQS/ZTg1bZ5OTO/t9z/D9PbTCScHJllPpyN9MDrc
cEdoFrYvGNPp2wlLayvdsWR1aTemsHCQp9ORPBBPT2czPTYNEKS+ztMJX/3a
E7dtMZ1lsuNuOvEIYlzLXEw+4fSUYcHHDaEfzXGMdqdgcaAdosM/ed2Dycrk
Atg6z9PqfqRpxISW6L1Gyu1UO/nxT/0bemF6RcWvSwdB5teXs9OQ07sGIiQh
JCquhr8M/87xNMj9g/XDhi1oGzBpGTCpM0xwLNgBDRPYBPbkokZ3CS8WDZhc
p+Znz9hkcnnP4WS2O32IkYJb3L3Xe9l0575ZRh6chj8LTkHjFSIFD6xePnBC
7xuBF/yBacMfmGCY4DucpXPQ8bkbdvTI0q+kd0bwOO6CaweNYvLSA+9yX2WU
EEhmGCpQ9/GJOQJJhQFz/uKdyeWHPgiYuIHGe0mre+EinSaUwoO8QwMwmWzc
S2k8WLcSGuQADJpDulpNGl6r7jxzw9Mdw5p0jGigybiSmAqIajCugDNnPQhR
5diaEK73KjyL47nTwJXPI5XJmjx+/Hwy2x6GgyG4cs5FcvDQ+dUsruoZXMGt
aObgCp+BoxRXFcLZ8Uu3E67e/elvE4F9JrJMM3Tt4u5kZ3cUMjTJ+OKENiFr
0ojPJhlfgq1CIfJYNoedB/Tg4YvuLkchQe6bvSCbUiBbXjqcvPTJ38I2ywQy
XBZrEYOsnDU5Pt8ytFTodS4x7TTpi5NLNNEqzzNk5SHyEmmht5X+eWvjK8Nd
d5MfPH8Hoc2h20lWr7UbNlzaugG3liFjZWXtRicXCBtqRVeISJeNbKnHXYWs
HSRMQa5wSFk9h7nNq66+IcIc94MRNsSVbTHmDk7soJR0PuaqEebwcrqGS5ph
FuDQrz96Knn2mmvhz0wYOb9phh0c3FvvfW8ka/h84eZ7N/rB7vKek4CaG0EP
u/defpJcWgBuUsGOgxY84I1gJ96qB5zXNm0KOdG2WjBc10ETYVP0XqbZH5+Y
Fzjr/b7b1XpyzF1+EfByf77kbCJSlziBFTeNGB5yVXnInOFwwU2vplViW0lA
9+1SJdAqaNqKkRa+mA492UqA7MHDJ8i1OpJ6ysmPPP4xOi6BzPthnFOMXas2
gwyeM+fsc0BWotwoHqfuAObGCu+lzb3HzsnlyVbvhDYg7bmLtxLqZjtTIbLW
DtdsX4fLu87j0/PJl7/3d7iNRTp0NULd48dvEsGrMPDgfiGKBuQmDLe6wcAT
txqQqxhGNZOZpGjdGTiKpCuMCCAEQNsqc6hzXjiOQwJmRx5VMeKszGy7mzx2
+BzMJAEQSgfA4UR1w6iOGacrG4F7hwGI0wNwgF6VAeh8/ODT66f9ik+/28hi
XuAJFqOKFztsDMAyYvfkzLk7k5tu+REc+xte4nBo4HtjZGgs2TN7IDm+fDqc
3q/HK5TTq9gYc1cBiHa2CVEkekYmZjVEkyc+8HPBnui9ZrvuLhxE3ffwXiK7
zBVmR/Fex2/WMMwjKj64+uzl5D0/+XWCrIOubGXcg1lWy5qB2TEDs03GrIoZ
oDaWjT6UnpEGu6CKWw4/OlvLpjonW9vQUCL0vv7NLyZHz1yOwkG9X/Hx2SVA
112Xh7GDNLFGw1jL9bgB46IB42GGsZwfAK4ZMceSv5Yo07DHgLFXrGpkrPE6
PrsA+B5NY4/kbe/4eYo//J/40H12qOvkdwpDQGGXv/vw70dj7SDEO7Qnl4/f
g0L49UjjAP3DzS4mqfCC/7OSQia8gPsPnHE3Phj6pxn9+Fv2AAL62ROgf7pf
BR6ox71/Z4+UcG+VDeaN/HaXy634fNfaWwj5eO07dhrnmE9PJwRA78Pxm9xh
WLiJA8KE15y6lXKf4MAIMwEJMIRA4MCQod41w23YH89A5DY0XkFOXDJeJcJh
Jcipxl4c7bWS1aV98CkqBhWqhksxQe81ouHOhQN0WncB0elHDDWvGwk3tcdf
UPN9Bg10BZXdCZqe8zQ9wxQjOToArovHqnBf6/Bnq8jMTbHaO+VP7nvg3XA5
MAxqV3WiyfHZRTrkRbioh6/BZzJ2s91Jd9BDmwujMxaF1jxBcZhVOtTo/MaK
k8jVgzckD55/XYNZ5H7cXBhbogN8JGIR/iokBIVFYNWzDz2/LRaVDDdH78d/
1dR8xCJ2sIk/HcPLXuhbTCjRZ8ccMMgNGt5L8LrX5Lx6i+d2tRHRCbZlpDVM
RGownU7sPEz0AZGGjQxDm+nkAsFkeHSGiNQwnKFdKZ1wLdqqRAnkbFlBu8e6
rHDddY9CyrmsUNOyrstMhAjvmfi1fpf3HBNPqcq0cgyTADSq6IqjNEWXUtHM
lmyWY3ivVakrq9Id8/Ui/eg9yWTtN4qSHvvVyDnCC8lPjB8WZFWxNKuORVpV
LNeq4X/U4bPXyIeqEufAKRcnwvbAk8K4620ZmFfgU5WoVSdqYWRwiY5WjqrX
OKZem0exB+JJ9eFVowOKQf4Dv87uXaW/fv6Hx6/R8VnkRTS/4KOtZ/iFz+ST
gVll5heHE8SsttFqsWCUZdrML/hoK/tPJB//+vfdJ8+vN77n5cCvGXVv4Jdn
Vq+5ahrJlbaRXBlmfsGRc3xS/Opx3JbS2egJdIdyajTacxo2srUVppgyGaF6
J5ZrMcXW5sLwqAPTaXhxdSMYtmJuslxF8iXLxLNrDl8gT3LvwVPjTDFVOAyO
GwLiPUdOEX3YUSCWSwB80Kgm+3xArcdxQxB8dn4Be0mF5d3Y8B7Hg3USL+5E
eh6+1WsKnkPDwTwhGYAnYGP7X+yjjX1/aUqcUd8ztdPil+kG3qUoi7/HMd2r
SI+jqSTCN3iG4h22iXdl8A6/W2dg/LOIejRISAtp6uF30nEn1EPaCLWtftQr
M/WOX7o9XDg/jyrki0C6ihEetYyK6JIRHg0x9fCZQyNNvaCd0+reQDVNPW3a
hgzqtYwE0whTD6YOVAPpmoanuIMnaf30nTqhObzNOprOLFYNs1Lq66WVSc5h
2dhhFNo9c+IGuhpcSNEwsp2UdlWi3UO3vpGuFfTDNbovFpPxkclism/5oJtE
PMkPz+qCFEAetEepmjw4P1AmiRibmks+9+2/wjVzdYRUQhKhh40iv6eYbxWV
HJVQdKk7Qkv7HU2P8a4eYCkWtl+84U6yd46tAKPa+Ie86ct7jrpbSI3d6tJe
70c6UuHJ09/9xCfkMfUl2gN/iJ4ygW3xB+SwReFb0nvB/90QGuOM6mG2RfWA
GZwtOmOjUwSXAZLj94DfxPF6zHSpbqxHTCfZQNGhH9NH8V6EzfWdt00qc6Hz
AS98080//ReTD+7DFL/vhe9KW8yuvSdheUkIKl4ONqbmV8IA6AdzckIPz+Dr
iRcbRry4bHi6zTifTEJQZjlw8hDkYEoNwJ6xORKCMssBPiNQ1HKAfPOSm1cn
AUEOdAplxEihDBmervKwN1kOnOfaS74hI2kyxFoAbYC908VSbf9KRk3dk0sS
u9PuTldDTrBBglDVEaR2BWqD6gCaCZYPJuePX5vc+ar7kzfe+2PJe974oeTl
d362lHzpI7/szoP/zY8NDg/tyirGsHFHFVYMnxp6AYoB5WDFgDIEo36Al8g4
9aAMDX4/M0ZNzaupeEQuNITj8OSMbGCFr2bF42sbf5zM79hHAuIcZ9WPdGWi
2aYgtKyCUIjHnrEpovIdFy5AOErgs7stfoo9PxgO7/WthKQIJXFjwDqyXlCN
wn5Nc5yPEwFRZ8Wv3blYRrYtJlUjqXQ5RdRqIe0wJIZxC1rCV0TI3xspD/mg
6J/RyoNGf1GeZkZ5ylnlYdPj0OaMpGANLwc1YE4eLBuAllEobs303Tn3/+hz
WqKiYGEkneyQ0K2pYHzH8ARkKVo7IPWHXUY/cV0FC1x/cANMEhXqMPg3oSQK
lX0tUdpj6RglsYYhUWNGbmtIeSwok+GMXNEjVqFMwLKQV3rXaa2mUaZqGB5L
2ShTcQ2bOIUggQOFFgnUUHLH7qtC4wE7TSSQr0yUmiRKJfoVnj2Gh4uW+VHE
fcRpyPBmyuzT4D5ctEHahNeZG+5eKkTPf8qkypo9GvXqM+eS9z/6huR//ewX
6eeRCeo28L0QcTLZxyNL2MInb7890S/ezZnKJk7DrkxOL+nt0UImzYtYJc2k
sYB9+PHH3S16LWGfhJ2gbShYWRRMxJiLPassG1ou3TX4s8HvQqCUnm1bylUy
EnnUEOQX3zVEutb5GiBXZJjxwvNI8GQS/xifBj3WB4/3wbMnVy+dSzZ++xvJ
+vvfmRRUU/euSOZIj9Es2k/mituQuZKWOSz5IPgqm1ooZeCbkbyuoXhVVrzl
AydWRXm6CrOSxK8b6ZGaUcLaZcRoNaV4XMJyv/NOGcpY8k+nZUTxKoZTNmzU
tWpGNn/cSD9qxbv6/O2keD429HtkFrjZSLWB5HWB6Axk3Sgstfp6M3F9VD3D
nIpc8M84XnOXDPlrUZ4E/3+U/wvXu4+2OX/UowOG8MihE0CEu75ccWv2dSWr
JHZve+ErQdycE7aWiltUDtutHDAkMzPiVoa6ueNC545fup3S3lep8dcRHapl
t+/e13/32kokcHi5n9HJ/MC7M4GW2sU2iF0pK3ZpuOfY5eUHn+VpgiODx32b
Z1euvjLRHgWUT6VTuy7qAg2Fptb5NBxZqtM0+qmc1LYpn1M08qinU3mr9pO3
IrTNTRIeTIZHAkLRRN3+cuM3avxYM/xviFzyj3+PrSDceyXZ/Ks/7BG9nVuJ
XoVELyNt/bWty+jFZ3n6dy1H2978ji+2WdtUy6X7Ex9waiDwYh4MTCitNIz8
U8XIP+0xCpRV1ZfJBUqtbUty3rEcbdPe3IihbRWjtDJppH5bnPpFM+e5G+/B
ayloS4m8Kon5ttuIpHNSVaNwaXlGVaOA7rsjKpRygcbpOJR679zNIjEF6cVT
wvCYPSBihhEBnePHPrvbzdWzmnFJqt0cDhq0zP0O7/jdC9n0ACmSeG276L1C
wnZ+5WSyb25ncvWefVAyx2Ovavi+NGQeC7eahpqo1DhFy90CXklaQTbk3nPg
avhtm0s7j3BbTxO03jw4OUvy5YTMzFo5XWkajtQUPx21n5KheKr4rfR5rZAJ
Mt1hm0ZoO5mnlUrEUG9ViWgeszWWKy1ZW2lWhzXL/ZgsLe4gtaryu6FZONuO
SLZImLFCEoLlG9fK9Hn3xBRdt8NeEWCcUrb1VRduhfdlYlGpU5PVSTVRijpB
rdYy6kQqIYWpppEOKxnpsH1GOqxsFH7raeF3Vc6rYlxRKHh3PZ7XKKvTjYfO
U2zpdam3MDVtZMcb3AuHz+NOeb/wW38DhVpNZcHzTXp8SkaeujFgq1rFqFS1
80tFwRXzSu2XIMMFg0RxIMoSVaVrunHXQXqI4beefnPy0XvuhCs2rZDB6Qdn
APurlIuHK5zSV4tiSDCPX7gjef7nf6fsxSkIkxqsqFy8U3ldECeIFryuH3n1
HcmvfvjFJulTmX6F6gznN46kdMtElgvh6SmDSVQZW+dSTZn7NHzXFu2CIPl1
Uin8N5MaczPT6wXN84NmMwKiFqiuy3gciOUpG0q2jbh1zj66XwxIox2ocVBR
suCDQixd/eiHCiWRHlKeCdYfSNOVL3yalKeR0R+nS1p/ZiP9oaPzSm2nnN5t
QnIedhBPUGeQBVuoExedfP2p5eiPiwSz+hNV51qc8ULuC3qD7XHw0nmu/UZR
vGQUxRusPc5TCudU0aZzzUcj7dGe0Th3cqnKXHatqhua3jS86A7yW69/x4uk
O+6/a5pK0k/l3I6BewvHjBR92dCdjuGH1A3XaCSFceQecRjYUHK4x1kkPIy4
xA8jhgzBMwIuJhkdiAo//OLPEi5GM+gAapQGFbmSr9ZZkhY5D8n91ntHY1Nz
QYA4M0myIXn3xYwALYzMagFqkwBVKArk1EPoG1TbC0RN50vdkfCcsa1UqMQq
9NhT76Z6PHe1+B3xqL5G7i/8I12G5zisa3gwOzMSUdC7Z6adfzpDNmy4Wjv5
EfRyGDxPm+nPXYRhO/7kvY9cTv7huz+TXDiyB9IybXg07f6KgrH0fivvw512
ekJLZL0HPBqoCp4Mn4cfnTnI4iejLmWje1+py7qlLlLsa3HJT+WV6MU5pYPG
2tciCws+v/E9L5OkNNKSfzgdC4uICkmKCAs+w4mBpEzQeyUSFk6cF+b6NoRW
yZHZ6y4bgoLXOz72tSuBHT0NZRUj4urfp1nKbBPU2wXQNdyZBsvK0TOXN+NB
r4bLyURd0g0gAZczNG4o0mecc0UFS1d7QvJJem/0kxW6VDThrBw46W7V6win
xemf2ngoVPx3ZOp3Wkd++q3v6pKOVCV9FFYjOdjhMLyYK8Rc0hPw0WtvzJWS
jz33UnLT3a+NHgcHaXHODLX1LKU6Is3ZVofAqOFqLCsdmV9YTE5fuAimqpZH
AFbHVIVRQ0dW6L1Eh3WHoAhTPU5zc2V2EvrhvuEUBBbIawhJyCQLCaKltUcf
IAnpZoRk9dI5LSTjkZDgN6EZr6mEBKERhMRCzIQRsk9kEJMREuiILLBwNrJ3
cYXaqSPU4trcvifZG17peJg3QFPhkHQFONHp7QhgcSKeSIOQ5YZMqQYhtJJD
JeaNRLO0jSPJ7JQBCgG/0b3H3rzvgOhpjqsZcpHXf6oS0VJ6C/2nev8EkQgX
X2zMLO5St14hNIs8SMRTU24HNAKzXePZhlOKJLTWB12OmOnjdmCIH3vbCyIJ
tz309FpGEmgWxLWY7SMJ8CWcJIyza1FIm6rx2jh8+gYODdIAR0r9bz91PugB
yv7Z50D06kE59ABwA5FPHoRnEZI7kQ1sJowssugBEzn5/p/9BcjsU6h9C/nj
Roi0wkeCS/Hy5z6PF65EPxF3cWos+fMv/4T7klcF9zNVtbQq6CTvWL4qjPRX
Bb00XuxINQcnOkTO4kSrgjtHwwtBxJq2EgIpUXVUogQd8udP49mazomowX2o
IVCpIkLRy+u5CO9EhBQhShV31EDipRVhdekQdb+n/kOdCvDwKaAU+D6SH/Ab
kKJ9wxM/MWtkbGVloGRsSR74fXwqrYyxSKytdCdCK59jY81IkYhIoGkdxXDI
wzQvIUSKBD4EV6fGjA05apkM6Z4jp9iRqmwO1xrZqKRQzYQl0IcGzzsHrDTj
o0bQusBFS+BAsrGVNBu7Lnc/piZbsrHT+aIwxX6CJDxEGDg5q7z4EHJwtSk8
M34rXZAHcSPxgbr6wUPnuc0qfcBWIY4Qpvoa9grFHW957/uSv/uv/y35+rd/
k25ebRYDsmUzG1NG2CKHg0i4w9Dh2OXQO3wTqOEv1FgZvvPSs6QE0IRxI/CY
ypR/lDKw/RBZoENLU2HNiDoseIwZ5mOeWzJEFnBc5wzUjaqO3qtJ5KCtenTw
OzeXBXpmTQ1LJGphiUQdB64hjUr7/BZKst0x1alZGJJ+wrAwjObak9TknXUV
xriFEMKADCpcBtF0TCHmDGYBpgA/c2xYhHIUybHwmQxsu6Q7eHRWtaTq2c7P
Ju0os4Jw/Yf+jUSIjxsA60bGw+oIHmNfQ/fc4OVkxn3fiQuLKscAhTHD/6hy
CVzlOENMMGzojFxjxYhTWgyk6/fvI10BhLpG+LrIOgPdmZiZRyVb4hHDFYvL
2RN9+glZZ2a58KPyGnpV8Koc2hvldLMQFpv6gFpTVTGJ8z+of4f7tGhGC6m3
MNvXU6hGoqCEQXYw+qMrVzYXpqYkKzLbN5qphmhGjsRezHKqMCEiabDCILuB
mg20ZcxIls7Se4kUhtMazDRTWapGGNIywpARI3BdVIYHPVs6YYHQIyMrdF4p
x4is3LfvKK0IwWMpZcrwlHF89661twTh0EVgLRy37dqP0koQDu1RdOm9GoQD
v1e6X+SJwUfklLwb6N6LmJcitAQRoJtsKIV7FSw16RhbZJTSlmXJlQY1uf3R
Z9ZiNfGNeipakPKIClroBVFxgtFKO4kb/Zr2jMarZk/jlarnhYSDE5mu4c9U
+J3zmbp7hfXGb4Kp7qJshDwdA1nDhkujpebJ932cos2qkULVTaXx3sK21Lz/
0TfsiDtnosVtegm2j+kk/3SYXg6ojQGlpqZKzhzqyOIZ/EwPrXSKUJgznI9l
TlIodXCf6H1zaTnt+tdPd8DDBfXxcpIedKQiH5WjHfq3kEohcYvDnpaRCxkx
fJs5ei975VlawFNyNwL7RXyijuWKEe20GSL4DOujIaJLxUsMEYjRPW94G+Yy
iM/ygRNZ8YlqMUMq14HHWOKR8k6A5FHg0B88xRZmwjkvQ2mlNytBdDfvPXtt
MlyrR30oCyPTkB3usauQBGn5QZ67YhiGhqk/nqC2/jQzGxDqnepc7FNl2ZFS
Df5xIEI4lNKslG18k3A5aA/HP+WgOUXITZGclWZQGygNq832GqGiFLwWISn3
4Bpl36eS6hGG0yNtdM75uWLoEMdWJSO0GjZ8544RUi+x7wy/GSB7/2d+CZau
YmRhRxTOpJzczW/i26naXfLWsS+nvNw8ODlD6ZexhjMT25MiRFjzO/ZR9ws/
7oVo/nOP3EAvh8P+vkqsHqxG8IJCAMGHDOqWOaQlSCpYC4eUKAv/1L4UG/sX
Z8gP6hhq1DUys3McacEvemzttfJAZDr2UCRJUaNdyYi0LLRYVkvQIlYLiHHe
q/QGO4UKaNGqFNdwKsnde4+Eh+uyMhWy0oQmzUPHzw4Zuw94aSpvjDdaJE3w
kJxXVDYcpCGlTpJygUJBnWrGvHVzOsf7BFsVlqfsRpqczxV54qKPliezua2l
mtvgDhHbjNiJBcm7PlafQXuAPictSe9Y/5o0IetdwkppE7IsqZJOOCPR5rUJ
/hHfT9EIx0aMamLbqEZ7tFXo86Vb70t+8ff/PSEOYVk5Fai1eFhL+Jx5Lovd
jLeL1UnlfmQpcrT2kHd+cE5sSxeKBlWnOqsTSs5nzt0JRQr7k61MdMOTvVlO
CjN9k8GxnpRZT+596JGgJ3zcoHrWcR32KYOgdUoFfHLcUBjEP16OiPNQvPad
l551Q9ubK+4adlDHa2uPPgivySHIqZX7nfOigmI0+2tW0Yjh8lCkg/qdGc0C
ig5cdUZpVhg91iypGKmuuippGMI4eX575FFVItmCGdp37HSoHulac1a78HLR
XcnwrJoquIN26ayQ06yGEb9P5LSEI8TDggekldEC4zcALoddXeFanbvxnrrX
KyPBLdWRY1HdZ0jp1REnJ/gOHCQIUhGCNMWQgMcEzbH6nRCrKR1qcK9bIXWN
dL9b2YiT/NTVNuUSZYdOHZuNG7FZy/CJdnKZAflFhxRCDKMGnljJyDyrRz+E
CnU7v9Vuj5ERKqcZoXBozw8fpqEtmMtSrQHVp6EyQrLNrN58C46MUwk3V3gv
iVoQuCZzPButGBVWIhfKBTb7jin/nHtROKVG00ZqQg6NU33/z/4iEjnDD8Op
MErkKDkRGjEy1NLsC8MIkKV+U4n0yflLpESiRxzR9eqRR5Y8HwUvHdKNGcga
MsraOw2L9qlf+QMK5ypGm92QmihJVzdVunrXyBjBQJb2sSiploVqpEx4wQy5
mK9p7H1hiZOL+0qGY1XLZJ60ODlFGjKC/tmcZnItTvjsnKeGUd7yLPf7GKIG
rotMjuW66xak5/BeMoozyiO6dO4U1KenT0or0evf/GKVlUh5RKHrzfG/bIRJ
fI2EFyTQsTGUiswmjFpnyyhq7FS1TuSiRYQAFxegWf2+HLKTUoj/08xvt9tv
5IoqRlpaJU4oQOO09FCOCL3lybcQ1rQIoTTeGR6nVhm9bPnJi0dYfvz7c7ef
JWUAiCb65qljpagYSmEJXSlH6KyoUOeoqkYIp5/6KanscSOV3TZcI5EiWiS6
8S0WIf/+wfV3r8s5GlqKKtKqF4VwebjSxm2ZcaUlCC+4Rm7Gy/1VaFWrUEOp
0AkHTzROyfo7hHaYfd04pVQoLFaBSfr4178fLTZwn8Ps8QPyNpdHRoMccaxH
u5fCWTo4vZO2Ga8oPcKSqEwmfNiY4MVMxyX0CIDae/RUoWFUxpjYYZucTOSm
+24v7tnbt8lqyjBJ2SYrhPgYbfTsOenx29OVo90eVw6cVCXwtfgiK6Q+eCHL
JVZqyojyG0aUv8IQwd8LPAQi7lzi/2jp0W0Wkqau53foHTZyQ5U0vRn4xZve
UfQlpfc2I835QSjP9tWdpkoMOd2hUeLOIXJMOERyQ9urO+MD5q1rrAkuLAuz
oBcoi7aVDd0ZHzCXXTMcLH0Oad+ZNPDW6pvIjl2gCuuOpJDwr651pxwetMch
mIWnpmHKljmRrfxppwF4L9Fnib2tXZL1Y3WkslZX2nP9zj3UpFXepvbAEslC
p4ZRuveArlPZXrSHYzXSHvaFypn80qHFlbBmt3+Tp/eeEce/42NfK9SNuhnT
OFTgdcTVUFV4TDxi8UpON6c2OOP03tQ7EgR3R++rDP/mbS98RRTG/bieoXpQ
GBifWaPAXjNi8V2qngpHJkVClZCgl4676A5Y13UIqbVX8nt6jhl5naqRddbb
AqG5B6uZOgMqS0vZsPkdvk2I2wJw1VStAt+rhrKMDZiDrhveht4WT9SrknMO
y2vSSaSa4TWp+yDewZLNGABrGpG95dGIsvzt5p+EpFKkLN4IiJmaMYKpulGc
X2EwKQ85yAoHVZGsOChkZSWqmdXV6m7OTg8sKyVlaGR1d93YucKTZzg5Mjkd
yQpkRj1EAKrSL+8TplYbjWXly0i7BWD0wle+56a4t0Bm6YsUyLKdvG7KQ/eX
zvVNGIZlunchbejkdR5LzYhaeCo2R+p1mnJM/pwBgarhqeTpCQdK2X12LE+l
lK8nx41MTTUFVeCN3rNtYXiE9gAdHlBPhlI9CaPDBTdwP7n96AqxvMZch1fB
m/8FQ4PvyeZdVsK4ns/1oFk1Q09GDW/ISgXVDW+I70OiI4LSjAGohhGfz+lm
n6UFUpIa68mVK58NY1Xj/9IaSRoxh53CvFFqrxkeiuCokHq8QUpQEZWNIopG
S2FLSYkUumTbL1XoCutkt5ISvaxENiqtGQV6nRtiOXHXh/e69AxRucvIzkwa
xsFSEEwqoiFREKcmYcAtBZEalu71RU5Yd3dZ/aO6u2su7u6ivuKakfDVsoHp
1bKhHdKKEQPvVp0VmF4/0Xiv0OfbHno66v/x99rQle9+fX6Fa4yMSs1I6+ot
cWTl0XbFAtaG4R5V58UxqDORIR6o+mDWuwPmdBspkcM1W4JUNwRpxEjuWqFT
03Bw9L4reMG7nTOwU8/J7CJ8duJAMlE3wpqqFou1rFho9FhGZ7dhdAQ9cGJ5
G1O8NsemF8yqkmxdCt+Dq0phnYklEHoJq/STX3/HA/KYC9kXMCqTa4G4sGOJ
pKFE7+XQB8rpkZm+sW416jfHCz+7UKVm1In8GctBEzhiqaoasESqLSNDNmo4
FPOZlis0OqglQTrxKoogyMFszhtFwrJRapY5VUVC9z3/LoGJe10Jp6kRbOAo
GB14hbNGbkNt4xGAyNvH0LGct0CRbHdAEWinZeXMGs7YmjcNERjuawBigrYM
gnYNoWnkCM1WUU7T8Eq40YlE4J7jK8mp5SmQf84AjdV5NWs4DU2j4lzp0QFn
SQo7cjCjg9k9hg4IZrhZmF4jE7NWHaeqshiYe8x6bZsSwJXmSAL0cwQsCSiy
ELz5+Jmensp+qQoxCsUUD2GtYsWo04gQyEJBDi2yDbP9up1GjG6nee52UtpO
qSs0g1iJUEsNdhhhRdHwD2RmpSnOa7vXeQw3b0Qut0nnUPS/wOxHn4nsaV03
MpuqOrE52WyhelcYGZD9ndRLXJfjcaqEWCPVjhYzE5/BdsxzJyezqZkp7P/+
n/1FrsK0DPZ3ctwMHZO0DDeDy5Brwv7vvfsu2I15AymVnOSm6osL7Nf13Yj9
64yTwoKBkZJRyt3T12J4H1IWnUtPXEtNjkhAJVPKhQ9YH1ACqqn8h4xDxajp
6uINwoJUAsokCfDbBuiNtFQAlTfeoCmogC6YZFWAw4OSER10c3oeewtmVa3s
9EKqSbWt6taMrBAgxeQn2Vc4sA20vDgm3Mtzq2pkgf+YW6wPQCzCh6bDYC9e
0P4ikx9VDgkbG/0f3UT+v4SI2yU/ktgF9v/1khEpOQwZ5Ld2ObKSBUNp+3ym
PyAWmLxzWMlHDaQhw73guJLI/8wNR5O/eeGR5GtP3EhZKEsBylusEJKOsyGj
rFrOVQBdSbWsxF5DASqsA0ANpJ/Z31KTk32OkFRQ4fvJ2guEBGji6Uf+mpEj
sJ5e0J/8FUo5ZlsEp/umFmO/UHXlyM4m5vIfIQjWvEv5osj995kmjREjITRs
xHjzhroX07mV2L1gNUi0+kpBRUd9Eu0V9hk6UGUdwGcuUUTH/dUPvxjpgM4D
NIyk4bjSEPBe64Bu57F0YDh1A8PxdN+1uOdtg6NDOUlDzdF2X47GWpN3Ditp
qFs3hgxHg6vtkQ4oLZgz4FIasNLZNlICJS0JdGPdWh0AEVPx1hteRRGjmAqO
HvcZrqJABAv1ZdNGnSWUgkPZKDhsVwFgAuThABXj4QAtNYwPHboqFBzY+7ca
bvpnB2P3sGIEA6W01rAei0CNRID2JOBds3WjxHhO716/7ODqpfMoKblhDNMp
BcRCycgYapYem/Qboy3S7JYp1sOMcmy3z6hY19KK9Zoc0rcIeiPOG/IXLhmx
f8NIAOo+BCF+N4f4+Iyt+THv3VT/s7e3VFCe+bBBSmufV4uUHZ5ejSZdNhNx
6RjnaA3YT9UxnAxd8WfiO4HHe4migZ95+xqBZdaATLHvMpm4Itk2woG+CiAY
kYiAa5D7c4wDnMQCPzzUqg+UDOY3B2R+3Yj9y0apkZm/nmU+/AAn2lbLy0RO
YKh9w2p/5hv21rvZ7PzTszm4a2HSSOcM9c0Bxia/nNaU5dlggfQ6KWiRfkmF
eJLU3W9UgGQ2na6H22LGY2Yp3NeM1/XBppHt09uTSMZnUMaLqXefTaaIGe4a
bLRWClhsHE7ZGFhvqYp1juaA2b5hw53Q3rEwvsTvnPlTjK9qvNCLA0TL1HcU
TNzv1nuI7usvw8Pw/5ZUtRCOPxbhWiyvpbhYz+AiSvIXVRVQkvytAVneMDz8
krFTgGY5bLpuKHAKXTGqM+MDhvlVw8lnlve6GLzfLhn3h284QzM1ndON1pva
s3tGOLCPNmB3Ln6W38TbVWe90I20qAK4a/bvRcBWOGDwW0L6T/3KH+CGVhWn
zJBeu/KtNJ8XroX5jeMke0fHaaaHB+S3CukzLnBsbUcM7tUHzOd1VN7GcX69
n4bknWOrfN5W5xB+l/vyuxzwwjbAgscQgwS8RtR36eIpd1kzBr9nW20RfuE3
XHkJ4vcbTUTK0wsa5Tuw4w0Fi0YGf2hAfjcVv6UHWj1pO5zX47sS8Zt999Cn
ofOueb1lOAZX8XTXKiJ2vetglMnX/ILZhrM+l9MLZnW3a0H2vRtVHarrUrvQ
D67Xnbv3oKEw+OiI0HF4nFL5X7r8UkmD8+DX6fxfNjj/6be+K7SJDRkrP/XD
OMRP6wzI6LZi9Nzi8pJiNKFIrOkoz+K3n7orueP4IdoPsL6tJF2Z2IbfFfyG
gJZwjBqkrg2Yp2srS8CnkHOQ/Xzx/rMRqTlhTzDRYMHsOSfObOppMTyE0Y7N
yQfe/cbkt3/9s5s333BmqYfZGxONVpbZ8OhwEheN5yr+k+/7eFBZb7lrYJwk
5umlk/LtbbJa++bCar2VObOaBk/75Y7JZtPGyIB5uQYbbuWYy+MTlhS7hms1
mg89P1YjlpV30ypcZxVWkTdeVxTtDCZXaJpYOMiRw3TtM3pyyqqbc3pmejWL
u2zIrRt+W2nInc21RSF3e3t03rzr0SdW5Xh8LWsF1Q8zZtC5NmCurcV5FdD5
re96e/LWpx/ZfN1jtEF5VMoV6Rg3OF3NcQY0VIbUuSAdp08d3fzQB96kZSri
doW5zfm3yGDD4cN3gY31979z1mjDaXDUBnojhmN6F5P/5z/9a/dVx3I7ECeW
s2Mn8IFfx1Altms/XbNdw8fZ9rWUed5f5ky8zsB3coiuV9W2uAanqm/04qXe
frIqG5rf7JGHXgk9ad0BU27Cb1V5048p0M5rtmZi9U5ZxlprckN5WRxkU+0b
+wFb/NaVE9GSojqXtFtatdOSmqzrXn3X5tyOuWhBY16wPWSsWLS4PjQg14fS
2uq6HK+jjic2ddzguvU8yv6tNZ5/p89ek7z84tvx0hqHn0OdzTqX9aTN/oV8
f657H7gPuoJzran7irheZa7DWZeG3SllJ8D/9afvc3O78dUPuuO6nwlzSNig
69thqjDRt3HX4wnCALsBIfi5n/qAI6tXgkvnrw5z2KsEjLRFTspjvQkiSZ0J
cCDb17czh4L2zVNnrymkYuDNMJLysqAIjRgSuCGQg4nvpwRD3JCjAvVQguMC
eFhPzY671ZMxPGDqrclTqYLykGyXejtuB6USnr55I81WzUmzadlusmzjs+yK
5/6ryb92+Ai1Ty6otik5Tckgv9VqV0r9suTm225aV8A0ya8j8bbRWWNl2oaM
xgqL/C0j08ZdL2J4af4mFCHRSon5Kw+o4zKLmNX5+ank97/3C3hd6Sc0EzlC
s1WMoBEDofn6Vz8WzqUftAGDAdrXjMh8nA29LKZfmp8A9StJ8tdfRzfG9z5D
GrB66gChif2AUSNvWzEC90df+2o4AO63XgL++o+/Ebzzsv7vxkE3ziwBebYG
qM5W6Xt7vYNfGXFVtIBT890BZaDNvftci8Nrw1AAJOId7a2mic6AabkWx3zK
x0/bUiuB/HjxFJp9E9I5ZS3e0po9xAogPj4n1yUvgNTpW06cjBon9ZSUjSnZ
beRUiyzSPCWbH/3kR1YV8QoqHWcV2NpGh42VjmsNKAJNIx3XVdcixJw0RKA0
oJTXlTOH38Eq/7u//k2Qc3P10jX61kVz8k63VUN/9nTO4SfdcafE6XRbr0hB
3ZCCUeUHXDy+j/yAJulAjXTAyYLpD7T7Vm4rPTG/EwB3NC8GThzWTDHY3D0y
IsZnQWX2UC7WtofTRVs6ns7pTN71gXeupmLgs/mcvQ9NGYMqgcoBJKkShM0M
OByw2iakfUpvALbTcCFVawaUYHNqdolPU41kQEmBpQRW24T4Apg9zIwumkIZ
5FEcWgbWz1+gIsAOYzIqxmTs6isDvrvmE5/7+Mbq9ZeEd1ECz4r42/27ayIN
aOZoALruMHGZTUtCAk9vxytR+JRByuKAYi5pWIkCnAa4v3WUdPfrovFVuQ+r
8y7vvFtl9PR5OdMQzvulLz4fzms5CHUjy9c1HASnBsNKGAwHgVb4Nfo2dPVk
CxqGgyBdvKkmsDnSjbzZZkFOOkXWSHfwFJU/uvbGxyhgkGU8BeVTDqoJnTSg
pHQB6vSSl4YgSEbf6tdo5QSU2qfUSVpEBsji91ODTEe11URltVBov6ATF+iu
pGpQDmrADRTzxkxUjZnwC7rrPfuuwSdwUQEEYTW1w2YGUGcFOv2bbvCZsgC6
5WpAPYgygNby2SlelK82+qAXvrkrp86qggHhIn4O197tqwFVrQH0Yt9jxbAa
Wcl5+cW3550uon7DSAJ2dIKJHYJxwyGAJGiHwO9FWtMJ5Z6kQIsJ734OsVhM
+FMzs2J4LPezagSguxhm2R2QALPDV59IfvGbX10rpJtBguvY32o7fB9W1T3p
yRFTCcPPYUBuJ4UVQ1qVVq77ROdQfA+9U3rOrAWVxZykoNbm4bTZNtMV00P8
OWNG6saM+A1iaj17ncElc7NB8suWFzOTmw4YNhpvrFygtc7CYn3dyAVqryJm
YjmwnuXaYmBFMZAdf/cpMHBj9+5FLS7GaWJxYSfD3DloC3GB509nkTX6OBes
AzDTNJDTyhh6WHTH8hkifCcy9IW0IkCWw0GJgAULIkTn0L9tJP8inlOhL8Nz
lfyLVgEKqlYYVVmew8g7U7L59LNPRcmWbPf1oCTnVRgRAbEgXxL+VjtFIydG
1LYh007Rl+SlviSvRO1S7OMXdvRtiiyHaKzgK71i1GUGuFlqzpiFRl9up5uJ
waVyYRZ4vZ5ifMsAf9jI8mlai0JbKygtWteMLN9kX775XbtgYN3kmDwrG458
mR1qKeHh31jfc6TSwXy22mvKhnSUjXiB6Cw9WYj9pO+mYaT29YN3YKVhwReJ
0CVtvd3xAJ0SWWfJ2XUMl1yW11ci5rJNKOQZBZ0lEvpqbxAm+tjxowCPzpVi
dGkFJWr1r4C+m6cu3dBDX3HnRozcayMnvNM91O2YvjRCukgn9JXGCd3fPJfp
huI2+HmjqWaIm2oy4ZLIKTOYHGbMBDdNzBoT0TQmQhgs1RT4SBv/27+SFB0z
eMvwvNs/RYf5y10DbTG4aqToss+fSdlVpwK9mCXMEbZAB7Uwf8467zDYVjKM
J7Mt1M/wTz/nXPoAxDNHfzV+L6fDfhjulEuG2Jf6awiy9uvxqNXwOXnLjfvp
hZ/nR4aI184ImFn8qlHC28U8h+EGbMDmrpF6izgdvG62BYHTOuXTMFI+2Z0l
2cGTyE7v/SHZmrwEvLUWSvtp2uUWOOS1Ww2WcCtLKUWE3WJ0xRh/3QqVTbRp
Q9zkYik+q2gIsxJ0ltOJBDkkQTOc1hPRMiZCNqIGp+9/w1OYAHCa8m1Myi3j
624aXwf/x8q3WfuaWISuGPm2WYNZE7y0BTMIc+UATC9A+MqLb0oTTe7/9SE7
qtn/EUOcfdCdtquV1E0OLgJv2EHUk3bZSV4HC6av3XMpXAN+tgSHFWDGAFie
4OjIwAuO34PkpdecSDZfuif53ffeQkpwemUCSuCstdMCC4Ylu5i3m5UAlw/r
Dg0YNqy77LRFSkAgQcJN1lbMGbmeppHrWWYAEsg+80vIspFRUaFeBCIpx8NK
YLesfjLQMfy6tO2tHiZtzEieVgfMtOl2CqmkOHNAsqOzhKIFVWMSZliRpYyS
yYzOGBm3utE94Sw8uWElnihn9dezt42pkdb4WWN6hozpWVS7j0MzkH5z0yNC
PaZomReMd40UXGQsM3uj6barHImIUnBzBiWlWQaSATz7bBTeW9uSiS7LhPEU
y2ChK0Y0rTf3gixkG3jOHtyJ6yhUjGvqJxtyTWM51yTSVeWQwF3PkoyTjm7u
PbEIzXAagfdm0I6sJ8GZAMkXl4za316WDVyyQ2IkGzptF8kGTT4K+SIbli86
ZEST2m7BeQAmOV8njui6BlZnQNloG86kprLV8SWyURkwYddUsiFdWCLqnRzZ
0HUW34U1lK2zBPvXp/o6YbT2VHM6McqG7su+v/D9pOFvxpi2jjFt1hOap2em
i5g/HJL7sQqptLyihMCkop1kc8oDSkvZ8B93qOMJjbX/yN6Hu+XtS0uTt1fT
NFZmv2oE9ewMRZ1BYsfE+fAXsv3LafPlwDm596FHsipXTaOecDk62ILTASmp
0Hs5CMr8SBNiQr4IHjbun9SioRsExIpAdD6QBUR2DLasms5FtQ0YLiirhqwg
rpw9X2QD89rDtxKQIcN5FVJz6LFl19hWyUDd/SudXOje4DDE0hAJA3VecMJI
99SMQq3WEBRqu4ZPkm3n0h0cVcMK6M7yrIjo2Rs2Zm+G3htBRHANOCcETfwT
SQyxk7FlUqKT9gxkkwgRDEoDqkjJcD8XDdqOGLT1RbPmoLStEELKxFh4pmz7
a0bUMm9cgV4PBKuBc4+8AuGo8b6xAlQdulSNa9GbJK/umya9qNF7SYcwIXmJ
a+AIL0iFFaLoFQTx5uIbFtgsi6WTXvNcJBSpOHv+AjnczmppoE0YWBkaUDJa
cQKShE76LfBcwGyPmX5wRMlIQFoZizqXfMU5lGZT9JlJBksazeD0iW5Ij4dO
E48a6aM2zUg56AYXeYsQjbbRQ1TKb+zQeq8X10Ds0WM8bcxe15i9KeVvoNeL
paKo1iux7oeWrwmlTAN2FQRMs7u/MTPUlucDhkdyWYqBRyWhapR5IEVQoJ0G
X4eN8GGORr/Sw1cCP9jq/p/wFfzE7CM8qBkhy4Jxzq5CHo6Ls03T+/B2NILW
POH8kKl+59dPwt091ebAxOsCUhyikvuMeKOduqtA0+bK8o7M0yQJRXAXtAbo
JNmwkSTzBqcZGRyAVsCLMpaCkH7YVLbpfFAt0N6nfqbgwmgHMx+Vo0QLijnZ
S+shMkbPV6TQlh5I2UinMIbtPNJIxpWwmkHrhitRVEsNVNazaei7XCHSz7L3
95QxqSPGpI5xBCnCjt9zRZrVqUKJV5SZROj37tsrsQUBKS/l0TH6D2YUMiSh
1V8falof6KWdyhWDpx3Dm1jCe5FkokxExf/AHzmvsW4EF5aXMmz4CAt9NMcX
CP28SCczzmIFMqI14PkvPnmRWN4wuL7HCA2G6L0SuF7wm/XQ2BicB0Q053Xi
q2skviYzkWrGcoD64gLg5VAiOeFVPbutAXnfNPzF/j2mcdsHpynNbRiqmVJS
pskrqK70tGuuNw2ut43Mz1Sf1R9IMjiiV7i/S3qHdNpS8gxDRqVJt5zipcmt
Z2/UmL2uIjd+B68N58YGkJVe4y8lTJPcqwMuM/AObZWmXx5qjhcT+xg/hjPD
aUlh7jZo1zZot8JUADWwVBBTWTNqg0speILR6BhmfNf2jkfXl6UqPsvxpHqA
60VSGvPajKmKkbwih+QH1JcYf2gOkIe/6MeKSXPaqBEPjtlOniwq0Baa09ZR
ykJ25GkOSNWG4agN0s3BacG85+bqmKlk6KVeeSIFXmEpsoNn9y2qTfV7urC9
m9iOJLsQW2RqzkLtgYoKKhPYNjKB+jnrwtBJY9LGjUlrZxgqQTyWg1RzzO+0
GoJsWlAH9ENpQJ8Jf/0eKhykCTsLx/j53Zqe4oTtSbkkAVnY7lZzaUVhH7Ug
xSVMY+DScnq8IOx5XDeOR8Gbg4o+3vpW3NxluMz1Xm5ifglynYibFBFlvSwt
xGPGNHeZmxkPq2KbUSo7z6rTSSgtrdn4nZunvtysG9m3ib7c9LOH3zuTaS6P
0J0YmTarqEfam2qv/QVOg6ouDImidfbNarba2Sf7prNpVk0lj4g6mzZhzFDT
dnQaOVaSOWgm1azl+NoF9qn0ckiUcDuHp1850M/5QRjcfQZTWgZTlpWDeP7U
oWzSKbBvt4GFlgqoJZG/YhxPmOcwEOZ9lxp4JKz6MW/ZcGBrinlQWc28bsQ8
c1516mPcSH20jfhGXCBZf68zpmIauYxq9khb9NOrJWtGJkt7xdlWLHzWJU5Q
T3VGzOd0Rli9UZjppSWvH94i15eEjZmuCOmFrBrMtNqj9hjSqZsibr7BbxGm
m+DcPNFcjRszNmnMWN32Y5qGVkp6W9eXs8kqHYwOGf6qBF9IVsHncSxkK+gT
U7KZ9AGDg40c6wfh4sAvqom7mcExCnsNQOhn00id3vJ0Kwan9fGknt1QiWTh
9E7DM63wO7qq8LszV+3aXNoxsZ5OJa81LQn/aC4njBzDhJFjaOaEIbqL4/SZ
a6j9TUzgDjU12YbmQTmoM0hWO6R0T6kp7KkeZ1sQMvzEY4Z7sktFw5etGL6s
L7K1AImNVx+dp9YlaV+CdBotCAXpbtfZ6D5dTFbKoGukkPwse5+wwA4Odq5A
N+OoMc1TxjSXc1JJQ71RCOzokmLvWmGLaLOZ+rLhuhcVK0njTpx2U++A0IRD
VIdP2wCl64hlqimt4RbRnx40MFHfwrRiPjUNdYC4P+d4lmnVTq0lE/p4UlXO
0hq7ziwZyux3k6qSaQW1H7r3eqL2taf3rwfoRczGlGtma7920kgw1HLCl6Zh
XaW6sENNm+SIBmV21cgRWX2R48Ys6qanQdndNR78phzhqgGCyfT2JKmHohBN
XaYVQHxjvSrdTVzvGsJ9hm5bfQHcDU2OCzYwwvFxXGE02ouGjemd5i5lNb30
skS7nWOL5xSc8iJTYbPzksO1c6GH3AbYP/cCgF58UxNDUMdUNTBXdcC+lgRm
hH8Wm6sG+zSbH77nOkxe5D6JUT1kHE8/cparsabjrdXh9Okj6vrKAAY5KwCB
A0NdEfqBiweI0Auq/M3KLR3PRObz1xxM7rv1ms3X3XdxPUCOyZxGYAWl5c7x
GjHSEtNGNFS2fTC9zexrHryXIiI372SsF9VQZVudt6J0xcglcQEM9xb6GLdq
NhqU0s1MkV570SpeCv3FUtDUCfpKpldQx7r4L9atqBWB+7fwnOW2fZjun60q
soCcFg6L5TD4PWiLPp+WMZuyzhefYYQzqjzMM4iP0mMsdnhOsS8vnm0aXjQz
F8fZOLh7nhB8KCXF5u6laTrHUYNQFcPrXTa86FJMUDqep1VpraCEv5JjbvXx
ykZOyh+vimPjGtcVSTHTFUVUTDhucwcduh6EWVJIQtB/9pa7cRjvfPIyzjpd
sDzMTSCjnK6OodAzvDZMEZVeGV+rY6QNxe4uKVJlm423ImnZSCpx8BR1BI4Y
dnf8FZC0zA09CHmVFy2ZRN3LO6tuS/hZY5YKPxET4f/Dlh4wvGJFRuQhCBHK
jm8ujXXI+S5zMyrIiYkrxApbMyaO6q5FBLnsMSMR5eyss/POn3bXiBlFSFxg
xXZ21v1Rfxs7r4Y9L961HrDEuRoSGJme/Sk7AhOuMphV2sKUimNcMhzZY2qO
RM/1QzekyLnV8RxbcU2FE55OSwZL2dcqCUXpiHPsAAJyoOn8zCjR88svP37l
8L4ddI1e53lxV5OGl/eAjHRYu1OOq00jsSEyLImNTOqpq3YRU0Z0Wc1NtmF3
K3qWjKTTkjqe1Tgjczi3DXriM+xk3Vj4N68wk80Dat9mv+HL+spKOVvInk4p
KFVZ7gSv9tPOUr8VtVkKuhdTsKQpiIW98xNsqzEMfm9POKNVumTdYb72mpvT
CY2CnWBX9ajkxbf1tJUqjOhuxXSxjSqm3/zUB163nrIhZlfRcFR3Go5vycjo
Xq3OK8JeVMi599whmknLkbbYf7oPWxEZFQ22DqtiOn7H0YAgs4i5cX8iXVZ+
1uiSQWqQmwjAT7uqKR7I3i0+iVLOkroIFNWMjEc3F0FFAIjXb1HTH18YoqWR
HIOs21eyzbXIPg7CeJ3islrlOoZ/tVM1KmJ8cb1u/uvp1IXYmm08LtdMLAqp
rU60lk3qOXVIjHvaYtnsJ7I0FyApFNUNfxFjPwh53YvJW9Lk5VUBHrnxJk5x
MlJsLg+DGdf2ebKxjKBUTgn5wkS10jh4x74JpaJZJzrNHmxNe7Bhe0TxYE/S
31f17NOL7avlBBdTGQ8g8g9RqwlZnevTErISSTGY5bSfqmIxtNCXosXNANEr
/CoU1/AGPPiAi1uWY8ZWMrKf8b607N/mn4vh90HxpK1o0lKWA9jxvC1HvHXX
XfQi4+6H9nQuKXslmwz0MeHsXmHsQtfjoIQuppmtMBdWf9vQgPlEXSR3v6Mj
Lanrk3xi0xDg3Yoe4iI341Jd1Gu2Q0FcNtdoGhK7DYZOGgxtG3b27tfctaQY
asav+vHDNcMr5gorENhTrXSI3pTb9HasHKaDmbWsKtbstOq9S+lPT3lyR+Tk
GKmQ9/dC7mv930esxLEC2Sq57PI3txTfsPCM4CDuVYP1WKZNcYxUGEorCoyn
e3sqkQjjVQhTXNFTTMKASSZGdQxGdYyIR+ykrlhnW0Z7aVXVtJKWUQzJHoNN
rS3yeeLW1Ay3RrWw9HRpazbtUrcrDm+9l02hHWxJXafIX0t1OAnrl4xhHOoV
JhyX83Nbxoy11AtdF7DoIoSwY1ENkcSN59Rloykf0N6pPDkeSoE28mtn1Z9g
BmA0NBsyfxI2D+Jra6grE0+ixdZC45d1vUDC7gaHwUgD514zaiWNbOwm+z9J
yYoF3tdZK3RG3d/oUBi6p9QSKEmXSH2WoCLdU80BM1VVw0OXTkmraRhuWrZ+
rN2yKkMPnwFHDT1tcAR6TQN6Ow3oyfb4ytMN6lworRW2CICqDD0HxVW5TVV2
h5ukMm7BdaIhueCnBT/TpceTjgguNi4z3LeNYbrvnhtp4aAorfd/quEY0rbP
f7/AiNaeGKMZl/khf+H6yZhI9GEEh5K0lZgLzYHCGnqtHCX0wl3GhYbuPYe9
LPR0GsBqH2oMmHqxWg34eCQlWejBT5Tj6WBTfAjdaoB6ZEG1++xWcy3pNr3p
XtYwa+g1bNXLg57OaTP0NsemFwR5UkwixkpOey49dfDayTAX6UfagmSd6ZSL
Q5n+EcahjLke5wvGgTcGPfBE5sBAqejHc/4GW2oe5VknFtVlvGk3l8yTMDLq
yHQN8WyqiuUATRev4m6shpqaEkRZ1WXZYqtSfkDdjaQW9CoKQY+2mWKL+1XK
l3ZMrGYIFHtJvglD3IYVg8s1tcSPuQxNZM/BDCe1Oa4Y5viIGmTxMKYMc3wr
fS8qZgiEwDnvpJW1c4bDDXFqAOPlokIZ3xv6Hyzpf7BhhUJMHg4o8P6wvxv9
EO3sxroahSsGCuu9QhnaM5m+1D3ELmK0Rvmmu19Ll2HVeKs56qgsht6O7Mrh
w16//PFiP13wWDOaIr0j1dAGuqeGdO3p/Wvqnuha48SJNypZfxMzIWtNq7ZC
MhDNqMkCou5iPaooJxyYMLKTd6fYWRsAO+yUldWAOwWjI13G23a1Vmx+jZGN
A+L5bozs5/3N6KdEZvd219ZHt4/LFmVCcglLuU2fobWkLs7fbAMfG4BlHVhs
IF5poGOp4DdldL+jyO2Igc3yFmlYsdxWefNYDjYrBjaltikWvE9tky8TP4bg
v2bAcrdB4bKtjysKWhKuWD5j2ShG61KTsHfMSLc9mIKpKWCy7KtkAPD/76Nj
N/BHq4VeTTUwWAlmGaOI76Mb5CMR6AghYln0YnNh1W4DdHr1AGcrg/gdTo8b
fBd6LEkDV0HF6gZ40GCauEsOLQhWjV4qf7rTdVldE4do0aI6qdSdzAFdSYFO
hH6e/WsMG40LV+oYbFyYjHgq/cv4nThAe4whK/V6LUAYgw1Xm+slltLMUaDU
1Wq0ZGRGjMzR6+h7ZQ0c/PxIOjhZPElFI5wK/37C/0c/AEMMgTAO0Ua2VqQH
oWyL1VEDMrpQLl7F1WqwpDAspSFd89+p5FvsZdHw287Q8RoWPEInrHQ5dgbL
Olck67zJLz+cV3qH82oDTPqxvYLJfSyEahzplVEtjmC29OpKhjE9rqY0bm6K
x59A4WVIFofSXEiQqbfXk7nYa8BAr+HlZq4gH5pj2WNAQW+5dIyuhYvw+FnK
jiIRpk0qGokMH7n3Vhvgs0ttqZTOe0nPe8jn6C0XCoNnQc+mmM80eMQ2fz/7
D3r6FX3oyDz3piOlH6xdMizWifQ6AtaHjCwHzf39/m/0cz+yT6WFKRGvR28o
xdXqsLmAJGpYAhiCNJ1Zy9NbpyqHOhXTfpmFWxkEHc9eR3/VlIkOVlbNnZhQ
/D9PV8IWxneVX3QBN6rxErOpu+Ll4g9w+IFTYL4UVSUXbHgYVd2oSi9ePnkq
Pa1Qgx/2FWs9TdNr/DTx8vVIYUqGwuxXrhZXO+jF7rpQk5GCEQm+jUoZrgui
uOAeBlnFZBxxVLUy69zq5/0pcLZgW4p9B7fs0zDnjtNz6tzA7lVXGBvTqjam
9OLm3zNqjMRyVftJ34P+BkeNcS0a1D2g8s8Y1wzkr1E3m80Q6BDGc3X7Mcek
kYaR1tIv0jH9w5fZbU6kDdwdY7+6cowK+2jSrcRJCcPWVLStwYu05pzCu0xh
2dB0GuTXRoMc8UwGGZojCDyoIit81w0wdjE8rf5c9rdbMPTEl7a241THua5h
Pj2vkRLB+XnFAemlZWVkVewd3IKnMCeTIjH3IC6H8IPrhz5b7EVTEFSMb3I1
jOtDflx9k75v02aKJfKIWnd7BxRoeHU6rgTg0yYruGnzhgbd4k9hjWlOvqaR
CZF5JL/sTxpGEn+7V2XQefTW5eSHFNZibS0HbeWnU19QQyELsNR90Kg97EfN
L1ipYBjE2xGusIPWM2Q08hfV1Ys3M23Iy114Gzy5UNMY9Prih4GO8AvpPJFr
gSHbrYbMHScaMt3J3CcGIRpf8t9b5euhC6dBetQPkm8gLwe3gAdoT874XKvG
R5RhMkYwncYrrx2rlIxY5av++2HoVH6HbVA5OxS66zQ7CgCSc6I2wh3/vD/N
pLp8saa7cm73+kK41Mxmg4YV99lJWkC7pu5XpwbSAqLvp1K3w9Y60miVxViV
kaJTXfE/T2VGTSpQ6ahFt3VFjnOTGrpsINpjREfT25KpjFDOJxyzb4uNZqSO
59n04DNmCrOHvqhwyi/52/M9tiEboM/qeTWTc48+ox3HSMP9/OTprc7Utu+O
rVYkXqfpvU53B2ce/STu7sRkrPEF0nm9WHJHTDj9es/pM0asG9+3HJru+7K/
pCW5b2ChndYxgiFN0hPXrRNrClbV3btfy92fVTASBp6k91qYW77zDf6T1XDq
r/lb39l7BRZphuw7pju5M73jHlebv58Kgc/fDC0V8kmavVVvemJ2HsvcKoag
4MUjzAad81/4W92d3upqoT+Rqjm3eq+/jMj7rRkuKJ3We31V63y4dbYOETMP
GbeUwa4/9r/0t+R9nxzeqPtgwtF9+IAndjAr/cj5tPqykGzfNkj2TX+tar3O
eiHFulyTd2Nj36zUT+qf8V/GaQLyd+G9iCtyvqK6Hg19+uNv+ev5hL+eVXVC
Lb701bf580SwW2KjoOZIkhhymkK40O/4nz9J7+VVnhsZX/rKs/4cEQ7mB8XB
v/LH/0m8kTtEv327MWPTmRkzDhlG6HfUHdBb3Rjv8Zzxjo72e4McbWQ7o/oH
2SM2jHkaypeHdAz/9z5Hi2akPuiM/Ns+R4smo7wN+vyJfcCWHj56bSn5/2f2
SL7xxXfPGOpJ3/kr+49KImPp//3b7Dfp7e///9/+D/6tD8lCaZP++QiEDMda
ITUc6/FR9quj+HDYR3TtRjc5sevaoMleu9N04cjQWDI7Mp+sHrwhefD865LH
r38muXz8Hvd3nfXoBHvVCfxB/LPB9s5dlTxxy3P0eu3qs5vDTb9IhHLpPuwr
hzPtmT2AM9VwGscsnNCdfL2golJ626VO9kA6JnRCdzfuT93pHLDdCZPZ0Z10
Qooz03L4FX/3HTqnu6MhdU73Kznn76R/tT471E32jE0ls+2uMFKNp//5NenV
4Fbpamp8Ne5K1gv877Y+V3N8+TSuZiS+mg2+mt+mvyqHe8XVPHj4mmLy+HGU
kt2PyfHZRbnAtcwY+Z99Itt785h9N0aFBl+hu9oNucKb4yvMImFSXaG7aAAI
h/yuP/oa3X+tkVzec9Tdf3R5mwvDo+vR5d2nLs//7J0HN2B0YS2+vMunXh8u
z8eTqb+k4ONsbs+14WTfSudmY6TewrU407LFtd2tru2e9AB0fZjcTnptMgac
c/f3IH9bxJXge448IBGusM91flOdBpjDdY7QdZbDdWJs5dDeay98St0evxgw
MRy7KTk2Fyb20BXrZMTKrquTH1//hrviG295o/sePhc8PM27mOm9C9z5r9Ah
e7Dqb6QasNqu1unok1PzMl6FO/wN/WQ6xXTxq0fuFq0q/GbmxoDi0Zj1NIeX
0u/RaXBLleRjn0LfmbtJfKaXuknrHg2042p9OFJaKyi0d+kGm5qMSbvm0Dbn
wLl8Mjl05HTyhS99Pykoy3y7v+FPKtwINYtqtgRf3za+N8Hfc3q7XuB/HGqR
uMy5y8DNN+nmG/1unjjEIsR3XaI7Hm526bhfUygTEg3TLXfolleX9ka3fHn/
peTxa+5NHjx6a7KysJdu/de+83c0DHoIfLBd+Hh6eLo9ALZiqPlvGN+bNlTs
XIpCGoJr3Iy4Wx5Wo/DAQx/IHYUxYxS+rE4vFO0oZGMUAHiMwp7xJYxCCcPg
DoOBOLb7quT5F5GxdkPhfud+ThZ2HtrYd+gcZ7bLgtgr/CJrWgXSKM4hXf4v
/h5f1hczukRjUU9tzpqMhdKVKxOdWfrerCGtPhnhH+t4176jMmbjW4wZjIOM
WZfHzP0cxuyL6Y3RlAElbqzaGeMlQ+a44gbTjxmA9ODDb+HR8u8A0K13P72h
ZpkOO9KdTO67/Rm8asn1lx6oJsePXldNlhcPVfH/aAObKqhE64m897skt77p
//OxdKSCbDZTgl2Rr/9q5ntOoZyo9xoEX2orb4w1WsmPnbwoIzqjRvRHn/ps
7oi2eUSVTyQ1w7UCy49DXdagkb4yFx0o/HBChl51w700kGV+ZwgmD77hw6vh
ir2XcGBiFiNXOJR89P3fdH/uhjJghQfsJfV1UaQhHgg3KOHrv5JecfjegkFv
XraFgU32j0/RoOG/Dnfu+4OPWtP26n46nbcgYq0MfbWIOc42FH2draJRq/LY
AYpu3JJz1z2wGi6egL7ZrTeTe/efxJjJ8Dk4JiMTs6tq+F7010P4FaenYzDz
X6TXTd91WCwsG0zn5i8SfjBYD9/KgMMHR6pmD9+F+DLotHenNy2KiKFs9BlV
FsWWGlW2Du6kMSLf+eFvbC7vufqaFBKOR0PJ649dkJEt6KGVkg0P7UczQwYq
jxgU/efqeyKiuwzK+24Nkl8yKBhaNbz7aHQr0eiePPVqdgGDd1HX3gW92LMQ
T99rsA+h8Bodn01OnrtDHA8a8stqyGn2HNXdONfz7VDbsEONDJDdkG+MT+xg
GNHBMdRvOXVjZsjLMuTyKBrOHHwkHc0goGOG3/k143t7DN3wHWNk/gKg8cIM
uGE+jFEvYtC10wo0p05rhYY8E65wUSXEu8mZ+T3JzSvHMNbJx7/wJ8n7Xvhu
ctPtPypjX8SXfJG3tFZQslvPsWJdw4r5Ea9okGPk1xXE6GZPz6/QsON14/Ih
DLcf+Qpsm6yuDS1tf+OHy/crxnI8YXjHXzG+ty8mB/3zBcJqsF+Z4b86M/y1
Hl+qoGrpikFOHls05M+evk2GvYxxd/CVkcerkObArk8Rc2Wi2SbprvXGv8Hm
jRo2r8WDr+AOV2I1vVUfMHTc5LqBdwDCe4kmA6OO8T/IswBXI9v0wbPgW9xj
VZ823PQvGd87YLj9qldUjKK7NLyXZCZIfU7Reznr4lNj61XqXJ1aM3njVa9y
x3DD746hcO+GFO+V5M3v+GJ2Bjim6pH6So4BdbozZhjQITajmgV4uZ9X4xsW
yXcH6DcX1exciCb9tR9mGkPKOFFToooMaTQgPXNGBPFF43uHDZdFt+OzRJmz
c57eSyF/h3+HM+dwlHDz1zsrzd5ZEYsgXns4BqyBi0fL+dZgwjDAHYMesAiI
TnhK1uc7o2IScqakpKfEjUZv/63qQyVvpZC2Dq/LnHlvTVzSJf71Gk0n2eW6
JD1JxPCCBZ+c2iER5vn0T4OZ2WH4V18wvnfMyN6pRYriBLhv+PdOrU7M03M9
OjqzJH+rlqeI/Lmx9nMNKcS8YpbbPNeig3qur9HX6UQKIlhSE+3mPZpoJ37T
PNH4+MyzL9MUd/rQ74lnf3YjRSUGWuyQQ6Wfa8QEmFs9148/+nxPv61e2ukn
MBSMadKGG+3ktoPXJQsjs5ZHGmxuZstRX/HzapZSulC7Usg0sAkY9s4dc/i7
9gh23rv91Fry5C3r4XVi16r7f/c/8qxPgGWuN84xLcbWkWb1Z43vXZ0qSXAd
ub0NN5Jcv3PvtlDDiMNQBN2uGqjp5qBGmbZgOks9pnM0me1MkN8ya/gtXYZM
RhskbNTEgEQALBWGDD4DIltAJlp0qeLAdYHL4dl9yUMn7nBT9p4bsHsJfucG
jAfNNn2bYfQCjD4WTcpSoUdVyllVKRKKSkARYeih1bc4P84hyI2HwxAQlPzy
b/5f9OILPqOmTRysncq0SzXkc8b3Thh+MO8JoR2xXAi5e1/N/G0YSwhP3YDQ
WA6EvHi1wjE4qQsQmQlPZ1acUfUwQiYQsAGARuLEFyDk5hPvJYmi6Z9aAxw8
gGoOnt711OcRW+tFatHGBsdTPGGmgwSdXznp7rgXT7Xg2bofM7p0paBslA8z
/brObQpSSQuS02S8e5Bde+P9AJP7Ht5L9Hl4ZIpOqEwAzYSOV7VbQsaTXD8y
YTV4nnV8uwZg1SBkNfxB1xA2tXtGcDjLA6JNzVwwcw0DbZMZd1+hDX/r1wuE
+Eyy7P2czB2GkzmmEoYsWYI15BXkguVuI9fGwpokGzAqmQWRG1PzK+F4mWWf
kXbVDKwNqbJEJr8azCCv3p5LB3e1sH3RmjQwVuL3z/7CvwbGNvYdvcBppNgd
2mu4Q5/x3yOMY5Tcy42we6/BR6jDKawhcq0hc1ALWdi6vz53JHc892MIN/XO
beJKC+7wOxkxwd3JU+mT+/aqvxVD2TRwN5PB3ej4rMadX6BNHWaUIYTQGe7z
opFMGc/RNnhW4xM79F3iyoN7VWO8IfKElm2Bt8hWHk7xhmNG2tY08DZC7/XI
VhZ63e8P+qNT8/wPpGxzjDqHQPLNgbcKo+7g0TPJba95lu7leAZ1sIX7DXfq
0wp1boRolE6nicCAiF3p8Ui1gKPKgGhSm6MQoqBiQ4ymgxM7kgdf/2HC0Xw+
mvyE+9V2iJihWhn/vLBseFsT/aUrZIuytyhuVz0HSqiRyCMBZIsB54atyvEy
zYiRdA0ZUJpQ0tXfg18qqH83pafAadcKaed/oegrM+v6+9xfQmsvtyF1Kwp0
K0uHIW/uOgG6cvKhj/1ysrByJDl/48O4BJ0aER/soOGDcZ19UNzh0MHdHxR3
akKD9WwbuFvMx51vxg6Nmom82MPfZeTGJg31Khme2XJ6hcEzazDk9MhYkON9
f6Jga0+KB4xCpF7DBuRmjSK+C5hEjXx2Z0zDa43hFYlWtz2W7Jzdk1y190xy
7YnbkruvfSx5/e1vS3btPanzXmvpJfIq8BR9DLcDBtLqSt4eevLFzeV9J3VS
i+YERvWIkXP13Q/xYArMnEFdz0AlCgnyYOYGKvwtL8Gn6xBj2TFgtpwPM179
QoOqPP/dhjM2bSiawIuzfvSPt9SNnLFtwgtlicwo2Yo2YsBrMc3ShWsid8i3
rNUFVFcUqDSgikCU+3vB07MPPe+M+3NPfs5hQmoLeCGTl6nrrGiY8R59V12A
aS1ojB07cAEK5kbFq9mPvf2TyeETNyRveu+XcCSVUgzF/mNGUvmTA8JsJT1e
iAUEZo8duQbcoyG7wAPnPNhgqdVzKmjwoWZdA2a7+8MM1zqi0AqYAV17jPzl
jCFhZY8xymHKv0V/PIx5cMAEY6guAlMYiMNp3TtsOFwzrOZSirG1QkbCxnMw
5gLWsC7dZ5HJUxCIrSuIkToUATI3+KJbwBjjzEklMFbSGHPfj4dV4W01XDZv
iuJL7iP1ZvLSdXcH3O1TuLtw/DKwVmgx7uDKOcyJFVUZoNAScbURl6pGnzDQ
Z/rjjiZdYoFBcbekrkWs6AjjbkdnjMiHodmXGSAn/nqAOgony90RWM/CbsPx
n8vRNk6p0r8FdevirTVzcCcl1n7b6C6kM7deyGjbJOOuoCyB0rYQQHi5qNPf
97OJTsMmDXhV8kdvh4aXX6Ox0h0neOH1mv3H4bbtZYSpPFpAmCjbe176Dizo
AYUI8dNOGk0QqoknF2HKk3EoaRC2qgMibFFdixjQUQNhB+m9rJUtCYPiO61u
WFomdLmocpcRCsz1FzVJvtK/+ehumuSXtRhcXLvvC656ajjDKM6m4MLvIlGb
6QuuMo0aDDIXe/ykpdUpyL7D2byBp3o+nmY1nlLz6LDkhA7vzsXZuZ+ABEjt
MoDVzkgXm0yV7qJrhMk8bdRrX8oB1n23PxPAwcDCRYcAIA9YLnIKnFbP6qNr
gXSNG8A6Qu9xNdHvMOn7+49PzyYvrF7vFL1Bydhlw+XfYehW2XD5Oet0ZbLV
CT5ZHrRUg0J4KI6zl0tyPH7AF7mNoldzA0DKHQmJtv0pMkMfgeMfGUcLV63+
uMIxpiJc0UW99+zNjCj/fmJmkbx9IGrZyKF1OKcBnDlzCMESs6gzCcEfO2uU
m19UoJEBzQFX5PYLuGAnEX73A1esEd4uTmwPXKsaXE8cO05Gcafh8C8YulUx
sq/6eaTijA1tE1zaKOpH2OAFWM33BVeFxoudu2AUvSCknSpAFzpV7j9wBgbS
AlknP1Lip38OqYtjX8tdggcZjCOnzQpLDDJ8RgwJeHVZvOimHMDYKuqMgfhd
540S9wsD4kv57MHfr+Xgy8XhIXRlocBNB6s4mYMvN0hLMb6qEb7wgnl09nDR
8PeXcvRL+13RU43Y72ozxLi3KoKY7l1oGr0L+uniW0OsSn2Aeh8e1sLdxmhJ
Sw4jjYA2Z8BtJB9uIxHc1nAGaBiAVjXgtmBkaEdY06Bxt73mWYIc20vRIDqu
eGIXjd7Kj6rvySDnYI5GQnz9QTE3k04u/T00bXpbmPPAgAvm8IZmFfdeEpeM
YDdvOP07++tblKLVT7UTv6xjNM5Y4GsZxpOPtz7f6Q4AvpIGnzTiRPk3K0bX
LUgIBjQKkSATFI5nvFue926EvshTqxnomzcSaGOMvkIqdkAhoWoxc8Vohr7W
6DH9yIDoW4pmyMcBdQN9F40Grqnob71FneHRA6cxMhp9bvRWB0Hfu0+fD6mO
eSMqWDakr2K4bj5DF7tu20Wfs4oBMbL7C7wPRANboQ/ZWbHWxTTKCNcXj33c
FLUV+iZTRofrG46gFzlzAj18RtcRqgRzBvTGDeFjW6sj+NAs/iojycF9uARP
GWKB3uOPPh8ul28ff0NrQzT0EDmAvP2gN6nOIeZjNgd6znysyd/y+FB0wIY2
QO/+fQepNgXQzRpRw4ohfFUjk+t33SrhnMGxG86Bnm4JGjKs7riiCxwTBz8X
wfSHHkrp2R1A9WPC9JPWrM4qZEAGgF7INjP0NKvFxWso6MFeAnQzRkp3gqBX
DQUqUT62u9p9l7L8jUZZ3pfvy/isnYJXbw+UUYSRB0rdrqYmic4DPs//AKAs
GdZ42og2dht6WDVSv3ofQ26vD6DUrY0CSt1X1DZANKZABAI7Ydk2KHX0oqaY
xs95MFGv1tagLJOfCIvP/U+dCJcY7eALNhmXnO4lRE4pXN56/hFqj5xiXHI5
K2uRZ9UgiDt4s1G490EfbTyI3yXvfM0tyerF88n6+9+TLC0u6GQPr0LfGqzK
GQgduY0BwTqW/m0wPju2CVacV8BaZrByzoVgOmm4jntyFFTHLXlg1Y1JeWDV
m2fz/RKx4dhosHJOKgIrKvqiyGXDeM8qsM53xqNWL+T5kD8eFKyc24nBGrmO
LQOsk0aSb4prryp7jJZR914iGy7/phTCZPXFrUbZn9u5cNebyzMTyWeeejj5
D//y02SLi0ny3/8z9rX8yz8lFDs0axT7p3j4ddiiLGfSyQoxjM4mS/wzKIhH
1d+KGVvgScDvZMAFxM5PD4DQblIWxJzbiUCse8j39lfcKC/NxTtZU9MXxEeM
bicGcRAQdb9hUTfy0YOCuGJsBq2SA0EEmtsCcYViH1mRJTmkdoTkyBMdMpA8
biB5po/sOncAQ6IiS5p9uAOXjYYCX+JJU/DnDu1O/uhzHyoCxfDZJkcJv0By
qT+e1wphf4st8azcZPEi3Jh6PPMS6AjPun9UF3sx/piJxRw8P/j6Dwd8WHiu
MJ45j0RIHjciqn2GKNcYz4euui5c33B6b2GdWHd7eI7ib3+/fl8xWXTvMJ0H
abS+iM6rJxaFYdDKJpLQUikR1PTyIV2NII0XOxN+hGUDKRoEcXI7RhFm1EiW
z/bX5xDi45+2zuLt3mE0MujCM/TZeRVOxDy2H7z2VHLlC59lVMfYXnvkIeny
wUj5xiFvcmQOc7BN8yUh2zaxTfxBdPtKsY3sAFBdNbzjUaPr/oCh1TUjF99R
0yqJ0q7RTijYRhEsg+0wTgrbBEQUvhC23XbwOgvbS6o2LYe0HoJkBRjtHGwj
QstGbWg7yaxNixq4mxHI1wrKYx42KkJdI3s6zyCXSmM/J2REoUlc57uMhAKv
4aBbhmA7/XbD40EONxqABrybDPKN3/oW/a4Qh4D6kaEDgJzEGxO3Fch1C6Pe
gh9p7K1A/uZ3fDEIok4ZZkGuHZIRoxpwMEfAtVetH+byCkEO9c2CPITLcEwe
OnFHHshVQTM8C1H7JGoj+OCTdH5wkEdd4zHII0+7ayRpOwbId+QoOfsoGhGJ
gNy9CtT4XzNWptTDypRdRm9Hti8bYl9jHsAxh6iDAe2M2KvwEn972uDB2dRg
h38qHA/RZeuHwAM9YYPyoGY4MsNGdHm4v9hHhYm24oHk54QH+J00BQoPUDTM
44HP+vs+MjaM1Hb/pvOPmA56DhkioIrDj+NyITaQAd7Nsw89vyUZUATKLjfU
y8MaERkiZ33EIMOQkTZeZDIU0oqF6dZ01Tlefv7nkq9+Ht9w7zV8dBP1zHP1
5NEHfrSW3HTdHfXk6KETtWR6cpY2S6vHpKmRT0SnDFxT7ZrBG6ozQZzRABGI
Gt3+BMGlnlRXKYKYQxD8WYhchSC8M0pEEN2EPKLOIRObR5D3vfDdYKCYIORJ
wTCAGnXDG+oYnr4QBJGs8+yJGvU0gV3InGP9ByGIA9lSPPOppw+CuJ8Xcrih
mhNCB6DGbRpcU8j6iriBLFdm6WTkDdU1RWKXf8zgRtPgxpJax8glFfep1xvS
D9hy6E9++5v/R+EU3usxQWogiDuC+05AxLKaLfGQmgx8/M7BnSA/mh/iXr09
4JNCS5J8m8Cny5JZs4B/tG8bjg18XTRsG5WbozmWwREhAFUDX4qGkrJBnypB
oDtZ4BV9tLaPVvnRej/af80Z1QrGr+AbDQ1aBAwzLYL/BH9zuNHOo4WuadcN
yMYxus/mDCsX1JGhLy2m0kEPl22tUI9pQWOFyFfTAibk2OwuUIPXi8flnuUc
k6H9p67CGkwGaHEPvZdgH8JILqW3TdcD7R8ysjwT+ZHwUQVP0bgfBgV0/2zX
mKGlV0ABFCsB/oYRJLSMOtExQ/tzKLChKdBRFECggKdt15Pf+/bv1pJ//nO/
WMOjZGt4qmwNz5et4amyFfqOH0mpggsF3Oe1DAU2F4dHNQV8T2QFHlTYKwOH
cpQIm7Ty7jI0xPP96QHohtNpeiCc0PRAD/h26WEtuK9F9IjCi3GjGlo30p/L
/a1G5FHx7eAz6EDEuJvp4ehiFduDa9Q2EkUz9F6xYmjZxMXkhhPDgB/mhvST
RNzQmwL9MLhhdDSta240Db+oYQTQV+dk9PtxA1xI2+nK9Pmo4xo/jf4YPwHc
ESI55n7lUBgIoFdp+Sn0sQN3TIcK1TSxoB5YgI7h2fHx5I4LF5I33XV3cuH8
+eTP/+2fFJP3vuvd7nrxkUlCRECI5kZ7xmhIaRjpWJ0deKXcwO8yq2wj81SN
uEFXy6sinDT3lgaqBjdWmBuqU8CNfl+PKjIddzI3nEu1OTezQPPqK1A9NYKO
EVrPZ6xHIU4x6b0jpEn+3D8NQ6JJ+kEY0jIYUjNC6+OG9agaXVc6Vys1L2HI
q3cfJnZ89Nobswz5X/7yPyXX3na/Zki4ZWYIXbYED8KQSWUnzq+cDOz48OOP
Ozvxp7/wFfgTjimOIMk//Ec8iRTvDbAm+Zmf+iz9vg9tCuNG44K0XevoX6+V
4o39TN7QOrUiLYusUx4L9TV0NaDTCx2v+DIOsjg3W0wunjqBxwsv7vDX5qYW
dQkXsTii9OVa5KYx1+oalRy9TBlcKxtc2x0v5o3skHbTtFl1EXvENRevhEtS
1bFgh7oG0RbzQ3S99n8AoulNS3OJphcM5BFNV42EaEZ7IyECOStNNO2m1YwQ
/UROe+Otdz+9liFaVFwe4s2nELLfvntf8vlb7xSyFTzbyoFtn/jKryMvJO1m
/OBZTbho60upN49lCAfHDKRzJHO/9YQ7uX9/8p1f/xZTLZ9wCPOFcMM5hNOd
R0y4dYtw3DlOhKulhKsGwoFsinBFsM39b0e35JG7Lyfvf+qJ5Asf/VDyW1/5
fPKXG79RSv77X/6huwj8743f/kaS/OPfJ5t/9YcOlO8kbgov3/yOL7rwOiAh
ZC6qhn9YiXhJdyHh07TBy6JRSNzT3wZa/iHFC+985jli5O3KBmZ4SdciGYRR
I4OwMz+DoBdQ/BPzMpr8PF7qziWLl0NGbrliZBBOGgbQ4qVugpQayxBvrIQV
F8JLxU1PzUqgJl7v+uhPkcs4ZDhqvK6UTiHpZsXRLlG0GsVOTNHkynt/vMos
/e4nPpEsLiwQP4cVS8HcPJY2je6SRgrzMMmapVIE8CwtB5YiSeeIWQQz3a+F
l3gV0GIUcxO8VNxsEjdL+JG46LiJ5wy792rg6Oqlc5qjwykoepYXa5Nejiga
hXAzvHKJF/HSVj9cGSrsN8yl0HJ4ZCocnmlJw+vISIS8bGQ1si2RMJfjRlZj
V29WA7SUrIau28v6J4uWaoutUPIZyqGlXovyw6Ilr3+CI9jjl5aMrMapnIVQ
W9GypbIae0fHQUmHObyXhJrEzKP0Xo34iReHdS2j/K+XfuvNu7kNoJ2hqA7s
HEUbTFH3I9EQ5BwfkKLY776SQ1HdUaD32xCK+hx6hSZROaTkjxZBQ3cMIaF7
OYfAsxCGE4wD/2rMxQwLi6Dh0CuiYBQpzqpOBHiroN4BoyAr1HOfs9QjnDrP
lEh3G1PPWcjgA+mGc/FUJ4yMyV5FPSNrMpdDPfc5zISmniw9FOrpbQdzqBe1
1uRRT7dBttT1Zamnc+pFI2ly2rCIZaPaqs8hxSS998PO7hiTzr8jRDx94rSi
XklTz10L3kvJ/mOnQx7OisuYgzrM1l0KLeXJav4hdBwyQscZeq9FBHz4wddq
AkapSSksNdKQds0intT/hph4+AzyvfeRy8mFI3uIZDPK1F06dwrEcuoVmzq8
cDzexqmRznbI+qg6WpZnNQVAiRLn2NTBO8Xv0fyAyBBboew3unxKKd+WMuCk
fIDzOIlptxpZGF1NFQ900uDbQW7WdJ8DAXQT/g+DZJeMJUc6myRS+YOQrMMN
PiocpBd+fv7Fr5/N2VfF4Naa5pbezwcJSWfKHC/7cwufs9zi6LDvPgbMLfPp
CI5b9UyUiPVy4Be4NczcAtcQEYJV3gutRtzCC/6pO0/TyG50FLCkkiidnqDQ
4YUdoJC7o3/47s+43zGViEhTTCd8hm0CkYaZTojyhEoq61Ixeotqhtcb04ng
LMGd9xzLlPzH79C85qBdhM1wv+ZSlLBsj2HQhGDnb3w4SzBCgBSObzVSL3rF
QoF9yWkj9XKACQZDtrAws6GIQ+eQ5aQ5BCOgS4PoD4Ngevn30XQigrG2lpMO
c0u/OJCcYzlnGC21YVH2kH4CXdimt5cEsS4s7AKZHMYHI1aJ3x976t0hOVA3
8MNbUm3sGpmIiEV0ywnsXDQ3YqRflum9RJ/nFxYpjdIwUj7MpqibQm8huzg1
lvz5l3/CffJscj+TV6jZpHIkaDWIjJPOlTg2FXPYpB3UmE1RHDbNS/rx+ajj
OtiEtSmM5Ww7v2IW+jJWBmxZ0p1sUkS42UigKHYFd3GG2fXN556mtV64oP30
XqZLes87H8drdQuC6f018wiG30k5VAimV8swwaKeox+EYF215AvRGKoE5/ub
rXAs/ONuM3JZpcYs7FLJy4HZVWZ2cUSWxVMYP2ZX9BQrvLCgttSHXRyTjRlp
kxWuKcBUveW976OXO33DWLujtz+RymZDmSus94C5qjLBvvPSs0QoUGvCSHRM
cqBlEQysAtGtva1iRkVh1WTGPmUWy2gjUenNzwd2fehjvyxNT2pTIM2ucDG6
BVzK1zcbeRC/UCkt0bGDOGdkKPfw9cmVgWR/9ke/trm8vCPyMWVh5T8Ry6IG
pzyWGa2v0SrgDjfAIhgD8+bnF5Izp8+zns2DaW5onWEr+PZvPGdUlxEMO2cx
Mapo1wwmVrfJxK9t/HFwIGsGDjUfZIyLvPsJvEWw0DmS2cyIA2lvasTTsEKf
v/7t30z+7r/+t+T0hYswcMKB6KEs+txS2pGVxnA94Dr+zNvX3O88FxGJIb0B
Fo4zF5GPvPKFTxMLZzLpDi7a1Q2vlelXVVcg0dak6g1hgxbWOWiE19iEqBw8
uEdPc1ngZXOF1KzR66EnX8TIyyrYgrJmNxrJD70wUKzZDiPvuFvJwBd/9lNE
tv/yH/5N8j9/83M41jb5tlZIWyAG5ptetyO6ujOHb0YnrcE3X6a7cc8i+V3F
5N//u//sgos/+P0/TX7p699K3vbW99Arw0Mq4YFvsIRX9d/GPOyGn+WflPHk
CQzwO886voN5tQH5V1EBnIT91ubA/fnnt9k6sGOZHEkXsc0YyRChHCzh9//s
L4hy+K82OzoXw6dbxaFlaWOViwGS8ECE5vzKphGwjRoWcJ7eS8naow8kq6vn
cbd6q9AA5phyBEaJyMYzFo/tStWAejNj8TI+5RwTL7NzimxfoRb0hfr4DUYW
ZFpdpGRBFowsyC4O0nA1Fy+cBvHc7DnqYdzOHV/NMOuHzkC9si+PgfzkiS0Z
iL+NGegDt4+9+mJy1AmQY12NSNiMSHjffQ9FJEStDiR0BDxk2D95AsrI6EyW
f7Q/lfCvouK8sUaTmFcfkH9VwxO1Fqr6O68RIXSBAKOP3yFTMmdkSiSgQ6YE
AZ0jnrsvvJeSlz/3+R7O69hS74kmNZqKkTJpGwwcYQYi9Q/GgXtz9F4hu7e0
tJD8v8n/TUxE3bJm+MCliIlRNKf7hlf37I3Wbmjgd3LCOud4ym4d/ESX7LJx
XkEZlcOvN3Il2eXluJolY8nhSoaGztEMNITTKcebV+eVxeM5NFxXoAg01M3g
QkO95srq3vOd9TWabMgJ3PRCmiKmbqL+G17Gi8nbvKQcjigo+Vs/ck/yjksn
wEH3/8DNCnHz4y9/VhtHNx6OmZaHutt+5CKxU8ebstK8kikZIK3ZGJCVNcXK
TMvUld4br69lWYl48bnbzyZ3HD8Ez3N2i0wLnE9PSf+Oz1kxMIhJ8y4VnLKR
fekY2ZcRI/sixISD+tjaa4mYeOEsNaMrk4lZUaOeXeci5vGbzz3tRr2XmCO9
nSGamBO8s1hmPwcafN6oLaqGX2fkWPR2guKV7jSC02WDlSVm5ec+88H1QVip
N8u2WNnizWfxGb8XK8SFIKtF/XR/0hLexC3awdUgKDKILIktTiGFKiPIrFob
Dm6TxyhEwLyCx3jhm6PgcRE0LoLDDoMZF9fi8SLzWFlaeaCtWXUvZ8oTyKI2
mcevO3I1lfq24rEuT0ibce+NN2jKeBE3/Xe2O5T88fseTr791F3C5cJ038RO
KSR2NJnh5ma3oDAiWzq3JLKLyspybc8xpjfTM2wUJubYz4WVXb10PvnbTTze
wNHZ/W5j41s9O7zoSDcm9iouiTeiD4s7VTXCobqXTeN9iA0mO3KPMrEz+7Zd
mZ7bLcQmdEtp4jojvTOhRky83hUj8l1Ka38oTRCxy57Ymze+6mw4nl6dI0uc
c4h9xSI2FH+q3SRz5kghbqfnRS3Ld+m8oAapE/2JTrcortdcJv5heS0ad17k
yF9PQiEuUBX29u/4ppGQxdRDqryPO3Tkd8fHe4kiXr7jwuQriHp9T06Z/t8T
z/4s6YDTBF0AxVZz+gnKupjSGlAG6iwDaJITh7dsRJ28cfeVyVY7mHJM9O1H
V9wt/3/tvWmQZNd1Jvace9a+70t2V1fvG3pHr4UdJEhwAUACFAEWpeAqg4RG
HIoWRbAgQiIJkpoZDRmUxKWthaJgSSNyRImiFreo1fIPRUzInrDHlCtmwv8U
DnkZjeSRY9L3O/ec+857+WV2NShH+IczIrMrszPfu8v57vnOcs8NC0H4PpYC
OJiwCMz3dS5VvXMp3CsuBXhv4Yta36Wg6WNa8vRke5o4mcb66vSq1+nhXXz9
6M6HesbBJ8wWlwERQjOBJ1zGqXmdRkjgYt5JoMtz8TGVsHrFMt1Oyd+amV9X
vV1IAdgiXifPA4AFNOIAMcXXXYTye556jSwAugzA85QUweorWAaKFT9q8h5s
F5oyCP7tjNDSFoJTZAcsWwmWnHq4fGCzUMfH97xcx8dTgKe+98UDd7gCYA8I
KLxfAZTSSz9X7szknlfweyJQAr+lKFSJh3kQ+JGJZ+BvEwu72h/8hRQFrOpf
evqB8M1e8M8RNxezthuE1LNdshH8DRl5A70j87PEyB4Z4OYCHYC6B+Jrins1
tsu1HdLkF3FfMLjHeLBnjCifpcHBnhF+ZI2ifjtzyv8GcXnF70ls55YhPyw8
G0T81xzw1dUcmEcEflgItvYCfF/9etl9rwj8uuQHGT2GlgwYCNMzyMzF1tRq
YQPRkf7wLyTrLXAiUCdmVrtEBCxpxBOBTv8dKXJb2zs/7IjAkdlpWQBqugxo
l6XD+16JdT+h/jdjAmEhoDkVFeLrHtnjSjBEEgErBAbxvrWUU6GWQJ0sArN7
tOybughgUTCHQrWvQ6GWjtK4sinkf4GAf7ivh60qJABgB+zrCv5gByQ7xMAf
SEAZ/NH9zevV+VDTBAHc6gCjPsB9qJQDiDzbeYcpCzFdJy62Bfe9TF1s+4nA
rzhjXnEfGtTrYtMcdyEZVrzidpi3rSd2/hXkQhmxd29NJqs4fKcEgEEG/z6y
fZNlXM877X98daVQ2Ml7G0dLgT/V/pJVvdo/rZ5iHqofZN9j3pP/g6/EEzBU
8rlfufdJO9tEMK+ZHvLE34emZsbuEOre8B8A9ZTgAbZ/bn2+oVAPul+gDZDP
DIC6t/ubjuyXCikRn0NUndDxwa5HznCPw85vW3nmTW8AtqmSbyjOb978fE81
M29kFHG+lTkbf4THtyYJzjq8MIaZ+c1SNqKDutzRsjeu9c2Nqt08ujTRPb8+
La0Ict0hzoZlh/bnP/wBQXszd90lGH33aI9FzMrsF9+DtQ8IzMprq6/9OwD5
y/2RX0i/miWKP8xPi4zMREnxm/3lNyAu3mYRYHu+leOkRUANHen7ccL/yx4A
x/9bTuUD+njE8FrdJ3pZWC2Yi3vD/rAG1pA66euyamKX8nwsAWk3HP792KOX
w3j14n5qgL/PG/ktxT3WgdI5HgUfmy8Iiydwv0x8e+3b+PY0ghbuG9HvyL08
FfO1Atx3MmfLD5Mg2jRRJLZdrI8dX3Nq3bbOzDsxssjZVeLKi4CL5/C9+Ojp
7nuuJzqbAtnerbBU8tUHkIcB6A1kK+ClqVZ8ZADgC6UV7AAHp94xDfKqwWUR
9OXbOLyYr2++P9ILKWAzRMcPE1trmiT3mI6f67+1YMfDe8ilsGikLkx2L6+/
a2+8vu51vOj2/Mb1lDfmo3IGbFj2z737ub7AHtGMFWfJJ83GUA2lHsh6mNBe
VE/u0XXXlte6t97lCXdZtNjFFO2uTI50Lx9eh+Y2MP/0B7Yl7Qswbg3w0IG8
Q2kDxm2l7AC32gnJSVBEcsE6HyJRtxmiFQ6pUdjHNAeQ5W9sPvVHwVkOyhXi
hovWczztEBD+1rP3idqGyK4RkV0g4bYWYejr/wAQRnaE0dYq8VjtuzP/3BTZ
Xz7qhsnSWaa5nmYFxub2oKen+mdYUyB7Pd0gvb5QIuv1Hh99foeancRmsbeJ
OwQrEjvV7EySrJcWkQHjVgN7iOB0Yo9etiH1tblomzyV7A87qF7cP9/9xXc9
CGN6hdjVDeJUY3p3SKHqYmp43nRQrTrZYAccWRzNNq75qqNHB9jSWTrLT+bf
9qXe3bdaUdxY/LpTq92/+JHXJCUbbr1CRHLeAdTCZm0FaCDYO2WAauWGAkD9
uTMKUNnRUwbomaWlHkqZOVJ98HYuNEanh/YIUzuFGoa1KdkxMiBlh6YqWckX
DRgd7w/PbdzOKke0SSCtRfp8RV6r1udddz1JblEneFBhe0PiqCZamy2syY4K
iW0DIbTmu6+fHCYgHN+jl2tYlaWjwMnF5BU0EPiXn3zaUJgxGNbJPnGDId4j
hgUADquH28W0bvYgUMTfrNwWCWEtEEV13OFAzVvbt1OITV0i7irpctaU3kIZ
AnZQjAY9hKyXiFk9VwpZA3VtpxwtbN25Q+z5yin+uFDje3Xi0znW16czwJSt
kQ3nvny2pZpNlFSkxhPGyZisOhWJz5iKHL5DDCKbxYz5FuH2HoOh1zseg7ie
BaH2isGxYhDqVn69Gq4tGlCDTSMKQMkfu3ZNoDe2R9/TiIabja0qO/YHBhv2
8Hz/A6fgXV4mXqfaHrXgaDG0JJZuEXvSPzM5GzyMtEhWXQ8/redl8JMpLVQ9
zooupP05/G49dGRR4GcQXJoYKmy385buLAkVD5FQ8T8E/PCZqb46YWnR3Bq9
E/NSUIg7DirNiCiSabtJYiOQmk0CNU0CbZGNSKwgS4touzbppiEtdG23dD3p
JlI17wRp4znS0vVs+yDyOpRrBkj1wmxkj64eg5mRzQLMqh5mgaTgtSrv4d0B
0paIt6c6IJrjUzhGS9Ec2KFFvBUMwzqJ3CyTNfaY+hFM7wSet50V/aEWnblA
3DixwF7z1sbsaMJaiWkGWtkra9MkWjNC3DmGN63W0Bdvblttz4ns3p3TJO6N
C45qlmzBMIsZT74cLakxjGlYz6aI6+pAn4wYr8ZqZM8DqwbRImGZIUIl71Zw
KY2U8fQ7eWy3wiBw4XtlcCGRqgQuyZuAvY1kqXEFV+CTYrkBVsPE48IsubFi
/ORmeQwMWdU9IqsywPXi4ydjLkfS+qaxkoobMrPjajxWskKk/KjbxK1aBURu
xXXK4iHniYPloLy2BFxffvrugjJzfHKWGJFTDl+64S7hy/tatBCfzDV0GkrW
1/HaAuRa2HTQRg5UC56XFiDXQhylTs5DGgRBlySRIOgZp+mCALsdu56SR7xP
+U8jLtfdlpdZwuAPDVZlFZICPTQAbd6vMkSaf8mRxvB7mUCvia1m2CAXCkHb
7hueeddWGW3ITbDspAlFW0Ae9gEJzob26DcZz7OTbrIxeOzsRgFt3/7QGyRa
CZxF3ljvvvWBu0VvBZwZX0wRSp+JMKqmGnQXHJ7gkFky1SrurmaqVYn6WiMI
O6K7uF2mj20qLWT3mA47Szwlh+P3JGShMAtrB16rBd7IBG3C4eyZt75JcDZK
4pD7XFsQFsGJNnW8ttC0Fj5rw45spRNtWvC9NnEzX43IdmA2iG5rkcjcZUKy
WGbRkAs76F6CpLc9N/fOqbIuy4oqxso/NEmUYZjwwYsORBcunNsNbKRQLNAs
r0FBAw8is7ze9uyH0ppi+xzgMtYU/6ACe0HU3qPZNeZS/QOwttw9tj2Iagoi
9Xs4ENWS70M3irMI/7BG+oAfuDvWA1F75i2PdJ//0Ducy6PiBsvMrkopPgD3
Q4fI8UHCx9g+Uaa6zhI3yBE3CIapqr6a6go4TlFHL2PjpThBwHMY6N627CNt
uUI4qq/6VcYP3j9z5kjBSPHc0Fb2wAsTj2IFiFo8M2+BMO4TxaEWWA7CjVc+
I6SJ5+W1Ju8fe+Nj3de+9j400xekMVPKkmiQP/fpj32qL3RG8ySatILZDlzo
nnPr8wKaKYUO3oPdATStAdDxptSoi5pnqjP9vlODTp1AZ8n5La6fOVHQO72e
+lYBNwEz3b//6z/rfudffW334Qfu3irjp+HNKO+s309EdZMs/2xfp0alC1Hx
u4j74pgTVcAkh01NVBEc+eo5Ybk5YyTCNkaas0GaYzEEfxoIq29SJ5pn6DbL
+crKmsyvP6THkNMkKe1LxENz3AW8kfET1MNOllhioTRDnXggRgltO58rR6Dm
5tGjG4XKFwab0T3CZiQvaVJ2gcr34HEAYKYJbFixZeaBGHYeCEDnicce3N26
ccGTZTj3gJmGIkedfYKZmGfWiMg5e7jbWZkVLx8c64GxLRLl03LkDc4IBVEV
KApf/d1fz2MtCqRYNEgWMzWapAiy8TiWsV2uU4A1323F3LY7+NiwbQE9Tdb8
405yNfoVuhDhBH1knI6dKTBKwmDjJAx2gLTlIuGXqjPRh1QzoU7i1MPEjj/v
UBQWdyFF7EzAOtc/y6R7x1zhI82kgVHa8dLK0OQ956OEap5TPQR0BTTtPvnk
a3FNX9HCvA57BdSwA9TFG7FWqE+aQUI2oDRDAFXfo9fBQlcA1KXLF7o/8L6n
d194/r1bbjgKqGoS78OcvI4IqoA0oGr325/tdr/zsvy7874nulsXj0qbHdpm
iMpqKtpgJsF8Atq+9Lnn64q2G1fzehqGNimTsGVog7ZSZ9QBoiJYJYJqMc6U
GXrLYeZTxEdx0k2vxrvCYBaJHpJS2Ck5I87pbjGvcRLz2iRtuUhI5yCgeaf7
MIn7eF1w7lysVMnOIKyR/CyW7HKkhLLQHzxvlUXYUFYjOmucsL0zju0tLc11
v/CFH0N/dUucSIF5G0buEGXBUNq2obQmKtMTfM0SlNUGeBt8gHjIBYhXVua7
f/Ltn+++/JVP77h7FVDWIiibcelV0F0BVahx9Z2XwQocygLCUCr1g5Mkzaqm
uRvmiQDEYEkFLRa0YsQYmKGNQ91jTVqobqeDt6knUNp2nJwSeKjhUoglnyCK
43SOLQtmKbZqKdlK2eAoEcEhsgtqgsS0DpLmnCfkdNXNk+2CrpGQ8ghhg+dy
fzTgJVRr0i0dlplR5QlU66R7h50rQkdb3D9aKdOnUZdB5r3n46S1dzmQXbhw
DiC79cADV+bdAJQ3I94OZEO5Az2tV1YC0INsjoCsukdvRMulQuGzoMq6/+47
vw2w3TxxYtNXtC/jzHv3ptQxAW0Gi2v7sRvA17BArZmghmdWVGhY0Xs0WtVB
DkbYjesXE+RaCrnwPi09Cjn1ZsgttLJFMLf6RS2LiRP1/t4C3CZFkE8QJaKH
24rTHSDzCs0zR5bT1yJelCnSloOkLecJix2EOK/QRglzLCmK3Q9+8J1AGgNd
hei0faR75lV3Qy1PNS193VhDXLW0dfAXnkTsube1p7W1QOALL7zfWus3f5k1
NjQAcQvLaz3bfwN5TEudP6vLnBjzBHF2Ihx2+4Es9nNiNJ3/T8lj+G3AXBiG
YJV17L7e5frSmy4L6NrEsTHuoGdE8tZXPjpZgp5qOTHTAD1U+W8J9No9pXzK
vo+g3cK3ejVdw8OuZ5ftJlmA2fb6en9vQ8EPf4zol3MOeeYzbBAqOURobZPE
u6ZIWw6Ttpwlng9/zpUhr0o8H2PErUC0B5A+JZeMhdw0NaOs5ujGxoNkmCuE
VXiFZxv4q0ThTRL2e0qbDPb7rnc91f3GN76Iri8R+LX3CL+Ws92W12NezhSB
X1R4DV9pB+AzR8gBRR1+gtqRfmM9UKhk0lDX/cxLH9iyEfGHmhnqhhR1eI/w
FfA26t2JSiznHOQCAgV23lkSYKZnSMXSytvPPCUek5KXJKiJCLVgw6WZUqjF
GLMkRorMOzpHfSSrRLs0iV9iw42y+cWPEe1y3sl4EW899JJV2GuULEk0Z5qE
vg6T5pxx8L9w5oo0ad3Nlm2yrxJlN0YI2+mSDzyoEBC26HuoJ8j5fN8DhEsc
ICNcI/rbb84tQ8276ydJU09qUwG9wIS7f/7n/3L3ypUzPshnbhKDGgy6X/rS
V/tCrVl0k0gzZ9zkIhkjh1pdoHb+QEcgpu6R5Gv0rpG6027gk5cungrvIs4C
5pLA6dHcglFshwG5DFptiNhwQ0TBBYgtC9oaScGBcmY5t6wIuawJpXROkTHi
FFFsRRJZE1xBdyhru93GcVMdTac6UBAcj0036aY6jhCPyMX4vW18D9tiAKgm
IZBNIoB14p2JHpGG2DdhvQe2IIwYH6z1x0iz7iLNYvCqEI02QZwOJfWw+9nP
fhQDHuFVExkDl9TFwriCz4HaIINcI/rZx9YMWRUSQJ4mHPK4y+OCawTI0pYW
4pbmH2ndIbx8IHnWjaa59SO8aqlMhPpENog7pOaQ9QM/9AHhjQ5Z4I5yg6gw
46b4Sxuz8nQIY14SX4sc6IIy21eCl/ki1QwbJ678podTXbZkQ3g9D+sQMPl9
2RYQaxGfg4Kpg1bYHrPDxAVyt5s3C4i1CCesE5mrETDFHKiWgAlAAqEKYIL8
oW0YaNzrBGneaUJZO05cLc23QkLLE4Qmniz6y41z+eJWZvceJOx7Hxnpes4G
tkuIEkm14g4VoqumSROPOURBrQYmi2bKmuLPijRnSHOPiGoQZ4ivB4ItKGWF
hc9xihocHgFKof8RVvgM9YzLlRdhjgUyGAY4mmMvPP/ejt0rLlyxeutzDx7p
/uEPv0r+NXgh9hwgZgE0fASFFZOecq4Iqw3w2hR4VQVeUE1A0wTRTU3/Tzym
HJgyrhVwlK0TpVDe+ozYWLu/V6EQ1T1EPByX3cxZbKzl8p2U99EzBSraFuT+
FLeIUUyhLduKKXWsSLfLEQVPS+MsNTymUjGeoJSmSOjpRMkprpzKVYwSq0it
rE3CrTtkjBt5xUhrm6Kp4dEkT3XbzxLCd6xkW6FxGhsr21aNPeKnTlwbiwQ/
0WPfEvyoLiis/wg0B/JXAahUQwVQuUMMi96OikvZMLurlttd29aUuIQNiYA9
fm69u/upx+QJmH3qzecEalnOFVmGYZU7Qg4q0tAJTeTIxokzo+X/idtflIrJ
v+rDXyVKY5EojXZ/R0Ih+LtJNMTV+D3MdoqPtR0btCzWqrSl4YVSnjBDAphE
FivSmoaBbFfl2kB2iTTpBPFt7FOAlY/k01j0NCGAXhHApRGUAGwswex8jjKh
28pvWfBxnQxug7CDCYcy3eMsT2zmCip1jrTwiLbQtGlAGdTVVt7hItTqe4Ra
rejGENT6zREGtRmX+A7pjHKK11bBh7BH+E25M0TVHEtHZ6hrP3QhEcbE8ued
uEGbBdghOvYpZIealnPQE8ypA7LiU+jVC3JY+4EWB3ZYwFvA304Jb215jS4u
ZWuFZHUwtRWiVeaJVhking0FHYQ9+c03iQq55kQSgTNgPoAtKrmhcpOkaLYT
UzP9q06vwfBCDI3otaukUceJfyO6wIqnzEKn6U7oaaI6jvbhX4ieabGk5DnS
zpiF61On1hzsbHibhEBE2EViYrBTxRamqJceHu41uFLz9ueCuDs3NPxKMFdI
f/elmg1zln5o6g2yOvTKMTeiZ4s6Q8079uvEPlvMe3lrc35UgNaQ12qC28rk
UNCcAXChX/A4Qp2hNaGFh/sTx6RAHLxien5xb7FBzApvLBNyY3uLVZcUNjd6
D8fR2JtCIHiDuBLipDQg8Tv6TCt/IJQVgCvYE37Lim8moAbxBL91J68N4o7Z
PW76yzEE37QodvUCyDQ2nc0Sn8ERTs5WHBKweHjXLCtHtupG2IKQTcIaJgnC
1DefEOaJ7SF5bRT0Lpqo4THv6TWvRm2PIKsSr8aqE+eN2bjHxEAGLwfccpDY
CedPICCrAGUMYQ09DMqC1rDbjEg2cjstgd4ULaD11XdfF2A1Vad5bRbue5Qw
w7GcGcLVsZtjyJ83kFIrKiW/gt8r7FmM3ytseRXDhMUonCDDSTHsJz6Oh+R7
Ex2V9QSpzMUFzIeZiVNUds8Att5n8aATBvOzHyWMNApN8WhL9a8niPjY0GHO
rLZzgYkOdjTR+zfZNoNlMnQtEjNQnMjQ6Q5+c1ZkC4T9bTqcmKJUbYRrbLqh
MV9FdQBOsFmfHHRd9qVixtI2kgmnjC4f2wdsgNd85+UK/qxotpJXQ3h6j0bF
mVzQP088hhMWe93tilJhx4aKtiodmFtGPxl5i+GomofEdoKD34ZgO3oVFbUy
aZonPINt6h0lPIO5rPcRR8WXyfeOELoXJbpYyzNI8BxhVIc4ZUGwaGDFnNBj
luW3SHo8RHoc5bmW5Fld2YukhZvaQqeRUgsPxQHBACVDpqJyjKDRH33zD50c
N7wcy1MT0x03S+I7Tpb51SS+4T9uvvReW+PjIIRXSzCCjDp6dGtzc93jRNoL
w99LKt7bjQ4SHjTsJPXG1TNoN64TU3JTBM7nClRKPixfYMkra7Y3dpQoa59D
bgtqhyyoN8n3DhO7+0BJTHXRnSe0ZHOw3u9ESRWcWpUL12t2AucC6bTjgKmR
U05SkfGtq+4SaeSGNtIrBhdzicZaw1vd8lRBPU1k1OV5e2pjqQKjbol9/Mpx
UA+EbJPeV3E0KiFJpmERldHym8XUJ5VEEYsoFklcaZPwiLaK4pc+97wXxegL
zHxaXb+tbhBFK8vnt2lPkhj6GDF8NR5RcO2uk5XwvyTfO0hsUVWIsi9b/apJ
r3oLzxYjTcuyxUjataHz63enu/6yYhPzpLvGnALz3y4KYZwsCCCat0yoyX4H
E1vNXRMjAavfWhwZLUtfFsWv7sVv99mPfNKPTkH2Rsj6uOGWLdDYkuztdjpL
W/lI6cEW6pRhsneAKOyYlFyXZbAkf6pVLKltu1cAc62txss00WHl7ZblTWOB
ZgqCfKa/xcTWiAn2cypbGfGM+u+ZDCJOBjkMSjDJoFeIB7hChINfr9FM4UlW
bWuRqIA50udhogKm3czhiTYukzbuK+5dRvuCOgotDQYN2mmPuC021kJTg60k
kbUkkRocO0SEcdilLML+gtjsd8L41sfuRXa9F8akk13k9dYjp1Z6hNEcKfuJ
Tq6XhDF8noQxDlXhpHYL2LKNV1NER7Hti+PEsDoV74HbpkjSCjGsfp587wBR
4Bo4Eym0NIhFYmXYcuNSd7zCi5dpCg4t2lCuPbVAQg6zpNsjpNt+JxWeaOAK
0cvrxT1jMIZMGJPTHo9Iw2MxTlhFBcUcjaCgkG/mcluVrmGfPMSv7eoF2gq2
QbSxEcPwfsdufcgJoRr3SQhh2Gu4RxMXitq46oQQn3khjJGngv6wCCfblDRB
dJTt/vNnx00QSq+bMwrOsmVixPwC+d4GUd0mhCiWaamai0Ql7+PU0OLyPtvO
8Fd2bKDr80QTTJOuM/ttxkkD8AGrfJk0dV2b6ldu11RVKDsmz/kiKJ6qlDV6
1H3PUtlat1kBTR3XnDp+4fn37uRyX9U4yBC8SHAYJ+F78vpREb6OOpSdOrad
4wXBu3TmAAQ5Rps9SnevbcwN2rRzuz1xlu07QTTTXW4OzLm0RNa2r5Dv7SfG
iSLS5rMgft4j2em/uBQ03WEyDGUDDUkGc0QPTJExYAaaO+dVrIxnzhzJloh2
XnObj9RQSW1+8snXpjafdIKBFQimbgOvLbxt4/M2Ss61ccZgA0cRRFx37AIq
WYWssAZZJpmurhWJYydvkKzQO05afYQBfBLCuiaXbHt1nQQVc9BZnb154nBk
cnFXhcFYhs+8PQ2iqkeJmA4TR94kMVxsN03mXDiLZPX7RfK9DjFcLOzuTt9J
U+5Vdb+lR/XfMdL1qut6FpOvks3We4BxsevMZtO9KzJxlrbIWMWKQ5QaMUld
m58Vj9PueubiO54L0u5mZ8FLcSFSVh+wXHpd7XIQsWPMTWGPENZVCFUA5WIr
7pJanwahr8WpgAkTPjxi2Mzwe9sNHyNEVw3aauX3Dp+N99jKnHNmgVgjXyXf
65Dvef1quq//mtPjHLH4qE2S73rZaYCuTxE36zjpOmMoi6SpzMhf7m+8iOdx
Y2PVCUK8npnALuySVMlpIoBVEqpl+rqaR4ESkC5wAaw6AYRzEheb8R5LSCX+
IzxDf0KLcbxCuHcW+cbuPZeOyFjFYF86ucTZkkkavcYaJhrLbz+y44imCYW3
LU6ZW+bmiOXyMvneGtHuSo3wmx4NmDmTYMAak+eiZUVKVhZL71Zl5WPHyBiw
7cbLpM0s9mli6XxPqc3qB5WHR7gp2ENuXfzJ59++475XEEs72xc2jcnQPqKc
K4RGXpHrNctiKZlu8DBC4GI2Qj0FSlUcJRgURTJ6e1Qss8puauNNfWaV7dS/
1Gc9VMirGJuuJlFjbZ0u8E7k2LDtOzhQZ0L38JFovKKwuEDOEXvn5Xx6e9xE
gYBu2/eOu7abelwgPr7brE7peqdd+8qOB++GHSdu2FEyFpPEL7lK2syS0RZd
MQllH77NaazOOygc21wRIrdZVOnojy4b0d+vcfl0On0QnQ3dq+Y0ue37TlTy
RrxEQVrxxEIebluBWIpEViCQUvY2q2PivSzu9JPHqBVN4+ALaesLy9ZvElrF
tr6M7i2zWBMfC17vGbJa/rKbvrLfyNtCJ50omeKcJzp+aYCjxUJ2eHjFWSxG
1OOgZcfqDpORmSTm0DppNktIXshr2pkbyzc7mXEXiXQ6B0+yfOLKEJ2aGk60
BVV1fMPreF+S4P68yTsqa1nlpglZBZ/r4eS+iF+/pHUk0DeIZvIbQYrphbdN
7ouZhEVn9jSxX34lfq/g5Vki9osv6ZGVlF/mFPaAFQTKL933rLtesUQIt+E8
aRkiwzJFkjE6pM0sl2qOkIyqttn2YeGhe3rkWqZ0153SDbK1476X5CqsdAV5
UuUMeTKl/KPxDn4zZTnp2uV/p6PTvTe2SupJNH32dR9J0Qy1ncwtLlPEgPjV
+D38rMdx47/nt0tA16Bywixh7wv9nRsFXaP6u2BxMJ/oMFmb22RM4gpUS2tz
+BzDsOGajUUIzZ4man2WrJ3VvNlpGK6465nVu1pUkdLFmIVbE6HKcv9NzLup
moUqP1xSUmbq0pO6j8W7rhBYtXkijCXuZ/mKnZKIg75qqADZMLHkRs3cKiwe
E8Qq+DUHHLMKFoieUysD195dGh8WRTBDFMH8AMB6X95FNwdl0fGW0RBZe1vO
W2K+PL+jlaDJRahkSBB0myLNnx3MsqDb5ErXHOLMQFgmeixSpHYn683D2y2J
VcbkakrlCp9duniqQL9ejCMZCaRk8NqlLWvW8ud6bE4sVBUZ2Xpavr3pXy1J
mO4MKUjYq90Q2KIzQcj7r+WS0+Mt8eTdE9dMVcIMIcKzhLwbyn0o6m7XPiOO
3hVpCzY78LZB3CGjZEz271+1OJHcV21nYY3l2hiZU2vTgxdYIMWJT9EOXSBq
7WH5XoOJGe5bET1XE2KOFQoaMkjUiCt0dvXicSg+EKgfj+O3r881NX00ZmRP
FjKynU0kaz2GThODBorS62I3C4vQGFmEvk6+N0fItpJ3NDcpjCmi52buTGHI
NBhRbPClu0nItueKlic17NYrsoafcsJrvJtt+J0a4Oj1vPueHFxQb8K754jK
e/0rEqR6ceWTK308Dl2MAbX6SZEMZ1itYvZfDS7WW1kOqMfcwNvaMUao8tfJ
92YJVb7shiFTNcAKaswMVgNpWK+561lEqknW2gahylUnFcVt7c1kQQAsYUgK
a4yn55muk6zg3ORgJ4eUfcXjvtL1IBozOqFhfpMqezNeKvKn5CPsqLiW6ZE5
oZIkOGmIOWf1sjRIv+KZ3UVwjxAS++vxe9Qy99+76r5nazErRDF1m7XYximu
xfHUT+hX1a3NEt9FBfoa4buVksWd7wbuuwioBtvJnGtojPRgfLDPQPZO4fGg
G2EzkiaINtnOZ7pqMy3vPhlH9qVcYpI7bphwy9+I3ysYulNkWb+epVulxc4k
GtUOgMKyRJPFLvXzXnmVRcwkzM+Yd5O44ueRDzV9WESevVVtm97CLy9ZtiZs
+d6wSuHjAzIZQk9e5SbfIiNjZMX+6ziGnyKoGCJs7DfcZcsmpWdjN/I57lll
Msdk9ip7Dw2ekxjGn/T+BdlC6UhZT1HOPoxCp7/Y9BESDBjrH07bCTz/ESeV
xr1GdALCGpnWxf8tDtinibC3iLB/M36PGmaew9zrJsrAP0qMXhMjn07rehEz
Eab6jbtftsR1bbvN1I4qS/dDpFXDZEkaGZBFm1oVMWKhuzZZif6PwtjKVJip
0SI04Jvke+OEBjgXYYIoqzA71h+i6MUb5TK1NLbnOjM5l6kWZPI15I7shIPh
/plYuMXrctFONK5JFoX/M47HZ4isNYiq/Fb8HuXf/nsP5LfvQVbmFgWb/VJS
o/XivyKXYQfOtfvswAr/4jJvKF0Gg1F3AA2Dgf/L/n1hMArCUSda67fdVBmX
HCVAjjZXEQrsIK9+U6q9+FV3GbNV2CGy7d6UZXhAZbofl2u0ZBTUoeXrxONz
dO1vYsN/gsx2jaiK3yHfGyGq4lVuwEy22eGcQ3w6rRe/lk9n8jA1yWVavXsH
4b6WZr9JrhH3wmqJ4d33ve1h+b+/LfS+ML1VMr2/mzenh+T4dfqR/HtJmNmp
P2z+rNlfL10DW3ebBBCN3p1m6RpKnzEr+I3Mzt/FJv4TMpEVsnz+XvyejJ5x
gzZZPh913zORZSfwDZqpb7jmmtCwc6PrrsuKnhSskHX2Cd/Hhp8ueery9fvx
doWVsEVWOL/AmhA2iBA2+UxIs36zNJswMmvkGrFrPfWJpVdRkLN/Kq/1NCN+
nfp9N4K2njWJIJeXSQhXgwhon5GWe6mCEHZpa12VXKOqXbKifr5Lb47N+Wdu
JoLwofnZH8TPCgLaICvNY0RoasRQqLmu6EqTuqKr2pa/RoUIXkWvhPXX1bqW
rjxZ6Aqak0b7D9zlbXmpk2XjidKsYNmoEcj7EcUJKNqMCNWG/7nkLiq/tcbr
4ZGFxj8VG+A6Uhz4KkG8fm/Hz3+FKCm7r5bkt/v+vvy85n+OsZfj4MMVQoOT
x1Oa9ZbeJhYGtEqQG7vV8PMq91HE9RmRPyj9ChIAPOrZhtKCt7rW6F28mSVP
BVz8artnWmxG9eAq8Sn8cRyU9F33b/a0u2UcjLo3LBIononNSQOL5uux3mjO
f5NPW3r0dOktbnKwxqiUbsePt/Rrdt5WN/3uiLvG98Qb4Z5Yn/Cj7O3xs459
J7vdr7d1BErf/Ez5A3n5q///0zv59F/L+ygoWV7iC++37Dvj5R+9By81fFd2
3DbxiyZ+ImVaJEtNVqBoqkb6iQPkP7zzNTlEHn/jUHm9YcXubqUB8ju9W97H
9eWdz/wYzgAOa0l4beBtEwcFN3FkcAOHBzdxjHADBwrLUabNYgNL4u73SWr7
ApY+/ZN/FtQ/2ok24qltvFUelEafpgoW7PTw+/Oji5Oo+6A19t+EAQlkCjdu
yI3f8+zn6QDFtqbHf+pz/1v+/g/o/f0PdUO+nO2LTWi4/xjpuLs/bo+Z/b9f
6T1jyCiuGdiCid3ooZ/Tpduev/gIG++/iHfp2F3zK/Y2ZZc1JUhEp9QUmSbU
btCmzN/5DPyZvIqgb2fO3T03v7I1oIXd27Uw/hFTnPz2/dCsbEWaWStPlKZy
2jzJ44/yUZPOjjaHA3QOznTCz+974PHuj730clfv1vkum4ru2pmNItOheVkH
Ta3In81Bs6uURSJBOzaOobHdrf3nu++88Hj3qVOvxphWuv/yt/5tuP/xk5eS
MlgvN/xdeafliHE0+UFteFgc0vxpw2/ODY+mujTW8M07F4Vv5FNmY909u3y0
+9ojN8KYh07A5x+6sbF2qPvFn/3jzPqic7D9XfVlPb95oc4OPj12W3lJl/kX
+WXK0xAukPfh9OZdaHf4LM1Hd21fbM5anz7gP9HmQh/Cir1d6oN8T09TS304
VRYkNxkFQfql/CI9s1B3Pbh27Gr3/T/4mfBZPguhB7cOH7/yXfegp9AlPj13
5xL15eJsyLK2NDYrs9HSvqBvT731OelFw83GlXuflCuu9ukL2oy29+1LHIRo
M3uJQvWGqanFu7m2KM/Hz/SZjjAFQeHFLgDjWIzQ+Ka81gCQ7niQ99AN/Hal
Ty92RFZuPHm7XsjM6bEqvhfXHDTcpEg28ucGjP6wk6SwLEmj2zr66Mqr3/i+
3f0Hz9xZu8P7nVK7eyRJ232PtLuKdt+0n/yzfMK2yXCPkCVoqDTa7/rBn0EL
lvu0Wi4Z2FbfVrtybiYzmVUnx+hD3tFwbX5awvE44+6hQ64GVT4F461RKC+Z
gjGyHI1of3QK8MTML/XpjyxvYJS+P6F/aUi1P9tOegb1Z9f3JybeJo0mx4Ec
OHS++9Cj70EbDCSPDZ61cbJkjZZm7YMvfg3C9t320svaoF4WSN2pfIaCHp2Q
s4XwDL0M1/iJL/5FWGC//x9/Ge89iVQvIZ/ZKbK0jZVmNkgq2r/4Svvs8i2T
pNrZL9A94Cn9+nwyn7LdidZw9+GN03K2kva7Jt1udH/kk9+SyT5/5XXW9a2s
kI21nTkVqxM+TRbFCe08vhom28R6oU/nZaWCteE7HwYjwc0fW1o+a4p1Piw4
HfutFgbC/eUIjnfcdV9mx7npAGj/i6MQRN9GAde6r8/8Q03PksV1sjT/KvP9
hqBAWgcMQUHmbQhAYqEI+g2B30ik52plVTIEbZV/G4KpmSUbAs1q6CsFc2Sx
ni5JQXjiZ/PlIXhnbB4unSjjQ2QIfM46bEB/1h8bgrAMbNlv3TZAGYbQbT0R
uto9Nrvafep7X5TOj5SGIMttSU1gSSIg3TcRWCD9n5H+170IdJ/6vhelTXN3
MggBGmml1kHAHPQceMgGIUBj2357JL+HrAMYhAYZhPHeQbDVX/O16kwOsiWi
4eZ0EJwQgLbi91aLpGcQMEKJtg4YhAIYbBDUO9B3EHzZBQwC1oMmGYQprgxk
9k4OkIQVogxsEPA+EMSEhpnZ1b0NwsPEPeEqKyc41AcMQpCMHfutL5Noi2JL
BwErBDqN7s/0XxS30lhyYVgjemGBCENAhMzNTHkcosspJZtvZznhwI129Xvd
mcm5LO7GKybpaQY2fpPshgHjKGNhiPJnYoNm+3EM45q0skvEl98DUUNkHOcH
K5eNfBx3spI8rRPlsqjWU0meusfvuhfXmC4PpeBFUuDirjFpf74TJIxg9/D+
Y5Xu1bP3hBXwHY//593/4h0vdD/zwc93f/bjvyLvX/fY092/+Mu/7X7r2/9D
9z3v/7BfF8+68TMLYcA4F0C713E+kI+zsbZg0vSO89IADbaWD/J2VhLWfWT5
XibCCtDC4C6U8mrYQJZtSen+36exj1Yd7n0zy+UYX6pgCmT4Kxjt0BCMP8Y+
PMM847Uq83Hy+DnMATZH/uXfhsaR+SiUwShPiPeDLeSDmhaQxoAJCe+TLt7I
f2uUMkhO74SsDtCnWp+/8/Gth73E7ydzsdJH4MPigUvFalZa5m9EOoTwF1Lj
EKNCPE/jSGya/lDb4WZxN7tdlEDmthZ/aVNqy5JMZ+h0wBTmVACkoArUOE6m
AxVyrMuTmfTtiTubTPmerWI2meoj7DuZ6lxHN5I2GNXJxHtMHqaxM4AXWG2I
TFGFOdxP+MCaziSWsmATpZlUv0mhYGOssYqoo0bla5p7sodJzf7reImdg1Mz
AmFU/g3PBkpZN3Eua7P73LufkxpFzVitaGVppRn1yFbmHjHTJgWbZFbdEjnn
0Lm0si5TOawT+uVf/FbPhPpNNeaaGDChheVy0ISG94kf7XPCAE6DqRwjE7ox
gOP44zFR5nZpbDZNqOc2a+pFCoY+9A8mMwAAr1VZKu0xXphZWfkQ1NaAdnvw
zN70LfstJ65alS/VJQ+zibJ88o3/ECeuo7/tvuXi+e5vvO/7uydWljF5Czpx
QOiLL/2MTNlYceIKHgDlTAVL3SbOe7b9ATO2rDbJxN1LLPW1/LfSZOi5CTJx
m4N5mRbTlkvg8AQU1A5z1iGUrNMHj7qyTvjJi956V1hK2m5ppZg6ZEqUpo75
ib8W2yeXwynJWuTTJjGgMR3cFX8n+wG3VRC8EpGZ+Rf5qO0uTYxjooMIhqkO
1/ry9jPCbzDXBlUg9/zF6zLXk/LaSGtvWJP9tQ/c2aTLiNvya5OOz8JU9510
54RMZtmkTjp+G6Zapvtwafl1k24ThCYXjgMAg1wjDHJff9TaUiyPMT//ogJT
Fgiemi0z5UQA078HEYhZsyJRdvqNPPHpKa3zCjlAnde3Pfsh/DZuRRjrZJb4
PTPTfd21a93zR47IKQE4CQonBeDvrFcj/JKbovmxUUhGuEeUkh944D5ZByAf
M25Bv+/aq7EWZLP9pQSX1vW24McyKfHOfTvB0a/pg6TEO3GcAzDZrVNESo7J
a9Wk5FY+i0XpwLFFiK6uErq1odLhFgWTDokS2GO0IB1pTTfp0LV9/s6l4xfy
zkpt6k/c82BmZfxxlyAfIiMntEa1SQqeYfmXQXPumu3MdhLHQ2fDtf67n/+F
cC2Iz09/7vN6rARe2yJGOJIFooSDJogoZT+bt0/kCStOU2VJ1YtI0TRhewsl
WQorkZclVQHSTXMIMlnS0nD4iUWxkyxp0EWk6D7iDVP/iTTdCN80kaUTUZYS
r8AjnoARlwLwAjt5Dgc2BI6wTMTpwIDFRv3iXpzG8sFNxYarJJlwSdNyS3Ll
Jwut/DnX2befPFM4EuJ2smRa6GIuSzczt/Tc/OEPhzUkyhKWIT3KB0cMD5Kl
Ap35Qt7dpL3aKktYp9QMDyqh1wxcEVmqJVkKBBTXXb0zGZKhKWstJkPej+bc
T/J7aK3Z/jJU0HgjTnZVhjI7cVe5iojRAjEgDvZfmyzO4O5hwiRNtLOGqyRB
do0QUKROZgT9sv1Fl62O75ffZFU+RadX1BoFUXMFzZ2PdSezQG6QuBff+c7w
oyhtOJkex+NAzsb06ChIG1azkrSxBVYyw6NXooX/2M56t8Baf/02YwgoFOeQ
CugnHnu9GEReQF9/35tEGCGaa/JaNStI2uD9+ObqfhWRzll3Xz2tLABrb9Lp
fBvJYWTSGVY7OIZELk/uUTqr7jzowKlELueJNXSQLHVVojk1Z9AOaclyzZmk
0yfXb9yB4Ru3NeVxXOyHQ+mezvqa6Rn836vcLJRPRst6ZLXqZTWzE5+Cqk1S
5YKM21lR3UJYWyq3YcUU2YTETstrLRE3ldtKElrpSsl3hs+Lzpb15aVgcV+/
eK779Btf2/3Is+/qfvETL8i/WzeudHc+8kH8W7BttdKPDI9RwRGVaFiJkGDI
8jix7ddVomEy3nh1rOk5SKJ9usGskyzT2SbRPnB9H3HZO7MyedzmBkh0eN8p
SbS0DxLsJVp5oMjyHDEQDw9Yb8P75ERSiR51tzLlXSd7Kw7dgcF/I3ZCur4/
WBzYTlveSoudniUJd/v7eg7Y3KuE+/OjYxg199J7EjCs4g1phxhDsOfxWoF0
x5P+6hSul/Ys440eGf+dX/hC99/c+kaj+3/9mz8PSzL++9bvfq3b/Y9/Jc/d
/+nPy+KPq9+Vj4v0A4RjnJDXMZV+rO9wiOTSXzPp737ks7+Ma/jacxazGgAA
4VBGOPYKACUr6EEirfMDABDM4y37LQNATQGgxFVEf4aYykf6L+kpnIuHnpuo
AJCRNcLBtoIddwAgbpMCAKIpE12QemiL7CfXCp01rfJDcICfu2opYkx94OLV
dI56dhscVPOz/dJEsKifGVZjxLBacSc19zGsVHuIm2cr4yC4HQpGBQVV/BlG
YBUIwAba8NpISNh+5kmPhBP5yCTqPUEcR6PEcdRxrsKjd93d/eqf/C/4V+bL
15Uuw8En9bj68uIaBBDaA+DgQ2KzTs7Mx7swAA7nr+Q7z1RGDQoFOHj+PUWM
uWNEHxgc1vYdt1voSdd2qwLDMTj48gV33bkX0VWKlFHw9Qrx3goW1UvwCGTI
w+O6G0izD01NfOKeBxEWEGCcJPCoESIUY8J5BqlXExPEVtznWBAgo82KcYJ2
6h2efSQ/MNso+vgcYg6hbw0W/SOu10aBpgipHybesP2qBPBbiH143sqKtW0t
4D5A6tHJxIJM6n02F5N6d3aINB28fkml/k1H75aExdtJ/WSwJUzq64TXTxCp
P06UQE2jHF4m9Rxqr2+MBTUJCzp/564xl8lkZCj0orcgU2uw1F92k2WmamOP
Ul/X08d9s6ILtGizQsphs04Rm3VDfW560PFuZ/+GP/trd2NpTs4BxzOIdbbo
VvcbVy5CrFG/pCziGDmjVy5pQGQFq/ssYflDxEm3X1f3LBdx4zqFUKuFZAfI
uSx9RnYGybkPyU65WbaYwPIAOX/o0bzSwSA592x/nHhXTrqM/EBu+pKdopzL
UBjZaZItzJfdflUn525HR3ocdIJpB9Q1SAWq4cHyfSEfwGTeNgfIN96X5Ltw
oLHbXbCd9Zq3M8S83dCFHe9f/uZv44nL+ePq1uenu//65348UJu/+dZPh59f
O3lQFnXI+rxKPN7DkIWsTyirAcuHxDtpLxQhXp+eFHGfJ7S+RYzaDfVJ4/1P
/uqfJpFXQuOjW2WJ9xma/vw1S1IeIsmJ95GY9WRJ4kHvVwZI/FPf+2LJcRzj
LybxDULvx4jH5mT/lT0lKuLRLEh8gc+0iHP6mqskFezbXSfaHZ0xqcbN6nWO
DRbtM26kYNciONLao2g3CGGJ3gtu184Tu3ZDz6g3uf63//7vcBq3XK+85gaB
Dt/sFe45FW5nsuJwtb7C7aNfYOqBogS228vUWySov6EeGyfcAXB4Lepub5xa
ZsYAKUd/E39hUn4/ifWOu9+aEbv6XUh5k7D2EeLFOU3WdeMvyEK1h24QHs6H
O/GXNqmQ4KV8ZWVtG7/yxYmNoLSJlE/2l3Jcxx2mmqzW9h6lvKkExc7Hw8PS
D7N84Q7MsZeO71diAjq+srYO6Q7SgteqkBR77HPdVLISOhMlPSzpsFVFxmeJ
WTrfK+nW9eS5/uZz707EfIkQ8wZZxg+opIPFvPtHfsJLemIvTtJlLCyrYYCk
CyLgcX8Fko6pTPapSTo2oARmXpD07//HX0739ZIOxgIZbxGmPkTcNXcNWM81
qYVIOj5ODIaVe7rqJF2DjP4UZJF0UJXhvqdG5pIeEOAl/ZhrglHxO5R0UJU0
ep6f4lQArOPLAyQd78P67SXduIo8Onk3E2FpqaT/1qd+UNZwyPgMsUKX5LWW
KHoWVZida4ZLIvcC4r1MuEqduCCZkFf11RwweHj6XRZyv5lg2n3PkjJMyH0e
/f0kKcOfbI6dNLcT8h/55LfSfb1npCzknqa3iTl6tv9yjvQdu0VWLwh5gbSw
EnVX8kLBu3pagWb6prKAVl90hJicc4PlXIkv/rSsr9CKvcl5S+X8oTe+JU1w
ZKUxlRDn/ODoviDri7e3NlXI46tRFzxcKpZ0FvRlWEVdLVER8imyqK/Ia1UW
9U5nTeDo5VzTD8P3euW8ShyMmy50+tj3/SOR8BqhLSq/slha8tH/S3IuikB3
D1I5P9U/nFqQ8zYh500i5+eKm937LuYq59EFr9WVSvU8ve/9siuSfO7c8Zu5
nMeI8emNVaEtY+RUsMVeIfdM1V1GjouGeA+rkAcKI36UfkLezsl5GvmoqmPK
uR0dhKcK+0Jfu7Pq+XkYtMhg/MT4Y+aOrC8KgxklXH1ShR0eR7hYcmGviWF6
69ZvdD+686GdrEgs7j9yuCDvnrxUiFfxYDGw6uW9QF6YvL+a7DdRF0oh2c7k
3W9vuJ8kSI27foCWe3n3OyZP9Q+2ClYg35D0IULT68T9cqH/up7UMR61grxj
aBJ5GSbk5e5iqWk50tfv4AB5QaXvceJnWVUfOuQf8u5k3c7TkmuYJTpyh8Lu
mYuKzzb6Y+dYV9zBrJByyPtcX6s06jNYpE7qC2zGhSqFtwcGE/rdK/UTxEJd
dg7HsMR3/1P3f5fn1pZY0zNOMk36V+W14TNM/aaqQyr0LooUxrqXzKgwS+8s
o2uA0Fu+zG2F3ufMjLvmI4L03Qr9MGHsNeKBudB/kS/YpkWhL5AZVrb3ovM5
ogLkCy+8H13d7zBj/sUJYp52Bsi9XznNNh3do9wPqdy/7dkPpZH3VLV8HqyX
+9k92qsNQm2ULXWynNqAyU8Qk3W8L7tpiAK4efPzSfT/592/2C2JPogNhH5N
XmuJ6KilelhFHjmLs4srIuwNwmsm8kFOSTWP9Bd5X/PlTkVe5AYVEW4n8iSn
QEQemywg7CMq8nC9Y12HsFeIO+bSADd7MFrLIh9jqUVew4rwX3Aij0qhqMN6
5coZ56qQqQe1mSIHu230inzZLSG/NyN1kMjjeybyw4TXuACH8ZrCGdwm8jN7
NFybhOC4BMKbZzbXhOBME8N1TOUdodWbX/znbqmv+qU+vIuvQf5vlvqxOxVm
3AR/3WXvgvEERpMdUanP8oBSWug9uxkk9X572J1Kvc+k8QnWcEJC3tcGSL0P
ovqIT1HqG57N+xpol8n6Xs2N1dSlorDLHYzUjBJSY8JuJaj1tKxO3rnkfpwh
TplNFXbj8V7YdTVDp5OlOnaHwu55jU4WmifCDTFvEGHfQ6DUC3uB17hcEuE1
P/2B7aAvek3XkQGmK4T/bdtvETGvqbArt5GHxmi6nfFxEW4v7CA46B/E/Ajx
uDcIq/HecMuTYcLuYkNpS90w2VJ3P8kYGHP3sOInJuy+3sMpEkllwj6q8VSj
8t5cvUKWdZebvl2S9JabMpTnRuXxcZIlcM7VIUblcT3Mq+NaZ0xmlrhlDg+Q
dL/cmLk6vkdJH8mZTBqxSdemjz16WWS8SSR9co92a4swGd3d2NE+mE9ynpD4
YWK6+pV968ZVMJggnFHYM/fQoemenpuXbnthB7uH9njP+z88UNjD+6SR/r8o
7D68pMIOIbVNYmHRyym8CflVspy7hOAkCkUhlyYZdxkn3OUsqUEf7FQZlvK2
WKzp88RWPVY66NANCX6bbNSJPUr4KImWqlgUuHqLSPgEsVEZVx8ixGU8b3Mi
LktEvIf62qjFtdzE+9at37hV6kd3K+iZiSBWiDNFxl6XiKoaA3JtuGeMtsM9
GQhLgcBA7G1dn3BiZFlgJuZ+x+ykkwuLopqY4zPbC3k/yY7xm3rM7f7di3lL
3ss1YwqWxJRkLQ+WahB3xtorxDtTLUi+GAggLl7yw1KPgKnI/JneowpQ43+7
JPmJzSyo5LujvbLj7hDZTLOGXRJaslIn71Dyff67k8pE2dsq+fC/v+7s8b5J
joyyD+Uspjyzcg88wWKWiYnaJskxxmLMJwmZbxIWY0Zfr+RHNw3MAEi+k/5D
JOZkwh/eJ/BOOMG0RJl/COH3iTKDhN+XXjlFAqv9hX+4e3l12cf22c4MA0SQ
+gAJ1QEBE4UUA6IXdienFsvoaLqZthSDSUJ+TveefpEOrVxzQ2EMaJH4co7q
waWmF/SMNR9mNppvAEEmMIpJ9APImAJEt+z1zIy5L4cIQMYHAMTT/GFCfkad
5OAJ1bBCbNrWANWA9wEQAo22AiTYuJ1SPwQgoPpItjGAwMZV9SNPmBGB+Rzq
H6wS7bCwuHDTCT4FiN/7N+kEVUsrq3lbk0wEfI79f1L7FlXwq2bxCmK2SEKC
j7eaT38Qbnyslm0JHNW0eVi9wI3apg09UcfDpwQhCp/jWm7KKRer6WXhraZr
hVEpdt6rQcYf9GZnSbtEKpkEKJRlhYxuJxGwHHFGw/Mf/oAcevxTn/3oTScf
MpJQJEDMxB5xM04olZ8Zo1TDBDejA8xjbzSMKG787McZjMX8L+6fl2fAywqx
kBsDLGSvW9qEVRl0Xr95UAyHoE80BFD1rCq8y/VXOeDLAmD3PvKG7vY73rbl
sCG8wvLUBmBIptnyjw1DUDr4HCISpLSCP0LHTUgBLaQnI8En4OradwGn0yQk
PDwATjA1rIgE5s1tkyJQEo+q0jPdqdXwdYatthTkvVZAUYGWTZH4wcne877S
Mdo+HdFo2SpxMh1ywWKcuooDPnHY57UrZ9F5H2Y0II3foQIKDG334o0Httyc
oFmJoY06IJ0/0AF4wqD2t74BrD/+7//HApA8Q4tAqicg/eUnnzYwJUXkbZT6
bUxwc64OK5o0kuxljKIJJjiuiavXXOaR7Tw/QNBUzSkb0LR78fIF8829IjS1
nUY6s7Rki3DdqYDSXiZTWhnTWudJ5oXnKBaU+25gZr5aZGL4Sk5qik8MaPog
8ref1Lo1j5firuGE0wjfNMkpPcEPWzVngK9dYpxvjXi9Dpag587ZxWAOcnwx
6C0sr/VAzzu+PC8zF++Ygx5STgE6tlGYuQXGCPcbdtB77OyGQO/bH3oDHGAB
Fr3Qqw3ggC6OF2Si10gacdADD8RughWiyBruHpaht0GC2hVVZyCDJ86c6371
61+BcET0xRwuOMXgMQjPFsihHJTUikcm/dCzXzjeH5QCXktQbWtlUYDUHc8m
p7O19ejOfuSspPfOEED6rV3l4AkAis9QTP4uEiX3adW2DdkACf+yHuzuiyfN
vkI6uaqALOnCnV5AijgZnZwmdPL44FN8l/JOCSihCzvEObfpnHN6JnNoOU4g
r0IvJiR5ZNrOnbE9InOUINOzVWOX4wSZQ3t0W4wTdhlzEmJRJEMmnr/4rgeB
yBXiwagSDwbTi6OEZRo4t0+cFIAGXZjA6TwYQWz6gbPpA5HyfNP3Pdv9Jz/1
E7vv+8FnNcUqlt/EKYU4GzA8WzhRr4nj+lr4uImjSVu4UDseXxYA3AQ820Bv
DeiNcE1TMemmogxXBC2N96ky0tPAhwYpUoEqUhcDXI+TTC4G1xjhbwlcj6+u
pAopctmZJYl/BuvvBAn690dw1TPXrEII5eIdUNnl3uMDbvYgt5ACM0PueLTP
kdPqP3HITSx2H3GfHFDkAslAbsRsfFUm66d3yyN3dI/IHcn9KcmX6hOSgFRg
doIgt71Hf4ohF++LyK165IbJw2vV0CvgXSY+lsoe3e9jhNoOD4Cw87EkCKuf
pS+E4ZJ/+DUPQa/e2rr/RiGlyM5CPYjXNk73bOKzJjDdBqZrwHSUnfJkygUs
waClVWiBXU8edSP/jHPV+Rpa4b/CWAXAMtK7SdJyvLvFwlhxL+CIuDytBoZT
L774RQJxIMdH++cwFDbIDrnM+3LRud46YXxJ8uECbD8JQJ4lR99MTi0qjutu
NbGbzpKbGo69Q8c5dXy5CaPE+wmON1yQ4Hueek0Bx0EbJ/XiN7gZjkf2iOPh
3Cwt41iuZ9x4iuC4uUf/zqgmd8JMxd5xFVu/lef9D5xSEMdXvIePJ4dy3ft8
zNeT/Dw+ODyu8A1/QytvJfhWgF7FKwoLA72LhCO3ibNnv2LYosbGi2/9t78H
NSw38YUS7LDgV5HTl1mms1XVgfPUsmgqxL0uxTnl6GLmAzIFGwC7vz9O8T7t
8VpyXBjYhVKpEGGs9m7/E9zqkVOH7hC3iGaU6/v1VlBrsrVpII8eLx6SJu7Y
Inrj9Ch/niW3PqLo9Y4k50xypepEdK8c3wyLYq8vaZ9DL7yxwG1N0Rvep1Hy
hbstU892IOD9c+9+ri96h5xTyTZP+piWRTWmFb3g09C6wG2DOJWYZevRe+ny
he4Tjz24kxVzbQy9NUWv+pccemvJ0NXdZiyFKVLnugA36N7ujesXk4pTAD93
7nxWtVymAoC9f2mI+Jf26ZZ5i4cj6hGACwDDr+R3/pj+fYicRW67GXzCdsvl
8ZUJpResVaJvVZ7769slkhDox95CiosuIRBK5esfe19415s02pDXpuDYJY56
Iq115mlulZA7A3PbKWGEI3GaPSsed/gOmPSoAhj/FwDckbsWAFyg0XN9a9VV
vUcqjC9eqylFBY95dz0E5zFYm8Q1tV5KUwnoDd1Menj3wftidRaVIfFumHt4
aI9IbheRLG30lM4s4RmC5PoAH5W3hEcUyeDTKyvz3Ze/8undrRsXfAU0Q3K9
L5Kjy8pKurA4y7DmsBiM14MJ8vyH3tH93V///G5W9FTtXL0m0r9EtPAIMYY7
CmLE9QFgMGho4MCib2bFGsumgA3EgTsngqMgLiTjWh1d54YKQ9Vro+0bqICd
M2qe5Hv5HHTbl+dr4gG8UMANok/avVXjPHHu9M+doZi1MGi/encn7ow4N53e
Xdt3fNvBNqrfImueJ3c86GCrfiuDrfmu5OFT2wFTDBiD7ZqD7TNvfZPAtqGw
/c2v/1SiY34ZMNi29wjbVjGq42Er/bWozhyBLStEzczgId0jovS5+wPve7r7
777z27svPP9eSPog+Kq3WYAbE9Ia4tR66wN3y0QiXIpt3sEaXiTJBkOaWQwk
Q0krkivdv/9rSPaXPpdLtpL53YuLSz2o9i6uUYLqdYfqhcUFQTSeP/T8B7ey
4lE18GwBzw841WxNmBmAaq+aDdU+iHHoFYaAxvuDvBBptcqveA8XFmS2SWR2
hLBsXEdZ9uodgty7uAzk/VLZej0Ach46KHbDU2x5ZpH8FhGOyUpriiHcFw00
hOO9+raSYkZ+kD2igRz9mefXp43PbPTd7lhNYaMA7DCwvb4uO57Hg7x1ZyDf
ffYjn0zX874zs5HnCcirA0DubeS2AzlYtoK8+yff/nkM9JjDwEtvuizwbhC3
14K8Domt3FmZ7e6874lu9zsvd3e//Vn5e+viUQG9Vlqe65uCF1k4Ik5YDAD8
gPYAnYj8G1dzj21Efk2aBuRrit4icY6NEufYqiuJjwUAlwnAr2AFCPMF35g9
dCGQrwT4yxJwvy4EQd2nFvmyVuUTfZwrLCGiN3iy54jTCMl29YC0EPCMvNaS
kteqDC0i0RO6BDByHvT8Yv80QRFuVpqiXNLQr3wX+vIZY+bh35s9WC+Q8AVC
wg/ktSnMB5a0uSU34RHjwzHR5z3XDwrew+rI/GErJawjItV0PNwuqX5yO4mk
UEvudlhvkoiU+mu20cRHT20Iyhd0U5DDujzVF3aAQLypr6bHQcEDvA3moOKF
wg2G8ybxic26CBWwH7ANy+47L8OyC1i/9ZWPCt6zopJHEaeeiFWDmN3PvOUR
8PXwaQR8+LskbXF1BolXwC8QDj9OPGmL7jwVJHvgczQFtw7aX4FvAWd5eMb3
zJPvEcjfRxxrvj5v+YwVONY0Xhtu3svr77qz2FWDZPqaZYOf2O7UacfuTfEP
Edku1xwy95qifq5/kiNFvYtOJ9T3lkeqpd6GnjqMV9042tqx2NdJV/WeMs/Y
b21sxN3g8TUmQrz46GnBuTH3DvFRLJPQc4swdxcQS0khg4B+Oij+cmU9nxDs
XXHmOlvQra4e6OoyS85u7y6zvX5OkYd3AeNBIyhjl4cPc0ODA+MtYnVPqf8M
SDetHtA9LGCvlRV7BUgfIzkjNQdyR+W73/lXXwtN7tXqlsqFNC7LKV4grrYJ
4mqbk9dWOuXmcmAFuKcyDEH69jvepkjffeOb32B3tdCI6M7A7QXj9xA3HDuZ
gXH9BrEzL9zGtRzQrly/lri+wpxFp6dKql0jOsME5OWCSyV2P9M/J+wmA7ln
96ympauBlhaNIsJl/IyxL/XzdmRFV1qVuNK03KpcD+j+1rP3JZQHZK8Tf8Yi
iVK3CXP3h3VYdKuxR5DXSZTae+lsy2MEeS2BXD1pG8SJ1nBBadXghm8j6/Lw
uaKG7zbBty/o8PSrr4gmn3CaHOAua3J43tpEk1cGUPe2gjwAPgmDtyosX3Oe
qPEpYrRPlw7BNRWOCFzFeQC9QY9gdz6j27jtQ/e+rgBy76ZjIG8QN11/Bdek
Lmeo8yzjYetJp68vH9gslJXqld6+LH2ifzaZjLbVXGkSls4Kd15xOLTCnbUC
lAuEfIlcokPca1XiXus4KL/uVDDPfuQ1Amcl5ix3c4EEqtuEmK+6ATco1/cI
5RoJVHuj3hzkC84Ix+cBu3RPfs3pafWqhc8Sjnc7ncgu/P7RMo69e22M6+lZ
gXIjQRkfG4xvfvGfN7T2vwuDMR4+TDxuYw5F0NAevN7jNq3gBZgBVsB2wh0L
4/h3XdcPrB3mWldHnM1dIUB2g3jh/LEvthPIQAtj3FL4W8Rm3MptxrJjsQDS
CRLrGidyuTKAVD/1vS+O3iFIfcya1Ry97BCmhNq2AlXiZXGbhPNlcgkDKd4H
K7mgb72HLJaIkfNXBJgAKZ6eWa8Q58IcCWUN50mdadTX3KhbUNpOG8PWu09/
7FN9kVolQWkzyT1Sra4GUkoAC1BY/D9SSXCsmBzCVDWvmUB4mZjVVUK464Rw
MyAPERfaiFPI188eFoW8JCgeTyjefuxGWSGnE5y2n3lKAORDX2DZo4Rl29ZW
mNBWb3KOOM6miR09WlLAcKgpy1aTPirgNz/1uAW6LdvMr8MWJ7tBHGnsvMk6
caS1Ccu+kduGZYtVrmdx6zES/pokkrvO6zgadx7qn/wpt7NyIA2ncI/MTksN
j2FCfO/OlyI0v9OL5W183WzsFXKJNeIBqxIPWKzs1+rBcolDL5Ft5LMOzl/+
mZ8UOI8QDr3uRsLOzKnuEc4VEuJaIXCeUziDUwMfcDub6zkowooAqVlGuehk
HKMDPT1PagJWCN9WeCOAvWNdtFo3mYbBgm4OE9sL7zbR06GJ64LwVo+e1jNK
DMnjxB+mC4vYrFZGcJaw6FkC4qEBLLqlICbaGBO75ubAFPI14hRjR53XiVPM
QOwDNtedRss0E0c9A4UY9igJb00REG8MZs0NkkQ2CMQ+hs3qxl4q1o2VazYK
IC6w5hVyiVXi4qoSF5eron/roSOLAHAQXbxWE3vG+RFsu/sMCVSPEPq8z428
xbAqfVHc9Ci205ETgr30GIJnXVkUOJCjEYrXoYJTGej2MMYB7oBxgPCkOztO
PWLyhHJ+/HueFuXcICxb9xVhhuSyK5ND4TlSAZTbxP/dJEr6gDS1Kk0FfGH1
ThKlO+GGsYxX79qaI66tZilapXgdVuIMg9vr2s6+ji+6ig0YgtCrxKW14Jpl
my3qxKU1RIjz1aJ5KDTOOxgtDD3Mw1DTRCgPDubO1TuEqvdVsZK3F4srza0H
HrhiR7iogSsdtksw7rxCfFW13FeV5t8d65KgWtVXeKfRfF+xyG+znybh5tE8
qXPH7hFZb8OHm+WpMD2lB0qXEGoR5g4Bp0/hBPgg62POT3TzpfcmR3CW69eM
0ei2HkDt/FpCp0GfP/PSB5qEPfuY6qWN2e4f/jDShJ978IieKxfAKgANqrZB
vFw1rnU3HWShYQHWCeKomiwtD+DKn3js9dNEyy4QX1XVaVlv8gbNqpspG+Kc
Pn32lGnZ3U/804+7qSgkn1whviqG3hqhykz2r+ZGH8r4d/qhd4jEkmZJ+MTX
gihR5TBn2OxYPMLL76mxKjN14pgaJSvP+WLVXgNaEboCNVw9WM9Jy/qrLBHf
VC3XsmmU9RTEWxuzo0aTE3QdVQ5Ld6/HbpJEj8cIV450vG4lmDxss4jbegG3
Fil2VVtD+yYA1ARar1Gn5XW4oFEJcAvEuK5HOEHTggjjeeniKSHDTUKGXSXV
W4+cWunufgoZyXhtArnAraAYqAVMjTBXCXQrfieVqtpDilu0P6jWAm69jyqq
9XgQrt0LyduwbQOGJ4i7akG3YCBH5PLFu81lxYJJulGrR+3ePHT4kNWNLiSL
3E38Vf6cIcsaqxF/FStZfdlZeMYvWYniFg8RzRMpPa6ljzxDznghqDqJ9bIq
w+ccRLXKMCZEjwTUpGqZItWwyX3sr7KUL1LJM1UjnqmjDqJffvpuB9FaIsJK
O2aIy26ChH7HCBeOfLsmKO1RrLUEUI3u+lMeLCVz0u1ogjqCREc/z+he2a7g
FEYpaG2L0Fp3CPytzflRQWBNXscEh19993XBotJd06DesZxUJtoQ2nVYoYe3
wQotQM+z3Kiw28ndhUviX9xC5jrAUNVokO1el9Oilgswa9WxXVin4zzEY2pz
v5NXC/HcTTxMhj6/FapK1KbJtQ9omIsG7wPfE8roa95ZgLZF1OYiEb0T/Wvy
ST+sJEedUFprn0+uPFf0/whK9JRlV1sj6UWWYLFIXEg14kI6TkBXU+jh/dLE
kHR7mtjk467bFocdJ5RWESdDi+BNAXFy0k+KzThjOMHNNgIjgQpcFVLcccER
46+AIn4XYNRWHvr2t72+R2CAJqAHWGrIa9VrtqC15Hvi9jGtdWQA2/QOHX8q
inmKK5qKBRgBQtBkHkYoStjslwFVkVOfo+cH1mV4hgsGjac8FV/GLSvoffgM
S47FdCdVx0Hn/dDzHyzoOD29sZAtcZG4gNT7Xti0VCUuIFa2+5LTHjiL5IMf
fCfmlQGtWQrLYF/rEpG4YwPL+215rNUIDR0na8EZbaW6aXY/+9mP4joKN63s
uZM5HcdyFueJs6dGnD161uHNo0sTCW51QkMnict2jGwLnCA09KAbDTwffxSn
cTz37udaQF2r+0tf+mqr+0ff/MPp3GV7q3PgcM9vWXEbU3cHnC4J9FHg1iJ0
cpmArl0CXZDZ7OgAWuh1k6OnovbybOZaAhg+D+CqAF014p1p5MCqJWDBVRNg
VQGqwsfAlThyY3SpgkZWsNJoG7EQxBbHV6w/0G9A3G0UnEJvO3MK7gLx6ujQ
FTYlVIlXZ4zQS3I8BKZkws2uRUTrJIqyQrw6R51pqAGDVMxlEP586HOcrBJ3
FVcJM9qiZWlHBGC+ZVEN603aH+CPnZ4jHpy6csyw7iT5OaX4w7WK+OvhmONk
EEZIEHSSpBeqtSlzolZaJmGMFgSpBZFqQbakpkoLp8bIueul4tD+/GgDoxV5
c7ES+MZFCKEIn3jswQIYPadcdZ03MA4pGPHenENGFHH9YJMJDGMMsgbfinwW
QIm2Lrgmao04zUVsJzwS3ijvAcCKaLS6wY/otJo0C03BQIYuVgBA1cUaKcK8
pBZb3qKZeJoz6Hf72TJXiICcJ74ZhsEKIZmszPkFx8CgWEDifGk5C2PW3Ol6
RjJXiewdcW5V9fVD8rCHtJMVKwJavZoq0YGTZLk4VXTFWNWY6JU156wsWKYD
58hVZogrpk5cMXe5QTAMNgjlHCdG7hAJW04pAAMZ2C4BUOTSxPpYTuJ2NztR
co8SiPmCpI9fOS7ituEI4NWLx8V94iAG2Mka48OlgyB2kBDKEXmtJ4iFzwEx
ua47yyzhbFg37Hm9h/8HakRhhRlVzJjOWnRq23btjPRXV52syAgs4n+OeEN8
sqVtnTF1hRS8QTrgPOdgDC2VkkME7DAs1ixNtFySMyzQVhcQwPcFyMuA8eHB
SUIaDTDm0lCLSgHjy7FnqrRmyVUMMN4xUieOkTMOgAgzACrNEmnEoX6jxDRt
kwjhFPGKHHOjYUJ6JCc3O/a94wQwQyTAsOGIke5IS/5G1Um4l/k+pW+fevO5
voDZJARxyAEGuTIKGGmr13W2HWbEhQN1e5sakkVEDJNkNtMch911zat/lrgn
PBwsA5VpDlYI/SynRNEl2vSOfXl678Q+IgIHifu6kq+ZqclW0dgXXakQjwUr
RH1Sm2zuBjT56NGNkcKVZZJNg7D6g9PEaVHPnRbb1tJzTgiLgIgsDsmnyuKG
yYC0SChumrC4424OzfDxC7fh4pTrnu3yahP//X73W/j+PCYCRhLGNlz3Hj+3
3hcTBxzGIP9AQ6uEicwdAdSJ1y14JyzRBUrF2tlx7dx+88PiMB/ieWHYgtHJ
YSFDZaHqM8SfsOK6VoaFT8yeJITqDGcp0V3ZSLAoucr3EzeCFaiEq7xcoNIv
itFV0fCIkKfyKVaI77g2Emv8uXPHrZ7tqL9gUTNMk6tMEndCnbgTLrjhhCYA
BFqESg2RQWiSZWGGuBNOuDYf21wpSB6o1E8+/3aRrrsICppEM3gUvPWxe+Eu
KCR2vPD8e+V6nngg4tQPBRtuBTe3dkNfgQIkQjsUoB/7CRCGCBD2+bwQ9aq1
BygHZZO4TdpteJqY9j6L0jKdK8S0NxT4xKq73MZ7q/RoDl2t5rlrUFCtcIDM
/gHnTAqzXagQ52u0GgRwSQ8BDR3NEJwecy20ss6hldJCxYE/9MEUAoP8BDHr
G8Ssv+gGVHcehIkqMiTgoEXsqgZZDGbIYnCqhAOYBfuLJgX+LzsbvycMwXYJ
NQZoA2+11wlD8kvrIBzsIyZF3eEArGllcap7910Hbp44vIrrHXCXNm+a4QCf
mXm935Evq/DR0s2BLoIKZaA6s+BYPkUs6wiBWEdXISBP5UYzhBad5hzDinfg
SuY73iTzvEHcp1pVDTZ0kiWV+N2yxCsFmiG85SjBpLZOuY8/BTWt/BPkUuOD
jWhIvVzpspN4Tf1Via8V0n/DaDTIYNQJ/GcJBTpNhL5DhP48Efoa8RszClQn
FOhoft/drcMLBaGH39iu1yEUKBaZaSY7+nsev7/7xKsvdH/iw0/t3nPpiEy0
d60V/VZxb07Zz+0l33a9+7wf0wAq/iLW5tw9Saxl3fWI/lpqrTzVUmZCdqpo
JBuzmHXir5w3ib9P7dlHXJd1MuPRR1wviL/yHVoy7YjKvuPsFukx2feHrNpq
P05Yz1j/RAGRfctwupoLR5L9IZcxa6yH1cKqklVAYpYVWfgbcnAHdqIBFWvR
oMTYqMlhIBCxWM2FL61rqokKCXh2wDc2hpvdaUCAx/IzL31AIdDLgiL7ktip
TAk0wHMPHmkTLKxrwq0jQgkDVy8cEwz88me/f/ftT1zfyYpkxao/WcEIkKKy
5Q09ZfUW63zxP+k6b27VE8Q4ZtKPhX9zegpx8FkiGyc4qYBMFTab4OnLevm5
XyfOwwZhvB4CunPawhgJAp6lHNa2lc6PkbZFbVJIq8p0+R8jlxodELYP3d2x
Jl7Pr7d7bWNOhH+YEJ6aDEPTm7+FGsp5wnhdzs2Aj8whIKvIiiUletAdDFGn
JOWGhiViGUct1fBokKeqhA23uiIprQwCo0BRCzXwNy4rWgaJL4geBgQ0SmCA
korYbCc2ZPYwgPCPvvdhAcKPPvdGh7GiOWCpqN5XdNBh1qIMVbdx2rynpgwU
Dhi05Do9Tozi6DSu+wxQM4aTvHm/4XGHBTumwehGdGvHfFesg6UCWP2q3MEA
9HDwxFdTaG8ZHFQbsDJdhwhKYa8iwSaiyhKbpIGmDEaIuhsZvH0COkYm7x6H
LMvJHiZEKAxCLE7c6CkmrmtBM1cD9YIayOLam1VupqZv2eBcI0hYINZx1Fn1
AhI0hkct4ioJpkeSVTcYJAgEK0BzwyIGnrx+VDCwoknekF9gAOwfsv+nv/KR
JPuniezXiexb3qb3k1ZUC7gEE2gBf0nTAkeJFdxxYm/8R63fJPZeIqJd2XPG
gbENLf0maAMr0H0zzP9TLv3my0F547cs+RoWYAkgm65x7ugUa5wKv6sALRcF
wkfI1YaI3euF3wpo3Oeup5nN4XrRFnA77zEEaQA83KPFP8SWfiM+ful/gAj7
XNEakJm97sYNwq5m734nj1alzkpYGd+5XJRxSRyBDxT7BSpExsdxzQrujtTX
0CbLBpOEjSCtoXeWGLYyO9K9dHSh+8SNTfkbWAhGgVnDGmYRtQ8boFyX2np8
WDf8OSiUl//trGA6JZfoUWIJd9xgOQt4gZCgo71cOxGN5XzgZB2EX7xcKel2
JdFahAwpBgSlkH81gxcIQA9wgFqNiHilQijTFMAQoUJtYgmX9s/J0D2oQukz
GA0DtvjDMIIhhM04e6Q4j8TLSr8t63CGWL433LgjeV8JiEhkx+2yUWs3Cbxx
m4iVVhL4rLiwm6DXcjmvejnXSG9cmFXQw2dBvCuQ9SqEPUxJ+HN36/Ty7tsf
PnrrkUudmyf2T6Nnle00F+lxxsmtOYUMBnhvqU9HNAXTYODyLKAFzrjxs0DZ
YWIJ71PxtzxetYAXiEQc4Txb2IX6k3QaoiQ4H8gaQYDVCrMyQv1qhflzA+H2
hCXMKh5tcHRKKDdew0cF0/rPds+a7HtLuJL7PXesaQ/H62Ewb+ozLs8VDEJl
d21quAL7oAJNEK4K3yh0QhYtJbbGZ28kgj+VW7pp4u6V17YJ7a5eU4TQpevI
Kh1tg7pPF8S/tzY317P7IwC2FADWtpQ9r0Kdy3QFMi1/BRuNCLWX6o61Vnka
PksOHzv9xzt8jrrEYrj8S4u6OnelgbY35BCxcFWqU96s8hq2ah52q6Y/BVH9
22YcWMaod3CsESN30Tk4yhV1/LrupRprOixSVvxnvzavdKaF5WioYPuIhi3q
rE5LU1/L59soo5eJ+0a8lgiD0c9xYlxG4ZeVczvLLcNbXhAldxPLZNXUt1xo
UuXRfO+egbxKLtu0S8plg2Td2lyZGChhsTnRqaH+lK6d2xiacszd8q2vv9o9
d+aoLJdBwMy5JD+1uNFBYijaziRIkxmIS2SUD3Iyaoo4Cmf0vavG9GbSCrEV
F4jbjNVpmnY9wdPvCfJCv48LvaU6xMvYVvNO5pZLVrLLTuJ2QdckVeY0/M14
Lem0JU6OEkPtdblUbTkR2ItUDekUW5KYnpIgt490r+7tLPOyqSaNNAErnjnq
1EaT36uDvRBXOeDU6fLimnxPcgcqkBBVKb8TT+7KmEI9qBrLqRnBNjRWTEJo
YgwstFzOkKUp+nutE+QlpVzXKHNadZ3QQFb5WxeiTrzsVuYWIla0tdZHAMOi
hCZ9i0jLcJH9ibS8KUKpn7RYCmtJH9adIykYQqIGf06uVEsCosb3IScb+Dps
eAQyvGxcdI21oIPJRlhOdmyINK9Elg8b8iXCPsyWLS3StuTHqGFvBSmfcLBI
JMOXnCkXq/CaacaJerksXe8BbVVvbtA60bqY+F22mS4mdaLwqsSKcQ6n33EC
Zi7yNrELnsZLRf5MuoSpp0xXkl39jjxUGGSIwblxXmGQnU1HTiBO6tAxYbgS
m1ZwvOwnlFvDvt2xZitt4FkmamRDR4Isq+iJr4ZgzocK2csyT7j3TMn6RArW
COHe/nAlayrb7rbGRdaaOlsAgMwdOgqHPjtCrFpaF70e+T0y/808RIJBlu+9
Q74nduFWlq8MIpVfcdfI4gqjaSzFuQ2KwKI1nr+aL3k/IZ42t5kDDyt5sX+P
y2oMlDa9dV1QBahMM0fCjeVyFzCuRgnYmTt4kciileggBaPhDUvtnSkMQ0dH
XcBe1eqBWa4G5Gkyo/GV3ycTXM/tn6TAxNIu852Yex2+ttpnOu+5dGTbxKAE
1Q5hfLof0p/BSSuGdfa4Fh5x7TVniWHWe4xmiWXhyyCYvTxKOOBiPvbSP6CM
sY9l4uS0Nlu+EB4K3rjcDG9lOXhlSNwlbUNvspH/gMxlhZgS3VwUk+uxd07n
S5tOsYKHebWkgnvzfieH3zqhaD6xzUR+hSiizoA17ejRDZ+Jbbl/FR74mCaM
fsIxetu8O0Z42rKTGMvOnCOkgRXicBXdJTiFR1zRdV1p22DLpW190ko+ycv9
R/LdWFdW7XRPwmTyYmJpcqP5yUvsK/zGG37qWEBPRdbUu13wWK0RGnUon+ck
32yJXR+8ZHXsen4iLXmt6tIZ1IlPy6KNE7tsnCyzPu+2vIfHL7O2bZw5nnyb
dRbjclJPl8W/d2v90j+V/4scJgy1ESOZrX35bG3rbO2S2Rp2BlWAr7m5pFfq
+ip4YlYI2fFpDoPqla8OXo227Xon3exbvLFGWM8EYT2jxDaaIKynbPdCwth5
owskW4C1eb4wFJ0sx0j2Z3ippIk5uLeJqbuJCR8bdxXxeHW8C36erJEVwlR0
xwne92h+ryZWBi8sKRda84/3Uj5kjMyN39ppySGTBEkdIk8sEdx2pDryXGg2
nNZ4xJBgHH15icvkyMAp0Aojftxfq93PHKNYIozCp3ObbDG35DJhFFZP2PK7
8DjjxmNQAQlWCn2IWISThFHsJ6IyTTTmbP+waaHNPWMel/S6H/Ou/pu93t3c
mPciUeuniWDMkyV2aQBofTV1dQqiPWmTCysVMHKbXV9mXk0R5e6q2yRhmCLC
MNNfGAptXiwP7EeIVC4QnXoXmWGWarXYX6emWAsefmOE6dR6SafCdBkmOrW8
PQg8d1LThREoR/AwMCZc+yCZc7bBlm1sYuRoqc/4FYRvnmi5s2QiZwlLWxiA
EHXvyONifr2UX9YgdkJ7wMYSn1AfmWUzJRqAq2iSgQWfLNG9IAMTRAamBsvA
Tlht5UrL5cF8Pt6gQPDmiGY672YVDUGlZ5aQPkc0E0PF3W5yoJ2CAOpg9jD1
5oANCj5Xe8SNpwazLZiH20pX3Pa1JBNs9+3kAObju7FSHs+PxhsUKNgMUTle
mDINCrDtf7ODV5kEbs3/LRRRaRDC3CB+iXrfQEZf4ZTB9GrOZGKMyATL33eU
LA3map/BlBtYDGiaqBlN/C94xKbIkjMzeMlJGwmuu/v221wMNVMn+rtC+Gyr
JJkllEsfLpQEIggBrT83RgSikq9WaTDXyoMZ/6cYLZkiakc9pttZ1rsPyROL
6duoHSMXIiouBw0DGCS0wWlodUByrlHQOgH6g/ddLgDd8OBFYpgs/mP9/fo7
WYpk9oyijI4x+UmifK7l05kWGra3ZWrwQgN8SxtiVlsx3Rc0UkeTsct+qZ2a
6Bbz3Br9hPIeIgbDBNwjfWLh6m7aVx7AF+J1C+xngiicG/F7uEaiEWyDxMSA
xcUPYLSNazaAeEo+CEawogh32E7aRkcsK+2F8EOFNj9A5nuIzPfw4MyG/X2G
aytzZGec6JN73Pdsulgy/YTevxTeNHf+o3KZ8U6We+hFPWNkwBktfdoSxxR6
ZnTJ7D1CZq5NZq7dPz0U19koD8WPEskZJdrAJ4DaVLBabOODfYmPy2US4ixG
ZZPuTaBydodfJls8AdCWxwN9eon/Sx7TUbJMP0BGmaXNjg4IWIVe/goZLJZO
0ColcvkVfrPch4/FixZI5TBZJB8iY8hOHhjhkmLM9tfIULD4dkP7YEuV78PB
ch9ejBctELkhsk49TAZwiCiaYS4H1oevk6Gok6Go66urg5H6cKhPHyCuSVm1
yeJRRiyIXJvI0lBJCFz+TPbrZBxqRJBq+mpzGcYBa/SRctt/LF6vQFeaBO2v
zQdud2l8uIBDf992afJ923/T9d+IbJX0v+o8wVaD9GifhhcGvUkA/GhpwJBs
xs6dbJZm3LGT7Lfya6TOV4jUVBzxDZ0X2/pYueE/Hi9WWF/rBLVvcB200WqQ
la/hGm61Kazhvy3XaPjOS+BKEWPt1diVtPd4n/ZuZU411glC3+gGKVNmzQ4r
99BShKagWYxw11Kf0c7wr5z0Hecrmdg97fw4GdcqQeET8XsFylojAmEIskq4
qi9vleQJ4d0KBrNUn75f+/DDpHEqBGlvLs07hK1KhK2q7bPKVdq+P3Ddy5RI
nyq35RNRLvCfZvHJU4HzVKmPWGQqZCorbpFxZVb/pny7T8ZpTYuMivlb5ePh
nSxXKPJ0a4EdDpIiQP+hz7VluLAOqEhKDkzW3nKjmEZPj7pLnPVvy9d8CS8V
dP1t8j9NP9vSe3/C1t+Vf/6/xuHb0feC6P9Y/pK8/NWgT7P/7P8BEjQ0eg==
\
\>", "ImageResolution" -> \
144.],ExpressionUUID->"7a61dc8d-e3d5-4ebc-b814-88555c9499be"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["To do", "Section",ExpressionUUID->"b0e3fb65-3ef5-4d17-87c9-3cb5ca4a890e"],
Cell["Solids with inexact coordinates", "Text",ExpressionUUID->"52255b9f-3a57-429a-9896-874eee926ea4"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"todo", "=",
RowBox[{"Select", "[",
RowBox[{
RowBox[{"PolyhedronData", "[", "\"\\"", "]"}], ",",
RowBox[{
RowBox[{"!",
RowBox[{"FreeQ", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"#", ",", "\"\\""}], "]"}], ",",
RowBox[{"_", "?", "InexactNumberQ"}]}], "]"}]}], "&"}]}],
"]"}]}]], "Input",
CellLabel->
"In[275]:=",ExpressionUUID->"dde4bba3-2e61-41e5-941d-2ce8803ada26"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"AugmentedSphenocorona\"\>",
",", "\<\"AugmentedTruncatedDodecahedron\"\>",
",", "\<\"BigyrateDiminishedRhombicosidodecahedron\"\>",
",", "\<\"DiminishedRhombicosidodecahedron\"\>",
",", "\<\"Disphenocingulum\"\>",
",", "\<\"GyrateBidiminishedRhombicosidodecahedron\"\>",
",", "\<\"GyrateRhombicosidodecahedron\"\>",
",", "\<\"Hebesphenomegacorona\"\>",
",", "\<\"MetabiaugmentedTruncatedDodecahedron\"\>",
",", "\<\"MetabidiminishedRhombicosidodecahedron\"\>",
",", "\<\"MetabigyrateRhombicosidodecahedron\"\>",
",", "\<\"MetagyrateDiminishedRhombicosidodecahedron\"\>",
",", "\<\"ParabiaugmentedTruncatedDodecahedron\"\>",
",", "\<\"ParabidiminishedRhombicosidodecahedron\"\>",
",", "\<\"ParabigyrateRhombicosidodecahedron\"\>",
",", "\<\"ParagyrateDiminishedRhombicosidodecahedron\"\>",
",", "\<\"Sphenomegacorona\"\>",
",", "\<\"TriaugmentedTruncatedDodecahedron\"\>",
",", "\<\"TridiminishedRhombicosidodecahedron\"\>",
",", "\<\"TrigyrateRhombicosidodecahedron\"\>"}], "}"}]], "Output",
CellLabel->
"Out[275]=",ExpressionUUID->"72e656ff-a5d1-4c9a-96c1-12f56c7e2a9a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Length", "[", "todo", "]"}]], "Input",
CellLabel->
"In[276]:=",ExpressionUUID->"fbcc64b8-a8dd-4005-b21a-6fb2de361bbf"],
Cell[BoxData["20"], "Output",
CellLabel->
"Out[276]=",ExpressionUUID->"eba8c701-aad6-42e0-abcb-f2e544f2271c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Graphics3D", "[",
RowBox[{
RowBox[{"Tooltip", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"#", ",", "\"\\""}], "]"}], ",", "#"}],
"]"}], ",",
RowBox[{"Boxed", "\[Rule]", "False"}], ",",
RowBox[{"Method", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\\"", "\[Rule]", "True"}], "}"}]}]}], "]"}],
"&"}], "/@", "todo"}]], "Input",
CellLabel->
"In[282]:=",ExpressionUUID->"210d4768-36ce-43f6-b9c4-794faefd0318"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[{{-0.8097582135547496, -0.7471091304426166,
0.4030724692749733}, {-0.7418882135547495,
0.04837086955738355, -0.19908753072502666`}, {-0.5055982135547497,
0.13245086955738328`, 0.7689524692749736}, {-0.22206821355474957`,
0.8401008695573836, 0.12177246927497347`}, {-0.20559821355474958`,
0.5901008695573832, -0.8463275307250266}, {-0.09214821355474942, \
-0.7060591304426166, -0.29216753072502677`}, {
0.14414178644525047`, -0.6219891304426165, 0.6758724692749736}, {
0.44414178644525054`, -0.1643391304426164, -0.9394075307250263}, {
0.46624178644525055`, 0.3236608695573836, 0.6312024692749736}, {
0.6421457864452503, 0.5920108695573832, -0.31592753072502655`}, {
0.8037757864452504, -0.35104913044261654`, -0.02517753072502644}},
Polygon3DBox[{{6, 1, 2}, {6, 2, 5, 8}, {10, 4, 9}, {9, 7, 11}, {9, 4,
3}, {9, 3, 7}, {7, 6, 11}, {11, 6, 8}, {4, 2, 3}, {2, 4, 5}, {8, 10,
11}, {8, 5, 10}, {10, 5, 4}, {11, 10, 9}, {7, 1, 6}, {7, 3, 1}, {1,
3, 2}}]],
"\"AugmentedSphenocorona\"",
TooltipStyle->"TextStyling"],
Annotation[#, "AugmentedSphenocorona", "Tooltip"]& ],
Boxed->False,
ImageSize->{180., 163.0327868852459},
Method->{"ShrinkWrap" -> True},
ViewPoint->{2.7361200700262236`, 0.8414976980394417, 1.8043083402218174`},
ViewVertical->{0.15904156410459477`, 0.8870996807639221,
0.4333127476496758}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwBKQbW+SFib1JlAgAAAEEAAAADAAAAGWGVDWLPCMCoNbDY0/7Jv2Y914Wc
qto/0c1SI9aqCMCh5ngF5Xyiv62UgpZbNuK/VWtHsj7DBsBY80XvVnnGP0nb
Su7R5fQ/nTy9l5BjBsB2dMzOi5vjPx+o6lVcZfS/Ib0dELsoBsBqUTXebdnp
vyFMUyEmQfI/bY6T9QzJBcCUs3SWb7jXvzc34iIICve/iaaLBaBOA8B2CcXk
cZHuP5FcTbPBJvw/sW/8pFvYAsBb/YhfCO73P692r/vw4/a/LYxiBxq6AcAl
wuPcaOj5v8HmNG41O/U/QVXTptVDAcAlSb1vGUPxv+/sx0B9z/2/U7OVJdaG
/7/rR4Vq+2j9P+GNiA0tqPk/81WB8HnH/r/dYQE6yzMCQN3qWW0CRu+/A5Fq
Dkv4+r+1pAs9VOUDQENgvgX9u+w/g2rlOTOv+r91xIDmTTsFQOiafp1mfba/
U6ZEccVp+r8j74Ezs54CwCNinqCA6+w/U2umKog5+r8LpoD2HrzzP0UFswZW
nwJAm0gwPGmq+b/lYYZdyz7+v9dS5vNt1fq/M9cClecD+b8LXpG2YQ3/P2fi
TY7bkf2/U7qoun5R9r8lGQUOYS7/v9E8JB3rsPw/QyYFJd4b9b9lYPRNHt3z
v1PYRz/ODwPAoyfGFTOm9L+noTqSzUsFwDB/yBW/3KA/4wBBQRtd9L/TgcXo
0/UDwF2sEejdfe6/pRHpsvaW7L8d1Y/oAHUHQKYRA8FPwN4/FRsUraUt6r9W
nr6KTezsPz2wKt4wWgZA5aXC2DQw57/LRlrYXHP8PwvTCmb98ALAxbBvtI3b
47919+YJ+7r6v1V1nrtq5AJAJTwe4Bze4L+K/9ftiXvpvy8Ol4jDZgbAy42S
tJfp3L9PLVYB0JgGwNoAZhTlJN+/C65OFEPm0L+wZGN5Tae3Pzt9m4Q41wdA
1ngCBkwkyL+KYdrq2YLsv6m1H57ihAZAlgQHd15txL+LKjpOXx7xP+et/fS3
UwbAq0PYqEiKtb+wNmwT2Ce2P3d1edsNpgfA1S032AmDuj9FqrwtSQcIQMMf
uy4dV+A/qnFvA8nmxj/28nGfbjXvP/cVuTHulwZAFaNaKkZu0T/78LNi7Zf9
P1dtfBJAswLA5YwAc5QX2D9VTY1/apb5v73aLA8oIgNAhXajG3YS3j/qqiTZ
aDLnv3eoCDUGKQbAM7CmE4xy4T/nVym8hwYGwDrT8nf6Nt2/O6E/48uV7T/l
/isVTWQFQIPLmYyIQu8/G+5JjPsn7j+lHqG+RroGQEL7GTVTSIK/c+zHqlET
7z9rWsGmELr2Pw3gaej4QANARYoHa0m/8D8dCWmzqQUBQKcs4MqVTvy/Zadh
RbJx8z/VY8RdbzD8v8HxkeAw9P0/hRiP7DMY9D/9rSnb3o0AQEliKkbDN/s/
TTsF21Kn9D9VrLOdLN/wv3f9kF0rbgLAsXWjIZDX9D/Va+hfLA0EQM1BFvzV
Juy/DTpE6v0c9T9jRxq61MwDwJiHv8G7orw/dWDJvhVm9T/DJ6UQ23YCwE1C
NmFS9+u/oSXgoEQ1+T8D5ZoNUsUAwDEE8YhWBfA/cYP01aD0+T91TrgRCYz6
v59+RLvXRfm/fXoF/nX1/D8LQ4rICyD0Pzn8C5PSMf4/+ecjv/7h/T97u7A1
W8X8P4/W8Bvg2PS/sdcr/UAPAEC1A7wGFhH1v8GF801GRvc/lQ67XYWFAEAK
Fiszjdfov/9MCWFsxPu/+9dmKatrAUC1ubgbqYr/v4xKAOvXOcs/IWupEzeQ
AUDVes7Itd78v50hrt4zvei/X/bCTfL/AkC2TdR8HJbhP3lGJnVdbPc/5yRN
aKBfA0A2Rc+PUpPvP7c8D8/Q3vG/l6Ts73WaA0DUAGU6TsPbv1G3Lqixx/Q/
NdN2CiT6A0DwFXfI9Y5rP+fLBpx8g/S/vZwi1kngBEDF8j4HGxHzvzMVxYRV
UOU/PzhqBmwbBUDKbVeh5nztvw2+Nypduu2/pzWCe7vhBUDYCcYHzIbLP+Oy
CjsG++I/38jEZUcGBkAsA4xPM3PYP7oBxzxHIdm/0S24YY8nB0Cq41nv217h
v9Bt2gh5QKS/D/Eh7A==
"],
Polygon3DBox[{{32, 27, 20, 10, 6, 4, 8, 18, 25, 31}, {35, 31, 25}, {60,
54, 45, 37, 32, 31, 35, 42, 52, 58}, {46, 52, 42}, {37, 27, 32}, {
38, 28, 22, 17, 20, 27, 37, 45, 50, 48}, {54, 50, 45}, {17, 10,
20}, {9, 5, 1, 2, 6, 10, 17, 22, 21, 15}, {28, 21, 22}, {2, 4, 6}, {
11, 13, 14, 12, 8, 4, 2, 1, 3, 7}, {5, 3, 1}, {12, 18, 8}, {40, 46,
42, 35, 25, 18, 12, 14, 23, 33}, {13, 23, 14}, {51, 41, 34, 29, 30,
36, 43, 53, 59, 57}, {63, 57, 59}, {46, 40, 39, 44, 51, 57, 63, 64,
58, 52}, {60, 58, 64}, {44, 41, 51}, {13, 11, 16, 24, 34, 41, 44, 39,
33, 23}, {40, 33, 39}, {24, 29, 34}, {5, 9, 19, 26, 30, 29, 24, 16,
7, 3}, {11, 7, 16}, {26, 36, 30}, {28, 38, 47, 49, 43, 36, 26, 19,
15, 21}, {9, 15, 19}, {49, 53, 43}, {48, 47, 38}, {61, 55, 56, 62,
65}, {55, 61, 53, 49}, {55, 49, 47}, {56, 55, 47, 48}, {56, 48,
50}, {62, 56, 50, 54}, {62, 54, 60}, {65, 62, 60, 64}, {63, 65,
64}, {61, 65, 63, 59}, {61, 59, 53}}]],
"\"AugmentedTruncatedDodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "AugmentedTruncatedDodecahedron", "Tooltip"]& ],
Boxed->False,
ImageSize->{180., 188.52631578947364`},
Method->{"ShrinkWrap" -> True},
ViewPoint->{-0.509902898516807, -2.593133731552707, -2.1132099953312},
ViewVertical->{
0.6703853517035204, -0.6886450071843409, -0.2763178139415302}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwNyHk01AkcAPAfoZ5q2kIloanEkpZY2hzf8dZzJEYT636RUpJXqJ6ewkj1
KqxzEbuUfeVqlSMl+Y4uSpgjhFFuM9iYGczMzrX98fnnQz5+jnZSnSAI++9W
fUeqEXOLQJ1Rp7+vOTN7CAJw6kb/s35YIW1nW21XZ8g1+vXKyhCu6Hk2xzhP
YM3B96u6g1TobE2vj7zYCbNlY6yrUUuQEJG3KbpcifTr5M4w6jh+uUdEx1eJ
sMSYvkXppcC9ct2j7Kkl6DV5nld5awiuJas7nhmUY2+86yylYRaYioKibTuE
mKTSatbIleCOSsNaz7VScDxotMbMbBR3aYREFO+RIFFaHBLiK4D4y5v964OX
QedVWHWcixjb6ssVrdgOPF2hSYC5HHU2XsqPwhUc4+bO88pG0Leopsp9Vg6i
nsQR56Fl/OioLQ5LXUHlciir/e4SdoXa3aVNLeIPp9TOSNhKMC78GCnhsuHa
nYXVzqRFNMtQpD+4vAihDi/v77STobviaVuicA59rY18qhhLqOdKdZFIZFB4
yIv7OGUWdTPBLy2JYJjJTEQLljxcrc/TfJI5g9z/JC+oFnJoCbYjbTcXYEfa
js7hlBlkat2IpzvJgOVv4HnjnAjsp2756OyfRirZXlVNWwC2pgs9+qISbtba
zutemsSFU1aefplFUGYel9WXrUZpXtzRtGtoAslnR8e/nGBiWnvui+v71Bji
5i6aidE4yvn7ZgLCRZhvkz78/rEC3dNjS26+GsVQv4xdtHEVLu0VNbz4JoAB
HdW5GdtRtHVS9Dq5qTM25Fc10rXfgvfDzKLi00ycC/3mmCIlKNbHmG9Mk1hY
QtrULuh5iylNO4O++U5Cq5/kckwjwbBzlG/Q8GlG1vmqa6J5Pt4kfh2y3KpG
GcivTSdZ/ImhHRVFyn4F7nFoWUVYLqNIQKPpfWBC+YpHFlVXAcF9YSI7UwEm
GI134xQT0tX7Xel75GA9LIqMiRdB3p66DxwrFjyZNxQLG6ZRvYVmQ68iGA1B
G9p96RwIzJg74p+7CPvv6Jf6JCrBpuv5dW9pP8j7vOxpDY1wKHbEwCNXjdJg
4GF6OvwLlAY6HqFJlehV39VTLhCAjXx3cmXSVwiEvumXLDVGb1vsnWryW4im
Tj1kT4+BY8CCj9yEoJxiD841LrCBL4j/KMufgHzO0LMHQgGkzz9PTbCWoSdh
a85STkOyjONd49QBzt7PBFE/EYzBtSWGqrYZ+MynbKtyF+FKLi3yoUIGQW1a
RIc1H1rZ9y5oJKvwbJhxXc5uHt6aVry26/7+nFWW5cxlzE4azjrQK0HNnmqS
HkUAlLlD9Z6xMuDmRGWpto5i2PvfTqTWCGDN13cRIfUiaPIW5rgdX4aLrQ7W
DZtEQGaOcHhbPmHi2ZvTwwI5jEgnndwil+CTZoTL4UEZPuV73LJuHoNYPvPN
5ZMrILnd28IeEENdKaeCXDcEV29Ty9d/XgHbTi633GsRSOG/+7VuFuKjjVZU
SYYErlA6hiXajbCG5Na82VWM/yaOvqqplsDWwpPaFaaLGO5vEVQ2I4Rl/WN/
gaEUeEGBvE8NYpS+i8wpiBnA9f8Ep4rPSGGs6YLL2Lp5/KPtb4O+QiGOhMQV
V8f9B6q8nx2eRA1CorTgR/H5JeAnzUkrLFTQS66luisn4avXcfVJfj/oN97f
cCFeBcdqyh7xjg6AR+9t6aTJBJqvu1PA0iAoZEnaNqExBxvfJBy42D0JjpVR
5b+YERSXTkOtw5PjeC88O/31XQ7+D8xa1YE=
"],
Polygon3DBox[{{1, 3, 8, 5}, {8, 18, 17}, {18, 31, 29, 17}, {3, 10, 19,
18, 8}, {31, 42, 29}, {29, 42, 45, 35}, {19, 32, 31, 18}, {19, 26,
32}, {26, 38, 43, 32}, {32, 43, 51, 42, 31}, {38, 48, 43}, {43, 48,
54, 51}, {8, 17, 12, 5}, {5, 12, 7}, {12, 24, 16, 7}, {17, 29, 35,
24, 12}, {24, 28, 16}, {28, 41, 46, 36}, {35, 41, 28, 24}, {35, 45,
41}, {42, 51, 52, 45}, {45, 52, 53, 46, 41}, {51, 54, 52}, {52, 54,
55, 53}, {7, 16, 13, 6}, {6, 13, 9}, {13, 25, 20, 9}, {16, 28, 36,
25, 13}, {36, 37, 25}, {25, 37, 30, 20}, {46, 47, 37, 36}, {46, 53,
47}, {53, 55, 50, 47}, {47, 50, 40, 30, 37}, {55, 49, 50}, {50, 49,
39, 40}, {6, 9, 4, 2}, {2, 4, 11, 15, 23, 22, 14, 10, 3, 1}, {9, 20,
21, 11, 4}, {21, 27, 15, 11}, {20, 30, 21}, {30, 40, 27, 21}, {27,
39, 34, 23, 15}, {40, 39, 27}, {39, 49, 44, 34}, {10, 14, 26, 19}, {
23, 34, 33, 22}, {22, 33, 38, 26, 14}, {34, 44, 33}, {33, 44, 48,
38}, {1, 5, 7, 6, 2}, {44, 49, 55, 54, 48}}]],
"\"BigyrateDiminishedRhombicosidodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "BigyrateDiminishedRhombicosidodecahedron", "Tooltip"]& ],
Boxed->False,
ImageSize->{180., 205.71428571428572`},
Method->{"ShrinkWrap" -> True},
ViewPoint->{-3.277135075746014, 0.07925588439107278, -0.8391091705520545},
ViewVertical->{-0.5523305289805485,
0.8127451767510657, -0.1854083720438386}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwN0Pk7FAgYAOAZkp6kESJHYh1LKqlQOb4hmsrzVOQ+IhLSOiIi0Vo85SpH
EmJds2FRUputfLOJWeXIMW3lyM0MMeYwxjG2H95/4NXwCbH3EyMQCCY/iP+g
0DfqXBlMpCWdOOPjUdSHztH/vK3eyMBykxO9faUEWu7D/KpKqwn4Tt2YZXCt
DVvaPTuVqtfRmHNez798GjvyetQZXiNwIfHRjhopEV6+uHbZa3cHXs6UczwX
ykONKHvlOMU15CQcsrYNZcFe7vgVUJiGBUeS67z0Gmo4Mtyy+xbwt8k9nvRD
LLxmG0DaELGKPeNiRDJlGliS5U6nPTlYeeKdG01pFR+PXwk6Ml6LTQ/mPUgX
uHAn5o+oF/1CVFllfzJYX8IPc5fOHp2sAk96Z0HV6BL6JjLansYJwJ8TqUt9
MoQXEgJnUmr4GCWptdkrYBEXk4xvCGTYYNR1jxTfwMOt0aW5CduX4SHFKSbU
eAj4yvmKXtJctE/PojS9GUYrWvrFWNI6mou6ogxVOShiFf+arzyJbt2vKapv
lyFsVsqlhMRB33mLTJ2MRVQulWlKaxRgC1d33/GEBZTtSVaeZHGAalZXbBjP
B7uW/ODbiWzsrbBuiJnrgU63Pcc1GKtwpCXDtzmajcxwglyM/gKIZSdaUBpW
0DKB9a33IxMHkxwGUpNXoZ4iCvtJfAErU+N3hNKZSO3m5p2WI9KUXcTnIh/V
I3PiiRLNYQLDm1esBMJuEJ4zEsW3EmkPC8QJSkEjWFCr7Nd+dx2/G1LDB3bN
gqW1AUtLaxg/NbmK69kTaCkBx3rjXdg4ltwVdD77MwZcb8255U4guzYmB3vF
DYHfAe92fg4dGSfDai6mCUHN9ZXH3kw+VExEOOBNOioYf3HY5c3COTZ/+KXH
OnyI3jnfVNKEL2dYFUvtAkiIvP6rbekK2prlbp+79Rwjd5WrjLa+A+M39fND
fxHIqUOvzNQPPkeTVO/dVFUimS67UdPKbAhXBrds2nL8Lfhove2o0xKjhdvR
7fWSP0D/n+YX3NdaQUqtdlZqUIibB0iahEQB3OjTtDDd3QVXu+3pSzAJjTZ1
uxLeEGkVMiUVNP0BYEcKQ67OzkF91m3KUc4qmIuo3oWBA5C7Tfdwii+R1pwp
H9F6Ywr71/PHj5FGwcmWjRY5IpAofM4MiJgGfeeQZROnMbCJdVZrjF+DhGem
eUf2cbC/RFX+G0xBS9qm89ZHv2KEtFhRQ/A6pFJmZO/Wz0Dk4Sy+tRSB/Ivu
sdjiMjqaWDh95byagYMvFTWLc0Xo56b/c20bE0zL3g3bhywAUJtd0025mLKk
MrxyXwCB7y0Z+yW4wH9945RcHA+yJB97WRZwwXRAgk/bxgWfZCVe+PIIdAZp
U/2HRdi/1JUzJ8YDd7sdEQamX6BJW3uj4cIy7K1pTdtaxQevar/B+9qrWO2y
Kux0nkI77+IA5bJF0GB4N9u68CBSvfiLlQEPHSs2KB39LIRnL/JkWjKEyJWp
9FwIbodol0GeTfcyvG/be091fhEElLpmHqMXK3WW/ztDWgP5htgXinef4r4D
Lq/c4gV4Ta8oLTvwx9fJOxmX/Gdx4mskWyJuFsYO2nyKExdBvo2WLuHOPCQ9
df99/9IIqDjefiAtLYKiqb+7w+7Noax8v3yQHhs9fXrvmxHXIa2UHphyrhFY
i1WLkvZs8GG0VTicJZBj0j8XkBPHobmjbDCokInlOmOZhTuJ5FMi9cMffZho
9GwpsYZXg4rNNxXCmESyjigxQ+31v0A1j9USGtXD/9HrwwU=
"],
Polygon3DBox[{{32, 21, 18, 27}, {27, 18, 19}, {18, 7, 10, 19}, {21, 13,
4, 7, 18}, {7, 2, 10}, {10, 2, 5, 12}, {4, 1, 2, 7}, {4, 6, 1}, {6,
9, 3, 1}, {1, 3, 8, 5, 2}, {9, 11, 3}, {3, 11, 14, 8}, {27, 19, 29,
36}, {36, 29, 38}, {29, 24, 35, 38}, {19, 10, 12, 24, 29}, {24, 25,
35}, {35, 25, 33, 41}, {12, 16, 25, 24}, {12, 5, 16}, {5, 8, 17,
16}, {16, 17, 28, 33, 25}, {8, 14, 17}, {17, 14, 26, 28}, {36, 38,
47, 45}, {45, 47, 53}, {47, 50, 55, 53}, {38, 35, 41, 50, 47}, {50,
52, 55}, {55, 52, 49, 54}, {41, 43, 52, 50}, {41, 33, 43}, {33, 28,
37, 43}, {43, 37, 40, 49, 52}, {28, 26, 37}, {37, 26, 31, 40}, {45,
53, 48, 42}, {42, 48, 51, 44, 34, 23, 15, 13, 21, 32}, {53, 55, 54,
51, 48}, {54, 46, 44, 51}, {54, 49, 46}, {49, 40, 39, 46}, {46, 39,
30, 34, 44}, {40, 31, 39}, {39, 31, 22, 30}, {13, 15, 6, 4}, {34, 30,
20, 23}, {23, 20, 9, 6, 15}, {30, 22, 20}, {20, 22, 11, 9}, {32, 27,
36, 45, 42}, {22, 31, 26, 14, 11}}]],
"\"DiminishedRhombicosidodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "DiminishedRhombicosidodecahedron", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwBkQFu/iFib1JlAgAAABAAAAADAAAA/ylb0AG98r9/mavLyMvSPzUxBa3Y
+7s/8WlhaTTX6r/hNJMzIErdv99thtnHveU/re8z/+IP6r+qSkw9jDPhv2MB
wW8vS9S/QuC/cKlU5b+wNEoJ7SzrP+kwo5SbpuG/F7vPJtp33b/v+jaGQoLd
Pxep18T3XOk/4Pd6nhHV079yqAPFjG+SP8FXJGKuS++/UfAxeTIFvr8EU6QY
ibfvv1uTngyIeM4/KBfNH9N3hT80Zc+R/9fsv2kGQjlf/ee/2mLpyNGWpj+2
8kfzFETwP/tHT2qE28A/j6evNM0LvT8J+6W5GMfVv4c+rhosw+4/a7S7/i0S
0z+sP1MZQWjpP/n8gqP25+m/6ytXukL44D+8TxoMzhTiP0dmvGWLJ+w/Qgzf
VwAF5T9iJfHhRsTBv+G1Y2931Oi/JgQKYkO26T8+CIMwabPsv6UJqE+/+8G/
QUMJ/h5n7D+8sQfU62LgP5a7+Ina9qq/8spGITCM8D8KmymOqn3Pv1+GJwgc
puI/ezzQeA==
"],
Polygon3DBox[{{14, 7, 8}, {10, 7, 14, 16}, {10, 16, 12}, {13, 14, 8}, {
16, 14, 13, 15}, {16, 15, 12}, {13, 11, 15}, {13, 8, 6}, {13, 6,
11}, {11, 6, 4}, {6, 3, 1, 4}, {8, 7, 3}, {6, 8, 3}, {3, 7, 2}, {3,
2, 1}, {4, 1, 5, 9}, {11, 4, 9}, {11, 9, 15}, {9, 12, 15}, {9, 5,
12}, {12, 5, 10}, {10, 2, 7}, {5, 2, 10}, {1, 2, 5}}]],
"\"Disphenocingulum\"",
TooltipStyle->"TextStyling"],
Annotation[#, "Disphenocingulum", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwBwQQ++yFib1JlAgAAADIAAAADAAAAVcktQ7vZAMBNtv49FfXTv9+WHNac
raG/rFgLLquo/7/iWDJOWjjjPyzCc77dFtu/QRu4mx6E/78ZEM7GeNSuP2zz
BwBVRuw/Q+FnQ1N5/b/2lJ55LCDvP4G3X9x/q98/E7VpwkCg/L9SyoM2ZBDn
v7aM4U+HfOy/SmFhzlor/L/lknxIjgD0v+v1UAhKqKW/InsZanWV+r8mprfa
AorIPxfS3DCOdvS/jcITa1Gi+L+i/2U3or3kv7ODeXSBF/c/jELsXcfe979a
AHvhbnnoP4JLqMDKh/Y/t4L6UqnS9r9rMpoyNTjyP6u5vG/u9fC/q8Ll6M6Q
9r81XY4U7VP3v8Srm/JQ3+s/7eOs759J87+mxWNf8tn7P9NG/VNVO9s/cCJH
tyWi8b/h2G1/UDn1v/j1kjcQqvS/0c4+wz8t8b+NhqisrLH9v8vdkn87ZNy/
0ulHLfr88L8ZAILaUeisP3fVHbUhfP8/+lNdKqRa7r8mQiHdSH79P7bPMF6c
IuG/jPtgKH+o7L8mlIAoBDDDPyccIc5xuv6/VopiFChe679X+1GTk4b4P0Wv
jx7Aa/U/QGCGu2cl579xKF28hYIAwO+YrqZvD94/qgoj+uYi5b9PUFNc9Yzx
P6UDAQ3SOfu/3JhsuEeY4b96pdnnkDrpvzO/sjdH2v6/hUZXtSew07/ZaO+C
7Fz+v2cBKX3yXPG/57yBvEhk07+zgGnPTZEAQDfM3zwSd+Y/KmUt+uFgx7/v
X9oGCdP8P+exXMwx1fK/tqjbZWNjxL8bLw05r7/YP+E0R79q9AFAKKlGlIqY
p7/5PkgOeWMBQK5Nn5ZpktC/iGNnjSI0oL+pJdxEXsn0P91dovWKsP0/sEhD
hOMpmz8rcp3gW2/fP7OZUU7P0gDAliLYbb9Pzz/BYm535MD1v6XKSH0pjfu/
4fnHt2yU0D+PXZEnPN8BwOSbBXjvH9k/SfksGA3T1z+NI1YDyJ3cvzlrGgO6
4gDAcnDgENKC4D9Jn7LoEA0BwL6lLExPMOK/njVLjcGo4D+vK11QZmX9P8KU
gvVTgPM/ygPfmGWX6T/F9XEwnBn6PyTxBtgREfS/KnPzPcVW6j9GDNe+97PL
P0UVcrl6VgFAUAM7nWq67T+eMC1vAEnqPxSfMtPqOP2/uvIlbhX27T/iCRSj
wgYAQNZKSMXpgdW/HOeT7lts7j9vu3Nu8Q/yP7Ie+OmqdPw/IA6B42oX8T9t
OOTFGX75vyMcNqZeSPO/RXN+7qiV8j9pf7MPz3X+v6L2405faeU/zrKXBlFl
9D/00WQWjOy9vyhCxDzAWP2/D5iOnJaV9D94SRZ6Jrr8P5yVfLDgeOI/A638
yPax9j/hAvaReNH8v9f5lnLPrdK/L0wcqn0p+D/dSESxferYv9X6QeMoQfw/
6UtKLAA7+j+5byxluy/zv/tMFuhPGfM/gws8Nx5H+z+aep9Ge2jqv1m4Tkhp
ZPS/yfAyzWN3+z8p2SyYsWTxP7LUs0zHMPI/K9VbDtVwAECxh2FvnIfwvw5r
+fr5Hde/CpGWwr9/AEBWnn/5RAvDP6AxIuPxEPI/75CtA4GIAUBS01azZifl
v14H7c8x0uE/sBCHvA==
"],
Polygon3DBox[{{37, 34, 24, 26}, {26, 24, 16}, {24, 20, 10, 16}, {34,
36, 28, 20, 24}, {28, 17, 20}, {20, 17, 7, 10}, {31, 21, 17, 28}, {
31, 29, 21}, {29, 22, 13, 21}, {21, 13, 5, 7, 17}, {22, 14, 13}, {13,
14, 6, 5}, {26, 16, 12, 23}, {23, 12, 18}, {12, 4, 9, 18}, {16, 10,
2, 4, 12}, {4, 3, 9}, {9, 3, 8, 15}, {2, 1, 3, 4}, {10, 7, 2}, {7, 5,
1, 2}, {1, 6, 11, 8, 3}, {5, 6, 1}, {6, 14, 19, 11}, {23, 18, 27,
33}, {33, 27, 38}, {27, 25, 35, 38}, {18, 9, 15, 25, 27}, {45, 44,
35, 25, 15, 8, 11, 19, 30, 40}, {33, 38, 47, 42}, {42, 47, 49, 50,
48, 46, 41, 36, 34, 37}, {38, 35, 44, 49, 47}, {44, 45, 50, 49}, {45,
40, 43, 48, 50}, {40, 30, 32, 43}, {36, 41, 31, 28}, {48, 43, 39,
46}, {46, 39, 29, 31, 41}, {43, 32, 39}, {39, 32, 22, 29}, {37, 26,
23, 33, 42}, {32, 30, 19, 14, 22}}]],
"\"GyrateBidiminishedRhombicosidodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "GyrateBidiminishedRhombicosidodecahedron", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwNlGs4FGgUxwdrrUYRTaViaUIS0fZE2M64VFaKpK1WurqsjEvZFdqVR6Os
TdKDLZdcChWyVEjljFvppg2RSyRk3GeYMOO258P75f3ynvf8f/+f9nF/Zw9Z
BoNhSUeOTsWNPXNap2X4xj0pLhd4HeDoGbDZNyUP8zUeC7qaGfwrgTo1hhYN
mCB8M2r3rBffFARIGB4MfoYf8+KG0grwKZ5SdVMYgtA1tsptTXPooHVkX75A
hPGj0sN2P1ag87651Da7OSwdGlTQZg9isuOQuUfwAHzO8xFwG2dQxdYyLNtK
BO/lY0RMewFWftQ547t9BpX8shyrrn2F9cuCefkTL6Ds7tanI2nTeKXUqLN3
ewNIJyXf7mBPYOv8CV/D9VL8kHkkN8dICLu7ym966Y1BaLrrr7WaElzOXSZ9
NNyLvxgwxisHJlAqMMm13TuJx6Z3mxtl10L22WfK3Z+lkPSXfnbntgn8LUS7
q1xlClmrRQtjDw9hUcfunzXrxXhNcaVrhlc/Wtvx2V4rpVCU65WSZiDGB7Ze
ka2hs1iY139hl34ORLdrG6SnjmP1irn7T9kS1G24xNLVEIJsgNO81aAQezbs
ajP1mYbIqmI1s64R/Jy+4LK1mxAbDxbnuVTOw6i4hFkR7o3d3p6mm4XDKLyw
0UXV6CMMrDBNG0+exxNBOg8fDPXjUb5iUuz8BMjaNj9IVJ0Cm33pMf3DAhTw
EpAt/YT6OTdqSkwYfLZdhXG3eQ/WSvp8XF91g4m/v4qiF4Njc9dnfcyDT1jd
FO2oa/MV6uPFPPPgacxRzE/f4teJQ6K+qaqCWTS/qcY7aD2Gene56qykNiz1
iLVa4MTg5EZF7RTc6oc+g2/z1nE+oKB0jbe13Sjek7sf5vD3PJhezQrZIt+M
lzsS60YvyfDjdTUvWta9xGVs53kTvwY8NCZrsWjJDN67fC6AGfMVRg5KTpzJ
fYNl2dM9ypoynN7ZSFHLgm5cpWEBCY+fYPuXemVQFuNYpq7aHxGzaPootdji
UQZWxB9vnHxeBglL9esimmX4LxJCHekeINg6g+6xoTr0Nd1z6os3tbmH1MBt
b4Un3vsp7z1yrCszk6AaZ2xP70Jl1vFuepdvUPJ6gN4FdfQdoznBTLxpK80J
shvbA2lOfFF8PGifVhMccOguUD47AKLfI/nyhxgciWEFl/4LwZ0b/qP/crjM
LVz6L0iea6fRfiD8SZQ/7QdUc5QjaD+ovy1KifYJle4TQPvkJ7y1cqZ9YsKf
Zg6UC7wOrHWlXPDZwVX/UC6wcKnjOsoR1k6c96AcsZ+voUo58t/b3L9HPACv
vDmReMDTfT+UEg+Ybyo2Jn7g33MndxA/GHSmNZn4AV/1nhDGvRGwc7Nr2fRu
Bna6XZI8UxiGsYvvoolDEO/n3SEOcfHOU85l4d5gfuq7ldaDQnBXZImIW3y8
OM2ZuIWwKoEecQ5Rq4xLiHO4GtS/nDjHJnFisufYODiV5DGYoR1Q1DJ6XnJr
BjKvGl2nvkD49utR1BdwVA8bo75gdg1rL/UL1i48d4z6BZmDq/SoXyh9O5VD
PYXOoXIt6inKfs9Wo55iRGRdgYWsFHrMOHcUQARzLe3iJncRtH5Zd5I8AN9k
GN4mD2Amb2UOeQCL4uTLyBvgVOhZT97AGy6pcuQNKKoeCiTPgCU30IE8g0s2
uqWRZzBiqfMUeQksu0KiyUv4KradpWQvAHvLmiTyGBwQOi4ij4FHYpYVeQz9
mEwl8h6sWR13gLwH3EaWLXkPfmI3TpInOWlHz/qSJ1FntlCdPIl6cZp95FWO
MHT4HXkVXt1Z0k9eBQvVhzPkYY7Kx8Yd5GEslLa95Kbkwf+Scv/B
"],
Polygon3DBox[{{37, 34, 46, 49}, {49, 46, 56}, {46, 48, 57, 56}, {34,
28, 36, 48, 46}, {36, 43, 48}, {48, 43, 51, 57}, {24, 32, 43, 36}, {
24, 19, 32}, {19, 21, 35, 32}, {32, 35, 47, 51, 43}, {21, 31, 35}, {
35, 31, 42, 47}, {49, 56, 58, 50}, {50, 58, 52}, {58, 60, 54, 52}, {
56, 57, 59, 60, 58}, {60, 55, 54}, {54, 55, 45, 44}, {59, 53, 55,
60}, {57, 51, 59}, {51, 47, 53, 59}, {53, 42, 39, 45, 55}, {47, 42,
53}, {42, 31, 25, 39}, {50, 52, 41, 40}, {40, 41, 29}, {41, 38, 23,
29}, {52, 54, 44, 38, 41}, {38, 26, 23}, {23, 26, 14, 12}, {44, 33,
26, 38}, {44, 45, 33}, {45, 39, 27, 33}, {33, 27, 15, 14, 26}, {39,
25, 27}, {27, 25, 13, 15}, {40, 29, 20, 30}, {30, 20, 18}, {20, 10,
8, 18}, {29, 23, 12, 10, 20}, {10, 2, 8}, {8, 2, 1, 6}, {12, 4, 2,
10}, {12, 14, 4}, {14, 15, 5, 4}, {4, 5, 3, 1, 2}, {15, 13, 5}, {5,
13, 11, 3}, {30, 18, 22, 37}, {37, 22, 34}, {22, 16, 28, 34}, {18, 8,
6, 16, 22}, {16, 17, 28}, {28, 17, 24, 36}, {6, 7, 17, 16}, {6, 1,
7}, {1, 3, 9, 7}, {7, 9, 19, 24, 17}, {3, 11, 9}, {9, 11, 21, 19}, {
37, 49, 50, 40, 30}, {11, 13, 25, 31, 21}}]],
"\"GyrateRhombicosidodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "GyrateRhombicosidodecahedron", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwBYQGe/iFib1JlAgAAAA4AAAADAAAA2UoxKGDj67+JZQDRCP3BP8w1/1r1
gYS/VetwjVt957/KdY4exwXrv3praR/lSb2/PVNgjigt5b/T86tcwQrbvzHz
sgI8Quk/sf+twA1V47/nO8WxMC3Ov5/G7EoGtey/arln+bb03b9WWCh6jd7h
Pwl7VY1Puuk/JBq3cCUtx79Wgenwz3DrP/pvQ8XMJbu/+CSsWkgYtj/9MXAg
g8zeP7c3KQ64x++/+LQSzPgpvD/mFFNab3zsv+fglNoQwuS/LLUkw2uAwz8G
HbHe6obpvzIhEerpJtY/9IUT5Zx/zz8NrrqOZJS4v/DmSyGg1vA/eq8zL+t/
3z/GTXNBMdPoP3nwIjFrH+Q/QRJeLLIs6T+2qv3xQoPnP74hGqgB3NS/89qF
5VWd6T/Xs6Z2hivGvwdS0Z3C1Oe/m7HMvDH46j+tqD0Q6aq0v+I+mGOGAdA/
Zi26Fg==
"],
Polygon3DBox[{{9, 8, 13, 14}, {10, 9, 14}, {2, 9, 3}, {2, 8, 9}, {14,
12, 11}, {14, 13, 12}, {3, 9, 10}, {10, 14, 11}, {4, 7, 13, 8}, {13,
7, 12}, {4, 8, 2}, {6, 7, 4, 1}, {5, 6, 1}, {12, 6, 11}, {12, 7,
6}, {1, 2, 3}, {1, 4, 2}, {11, 5, 10}, {11, 6, 5}, {5, 3, 10}, {5, 1,
3}}]],
"\"Hebesphenomegacorona\"",
TooltipStyle->"TextStyling"],
Annotation[#, "Hebesphenomegacorona", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwNwwk81HkfAOC5aVZLCDESUerFOoZWtL+/dw05Iiq7ohyR3FqiaCLE24XY
Roo3iX03UrrIke/f2exqMSJZTY7GmRhmDJNj3n0+n0c3MNozmEQgEBz+Sf4n
9XeJ6YU3cniR3x6Lxzt4EIPHKtmy+4A3yxB+rpXDtUeiqg9V9YKG10HXS8wx
lD8QurNyhIrPHy7yq/tlHB3lZA6lmPWA17accc0uKu5xk7h1slKA8sLbBYF/
j6NV0RTDnE3Fa+YMnKLOLUDUrjSrygPjYO/1xw0DPyreXx7j2zYhAujie/8S
9AUtm/COVidT8LYcdxBSuUgzvbrEfn0eevvfZam7U3DVid2JDbIyNKwCXb69
SyihwrTNZI2Mvz5xJC5o2ypMZpfqulKfI5fIX/M5mWR8QD1Uh9+zhGzj0rpm
znWjusRWhzBTEq7o8oErf3wcTA0Hrd+0LcFelGbqISbiinvk1ILVZyCo+5LX
oZkVVJp9Y66DJwOWPc/PIKQZcVOOnU1VlcFoy0i3Y4UM5DR+fPt8WgrMcNVn
fZUiyFL78j3dWQYTT33kztisgrxRAHToS9DDMh+7M0wZxI/kVu/aXgOpTvoB
+S4kTD6LXT7waBWYxTcXbq8TsdZTK31bOnqQ0Dxa165iFVpZ1sl9XCKubDXq
9UCTD55N9XcZGavw0LJYkb6XhJtpbXnQGTyCFkqeHFuoF8GTe8a+tLZRxPUs
p1WHkPGfgo77FLNFELfbzLJZj4TfuuL3r0lfMSjVhLYEMkRge3afu54LGR9X
UHOsPbOIzjlwjROkC3A/gqP+DeUtorE6wj+H0bBN94o0CAVCaBDftwi7TMUU
PJpXNOy4UGUyzRmMFcIbyr77lhpULL+kYDN/dApdeKjwdF/NKNRK34sGry2i
bYcHg3O0yfifImtPR/MRKGj531Wfz0J078fbCpte0LA7LhbO7Eo+FCo+ZLO/
o2L7HHUW/bcKYS7XfzrD8AMwmu+e0JajYJyDXmzsuRR9qn3Woinuge2XyR+D
4/go9rdIs8NEGn5XEjnWXtQD6c9q541ViNjtMZEfK2cN+uFkXc9XHqjqnVdK
MCDjqubjKfo5Ulhx4xhFGHbDgJJSoX3IOnJR9/7yYiMZmxD4ytM1uyGC3769
M4+CV7UnKq7ofkUf7R+dqGF0AesSZ/xndhP6fG/NXaFJHkv178tWLHuHvL/J
IsPsV3Rs80meyksyHtnirZzWzEc2HxZWq768BkOrvEj+zzRcN3PolJnbR6Sv
EVDCNaJg8bNlzkUei3BKpHE9z/cjWro9+F93SxkcrJilZ5YRcOencRvZ6sNI
4KuWfbqRhO2l17NS/dcRyXVZb+nUMOo9qxNrkUjEZ44H5XqYEjE9Yy1l3V+H
UdfALfF+r2GIVX6vkhYqjzmnaGu8zBYg3kT4t1L2FLoWslzYf4eGB905bfCT
yRiyzaSO6UVR8B/OXnw5+kkMnZKjR3qEY0jQu0mWyqHiSTri2sZZMepkJZF8
XCeRnFts1snaeZjq/273qCsF11g7EOjBm0KO6aWS8aMScMRZ++ESFcup+c+S
nWAe2YdFmX/NIWAciwvXk81kkNRPjx4jiBHlzxJ9m2Qq3jQ/d1X338PQ5tQo
3LBDjMS1G15EC6m4wxXmDXLgEPp+bpJ6MUOC+Ddb9fbYvgOrAf/LDSQKXu93
5U7EAwmaedr/F0NAwhqZdqk+ZULgbky2KKcvoYjgjmcN9USMfoIpZBlLka1L
j+Xq/iWUXdMawAgQwFCj6pSgi4rt/CHgQMMxKZr3dGhw8hGgx/T2l9UsCt6o
phA5tWkdSTmv/tJ/LUGPPP+g5g7LYIY5a5O3gYAZxezNorwlYoXlr9iuql2g
PPv6vAGDgNmnvF3rCiBiim80LZVMJlGglnvTvDYBSw9eiS0OJuFc1/Uj7vls
5LGz8Rr4EzHV089VROmlCK+LXetul0HGUIb8lXAi5m2YQwmLXEHNh659jTw8
D9etLvYaFhIx6+sJ3Q8YUqRgP5VgcWEZbWEMfAp7TMRs8o3j2f1ceGVUsDVm
gYgV5OUx3tWRMZ5ujJJ70jRSXq66sai1BLZdveZzEjL2hMlqWWgSIC6han0X
ZxVVN5WmablRscwSpt5k8TJ4RCdv9bT9DUUYTSQWbqZh8TqdoVnDNbDDZpou
I4vAKW3EwcaBhtlMVvTtj++EXN+rISWdEvQ+rrjn7k057HH5re3rTuPQHWdd
7Rb7N0iNE1XMf5fD3MOYwd3fToL3+UhpUu0o+j9Ri1HQ
"],
Polygon3DBox[{{41, 45, 50, 59, 66, 70, 68, 63, 54, 47}, {42, 47, 54}, {
12, 15, 22, 34, 41, 47, 42, 35, 23, 16}, {27, 23, 35}, {34, 45,
41}, {21, 32, 44, 49, 50, 45, 34, 22, 19, 18}, {15, 19, 22}, {49, 59,
50}, {51, 60, 67, 69, 66, 59, 49, 44, 39, 46}, {32, 39, 44}, {69,
70, 66}, {57, 58, 62, 65, 68, 70, 69, 67, 64, 61}, {60, 64, 67}, {65,
63, 68}, {33, 27, 35, 42, 54, 63, 65, 62, 53, 40}, {58, 53, 62}, {
17, 24, 28, 31, 26, 20, 13, 7, 3, 10}, {4, 10, 3}, {27, 33, 29, 25,
17, 10, 4, 8, 16, 23}, {12, 16, 8}, {25, 24, 17}, {58, 57, 52, 38,
28, 24, 25, 29, 40, 53}, {33, 40, 29}, {38, 31, 28}, {61, 52, 57}, {
30, 20, 26}, {32, 21, 14, 11, 13, 20, 30, 37, 46, 39}, {51, 46,
37}, {11, 7, 13}, {18, 14, 21}, {1, 5, 9, 6, 2}, {5, 1, 7, 11}, {5,
11, 14}, {9, 5, 14, 18}, {9, 18, 19}, {6, 9, 19, 15}, {6, 15, 12}, {
2, 6, 12, 8}, {4, 2, 8}, {1, 2, 4, 3}, {1, 3, 7}, {36, 48, 56, 55,
43}, {48, 36, 31, 38}, {48, 38, 52}, {56, 48, 52, 61}, {56, 61,
64}, {55, 56, 64, 60}, {55, 60, 51}, {43, 55, 51, 37}, {30, 43,
37}, {36, 43, 30, 26}, {36, 26, 31}}]],
"\"MetabiaugmentedTruncatedDodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "MetabiaugmentedTruncatedDodecahedron", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwBwQQ++yFib1JlAgAAADIAAAADAAAAbkpj6EmwAMDhdtk3nv/VvzR5eoDH
Jtk/xOSu9JHn/7+Bb9SkxbDcv2a8lbi8HOO/2PpK6APi/7+bzPAiabbkP5FC
i+CSAtM/vkozDAJp/r9DUHNs1V3hP7pXjQjXLua/GAUI2MTy/L9UI9Xd0pPz
v6Txb5lDdns/KqIKNHwZ+7+hpZVlJW7jv1BpqqdiY/Q/TlzCTjUJ+b8QB4dZ
EO/1P1eKGb56TM+/bJNAk3yu+L/tJkXKaOHvP8SVSTRq5/E/UEtbo3c+97/9
wzicsTDsv1RWicqGF/W/YhJMO62r9r90mKkC/sr3v+J1ShZOauw/sLOZdq+5
9b+uYBSEl0jMP+vjLdQ+kfs/mjyRAnjT9L+lCKKT3B7nP9Yp6j1/k/e/tGu0
hqpJ9L90abxC+n/6vzoQSlVk2+a/3vS3+a3V8b89NDEtkIT7P60nx0hseuI/
yKzSCall8L8CCm4w6CPEv0BYb9q6wf2/UJxAilbn7r9BYx7tk8/4P0OvZhGj
ZfC/XAT4uSwd578kv1wIZU33P9pe7+vmVvc/ALsk+kBo5b9IDSWvdp/3vx2G
SOTF6fe/SEkGKqxC5L/KIdnxDakAwDwWzOLPxeY/DOnWcahQ4b/ogHjfMn8B
wIHFDSyh1NG/8ESqgJIz4b+Lb3knh8vlP33W6cVdgABA4NIyz0Mq278pHTeI
bOPxP2AnpX/L7vu/IPhNHI/azr892SzONRfovwVEF/r8SQDAIGibVzdmzr+J
pss1R+wAQEhZooqnh9M/oChx2A/mwr/evMLCCXzOP+MqFY6DDgHAQOfddiie
wr90RyxIIhYAQGbMgbNM7OW/QTfTFrqmrT/i0qwV8Q4AwDrvpgQ88fC/UC1E
joXSwz/u18JGY6H9P1thNKqa+/I/aHFrRS7t1j9Grne6YVQBwDCwnP4JAeo/
GHLfCVVV2T/OSHErHUD5P01e/8dOf/a/aDHKtTXR3D9iDReohioCwGsi2ehZ
vMa/mHkjmGEL3T+rPf8EOB7jPwD93UwsTwFAlIOohZ8C6D9JC6fwhMTqv/46
RuZc9v6/rCfVdrUf6D8UGi1t80AAQGCNQ8Ib/tk/tLefVr//6j+e89k4zcbD
P10EIQe1PwDA7IcEL7kR6z/8dRv/nNX+P1QysZcSseK/1Pki/0037D9/P47K
9yL1Pxz41Ykk9Pk//EL2vjns7T8EjfPs48n5v8/sYUaITPW/om2fxzHb8j/c
MLXREkz7vy0h9LYBcPI/UsrAaKzf8j8NO9GU/nHvPzSOvuGNUfm/LsxRjC/N
8z/Axs7bhfhfPxjK/H8ZzP8/PhQ3fDQ99T/sAcgRDwH+v42HWPtdy9y/Eosz
CTGx9z/DmyVeewP4P/jzZKAh8Oo/+lsQhf46+D/Bo89c2hfsv8Cbd+Pdnfk/
wjHLvTMT+j++yhIef071PyKSL8uQVei/vmraJf6l+j/pKAvTszfnPxPIFnDl
Ifc/sntB0btw/D+41B0+j2v4v+2MQvW3z9c/O5JDrSUtAECmVT75UxfxP/oc
QB+G7r4/ETVZR0ToAEB566A101bmv1A7qFOUQ+o/FQKXO4ynAUA3OXkSyr7S
P9OfsAN6Mec/w7B/Dw==
"],
Polygon3DBox[{{45, 40, 30, 36}, {36, 30, 26}, {30, 22, 16, 26}, {40,
35, 25, 22, 30}, {22, 12, 16}, {16, 12, 4, 7}, {25, 15, 12, 22}, {25,
23, 15}, {23, 18, 9, 15}, {15, 9, 2, 4, 12}, {18, 13, 9}, {9, 13, 5,
2}, {36, 26, 24, 34}, {34, 24, 28}, {24, 14, 17, 28}, {26, 16, 7,
14, 24}, {14, 8, 17}, {17, 8, 11, 21}, {7, 3, 8, 14}, {7, 4, 3}, {4,
2, 1, 3}, {3, 1, 6, 11, 8}, {2, 5, 1}, {1, 5, 10, 6}, {34, 28, 37,
43}, {43, 37, 46}, {37, 32, 41, 46}, {28, 17, 21, 32, 37}, {39, 44,
41, 32, 21, 11, 6, 10, 19, 29}, {43, 46, 50, 48}, {48, 50, 49, 47,
42, 38, 33, 35, 40, 45}, {46, 41, 44, 49, 50}, {44, 39, 47, 49}, {39,
29, 31, 42, 47}, {29, 19, 20, 31}, {35, 33, 23, 25}, {42, 31, 27,
38}, {38, 27, 18, 23, 33}, {31, 20, 27}, {27, 20, 13, 18}, {45, 36,
34, 43, 48}, {20, 19, 10, 5, 13}}]],
"\"MetabidiminishedRhombicosidodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "MetabidiminishedRhombicosidodecahedron", "Tooltip"]& ],
Boxed->False,
ImageSize->{180., 180.8653846153846},
Method->{"ShrinkWrap" -> True},
ViewPoint->{1.886599648940047, -0.7174997129434666, 2.7158674353777537`},
ViewVertical->{-0.18770954608125162`, 0.2765337859138613,
0.9424936029268939}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwVlHk4FGgcx2fYVCqqJ0eHbQvpoUNYHeQ3qPSQxINy32JJjiKqdeRYRrXZ
orRYZ47SQ9Yks/Mb99GO5Cr3fR/PuMa41r7zx/vv+3vf7+/7+RxyvG3iIkSh
UDTJESbnbL1MVoM2le06EexuYPMPVvda/dohNQBR3KKmYSEq+4+JjrTpymGQ
M2ycGS7MwM9WYT1VDRT2jvD6Mu89o1hncPh5tSwH94ft3db9lMJO/FHYV6W/
EIICjMNW8iYw6vuBOI2odbS103p9coaL5m5JXW3Fw6Axmfm69fwaCpkaMkZt
uaByVb/1seg0bk4z0G12W0WOtn2xuGEZXJe3uWbfyANVt6x5raQVTNQzKbvF
4oHmrPrLuvAu8Lto5BcstoyR4inwQmsJE3VGQiQah9BuW67spA4fVYOrsw2u
VqFFTHnuGakVVIhm1c5E8lBRcTnS33IW5kv6siRTF+HgyLFoH08e7igo6vTp
Hse88YfBPSl8sHO9efkkfwFHjvEDY9PW8IpPMNXVrhE2fAbGL7cuYNgRlTc9
59agMvWR6eJyB8LcgRwRh3l0yjiqLik2DmWLWqZhl1YxwIjuHn1pHvOV0UKu
fBap1an3P+nxcVNHU37d5hl0tbvRe/BYAf68J1TUVJVCu2umwShynsKmxWgh
1pl18H+l/+in0mmQ6WTmsdXH0CpBmq52nsKOGfJrqjDpR3nKF9ZC+jCqvbxG
rzHLBc6I5CHRTVR21ZuPJZQLQ6h75racvOYULDEjPGxPb8DDA/e+ZcwNICvA
szJWkYcMaYZ5lO0KVDmKloQe6UfJ0hIvbs8GslhbY3SsJ+Gu+4f02pY+tJlQ
u5NgSaV1bbQ07GS+h9LE4Hj7Z92ocj/zhjljA0yuS7cXOE6jkkKGxb7lduw4
fSN/TogHy85a/7EcVlGjx105x7Ade4yMlfnrK7gc75axK5qHr3fKvnA0/4bT
jIRrFvQpzAyP3GogQ2G3ZVd+OR7JRht98RylpCEszZPxz95NpU1ZMlZZbUyM
u1m7w3JtGWqM9EW++/HBuHs2JMIpDvxsAyNcO6lsa2nHW6V/vgNFXadEcg80
t2imkHvAPVlScA/bxcY3iMwFWZ2qS2QujD57LJhLk7gzr0XeD8W+2h/I+zEl
+Irg/fBitOE++S+IFT+xIf/F+Fg1wX9BpuNBVpNaD/R71j9w9qLSTgfYe5dt
IfOKqnpJnjDhLxJD8gQdjzAGyRN7TxpNkPxhd6RHM8kfdvWxnEn+6DHKtLW5
PAht+kcO2rat4F7l5rX2iEXUvWr/luwRut9pnyB7RIe0AMEeMSXLv4DsHf7l
BhytNctFiQUZwd5pCkpiOVv1RsGRqYFf761DwvZer7UQLiRkxhat35kEqSJ8
q0jyrayjcNukuvBpSFAq6SHsK678nfQQ+kWCBD1kpx/udSS9habFVlPSW0jp
ey/oLQRWeaeRnsP03lUgPUennYaCnsOpi+qDhAswd9j/lnCBmtuZAi5AnNtk
TDgCHY2l3whHUPQk+SzhCF1KQsIId/BBY+Ar4Q6oX24LuMOKzlsdFhFLkP8q
sHfIioe/yF/3pQ9M4/GnEKokzIckg7F8Fb1BpG5qVKhP46NUwowa4R0el89y
CO9AH3v2kfAOqdLpnsQP8Knl73PED8ALEAolfgBD1vJz4h9gPVFnEv9g8iNX
gX+gJs+bTnwFiXJm8cRXsKISKvAVKjTYDMr+9R/0xEmoeFnPYVxzVbAipxBh
i7DqR48N4LhEVEyVl4F2tUEcpYuLvOxD+4kPaa5jinWn+gsxuYSbT3wI71Ll
Rok/aRWmEp+JP2HpfJJQjSwHcvwWT/xQRqXNh+uKc6zrsO5CNX2grxz/B5zM
Ba0=
"],
Polygon3DBox[{{20, 15, 26, 32}, {32, 26, 38}, {26, 25, 37, 38}, {15, 6,
14, 25, 26}, {14, 24, 25}, {25, 24, 36, 37}, {8, 18, 24, 14}, {8,
11, 18}, {11, 21, 30, 18}, {18, 30, 42, 36, 24}, {21, 33, 30}, {30,
33, 45, 42}, {32, 38, 49, 44}, {49, 55, 57}, {55, 59, 60, 57}, {38,
37, 48, 55, 49}, {59, 58, 60}, {60, 58, 54, 56}, {48, 53, 59, 55}, {
37, 36, 48}, {36, 42, 53, 48}, {53, 45, 52, 58, 59}, {42, 45, 53}, {
45, 33, 41, 52}, {49, 57, 51, 44}, {44, 51, 40}, {51, 50, 39, 40}, {
57, 60, 56, 50, 51}, {50, 43, 39}, {43, 47, 35, 31}, {56, 47, 43,
50}, {56, 54, 47}, {58, 52, 46, 54}, {54, 46, 34, 35, 47}, {52, 41,
46}, {46, 41, 29, 34}, {40, 39, 27, 28}, {28, 27, 16}, {27, 19, 9,
16}, {39, 43, 31, 19, 27}, {19, 13, 9}, {9, 13, 5, 3}, {31, 23, 13,
19}, {31, 35, 23}, {35, 34, 22, 23}, {23, 22, 12, 5, 13}, {34, 29,
22}, {22, 29, 17, 12}, {28, 16, 10, 20}, {20, 10, 15}, {10, 4, 6,
15}, {16, 9, 3, 4, 10}, {4, 2, 6}, {6, 2, 8, 14}, {3, 1, 2, 4}, {3,
5, 1}, {5, 12, 7, 1}, {1, 7, 11, 8, 2}, {12, 17, 7}, {7, 17, 21,
11}, {20, 32, 44, 40, 28}, {17, 29, 41, 33, 21}}]],
"\"MetabigyrateRhombicosidodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "MetabigyrateRhombicosidodecahedron", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwN0/k71AkcwPHv5Eh2W1RKki1dUqJEzj7TUINqK0kYoclaJaTaipC2FNVu
eCweOhyhRYejIuUzrnlqWc8Y9yRqHGMY54wxJ+uH13/wfq+nh7n9uoggiD0L
VBYc3+rX2kcmMcyWXBlb8aoPuvwPKB8asrBqy66QQCHB2FmXza782IErlpvt
onGGUSsijXfqC8HQOrBhJvPuI9y99fzLjG39EHH13M2BPwnGNeINPNMXYLbF
ok471TIwqjNSA74Ss2pZ+W5e30CTOFEa6y1EfZcnkup2OcYum/Oq+X0UKY11
tjddJ4Hbu1qndZ8cD7UMDLJkM9AXGmY7M1uJ5xs29nhIpegs8F1/gvsNIreM
UHSCRKDpHaZpUizFxG4ber7zKC7Lq6ZoZc7ibXJk+4szEhRQ3e5ITeXoF9RV
O7KnEj2OxIS5/SPGgNcTynI7Mbz1LVT3mZ7EdTb96p/lM+jszPCkHBaD4rTX
8aiZEWD9Z2r56OUMcsumIw5y70PMGgWNHj+HAQYpat56IqxZJSjx9W3FHb1X
NzcYyEHxutfCtFGIbUHUUN0xGQaOm/vRhiaxPsOxMXetEHtYV5bHf5FhPeVQ
TvTSUVizf1jC6RzD4rJLc0rDeTA26w72j+1C6rG+Ps5rPpon6yl4oVyg3zBi
828rAV0fi0nMQfTOn/nNKojEMDeT2PGZteC4tb7bjdePovfxfptmxSCOiUsI
z5XhU2nkAPNgPz43ORIeFj4P9hXv611F30FupL0vpISLzx+q+fW/48K2iryk
6NskRoG1jyW++Y7Wa9Yy7y+fhRGNwYrUNDE0q+a8KPflYLqusUBXNIyF5zbK
1i2Zh9CTTYEkk25kW03S6qkkxoc6jVXzQj4yZ22i+NOd2KNcnb9XV4YeEb7+
abli2A7YvKG0Bq2rf/QP5cyDQVeOHS1nAn9yj6GOLc6DD467qT8crQRpHI+d
U0GQA6os7jpO1ECvPbVER43EqK8KDQkeHYJxy8ueETpd4E9Jz00YnIU7d69R
teZl6Pu3umOSczdoeL3i8M0Isn1Bm7OWw3dgU3oSnKI5kPhkI68oZQCC7Z9e
OFRKYtxb5ZSddbkHnuds15wkSSCUmJZJFrootesU9Bj3gudUe6/RTiGqG7jw
9ErkkKeXzv6J1g/6l4ZtklkEo7xtPNm2aASrzr4fcGkfhJRP5UO0owQ5/WiA
rXsLB1tP1SldFHwwP6yaQbs4CPrvbvQWTyogIq48m5oyBqcTbFt84tvwl4/C
ZIfVc+AYoMYz4o1B6rvIWK8CgnGaU+eg4voBCuJPrCxPmIDdIa6ZizfLMYPI
cdhzaxIoJm611E1CcNKd0W4tksATM3KFFXcK/yKPmbSwhWD9oiHY/6MEfBim
k0xdPgwV5SiUP4vA8Pi/R3ShATwESUsdrs1j6qcp5XkVMbSpUGizURLchUxt
q44p1GfFNx0LloDTA9YtpzkJsOwDOj8DE7P40aTmMik4061O2fOHoCP1GS0N
hDDubtEqI2QQdIa+GfcNYr6lqklCnQQvhBprXHWRw6cHgcNxJhJMrEzPrO9r
wIvRV1qbbshBx6/DNTOjBZc91tM2Xvi6sKt4gv5VDp6ZMveTK3lA7/66Xpon
woJY1lPUVwDrXtUfHNI0Rp3ME9irDcNenIp6m0SQ/RNKbG2reBDfYJw8vqMD
OxiG/WZ9BNlpiG1ytrsKL+/PirrHHcWbYZVB1rMEeW+hZVKjshGaxLIzwRu+
gX74UHOJE4mceL36ushqAKMi105LRSn4P+iAzEA=
"],
Polygon3DBox[{{32, 22, 20, 30}, {30, 20, 27}, {20, 11, 17, 27}, {22,
13, 5, 11, 20}, {11, 7, 17}, {17, 7, 12, 21}, {5, 1, 7, 11}, {5, 2,
1}, {2, 4, 3, 1}, {1, 3, 8, 12, 7}, {4, 6, 3}, {3, 6, 14, 8}, {30,
27, 36, 41}, {41, 36, 45}, {36, 31, 42, 45}, {27, 17, 21, 31, 36}, {
31, 33, 42}, {42, 33, 37, 46}, {21, 23, 33, 31}, {21, 12, 23}, {12,
8, 18, 23}, {23, 18, 28, 37, 33}, {8, 14, 18}, {18, 14, 24, 28}, {41,
45, 52, 50}, {50, 52, 53}, {52, 54, 55, 53}, {45, 42, 46, 54, 52}, {
46, 49, 54}, {54, 49, 51, 55}, {37, 38, 49, 46}, {37, 28, 38}, {28,
24, 34, 38}, {38, 34, 40, 51, 49}, {24, 26, 34}, {34, 26, 29, 40}, {
50, 53, 47, 43}, {43, 47, 44, 35, 25, 15, 9, 13, 22, 32}, {53, 55,
48, 44, 47}, {48, 39, 35, 44}, {55, 51, 48}, {51, 40, 39, 48}, {39,
29, 19, 25, 35}, {40, 29, 39}, {29, 26, 16, 19}, {13, 9, 2, 5}, {25,
19, 10, 15}, {15, 10, 4, 2, 9}, {19, 16, 10}, {10, 16, 6, 4}, {32,
30, 41, 50, 43}, {16, 26, 24, 14, 6}}]],
"\"MetagyrateDiminishedRhombicosidodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "MetagyrateDiminishedRhombicosidodecahedron", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwtlWlM1FcUxf/DDKPiBrKJS8MSS8WWUrcIEe4TIxbUQkzRkWKlCEFoVCzi
QolFpRURFDFYpdUOKhoZCyiIQJX7LOggIBpZ6lABSUkdBGQXRsCpfdcP78v7
8JZ7zvkdh9Cd68NNJEnyebfk71a5WY6H69UJXHNN1nDp+COQ+fUtOPmkGK86
JscF/6jkG/riU8yW1wNbsthfdqALQjriqm/FK3lcmSX3S2hA/kXV7ut5XWhX
YnH5VZ0pn5v7T9+D6f0gFU556T67HjKONpwtSZDzIYsgvwJNOYZEuv+tl4/C
lcWeEXe+k3On+eElmzcOoPSt4fpyrwG0q65I979rwl1aDuVsCtJhtMq8dcee
MQxZVVO4JF/G7SbsTQvLMEJCzPGsfKUWgpLDJj5INOLU4tb9Jvt7MEB1UjHw
3AiHni+6+HibEWPaEn0W+0ucjXhbhP/ZhUlHap3elo2j5bQ1GREnR1E9yTUi
eN84OhY2xzkGj+E896mpzKEbk7539FutkvPBfxe1+jaN4ssl94PK9CUoPez4
PNZDzmxUDrpK7Sg2hiVVf6gtguhj9VccveW8eK3b3IxsA0Y66guWXpMzjr/s
khU+wyL7DqiPNmCEdYBPTcE4Prcan3LizRswy61qS95iwGL70ppoCwWX1TkG
ZFeU4Jb43l/7Ng+jLtu5+KGHgoUcaP9jvVcb6JqTv3lhO4yrz8VV6g7JuaTI
rSrb0gVno0+/3pAwgIfLfraZ1d4NlR7jTR8EKrhxeoWmwrUfU70yGwfd5Mzc
YcbB02uGcOuur6NL9X2oVUzMuZGi4NKdoAEe24MttobeF169mJ7zketCpQnn
ne4qsydvccV123nqvB4sSszTa5TNsM+0qvu8nZJtz6zOzNP0oG7jiVAT83GQ
ZgVbOU2W8R/u5/62V9aFpobLoVmKV3hmrfX+2BYlt5y2NLji6Uv8uHS3J1Pl
QVKwtjGgUsl91f1padv16Gk9bPC+rGCPd6ZYLTAfBNjqPCu+7QU++0TzU5it
nKct7JvdpjZAaIWc71vRgvM98Mwq7SAs25BVekFpyqK2rUz3MW/CPJuRxK98
x3BmYGRY704FL9rL5pgVPcXuhrsxynaJqVqtLx2Nklj2627T3sxa9K1dlDVn
xIS5lQ+39G8cw+2yuy7no2pQv3tHa/I9BefG9L+Wa19jxqZtpYrCGLx/MMqq
U2qB4nXrHjnHTmCdDmIfXA6LfXy/zwPpHHhI57AA6dT/58DKIXEveNK93J7u
hZA94p0wRO/kEr2T10WIf0E2/Qvc6F9MWy7mABdpDjgSKObAp9PcQEdzY49p
bphKc4YOKzFnzmjOeGSq0AW+vC10wTOkC7twT+gInaQjqElHNpl0h07SHSeS
7mx1vvAJVB0WPsEE8gmfNFP4CtzJV0zqEr6CzeRDSCUfMvVt4UNoIt/CHvIt
f+9bCCefQyr5HJ+Sz1kt5QLcKRdMTbnAAsoR3KAccYlyhJaUO7hJuWPGRyJ3
kEI5hU2UU2DWIqd4g3IN3pRrzrjI9bv/Cw6AS7jgAKqJA6yOuAGnPxXcgGXE
Dd5eIDgDo8sEZyCfOMNsiEvwGXEJOHEJwohjEEkcYxJxDJyIe1B3S3APOHEP
zxIn2Sml4CRKxElUEFdZUbPgKvQSV+EccZjNJQ6DPXEYzhG3mWaG4Da4RQlu
Ywpxng3/LjiP0k3BeYyhXmCN1AvA/EUvwDj1CEumHkG+VPQIOk8WvcOGNKJ3
0Ogtegf+A4ToVa8=
"],
Polygon3DBox[{{16, 29, 38, 46, 51, 44, 35, 24, 13, 9}, {5, 9, 13}, {6,
10, 17, 19, 16, 9, 5, 2, 1, 3}, {4, 1, 2}, {19, 29, 16}, {43, 53, 56,
50, 38, 29, 19, 17, 22, 34}, {10, 22, 17}, {50, 46, 38}, {70, 68,
64, 57, 51, 46, 50, 56, 63, 67}, {53, 63, 56}, {57, 44, 51}, {68, 70,
69, 66, 62, 55, 52, 54, 61, 65}, {65, 64, 68}, {30, 24, 35}, {8, 4,
2, 5, 13, 24, 30, 32, 28, 18}, {37, 28, 32}, {25, 33, 42, 55, 62, 58,
47, 36, 27, 20}, {14, 20, 27}, {4, 8, 15, 21, 25, 20, 14, 7, 3,
1}, {6, 3, 7}, {21, 33, 25}, {37, 49, 54, 52, 42, 33, 21, 15, 18,
28}, {8, 18, 15}, {52, 55, 42}, {61, 54, 49}, {66, 58, 62}, {53, 43,
39, 41, 47, 58, 66, 69, 67, 63}, {70, 67, 69}, {41, 36, 47}, {34, 39,
43}, {26, 31, 23, 11, 12}, {31, 26, 36, 41}, {31, 41, 39}, {23, 31,
39, 34}, {23, 34, 22}, {11, 23, 22, 10}, {11, 10, 6}, {12, 11, 6,
7}, {14, 12, 7}, {26, 12, 14, 27}, {26, 27, 36}, {45, 59, 60, 48,
40}, {59, 45, 44, 57}, {59, 57, 64}, {60, 59, 64, 65}, {60, 65,
61}, {48, 60, 61, 49}, {48, 49, 37}, {40, 48, 37, 32}, {30, 40,
32}, {45, 40, 30, 35}, {45, 35, 44}}]],
"\"ParabiaugmentedTruncatedDodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "ParabiaugmentedTruncatedDodecahedron", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwtlGtQ1GUYxf8rkVPoZtZuEpiCxDpQjDmNDZY+/2BlnLgsKKZQmMIASyAJ
zaprjHYjFJNxNAQCli7LLB/M0SUugnbWdposE7nuiqWQkIusOMRuurvpkvN/
+vB+eT687/uc8zsnLPu9DblzBEFY+fAEPDzCa/XlMQdkFrm+8ULbPhvGAuIP
0obLqH02aaJyULAkmUMevDNjhamnc7WzyEFVfWUdrZmCJffJs78enj9Kw0sC
xg5ccWB1SFDO0zv90GUrEkdjJsn7lX9ZeNcknVq3y60ffgB7xK684RoXrWta
mHPZ0YrISmfJePd9aK6kKz9qd6L3sT0FCcppqNtODt3Z5gNMH/cH51Xihdi+
W3GLPCjC1ug3nvDieLFju91og9pwuOW3AQ/F1Ydpp1T3kKxeODZy/g4pU2N0
ppK7KGvuO7fe9g/Ka7R184bHKK9ixWLtXh/9uMYwNZvohmbt16VzZny0abDb
hQoHGnq/CNv4gQsd5lij7+g9km+xNxTumSG/b9bcOT4DTeTzf+U85afvplY1
377ZQ3Kf99FvlX9j94cDp2eDPLg//5IhTeVGquLUJnnVJDybDd3GLKBW82Jw
eJVgKR6Mve595hZat7qzM4ecOGJ+WZtR6Cfxz+q9QaHjCPx0wmwlJy1q7zjX
optFxC8VgjHiOmT5Lc2209NY2qP/5vsTfvwxUro9P/0ack0JKa11N6nOXf3S
0UOCmK7Zl+5uHwKWH+vcHy2IOx5fqmt6+za0n++fPjIxgKauFn+yy0MjZ/pv
qBReSj02GrU5uR/KyYLy7kjBkuZK/OHgkimMxge+aw/uxc+hQyUrzsrE36OS
6FpkB631FFztev8MGoozjiv0F7E46zNvhlUmrlEXlu+0n0Bd/LItRSEeZJ0c
WZmS6aP4OGlO9TwnLc9ReVe6h9R8Dz3H91hWqaV36Ty/a/kpWnoXC/ifpOB/
inr+J6l5LzLxXhjkvVDKOpCVdbAksg6UwrrRbtYNtaybZdsFSWdy5Ek6Uzjr
TK+yL6RiXzCXfaEG9pEusY9Uxj5iHvtOy9+UfKca9l0MZE6okDkhmVzihEL/
lbii9cwVrMwVqplDamQOsYA5xA3mljYyt1Axt/QJc075zDmSmHOkcS5Iw7lA
IOeC3uIc0VXOESVwjhDLuaPXOXf0f+5IwTmlHZxTsnFO6SLnmsC5RgjnmjTc
A0TcA2jjHsCX3BviK9wb6OPeIAP3jGjkniEd9wzmci+JUdxL1PiI1Ev0HxNj
hFg=
"],
Polygon3DBox[{{23, 20, 11, 13}, {13, 11, 5}, {11, 9, 3, 5}, {20, 26,
17, 9, 11}, {9, 7, 3}, {3, 7, 6, 1}, {17, 15, 7, 9}, {17, 27, 15}, {
27, 32, 18, 15}, {15, 18, 14, 6, 7}, {32, 30, 18}, {18, 30, 22,
14}, {13, 5, 4, 12}, {12, 4, 10}, {4, 2, 8, 10}, {5, 3, 1, 2, 4}, {
25, 16, 8, 2, 1, 6, 14, 22, 28, 31}, {12, 10, 19, 21}, {21, 19,
33}, {19, 24, 36, 33}, {10, 8, 16, 24, 19}, {24, 34, 36}, {36, 34,
42, 44}, {16, 25, 34, 24}, {25, 31, 40, 42, 34}, {31, 28, 38, 40}, {
21, 33, 37, 29}, {29, 37, 45, 50, 49, 43, 35, 26, 20, 23}, {33, 36,
44, 45, 37}, {44, 48, 50, 45}, {44, 42, 48}, {42, 40, 46, 48}, {48,
46, 47, 49, 50}, {40, 38, 46}, {46, 38, 39, 47}, {26, 35, 27, 17}, {
49, 47, 41, 43}, {43, 41, 32, 27, 35}, {47, 39, 41}, {41, 39, 30,
32}, {23, 13, 12, 21, 29}, {39, 38, 28, 22, 30}}]],
"\"ParabidiminishedRhombicosidodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "ParabidiminishedRhombicosidodecahedron", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwNlGs0FGgYx4c6HMlSHdt2pt1tt7QSSevSSp6JpZLrLEltnK1D5Rpy3Vhp
3SuX0shlcolMq+xqp4PwzLbKxGpyia7INabcBoOZYZ8P75f3w3t5/r//75sT
QWxvZQaDYUFrBa3JC6KKdRwlgd0WvZPMwTYY9TuZqOLWBrfshamaTCWBfz3f
NTX/Me7JfG6w3DOAkYNvVMdfMARpQvOk3e+GkT1jfzrgrxaY+k050Sx3CTsS
B7m9dtMwHjDP7wt6hCmCM/oXahVop8PWXeI9hztNX7t6eEnAQ3tmn2GxArUv
qUivWAyDoxHLqT5rEosS4vtNdstRXVi2ZX/0CO5Ky/CyiZuGhcbsZh0jGb7h
zLBS9nzCJyHMj5WyKeTN1DX2ly1izHzcDdERKXbvKCtcdaQdfygO9LRhz2Ee
c/ej14mLwN+cfrXL+j28b8s+oiycRWaQ0VNRyxQsRdZczlGdg9GtmwL/rJzF
lu2FtRycBybDYbu8U4zbysdrrSclqB+1FGGt9h826K0X6J9VwFRZrnxUKMHm
DaWeRxd7oKw8dO7LGjmq+d+v4tpO40OHGLUN7D78fEhZbJSjwFFbZ87dzim0
0TIO6u2W4vSiozwTJXDw7b6fSt9OosI5Oyti5TKmHDfTtBa/gOKD+0UfFj6i
w5ONQZKEOfS5tjP+Q6kUv+Vl/3tiSIzvQjafXmItY97RmPPhcYOofPWLy+dF
Y2jTtxD4NIbBGl+xXM7vbMK1oSbPUmQjGGZgXujEGgTNwJdyk9UMFjv4sktX
xQiu03/SNew1Cz7SV3U9WosYIjI4EZ8yiOIry3Gx0XKILTDfqbIwDcodkb3h
Gwbw4ZyAIzSbwOjcFz9HVS7B7xmGEU02HThk+FjplLgfRBkqKUmfKQkOHNK5
aRzVjIfdtAMbml6hqqHjxTWxSgIhb/XWNZaNWKrZWLQ+UYZ2Z4tVD5bMgSZv
lzpXVo2G5Vn97h5KgrAbVlzN+j7QnDpwtaiEj4obxx3zIpRYTyvsH2uFvAOL
LsnwRCEXS0zFSV3PZuABY1f+KzUFNIY2NX8q5EL9uYEE2sfDGs0FtI9T7XtX
0zmwucbDgc4RdPdWtNA5GJz+3e8FsmrQSLk+QPeyZFUhRXQvVm9M6teybIRj
bS0l9E5QiTFXo3fifMPNY/Qv8D1uHE7/glbd+Hj6F+tts78bzQGYFXyFj7gf
L6SaJ9McWA1BnGc0N/COfp5HcwPL2wGeNDe09Ld3oTmDSas0luaMtnfajWjO
2KNRwaJcwM23oZNyQe7YvoeUC9zTcq2nHMGPp5dPOaL7uVsKylHQY2h2nnIH
v+XZAMpdwOZa5lPuYGn7dxVxAveNt/sSJ6BgOUQRJ+A57N1AXMH3yVuCiSuo
SsqJI64gXa/NjjgEydqCa8QhuGdwtIlDhOzeK8QtMNv3BBO3cE91REHcYlCt
1R3iHPhtlzSIc0h86TtKnAM4MtTHhBIwret2oV6gcqS66lc1cuDMxVRRj8A1
2SKZegSxZpX/UI/QPazSm3oHs2dyqql3WDC8UZd6B7c36ThTT8Hk7rYm6imW
JbikU0+xd1LhRr2GVo+dAuo1Mvfideo1TljZ15EHILQ2OY88ADyZTS55APav
03lE3gA+c6UNeQNW+VwcI2+AtGPNa/IMDB16oEuegXGO7i/kGTy1GO5JXgL1
dIMJ8hLu+FXbj7wE0tI/LMhjYBrGZZPHcCnzkyd5DJ28f7xO3oPW3AgeeQ/X
MlO9yHtwK61kBXmSFWZvl0aehHEPjTDyJFptkmWSV1mdkc6B5FUoNWQ4kVfh
gGVWHXmYZVp0s4I8jGZ7vYTkYfwf+b4U6A==
"],
Polygon3DBox[{{25, 22, 34, 37}, {37, 34, 45}, {34, 33, 44, 45}, {22,
12, 20, 33, 34}, {20, 29, 33}, {33, 29, 42, 44}, {10, 23, 29, 20}, {
10, 11, 23}, {11, 21, 30, 23}, {23, 30, 43, 42, 29}, {21, 35, 30}, {
30, 35, 46, 43}, {37, 45, 54, 48}, {48, 54, 56}, {54, 58, 60, 56}, {
45, 44, 52, 58, 54}, {58, 59, 60}, {60, 59, 55, 57}, {52, 53, 59,
58}, {44, 42, 52}, {42, 43, 53, 52}, {53, 46, 47, 55, 59}, {43, 46,
53}, {46, 35, 36, 47}, {48, 56, 50, 40}, {50, 51, 38}, {51, 41, 32,
38}, {56, 60, 57, 51, 50}, {41, 28, 32}, {32, 28, 17, 19}, {57, 49,
41, 51}, {57, 55, 49}, {55, 47, 39, 49}, {49, 39, 27, 28, 41}, {47,
36, 39}, {39, 36, 24, 27}, {50, 38, 31, 40}, {40, 31, 26}, {31, 18,
15, 26}, {38, 32, 19, 18, 31}, {18, 8, 15}, {8, 9, 3, 2}, {19, 9, 8,
18}, {19, 17, 9}, {28, 27, 16, 17}, {17, 16, 7, 3, 9}, {27, 24,
16}, {16, 24, 13, 7}, {26, 15, 14, 25}, {25, 14, 22}, {14, 6, 12,
22}, {15, 8, 2, 6, 14}, {6, 4, 12}, {12, 4, 10, 20}, {2, 1, 4, 6}, {
2, 3, 1}, {3, 7, 5, 1}, {1, 5, 11, 10, 4}, {7, 13, 5}, {5, 13, 21,
11}, {25, 37, 48, 40, 26}, {13, 24, 36, 35, 21}}]],
"\"ParabigyrateRhombicosidodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "ParabigyrateRhombicosidodecahedron", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwN0fk7lAkcAPB3zGY3NluSsNRDyLG5jUi+4yEVj7SO0LFC5CjkWlJCiaxQ
yvLUttTmVlGR0HcURoMnSTmGXDFGOcZ4MWaM7YfPX/BR9Ql19pMgCMLsO+p3
hyYHnH+2oTDeyUOd/XIP3v66Muo70YePaDbhu84TjA2fBznO7DFIfljEaeb2
428nxlvoigRjjbFgspMzjoVufD2mygjkumTmxxavop/3rpfG96bhUEps14zD
MLgWa8eVGaziulNvmasxr0D6jXD2Wi4PAqhH3LZ2ivD0gfC2YV02NnJVpRz9
STTwmNM/6CHCK+XRxklVfHzd3SwZxeGgcr7aLU8rIfrtaxpKsR4FQwXHvzSK
SPxiTVGo+mEFXferbqcWL2N1f5n/xsJWUM5ITLxsuYwRin3+HCEJEkSOn9iC
i8paUt2dLxbxSbLg+c0WPgZriWZ1SB64RqbtvT+3gDvYRKf74ArQAgaTHLe+
BgXCpKntywKScqVF8dQZwMXlkKBUEuTkAxtXqvn49x4pUX0FGx/T4w+8F6/A
si3fYdqKh5d88r0pClNoaBlY0HNZjOV51zW3M+ew3SGoMo0vwA7LUqV9m0hU
rQ9tYAVOowATr3ue5YL1jsJ3b76J0bDE+/yQ5BTaO4eod4kIRvQFdmzVBhaU
WP/xetJzEvtM0G71FyHYMfTP1NrPgnburtxt/hx8+almb+cNAahIq/+pMkZi
CXtCjvZpAj1vu48Qdb3gGxnHrJwRw0hUxLxy6BhOjj4bMlZYxWxlH6PtavNg
3jbwXldmBKvZjHr3F4/RW1ujItxYgrFpm8nTWtNBjHwROWHrS2EkxTtdEbpx
MDFT6WpqdB86Kyadqq0j6LScp+m6MY1wY8mys+H0B1zqvVskkzOMBR16rJ6T
BF3q41F1pYX/UP1p3H07N4IuG5MHJ+K4uLNJ8mjBfAKmmzUh8zAfEk8EyxQT
a3is9MGvhNVzOOwS1Ru9RmJbcO36jP1CEJpnSdTmNcBP1t1698opDP9bpjTt
9aPwuc7NuyahGZzd+YZ+TwTQZrFE2RNAgnjL5XQteAuNsVU+1Te4oGtRndrR
LwavMrf2Yv1eoNhEfTt57hNcbElpP7VXguFlY5wUYfUZaEX9cxs3SzCSb6r2
XczvQXZAoXuXeBgydJSPTksT9DLTHjKDOQTBGlwn1fAxuHOosrxZpg6TDdpL
x48Q9Lp3l8JkP4yDIpPKvBK4Amdl5MzM2SQemzeXl2NxIWE+4MglughdFMPD
qTrz4EsNWe4O+gaYqmtA2q/Bw+TnTtZf2Rghf2EPo2MWMpfGXtWwZjDbcIFV
YiyElpbscUUBD6b1a3PZtktAdVjeouvBA/E5gdRk2DzwdKwMHrz8Aqfta+42
sFZAzyY0gZxcgMb2fXkEvxO8jQwcv9aI8UxBluiu2iIMLFZOSqavokYcrVtm
rgeN3DZmt00twVTggX/GtvJAW+nRgu0jEml1KfT4EAGYmKZdyildxmhlo+Os
1hEQhfzYU04TQpZumKSrgISoZyp2YWZstO3QcnENE8HsBc1NE/c4GKp556r0
DA/skhdnbNJWgZHVrPSBygMaz3uVHjUMaQbH5WQlxEDpqwhQP9cJwqXQdcYV
PAj5qG9R6COGna3V3UKPLmx4VrHw4HcSqxJue0V+/4xpZ5KtF3nYFTTIVnvF
wfqIAE2rKoJ+9tpN6ttrwyBr7r5bmDmJVo4t73U2U+j/bqErVu7m4mI9ltRJ
tcKo2Ktq/QCF7uxEPlGOYwHtoH/+ErUF/gf5tsLu
"],
Polygon3DBox[{{33, 23, 17, 28}, {28, 17, 20}, {17, 8, 10, 20}, {23, 15,
6, 8, 17}, {8, 2, 10}, {10, 2, 4, 12}, {6, 1, 2, 8}, {6, 7, 1}, {7,
9, 3, 1}, {1, 3, 5, 4, 2}, {9, 11, 3}, {3, 11, 14, 5}, {28, 20, 27,
37}, {37, 27, 39}, {27, 25, 35, 39}, {20, 10, 12, 25, 27}, {12, 19,
25}, {25, 19, 31, 35}, {4, 13, 19, 12}, {4, 5, 13}, {5, 14, 21,
13}, {13, 21, 32, 31, 19}, {14, 26, 21}, {21, 26, 36, 32}, {37, 39,
47, 45}, {45, 47, 53}, {47, 49, 55, 53}, {39, 35, 41, 49, 47}, {49,
50, 55}, {55, 50, 48, 54}, {41, 42, 50, 49}, {35, 31, 41}, {31, 32,
42, 41}, {42, 36, 40, 48, 50}, {32, 36, 42}, {36, 26, 29, 40}, {45,
53, 51, 43}, {43, 51, 52, 44, 34, 24, 16, 15, 23, 33}, {53, 55, 54,
52, 51}, {54, 46, 44, 52}, {54, 48, 46}, {48, 40, 38, 46}, {46, 38,
30, 34, 44}, {40, 29, 38}, {38, 29, 22, 30}, {15, 16, 7, 6}, {34, 30,
18, 24}, {24, 18, 9, 7, 16}, {30, 22, 18}, {18, 22, 11, 9}, {33, 28,
37, 45, 43}, {22, 29, 26, 14, 11}}]],
"\"ParagyrateDiminishedRhombicosidodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "ParagyrateDiminishedRhombicosidodecahedron", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[
GraphicsComplex3DBox[{{-0.7074138486784932, -0.2998872468011181, \
-0.15479434163251038`}, {-0.6480925041002644, -0.10870506385028235`,
0.8249657598295737}, {-0.6183599657301097, 0.6430135066064443,
0.1661535905235797}, {-0.6112067488573701, -1.0525251057014975`,
0.4965734715657737}, {-0.16469460666749797`,
0.35720483837581274`, -0.6779442397963589}, {-0.0008162182475573551, \
-0.9938056576704114, -0.29334768055301486`}, {0.16671548432489697`,
0.46752042304967356`, 0.7601715537451216}, {
0.22643953922699017`, -0.5090576456960382, 0.5512671343665216}, {
0.2796776419676163, 1.0145836877807088`, -0.06935089575168729}, {
0.5419030237634378, -0.33671357249348055`, -0.8164975787168633}, {
0.7691587812379855, 0.14803443948089132`, 0.028117236202673368`}, {
0.781521476760963, 0.6337071540306473, -0.8459358279062124}},
Polygon3DBox[{{8, 6, 10, 11}, {7, 8, 11}, {4, 8, 2}, {4, 6, 8}, {11,
12, 9}, {11, 10, 12}, {2, 8, 7}, {7, 11, 9}, {5, 10, 6, 1}, {3, 5,
1}, {12, 5, 9}, {12, 10, 5}, {1, 4, 2}, {1, 6, 4}, {9, 3, 7}, {9, 5,
3}, {3, 2, 7}, {3, 1, 2}}]],
"\"Sphenomegacorona\"",
TooltipStyle->"TextStyling"],
Annotation[#, "Sphenomegacorona", "Tooltip"]& ],
Boxed->False,
ImageSize->{180., 157.2151898734177},
Method->{"ShrinkWrap" -> True},
ViewPoint->{-0.7877228058842967, -3.22007818062047, -0.6786672909325538},
ViewVertical->{0.26734383920302285`, -0.7198310178644582,
0.6406017306879572}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwN0fk/1PkfAPA5zFGxjyySUo7a2r6EbJQc7w9KbouobGoRtpDKLRQdm6+j
ktqkwy1slCv3602b6yubYwrJlWvGMTPEGGP49sPzL3iquPs7eFJIJJLVd9Tv
OPOknVtq6DhFyVVh4+5WJHmKzfbn90Oxg3dAxyAN72LopKXXzqKJ6Ues3rJm
FLVvaMw6g4aNYmhU34lJuOXb9m9v6Ai4d74Nco6XwIOBTD2ZKj7KibjX/5jO
hkpth6mHblRcIKtm23xoHvk5STwy+x8fGW+3P3HFlYo/K19OdzZaRYEPaH5d
uAfFMt/oSa1SsJToskZZixBShCdtSZr1oPbspQtpPQVvXKd1s82aRJjNBKbm
do1A+W0Zg6R8Mh5ed/Pd5QsCMN3aVDwJfOiwac/W1iHh4mG5wq46Dno/XRh3
wnQNCU/Yz2R0rEHZ4NhHVS8hmrc68MBQSgA+R70m7TPXYHH7/WyZ7DVwKarr
8sgaR+wTqtwv61fga/2EZGq3CM3cHJL3XhEirqZySw5lBeje8q9kfanEYzX9
8vyGaSRjaTk/piKCn6/56RxjuaNg/mjpnDqVuMIw6OnPWYaBhJjdii0iSLij
dbSWvoy6/mGGWM0uwflTu8tcTnPBmaJpxFGnENX6MmuNr5eg17FHsTJMCB6W
p0wdbolh707Zz9IVAljtEoPyMRqx6/fDDtZVY3DpumHgEY0FKHmQdLXfRYAc
DMeTus6RsbzxepnSoHmoqSJyPKvIxDztOe/OtSWwH2W3PqmegxhF+lVFEwYx
YRiavqe6HZWUZdzwfjMHzj4NQdPf32rz7CKMr/NRU3T5ngFXLvQVGNen8ylE
ZFtojWzsEvpUK7nZfmwW3KMv5r29tQKLs982uJZTCM2hSnI4axYqJpej8t7z
4ZDvTzoqTAlcdFFKSeAzDc3UU/7nnfohccu2qPAjdOLMWXPjtEgOzD1WDkF4
El1+5Rx6r4CGD/z2ztxn0zgcr+aZN7xthaTnktyUAjr2NpCzv3J4FAJVpwpe
7FiDPp58Y18ECTPObzzeHD4M+dLPaXYMOvELq+Givx0PCveXDrdJDgDNs1IX
Yyreu8S0MWKvoO2s+y7Jz3vhgpvW3bwmOrEcIatmsTqFoiykk9zZnWDSXcLh
Tc+DBuOr1Uw7nVh1+6Mi9PkHGO20MhzVpeMtO5e8apSmUXUuty+U0Q7qLrn/
WC4wCO2PCgeMCyuhe8D5kLzeBUi0Szu23EslvrD2x+qGiJDFC7PT9zeUIQPx
wmvc04dMIrCiqScDW3QEpfo/LUfqE17d2T+yQEPpytm4GgbhmdrU62nTiJZ8
Z5d0VajY8S4Is5uXwX1+XE0804s+hCz88acBA3tvOyCfbdWAOqM/BVfGfkYX
y8SPcrl0IucvKfPUBg5Eb8xIN9IbQv71LpnePRScQH6n8PunNbQnPDqec3gE
LUdF7R//gY5v8fdI/pzOgdcPmGfd8r8iy8zGsKGHQjDTD8vVl6MR9cKj5ZPc
cWSgOZMXZ0vDe7ceJJFWeai+zfpVaiUb1QTkvv7LkkTM3u+U2tFNIi5xVnLj
4qZQ1kUGZWV3F3I2adIdoTCIvG9X0/AcF92WPsnU/jIGGo7SuJdCJ2auqkIc
j4cK44NyGqSGUX6Iu672LA2L34Rq2fw0h0xfntbVQvNo8YehiHNnJIgUZsjh
q+fmkHHLHc+BgxRs+id1740+AdyLNCoVXFpAHJvAjqItEkSXR9/0q24ehK3L
MTmstYj+25NomUEm40gr2WvKmkIkZ92byZoUoOAOjWYn9gIYDaX1ba0nE7HU
Io3jviLkt9mgG00to5k7HZ0j+1fR0/isnM8vRMg/QCBdqsxH4WcCF9NZZHzA
h0OLqHwNN3/dtFkiiQsmRYkV5iEMfOTfTww/NzFScRwfyDgkRiUW1W/UTwih
VnpcNbhfjC6x73bj6HKUb/sfv3wWBaco122/8G4V1a1cd5L1WIYSwuf2Rxsh
pI98+KXw2jh6YlZ30ov9EYrjTcb5WkycxSBL8jXIxPrLVzRs4khEzo7uUpOj
Y9B6NzhRwYxM7Noao/TkmwCe3vt7Z3u1AGXte1IbnkQmiOO2qPHzBATk6q00
Ja9ClO+wYx+DSiS0T0YIB5eQq5uBSdiFOTSS137mWckHRPMQHSQriSFmf7QF
ZZqK707fsHf6TYKg4Y9j+voiNKEm0XojsxElb1KmDtZJEJl2TQ+NW/iwY+Md
ZrkiH15S/o40Vl9CzOSGCsNiNmR4rN92fjMNx5ffS3jGphEKr7Ki48154MKI
EFV7cNBpuUJx8hqdKNzw/lJY6xSqWiyfXWZ9RWWwT6WqbR7pbDX68VdbEVhq
7fDgB1LwI12dOAVDBuEV6bcvuW8KFBpmTzoZvwXep3Z9dwUmMciNrCnVqYVv
AXW7iwsG0f8BsTKi5Q==
"],
Polygon3DBox[{{69, 65, 60, 57, 59, 63, 68, 72, 75, 74}, {71, 74, 75}, {
41, 44, 52, 61, 69, 74, 71, 64, 54, 46}, {55, 54, 64}, {61, 65,
69}, {55, 64, 71, 75, 72, 66, 56, 51, 48, 49}, {44, 40, 52}, {50, 57,
60}, {21, 31, 42, 53, 59, 57, 50, 38, 28, 20}, {29, 28, 38}, {53,
63, 59}, {37, 47, 56, 66, 68, 63, 53, 42, 36, 33}, {31, 36, 42}, {66,
72, 68}, {51, 56, 47}, {3, 7, 12, 16, 17, 15, 10, 5, 2, 1}, {4, 1,
2}, {29, 26, 18, 9, 3, 1, 4, 11, 20, 28}, {21, 20, 11}, {9, 7, 3}, {
44, 41, 35, 23, 12, 7, 9, 18, 30, 40}, {26, 30, 18}, {23, 16, 12}, {
46, 35, 41}, {27, 15, 17}, {47, 37, 24, 13, 10, 15, 27, 39, 48,
51}, {49, 48, 39}, {13, 5, 10}, {33, 24, 37}, {6, 14, 22, 19, 8}, {
14, 6, 5, 13}, {14, 13, 24}, {22, 14, 24, 33}, {22, 33, 36}, {19, 22,
36, 31}, {19, 31, 21}, {8, 19, 21, 11}, {4, 8, 11}, {6, 8, 4, 2}, {
6, 2, 5}, {25, 32, 43, 45, 34}, {32, 25, 16, 23}, {32, 23, 35}, {43,
32, 35, 46}, {43, 46, 54}, {45, 43, 54, 55}, {45, 55, 49}, {34, 45,
49, 39}, {27, 34, 39}, {25, 34, 27, 17}, {25, 17, 16}, {73, 67, 58,
62, 70}, {67, 73, 52, 40}, {67, 40, 30}, {67, 30, 26, 58}, {58, 26,
29}, {58, 29, 38, 62}, {62, 38, 50}, {62, 50, 60, 70}, {70, 60,
65}, {70, 65, 61, 73}, {73, 61, 52}}]],
"\"TriaugmentedTruncatedDodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "TriaugmentedTruncatedDodecahedron", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwBSQS2+yFib1JlAgAAAC0AAAADAAAAKM2zVC+8AMBvYtYRikHdP7NX/u6n
hd0/5x6NixKMAMDPasgR1ljiP9xR/CtiA+G/TKLlbZRcAMBdk4LDaLTgv7Cw
r6d9FuU/YGWJc7sOAMDJ+qPN3V/Vv7xECZfwUu6/hEMdpcLi/786Zs8Y2izw
v4jF4BXbGsu/nFy3AqjY+b9Ym9hRdkP1P3w/ZsMhY+I/VNXBwPOd+b+bZ+RY
J93kP1ype8qt9/Q/HABqcG54+b8uOEfWfh/3P2R8KsAoxtq/kH8l873e+L9p
uRLnDPDUv8vrk6KCIfg/WDYYPCTo9r+V9ZWGQMTtvzjHDMQWHvi/DK8i+m+t
9r9aYrHoArf5vxZ7iLbzr+i/HVKRxgOH6b/K7AhN/yr8P9avcm3SlO4/d0Om
QpsR6b9GhaKnHFbxP3nhgR+GEPs/VV4g3Z9P6L+qN2E7PC3/P15FRtGb1OS/
oU6sXtam5r+tLCL0UAbgv9P4YeltFwBAdwP3yy/54b/ti1H+eZrvvxKAmqXY
8/+//xBZVTc74b+PIuc07qkAwJr9iHfRzem/16ipF5Q10b9s6a6xtiUBQM6F
xzCvX8k/Fk0vRaSdzb9/sUdNrb/XP669W1yB/wBAWOEkp2a/g7/eXnlTbjP7
vy/mZAxcBfm/yuPVEBz6qD/ChLwM2mP5P9ld6WbCV/c/1VjIeMY7vD98bIN/
H0L+P4jbMMoPQPK/Lvr/AEnjxT9F8lv2A0Dvv12wQ/Lsn/8/aTx5bxpQ0T/Z
GTto/v3ev96BGS9O1gHAJT+LZNy20z+ZVg3VgA0CwLHjUS4+ZtO/x9vJe9t7
4j/OahEjSIT/P3rtkSyecuY/Uc5n8tM54z+X19dwUfvrP8H3HgA/Rv4/EJVk
oE484z/TA8BTKLAAQJsg0+0vp9K/3HmgjT+45D/kZq/c4s66vxKdG+wJuABA
4zMOJR7y5T9qcKGv9rf0P2gAuUKuNPu/myc1lnfj5z9G9Q/LKir5v4SLu3lO
q/Y/iBkdhXrn5z/f8FDNUM7YP/a8H7w67gDAfCmRA0SQ6T/vCA9BaH4AwMg0
T4ZoeeE/NQ4XaT9S6j9GX1/usCXzv+Fp/cQfvvy/7xwC7afH6j/+xsWTk/r9
v0XgNNwC+PC/fBRbDcJN9z8QiPShbuf3P9xqkWvAVOU/0ptQT3aI9z9DQRz5
FyXqP/U+kR59cPY/+XCon/ut9z/sJGMmd8P5P7El1G/r4tS/kPHsHKxH+D/S
DEZNV8DEv0SBqfZRmvk/AHJW1mGE+D9sCFVv0fDxP4X6iBJVJ/O/l2T0TFpC
+T/O9fVlbRzxv9IHI8GK8vI/4+RdBhB/+T8uoj6Yd2PLPwx0D0gcz/m/oWWi
g8AY+j9aEgQdE+/4v5taPCrCD9Q/rDr600U++j+lG17mT3zov8Ax929Hpfa/
DcLvFfp4+j9ydZWYChP3v2ZQXQ5VvuW/YrNGqg==
"],
Polygon3DBox[{{36, 38, 28, 26}, {26, 28, 18}, {28, 22, 14, 18}, {38,
40, 30, 22, 28}, {2, 8, 14, 22, 30, 32, 24, 16, 10, 4}, {26, 18, 12,
21}, {21, 12, 13}, {12, 6, 7, 13}, {18, 14, 8, 6, 12}, {6, 1, 7}, {7,
1, 3, 9}, {8, 2, 1, 6}, {2, 4, 5, 3, 1}, {4, 10, 11, 5}, {21, 13,
19, 27}, {27, 19, 29}, {19, 15, 23, 29}, {13, 7, 9, 15, 19}, {33, 31,
23, 15, 9, 3, 5, 11, 17, 25}, {27, 29, 39, 37}, {37, 39, 41, 43, 45,
44, 42, 40, 38, 36}, {29, 23, 31, 41, 39}, {31, 33, 43, 41}, {33,
25, 35, 45, 43}, {25, 17, 20, 35}, {40, 42, 32, 30}, {45, 35, 34,
44}, {44, 34, 24, 32, 42}, {35, 20, 34}, {34, 20, 16, 24}, {36, 26,
21, 27, 37}, {20, 17, 11, 10, 16}}]],
"\"TridiminishedRhombicosidodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "TridiminishedRhombicosidodecahedron", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}], ",",
Graphics3DBox[
TagBox[
TooltipBox[GraphicsComplex3DBox[CompressedData["
1:eJwNlHk8FHgYxmeSQlEqu6EVSo5oKmHleIePoxpUVtS2KdaRI1PakFXrWHSJ
MCpR7JK7IlE53okU5YgkK9eQXBlmnDMY+/vj/ef9633e53m+Kq5Me/dlFArF
mIwYmULfjcFOEVS21tmGl3yNTjwtd4t1r+4afhQdYmQNUtgBG/NZ1JhPIFqZ
c178zFeUNaxWDi+lsL+PSe+sqH0D5h/iYz2uDkGTy43FZkUKW7HfKkYzhgsj
M503lZSqoDJMcKNFbBHjA3dY+q2YRL4j/Vi/FAdyLxvfbGMvYJHN/eyfOiZx
/psVS7WlC4MVDnao+84jq4zfq2vVh3XPErc/X5oCqy1M4fvN82jF2awrqp0E
068Rp3Yzh5C7S8dEvE6ILnIDqmJecZCQUDOunzGLB2Q2B8aw5nDmudHJmS3t
wDs3JrNTXwCuq4ozRNmz6P6DycnTj7m4vehp8sD4NMr4hjDKU2fQsd/ABbcK
wTtAvUhMug88nIRp4fJTONodWlxtNwbVVF0P20wB7nWR5kt94yFXYaV/md8U
nEgxypTXmwV7u2jjr5E8TIqbq9HIEsGfYenVvh8/ob6Gy9BnSx4qjIdHynQv
osIaH1bujT7YppYx/GUZD81f84cqCkWYF8DblNjYgTqmnSvPu41hzT2Wbmz5
KFI1KaFvAxbBUrAqwCFrFI+OOYnLBFVAQb22t4o/hV3wuwFFom0QXy6bZDrQ
hKjoeH+BSpvGBrUQM9PSQWznfB4UdRYDyz+/8EEbha6WL29p7TmAemY5pY8i
RnGy1PovHm0JU7Oz/qbe5GBARMraAbEl2L36fQmrmQs1VyaNqtp7MbnyWYLG
IyG63/pPtsVgBoYpWsVNae3o7CJtWXhsBnwmzibq0ObxKkd7nf+TVvQpcgtS
9BwHXsDod438JZB0Cx3eat6CsSac+nAlCt20fk6r0WsMBQ9X25ZsaUYdBdW6
CyVU9sejvJYM/XJYJ3H8jdXFBoxQbbRQr6bStxWfY5cXFMB+5xdqIRmXcIBf
8G/a+n5MVy4NlTWg0ktvdQwHZVyC6xyLJLKHxWpGGNmzG3/2SvO93QRW6xme
pfuEYCv4QOvomYUdXDElTmYTSFmIf5ZSWcAvx318DPOmMXoorpPcCbwwow/k
TvY704ca5E5Q9zARJ7pgoLohkujCpxUbuEQXBkbuzSJ/AK2RVwzyB8zJsU4g
fwDaj7VdHUc5MLDV5GT0KIX9np1wIorfhcxLA7Ebmf2gdMJnXOg5BZP2sN49
bx6duOmmxBfIo9FziS+gdk7pMvEFGNEeUn73v0FjxKDdQYYI3tCcjU1cuQin
lxsRf0HDW/mXpc5i5MmZFRF/2bRUlaQdLkPQQ7WUtXlHodvMpTek2qZAglEi
k+QHsgPTzpL84H7NO14kP/RTv+1J2jc0ATOLG4wSu+dBa/BiUgqMgR+TYUjy
DPbyBfUkzxjpsVBJ8gybBoN13nbxYe+2IFMtfwFarw0taYicwO4qyevqclOg
d+Wpw6+SI6jor2lYESXEuKDKVNIj0JsYfkV6hNJlku6kRzAn4f0l6sI0HD9s
a/RMuR9WJWu4h40IMUQ7KJ30FEaXtx4mPYUzPtfukp6Co4rokJrkHJSsaEpW
iRNA2ZFLS8ZDHUg3U3EgHIAH2q93EQ6g+MInAeEA2FjozhJuQJ9XqyHhBgod
dzkTbsDEgb5Zk9J5qJrOtbEwn8ES3d7g6H/qsfEB5TrhEqx4PZxOuAR69elx
hEvw5DZv35rHi9CaKVG+Yc8rZPQ2GS5VT2Ktb3Pmop0IthcNKoWFDoOzsqSx
JH8U3bL6nAk/6SNJd6MIP/HlSA6L8BOq4qUOnNKl0t95tc/L+/fgny1qt1OP
tKHrH/GRhMN0x8s9LwiH4Y5jTWpa3TX4HyWv/s4=
"],
Polygon3DBox[{{19, 13, 25, 31}, {31, 25, 38}, {25, 27, 40, 38}, {13, 8,
15, 27, 25}, {15, 29, 27}, {27, 29, 42, 40}, {12, 23, 29, 15}, {12,
14, 23}, {14, 26, 32, 23}, {23, 32, 44, 42, 29}, {26, 39, 32}, {32,
39, 50, 44}, {31, 38, 49, 41}, {49, 57, 56}, {57, 60, 59, 56}, {38,
40, 51, 57, 49}, {60, 58, 59}, {59, 58, 53, 54}, {51, 55, 60, 57}, {
40, 42, 51}, {42, 44, 55, 51}, {55, 50, 52, 58, 60}, {44, 50, 55}, {
50, 39, 43, 52}, {49, 56, 47, 41}, {41, 47, 35}, {47, 46, 33, 35}, {
56, 59, 54, 46, 47}, {46, 37, 33}, {37, 45, 34, 28}, {54, 45, 37,
46}, {54, 53, 45}, {58, 52, 48, 53}, {53, 48, 36, 34, 45}, {52, 43,
48}, {48, 43, 30, 36}, {35, 33, 20, 22}, {22, 20, 11}, {20, 17, 6,
11}, {33, 37, 28, 17, 20}, {28, 16, 17}, {17, 16, 5, 6}, {34, 24, 16,
28}, {34, 36, 24}, {36, 30, 18, 24}, {24, 18, 7, 5, 16}, {30, 21,
18}, {18, 21, 10, 7}, {22, 11, 9, 19}, {19, 9, 13}, {9, 2, 8, 13}, {
11, 6, 1, 2, 9}, {2, 4, 8}, {8, 4, 12, 15}, {1, 3, 4, 2}, {6, 5,
1}, {5, 7, 3, 1}, {3, 10, 14, 12, 4}, {7, 10, 3}, {10, 21, 26, 14}, {
19, 31, 41, 35, 22}, {21, 30, 43, 39, 26}}]],
"\"TrigyrateRhombicosidodecahedron\"",
TooltipStyle->"TextStyling"],
Annotation[#, "TrigyrateRhombicosidodecahedron", "Tooltip"]& ],
Boxed->False,
Method->{"ShrinkWrap" -> True}]}], "}"}]], "Output",
CellLabel->
"Out[282]=",ExpressionUUID->"20fdc361-d441-44f5-941a-9e56d9406a9f"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Convexity check", "Section",ExpressionUUID->"ed7d572c-21e2-4fc5-89c8-6fc0725b86b6"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"bad", "=",
RowBox[{"DeleteCases", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"#", ",",
RowBox[{"ConvexPolyhedronQ", "[",
RowBox[{"PolyhedronData", "[",
RowBox[{"#", ",", "\"\\""}], "]"}], "]"}]}], "}"}],
"&"}], "/@",
RowBox[{"PolyhedronData", "[", "\"\\"", "]"}]}], ",",
RowBox[{"{",
RowBox[{"_", ",", "True"}], "}"}]}], "]"}]}]], "Input",
CellLabel->
"In[285]:=",ExpressionUUID->"1602c045-b142-4409-b23b-7a1d9eb8209d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\<\"AugmentedSphenocorona\"\>", ",", "False"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"Disphenocingulum\"\>", ",", "False"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"GyrateRhombicosidodecahedron\"\>", ",", "False"}], "}"}],
",",
RowBox[{"{",
RowBox[{"\<\"MetabigyrateRhombicosidodecahedron\"\>", ",", "False"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\<\"ParabigyrateRhombicosidodecahedron\"\>", ",", "False"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\<\"TrigyrateRhombicosidodecahedron\"\>", ",", "False"}],
"}"}]}], "}"}]], "Output",
CellLabel->
"Out[285]=",ExpressionUUID->"bd312744-b404-4d72-bac6-278564794700"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Complement", "[",
RowBox[{
RowBox[{"bad", "[",
RowBox[{"[",
RowBox[{"All", ",", "1"}], "]"}], "]"}], ",", "todo"}], "]"}]], "Input",
CellLabel->
"In[287]:=",ExpressionUUID->"60c522b6-f2b2-49e0-b34d-c29079fd8bed"],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellLabel->
"Out[287]=",ExpressionUUID->"3ba70d71-6058-480c-ae42-3e2a49660788"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Sorted", "Section",ExpressionUUID->"a0553b76-41f7-4bfa-8678-96a5cc233b95"],
Cell[CellGroupData[{
Cell["By VertexCount", "Subsection",ExpressionUUID->"883b2f3f-f229-4253-afd6-616762931e51"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"TextGrid", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"#", "[",
RowBox[{"[",
RowBox[{"1", ",", "1"}], "]"}], "]"}], ",",
RowBox[{"#", "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}]}], "}"}], "&"}], "/@",
RowBox[{"SplitBy", "[",
RowBox[{
RowBox[{"SortBy", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",",
RowBox[{"{",
RowBox[{"\"\\"", ",", "\"\<#\>\""}], "}"}]}], "]"}], ",",
"First"}], "]"}], ",", "First"}], "]"}]}], ",",
RowBox[{"Dividers", "\[Rule]", "All"}], ",",
RowBox[{"Alignment", "\[Rule]", "Left"}]}], "]"}]], "Input",
CellLabel->
"In[296]:=",ExpressionUUID->"63a91e85-c8f5-4c19-83e7-0535a7819002"],
Cell[BoxData[
TagBox[GridBox[{
{"5",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\<\"Dipyramid\"\>", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"Pyramid\"\>", ",", "4"}], "}"}]}], "}"}]},
{"6",
RowBox[{"{",
RowBox[{"{",
RowBox[{"\<\"Pyramid\"\>", ",", "5"}], "}"}], "}"}]},
{"7",
RowBox[{"{",
RowBox[{"\<\"AugmentedTriangularPrism\"\>",
",", "\<\"ElongatedTriangularPyramid\"\>", ",",
RowBox[{"{",
RowBox[{"\<\"Dipyramid\"\>", ",", "5"}], "}"}]}], "}"}]},
{"8",
RowBox[{"{",
RowBox[{"\<\"BiaugmentedTriangularPrism\"\>",
",", "\<\"ElongatedTriangularDipyramid\"\>",
",", "\<\"Gyrobifastigium\"\>", ",", "\<\"SnubDisphenoid\"\>"}], "}"}]},
{"9",
RowBox[{"{",
RowBox[{"\<\"ElongatedSquarePyramid\"\>",
",", "\<\"GyroelongatedSquarePyramid\"\>",
",", "\<\"TriangularCupola\"\>",
",", "\<\"TriaugmentedTriangularPrism\"\>",
",", "\<\"TridiminishedIcosahedron\"\>"}], "}"}]},
{"10",
RowBox[{"{",
RowBox[{"\<\"AugmentedTridiminishedIcosahedron\"\>",
",", "\<\"ElongatedSquareDipyramid\"\>",
",", "\<\"GyroelongatedSquareDipyramid\"\>",
",", "\<\"MetabidiminishedIcosahedron\"\>",
",", "\<\"Sphenocorona\"\>"}], "}"}]},
{"11",
RowBox[{"{",
RowBox[{"\<\"AugmentedPentagonalPrism\"\>",
",", "\<\"AugmentedSphenocorona\"\>",
",", "\<\"ElongatedPentagonalPyramid\"\>",
",", "\<\"GyroelongatedPentagonalPyramid\"\>"}], "}"}]},
{"12",
RowBox[{"{",
RowBox[{"\<\"BiaugmentedPentagonalPrism\"\>",
",", "\<\"ElongatedPentagonalDipyramid\"\>",
",", "\<\"Sphenomegacorona\"\>", ",", "\<\"SquareCupola\"\>",
",", "\<\"TriangularOrthobicupola\"\>"}], "}"}]},
{"13",
RowBox[{"{", "\<\"AugmentedHexagonalPrism\"\>", "}"}]},
{"14",
RowBox[{"{",
RowBox[{"\<\"Bilunabirotunda\"\>", ",", "\<\"Hebesphenomegacorona\"\>",
",", "\<\"MetabiaugmentedHexagonalPrism\"\>",
",", "\<\"ParabiaugmentedHexagonalPrism\"\>"}], "}"}]},
{"15",
RowBox[{"{",
RowBox[{"\<\"AugmentedTruncatedTetrahedron\"\>",
",", "\<\"ElongatedTriangularCupola\"\>",
",", "\<\"GyroelongatedTriangularCupola\"\>",
",", "\<\"PentagonalCupola\"\>",
",", "\<\"TriaugmentedHexagonalPrism\"\>"}], "}"}]},
{"16",
RowBox[{"{",
RowBox[{"\<\"Disphenocingulum\"\>", ",", "\<\"SnubSquareAntiprism\"\>",
",", "\<\"SquareGyrobicupola\"\>",
",", "\<\"SquareOrthobicupola\"\>"}], "}"}]},
{"18",
RowBox[{"{",
RowBox[{"\<\"ElongatedTriangularGyrobicupola\"\>",
",", "\<\"ElongatedTriangularOrthobicupola\"\>",
",", "\<\"GyroelongatedTriangularBicupola\"\>",
",", "\<\"TriangularHebesphenorotunda\"\>"}], "}"}]},
{"20",
RowBox[{"{",
RowBox[{"\<\"ElongatedSquareCupola\"\>",
",", "\<\"GyroelongatedSquareCupola\"\>",
",", "\<\"PentagonalGyrobicupola\"\>",
",", "\<\"PentagonalOrthobicupola\"\>",
",", "\<\"PentagonalRotunda\"\>"}], "}"}]},
{"21",
RowBox[{"{", "\<\"AugmentedDodecahedron\"\>", "}"}]},
{"22",
RowBox[{"{",
RowBox[{"\<\"MetabiaugmentedDodecahedron\"\>",
",", "\<\"ParabiaugmentedDodecahedron\"\>"}], "}"}]},
{"23",
RowBox[{"{", "\<\"TriaugmentedDodecahedron\"\>", "}"}]},
{"24",
RowBox[{"{",
RowBox[{"\<\"ElongatedSquareGyrobicupola\"\>",
",", "\<\"GyroelongatedSquareBicupola\"\>"}], "}"}]},
{"25",
RowBox[{"{",
RowBox[{"\<\"ElongatedPentagonalCupola\"\>",
",", "\<\"GyroelongatedPentagonalCupola\"\>",
",", "\<\"PentagonalGyrocupolarotunda\"\>",
",", "\<\"PentagonalOrthocupolarotunda\"\>"}], "}"}]},
{"28",
RowBox[{"{", "\<\"AugmentedTruncatedCube\"\>", "}"}]},
{"30",
RowBox[{"{",
RowBox[{"\<\"ElongatedPentagonalGyrobicupola\"\>",
",", "\<\"ElongatedPentagonalOrthobicupola\"\>",
",", "\<\"ElongatedPentagonalRotunda\"\>",
",", "\<\"GyroelongatedPentagonalBicupola\"\>",
",", "\<\"GyroelongatedPentagonalRotunda\"\>",
",", "\<\"PentagonalOrthobirotunda\"\>"}], "}"}]},
{"32",
RowBox[{"{", "\<\"BiaugmentedTruncatedCube\"\>", "}"}]},
{"35",
RowBox[{"{",
RowBox[{"\<\"ElongatedPentagonalGyrocupolarotunda\"\>",
",", "\<\"ElongatedPentagonalOrthocupolarotunda\"\>",
",", "\<\"GyroelongatedPentagonalCupolarotunda\"\>"}], "}"}]},
{"40",
RowBox[{"{",
RowBox[{"\<\"ElongatedPentagonalGyrobirotunda\"\>",
",", "\<\"ElongatedPentagonalOrthobirotunda\"\>",
",", "\<\"GyroelongatedPentagonalBirotunda\"\>"}], "}"}]},
{"45",
RowBox[{"{", "\<\"TridiminishedRhombicosidodecahedron\"\>", "}"}]},
{"50",
RowBox[{"{",
RowBox[{"\<\"GyrateBidiminishedRhombicosidodecahedron\"\>",
",", "\<\"MetabidiminishedRhombicosidodecahedron\"\>",
",", "\<\"ParabidiminishedRhombicosidodecahedron\"\>"}], "}"}]},
{"55",
RowBox[{"{",
RowBox[{"\<\"BigyrateDiminishedRhombicosidodecahedron\"\>",
",", "\<\"DiminishedRhombicosidodecahedron\"\>",
",", "\<\"MetagyrateDiminishedRhombicosidodecahedron\"\>",
",", "\<\"ParagyrateDiminishedRhombicosidodecahedron\"\>"}], "}"}]},
{"60",
RowBox[{"{",
RowBox[{"\<\"GyrateRhombicosidodecahedron\"\>",
",", "\<\"MetabigyrateRhombicosidodecahedron\"\>",
",", "\<\"ParabigyrateRhombicosidodecahedron\"\>",
",", "\<\"TrigyrateRhombicosidodecahedron\"\>"}], "}"}]},
{"65",
RowBox[{"{", "\<\"AugmentedTruncatedDodecahedron\"\>", "}"}]},
{"70",
RowBox[{"{",
RowBox[{"\<\"MetabiaugmentedTruncatedDodecahedron\"\>",
",", "\<\"ParabiaugmentedTruncatedDodecahedron\"\>"}], "}"}]},
{"75",
RowBox[{"{", "\<\"TriaugmentedTruncatedDodecahedron\"\>", "}"}]}
},
AutoDelete->False,
GridBoxAlignment->{"Columns" -> {{Left}}},
GridBoxDividers->{"Columns" -> {{True}}, "Rows" -> {{True}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"TextGrid"]], "Output",
CellLabel->
"Out[296]=",ExpressionUUID->"21695243-6ce3-4265-902b-bd25fcd0b57e"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["By Volume", "Subsection",ExpressionUUID->"6ffc0d5e-8189-4f23-aa0f-5b2e1429a326"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"TextGrid", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"N", "[", "#", "]"}], ",", "#", ",", "#2"}], "}"}], "&"}], "@@@",
RowBox[{"SortBy", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",",
RowBox[{"{",
RowBox[{"\"\\"", ",", "\"\<#\>\""}], "}"}]}], "]"}], ",",
RowBox[{
RowBox[{"N", "[",
RowBox[{"First", "[", "#", "]"}], "]"}], "&"}]}], "]"}]}], ",",
RowBox[{"Dividers", "\[Rule]", "All"}], ",",
RowBox[{"Alignment", "\[Rule]", "Left"}]}], "]"}]], "Input",
CellLabel->
"In[305]:=",ExpressionUUID->"7a60b1b5-7f2e-440b-96d0-5d79004c3dcd"],
Cell[BoxData[
TagBox[GridBox[{
{"0.2357022603955158`",
FractionBox["1",
RowBox[{"3", " ",
SqrtBox["2"]}]],
RowBox[{"{",
RowBox[{"\<\"Dipyramid\"\>", ",", "3"}], "}"}]},
{"0.2357022603955158`",
FractionBox["1",
RowBox[{"3", " ",
SqrtBox["2"]}]],
RowBox[{"{",
RowBox[{"\<\"Pyramid\"\>", ",", "4"}], "}"}]},
{"0.30150283239582454`",
RowBox[{
FractionBox["1", "24"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}],
RowBox[{"{",
RowBox[{"\<\"Pyramid\"\>", ",", "5"}], "}"}]},
{"0.5508638320899772`",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "+",
RowBox[{"3", " ",
SqrtBox["3"]}]}], ")"}]}], Cell[
"ElongatedTriangularPyramid",ExpressionUUID->
"df9fe725-e85a-4230-b1e4-abf1854a6912"]},
{"0.6030056647916491`",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}],
RowBox[{"{",
RowBox[{"\<\"Dipyramid\"\>", ",", "5"}], "}"}]},
{"0.6687149622877351`",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"]}], "+",
RowBox[{"3", " ",
SqrtBox["3"]}]}], ")"}]}], Cell[
"AugmentedTriangularPrism",ExpressionUUID->
"d3611dfd-59da-4ae7-a164-f79fff397c5f"]},
{"0.6687149622877351`",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"]}], "+",
RowBox[{"3", " ",
SqrtBox["3"]}]}], ")"}]}], Cell[
"ElongatedTriangularDipyramid",ExpressionUUID->
"10d9cbc7-3881-4f20-be07-88c5c7154397"]},
{"0.8594936461913005`",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "4"}], "-",
RowBox[{"2160", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"1377", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"5832", " ",
SuperscriptBox["#1", "6"]}]}], "&"}], ",", "2"}], "]"}], Cell[
"SnubDisphenoid",ExpressionUUID->"9da28425-4834-4acb-b3e8-b6450d896dba"]},
{"0.8660254037844386`",
FractionBox[
SqrtBox["3"], "2"], Cell[
"Gyrobifastigium",ExpressionUUID->
"961bb79c-91a3-4a2b-be91-04d10879e7f7"]},
{"0.904417222683251`",
SqrtBox[
RowBox[{
FractionBox["59", "144"], "+",
FractionBox["1",
SqrtBox["6"]]}]], Cell[
"BiaugmentedTriangularPrism",ExpressionUUID->
"c1fba157-74f5-44a9-8f38-8e918c2ff036"]},
{"1.1401194830787666`",
RowBox[{
FractionBox["1",
SqrtBox["2"]], "+",
FractionBox[
SqrtBox["3"], "4"]}], Cell[
"TriaugmentedTriangularPrism",ExpressionUUID->
"99c62709-cd46-4972-9dcd-21151b636d65"]},
{"1.1785113019775793`",
FractionBox["5",
RowBox[{"3", " ",
SqrtBox["2"]}]], Cell[
"TriangularCupola",ExpressionUUID->
"793a295a-ec61-4344-bba3-1e7821797315"]},
{"1.1927022422322324`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"4", "+",
RowBox[{"3", " ",
SqrtBox["2"]}]}]]}]}], ")"}]}], Cell[
"GyroelongatedSquarePyramid",ExpressionUUID->
"0b857b56-5550-4a27-9e55-e9619ceee982"]},
{"1.2357022603955157`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"6", "+",
SqrtBox["2"]}], ")"}]}], Cell[
"ElongatedSquarePyramid",ExpressionUUID->
"bd2f43c3-3b07-4fab-ad94-f05065879072"]},
{"1.2771864934374388`",
RowBox[{
FractionBox["5", "8"], "+",
FractionBox[
RowBox[{"7", " ",
SqrtBox["5"]}], "24"]}], Cell[
"TridiminishedIcosahedron",ExpressionUUID->
"6cb087d9-27d5-4866-97cf-12334a8cb807"]},
{"1.3950376236351965`",
RowBox[{
FractionBox["1", "24"], " ",
RowBox[{"(",
RowBox[{"15", "+",
RowBox[{"2", " ",
SqrtBox["2"]}], "+",
RowBox[{"7", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"AugmentedTridiminishedIcosahedron",ExpressionUUID->
"cf6b6a79-b9be-4ef5-8eae-2c64b1d4fd2e"]},
{"1.4284045026277483`",
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "+",
SqrtBox[
RowBox[{"4", "+",
RowBox[{"3", " ",
SqrtBox["2"]}]}]]}], ")"}]}], Cell[
"GyroelongatedSquareDipyramid",ExpressionUUID->
"6d9185b6-e7d3-48b8-8197-c7a22114c66f"]},
{"1.4714045207910316`",
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["2"]}], ")"}]}], Cell[
"ElongatedSquareDipyramid",ExpressionUUID->
"04de1f13-8e57-463f-954d-2677ef60cb6b"]},
{"1.5153516399764064`",
RowBox[{
FractionBox["1", "2"], " ",
SqrtBox[
RowBox[{"1", "+",
RowBox[{"3", " ",
SqrtBox[
FractionBox["3", "2"]]}], "+",
SqrtBox[
RowBox[{"13", "+",
RowBox[{"3", " ",
SqrtBox["6"]}]}]]}]]}], Cell[
"Sphenocorona",ExpressionUUID->"77f7d371-0571-4246-9d22-a3b0d00f17dd"]},
{"1.5786893258332633`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"MetabidiminishedIcosahedron",ExpressionUUID->
"902cf1d0-ec27-473d-81fe-5715c8739acd"]},
{"1.75105`", "1.75105`", Cell[
"AugmentedSphenocorona",ExpressionUUID->
"615e22d2-f5b2-40e9-aec1-5d47c8a325d9"]},
{"1.8801921582290877`",
RowBox[{
FractionBox["1", "24"], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"9", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"GyroelongatedPentagonalPyramid",ExpressionUUID->
"3f40a253-1e68-46b6-8314-073d942ead92"]},
{"1.9428090415820634`",
RowBox[{"1", "+",
FractionBox[
RowBox[{"2", " ",
SqrtBox["2"]}], "3"]}], Cell[
"SquareCupola",ExpressionUUID->"e569c7fc-3ee1-4de1-aeb5-2869a9314d7b"]},
{"1.94833`", "1.94833`", Cell[
"Sphenomegacorona",ExpressionUUID->
"a88ec5d8-7200-4576-9e5a-1c851dd14132"]},
{"1.9561796609844828`",
RowBox[{
FractionBox["1", "12"], " ",
SqrtBox[
RowBox[{"233", "+",
RowBox[{"90", " ",
SqrtBox["5"]}], "+",
RowBox[{"12", " ",
SqrtBox[
RowBox[{"50", "+",
RowBox[{"20", " ",
SqrtBox["5"]}]}]]}]}]]}], Cell[
"AugmentedPentagonalPrism",ExpressionUUID->
"9952346c-6b44-4a27-abc8-42fe321b451c"]},
{"2.0219802329847916`",
RowBox[{
FractionBox["1", "24"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"], "+",
RowBox[{"6", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]]}]}], ")"}]}], Cell[
"ElongatedPentagonalPyramid",ExpressionUUID->
"0fe8daad-c816-4c40-9807-687422baf323"]},
{"2.1918819213799985`",
RowBox[{
FractionBox["1", "12"], " ",
SqrtBox[
RowBox[{"257", "+",
RowBox[{"90", " ",
SqrtBox["5"]}], "+",
RowBox[{"24", " ",
SqrtBox[
RowBox[{"50", "+",
RowBox[{"20", " ",
SqrtBox["5"]}]}]]}]}]]}], Cell[
"BiaugmentedPentagonalPrism",ExpressionUUID->
"dc54f4db-c629-42ec-ad6e-50350efeac9a"]},
{"2.323483065380616`",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"], "+",
RowBox[{"3", " ",
SqrtBox[
RowBox[{"5", " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}], ")"}]}]]}]}], ")"}]}], Cell[
"ElongatedPentagonalDipyramid",ExpressionUUID->
"77548b1a-aad6-4ae8-90d7-4c7230ba3cea"]},
{"2.324045318333193`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"4", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"PentagonalCupola",ExpressionUUID->
"c25e6572-7865-4259-b8dc-ac14a5229a96"]},
{"2.3570226039551585`",
FractionBox[
RowBox[{"5", " ",
SqrtBox["2"]}], "3"], Cell[
"TriangularOrthobicupola",ExpressionUUID->
"8bf228f2-62ec-4ec4-9932-a2601374e952"]},
{"2.8337784717488312`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{
SqrtBox["2"], "+",
RowBox[{"9", " ",
SqrtBox["3"]}]}], ")"}]}], Cell[
"AugmentedHexagonalPrism",ExpressionUUID->
"8a35fcdc-e14b-4a1c-a8e5-825be85ce1de"]},
{"2.9129`", "2.9129`", Cell[
"Hebesphenomegacorona",ExpressionUUID->
"17ad8eef-0181-4427-bf21-9a713fe836fb"]},
{"3.0694807321443474`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"]}], "+",
RowBox[{"9", " ",
SqrtBox["3"]}]}], ")"}]}], Cell[
"MetabiaugmentedHexagonalPrism",ExpressionUUID->
"a8d6d5ac-3561-45ba-8969-c81aef3eeeee"]},
{"3.0694807321443474`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SqrtBox["2"]}], "+",
RowBox[{"9", " ",
SqrtBox["3"]}]}], ")"}]}], Cell[
"ParabiaugmentedHexagonalPrism",ExpressionUUID->
"339bae4f-9a42-4ca9-b9a1-5da3175463fe"]},
{"3.0937176497915084`",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{"17", "+",
RowBox[{"9", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"Bilunabirotunda",ExpressionUUID->
"7f299a00-0261-49c0-8d8e-501a32136f87"]},
{"3.3051829925398635`",
RowBox[{
FractionBox["1",
SqrtBox["2"]], "+",
FractionBox[
RowBox[{"3", " ",
SqrtBox["3"]}], "2"]}], Cell[
"TriaugmentedHexagonalPrism",ExpressionUUID->
"182f5e52-83d8-4804-ada3-fb513d1673ce"]},
{"3.5160530909383145`",
RowBox[{
FractionBox["1", "3"], " ",
SqrtBox[
RowBox[{
FractionBox["61", "2"], "+",
RowBox[{"18", " ",
SqrtBox["3"]}], "+",
RowBox[{"30", " ",
SqrtBox[
RowBox[{"1", "+",
SqrtBox["3"]}]]}]}]]}], Cell[
"GyroelongatedTriangularCupola",ExpressionUUID->
"8b0b0233-c13a-4130-8e00-dac115912628"]},
{"3.6012220097339305`",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "892448"}], "+",
RowBox[{"4759488", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"11588832", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"48347280", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"85726026", " ",
SuperscriptBox["#1", "8"]}], "+",
RowBox[{"531441", " ",
SuperscriptBox["#1", "12"]}]}], "&"}], ",", "6"}], "]"}], Cell[
"SnubSquareAntiprism",ExpressionUUID->
"a6e2e6e8-1d94-4cbd-ba58-0e44e97a30b8"]},
{"3.7765875133308953`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"5", " ",
SqrtBox["2"]}], "+",
RowBox[{"9", " ",
SqrtBox["3"]}]}], ")"}]}], Cell[
"ElongatedTriangularCupola",ExpressionUUID->
"38274a82-5d88-4b4a-805f-eeec539cd1f3"]},
{"3.77763`", "3.77763`", Cell[
"Disphenocingulum",ExpressionUUID->
"9eff5d19-e99b-4704-b71a-1aa4c5dd06db"]},
{"3.8856180831641267`",
RowBox[{"2", "+",
FractionBox[
RowBox[{"4", " ",
SqrtBox["2"]}], "3"]}], Cell[
"SquareGyrobicupola",ExpressionUUID->
"74a5187c-9912-4ff0-b658-6085c971a007"]},
{"3.8856180831641267`",
RowBox[{"2", "+",
FractionBox[
RowBox[{"4", " ",
SqrtBox["2"]}], "3"]}], Cell[
"SquareOrthobicupola",ExpressionUUID->
"ea0a9755-fcfc-4db1-9f5a-2c8ee2b6a495"]},
{"3.889087296526011`",
FractionBox["11",
RowBox[{"2", " ",
SqrtBox["2"]}]], Cell[
"AugmentedTruncatedTetrahedron",ExpressionUUID->
"812476dc-7161-40d5-8eab-74213bbb63a6"]},
{"4.648090636666386`",
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"4", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"PentagonalGyrobicupola",ExpressionUUID->
"d084082b-d470-4f01-81e7-b9e4127901af"]},
{"4.648090636666386`",
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"4", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"PentagonalOrthobicupola",ExpressionUUID->
"9e17d0be-3e02-43b6-ab9b-68fc39563ed0"]},
{"4.694564392915893`",
RowBox[{
FractionBox["1", "3"], " ",
SqrtBox[
RowBox[{"68", "+",
RowBox[{"18", " ",
SqrtBox["3"]}], "+",
RowBox[{"60", " ",
SqrtBox[
RowBox[{"1", "+",
SqrtBox["3"]}]]}]}]]}], Cell[
"GyroelongatedTriangularBicupola",ExpressionUUID->
"803e6cf1-2f14-4038-959c-ffb6f6208d2b"]},
{"4.9550988153084745`",
RowBox[{
FractionBox[
RowBox[{"5", " ",
SqrtBox["2"]}], "3"], "+",
FractionBox[
RowBox[{"3", " ",
SqrtBox["3"]}], "2"]}], Cell[
"ElongatedTriangularGyrobicupola",ExpressionUUID->
"cdca26d4-b2fb-4a67-a8bb-d18912e92c37"]},
{"4.9550988153084745`",
RowBox[{
FractionBox[
RowBox[{"5", " ",
SqrtBox["2"]}], "3"], "+",
FractionBox[
RowBox[{"3", " ",
SqrtBox["3"]}], "2"]}], Cell[
"ElongatedTriangularOrthobicupola",ExpressionUUID->
"77ca65d4-5008-48aa-95de-c4bd7859b317"]},
{"5.108745973749755`",
RowBox[{
FractionBox["5", "2"], "+",
FractionBox[
RowBox[{"7", " ",
SqrtBox["5"]}], "6"]}], Cell[
"TriangularHebesphenorotunda",ExpressionUUID->
"3498266b-d781-437d-83d7-a234baef9d8f"]},
{"6.2107657920392`",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "3391"}], "-",
RowBox[{"178632", " ", "#1"}], "+",
RowBox[{"1537020", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"396360", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"1616922", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"9720", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"113724", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"52488", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"6561", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Cell[
"GyroelongatedSquareCupola",ExpressionUUID->
"d67d8bd8-7206-4bef-8887-bd8c79bc7453"]},
{"6.771236166328253`",
RowBox[{"3", "+",
FractionBox[
RowBox[{"8", " ",
SqrtBox["2"]}], "3"]}], Cell[
"ElongatedSquareCupola",ExpressionUUID->
"bff00acb-094e-46d7-93b7-16626eff93db"]},
{"6.917762968124702`",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{"45", "+",
RowBox[{"17", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"PentagonalRotunda",ExpressionUUID->
"7af3a58d-6a0b-4332-b65c-315980b718b4"]},
{"7.964621793020457`",
RowBox[{
FractionBox["1", "24"], " ",
RowBox[{"(",
RowBox[{"95", "+",
RowBox[{"43", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"AugmentedDodecahedron",ExpressionUUID->
"ecd1f245-5cc2-489b-952c-ced29424da9b"]},
{"8.153574833621274`",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"4352", "-",
RowBox[{"119808", " ", "#1"}], "+",
RowBox[{"246528", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"1569024", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"552096", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"1384128", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"594864", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"104976", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"6561", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "6"}], "]"}], Cell[
"GyroelongatedSquareBicupola",ExpressionUUID->
"37335f82-5203-437f-8127-4aec038c4bec"]},
{"8.266124625416282`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"11", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"MetabiaugmentedDodecahedron",ExpressionUUID->
"1d0fa60e-3528-407e-a687-37dba8f7b58d"]},
{"8.266124625416282`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"25", "+",
RowBox[{"11", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"ParabiaugmentedDodecahedron",ExpressionUUID->
"65e4c990-2962-4fe8-b5e8-3620bb0e6a7a"]},
{"8.567627457812106`",
RowBox[{
FractionBox["5", "8"], " ",
RowBox[{"(",
RowBox[{"7", "+",
RowBox[{"3", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"TriaugmentedDodecahedron",ExpressionUUID->
"85c91b22-3120-4b75-870c-db0847903f13"]},
{"8.714045207910317`",
RowBox[{"4", "+",
FractionBox[
RowBox[{"10", " ",
SqrtBox["2"]}], "3"]}], Cell[
"ElongatedSquareGyrobicupola",ExpressionUUID->
"f4e907a2-5539-4619-890e-cd6e33e56e70"]},
{"9.073333193880188`",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"5340175625", "+",
RowBox[{"13859430000", " ", "#1"}], "+",
RowBox[{"3828402000", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"10714248000", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"4456749600", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"35769600", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"27060480", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"11197440", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"1679616", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Cell[
"GyroelongatedPentagonalCupola",ExpressionUUID->
"5046870b-16f5-4ee2-bfe8-1f62e8b074aa"]},
{"9.241808286457896`",
RowBox[{
FractionBox["5", "12"], " ",
RowBox[{"(",
RowBox[{"11", "+",
RowBox[{"5", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"PentagonalGyrocupolarotunda",ExpressionUUID->
"a8b3a1e6-744f-4e8c-bbee-8a647f7eb6d6"]},
{"9.241808286457896`",
RowBox[{
FractionBox["5", "12"], " ",
RowBox[{"(",
RowBox[{"11", "+",
RowBox[{"5", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"PentagonalOrthocupolarotunda",ExpressionUUID->
"f744323a-98f7-4597-91cb-8657c8e9d9aa"]},
{"10.018254161271326`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"5", "+",
RowBox[{"4", " ",
SqrtBox["5"]}], "+",
RowBox[{"15", " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[
"ElongatedPentagonalCupola",ExpressionUUID->
"a27eda73-e9f6-48c0-8b4b-6803ae0b8d11"]},
{"11.39737851221338`",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"35547500", "+",
RowBox[{"8715000", " ", "#1"}], "-",
RowBox[{"85909500", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"84591000", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"22424850", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"753300", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"313470", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"87480", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"6561", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Cell[
"GyroelongatedPentagonalBicupola",ExpressionUUID->
"c38474f3-1ddd-4302-9299-31a4e74b753c"]},
{"12.34229947960452`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"10", "+",
RowBox[{"8", " ",
SqrtBox["5"]}], "+",
RowBox[{"15", " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[
"ElongatedPentagonalGyrobicupola",ExpressionUUID->
"161a7c6c-aff3-434e-80db-6bc2231f674b"]},
{"12.34229947960452`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"10", "+",
RowBox[{"8", " ",
SqrtBox["5"]}], "+",
RowBox[{"15", " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[
"ElongatedPentagonalOrthobicupola",ExpressionUUID->
"59519d8a-b18d-4e57-bb24-dba523709534"]},
{"13.66705084367169`",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "424924375"}], "+",
RowBox[{"3881385000", " ", "#1"}], "-",
RowBox[{"8894943000", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"4128624000", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"5215460400", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"3520972800", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"603262080", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"50388480", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"1679616", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Cell[
"GyroelongatedPentagonalRotunda",ExpressionUUID->
"1f2c7386-f139-405f-89e4-c325646db93e"]},
{"13.835525936249404`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"45", "+",
RowBox[{"17", " ",
SqrtBox["5"]}]}], ")"}]}], Cell[
"PentagonalOrthobirotunda",ExpressionUUID->
"53c6c0c3-aac4-4d9b-b321-d93052961596"]},
{"14.611971811062833`",
RowBox[{
FractionBox["1", "12"], " ",
RowBox[{"(",
RowBox[{"45", "+",
RowBox[{"17", " ",
SqrtBox["5"]}], "+",
RowBox[{"30", " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[
"ElongatedPentagonalRotunda",ExpressionUUID->
"a8ec20ea-539c-446a-a95b-b7a817091b5d"]},
{"15.542472332656507`",
RowBox[{"8", "+",
FractionBox[
RowBox[{"16", " ",
SqrtBox["2"]}], "3"]}], Cell[
"AugmentedTruncatedCube",ExpressionUUID->
"6ab95f87-5718-4150-9389-869ab3776347"]},
{"15.991096162004869`",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "405859375"}], "-",
RowBox[{"4576875000", " ", "#1"}], "-",
RowBox[{"29019375000", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{"21346200000", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"4745790000", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"5108832000", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"851472000", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"61585920", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"1679616", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Cell[
"GyroelongatedPentagonalCupolarotunda",ExpressionUUID->
"67dfdcf8-d447-4db0-a7cd-8505181474eb"]},
{"16.93601712939603`",
RowBox[{
FractionBox["5", "12"], " ",
RowBox[{"(",
RowBox[{"11", "+",
RowBox[{"5", " ",
SqrtBox["5"]}], "+",
RowBox[{"6", " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[
"ElongatedPentagonalGyrocupolarotunda",ExpressionUUID->
"ccbd3720-b234-466b-8a76-79ee2a5df16b"]},
{"16.93601712939603`",
RowBox[{
FractionBox["5", "12"], " ",
RowBox[{"(",
RowBox[{"11", "+",
RowBox[{"5", " ",
SqrtBox["5"]}], "+",
RowBox[{"6", " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[
"ElongatedPentagonalOrthocupolarotunda",ExpressionUUID->
"d7871508-22a2-4dae-97ce-fc2033a1085a"]},
{"17.48528137423857`",
RowBox[{"9", "+",
RowBox[{"6", " ",
SqrtBox["2"]}]}], Cell[
"BiaugmentedTruncatedCube",ExpressionUUID->
"a1e80380-4de0-4986-8ac2-9673397aeadf"]},
{"20.58481381179634`",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "668786875"}], "+",
RowBox[{"597667500", " ", "#1"}], "+",
RowBox[{"965841750", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"1417189500", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"601832025", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"108207900", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"9316620", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"393660", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"6561", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}], Cell[
"GyroelongatedPentagonalBirotunda",ExpressionUUID->
"3c84f4d7-2f35-4773-91b5-8acbe039b4ae"]},
{"21.52973477918754`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"45", "+",
RowBox[{"17", " ",
SqrtBox["5"]}], "+",
RowBox[{"15", " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[
"ElongatedPentagonalGyrobirotunda",ExpressionUUID->
"bc05ea02-9c16-4245-9504-cb8a313dd4e5"]},
{"21.52973477918754`",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"45", "+",
RowBox[{"17", " ",
SqrtBox["5"]}], "+",
RowBox[{"15", " ",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]]}]}], ")"}]}], Cell[
"ElongatedPentagonalOrthobirotunda",ExpressionUUID->
"1f3905f3-bfa6-4eab-92ab-7eca7bfaa8dc"]},
{"34.6432`", "34.6432`", Cell[
"TridiminishedRhombicosidodecahedron",ExpressionUUID->
"fb12f7b5-c466-40c9-9706-50cb362a563f"]},
{"36.9672`", "36.9672`", Cell[
"GyrateBidiminishedRhombicosidodecahedron",ExpressionUUID->
"041ea118-019f-41dc-8083-ab04adad9015"]},
{"36.9672`", "36.9672`", Cell[
"MetabidiminishedRhombicosidodecahedron",ExpressionUUID->
"e73fe2cb-9367-45dc-b8b2-71fe945ac93e"]},
{"36.9672`", "36.9672`", Cell[
"ParabidiminishedRhombicosidodecahedron",ExpressionUUID->
"182e07fc-2cd3-48c1-9282-c0d4a7d9d60b"]},
{"39.2913`", "39.2913`", Cell[
"BigyrateDiminishedRhombicosidodecahedron",ExpressionUUID->
"75cba786-2ea0-415d-91d0-b19ee0d8950d"]},
{"39.2913`", "39.2913`", Cell[
"DiminishedRhombicosidodecahedron",ExpressionUUID->
"066516da-5061-4bd6-8a5b-4383ee81d95b"]},
{"39.2913`", "39.2913`", Cell[
"MetagyrateDiminishedRhombicosidodecahedron",ExpressionUUID->
"49719526-e046-4c1e-a340-527b1b61744a"]},
{"39.2913`", "39.2913`", Cell[
"ParagyrateDiminishedRhombicosidodecahedron",ExpressionUUID->
"3942d72c-e5eb-4c0b-905f-e6cddf40c1cd"]},
{"41.6153`", "41.6153`", Cell[
"GyrateRhombicosidodecahedron",ExpressionUUID->
"6c884ab9-60aa-4e47-975a-4fe62d7ba7b2"]},
{"41.6153`", "41.6153`", Cell[
"MetabigyrateRhombicosidodecahedron",ExpressionUUID->
"5420e927-3d26-4958-91cd-7506dc951f7f"]},
{"41.6153`", "41.6153`", Cell[
"ParabigyrateRhombicosidodecahedron",ExpressionUUID->
"bf6d5f6d-6e4e-4b20-a30e-53cf5c0535cf"]},
{"41.6153`", "41.6153`", Cell[
"TrigyrateRhombicosidodecahedron",ExpressionUUID->
"16aebb4a-fc2b-48ce-bb85-33229e6e133e"]},
{"87.3637`", "87.3637`", Cell[
"AugmentedTruncatedDodecahedron",ExpressionUUID->
"fdc151a8-902f-47c5-a92e-a4fa1adbfa1e"]},
{"89.6878`", "89.6878`", Cell[
"MetabiaugmentedTruncatedDodecahedron",ExpressionUUID->
"bbb6a1aa-8e87-42d9-8409-8d6a6c77276a"]},
{"89.6878`", "89.6878`", Cell[
"ParabiaugmentedTruncatedDodecahedron",ExpressionUUID->
"3d1d5770-99fc-4d08-b9db-5995f2f8b63c"]},
{"92.0118`", "92.0118`", Cell[
"TriaugmentedTruncatedDodecahedron",ExpressionUUID->
"cb7d994b-9ee2-462b-9fb6-d06b7307d722"]}
},
AutoDelete->False,
GridBoxAlignment->{"Columns" -> {{Left}}},
GridBoxDividers->{"Columns" -> {{True}}, "Rows" -> {{True}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"TextGrid"]], "Output",
CellLabel->
"Out[305]=",ExpressionUUID->"a36b1cb9-61de-4cc6-8d0b-b8e75c4078d1"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["By Diameter", "Subsection",ExpressionUUID->"e4cb8a8f-1810-473f-a291-e2e346c53152"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"TextGrid", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"N", "[", "#", "]"}], ",", "#", ",", "#2"}], "}"}], "&"}], "@@@",
RowBox[{"SortBy", "[",
RowBox[{
RowBox[{"PolyhedronData", "[",
RowBox[{"\"\\"", ",",
RowBox[{"{",
RowBox[{"\"\\"", ",", "\"\<#\>\""}], "}"}]}],
"]"}], ",",
RowBox[{
RowBox[{"N", "[",
RowBox[{"First", "[", "#", "]"}], "]"}], "&"}]}], "]"}]}], ",",
RowBox[{"Dividers", "\[Rule]", "All"}], ",",
RowBox[{"Alignment", "\[Rule]", "Left"}]}], "]"}]], "Input",ExpressionUUID->\
"31fc57d4-b971-44a2-bb97-51baaf79a87e"],
Cell[BoxData[
TagBox[GridBox[{
{"1.4142135623730951`",
SqrtBox["2"],
RowBox[{"{",
RowBox[{"\<\"Pyramid\"\>", ",", "4"}], "}"}]},
{"1.618033988749895`",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}],
RowBox[{"{",
RowBox[{"\<\"Dipyramid\"\>", ",", "5"}], "}"}]},
{"1.618033988749895`",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["5"]}], ")"}]}],
RowBox[{"{",
RowBox[{"\<\"Pyramid\"\>", ",", "5"}], "}"}]},
{"1.632993161855452`",
RowBox[{"2", " ",
SqrtBox[
FractionBox["2", "3"]]}],
RowBox[{"{",
RowBox[{"\<\"Dipyramid\"\>", ",", "3"}], "}"}]},
{"1.6506801238857844`",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["6"]}], ")"}]}]], Cell[
"AugmentedTriangularPrism",ExpressionUUID->
"58b269ae-4e95-441b-a293-eac707d6398c"]},
{"1.7018560151168103`",
SqrtBox[
RowBox[{"1", "+",
FractionBox["1",
SqrtBox["2"]], "+",
SuperscriptBox["2",
RowBox[{"1", "/", "4"}]]}]], Cell[
"GyroelongatedSquarePyramid",ExpressionUUID->
"37baf139-3728-49f5-8dc3-795dd144535b"]},
{"1.7199391779573154`",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "-",
RowBox[{"11", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"8", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "6"]}]}], "&"}], ",", "2"}], "]"}], Cell[
"SnubDisphenoid",ExpressionUUID->"aca7279b-a8e1-4e26-ad8a-11f4286dd5f2"]},
{"1.724744871391589`",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["6"]}], ")"}]}], Cell[
"BiaugmentedTriangularPrism",ExpressionUUID->
"97d17a03-74e9-495d-b26d-8f954018d723"]},
{"1.724744871391589`",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
SqrtBox["6"]}], ")"}]}], Cell[
"TriaugmentedTriangularPrism",ExpressionUUID->
"3da6e7b4-5050-4211-9159-14403f2eddb3"]},
{"1.8477590650225735`",
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]], Cell[
"ElongatedSquarePyramid",ExpressionUUID->
"d3cd0315-2f2b-48f7-943e-d995b438e940"]},
{"1.8708286933869707`",
SqrtBox[
FractionBox["7", "2"]], Cell[
"Gyrobifastigium",ExpressionUUID->
"815c1651-e4f5-47eb-b059-4a982bf4ad79"]},
{"1.902113032590307`",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], Cell[
"ElongatedPentagonalPyramid",ExpressionUUID->
"557aef3d-7546-4751-86b1-ab1d8c321cb9"]},
{"1.902113032590307`",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], Cell[
"GyroelongatedPentagonalPyramid",ExpressionUUID->
"0f57573a-8fec-484e-bf92-f5bfef4d2b2f"]},
{"1.902113032590307`",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], Cell[
"MetabidiminishedIcosahedron",ExpressionUUID->
"bc22ae7b-dc70-4f2b-8f66-57429f8aaf0d"]},
{"1.902113032590307`",
SqrtBox[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]], Cell[
"TridiminishedIcosahedron",ExpressionUUID->
"d3183436-2dcf-4fba-8a63-21bcbf130d7b"]},
{"1.906041227742845`",
SqrtBox[
RowBox[{
FractionBox["2", "3"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["6"]}], ")"}]}]], Cell[
"ElongatedTriangularPyramid",ExpressionUUID->
"8765f822-6102-4b56-9cba-b5cf4c3ae2c4"]},
{"1.9770111168692972`",
SqrtBox[
RowBox[{"1", "+",
RowBox[{
FractionBox["1", "225"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"6", "+",
SqrtBox["6"], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"213", "-",
RowBox[{"57", " ",
SqrtBox["6"]}]}]]}]}], ")"}], "2"]}]}]], Cell[
"Sphenocorona",ExpressionUUID->"2faee446-6363-442e-8c60-3afb03ddba79"]},
{"2.`", "2", Cell[
"TriangularCupola",ExpressionUUID->
"146c31b5-6ab0-4b34-b032-e1026739093a"]},
{"2.`", "2", Cell[
"TriangularOrthobicupola",ExpressionUUID->
"cc0bcd3d-9eba-4bb6-aaa9-8980ee1900b9"]},
{"2.051462224238267`",
RowBox[{"1", "+",
SqrtBox[
RowBox[{"2", "-",
FractionBox["2",
SqrtBox["5"]]}]]}], Cell[
"ElongatedPentagonalDipyramid",ExpressionUUID->
"7e05b650-1760-48ef-9e66-ae1eba7053f9"]},
{"2.10196`", "2.10196`", Cell[
"AugmentedSphenocorona",ExpressionUUID->
"7d4f4429-fd1c-441d-93c9-ce18dbcbbb51"]},
{"2.20259`", "2.20259`", Cell[
"Hebesphenomegacorona",ExpressionUUID->
"ca62d2dd-2e9d-4fc0-8345-7e8e2a36f63a"]},
{"2.2551099776268098`",
RowBox[{
FractionBox["1",
SuperscriptBox["2",
RowBox[{"1", "/", "4"}]]], "+",
SqrtBox["2"]}], Cell[
"GyroelongatedSquareDipyramid",ExpressionUUID->
"e770c640-2441-4013-8522-c80b916c1a92"]},
{"2.298682180739249`",
SqrtBox[
RowBox[{"1", "+",
FractionBox["5",
SqrtBox["3"]], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{
FractionBox["2", "3"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["3"]}], ")"}]}]]}]}]], Cell[
"GyroelongatedTriangularCupola",ExpressionUUID->
"3503a5f7-46f9-437a-a899-65c3d5bc458d"]},
{"2.3009313088905365`",
SqrtBox[
RowBox[{"2", "+",
FractionBox[
SqrtBox["5"], "2"], "+",
SqrtBox[
RowBox[{
FractionBox["5", "2"], "+",
SqrtBox["5"]}]]}]], Cell[
"AugmentedPentagonalPrism",ExpressionUUID->
"06a51517-5904-4117-951a-616d388f4db7"]},
{"2.3193`", "2.3193`", Cell[
"Disphenocingulum",ExpressionUUID->
"7c20af9a-a546-4ce2-9782-5c1654b0c8bf"]},
{"2.3733927533923778`",
SqrtBox[
RowBox[{
FractionBox["2", "3"], " ",
RowBox[{"(",
RowBox[{"6", "+",
SqrtBox["6"]}], ")"}]}]], Cell[
"ElongatedTriangularCupola",ExpressionUUID->
"948e31dd-b762-4c8d-908f-0761a2908783"]},
{"2.398542634847068`",
SqrtBox[
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"(",
RowBox[{"13", "+",
RowBox[{"6", " ",
SqrtBox["2"]}], "+",
RowBox[{"3", " ",
SqrtBox["5"]}], "+",
RowBox[{"2", " ",
SqrtBox["10"]}]}], ")"}]}]], Cell[
"AugmentedTridiminishedIcosahedron",ExpressionUUID->
"a6faf069-bcd0-4f9c-9621-22a12fbb0c87"]},
{"2.414213562373095`",
RowBox[{"1", "+",
SqrtBox["2"]}], Cell[
"ElongatedSquareDipyramid",ExpressionUUID->
"50fb36b0-3e13-4ce4-a026-59630f66820c"]},
{"2.4264110917326267`",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"32", "+",
RowBox[{"128", " ", "#1"}], "+",
RowBox[{"96", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"48", " ",
SuperscriptBox["#1", "3"]}], "-",
RowBox[{"22", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"4", " ",
SuperscriptBox["#1", "5"]}], "+",
SuperscriptBox["#1", "6"]}], "&"}], ",", "5"}], "]"}], Cell[
"SnubSquareAntiprism",ExpressionUUID->
"3cea50d6-3e1f-4809-a621-3b3caf0d509c"]},
{"2.5395845610617456`",
SqrtBox[
RowBox[{"4", "+",
SqrtBox["6"]}]], Cell[
"AugmentedHexagonalPrism",ExpressionUUID->
"ab481414-b9ec-4d72-b7e6-2aff9db62d4d"]},
{"2.5662`", "2.5662`", Cell[
"Sphenomegacorona",ExpressionUUID->
"4361a44a-5181-44aa-a7c3-4c332e575650"]},
{"2.613125929752753`",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]], Cell[
"SquareCupola",ExpressionUUID->"a898669a-cfaa-4339-afb8-ecb193f677df"]},
{"2.613125929752753`",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]], Cell[
"SquareGyrobicupola",ExpressionUUID->
"e577b666-3c1c-4cb8-8bee-1389850b6c99"]},
{"2.613125929752753`",
SqrtBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"2", "+",
SqrtBox["2"]}], ")"}]}]], Cell[
"SquareOrthobicupola",ExpressionUUID->
"7e47d0b9-6e50-4aa0-9451-cfa4b28de217"]},
{"2.632993161855452`",
RowBox[{"1", "+",
RowBox[{"2", " ",
SqrtBox[
FractionBox["2", "3"]]}]}], Cell[
"ElongatedTriangularDipyramid",ExpressionUUID->
"c29af46b-27f6-4f43-ba7e-9fc9bad957bb"]},
{"2.6540140183028624`",
RowBox[{
FractionBox["1", "4"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"], "+",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"5", "+",
SqrtBox["5"]}]]}]}], ")"}]}], Cell[
"BiaugmentedPentagonalPrism",ExpressionUUID->
"62f8a57b-833c-4bd3-a88c-698db6d494ec"]},
{"2.7034503989897614`",
SqrtBox[
RowBox[{"1", "+",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"14", " ",
SqrtBox["2"]}]}]]}]], Cell[
"GyroelongatedSquareBicupola",ExpressionUUID->
"134a82fb-cde4-4431-a90d-fd1d60ef73da"]},
{"2.7034503989897614`",
SqrtBox[
RowBox[{"1", "+",
SqrtBox[
RowBox[{"20", "+",
RowBox[{"14", " ",
SqrtBox["2"]}]}]]}]], Cell[
"GyroelongatedSquareCupola",ExpressionUUID->
"121b1b0d-3538-4cd3-9da8-65209386964c"]},
{"2.70801280154532`",
SqrtBox[
FractionBox["22", "3"]], Cell[
"AugmentedTruncatedTetrahedron",ExpressionUUID->
"d677b4c6-baa9-4d1f-993f-dd4127888934"]},
{"2.724744871391589`",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["6"]}], ")"}]}], Cell[
"MetabiaugmentedHexagonalPrism",ExpressionUUID->
"1e80c983-cf1b-4323-b6c9-826a54027644"]},
{"2.724744871391589`",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["6"]}], ")"}]}], Cell[
"TriaugmentedHexagonalPrism",ExpressionUUID->
"fcab2dfe-6330-494a-9c74-5e729fa6eb60"]},
{"2.727106755206307`",
SqrtBox[
RowBox[{
FractionBox["1", "3"], " ",
RowBox[{"(",
RowBox[{"7", "+",
RowBox[{"4", " ",
SqrtBox["3"]}], "+",
RowBox[{"4", " ",
SqrtBox[
RowBox[{"6", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SqrtBox["3"]}], ")"}]}]]}]}], ")"}]}]], Cell[
"GyroelongatedTriangularBicupola",ExpressionUUID->
"4b5f9840-0f54-4cce-b932-cd0bcb1ded09"]},
{"2.7979326519318133`",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["2"]}]}]], Cell[
"ElongatedSquareCupola",ExpressionUUID->
"5fa697ab-e3b4-4ac0-8a70-6e8e6eef6745"]},
{"2.7979326519318133`",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"2", " ",
SqrtBox["2"]}]}]], Cell[
"ElongatedSquareGyrobicupola",ExpressionUUID->
"37f71df7-a423-4043-a2e3-b0d28fe90609"]},
{"2.8025170768881473`",
SqrtBox[
RowBox[{
FractionBox["3", "2"], " ",
RowBox[{"(",
RowBox[{"3", "+",
SqrtBox["5"]}], ")"}]}]], Cell[
"TriangularHebesphenorotunda",ExpressionUUID->
"ff11edc3-e1a6-42c5-9bcb-655c4387ad6a"]},
{"2.8025170768881473`",
SqrtBox[
RowBox[{"1", "+",
SuperscriptBox["GoldenRatio", "4"]}]], Cell[
"Bilunabirotunda",ExpressionUUID->
"658b6884-00a8-4b39-8465-d2c1268f5b8a"]},
{"2.8164965809277263`",
RowBox[{"2", "+",
SqrtBox[
FractionBox["2", "3"]]}], Cell[
"ElongatedTriangularOrthobicupola",ExpressionUUID->
"000e688c-5f12-4d64-8735-c83b6a046beb"]},
{"2.8750628382195242`",
SqrtBox[
RowBox[{"5", "+",
RowBox[{"4", " ",
SqrtBox[
FractionBox["2", "3"]]}]}]], Cell[
"ElongatedTriangularGyrobicupola",ExpressionUUID->
"8788d904-a308-4940-b706-1f014457d86f"]},
{"2.8812003682058704`",
SqrtBox[
RowBox[{
FractionBox["9", "2"], "+",
FractionBox["17",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], Cell[
"AugmentedDodecahedron",ExpressionUUID->
"c1397adf-034e-432a-b3f8-d799bcc2351b"]},
{"2.8812003682058704`",
SqrtBox[
RowBox[{
FractionBox["9", "2"], "+",
FractionBox["17",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], Cell[
"MetabiaugmentedDodecahedron",ExpressionUUID->
"3b4a7615-761d-4e36-b974-f6135388dd2d"]},
{"2.8812003682058704`",
SqrtBox[
RowBox[{
FractionBox["9", "2"], "+",
FractionBox["17",
RowBox[{"2", " ",
SqrtBox["5"]}]]}]], Cell[
"TriaugmentedDodecahedron",ExpressionUUID->
"f9612bc6-25e2-42bc-8202-198bcf155ba5"]},
{"3.1462643699419726`",
RowBox[{
SqrtBox["2"], "+",
SqrtBox["3"]}], Cell[
"ParabiaugmentedHexagonalPrism",ExpressionUUID->
"6f0b133b-e3ec-4cc5-97d3-2adf86e13e0b"]},
{"3.23606797749979`",
RowBox[{"1", "+",
SqrtBox["5"]}], Cell[
"PentagonalCupola",ExpressionUUID->
"56e87e9c-1a3f-4e40-85bc-4c38ed6a0ef1"]},
{"3.23606797749979`",
RowBox[{"1", "+",
SqrtBox["5"]}], Cell[
"PentagonalGyrobicupola",ExpressionUUID->
"36fff974-ff40-4e82-86fb-61255721cc01"]},
{"3.23606797749979`",
RowBox[{"1", "+",
SqrtBox["5"]}], Cell[
"PentagonalGyrocupolarotunda",ExpressionUUID->
"dd746158-fcc6-4985-9dd8-07e7ac833fc2"]},
{"3.23606797749979`",
RowBox[{"1", "+",
SqrtBox["5"]}], Cell[
"PentagonalOrthobicupola",ExpressionUUID->
"a216e711-6eda-4f32-ad51-6f0f198bf873"]},
{"3.23606797749979`",
RowBox[{"1", "+",
SqrtBox["5"]}], Cell[
"PentagonalOrthobirotunda",ExpressionUUID->
"c8bf0dd4-b4c9-435c-a70a-491a5b698a3e"]},
{"3.23606797749979`",
RowBox[{"1", "+",
SqrtBox["5"]}], Cell[
"PentagonalOrthocupolarotunda",ExpressionUUID->
"1f092616-71c0-494b-b3a5-d41ce411ff26"]},
{"3.23606797749979`",
RowBox[{"1", "+",
SqrtBox["5"]}], Cell[
"PentagonalRotunda",ExpressionUUID->
"b6b14769-adf9-4b5a-85ba-0f93ada51fa6"]},
{"3.2784949530614806`",
SqrtBox[
RowBox[{
FractionBox["1", "10"], " ",
RowBox[{"(",
RowBox[{"65", "+",
RowBox[{"19", " ",
SqrtBox["5"]}]}], ")"}]}]], Cell[
"ParabiaugmentedDodecahedron",ExpressionUUID->
"46215aa3-0576-4493-94ae-5fc17239012c"]},
{"3.310527622529545`",
SqrtBox[
RowBox[{"1", "+",
SqrtBox[
RowBox[{"50", "+",
RowBox[{"22", " ",
SqrtBox["5"]}]}]]}]], Cell[
"GyroelongatedPentagonalBicupola",ExpressionUUID->
"c07b7398-59a6-4292-aa58-aee30f1c06c6"]},
{"3.310527622529545`",
SqrtBox[
RowBox[{"1", "+",
SqrtBox[
RowBox[{"50", "+",
RowBox[{"22", " ",
SqrtBox["5"]}]}]]}]], Cell[
"GyroelongatedPentagonalCupola",ExpressionUUID->
"3bb56b84-f0a0-4803-82f0-ed672cd129d5"]},
{"3.387054170662108`",
SqrtBox[
RowBox[{"7", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], Cell[
"ElongatedPentagonalCupola",ExpressionUUID->
"d12c84d7-2546-4484-89b2-00e160faf35b"]},
{"3.387054170662108`",
SqrtBox[
RowBox[{"7", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], Cell[
"ElongatedPentagonalGyrobicupola",ExpressionUUID->
"9a9dd548-f720-4a1b-8d68-18fd4f56a087"]},
{"3.387054170662108`",
SqrtBox[
RowBox[{"7", "+",
RowBox[{"2", " ",
SqrtBox["5"]}]}]], Cell[
"ElongatedPentagonalOrthobicupola",ExpressionUUID->
"6fd8648d-7edb-4ecb-8e27-aa01732eaaf7"]},
{"3.449791217496914`",
SqrtBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"101281", "-",
RowBox[{"795860", " ", "#1"}], "+",
RowBox[{"1445070", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"1065500", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"265155", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"8100", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3150", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"200", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"25", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}]], Cell[
"GyroelongatedPentagonalCupolarotunda",ExpressionUUID->
"2bbbf786-27dc-40db-a48b-69078b5bd2df"]},
{"3.449791217496914`",
SqrtBox[
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"101281", "-",
RowBox[{"795860", " ", "#1"}], "+",
RowBox[{"1445070", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"1065500", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"265155", " ",
SuperscriptBox["#1", "4"]}], "+",
RowBox[{"8100", " ",
SuperscriptBox["#1", "5"]}], "-",
RowBox[{"3150", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"200", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"25", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}]], Cell[
"GyroelongatedPentagonalRotunda",ExpressionUUID->
"18c1a107-d06f-46ce-8aac-68382a770a6e"]},
{"3.4890453668164962`",
SqrtBox[
RowBox[{"6", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+",
SqrtBox[
RowBox[{"2", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]], Cell[
"ElongatedPentagonalGyrocupolarotunda",ExpressionUUID->
"d2ab17db-717a-4bf9-bb65-4dc084577629"]},
{"3.4890453668164962`",
SqrtBox[
RowBox[{"6", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+",
SqrtBox[
RowBox[{"2", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]], Cell[
"ElongatedPentagonalOrthocupolarotunda",ExpressionUUID->
"cbd53ee2-b21e-4e54-ab29-e2c441762ab7"]},
{"3.4890453668164962`",
SqrtBox[
RowBox[{"6", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+",
SqrtBox[
RowBox[{"2", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]], Cell[
"ElongatedPentagonalRotunda",ExpressionUUID->
"2fe4041a-b5b1-4919-befd-d5324883e1db"]},
{"3.695518130045147`",
RowBox[{"2", " ",
SqrtBox[
RowBox[{"2", "+",
SqrtBox["2"]}]]}], Cell[
"AugmentedTruncatedCube",ExpressionUUID->
"41fdcf1e-777f-43a6-bfc7-172ae9a7cd44"]},
{"3.986600487854186`",
RowBox[{"\[Sqrt]",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{"27454841", "-",
RowBox[{"88454860", " ", "#1"}], "+",
RowBox[{"139385430", " ",
SuperscriptBox["#1", "2"]}], "-",
RowBox[{"113034500", " ",
SuperscriptBox["#1", "3"]}], "+",
RowBox[{"37350275", " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"4760500", " ",
SuperscriptBox["#1", "5"]}], "+",
RowBox[{"258250", " ",
SuperscriptBox["#1", "6"]}], "-",
RowBox[{"15000", " ",
SuperscriptBox["#1", "7"]}], "+",
RowBox[{"625", " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}]}], Cell[
"GyroelongatedPentagonalBirotunda",ExpressionUUID->
"6db5bf13-b0ae-44c7-990f-153ef05d009d"]},
{"4.081280956941384`",
SqrtBox[
RowBox[{"11", "+",
RowBox[{"4", " ",
SqrtBox["2"]}]}]], Cell[
"BiaugmentedTruncatedCube",ExpressionUUID->
"461adf37-ac25-495d-a7f2-3a07ba64b206"]},
{"4.08671878585183`",
RowBox[{"1", "+",
SqrtBox["5"], "+",
SqrtBox[
RowBox[{
FractionBox["1", "10"], " ",
RowBox[{"(",
RowBox[{"5", "+",
SqrtBox["5"]}], ")"}]}]]}], Cell[
"ElongatedPentagonalOrthobirotunda",ExpressionUUID->
"3df7e278-9704-48de-b93f-7194e93ce453"]},
{"4.120396053401211`",
SqrtBox[
RowBox[{"7", "+",
RowBox[{"2", " ",
SqrtBox["5"]}], "+",
RowBox[{"4", " ",
SqrtBox[
RowBox[{"1", "+",
FractionBox["2",
SqrtBox["5"]]}]]}]}]], Cell[
"ElongatedPentagonalGyrobirotunda",ExpressionUUID->
"c6bf8453-ab5f-41c4-89e9-1dfa7dac5b17"]},
{"4.4659`", "4.4659`", Cell[
"BigyrateDiminishedRhombicosidodecahedron",ExpressionUUID->
"14127038-721a-443c-9c8e-3e64799522da"]},
{"4.4659`", "4.4659`", Cell[
"DiminishedRhombicosidodecahedron",ExpressionUUID->
"052ddb75-97f2-428c-9ecb-889304bf3c9b"]},
{"4.4659`", "4.4659`", Cell[
"GyrateBidiminishedRhombicosidodecahedron",ExpressionUUID->
"25a4fe67-379e-41fa-95c9-d39974dc0d82"]},
{"4.4659`", "4.4659`", Cell[
"GyrateRhombicosidodecahedron",ExpressionUUID->
"3829678c-b5a7-42f3-9a8a-ff65a7af89d7"]},
{"4.4659`", "4.4659`", Cell[
"MetabidiminishedRhombicosidodecahedron",ExpressionUUID->
"2399ddee-dfbd-4320-8fb6-17eef46344e4"]},
{"4.4659`", "4.4659`", Cell[
"MetabigyrateRhombicosidodecahedron",ExpressionUUID->
"10c213b7-16a9-480d-a244-97d94b312e6d"]},
{"4.4659`", "4.4659`", Cell[
"MetagyrateDiminishedRhombicosidodecahedron",ExpressionUUID->
"a8049d5f-971f-4d4b-84ab-61124abc7125"]},
{"4.4659`", "4.4659`", Cell[
"ParabidiminishedRhombicosidodecahedron",ExpressionUUID->
"f63d0402-be27-4ff9-a23b-4ceab4ff3ee3"]},
{"4.4659`", "4.4659`", Cell[
"ParabigyrateRhombicosidodecahedron",ExpressionUUID->
"9cddf6ab-19ba-4d80-a6b4-6636ab37e2d2"]},
{"4.4659`", "4.4659`", Cell[
"ParagyrateDiminishedRhombicosidodecahedron",ExpressionUUID->
"b0306121-842b-4cd5-9080-9a55f5df9e64"]},
{"4.4659`", "4.4659`", Cell[
"TridiminishedRhombicosidodecahedron",ExpressionUUID->
"cd83c10b-02ed-44aa-8f11-483fb95f85c2"]},
{"4.4659`", "4.4659`", Cell[
"TrigyrateRhombicosidodecahedron",ExpressionUUID->
"51d1cdc9-8eb3-460a-83fc-5a8bea616ebd"]},
{"6.0225`", "6.0225`", Cell[
"AugmentedTruncatedDodecahedron",ExpressionUUID->
"8b5c88dd-6104-4234-ba2c-2261c1325750"]},
{"6.02492`", "6.02492`", Cell[
"MetabiaugmentedTruncatedDodecahedron",ExpressionUUID->
"51b1ae3f-1a89-47a0-8ba1-11f7a3476f92"]},
{"6.02492`", "6.02492`", Cell[
"TriaugmentedTruncatedDodecahedron",ExpressionUUID->
"1b9f8b14-3e29-4d0e-9bdd-706ac0bc9c80"]},
{"6.26662`", "6.26662`", Cell[
"ParabiaugmentedTruncatedDodecahedron",ExpressionUUID->
"40f35256-fd5f-4972-bc5e-40f986f95283"]}
},
AutoDelete->False,
GridBoxAlignment->{"Columns" -> {{Left}}},
GridBoxDividers->{"Columns" -> {{True}}, "Rows" -> {{True}}},
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"TextGrid"]], "Output",
CellLabel->
"Out[293]=",ExpressionUUID->"8fbdeaac-6543-4d6d-a2f2-fdc1f1d6038b"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Sorted by Number of Vertices", "Section",ExpressionUUID->"c1b8cdcd-7e7e-45e2-b8e6-1335e6f1a091"],
Cell[BoxData[
RowBox[{
RowBox[{"v", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"JohnsonSolidVertices", "[", "n", "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "92"}], "}"}]}], "]"}]}], ";"}]], "Input",ExpressionUU\
ID->"38d844c2-f79f-400e-8a62-a98e575bdc41"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Transpose", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Union", "[",
RowBox[{"l", "=",
RowBox[{"Length", "/@", "v"}]}], "]"}], ",",
RowBox[{"Distribution", "[", "l", "]"}]}], "}"}], "]"}]], "Input",Expressi\
onUUID->"eec634c5-b23e-404f-abc7-f693873f3c46"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"5", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"11", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"12", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"13", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"14", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"15", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"18", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"20", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"21", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"22", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"23", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"24", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"25", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"28", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"30", ",", "6"}], "}"}], ",",
RowBox[{"{",
RowBox[{"32", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"35", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"40", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"45", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"50", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"55", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"60", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"65", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"70", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"75", ",", "1"}], "}"}]}], "}"}]], "Output",ExpressionUUID->\
"6b7ab6ba-e47e-4269-af41-534b92f7f6c3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ColumnForm", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"#", ",",
RowBox[{
RowBox[{"Position", "[",
RowBox[{"l", ",", "#"}], "]"}], "//", "Flatten"}]}], "}"}], "&"}], "/@",
RowBox[{"Union", "[", "l", "]"}]}], "]"}]], "Input",ExpressionUUID->\
"3783e242-b7cd-4dd7-a338-f8fb9ea22db4"],
Cell[BoxData[
InterpretationBox[GridBox[{
{
RowBox[{"{",
RowBox[{"5", ",",
RowBox[{"{",
RowBox[{"1", ",", "12"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"6", ",",
RowBox[{"{", "2", "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"7", ",",
RowBox[{"{",
RowBox[{"7", ",", "13", ",", "49"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"8", ",",
RowBox[{"{",
RowBox[{"14", ",", "26", ",", "50", ",", "84"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"9", ",",
RowBox[{"{",
RowBox[{"3", ",", "8", ",", "10", ",", "51", ",", "63"}], "}"}]}],
"}"}]},
{
RowBox[{"{",
RowBox[{"10", ",",
RowBox[{"{",
RowBox[{"15", ",", "17", ",", "62", ",", "64", ",", "86"}], "}"}]}],
"}"}]},
{
RowBox[{"{",
RowBox[{"11", ",",
RowBox[{"{",
RowBox[{"9", ",", "11", ",", "52", ",", "87"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"12", ",",
RowBox[{"{",
RowBox[{"4", ",", "16", ",", "27", ",", "53", ",", "88"}], "}"}]}],
"}"}]},
{
RowBox[{"{",
RowBox[{"13", ",",
RowBox[{"{", "54", "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"14", ",",
RowBox[{"{",
RowBox[{"55", ",", "56", ",", "89", ",", "91"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"15", ",",
RowBox[{"{",
RowBox[{"5", ",", "18", ",", "22", ",", "57", ",", "65"}], "}"}]}],
"}"}]},
{
RowBox[{"{",
RowBox[{"16", ",",
RowBox[{"{",
RowBox[{"28", ",", "29", ",", "85", ",", "90"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"18", ",",
RowBox[{"{",
RowBox[{"35", ",", "36", ",", "44", ",", "92"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"20", ",",
RowBox[{"{",
RowBox[{"6", ",", "19", ",", "23", ",", "30", ",", "31"}], "}"}]}],
"}"}]},
{
RowBox[{"{",
RowBox[{"21", ",",
RowBox[{"{", "58", "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"22", ",",
RowBox[{"{",
RowBox[{"59", ",", "60"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"23", ",",
RowBox[{"{", "61", "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"24", ",",
RowBox[{"{",
RowBox[{"37", ",", "45"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"25", ",",
RowBox[{"{",
RowBox[{"20", ",", "24", ",", "32", ",", "33"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"28", ",",
RowBox[{"{", "66", "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"30", ",",
RowBox[{"{",
RowBox[{"21", ",", "25", ",", "34", ",", "38", ",", "39", ",", "46"}],
"}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"32", ",",
RowBox[{"{", "67", "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"35", ",",
RowBox[{"{",
RowBox[{"40", ",", "41", ",", "47"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"40", ",",
RowBox[{"{",
RowBox[{"42", ",", "43", ",", "48"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"45", ",",
RowBox[{"{", "83", "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"50", ",",
RowBox[{"{",
RowBox[{"80", ",", "81", ",", "82"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"55", ",",
RowBox[{"{",
RowBox[{"76", ",", "77", ",", "78", ",", "79"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"60", ",",
RowBox[{"{",
RowBox[{"72", ",", "73", ",", "74", ",", "75"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"65", ",",
RowBox[{"{", "68", "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"70", ",",
RowBox[{"{",
RowBox[{"69", ",", "70"}], "}"}]}], "}"}]},
{
RowBox[{"{",
RowBox[{"75", ",",
RowBox[{"{", "71", "}"}]}], "}"}]}
},
BaselinePosition->{Baseline, {1, 1}},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}}],
ColumnForm[{{5, {1, 12}}, {6, {2}}, {7, {7, 13, 49}}, {
8, {14, 26, 50, 84}}, {9, {3, 8, 10, 51, 63}}, {
10, {15, 17, 62, 64, 86}}, {11, {9, 11, 52, 87}}, {
12, {4, 16, 27, 53, 88}}, {13, {54}}, {14, {55, 56, 89, 91}}, {
15, {5, 18, 22, 57, 65}}, {16, {28, 29, 85, 90}}, {
18, {35, 36, 44, 92}}, {20, {6, 19, 23, 30, 31}}, {21, {58}}, {
22, {59, 60}}, {23, {61}}, {24, {37, 45}}, {25, {20, 24, 32, 33}}, {
28, {66}}, {30, {21, 25, 34, 38, 39, 46}}, {32, {67}}, {
35, {40, 41, 47}}, {40, {42, 43, 48}}, {45, {83}}, {50, {80, 81, 82}}, {
55, {76, 77, 78, 79}}, {60, {72, 73, 74, 75}}, {65, {68}}, {
70, {69, 70}}, {75, {71}}}],
Editable->False]], "Output",ExpressionUUID->"621157f0-5843-4f51-97f4-\
906b65767014"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{
RowBox[{"Graphics3D", "[",
RowBox[{"JohnsonSolid", "[", "71", "]"}], "]"}], ",",
RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}]], "Input",ExpressionUUID->\
"c505f89c-c8df-47e4-ba62-3bd5652c0899"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.09752
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0617588 1.17581 0 1.17581 [
[ 0 0 0 0 ]
[ 1 1.09752 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.09752 L
0 1.09752 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.51557 .61494 m .42098 .61168 L .41871 .70832 L p .744 .596 .692 r
F P
0 g
s
.41871 .70832 m .51364 .71077 L .51557 .61494 L p .744 .596 .692 r
F P
0 g
s
.51364 .71077 m .59703 .66374 L .51557 .61494 L closepath p .677 .54 .691 r
F P
0 g
s
.51557 .61494 m .47176 .53008 L .42098 .61168 L closepath p .744 .611 .71 r
F P
0 g
s
.48161 .43879 m .47176 .53008 L .51557 .61494 L p .624 .561 .763 r
F P
0 g
s
.54365 .37455 m .48161 .43879 L p .51557 .61494 L .624 .561 .763 r
F P
0 g
s
.63653 .36387 m .54365 .37455 L p .51557 .61494 L .624 .561 .763 r
F P
0 g
s
.7238 .4136 m .63653 .36387 L p .51557 .61494 L .624 .561 .763 r
F P
0 g
s
.76907 .50432 m .7238 .4136 L p .51557 .61494 L .624 .561 .763 r
F P
0 g
s
.75433 .59829 m .76907 .50432 L p .51557 .61494 L .624 .561 .763 r
F P
0 g
s
.68779 .65834 m .75433 .59829 L p .51557 .61494 L .624 .561 .763 r
F P
0 g
s
.51557 .61494 m .59703 .66374 L .68779 .65834 L p .624 .561 .763 r
F P
0 g
s
.63681 .74204 m .59703 .66374 L .51364 .71077 L p .634 .452 .62 r
F P
0 g
s
.51364 .71077 m .55153 .78974 L .63681 .74204 L p .634 .452 .62 r
F P
0 g
s
.51364 .71077 m .41871 .70832 L .39439 .78677 L p .735 .494 .564 r
F P
0 g
s
.55153 .78974 m .51364 .71077 L p .39439 .78677 L .735 .494 .564 r
F P
0 g
s
.47176 .53008 m .48161 .43879 L .44541 .36905 L p .851 .766 .768 r
F P
0 g
s
.42098 .61168 m .47176 .53008 L p .44541 .36905 L .851 .766 .768 r
F P
0 g
s
.59703 .66374 m .63681 .74204 L .68779 .65834 L closepath p .615 .444 .628 r
F P
0 g
s
.34589 .65612 m .41871 .70832 L .42098 .61168 L closepath p .812 .653 .685 r
F P
0 g
s
.34589 .65612 m .42098 .61168 L p .44541 .36905 L .851 .766 .768 r
F P
0 g
s
.39439 .78677 m .41871 .70832 L .34589 .65612 L p .848 .62 .593 r
F P
0 g
s
.44541 .36905 m .48161 .43879 L .54365 .37455 L closepath p .717 .718 .85 r
F P
0 g
s
.55153 .78974 m .61795 .82272 L .63681 .74204 L closepath p .565 .325 .511 r
F P
0 g
s
.54368 .87409 m .61795 .82272 L .55153 .78974 L p .596 .27 .388 r
F P
0 g
s
.55153 .78974 m .47809 .8388 L .54368 .87409 L p .596 .27 .388 r
F P
0 g
s
.39439 .78677 m .47809 .8388 L .55153 .78974 L p .735 .494 .564 r
F P
0 g
s
.68779 .65834 m .63681 .74204 L p .64012 .87214 L .321 .103 .418 r
F P
0 g
s
.75433 .59829 m .68779 .65834 L p .64012 .87214 L .321 .103 .418 r
F P
0 g
s
.63681 .74204 m .61795 .82272 L .64012 .87214 L p .321 .103 .418 r
F P
0 g
s
.34589 .65612 m .31915 .73462 L .39439 .78677 L p .848 .62 .593 r
F P
0 g
s
.27181 .64542 m .34589 .65612 L p .44541 .36905 L .851 .766 .768 r
F P
0 g
s
.34589 .65612 m .27181 .64542 L .31915 .73462 L closepath p .869 .645 .597 r
F P
0 g
s
.39439 .78677 m .31915 .73462 L .35487 .8185 L closepath p .873 .543 .423 r
F P
0 g
s
.47809 .8388 m .39439 .78677 L .35487 .8185 L p .773 .381 .312 r
F P
0 g
s
.5623 .2998 m .54365 .37455 L .63653 .36387 L closepath p .622 .647 .854 r
F P
0 g
s
.54365 .37455 m .5623 .2998 L .46102 .29344 L p .707 .734 .872 r
F P
0 g
s
.46102 .29344 m .44541 .36905 L .54365 .37455 L p .707 .734 .872 r
F P
0 g
s
.81486 .58346 m .75433 .59829 L p .64012 .87214 L .321 .103 .418 r
F P
0 g
s
.75433 .59829 m .81486 .58346 L .76907 .50432 L closepath p .404 .354 .689 r
F P
0 g
s
.47809 .8388 m .4417 .87293 L .54368 .87409 L closepath p .619 .178 .179 r
F P
0 g
s
.35487 .8185 m .4417 .87293 L .47809 .8388 L p .773 .381 .312 r
F P
0 g
s
.46102 .29344 m .37313 .34874 L .44541 .36905 L closepath p .794 .819 .871 r
F P
0 g
s
.22762 .57895 m .27181 .64542 L p .44541 .36905 L .851 .766 .768 r
F P
0 g
s
.2343 .48007 m .22762 .57895 L p .44541 .36905 L .851 .766 .768 r
F P
0 g
s
.29114 .3905 m .2343 .48007 L p .44541 .36905 L .851 .766 .768 r
F P
0 g
s
.44541 .36905 m .37313 .34874 L .29114 .3905 L p .851 .766 .768 r
F P
0 g
s
.61795 .82272 m .54368 .87409 L .64012 .87214 L closepath p .55 .205 .335 r
F P
0 g
s
.31915 .73462 m .27181 .64542 L .22762 .57895 L p .867 .469 .003 r
F P
0 g
s
.35487 .8185 m .31915 .73462 L p .22762 .57895 L .867 .469 .003 r
F P
0 g
s
.5623 .2998 m .63653 .36387 L .69331 .33974 L p .473 .611 .907 r
F P
0 g
s
.63653 .36387 m .7238 .4136 L .69331 .33974 L closepath p .464 .578 .884 r
F P
0 g
s
.76907 .50432 m .81486 .58346 L p .71682 .34044 L 0 0 .528 r
F P
0 g
s
.7238 .4136 m .76907 .50432 L p .71682 .34044 L 0 0 .528 r
F P
0 g
s
.69331 .33974 m .7238 .4136 L p .71682 .34044 L 0 0 .528 r
F P
0 g
s
.69331 .33974 m .61701 .27278 L .5623 .2998 L p .473 .611 .907 r
F P
0 g
s
.5623 .2998 m .61701 .27278 L .54594 .24777 L p .514 .816 1 r
F P
0 g
s
.46102 .29344 m .5623 .2998 L p .54594 .24777 L .514 .816 1 r
F P
0 g
s
.84604 .62414 m .81486 .58346 L p .64012 .87214 L .321 .103 .418 r
F P
0 g
s
.83145 .70966 m .84604 .62414 L p .64012 .87214 L .321 .103 .418 r
F P
0 g
s
.77405 .80514 m .83145 .70966 L p .64012 .87214 L .321 .103 .418 r
F P
0 g
s
.64012 .87214 m .69931 .86757 L .77405 .80514 L p .321 .103 .418 r
F P
0 g
s
.54368 .87409 m .4417 .87293 L p .69931 .86757 L .12 .667 .818 r
F P
0 g
s
.69931 .86757 m .64012 .87214 L .54368 .87409 L p .12 .667 .818 r
F P
0 g
s
.4417 .87293 m .35487 .8185 L .36645 .86896 L closepath p .769 .334 .219 r
F P
0 g
s
.36645 .86896 m .35487 .8185 L p .22762 .57895 L .867 .469 .003 r
F P
0 g
s
.37313 .34874 m .46102 .29344 L .44645 .26159 L p .781 .957 .926 r
F P
0 g
s
.44645 .26159 m .35452 .31943 L .37313 .34874 L p .781 .957 .926 r
F P
0 g
s
.37313 .34874 m .35452 .31943 L .29114 .3905 L closepath p .819 .967 .9 r
F P
0 g
s
.54594 .24777 m .44645 .26159 L .46102 .29344 L p .514 .816 1 r
F P
0 g
s
.81486 .58346 m .84604 .62414 L p .71682 .34044 L 0 0 .528 r
F P
0 g
s
.4417 .87293 m .36645 .86896 L p .69931 .86757 L .12 .667 .818 r
F P
0 g
s
.2343 .48007 m .20206 .56 L .22762 .57895 L closepath p .992 .882 .569 r
F P
0 g
s
.34676 .8633 m .36645 .86896 L p .22762 .57895 L .867 .469 .003 r
F P
0 g
s
.30007 .79666 m .34676 .8633 L p .22762 .57895 L .867 .469 .003 r
F P
0 g
s
.24528 .69398 m .30007 .79666 L p .22762 .57895 L .867 .469 .003 r
F P
0 g
s
.20749 .60202 m .24528 .69398 L p .22762 .57895 L .867 .469 .003 r
F P
0 g
s
.22762 .57895 m .20206 .56 L .20749 .60202 L p .867 .469 .003 r
F P
0 g
s
.61701 .27278 m .69331 .33974 L .68934 .30956 L closepath p .054 .42 .866 r
F P
0 g
s
.71682 .34044 m .68934 .30956 L .69331 .33974 L p 0 0 .528 r
F P
0 g
s
.29114 .3905 m .35452 .31943 L p .41869 .32255 L .034 0 .179 r
F P
0 g
s
.2343 .48007 m .29114 .3905 L p .41869 .32255 L .034 0 .179 r
F P
0 g
s
.20206 .56 m .2343 .48007 L p .41869 .32255 L .034 0 .179 r
F P
0 g
s
.61859 .28507 m .54594 .24777 L .61701 .27278 L p .435 0 0 r
F P
0 g
s
.61701 .27278 m .68934 .30956 L .61859 .28507 L p .435 0 0 r
F P
0 g
s
.36645 .86896 m .34676 .8633 L p .69931 .86757 L .12 .667 .818 r
F P
0 g
s
.83145 .70966 m .84928 .60671 L .84604 .62414 L closepath p 0 0 0 r
F P
0 g
s
.84604 .62414 m .84928 .60671 L p .71682 .34044 L 0 0 .528 r
F P
0 g
s
.44645 .26159 m .40372 .29166 L .35452 .31943 L closepath p 0 0 0 r
F P
0 g
s
.35452 .31943 m .40372 .29166 L .41869 .32255 L p .034 0 .179 r
F P
0 g
s
.50659 .27785 m .40372 .29166 L .44645 .26159 L p .269 0 0 r
F P
0 g
s
.44645 .26159 m .54594 .24777 L .50659 .27785 L p .269 0 0 r
F P
0 g
s
.62187 .85695 m .69546 .86176 L .69931 .86757 L p .12 .667 .818 r
F P
0 g
s
.50499 .85543 m .62187 .85695 L p .69931 .86757 L .12 .667 .818 r
F P
0 g
s
.39774 .858 m .50499 .85543 L p .69931 .86757 L .12 .667 .818 r
F P
0 g
s
.34676 .8633 m .39774 .858 L p .69931 .86757 L .12 .667 .818 r
F P
0 g
s
.69546 .86176 m .77405 .80514 L .69931 .86757 L closepath p .569 .911 .69 r
F P
0 g
s
.20749 .60202 m .20206 .56 L p .41869 .32255 L .034 0 .179 r
F P
0 g
s
.61859 .28507 m .68934 .30956 L .71682 .34044 L closepath p .596 .023 0 r
F P
0 g
s
.54594 .24777 m .61859 .28507 L .50659 .27785 L closepath p .606 .128 .092 r
F P
0 g
s
.83145 .70966 m .77405 .80514 L p .59733 .6737 L .891 .825 .776 r
F P
0 g
s
.84928 .60671 m .83145 .70966 L p .59733 .6737 L .891 .825 .776 r
F P
0 g
s
.77405 .80514 m .69546 .86176 L p .59733 .6737 L .891 .825 .776 r
F P
0 g
s
.39774 .858 m .34676 .8633 L .30007 .79666 L closepath p .246 .515 .909 r
F P
0 g
s
.41869 .32255 m .40372 .29166 L .50659 .27785 L closepath p .371 0 .03 r
F P
0 g
s
.84928 .60671 m .81958 .53097 L p .71682 .34044 L 0 0 .528 r
F P
0 g
s
.81958 .53097 m .84928 .60671 L p .59733 .6737 L .891 .825 .776 r
F P
0 g
s
.61859 .28507 m .71682 .34044 L p .3888 .40641 L .738 .458 .505 r
F P
0 g
s
.50659 .27785 m .61859 .28507 L p .3888 .40641 L .738 .458 .505 r
F P
0 g
s
.25311 .58509 m .24528 .69398 L .20749 .60202 L closepath p .194 .196 .633 r
F P
0 g
s
.25311 .58509 m .20749 .60202 L p .41869 .32255 L .034 0 .179 r
F P
0 g
s
.69546 .86176 m .62187 .85695 L p .59733 .6737 L .891 .825 .776 r
F P
0 g
s
.81958 .53097 m .76755 .42628 L .71682 .34044 L p 0 0 .528 r
F P
0 g
s
.71682 .34044 m .76755 .42628 L p .3888 .40641 L .738 .458 .505 r
F P
0 g
s
.3888 .40641 m .41869 .32255 L .50659 .27785 L p .738 .458 .505 r
F P
0 g
s
.30706 .74117 m .30007 .79666 L .24528 .69398 L closepath p .091 .275 .758 r
F P
0 g
s
.39774 .858 m .30007 .79666 L .30706 .74117 L p .351 .542 .901 r
F P
0 g
s
.74905 .51334 m .81958 .53097 L p .59733 .6737 L .891 .825 .776 r
F P
0 g
s
.74905 .51334 m .76755 .42628 L .81958 .53097 L closepath p .922 .658 .521 r
F P
0 g
s
.24528 .69398 m .25311 .58509 L .3164 .62897 L p .297 .288 .68 r
F P
0 g
s
.3164 .62897 m .30706 .74117 L .24528 .69398 L p .297 .288 .68 r
F P
0 g
s
.30706 .74117 m .40914 .80471 L .39774 .858 L p .351 .542 .901 r
F P
0 g
s
.39774 .858 m .40914 .80471 L .50499 .85543 L closepath p .526 .721 .963 r
F P
0 g
s
.76755 .42628 m .74905 .51334 L p .3888 .40641 L .738 .458 .505 r
F P
0 g
s
.32383 .5096 m .25311 .58509 L p .41869 .32255 L .034 0 .179 r
F P
0 g
s
.41869 .32255 m .3888 .40641 L .32383 .5096 L p .034 0 .179 r
F P
0 g
s
.58246 .78633 m .62187 .85695 L .50499 .85543 L closepath p .709 .768 .898 r
F P
0 g
s
.62187 .85695 m .58246 .78633 L .59733 .6737 L p .891 .825 .776 r
F P
0 g
s
.3164 .62897 m .25311 .58509 L .32383 .5096 L closepath p .403 .27 .584 r
F P
0 g
s
.58246 .78633 m .50499 .85543 L .40914 .80471 L p .692 .732 .881 r
F P
0 g
s
.59733 .6737 m .66263 .56711 L .74905 .51334 L p .891 .825 .776 r
F P
0 g
s
.74905 .51334 m .66263 .56711 L p .3888 .40641 L .738 .458 .505 r
F P
0 g
s
.48597 .73267 m .40914 .80471 L .30706 .74117 L p .593 .553 .779 r
F P
0 g
s
.42786 .6212 m .48597 .73267 L p .30706 .74117 L .593 .553 .779 r
F P
0 g
s
.30706 .74117 m .3164 .62897 L .42786 .6212 L p .593 .553 .779 r
F P
0 g
s
.43395 .49933 m .32383 .5096 L .3888 .40641 L closepath p .576 .392 .595 r
F P
0 g
s
.54014 .5623 m .43395 .49933 L .3888 .40641 L p .738 .458 .505 r
F P
0 g
s
.66263 .56711 m .54014 .5623 L p .3888 .40641 L .738 .458 .505 r
F P
0 g
s
.32383 .5096 m .43395 .49933 L .42786 .6212 L p .582 .42 .628 r
F P
0 g
s
.42786 .6212 m .3164 .62897 L .32383 .5096 L p .582 .42 .628 r
F P
0 g
s
.40914 .80471 m .48597 .73267 L .58246 .78633 L p .692 .732 .881 r
F P
0 g
s
.48597 .73267 m .59733 .6737 L .58246 .78633 L closepath p .77 .714 .8 r
F P
0 g
s
.59733 .6737 m .54014 .5623 L .66263 .56711 L closepath p .755 .621 .711 r
F P
0 g
s
.42786 .6212 m .43395 .49933 L .54014 .5623 L closepath p .69 .512 .641 r
F P
0 g
s
.54014 .5623 m .59733 .6737 L .48597 .73267 L p .735 .613 .723 r
F P
0 g
s
.48597 .73267 m .42786 .6212 L .54014 .5623 L p .735 .613 .723 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{185.375, 186.938},
ImageMargins->{{49, 0}, {0, 0}},
ImageRegion->{{-0.242751, 1.17262}, {-0.278168,
1.26212}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzNnMuPHEcdxzsz/Zie93tmH96dfa/3YccbZ7HjOGDiODiJg40TOwnCYAVE
IoSMQvgDUAQHJA4IEJFACEUcEAcUDkQYcgHxuHBB/AVIgEDizHWo+lX1b6pn
vrVTnVkjDl092131/Xx/v6rpru6e3mt333ztc1+8++brr94dPP3G3S+99vqr
Xx5cufeG2JR/yPO8+2L51cCTn4fioy7ue8PhUO48xtUduQqk/i214bZcRQTM
Dy8r9PD7g56Xk2Ve/nlT1bwhV6HcEMmKXj6pStV9Wfpy03VV/RkWLoPqkSzJ
xzVV/YpcUfuGrJ5TDUWlnPZ2T3uTfz2r2jxFKyV8WS1eE8CqVKpt99Si/vqY
0nlSrojTBq3r7IJM0E5F9i7JVd7WsMUNfdmQPj2pGn6EieS3pOKerH5JVX+C
OZTLWH6Kh+9/5as1VX2y4YdVw4vMoT6j7giGd7yIts1LiZgjo20XVcMLTDSG
hUetRVFkiXUpQd2W4+Q8piTO83ipcfVtWV2n6e1AKea4NX06p1qfMw0UvH1q
ImREZyZiu1JMtxZiSWVzoBwqsUMW86WWNiB0SLFEpdomFMniPmvnpTZFfVaJ
Pco5DYFYzPYOWMKXEpSkAyXxCEvEQCJkicOxdIlFidHeM0rsDAdXBGI+i51n
PwEJqXxJCbmcVmIPs7MKifmmGEtdTIc2JnVKSZ02vp2yA6XcuKjup0sgzhxQ
3rcrV43Yk078aLoTx8T2lNgpIFYDYpfTo21MbFeJ7TuKPS1L2qRD2gMN66Dh
VXah7e+Chg3Q8BluqK3uODa8Nuobjnb72CROAokmkHgeSGwpiW1HiY/bJbaA
RAtIXAcSm0piE0i0gcQNILGhJDYcJT5hl1gHEh0gcRNIrNslkIsX7BJrji5e
BBKqrbcKJLpA4haQUG29FUeJ23aJAZDoAYmXgITCe8tAoj+7BHLxCpBQEXhL
ji4+CSQU3jsBJOZml0AuPgUkVATeos3FZ+xtFqY4//Zn36bGnwYSJ+wSfeNc
JiXkIj4jI8q1N281EqRUtBI0pKXmHGISizhXyTKd3jtAdiGbbB7Iol7Tsn1H
Wd8mSycuHXrPUSwEYsbgHP77J18jr8cm67OsltbRdx2VC0D5lczKfaAcW5WD
lHKSEjVQvY6j8SKQf3m6fNtRvgTkXxrrSLGIv1RpDsCeHYUSVQGo29lQLceo
XFE+QKl+95qOqBpA3frfoV4EqBCg1HDzGo6oBkC9kA1Vd0Q1HVERQLWzoVoA
dROgCgClhp5Xc0S1HwwKfa+6AHUDoIoApYaeV3WM6gGhUFTUV3QRiwAlAGhk
A9Bxuyg3BcPvfOFHeu+7b/2YRK9ng1Yc5zBioXtCtTGkWNR9h+cBtwy4dTuX
pq90cuhDiigJ9SxAVeyo8pS8ChTh5gHUpzI9bugynbJTBdCaHUrxqUkLQAUc
3xUjvr/95Q9yEdGLknIT26GlKdcEn3/qu9QM4SPGj26QFBkaAGjVDu0aI0hC
NRhxY5Dh0Z2khnRAtwvrdlrHmC0ntKNCLXKoj4NMd2VJe3VWi1Zk3kSKLpJl
ekzNAXyF8ec4znlCp/NbsePbAJ93xNdAws+CPCwAS2pUe7GjJd/RUp0zMro9
upQN33LEoy95k/GnQR6OMFJwNBI4GmmDrtnhjKwCIyW7kSYwEjoa6XBGthm/
ng3fAPjIEd9j/AbokCOMRI5GCo5G5kCHDDgj28BI0W6kDozEWYw06TgIMpLR
SA0YKWbuGrHj/R/cp52/+eF7QlSUdfnnbjY3VeCmlHmc+tKM3iuMkKVFKtOp
2gHmYvsoLgNzZUdzLTYXAnMLwBzK3BHmSsBcxdFcg83FwNwcMLeXzRw9w6JN
NUdLNbZUcrS0DywV7JZCtiSGy5mDd2jnc1d/JtdVR5Ojk3cVmOwBk6eymfR5
kkge9SRKutROXXu4xE7rsztVHe2bTtlnCHyKRfek2wxgNCVrAbMdYPZhYDYy
zJKfAlnLm9bEX6qcdj5ANgtsswNstoHNM1Ns6upyNEqrMTDsA8OuJ/KQDfeB
4daDMRxw97va9NnmPLDZBDYfATbDyQlzYhMNhAjkFU2ikeHRxegJYLgxu+EI
GI6BYXTRgQ2Lv5aB1zrwenZ2r0UeA1aHtGkVWKoCS4/aLZWApRBYKo+lz6Ov
sTBSkB83gJGKLTcUWCEbvmJ8KwSUfqQTDb/3zT8m80sxmZIW1oCRsi0jppEy
MBIAI1VZ0g2qniO+dOx4vU3gycKCo5EiMHI4bqQCjPiORhYdjRSAkQ/9XxnB
h/BZLJ1wtBQCS+fslqrAUt7R0hKwhI4oyNKou+IHYwTlxrflxjRSA0ZyjkaW
HTOSB0bOf1AjFWBk4JiRnM0InojOYmnFmpvAtESLRD9ut6HuRgamjeSKQlzH
uKFVNvwU2oXqp6ienN9PAlcdxoEkXLTTGmOp9rKi9K8Ck0FVzCa7BmSXWVbs
+P17f0pGjUqaSaGHNjlbdtaB9iJrk/TYkLxgv/rNjppnVHCcqA2A6jEqyoZq
MQqNZ4TqMKoAUGhYmyhdvXflt1QFHds2AbTJ0GI2aBtA0UEDQesMLTsmtYih
YvH0dfIkeQuQzZsOcvxLekYPHePQpT1wAoqONsqcgNoHgY8nQJbpw3cEjGwD
IzEbaWQz0rUZ0TP0SfwOwIeMbwH8Y/Yb1QjvgzzkHY34bKTtaEQ/wug5GskB
I7tU+qYRttGd3UbA3eECl2tP3uaY5KLphH641gfccCx82Wxf0mjT3OyAiAPb
M4L4+a//miy0rwdAaBqtH8PO2UBjeTtpjB6NEwZkmT6qoHGELixqU/C54cvf
+McRx9TEQ8iBZyTPT+lCgScL+nnSJDlmMjqGILJ+Fr1gG7QT5MkUrAAjZTaC
jqrHYCQvSwIMAL7G+ArAHwK8/g3JIsDnAT4EeVgERppgOKKzO7on1MxmKeKM
LAAjbc5IRvwJgM8BfAwy0pVlTh1qEjyaUKGbdK1s+CJH3wHRLzA+zIZfOmKG
UWVkEyCXGInm4AjZno6sgyRXAXxFHwuNYSc/o27WvxRcNq7HDGKDY6wAzJos
807K6dlpG8QRA8Cm8fVJUncAUPpHnAOe6HfYdwHIbhiyv/jd30kK9ciEbA/4
9q2AgAHJIsWRf/3T2pU0SI+e6f7FIr4Uskyn6jRA9Q2Urv7EW/+kKv2x6OS2
LYDyAQo9cNOoVWNoadR4Lo8KLAC0Pb5G1j8UXxtjaE6XGGrz13/5nwS9yt/N
GIij5+pHYMSiz/Vpll7004rJuBB6m+PSr3asj3WTWERPJ8iGkUKNEwYS6CKA
lgB0k6H6NZYNAM3r0jzmVgE+ZPwcwJcBfoPxA4XftOH1s+pJaIGhXQCtAugq
Q1ft0ADEXAL4IuNbAF8H+AHj9etgWza8vqSehJapTH99qjyuWwBKv/6iTfo1
tm0ADUHMEcBXOeYKiLkN8IuM37DjI44ZQesMLQJoB0AXONH6TciTAFpgaACg
TYZGANoD0D5HCt4jTaAxSHQO4NuM9wG+D/C90fFr+K1/vUvHMRV26mXatJHA
NEKLOiMkcNFIjjLNFnmd5LZlSce/HTutpMPWhNFQXlZjaVK2BcLR7wbv2b41
bXXQXfrpn+fUUX5SQr+XTCt6gvicrB7rWJNaso75UjZp3JY1x04QutKB4UhU
oopXZUkI/YI9/QsC+tV7Xe7akp8uqF0z/vcL76H/Aosm7Ms=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{-45., 216.375}, {237.938, \
-48.9375}} -> {0., 0., 0., \
0.}},ExpressionUUID->"ab093aa8-70ed-41eb-a565-c2af31a42f0f"],
Cell[BoxData[
TagBox[
RowBox[{"\[SkeletonIndicator]", "Graphics3D", "\[SkeletonIndicator]"}],
False,
Editable->False]], "Output",ExpressionUUID->"f05e0876-5aab-445d-82d4-\
bdc92c05d985"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Solids", "Section",ExpressionUUID->"bd25b5ce-6186-4ea6-a480-96438a937a3e"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"JohnsonSolid", "::", "ID"}], "=", "\"\<`1`. `2`\>\""}],
";"}], "\n",
RowBox[{
RowBox[{"On", "[",
RowBox[{"JohnsonSolid", "::", "ID"}], "]"}], ";"}], "\n",
RowBox[{
RowBox[{"Off", "[",
RowBox[{"General", "::", "stop"}], "]"}], ";"}], "\n",
RowBox[{"Do", "[", "\n", "\t",
RowBox[{
RowBox[{
RowBox[{"Message", "[",
RowBox[{
RowBox[{"JohnsonSolid", "::", "ID"}], ",", "i", ",",
RowBox[{"JohnsonSolidName", "[", "i", "]"}]}], "]"}], ";", "\n", "\t",
RowBox[{"WriteLiveForm", "[",
RowBox[{
RowBox[{"\"\\"", "<>",
RowBox[{"If", "[",
RowBox[{
RowBox[{"i", "<", "10"}], ",", "\"\<0\>\"", ",", "\"\<\>\""}], "]"}],
"<>",
RowBox[{"ToString", "[", "i", "]"}], "<>", "\"\<.m\>\""}], ",", "\n",
"\t",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"JohnsonSolid", "[", "i", "]"}], ",",
RowBox[{"Boxed", "->", "False"}]}], "]"}]}], "]"}]}], ",", "\n", "\t",
RowBox[{"{",
RowBox[{"i", ",", "92"}], "}"}]}], "]"}]}], "Input",ExpressionUUID->\
"f6f851b6-e72e-474c-87ce-afbfd5612dc6"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(1\\). \\!\\(\\\"square pyramid (J1)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"f3e3007c-af73-47cc-bb54-7af6b703b705"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.02334
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0305098 1.09572 0 1.09572 [
[ 0 0 0 0 ]
[ 1 1.02334 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.02334 L
0 1.02334 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.36799 .9185 m .9276 .82313 L .74478 .16002 L p .593 .517 .739 r
F P
0 g
s
.74478 .16002 m .19995 .33729 L .36799 .9185 L p .593 .517 .739 r
F P
0 g
s
.9276 .82313 m .36799 .9185 L .29976 .66653 L closepath p .548 .792 .989 r
F P
0 g
s
.36799 .9185 m .19995 .33729 L .29976 .66653 L closepath p 0 0 .214 r
F P
0 g
s
.19995 .33729 m .74478 .16002 L .29976 .66653 L closepath p .427 .125 .348 r
F P
0 g
s
.74478 .16002 m .9276 .82313 L .29976 .66653 L closepath p .809 .645 .68 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{281.375, 288},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2olPFFccB/AVEPFWEBFUDhFQERAsqFxyLoIgiIIIiq6AHJZK8Ui96lFL
tUXbYqxWo6mpSdOmTZs0adKkSZMmTZo09l+iO+8NX4c3319mVmLSNJrArrzv
5/vesrDMzpuW0NmhgdHQ2eG+UHrDeGhsaLjvTHrw9Hj4S9HzAoF5yeGP9PSA
dX86EJj5pP6lWJ/s/7y5/+a+ff8f6yba+jnZo7/wN74QNT2ypjug7k7b/wJB
HfoLoRgrFOXwf2IoVvkY5V88/159hO836NwfyMWp3PxZOTs7E/4d4UWORdnB
8EKtz7MXWq/hb4BLCIwhsE7DXwGXEThfhr8AriAwVoY/AyZEBn8CTCQwjsBa
DX8ATCJwoQy/A0wmcJEMvwFcS+BiGT4HXE/gUgJrNHwGmEbgMhk+BcwgcLkM
HwNuJHAFgdUaPgTMJnClDO8DbiIwXoZTgFsITJDhp4BbCUwksErDScB8AlfL
8DbgNgKTZDgBWERgMoG7Nbxh3ahXr+LI4FXMuJPAFBleBiwlcK0MLwCWE7ie
wEoNzwNWEpgqwzOAVQSmyXAMsIbADAIrNBwFrCNwgwxHABsig4OAjQRmyrAf
cC+BWQSWaxgCbCEwW4a9gK0E5siwB3A/gZtk2AV4gMAtBJZp2AHYGRlsB+wi
MFeGrYDdBOYRWKphM+ARAvNl2AjYS2CBDIOAxwncJsNawBMEFhG4S8MqwH4C
t8uwAnAwMlgKOExgMYE7NVQ36lDzFIElHtAeCkOF2dw7IqsYIhU75YpdpOIk
qSglFTvkigFSURZZBXvmy+WKUlLRRyoqSEWJXMF+cCsjqwiRit0eFeoHisEq
GZaRudlveg2pKJYrjpKKWo8KtXwG62RYTuZmL431c68Ikoq35IrDpKLBo0J9
BxjcI8MKMjf7c9REKrbLFR2kYq9HhVo+g80yrCRzt5OKlsgq2CFAK6koclSo
5bO5fUE2Y5sMd5NF7yMV7aSiUK5gB1sHPCrU8hk8KMMqMncTqeiIrIIdnR4i
FdscFWr5DHbJsJrMzQ6pI6wIkopuUlHgqFDLZ7DHD6wn8IgMa8ii2ZuXox4V
am4GjxGYb8JqAo/LsJYsmr3HC73+CrV8BvsIzDNhBYH9Mqwji2bvpgc8KtTc
DA4SuNWEuwgckmE9WXQJqRj2qFBzMzjyqvAUgbkmZOdH3pZhkDxadm5m1KNC
zc3gaQK3mLCQwDEZNpBFs1NY73pUqLkZHPcD8wg8S+DmOcI9gLkEnvMD2RnF
837gZgLfI3CTho2AOQRe8APZ6daLfmAWgZcJzJkjbALMJPCKH7iBwPf9QHb2
+xqB2RruBWTn26/7gakE3vAD2dbATQKzHNAesl4Pwrd0W+JDuaIZc78yTCFw
wg9kWy+3CNyoYQsg2+y57QeuJvBjP5DtS00SmOmAxhPD9sTuyBX7MHc8gXdf
FzQWzXYAPyMVG3RFK+ZeTuDnfiDbrJzygMai2UbpPbmiDXMvJvA+gRkmZHu6
X/iBCwl84AGNRxtHKh6SinRdsR9zLyDwSz8wlsBHHtBYdAypeCxXtGPuaAKf
EJhmwigCn3pAe+vfXrT18cxLzH6YUZJJ1eaAY3mfvNB7dezRuOKxiLNnzBk3
VrQQkP1g2/Ag5lmKOPsdXG/GVyLOXmdc8UTE2YuwM248ijWAHxG4TsMOzLMO
8Q/8xNMRv+oRN5aVCXhJhp2YJwdxdnS41oznIs6Oe13xAsTZmwJn3HgURYDs
LZAND2GeEsTZm7sUM16KOHsD64pXIs7epNvxLsSrEe8l8WQzXo84O1/jijci
3ukn3oI4O51nxw8j3oY4O/O4xowfRJydoHXFuxBnp6PteDfiPYiz0/BJZvwY
4mzTwRXvQ5zt0rjig4iz3Sk73oP4COJsL261GX8H8UI/8XHE2carHT+ibvRQ
OG59hH9rZyDbI050QDXPBcTZtrkrfgVxdkGAK34dcXaNhB0/ivhNxNlFHKvM
+C3E2XUtrvgk4uyKHTveS76ldwHZ5UxOqOa5h/gSEk8w4w8QZ5egueKPEWdX
5dnxY+RRPAEMD1jHJrabZdQUXyG5yhx6ZA3FTqs/jmroOJlpCqFUOXTH+qwu
ZtzoCL18XpW3T3qEiL+GUIEcuohQsSOkJjmHoTJzaAxLsy/jOkGqh+CDcugE
Qs2OkL0XOTOkD+nCr1Zu34FQlxxqRahXDjXhMfU7Qi//PCk/rIf6ia9A6LQc
2oHQOTlUiNAlHRogoVws97ocykLThBxKQ2jSEbJPKcwMTemhk8THI/RQDi3F
cp/KoQVo+lqHBklIjX/rGFfDP+ovqN/x/9BF0f+n+4F5/wLLnN2N\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {287., 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"8fdef724-6578-4367-817a-ff6bbf287e01"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(2\\). \\!\\(\\\"pentagonal pyramid (J2)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"d20ba33f-4a00-4d5a-ad5d-c7551cd7b7e1"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .93438
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-3.33067e-16 1.05877 -0.0125591 1.05877 [
[ 0 0 0 0 ]
[ 1 .93438 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .93438 L
0 .93438 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.23803 .75397 m .59346 .77766 L .4527 .3936 L closepath p .837 .678 .685 r
F P
0 g
s
.59346 .77766 m .87384 .47266 L .4527 .3936 L closepath p .7 .612 .755 r
F P
0 g
s
.87384 .47266 m .59346 .77766 L .23803 .75397 L p .803 .795 .844 r
F P
0 g
s
.87384 .47266 m .73151 .19197 L .4527 .3936 L closepath p .615 .709 .912 r
F P
0 g
s
.73151 .19197 m .87384 .47266 L p .23803 .75397 L .803 .795 .844 r
F P
0 g
s
.73151 .19197 m .28745 .37186 L .4527 .3936 L closepath p .642 .959 .924 r
F P
0 g
s
.28745 .37186 m .23803 .75397 L .4527 .3936 L closepath p .96 .929 .718 r
F P
0 g
s
.23803 .75397 m .28745 .37186 L .73151 .19197 L p .803 .795 .844 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{294.438, 275.062},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2elLVFEYBvCxISQiCoIiCJLKJXfNtEzTMmdcxjVNs6ymcZtMHZdWbTfb
y/Yyy1bbI4IIIoggggghgr72r0zeeaeXPjxP3JH7wQ8Kzj3O+flcGc+955z3
lrh7Whrb3D1ejzvC2eX2tXg93RGOjq7xt+xhNltY1Pj33Aib0fbbbH9fAl/R
xkvwh6n2VHuStn8Zh2nGuC2TN34aB3tgINv9Y2O//cERbSuV/h/6C9ONbpvd
r0N+vNslaExDwjn6rkkzASoW9E3RLI6+6unmAFQk6IsmzeXosybNA6hQ0CdN
WsDRR01aCFCBoA+atIij95q0GCCnoHeaFMnRW02KAcgh6I0mxXH0WlEiQPmC
Xujpkjl6pklpAK0XNKpJ6Rw90qRMgPIE3dekbIDWCRrRpFyOhjUpD6C1goY0
ycHRDU0qBChX0DVNcnF0RVEZQDmCBvV0FRxd0KRqgNYIOqtJNRyd1qTNAGUL
GtCkeo76NckNUJago5rk4eiwJjUDtFpQnyZ5OTqgSW0AZQrap6iDo916ui6A
Vgnq1qTdHPk0aR9AKwW1a1IvR62adAigDEFeTTrKUZMm9QOULqhBk05y5Nak
MwCtELRNk85zVK9oEKA0QXV6ussc1WrSdYCWC6rWpJscVQUO0mXMvgYcAjzV
Mn4b8BTL+DDgycI3AH4nNH4X8CTL+AjgiZzfAzzBMn4f8HjhlYA/CI0/BDzO
Mv4I8FjL+GPAl1nGRwGPEV4B+JPQ+FPAoy3jzwCPsow/BzxyQrwc8JeAL7WM
vwJ8iWU8xD/mRWifDPogozhH/9XgmCkzyWM4RyNyGefo8ojlHF18cZyjSzue
c3SfSZgQLzXJEzlHt9QkztH9PZlzNHukcI7mplTO0US5nHM0DadxjtYEwRVc
iUmezjlaoGRwjpY/Ky3jaOm2ivNbgGdyjpadwW2MyyTP4vwG4Nmco4XyGs6v
AZ7D+VXAczm/AvhaztFOIFgVKDaZ/h+O0vM4vwT4es7RVief84uAOzi/ALiT
c7Q5K+D8HODBcluRSV7E+VnAizlHu0+XZfw04CWcnwK8lHO0vQ7WfwtN8nLO
BwCv4PwE4JWco/rBBs6PA17F+THAqzlHFY+NE+IFJnkN50cAr+X8MOCbOEcV
oDrODwK+mfM+wLdwjmpW9cKdJvlWzg8Avo3z/YBv5xwV5dyW8b2A7+B8D+Ae
zlHVsUG4wyRv5LwH8CbOuwFv5hyVVVs47wTcy7kP8J2co0Jwq/B8k+n/4Sh9
F+ftgLf9w2cYPahS3i4oMNPMNnrQc4AOQfWKnAD5BO1SlAFQp6BeRdEAdQk6
o2g+QN2CbilCzyl7BD01DuFGz155I9A7iZ7hTrUnT9sW9geVkdgA\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 293.438}, {274.062, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"365200d6-5711-4603-be0d-da2cfeee07ad"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(3\\). \\!\\(\\\"triangular cupola (J3)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"36266263-87e7-4df3-a101-c192b326cf56"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.1739
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0951554 1.20352 0 1.20352 [
[ 0 0 0 0 ]
[ 1 1.1739 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.1739 L
0 1.1739 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.19479 .60376 m .31323 .86567 L .32072 .52296 L closepath p .986 .774 .533 r
F P
0 g
s
.32072 .52296 m .56526 .28961 L .46565 .34334 L p .636 .933 .683 r
F P
0 g
s
.46565 .34334 m .19479 .60376 L .32072 .52296 L p .636 .933 .683 r
F P
0 g
s
.56526 .28961 m .32072 .52296 L .31323 .86567 L p .537 .39 .628 r
F P
0 g
s
.84461 .39039 m .56526 .28961 L p .31323 .86567 L .537 .39 .628 r
F P
0 g
s
.85822 .77585 m .84461 .39039 L p .31323 .86567 L .537 .39 .628 r
F P
0 g
s
.31323 .86567 m .56867 1.01612 L .85822 .77585 L p .537 .39 .628 r
F P
0 g
s
.56867 1.01612 m .31323 .86567 L .19479 .60376 L p .235 .43 .849 r
F P
0 g
s
.46565 .34334 m .56526 .28961 L .84461 .39039 L closepath p .504 0 0 r
F P
0 g
s
.19479 .60376 m .46312 .7434 L .56867 1.01612 L p .235 .43 .849 r
F P
0 g
s
.19479 .60376 m .46565 .34334 L .46312 .7434 L closepath p .509 .359 .613 r
F P
0 g
s
.46312 .7434 m .85822 .77585 L .56867 1.01612 L closepath p .733 .748 .864 r
F P
0 g
s
.84461 .39039 m .85822 .77585 L .46312 .7434 L p .775 .576 .631 r
F P
0 g
s
.46312 .7434 m .46565 .34334 L .84461 .39039 L p .775 .576 .631 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{262.688, 308.312},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2ulTFEcYx/Ex3AKKKIp4sCincgisXHIjqBER4xkVEVGDGm+NSSplkrLM
ac7yZV7m3/Bl/g3/FbLTT+/DLnx3sk9IKnkBVTs7TPfv0z3DzjDb0yfmnizc
uDv35Nb8XOzIo7kHC7fmH8cm7j9KbMpZFwTr8hOveCwI1xeDILlwPwXhwv+y
tr62vrb+n63/Gr7lhOfmQ9nwc/j2TrghZ/FFuEis3ZOiH7WoUIvuSNErLSrV
ogUp+t69uS1hUfgKyrTSDan0rea3atE1Kfpai3Zo0awUvdSiWFjk1mak6IUW
1WrqohR9qUVNWnReij7XolYtOiNFz2E32rXSKan0mea7tWhKij7Von7t66QU
fRy+5WuRSx2TomeprV78zV1Dcxf/eP17UbjapdUnpPpH7i1Xq/tIaZgoXEzr
8Zgknrq3vLREsqEKjTVrbFhiT5b1K/FK7FK4lG2JYPhK/MmSfa1XYkCIx0Dk
AFGrvahRok+IR0DkAtGsxE499j1CPAQiD4i47kiF9uKgEA+AyAdiQHux9PHv
EOI+EAVAjCtRrESbEPeAKATihO5InhLNQtwFogiIc+GyWE4gF/wQgusheCVc
uk9nowTvQLAYgnNuKdv8T+ID5YjbQJTYiFtAlNqIBSA22IgPgNhoI24CUWYj
bgCxyUZcB6LcRswDsdlGXANii424Gr65i8U2W3AW2jYSV4CotBEzQGy3EZeB
qLIRl4DYYSMuArHTRrwPxC4grgFRJ8QFIHbbiPNAVNuIc0DEbMRZIGpsxBkg
9tiI00DstRHvAVFrI04BUWcjpoGotxEngWiwEVNANNqIE0A02YhJIPbZiONA
7LcR7t45eRdvCR6Fto3EESDabMQEEAdsxDgQ7TbiMBAdNmIMiE4bMQpE3EaM
AHHQRgwD0WUjhoDothGDQPTYiAEgem1EPxB9NuIQEIdsRB8Q/TaiF4gBG9ED
xKCN6AZiCIh5IGqF6AJi2EYcBGLERsSBGLURnUCM2Qj3fdpd+sf/VrD39luX
Njbrep6jaeOhS93vBBG+gqWuGD8NccCWekYfcCOWpxids0aswPfvr65pWX52
01g/zLNqrEgxuuZneWImsfWK0b8xI1aiGP1njsC6AStVjG42jNhGxej+KQLr
AaxMsebVY+WK0Y1pBNYL2GbF6F7biFUoRl8fjNg2xegbUQTWB1ilYvQlz4hV
wSlPX4Ij2EOZWNfHfwDbqRgNEkRg/YDtUozGPYxYtWI0lBOBDQAWU4xGp4zY
HsUqVo/VKkbDfhHYIGB1itFIphFrUIwGZyOwIcAaFaPx5uuA7c2M7VOMhtAj
sGHA9sNZSo8TjGyz9tGIjQDWohg9bjFibYrRE6QIbBSwA4rRQzEj1hEu3aab
tmA8XBaEm65mDo5BsDPlj//mzdvwlTgqiWVpuOm0DYsDVqbYRGbscJY926VY
7+qxfYo1Z8bGs8S6FKtePTamWHlmbAKwDsCmFcuzYdSzy+HSPb+GEayo4Kxb
prcN42hRxAwQ9TbiMhANQhwFgg7nJSAaMxPUiwvh0l0y9kvwWJZtn4e2Iwhq
+ywQ/pnwu1n24gwQLTbiNBCtmQnakWk9iO0SPJ5l2yehbSMxBYR/vD+ZJTEJ
RKeNOA6EfPFOG9+PIo7qQey2BY9A256YAqIdiAkgejIT1IvDQMg3pLTnLFG9
GNUj0G8LjkDbEQR1fwgIP2NmOsteDAIxmJmgXvQDMSSEe2TmBx1WBvv00Mkd
iTzn88MKK6v3Qjs+eBa62gpENxB+ctM5bZuCXRCU2wR51uuCLRCMQ1D+i6c9
qk67L19GdOhhkv8P8pjcD0usrN4OLfrgjAabINgGQT+1bFaDDRBshaBchYM5
2MdaIFqAkIupTM5wbddlugdzpX7u3HWtvheqN0E7PngTuloDRAMQcsLKtBzX
NgXrISjnmMwq8gMSK4N1EPSTCO9ocDcE9+jB8RMTU2dtJfdxBwRroEVP3NMW
KRiDoJycMvXNBasguBuCMn9BZu65YGWmO/plQT9DM3XiYXJvtwJRpYfJz/p8
qi1S9e3Qog8+0+AWCFZCUKa8BJ9AV8uB2AqETLxJmTRKwS26j7NSfWn6aRlU
3wzt+OBzDW6E4CYIXpXgF7CPJUCUASHXkZTpuKUQ3ABBPzF4aYpvMQRL9OD4
KcYvoauFECyGFj3xlbZYBMEiCMoFKPhGgwUQLISgzAYMvtNgPgTzIehnXb+C
vc0BIlcPk5/J/YO2SNVzoEUf/EmD7tmVn1Psg+6V+D05lfyXZd0LXGylLRc3
maXubOlBso6fOBu8TuGSUV/kfvkfTbhfW//31oN1fwKCXSrY\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 261.688}, {307.312, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"4a24d2a6-0dd2-4e44-930c-318d6d31ea25"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(4\\). \\!\\(\\\"square cupola (J4)\\\"\\)\"\>"}]], "Message",\
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"036a08f2-6280-4884-9cd9-9c192268303a"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.09778
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0600102 1.19387 -4.44089e-16 1.19387 [
[ 0 0 0 0 ]
[ 1 1.09778 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.09778 L
0 1.09778 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.35176 .74554 m .57404 .68555 L .35508 .51091 L closepath p .801 .544 .55 r
F P
0 g
s
.76774 .80073 m .57404 .68555 L .35176 .74554 L p .653 .245 .259 r
F P
0 g
s
.20427 .35095 m .35508 .51091 L .57404 .68555 L p 0 .363 .828 r
F P
0 g
s
.21244 .29141 m .20427 .35095 L p .57404 .68555 L 0 .363 .828 r
F P
0 g
s
.41701 .39942 m .21244 .29141 L p .57404 .68555 L 0 .363 .828 r
F P
0 g
s
.69458 .62149 m .41701 .39942 L p .57404 .68555 L 0 .363 .828 r
F P
0 g
s
.83384 .78805 m .69458 .62149 L p .57404 .68555 L 0 .363 .828 r
F P
0 g
s
.57404 .68555 m .76774 .80073 L .83384 .78805 L p 0 .363 .828 r
F P
0 g
s
.35508 .51091 m .20427 .35095 L .19174 .59324 L p .955 .686 .486 r
F P
0 g
s
.19174 .59324 m .35176 .74554 L .35508 .51091 L p .955 .686 .486 r
F P
0 g
s
.35176 .74554 m .54264 .872 L .76774 .80073 L p .653 .245 .259 r
F P
0 g
s
.38596 .71856 m .54264 .872 L .35176 .74554 L p 0 .265 .742 r
F P
0 g
s
.35176 .74554 m .19174 .59324 L .38596 .71856 L p 0 .265 .742 r
F P
0 g
s
.54264 .872 m .83384 .78805 L .76774 .80073 L closepath p 0 0 0 r
F P
0 g
s
.19174 .59324 m .20427 .35095 L .21244 .29141 L closepath p 0 0 0 r
F P
0 g
s
.69458 .62149 m .83384 .78805 L .54264 .872 L p .648 .776 .941 r
F P
0 g
s
.54264 .872 m .38596 .71856 L .69458 .62149 L p .648 .776 .941 r
F P
0 g
s
.38596 .71856 m .19174 .59324 L .21244 .29141 L p .372 .359 .715 r
F P
0 g
s
.21244 .29141 m .41701 .39942 L .38596 .71856 L p .372 .359 .715 r
F P
0 g
s
.38596 .71856 m .41701 .39942 L .69458 .62149 L closepath p .633 .594 .793 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{271.688, 298.25},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmvtPHFUUxwd2l8fyliL2Ad1WLEUK4kJZWkp5tTwLaKuiiNotRaC1lrbY
aq1p66Ox1lifidEaY9TEGGOMaUyMIcaYxpioMca/xV/rzD1nzs7Ofi/MFX/o
D5Ds7Oyc8/18z9y5M3PvDCPJhdnpY8mFualkrP9kcn52bupUrO/4SXtTKMuy
skrsz90xy1m/aVnuQv2VOgv+sbq+ur66fkuv73C+sp3z9++0DRMT19XWvzxb
rbCzxQm5H5Xypzcl5E2xf7lJf+iTIpL0GyW1SU35TJGrix3+1Z8UFX1GqFBC
v3hCPv8iSbqhTyqRpJ/1SWWS9JM+qVySftQnVUjSIiUlZJ/WSugHf2i9hL73
h6pAS37nT6oWfUYoJqHr/tBmCX3rD9VI6Bt/aIuEvvaEfM1QK0lf6ZPqJOlL
fVK9JH2hT2oAjfQ5pbdK4U1CygjFJfSpP9QioU/8oVYJfewPtUnoIxjiWj+7
9rvzbV3DSWFJ4sQPcV4kLc+FfrCcs/2xsp2lir4fJD2slukN/Z5H6DsurQCR
AxDvmiFyAeIdM0Se7LehMAq83zRDFADEVTNEIUC8YYYokhZg4fYlj3wJcLwS
RFgKhK8FEZYB4eUgwttkzzLSEyC9AvhcCiK8HQhfCSKsBMKXPcIAR+8O2UdD
4TrgfdEMsR4gLpghNgDEeTNElbSAoXAj8D5nhogBxPNmiE0AcVaP2A4Qd0oL
sLBlyV53F3A8E0S4BQhPBxHWAuEzQYRbgXDBIwzQvnXSOIbCeuB9wgyxDSDm
zRANAHHcDNEoLWAobALeT+kRqGvGAeKoGaIZII6YIVqkBQyFrcB7xgyRAIgn
zRBtADFthtghLcDC5iXPu3bgeMgjDNB5dgFE0gzRARAHzRC7Zb+XEKIG6wbe
j5khegBi0gzRCxCP+g8g2u89st+cju4lzUDYBxwfJkRqRoCE/UA4TsLUnDEO
hANA+BAJ1cRaRZqAcFD2kdO9zzis7kX6tuzrX6Z2GJgeIMpOP4VIDYCyD1D2
E6Xd095MsVSt9YAzAjj3E2eX+oqkV0MV0bwZodQmLqQD7U73oqqlFgCGBGBP
CW/846vqPoLuxntnL9N7WI2uo6hNOcBgjAw6dQappxKox6tNUYAdJWwXwIZA
3ZuAQZezVO1YDAxGyKBbZ6DqRtgOqbscYPcRtkfOoIjANgLYToFVAtgwwfaA
GsOgETbo7mZq0zq9wV6dgaobYVsEWw2wQ4TtA9gIqHutbiijDt5mYDBIBv06
g9RjOzQ6C9GplIkdIOwAwOaAuit0g9AQXTcyDahgLh8YqLoRdqtgG/XYIYDN
FWw5wNZIK8cBlo4fd5J0bB5ojlLdZEltSgAD6nd8zgADVTfCVgu2HWDpfOEz
PB2bD+ou0s2U1aZOYNBLBqM6A1U3wlZKe/cCbA9hxwA2CuqOAoM1Une/3kDd
E1SNBVItgpUJbBjA6MrJd63lq80FBsViMAYM6NrPd3lgoOpG2ALBHgDYTsI+
ALCp5ggDbJ4cvHGApTus9SDAFroXplRzqI+l6ndrnQRQGgvwcAlAVa1WyKXx
qMQlPqEnjgNiER+1dJi9NgU4NMzhkSbgqMpmgJDGWdYjQFjs6Ta2UImnAYIG
fNbEChA08uSx9vKIw3rE5AoQ9B6Kpyn/DUEvVazHV4Cg5852b7nJV4WSgEKa
ovAkEfel5RA0HaapqvJGRaP+x8LDujMjAILmdDS/5it2MGGchDPAuyAg4l5C
zIp30KKbSHgEeEcB4pAecVS8UdFIeA8JjwHv/ICIRkI8Ld5Bi24g4TzwzguI
2EaIE+KNij7oLNUmdjwFHHOBcFKE3L4L4oMKVLcQdTPhbnga+OQA4X4R8ql/
RnxQWaNSFl94nwM+ESAcFB++s50VH1TWXvHhQcY54BMGwi7x4dHgC+KDymqX
dJ4DnAc+ISBMSIE887sgPqisuPjwDPpF4JMNhI3iQyMM6yXxQWXViQ8/e6H3
UPj5Qa2w+SHRJWGjUmLCptuD9ar6ynhSUiV5/MjwsmCpZpfqvLziAviJ6BV/
q9h/awQ3R0mvO18qp1T0dBGhN5h8EXJV/MD9qqe/uSF+I/CWx9XdWfXrWYq/
LVJ+t6MuALfQ/wCtrq+u/1/rVta/qKZfqQ==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 270.688}, {297.25, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"db32bf6d-ff9f-42e9-9ded-5bf593df87f7"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(5\\). \\!\\(\\\"pentagonal cupola (J5)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"0c659af1-2465-4162-80ae-234c7f90d85c"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .8708
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
1.66533e-16 1.05452 -0.0412103 1.05452 [
[ 0 0 0 0 ]
[ 1 .8708 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .8708 L
0 .8708 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.3904 .59344 m .44068 .5652 L .2829 .46638 L closepath p .811 .343 .106 r
F P
0 g
s
.62498 .63025 m .44068 .5652 L .3904 .59344 L p .603 .059 0 r
F P
0 g
s
.19964 .35919 m .2829 .46638 L .44068 .5652 L p .414 .649 .954 r
F P
0 g
s
.23567 .28028 m .19964 .35919 L p .44068 .5652 L .414 .649 .954 r
F P
0 g
s
.40359 .27181 m .23567 .28028 L p .44068 .5652 L .414 .649 .954 r
F P
0 g
s
.64005 .35067 m .40359 .27181 L p .44068 .5652 L .414 .649 .954 r
F P
0 g
s
.8232 .47889 m .64005 .35067 L p .44068 .5652 L .414 .649 .954 r
F P
0 g
s
.87031 .5902 m .8232 .47889 L p .44068 .5652 L .414 .649 .954 r
F P
0 g
s
.78676 .64269 m .87031 .5902 L p .44068 .5652 L .414 .649 .954 r
F P
0 g
s
.44068 .5652 m .62498 .63025 L .78676 .64269 L p .414 .649 .954 r
F P
0 g
s
.3904 .59344 m .58942 .66432 L .62498 .63025 L p .603 .059 0 r
F P
0 g
s
.58942 .66432 m .78676 .64269 L .62498 .63025 L closepath p .321 0 0 r
F P
0 g
s
.2829 .46638 m .19964 .35919 L .31085 .49019 L p 0 0 .501 r
F P
0 g
s
.31085 .49019 m .3904 .59344 L .2829 .46638 L p 0 0 .501 r
F P
0 g
s
.87031 .5902 m .78676 .64269 L .58942 .66432 L p .485 .873 .97 r
F P
0 g
s
.65848 .61217 m .58942 .66432 L .3904 .59344 L p .373 .642 .96 r
F P
0 g
s
.47792 .49555 m .65848 .61217 L p .3904 .59344 L .373 .642 .96 r
F P
0 g
s
.3904 .59344 m .31085 .49019 L .47792 .49555 L p .373 .642 .96 r
F P
0 g
s
.58942 .66432 m .65848 .61217 L .87031 .5902 L p .485 .873 .97 r
F P
0 g
s
.31085 .49019 m .19964 .35919 L .23567 .28028 L closepath p .093 .251 .736 r
F P
0 g
s
.65848 .61217 m .8232 .47889 L .87031 .5902 L closepath p .728 .841 .935 r
F P
0 g
s
.47792 .49555 m .31085 .49019 L .23567 .28028 L p .463 .5 .812 r
F P
0 g
s
.64005 .35067 m .8232 .47889 L .65848 .61217 L p .674 .705 .871 r
F P
0 g
s
.65848 .61217 m .47792 .49555 L .64005 .35067 L p .674 .705 .871 r
F P
0 g
s
.23567 .28028 m .40359 .27181 L .47792 .49555 L p .463 .5 .812 r
F P
0 g
s
.47792 .49555 m .40359 .27181 L .64005 .35067 L closepath p .615 .595 .807 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{305, 265.562},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmttPVFcUxo/ODMxQgYFWdFCuVUBEboOIgheu3qDetd6qSFWwUi1Q05am
TSVtYmJi2rRp05KYmJqY3tKmvvon+NhX/4Q+9pWevdfm48zw7WFPSZOmwWTO
2XNmrd/3rXUu+5yDQ8NTo1fHh6fGRoYr908M3x4dG5msHLg14W8KrfK8VS3+
J1bpqfGc580v9L9WtTBfVsYr45Xx/2o8rlZxdb4/lQ0n1SqhNuTPTU4/90Jq
ODc7+1x95NtvErlfrfLVhloSuVot9aZfAuEmyA/XKS0kMYLEHyVxIJAY736m
r02tJDGKxCf2xCRJzEPiY0ns16swEk0yy81H7qNgbiQlN5PrOAAPBdCX5tr/
+M1Uy6V7V6yW2vd3y4eVwNk3dliIwJoJLAHYVwLrJbCwo7MNgH2xfFg5YA8E
1kNgOY5lVgF2PzsYc/YqYPcE1k1guY6wGhwan9phUccy6+HsrsD2EVjM0VkD
YB/bYXmOzpoA+1BgewnsJUdYK2DvZwdjZbYBdscOW+PobAdgkwLbQ2D5jrBd
gN3ODsbK7AJsXGC7CazQ0VmnmRHUtp+evsBHXUxvLh+/a2FOm0f73/zlarXp
hgh0EYG4YzM6iECOkcEdtk+/bpcqyuaISJOKEqlr9raxqphUO5HKQ9uu2Y8h
V4E2IpBPahmxn0iuh0CSSBWilhH7Bakgm2tImkAxqeVyQEpruzZLX/F0Rgl8
Xw5c4vUG13Y0ErfriduL9tnN9ULRQKRKUcFF+8TuelnbSgTKSC3nAlJa23XX
1hOBCiJwVgT6IODaojoiUIUWGWx/RizzXUuwm4jv0yIwAAHX2amGCNTAt8EG
nwcyzfKsMZuIwBZSwYmAVFYVVOOk2gbfBnYAMNfbiCritom4PSoCB7MWqCAC
LUTgiAgcgoDrXVU5EUiiMQZ7GFh258ewZQTbTnwPBgTMT543o9bOUhuIVAcq
MAKDWVdQSrCdpIKDIjAEAdc77QQR2A3fBvta1tgSHN89xK08OMt+1UHsIYNh
1xK3vUSgPyCQtkNdn7ReIVL9aIwROLoMgWIicIDUInOgd4xIRRyliojUIdRi
BI5jb7AKmgg2TrBDpIK9AYF/WEEBkTqCCozACSLAntKZQD4ROE5qkVtoeYvl
IMXatoZInUQtRuAUEXB9FxLDyXeWVLBTBE4TAfbmhglESQXniFSHXYrVwpqV
S6QuoFlG4MwyaokQgUuklu0i9bpeRYJSGV+/hQn+Mvy3C/RsBii7PQnZoGbb
sz/+1LkGLzeg4RQ87EaCZP1RmVc0LQLa/Ef9ZjpxnjRdkOEUJGihIM3fP2qZ
2uOkjTzjz6/+t3VpvfAs7JCdfYG4Lp079/1fpWq4sGdyCcK80r5IEEmFYIdp
mrMM2DdsWO3nPIHFCKxFYJcIrI14PEOweXasfu7TfrbD2Sn0rIAkNkviMBLb
iYtjxMVSsLTi2uHnKIEV2mFXCGwH8ThIsEUE2yTYERtWezxMYMV22Jvo3k4g
9qPtJSSxURKvInEXKamXuMgAu5YKW3R3N49YtwQirSudxNkegk0Q7DbBXoez
LjjrQn822hNHkbibuOggLsoIrEFgY6kwPdpBEOV2xA0g9hA/SQKrsMPeSoWt
lmv+YkQVQWxNR+wjfhYeXTfZETdTEXrUQFxsJoh6QYwD0U1c1BFYjR32dipM
j2oJoo4gtgjiVuAo9hHaE3NWjf5stcNu22A6sYo4ywB7h8B6iLMygt1GsHUB
rPbTB2cbCaLRjpgAop/4WU9gzQRWK7BJUuaCs4XXlEk7Yoog+oF4mfjJAHuX
wAZImYW2MnPUJtOpOzaYmWMth2pMbQrNTb+Y4zvgPbXSvzBnMfSsGrA8BTOH
r0ZMA7HQ7CjxkwCimPgxsI8A6yV+wrbZVmMTcGbmlU9wdPXAWch2x6QRlUCY
+4AZ+Ek/lT0Nm0+sIyUZxGdA6Auu3qlN0DE3oPcQFJyS/SDNbSV0k3gfie0k
sQU65qb/AVrSipYkCd2Efw56Y0a6eXr8EuH1JLwZ4Z0S/jXCNwemosVmTPi3
8F6dkS5/A/JmQS+3hafpmMSHSCwliQ1qGZEjQoc/QvhaVFGjgmJyWumgxwgq
IsxytYyqTeal5hOUWkDCS0CXR1zvB9BjsBBHkPmzzM8IihBmFBbGJPxXhPuR
6opjouVqkqu+yrzi/a5XYeA8eZD8QH7Vrf0P/dejlfHK+N8Ye6v+BjbRtNU=
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 304.}, {264.562, 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"8f0ed33a-b3a6-45e3-a9e4-5d030a825022"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(6\\). \\!\\(\\\"pentagonal rotunda (J6)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"c662ed4f-d8f6-4b3c-9827-fa2dfec20521"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.02199
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0297343 1.10197 0 1.10197 [
[ 0 0 0 0 ]
[ 1 1.02199 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.02199 L
0 1.02199 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.45463 .64215 m .53826 .47644 L .35242 .48085 L closepath p .747 .592 .684 r
F P
0 g
s
.53826 .47644 m .45463 .64215 L .58082 .75762 L p .624 .444 .619 r
F P
0 g
s
.71709 .4779 m .53826 .47644 L p .58082 .75762 L .624 .444 .619 r
F P
0 g
s
.38443 .76767 m .45463 .64215 L .35242 .48085 L p .855 .609 .566 r
F P
0 g
s
.35242 .48085 m .2082 .49025 L p .38443 .76767 L .855 .609 .566 r
F P
0 g
s
.2082 .49025 m .22314 .67543 L .38443 .76767 L p .855 .609 .566 r
F P
0 g
s
.22314 .67543 m .2082 .49025 L .15983 .50254 L closepath p .984 .717 .34 r
F P
0 g
s
.53826 .47644 m .71709 .4779 L p .15983 .50254 L .124 0 0 r
F P
0 g
s
.35242 .48085 m .53826 .47644 L p .15983 .50254 L .124 0 0 r
F P
0 g
s
.58082 .75762 m .45463 .64215 L .38443 .76767 L closepath p .712 .424 .487 r
F P
0 g
s
.15983 .50254 m .2082 .49025 L .35242 .48085 L p .124 0 0 r
F P
0 g
s
.58082 .75762 m .75035 .65345 L .71709 .4779 L p .624 .444 .619 r
F P
0 g
s
.75035 .65345 m .83905 .48536 L .71709 .4779 L closepath p .408 .3 .619 r
F P
0 g
s
.71709 .4779 m .83905 .48536 L p .15983 .50254 L .124 0 0 r
F P
0 g
s
.69586 .78687 m .75035 .65345 L .58082 .75762 L closepath p .423 .116 .337 r
F P
0 g
s
.58082 .75762 m .38443 .76767 L p .55783 .81977 L .364 0 0 r
F P
0 g
s
.55783 .81977 m .69586 .78687 L .58082 .75762 L p .364 0 0 r
F P
0 g
s
.83905 .48536 m .75035 .65345 L .69586 .78687 L p 0 0 0 r
F P
0 g
s
.38443 .76767 m .22314 .67543 L .35255 .80561 L closepath p .775 .274 .007 r
F P
0 g
s
.38443 .76767 m .35255 .80561 L .55783 .81977 L p .364 0 0 r
F P
0 g
s
.84957 .4975 m .83905 .48536 L p .69586 .78687 L 0 0 0 r
F P
0 g
s
.83905 .48536 m .84957 .4975 L p .15983 .50254 L .124 0 0 r
F P
0 g
s
.35255 .80561 m .22314 .67543 L .15983 .50254 L p .146 .324 .786 r
F P
0 g
s
.69586 .78687 m .75376 .69992 L .84957 .4975 L p 0 0 0 r
F P
0 g
s
.55783 .81977 m .75376 .69992 L .69586 .78687 L closepath p .714 .976 .92 r
F P
0 g
s
.35255 .80561 m .38232 .71712 L .55783 .81977 L closepath p .481 .706 .968 r
F P
0 g
s
.25292 .51334 m .38232 .71712 L .35255 .80561 L p .146 .324 .786 r
F P
0 g
s
.15983 .50254 m .25292 .51334 L p .35255 .80561 L .146 .324 .786 r
F P
0 g
s
.47345 .51676 m .25292 .51334 L .15983 .50254 L p .124 0 0 r
F P
0 g
s
.71397 .51016 m .47345 .51676 L p .15983 .50254 L .124 0 0 r
F P
0 g
s
.84957 .4975 m .71397 .51016 L p .15983 .50254 L .124 0 0 r
F P
0 g
s
.75376 .69992 m .71397 .51016 L .84957 .4975 L closepath p .924 .825 .73 r
F P
0 g
s
.71397 .51016 m .75376 .69992 L .55783 .81977 L p .748 .728 .834 r
F P
0 g
s
.47345 .51676 m .71397 .51016 L p .55783 .81977 L .748 .728 .834 r
F P
0 g
s
.55783 .81977 m .38232 .71712 L .47345 .51676 L p .748 .728 .834 r
F P
0 g
s
.38232 .71712 m .25292 .51334 L .47345 .51676 L closepath p .593 .542 .767 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{281.375, 288},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmstPG0ccxxfbizE2No4fGBuMIY+aR+wADRBCXjxMyKNJSdOStmlwkkqk
VUWVIFVV/oCqao9t/4NKvfVCjxx77DH/Ro69uvOb3zLY3u8441g4PRhpZ8bz
+HzmNzvr3RW+Xd7b+fKb8t6zJ+Xc+vPytzvPnrzIlXafiypvl2V1DYojl7Oo
XLGsw0T+pSlxPnTKnXKn3Cl3yp1yE+UfKcuLgrXDFbvcKCrylZRljVGpxE1b
lA1QxVNqilLpPDetUhanip+pqYdKZ7lpgbIQVfxBTZa3ou5fonmCO0mMbPkL
dBrnTtOU+ahlnzp1U8kZX1Dj/6SmAJXsyutXB3WkPHefosymlt+pey+V+kD3
8Zruuc1//NT8q1IM6MfI6PtojOy5R2OSVBoBYyaqxjhNYiAdVozSk1RVVOcj
Wjk4eOX0EzAJHG0Om5Qp1/3y0990WMOUFqlqFghyQDBZtfoGgkWZcp0QSMky
UKElaqAaAKoFoFoBqixQTbVdVTRUzQHVKlANA9VZvSoFVOdbV50zjAqp1oBq
qDkVimoWqEpAlQGqgl41CFQzraumDaOaBqp1oEoDVVGvQlGda5+qCFQbQJUC
Kj5J4hyYqQrHo0oD1RRQ3QAqdGvhlROb2CyqY1KhqCYNVUmgmtGrMkA1DlS3
gCqhV71vGJWpKg5Us3oViuo9oLrdumoIqM4YqmJAxQ7nqe/NUZ0Gqg9aV6Go
TgHVHaCKApXzEDtnqBoDqrvvVtUPVHN61TBQjbaumjdUjQDVJlBF2qcKA9W8
XpXVPT7Xqe41p1owVA0ZqtA7zUJzqgxQfdSc6oKhKg1U94EqCFQXmlMNAtXH
ratGgCplqOoFqkVWLRqqkkD1ybtVBYDqol6VA6oEUG0BVY9eddFQFQOqB0Dl
B6qltquWDFVRoPoUqLqB6pJeNQpU/e1TRYDqc6DyAdVlVl0yVIWPRzUGVCGg
eghUXqC60nbVZUNV8HhUJ4EqAFSPZGpXq+QhPlvLjL9iGMlb4q8a4v0Avy1T
Xw1elFeYfM1wDzdPXjYk24Bcrju5tBSrjF0xxPoA9jGlnsoRbNXwK9DbELbG
sDVDmOcNAe9XXsuAHWxJi7WrsfKgYWU1LzHIYUmEw1sHPL5F+2p4orytUB4i
1V1ZDu+6lncUNk3mUV2IBGyA3dBh5Xweqpn5AML5h8MNgMhWRfpy/1+Zi+OB
4tmAx0tm3QS86rcu4olDREWp/kH0MPoGqltAlQEqL6Vy3vdUBH6A5ZMk3tPd
2DTA2gp7F8y7Gwj4dIm3c7cgBQQ9YIluqggCesEdIBgAgoCKYENhewGW94gI
041NAmxQYUtgYdC8edNYHwJBHAjCYGGuqQhCesEmEMSAIKIiuAoiCAIB70Wx
wdyCE0AQVYIlNe8+gOW9KF4G3dh+gI2DhZlXgohecB8IIkCQUPOeAwsTBgLe
7OJtzC3oA4KUEsyoefcDLG9x8TrkxoYANq2wBYU9ocduAWwQYIfAek+AhYkC
FV9N4kvVrQoAVVZFkFcRxACWryHxQuDG9gBsTmFPg3k3EHwGBH4gGANLlFMR
JICAL1Lx8O8W2EBwSkWQVdg4YWU33tjiVuiG+QDsjIJlwHLIjShvi7xBrC8A
1guwebAIydrrUmI5ZvEUQJldjZUHPSFMqRkmdF9NErXNKJmhKR1xorXf/XL0
Ux5dpswDRhdAQKHaW5NsdH7w8Jgy+YOFSaUN6m72cgJf88CvKIvwyT0c6K99
rJHdd7n795SF+eJ2T9BT+6QmB77ggT8oj095xGgaafHDD7O+4+6/qXhecoXc
uf+jn5x0yp1yddnq+g+yLsKg\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {287., 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"d277d9f4-59e5-4f9d-8a96-5a623efe97f6"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(7\\). \\!\\(\\\"elongated triangular pyramid \
(J7)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"61db45a2-0743-4189-96d1-909c93783e34"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.13596
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0777715 1.22529 1.11022e-16 1.22529 [
[ 0 0 0 0 ]
[ 1 1.13596 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.13596 L
0 1.13596 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.87259 1.01675 m .79519 .69808 L .68065 .63469 L closepath p 0 .036 .602 r
F P
0 g
s
.3978 .31497 m .68065 .63469 L .79519 .69808 L p 0 .137 .665 r
F P
0 g
s
.87259 1.01675 m .68065 .63469 L .43983 .93524 L closepath p .76 .533 .589 r
F P
0 g
s
.12348 .59762 m .43983 .93524 L .68065 .63469 L p .82 .623 .637 r
F P
0 g
s
.68065 .63469 m .3978 .31497 L .12348 .59762 L p .82 .623 .637 r
F P
0 g
s
.79519 .69808 m .46713 .32477 L .3978 .31497 L p 0 .137 .665 r
F P
0 g
s
.12348 .59762 m .3978 .31497 L .46713 .32477 L closepath p 0 0 0 r
F P
0 g
s
.87259 1.01675 m .43983 .93524 L .79519 .69808 L closepath p .684 .72 .877 r
F P
0 g
s
.46713 .32477 m .79519 .69808 L .43983 .93524 L p .642 .616 .809 r
F P
0 g
s
.43983 .93524 m .12348 .59762 L .46713 .32477 L p .642 .616 .809 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{267.062, 303.312},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2stXVXUcBfCroqao+c50WUSoqIAoIspDEBDkJW8EUeTykqsiiuQrM9PM
1NJltdLWqgatBg1q0qSRkyZNatCoSZMm/hvG7+yfe3Fsf4/HWatsLfnd7u+z
9/fCvR7OPdem5OTo8FhyMjWYzKidSJ4aTQ2eyagZn5i6a9aMRGJG+tSfLRkJ
d/txIvHkS/DfAvfF/8+L2y9uv7j9n72dckua+7v/9bQ70t0d93HHqFuWujvu
4Y6jblnp7riDO0bcsiI4fsx6/O2Xvz32B5LEx9gf5n6wPfWVR5qp7dtAQ0Sz
BboFNEg0V6CbQANuWe525gv0IVCSaIFAN4D6iRYJ9AHQEbcscztLBLoO1Ee0
1EaHiZYL9D7QIaKVAl0D6uVz9qpAV4EOEq0R6D2gHqK1Al0B6nbLEreTIdC7
QAeIMgW6DNRFlCXQO0CdROts1OGWxW4nW6BLQO1EmwR6G6iNKEegi0CtRHkC
XQBqccvLbmerQOeBmokKBDoHtJ+oUKCzQE1uWeR2imzUSLRLoLeAGohKBJoE
qicqE+gMUJ1bFrqdCoEmgPYRVQp0GqiWqFqgU0A1blngdmoFGgfaS7TPRtVE
9QKdnIaCg2ejQGNAVW6Z73aaBToBVEnUKtBxoD1E7QIdA6og6hQoBVTulnlu
p1ugUaDdRD02KiPqFegoUKlbXnI7fQKNAJUQ9Qs0DFRMNCDQENAuoiGBBoF2
umWu2zkq0ABQEVFKoCTQDqLjAvUDFbpljtsZs9F2onGBjgAVEJ0WqA9oG9EZ
gQ4DbXXLbLdzVqBDQPlE5wXqBdpCdFGgg0B5RJcE6gHKdUtwgnLZRjlEVwTq
BtpMdFWgA0Cb3BLsXBeoC2gj0Q2BOoGyiW4K1AG0gei2QO1A690y0+3cEagN
aB3RXRtlEd0TqBXozWDBljubc/ATwVvAMwX/TPBm8DcE/1zw/eAZgj8QvMnm
XwjeaD8YxRvsb1U9mAb7B6l4/bQnJwavm/aEx+D7wNfH5LXgG2LyGvDsmHwv
+MaYvBp8U0xeBb5Z8Ps2z4nJK8FzY/I94HkxeQX4lpi8HDw/Jt8NvjUmL7O5
+rmXgm+L2e55QUxeAr49Ji8GL4zJd4HviMl3ghfF5HA+9WyOR+EfkzhGBodu
31ks0PTj7vcPH7n1CS8R/B47Zzr+1IPBT9A/W+Hg3afmIPzPCjxn/uUUrviI
s+fYwd0ieEvMjqgoFxU3OHueHawQweti9nxRgZe2PwSEK65y9kI7WCmCV8Ts
56y4zNmL7WCVCF4Ss5eIChwB/GE7XHGBs5fbwb0ieE7MjqioERWTnP2KHawV
wQkxe5WowIHS/6oNV4xz9ho7WCeCY2J2REW9qDjG2a/ZwQYRHBWzXxcV+PXj
z6bCFcOcnWkHm0RwUMyOqNgvKvo5e50dbBbBPjF7vajAb2l/Bhyu6OXsjXaw
VQR7xOyIijZR0cXZOXawXQQ7xOxcUZFnV7Rxdr4d7BDBFjE7oqJTVDRxdoEd
7BLBBjF7u6jAOZ9/jxiuqBMVhXZFt6io4cPfaQd7RLBazI6oOCgq9nB2qQji
1Ni/qQ8Hy8XsiIpDoqKUs8vt4GERLBazIyr6REURZ1eJIN5B+Ass4WChmB1R
0S8qtnF2jR1MimC+mB1RMSAqcjm7XgTxRstfEQsHN4vZERVDoiKbs5ueL7hB
zI6oGBYVWZzdYgdHRDBTzG4VFXhL6y9white5+wOOzgqgmvF7IiKlKhYzdkH
7OAxEVwlZneLCrzz91ekwxUrOLvXDp4QwWVidkTFmKhYzNl9dvCkCC4Ss4+I
Clwg8Z8OhCvSOXvADp4SwXlidkTFaVExh7OH7eCECKaJ2SOiAteR/Mc5adMr
ODllxyafmjy1Tr10TB58/JT2jM7gw7XZ1reMy2T4fDFA/Ta6RqRebR4FHyAH
V9I7bXSHTepYgSt9iU+JGm30gKjWRl8RVdroGz7wMoFwsTLxHZvUiYRHPxCp
8y2PfiTKs9FPfEzqVBfXWxMP2ZRlo5+J1BsVj34hWm2jX4lWCoRLxonf+cDV
W2mP/mBTuo3+JFJXMTz6i0hdqcFV78QjtwQ7/jsJdv9F/9jk/3A7MeNvCuf+
OA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 266.062}, {302.312, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"35fb5435-3ee8-4e35-87a9-b2cd8b702859"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(8\\). \\!\\(\\\"elongated square pyramid \
(J8)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"f5ecdc6a-508d-4fc9-9733-47563f14a059"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.02671
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.032194 1.09031 0 1.09031 [
[ 0 0 0 0 ]
[ 1 1.02671 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.02671 L
0 1.02671 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.38526 .42989 m .70689 .43899 L .54238 .32802 L p .371 .743 .99 r
F P
0 g
s
.54238 .32802 m .18878 .32593 L .38526 .42989 L p .371 .743 .99 r
F P
0 g
s
.70689 .43899 m .38526 .42989 L .33058 .77676 L p .6 .451 .65 r
F P
0 g
s
.33058 .77676 m .38526 .42989 L .18878 .32593 L p .933 .774 .661 r
F P
0 g
s
.33058 .77676 m .65689 .81108 L .70689 .43899 L p .6 .451 .65 r
F P
0 g
s
.18878 .32593 m .12077 .71891 L .33058 .77676 L p .933 .774 .661 r
F P
0 g
s
.65689 .81108 m .33058 .77676 L .12077 .71891 L p .093 .625 .865 r
F P
0 g
s
.87579 .59915 m .70689 .43899 L .65689 .81108 L closepath p .32 .201 .557 r
F P
0 g
s
.87579 .59915 m .54238 .32802 L .70689 .43899 L closepath p .56 .016 0 r
F P
0 g
s
.87579 .59915 m .65689 .81108 L .47963 .75368 L closepath p .735 .939 .952 r
F P
0 g
s
.12077 .71891 m .47963 .75368 L .65689 .81108 L p .093 .625 .865 r
F P
0 g
s
.18878 .32593 m .54238 .32802 L .47963 .75368 L p .578 .425 .637 r
F P
0 g
s
.47963 .75368 m .12077 .71891 L .18878 .32593 L p .578 .425 .637 r
F P
0 g
s
.87579 .59915 m .47963 .75368 L .54238 .32802 L closepath p .739 .574 .669 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{281.375, 288},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2ltTE2cYB/CFQFAsUCmlBYsGwskAwSQYjglHoSCgqCiKthxqB5w6WrWn
aaedXnNr7zrTm151etlbv0o/hrc27yH/LOG/2/exN70IM3vI5nl/+7zPbvbI
2u6Lg4ePd18c7u/Glp7tPj043H8eW3zyrLAoUuV5VW2FIRbz1PwbzyuO9F+7
GtkPlfnKfGW+Mv+W85fV5KE6tvzkW+BF1JI3Lx/9rgZvR4/Nslcv/9RHoh/d
wwuDV60+/fBvbWr8bdSgm31vmo04riqixnrRd7KGtVjjt7KGUazxa1nDOpuw
WnZkD/FfyYhTelzjJ9TwXKacRtcLXxQZ1fRL42SIs0ucMzybp8EKy6ahTLHS
E5nSWFbcwmB2w8cypwm1qdZGpFgc3f6RDDsblJR10o6FbrZ7rL9ExT3oUEa9
F0IdyKgWsuGObAc/D6ZYoVpR9Qip+r4M+zAkLyHVRjfgyQx3DJtyrFx7EKtz
FGLnULsaktkDGdYRmlkIxqp3gWBs+96TsbEgVucoxDoJxup4x7CXHOvYhY1S
i8yERLdjZrdkbE8Qq3MUYr0EqyU5bgSzbKP0o3pRZCYkEo6ZrRt22LHDA47s
mowddGRXZeyQI3tVxiaPb54ybCUYYxsq5bibLxs26Zhj2pH9WMZmHNklGTty
/HBRhi3KsKzjYfeKjB11ZBdk7JgjO2/YIUd2wpGdk7GToSfbWRmWc7y6mJGx
eUd2WsZOO7J5GTsTeumXM9ggwfYINhdydZsPplheCyFUSFaMuhJCTcmoxZBr
2wkZtRRa+FGDDTgWfjmki2MyaiWECsmKdXE1hMrKqDVUi+3zGRl2jWxFr3j/
7qxc54rNJeFY7g2upGXKDa6kZMpNFNk7/mBiONhhlblddqhSoJC4Q4ikjNgi
hDkqehcdC3JXjfWiQVnDbVRyQNbwPhomghuy3n6ChhdlDT9Fw35Zwx007DMN
+x37uOfbMMVfcLeM2CdEXEZ8RoiutyB0BULWzUq3h/2qxzTsc1xjqeaFL169
fo1fqNB5gASqFVNWBiF2D1gNwXpl2BZ6GCVYnwzbRGZ1BOuXYaWj42mC2V9d
ryO2gczqCZaQYevA3iHYgAxbRTcbCTYow5aRWRPBhmRY6YrpLMGSMmwBmTUT
zJ6tehyxeWTWQrBLMmwGmb1PsJQMywH7gGBpGVa6+2ojWEaGjSGzdoKNyLAs
MvuIYOYdmD3HHMf2CZZBZh0EywZjLLMUsAsEG5Vhw+hmJ8HGZNggMusi2LgM
SyCzboLZW6O44wbo850eT2KTMqzHd5lyEpsKxlg348isn2A5GRYDliBYXoad
911xFjA9Nysjzvmudk/mY7Eux7K3IZ8kweZkWCsyGybYvA+Lqm/Yc84W5JMi
hH1o5j/cvPvr32oonJ8LnzaJ2Iyk0kS0T/f0NYa+L4sqTWNXCdYEbIRg9gmk
PvnqbxqAzRKsAX3NEsw+Gx0G1gJslGD1yGyUYPb5bRrdbAc2RLBTyGycYPYZ
cxaZdQKLE6wWmU0QzD4HH0dmfcDaCFYNbIpg9gl9DpklgTVqjP8zRZ5Q9h3C
DKjLoGoUpaVp0tC+05hHhyZVw7qgcPtmZQnrmVbhEdPwZPg1E74CPY9wtt2v
m/B16KXwDAm3b482SDj7Rd8w4beQTA7hAyT8pgnfgl4KZ8d8+5JtW03qzL5Y
DI+T8E0Tvqcm9ebnXgjXaZ0n4bdN+BdqcsZkXNTZhY59K/kN9G6Et5LwLRP+
M8I7EM6uY++a8COEtyKcXd3bl7e/ILwJ4ew2ZduE/4au1iGc3bzdN+F/qEnU
7O/FcHYXat92/6UmxVtedVBWMZ6H9/Q6+H/0T16V+cr8f5n3qv4B4RpfoA==
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {287., 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"84551563-1857-40a8-acf1-c724ca74c1c6"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(9\\). \\!\\(\\\"elongated pentagonal pyramid \
(J9)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"3ac8ab82-6f16-43ca-9e04-4a42d0a91314"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.07362
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.051891 1.15034 0 1.15034 [
[ 0 0 0 0 ]
[ 1 1.07362 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.07362 L
0 1.07362 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.74835 .64526 m .51998 .42018 L .42891 .72949 L closepath p .681 .526 .669 r
F P
0 g
s
.17162 .63579 m .42891 .72949 L .51998 .42018 L p .853 .713 .708 r
F P
0 g
s
.51998 .42018 m .27782 .29701 L .17162 .63579 L p .853 .713 .708 r
F P
0 g
s
.74835 .64526 m .77855 .32916 L .51998 .42018 L closepath p .556 .516 .766 r
F P
0 g
s
.27782 .29701 m .51998 .42018 L .77855 .32916 L p .594 .771 .964 r
F P
0 g
s
.74835 .64526 m .42891 .72949 L .62373 .88481 L closepath p .595 .305 .446 r
F P
0 g
s
.35576 .7972 m .62373 .88481 L .42891 .72949 L p .654 .1 0 r
F P
0 g
s
.42891 .72949 m .17162 .63579 L .35576 .7972 L p .654 .1 0 r
F P
0 g
s
.74835 .64526 m .86959 .62279 L .77855 .32916 L closepath p .093 .098 .571 r
F P
0 g
s
.74835 .64526 m .62373 .88481 L .86959 .62279 L closepath p .007 0 .094 r
F P
0 g
s
.77855 .32916 m .53903 .1821 L .27782 .29701 L p .594 .771 .964 r
F P
0 g
s
.53903 .1821 m .77855 .32916 L .86959 .62279 L p .911 .562 .366 r
F P
0 g
s
.27782 .29701 m .53903 .1821 L .61684 .49734 L p .428 .266 .557 r
F P
0 g
s
.17162 .63579 m .27782 .29701 L p .61684 .49734 L .428 .266 .557 r
F P
0 g
s
.61684 .49734 m .35576 .7972 L .17162 .63579 L p .428 .266 .557 r
F P
0 g
s
.61684 .49734 m .86959 .62279 L .62373 .88481 L p .793 .822 .875 r
F P
0 g
s
.62373 .88481 m .35576 .7972 L .61684 .49734 L p .793 .822 .875 r
F P
0 g
s
.86959 .62279 m .61684 .49734 L .53903 .1821 L p .911 .562 .366 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{274.688, 294.875},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmntPFUcYxlcRpVK0SsWCIqJwykWQ+00R8YJY5KZgAbl45I61paC9xbam
iWkb0qZtmjRp0qRJkyb9MP2z//Yj9CvYs/O+PoI8s323QEMaSc7ucvb3/GZm
z9k9uzPTnbw/N30veX9+Mnn8ylJycW5+cvl4xztLqbfSdgTBjoOpV+J4EG4/
CYKnC/eXHS70nxfbL7b/5fZ34Sot/F59LG98E652ui/aricL7Svh1pO/VkbC
9UNBvkImLSSCNDCpV+CyHwm5AtkeR+5aTYYvt+8Dgb8E/BLRpukSJ0Aq8kCC
nyOYSYK7UI7ij4FnEXw3KWdJgp+h3a/4gk6r+COUk03wDOCLgn8C/BDB95Jq
3ZPgQwQPk2AmylH8Q7Qij+AvA78r+Puw5xN8H6nWnAQfIFhAgvtRjuLLwAsJ
foCUMy3BdxEs8gXdXsXfRvMTBM8GPin4W7CXEvwQqdZtCS4gWE6COShH8Tng
FQR/jZQzJsEZBKt8QbdX8Uk0v4bgecBvCZ6EvZ7gR0m1hiQ4gWAjCeajHMXH
gLcQ/BgpZ1CCI2jPWRIsQDmKD6GcNoIXAr8h+E3g7QQ/SarVJ8EBBC/5gm6v
4teBdxC8mJTTLcFeNL+TBBMoR/FulNNF8BLgXYJfcyuBwp+CMHKNBEtJBTvj
KcpQdszgKQQ7JNhFgt0kWEkqfdGv6PEpXNkxg1Wk7POieIMoeomiGmXHDNYi
eM4f7CPBOlLpM6K4ShT9RFFPFC3bSdFJFDeMiubtpLhCFANE0UAUTVuqGDQ2
RBUdRHHTWIvG7aS4TBRDxmMRU8Fq0bBpiktEMbxxxYhRUb9piotEcWtrFI1E
UedXjBproYoLRDG2bRXsWNT6FePGWqiinSgmtkbBGlKzaYrzRJE0NiSmgtWi
etMUbURxZ+OKSeOxiKlgtagSxTmimNq2iiaiOC2KVqKYMdbiv1ewhlSK4ixR
zG5cMWdsyOYpzhDFvLEhFVuqWDA2RBUtRHE3XLonjmYSPPUPQe00/P2PP906
CGjxEZbVLQgtqVewM1xqv4ZX1myUpUPGHpHK/bJ5IsuArCaebI7IMiFjT5wq
azLK9kHGHp0jZLNEdgCyCiIriyfLhqw8nmyGyHIgY90aKms0ynIhKyGyUr9s
msiOQpaIJ5sisgLIivyyBqPsBGSsT6zEL5sksmLICuPJ7hBZCWQFflm9sWZl
kOXHk7GaVYRL99YRInvdL0sSWTVqluuX1RlldZAdjie7TWSNkOUQWcIvmyCy
Fshe9ctqjbJWyA5uXNYGGRuqKPbLxonsAmT7/bIao+wyZFnxZGNE1glZZjzZ
KJF1QcZGt4pEVm2U9UCWEU92i8j6IWPDgRGyESIbgCydyE6KrMpYs5uQsQHR
CBmr2TBkYnvqetpC5hkmnlFcyjR42hiccMu1bTjhVwwRxe14ijeNCj2SlRtQ
FK1S6FiX7QgU+4/+gFGR8H9FrxsVep1nJ3OfUaG/iOyy12NU6I0I+4G4ZlTo
LVs9PocuY1Bvadkd1RWjQp8k2L1nB1GME4U+WLFb/ktGhT5ksoejC0aFPrOz
J8TzxmOhCva0fM6o0C6QVnyUrcZgRCdQs1ER0afWZDyIEf2LDUZFRF9rnVER
0XVdY1Ss7sZ3n0O1MRgxnFJhVEQMLZUbFRHDbKVGRcSQYwlRjBGFjp2y4deE
USHnkgw7u8+h2BiUvjedFrC27ELjEVBFD1EUGBU6AN1LFPlGRZso+ojiiFGh
4+f9RJFnPJxyRq+axpFrDMp5LNNFniv7kFGhUw8GiSLbqJCxNJnt8pzigFEh
44qpe6P1iv1Ghc7fGCKKLKNCLgqpW831ikyjQqefjOCjZMFREpRLQWrX+rL3
GBVyKdCpWmsV6cbqq2KcKNKMCp38M+FW6asV7pX6n/4+yoQdnc/2rGQfrjOS
3AQzt4dVRS4uwRSgYQLJ5SOYBTRIIJ1otQCon0ByCZCJkm5PN4GuC7QI6CqB
dP7YMqDLBJKzPngPUDuBdOLas1mbrQSSM1dmgro9zQSSczP4FFA9gXQ+3rOp
rjV+6DGgSgLJSRh8AaiMQCMCrQBKEEjnIn4N6ASB5LwLvgV0jEA6CfJ7QHkE
knMn+AFQDoEmBPoR0EECybkQ/ARoH4GSAv0MaC+B7gj0C6DdBNIpq78C2kmg
KYF+C1fu+jYrb7i922hi+ovt/992sONvlgZJLw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 273.688}, {293.875, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"e41a7c44-08ab-4260-b577-379056168241"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(10\\). \\!\\(\\\"gyroelongated square pyramid \
(J10)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"24cc7f6d-0fab-4369-90a6-f6c64df232bc"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.18126
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0974735 1.24374 0 1.24374 [
[ 0 0 0 0 ]
[ 1 1.18126 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.18126 L
0 1.18126 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.52616 .2255 m .13351 .43044 L .34618 .50775 L p .706 .904 .966 r
F P
0 g
s
.34618 .50775 m .69391 .33584 L .52616 .2255 L p .706 .904 .966 r
F P
0 g
s
.2798 .83669 m .34618 .50775 L .13351 .43044 L closepath p .955 .729 .555 r
F P
0 g
s
.65945 .74537 m .34618 .50775 L .2798 .83669 L closepath p .747 .499 .556 r
F P
0 g
s
.65945 .74537 m .69391 .33584 L .34618 .50775 L closepath p .642 .539 .722 r
F P
0 g
s
.65945 .74537 m .2798 .83669 L .65133 1.02118 L closepath p .684 .354 .41 r
F P
0 g
s
.83162 .58808 m .65945 .74537 L .65133 1.02118 L closepath p 0 0 .281 r
F P
0 g
s
.83162 .58808 m .69391 .33584 L .65945 .74537 L closepath p .2 .152 .576 r
F P
0 g
s
.83162 .58808 m .52616 .2255 L .69391 .33584 L closepath p .815 .345 0 r
F P
0 g
s
.2798 .83669 m .4022 .68225 L .65133 1.02118 L closepath p .355 .534 .893 r
F P
0 g
s
.2798 .83669 m .13351 .43044 L .4022 .68225 L closepath p .213 .325 .762 r
F P
0 g
s
.4022 .68225 m .13351 .43044 L .52616 .2255 L closepath p .553 .371 .589 r
F P
0 g
s
.4022 .68225 m .83162 .58808 L .65133 1.02118 L closepath p .812 .71 .752 r
F P
0 g
s
.4022 .68225 m .52616 .2255 L .83162 .58808 L closepath p .797 .621 .663 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{261.875, 309.312},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt3GlvVNcdx/GBmfG+4gUbjBnv+74b73gBg40xYMAJBLNEZE+AJE2rKm2S
LhGKqqqtqqqtqqqqqkp9mLfAQx72LeRtOL7nnPnP2Pn+L+fKidRKIPl6bM/v
8zv3eub6rqztPHn44J2dJ2/c20mtPNp5/+Eb9x6nlt97tPet+JFY7Ehy72Mk
FQse78Zi6Yn5lxNM3BcvH798/H/2+NfBp3jwev6x/cYvg09HzQs8sft0+/fB
o93/bpuX/Cf2KV/IU+LBM+yT4+knma8+ts/8TJ5prL1p8ITnf/mP+dh7fDRI
xUz/rvsXe2KzP5Nsjskm92Vd3gLmWS72qflkxWD4QdQC8WxgLxNMkzJ76Y8A
fWypn8oI8gBIuOkBwDz/Awv8RIACFYhnA3YpHlge71rsE8GKAEtqmEk44mMh
SoDIASIB43nLYh8KVgpYnoaZhCMeC1EORD4QSRjPQ4t9IFgFYAUaZhKOeE+I
Kk8iF8bzwGLvCFYNWJGGmYQj3hKiBohiIPKEuGeJN+HtQFgJYPkwc3cs+1BG
dgKwMg0zCUe8LkQdEOVAFMB4blnsvmD1nlihjMcRd4VIAXEMiCIYz7bF7gjW
AFilhpmEI24L0QREFRDFMJ7rFntVsBbAqjXMJByxLUQrEDVAlMB4rlrshmDt
nlipjMcRW0J0AlELRBmM57LFrsHbhNgTGmsG4rArMrJuIOqAKIeRrVvssmC9
gJ3yxNYsdkmwfsDqPZeZw9YEG/TEaGQXLXZBsCHAUp4jc9h5wUYAa/DELlhs
RbAxwBq1lypjS4KNA9bsia1a7Kxgk4C1eL4jHTYv2JQnRiM7b7E5eDsR2+rJ
nrPsjIxxBrB2zxl22JRgc4B1eGIrFpsUbAGwTs+VtcPGBTsLWLcntmyxUcGW
Do8NC7YCWI8ntmSxQcHOA9br+QfXYf2CrQLW74ktWqxXsIuADWhbE4x1C7YO
2KAndtZiXfDG+h7YDhnjBmDDntiCxdoE2wRsxHPDzmEtgl0FbNQTm7dYk2DX
ABv33AR2WKNgW54YjWwuC3M/Gth8FnzGMU54srNZM3yApeU46Tnr+9iEsI6m
X/eUpzyTLSf3yemBXwZ+Gvg8nW8O4emVP+PJT2fz8Wx+b8MwmO5/x9JaZfbw
VXGougBVc55VU1lvQY8qWvHOQxXtM4dUJaCK/mAseFad0auSUEV/6BahKkev
avWsWoaqJc+qSb0qB6poW+B7qMoNpurGxrJnwYQtaIOCPJiXeag6B1V07Cik
Kh+qaEvxvGfVuK1q96yahapVqKIjdCFVBVA1DVUXPavG9KpCqKKdAKqiBThq
qzo8q85A1ZrnXIVUFUEV7X6te1aN6FXFUEW7jRtQRQeSXVWnZxXt7l72rBrW
q0qgahSqNqGKTheEVJVCFR0RoCqaqyFb1eVZRUcyrnrOVUhVmaxkqeCaZ8Gg
LeiGgnKYFzpetGWmfAplWOePAU/Htm6E8EM6XwF8D/A3zXT/+ZuM3OMp0xG+
myEDH9T5SuC7gN/mgYfIVSB3gPwqywNW7vWU6YjurQOvylg4Ww1sG7C3ge3X
2ePA0vHwO8D2WbbPk20+PFsDLJ0K2AG2V2drgW0E9m4wdQeed+UQC2HqeY77
QvToxEkYD53EeZA1m+mVmF09ulfSi9lT2hjNt7p1rA4wOmv1WjA1b/yju8+/
fnZgtJ16wSkooDNrr0hBDhS4xTHoWVALBdeDqVkDFEYrqIcCOtG4KXNQGq3g
NBTQmdV1KaiAAvdLHvIsoPPAq7KIaqIVpKCgUtsRM3NwEgp69IIGKKCT4XNS
kNILhj0L6NT9tCyiZijo1QsaoaAMCsZlDtqjFTTJCovYIWF7dHYE2GYYN12m
0S8LZgAK+vSCFigohIIumYMRvWDUs4CuWmmVggko6NcLWqEgHwoaZRHNRCto
g4JcKKiXOVjQC8Y8C+jSolopWIaCAb2gHQqSUFAli+hCtIIOKEhAQZnMwToU
uC3Ncc+Co1BQJAVXohV0mmkyu8B8BBs9BbJYrgM6pKNdZprYh8Zi9poqU/WK
7k1oXvqyuOf2SjX3VSy4NiQS1i3YfQgOvyCYXu5fPzPhezoxqS5t+73tp9+Y
eSBiRCc6sn5hAZH+CKi7OnXmBe8/x+x9ZafZM/laNLYV2ASwt4EdjcYmgb2l
s1PANgObCyy9ZMd0tgnYvMOzjcAWAHsTWHcUcxrYBmALgb0RjU0BWwwsrV5C
2NPAlgC7Baw7QD0D7Clgy4C9Fo2tA/YYsLTidqcGZoE9CWwFsJvR2BPAVh6e
rQW2GtgNYN1ZnzlgjwNbA+ylw7O1wK4BO6Wz1cCeiMbOA1sJbB2wtG0zrbMV
wNYDuxqNPQbs6WjsArDlwKaAPQfsjM6WAdsI7Eo0thTYZmCXgLVvL3elyX62
GNiWH4ZtBXZRZxeBLQS2HVjaq5jT2QJgO4Gdj8bmA9sF7Byw7gqXJWBzge0B
dvbwbC+w08Au6GwOsH3R2GVgE8AOADsVjY0DOwTsJLBno7HDwNL+vGPthYl8
3cwYUONALWZT37l2aAKUsRcpmfkMBnIGiFGdMJeBugtevxschqC71HBVgpPR
ghclSHM7CEF32eW6BMchSEeSXHBDgvRb6teDmxIcgWAfBN21q1clSC+xXj2Y
uZyfXvLdEHTX8WZuJaC3YEgwc0NDPwQ7Ieiubs7cTEHrkg49mLmlg9ZtdCTT
Be9IsBuCbRB0V3VnbmqhdX+rHszcUEN/i+iorrvCPXNbTwcEm/Rg5paitmjB
NyVIf+QbIOhuE3hbgrTRQYfGXfBdCTZB8DQE3S0T70uQNsrq9eAjCTZAsA6C
7vaRJxKkrUs6v+CCH0mQNqJDgj8KPpmf0EZ9LQQv2WDmbsmTEKRzLS6YuU+T
9k6qIbhhg59KkHbCQoI/l+BxCFbpwc8lSHuTdMLK3VP0CwnS3m1I8FcSpL3t
cghu2uCXEqS9/zI9+FSC5RAsgeAVG/xKgqXRgr+RIB1WKdaDv5UgHeahM6Du
5rPfSbAIggV68A8SpMNg+RC0t6bF/ijBfAjm6cE/SZCO5+XqwT9LkI4vJiG4
ZYN/lSAd7wwJ/k2CdPw1DkF3b+LfJUjHg+lcvAv+Q4I2mc5h5obN/DP4ZH4S
8qR/ZcPBQNxzYjftz/9tPu2Puh+ZL/6H/ouAl49/uMexI98Cc0MuiA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 260.875}, {308.312, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"b03641ec-d234-4759-9113-61494784b2dc"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(11\\). \\!\\(\\\"gyroelongated pentagonal pyramid (J11)\\\"\
\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"33f2f8b8-0f28-4315-807f-e59b8b7b3ae1"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.19188
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.101999 1.25523 -2.22045e-16 1.25523 [
[ 0 0 0 0 ]
[ 1 1.19188 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.19188 L
0 1.19188 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.39257 .97972 m .51092 .69162 L .38743 .37192 L p .919 .727 .627 r
F P
0 g
s
.75658 .85243 m .51092 .69162 L .39257 .97972 L closepath p .612 .36 .511 r
F P
0 g
s
.74585 .47185 m .51092 .69162 L .75658 .85243 L closepath p .518 .404 .663 r
F P
0 g
s
.74585 .47185 m .38743 .37192 L .51092 .69162 L closepath p .642 .605 .797 r
F P
0 g
s
.38743 .37192 m .15505 .42149 L p .39257 .97972 L .919 .727 .627 r
F P
0 g
s
.55206 .27734 m .38743 .37192 L .74585 .47185 L closepath p .442 .68 .965 r
F P
0 g
s
.55206 .27734 m .15505 .42149 L .38743 .37192 L closepath p .447 .882 .854 r
F P
0 g
s
.74585 .47185 m .75658 .85243 L .81414 .60953 L closepath p 0 0 .369 r
F P
0 g
s
.55206 .27734 m .74585 .47185 L .81414 .60953 L closepath p .731 .248 0 r
F P
0 g
s
.15505 .42149 m .15318 .84369 L .39257 .97972 L p .919 .727 .627 r
F P
0 g
s
.75658 .85243 m .39257 .97972 L .56432 .97088 L closepath p .074 0 0 r
F P
0 g
s
.56432 .97088 m .39257 .97972 L .15318 .84369 L closepath p .158 .602 .934 r
F P
0 g
s
.75658 .85243 m .56432 .97088 L .81414 .60953 L closepath p .911 .981 .765 r
F P
0 g
s
.41177 .58523 m .15318 .84369 L .15505 .42149 L closepath p .441 .335 .638 r
F P
0 g
s
.41177 .58523 m .15505 .42149 L .55206 .27734 L closepath p .565 .271 .428 r
F P
0 g
s
.41177 .58523 m .55206 .27734 L .81414 .60953 L closepath p .8 .538 .541 r
F P
0 g
s
.56432 .97088 m .15318 .84369 L .41177 .58523 L closepath p .618 .611 .821 r
F P
0 g
s
.56432 .97088 m .41177 .58523 L .81414 .60953 L closepath p .804 .705 .755 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{260.75, 310.75},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm8luFFkWQJOcnHZ6nhNsY4ON0/OcHvGE8YAHwDYYG4oq4xqghqYaaLXU
UkmtllpqCalXtWRZn1DbXrKsZf9G/YI7472X1+nkvPALKEu9MFKEg8i459x7
I2PMiM3DN8+/+uHwzYujw9aVV4c/Pn9x9Lp1+eWr7KzIpVDoUjQ7ZFpD3vRx
KJQbqX8xb2T+czF9MX0x/YdN/9v7E/a2tTd6xlvvT0RtfJHjnxe+Pc5tiq/1
5/+Sz9XHoaha4Le3b3MLvtLL/VOWi6vlIrJcdggp45/1kv+QJRO4ZHasFv9R
L/53yTgJi0dk8Zd68Z+EXgqLR02QN+8/k7rQP+nAv0lgBQTGIPAHHfhXCayG
wDgEfq8D/yKV1UJgAgK/04GvxFgPgcUQ+K0OfCmBjRBYYlqUCzTBL3Ts9xJ7
BWKTHPtcx76Q2GaILePYb3TsN9KlVogt59ivdeyX4m2D2AqzZvNjcw37SgMO
BdAOgEofwJca8FQANwBQ7QM40oDHAugCQI0P4JkG7Ev/egBQ5wM41ICHkkGf
FRDJB2S3YW+s55l/uhGh0I7ABgFW7wj7TMPuCWwYYI2OsCcatiV9GgNYyhH2
WMPWJbMMwK44wg40bFVgk46wCMD2Ney2wKYB1uwIe6RhiwKbBViLI2xPw+Zl
BcwDrNUR9lDDbkpmiwBrc4Q90LApgS0B7BrAogDb1bBxga0A7LojbEfDxqRn
awDrcIRta9iwZLYOsBuOsPsaNiCwLUdYDGD3NKxXYPcAlnaE3dWwLoHtAKzL
EbalYWlZAbsA63GEbebBzEevt39RO2HKsdcRu8HY7KBPyKiZfcCOA3vdj+2N
9TzvjNKTbIKq31F1x66KeGNVywYIBh0Fa3ZBDGqhTW3IUbVqV8WlllUQjDgK
VuyChAiWHQVFIFi2C0qgWbT7HXNU3barklILCTKOgiW7oAxqoYPchKPqll1V
LrWQYNJRsGgXVEItdPQnVQJUC3ZVldQyBYJpR8G8XVADtYyDasaxbT6qWqmF
TuJmHQVzdkE91DICqjnHbd9H1SC10KnyvGMts3ZBCmoZANWCYy0+qstSSz8I
bjkKbtoFTVALXTwtOR6HfVTNUks3CG471jJjF1wVQRoEy44V+AjaoFl0sbzq
qJq2q65JLSRYczxB9RG0Qy105+COo2rKruqQWui2xvqnCzqhFrr7suGomrSr
0lJLEwi2HC+2fATdUEsKVHcdVRN2VY/UQrfI7oOArtx9BH1QS52jimoZt6v6
pRa6wbjjWIuPYBBqqQLVrqMqY1cNSS2VIHioxnwby2ddjED+ZYDf88H7tGdU
cqZ70Y8+DpoRaAlA932gPt2dgEYUAf5AjT+43epDnpR06XeBJ8wbs/OmIdPI
H0KekUzDwHvKvFE7b7YgU28VHBZsCCF/xJw3LvFmHUDgyBluVUvx8W+/vq/y
ptRBS83zCbypxrrMd+/+q4bsdMqjVB+rrenDRIbPaKr5PuZ4hundHTGppSU1
H1T+mjeY7JryxmZN/freG7LHxFyuDYIdsmOnABsF7LpkW5TXgtyea+CMLaBA
EAPBE29c7M0adNtQc7AigB2p8ekc++3YccAmAPvMG4fPyDEDsGKAHQrMZ/WM
ASwJsC9cYKMAKwXY53nd+/34vfq2+mBHAFsO2M/UOCpYgzbkTkdyhZV8OuFh
O3YYsJW2r+SHCfuQh4BcDeQDNY6dIjskPgj4GsDvF/QjO2T3Fd749CYxaFcN
gKoOVI98Khmx4/sBXw/4PcdKfL5EfaBqANVDUEWCqXpBlQLVg09X9YDqMqh2
QRUNpuoGVROoth1VPl/wLlA1n48qDaoWUN0HVSyYqhNUraC6C6p4MNUNULU5
qqgqn024A1TXQbXpWJWPqh1U7aDaAFVRMNV1UHXYzocKVIlgqmug6gTVHceq
Ru2qNlClQbXmWJWPqhVU3aBaAVVxMNVVUPWcj6oFVL2gWnZUjdlVzaDqB9US
qEqCqZpANXA+qiugGgLVIqiSwVSXQTUMqgVHVcauSoFq5HxUjaAaA9UcqEqD
qRpAlQHVLKjKgqnqQTUBqhlQlQdT1YFq0lFFVY3bVbWgmgLVtGNVPqoaUM2A
ahJUFcFU1aC6eT6qKlDNgWrcUTVhV1WCah5UGVBVBlNVgGrhfFTloLoFqlFQ
VQVTlYFqCVQjjqpJu6oUVMugGv50VRJUK6AaAlV1MFUJqFZBNQiqmmCqYlDd
AVW/o2rKrkqAav18VEWg2gRVL6hqg6nioNoCVQ+o6oKpYqC666iiqqbtqiio
7oOqy7EqH1UEVNugSoOqPpgqDKpdUHV+jCqWr1JD9v+hPcDfAHzDWfjoKXx2
+hGQOxzJM9wjL+EDwLZ/BFbden4MsOsAazwDFrHB2gCWssPUo65RW/daHWHm
8ZWevO51vftddU9V/cCRrapWEXOa2CuNC3tEtfQOwFocW2iw/YKNeFhVP+03
mm2r2TxXqGCDAotJjrRrbbLtGVSsedBwWGBxgdHR54rjbsZgRwvWTHbIE9BB
+7JtlxnWEQp78nB5sfSRzmtSjgcwgx0XbFJypJPARtuJRVi3TcEmBVYqMDpP
rredEJmHhxVsGvp4gqWLCsLSiaoRzEi2FdJRutirs53Vh/V3WcFmBVYlOdJF
ao3tGkvFmsf1T16+qBYYXcdXO16wGewidPREQLc/qmxX7+Yhe4W9JdnWSR/7
AFZpgxVka7C3BdsgOdKduwrAJiVH8zrLisAaBUZ3HMsBViww89bOmsBSAqOb
smU2WEHBBrsOq+dEQPeykyBISLbmVaoNybZJVs9VRxjd1/3gDa0WyZF+hikB
bFxy/FzD7gnsqsDo56MEwGICM6/IbUMfT7D0Wxth6fcbI9iRbK9JR2sBGwds
RLI17yQ+EFi75FgFsBjAwgIzr1juCaxDYPTbd9QGKyjYYPehoycC+s0+goKQ
vL96IImmpYX0iEPYpJvH8abNq7dPhNIt2cQVJZZPyUXrDMz7vk8ltkdiI5hB
SN5K/kJieiVrXWqua7kXn59Bx9SXpdSbZd69PhKcOvY2eFM/6Y/UG69Jb8bP
eoZaH/9Hr65fTF9Mhy79D3hSano=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 259.75}, {309.75, 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"ef60b419-7a4d-4f01-b04d-389b77e191c9"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(12\\). \\!\\(\\\"triangular dipyramid (J12)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"4d59aca1-65f1-4a9b-ad6b-7325fdc20fca"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.07987
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0526216 1.17311 1.11022e-16 1.17311 [
[ 0 0 0 0 ]
[ 1 1.07987 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.07987 L
0 1.07987 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.61011 .60441 m .84428 .6016 L .34079 .30098 L closepath p .187 .502 .908 r
F P
0 g
s
.33084 .89077 m .84428 .6016 L .61011 .60441 L closepath p .167 0 .002 r
F P
0 g
s
.33084 .89077 m .61011 .60441 L .34079 .30098 L closepath p .915 .748 .66 r
F P
0 g
s
.34644 .58753 m .34079 .30098 L .84428 .6016 L closepath p .752 .313 .21 r
F P
0 g
s
.34079 .30098 m .34644 .58753 L .33084 .89077 L closepath p 0 0 .029 r
F P
0 g
s
.34644 .58753 m .84428 .6016 L .33084 .89077 L closepath p .748 .9 .946 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{273.938, 295.812},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2GlLVGEYxvGjMyYtVGMmLYgmbWa5MEyJZWaaWplmQ2Yu6Wgu45L7jplo
IYJIIW20IIUIIq1ve9lX6SP01jxnZi4P13M/53WFguNxfv/7fo7oDNGNwEBb
c1dgINgUSC7uC/S0BZv6k4u6+zaeckUZRpRn4/NEsmFerxtG5MH6iDMfwt9s
XW9db13/89d15pdo8zX+1faE4TafWf95K2s9/A7w2a4x0Min+R7xyZ647IkR
bT5ap6zpIzeiVX20zXoMPRf+MFb0eSx2OkTbES3ro53CwR/0+S7sdIh2I1rS
R3uFg9/pcw92OkT7EL3RR/uFg1/p8wTsdIgOIHqhjw4JBy/q88PY6RAlInqm
j5KEgxf0eTJ2OkQpiOb10VHh4Dl9fgw7HaITiGb1Uapw8GN9fgo7w1Gt+cV6
Ih00zZQpHPKIoyzMK+QFPWTyCavHOTqLeYWyQaNMOcLqIY7OY16hXNAAU56w
upejS5i3kzWUD+pmKhBWd3JUiHmFikDtTCXC6laOrmJeoeugZqYbwupGjsow
r9BNUAPTLWF1HUd+zCt0G1TDdEdYXcVRFeYVqgZVMtUKq/0c1WFeoXpQBVNA
WF3GUSPmFboPKmVqEVZf5agV8woFQcVMHcLqQo46Ma/QA9Blph5hdR5HvZhX
qB+UyzQorM7haAjzCo2AspnGhNU+jsYxr9AEyMs0KazOtEXxoXeeyHwmz3vW
f/z6nWJelSNK58iLKEM4Li2UWy85d+hlGMk3/9GkRMNm5DGvTjHNmGRNnWaa
NonOV6IpzGcwTYKymCZAXqZxkM9GLpD8q92MRjGfzTQMymEaBF1gGhBOVaI+
zOcx9YDymR6ACpi6hFOVqAPzRUxBUAlTK+gaUzOolOm+cENK1Ij5cqYGUAXT
PZCfqU44VYlqMF/JdBdUxXQHVG2j8JoI1TLdFm5IifyYr2eqAAWYykFNTGXC
qUpUivkWpmugNqYSUDtTsXCqEl3BfBdTAaibKR/Uy5QH6me6KNyQEl3A/BBT
DmiEKRs0xnROOFWJfJifYPKCJm0UXrhB1vpMRFP6KEO4E4f8DHbO6KM0RE9C
UTVufJNmmVJBc0wnhZtUouOYn2c6ClpgSgE9ZToinKpESZhfZEoEPWc6DHrJ
dBD0mumAcENKlID5t0zxoPdMcaAlJo9wqhLtwfxHG9HfxS5Ey/poB6IVfbRd
uCeHPBY7V/VRDKI1feRC9Mkeue0Rki/6ZOP6m02tQ76rx0Z+tjBZ3/xF/6O5
df3/XRtRfwBMyL7X\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.938}, {294.812, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"88cfbe3b-8f86-4114-8e4f-5bad17a067c9"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(13\\). \\!\\(\\\"pentagonal dipyramid (J13)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"09df9431-76ca-4f3c-a3df-db200a2574e4"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .90836
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0 1.03706 -0.021386 1.03706 [
[ 0 0 0 0 ]
[ 1 .90836 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .90836 L
0 .90836 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.63003 .46403 m .60278 .69058 L .83805 .31123 L closepath p .063 0 .224 r
F P
0 g
s
.39971 .27778 m .63003 .46403 L .83805 .31123 L closepath p .573 .74 .955 r
F P
0 g
s
.27863 .62412 m .60278 .69058 L .63003 .46403 L closepath p .552 .213 .348 r
F P
0 g
s
.63003 .46403 m .39971 .27778 L .27863 .62412 L closepath p .799 .777 .833 r
F P
0 g
s
.27863 .62412 m .1757 .6086 L .60278 .69058 L closepath p .162 0 0 r
F P
0 g
s
.39971 .27778 m .1757 .6086 L .27863 .62412 L closepath p .934 .964 .677 r
F P
0 g
s
.56858 .38316 m .39971 .27778 L .83805 .31123 L closepath p .44 0 0 r
F P
0 g
s
.39971 .27778 m .56858 .38316 L .1757 .6086 L closepath p .307 0 .267 r
F P
0 g
s
.60278 .69058 m .56858 .38316 L .83805 .31123 L closepath p .918 .909 .796 r
F P
0 g
s
.60278 .69058 m .1757 .6086 L .56858 .38316 L closepath p .699 .774 .91 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{298.625, 271.25},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2ktTHFUUB/ALzAwQ3oGEBEJ4CIHwSnjJmwAhECIYEYxBJICIAfIgAlrR
jRtduHGhGzeWVW6yySZVfgWXfhW+Ak7fc/k33fxPW11YlmVB1cw0Pef85vSd
4c59MLu2v7nxbG1/a32tZmp37cXm1vpezeTObvpUVoYxGc3pW1GN8Y4PjTm6
sz8t3p375ez47Pjs+H91/KX3kOP9vb8+dsJkeWcO75kx2xMkD/eMKfAOf5Wg
L+xDAkHulumdKEbwjxK8HxLTt3TqUXglwr/Tw1P2Xs7tyc00IPGlJO6RxBy8
TifCn0j4LgnPQ/gwwh/p4QWkrCkkzkni5ySxCK+zgPAJCX9Bws8jfAXhvXp4
GSlry7vP9k7dlMQdkngRr2PD7fubeXhw8KeLcz+mXYjnhLgMYh1EkhA3dKKS
lL/s3dtTOQRzl/SMYFWoZxH15OnEU0LUgJgHUUiIDp2oI5c0A+y8jj0hWD3q
uQviAiE6hdgmRCOpZxxNfIlgXTrWhHpGUE+lTmwRogVEH4irhOgWYpMQ7eSS
OoDVEqxHx26gnjYQDTrxmBCdIJrQsE2EeFuIzwjRQy6pFvW06NgGwXpRTxWI
dkL06kQ/iHIQHYToE+JTQgyRSyoG1qNj6wQbQT0FaOI+QvTrxCiIbFQxqBOf
EOI2uaSE/DWcdAbEWSPOhHdvT42RxEE9cRzXkH7i9z8O7JOeEOGsak66s/bO
eczRzSglDQm1Qih/NJDwCPdsmrAMa5hhHbsFLBUPexT5mckh2DDBRgRb1jB3
zrWWySXsUDx2CDXmE4x9PG8J9jHBBoEVEmyAYKOCLRFs4Ngo79RYP2k9xvYT
dkzYjwjbhxpLCcb6h3HBFgnm95oXTo/1HOs/T2K9BLst2EMNC7VeTPZDwnaj
xkqCsQ56Qsf878AqgnUT7I5gDwjWAaw6HvaBhoVaj7FdhJ3UWX/cUBcPWyBY
O7B6gnUSbEqweYK1AbtGMPYtflfHWknrxWTfJ6w/CrxOsJsEmxZsjmDNwFoJ
xkY+93TMH+K2x8Pe07BQ6zG2jbDvCHufsI2oseP0WAOwLoK1EmxGsHcJ5k9Y
egjGxrGzgs1qWKj1/gG27tgM5CTWTDC5UnfdQawW2ADBrhNM3gP3jgQxf/o5
TDA2pYjAqknrMbaRsPJZdp/sIHsVNY7Gw6YJ5k/Zxwl2jWBzOnaFXDBj2exO
+ijXYwXZStR4Jx42RbAKYFMEqyfYvI5dAjYdD5vUsFDrMfYtwspXmvsSDrLl
qHGWYGyuLl+2bqwRxPxFq/unx8qAzRGshmAyVHFDKoKFWo+x1YSV4ZQbTQbZ
UtS4cHqsBNgDgrE1GBmMuhF4ECsG9jAeNqphodZjbBVhF3W2EDUuEewKwWSS
4eZYQawA2HI8bIRg+cBWCVZBsCUdyyOtx9jLhJVppJtFB9lzqHE9HjZEsFxg
GwRjq5DLOpYN7HE8bFDDQq3H2HLCuv2CAcKmUOM2wS4SbEXH/C2Up/GwfoJl
AXtOMLa6LCtIbnmOYKHW2yFs2d+xfINpl1ClhJK1MregGazQOvvEYUvxsujn
1lb9krxH4+2XxVfsy78kiSUkUZYtZanZJn5FEotJoqy/ypp5QnvFiET7Htjl
wD2SWEQSZdFYOo6k9mGKSBxHIvv7KCCJsmwuA6Gk1pPkk0RZspfRe1LrcyMS
55DIvkbYDpPsM8h4Ial94Z4jibJhIp29TWRjiIjEVSTOkMRckii7PPKu2EQ2
Lo1I3EYiG2qzHTy3J2s3JVPeM2xSkiKJstsmG9L2Fdn0LSLxaySyiS7buZRd
RvMNEtncPSLxWySyVY4ESZRNUvM9Etl6UBZJlD1e8wMS2RJXROJPSKwgiWxn
WLajzc9IlGXT5PFEezPmaMPe/ILgEhucCAT7cb8hLrwsbszRvw2YVwjK1oNe
IyjTC7K9qvxLg3njPWRJx25P2Ov6D/3Dxtnx2fG/eWwy/gJtdnNC\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 297.625}, {270.25, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"05264cb8-b7f2-4f20-8101-b88be429b331"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(14\\). \\!\\(\\\"elongated triangular dipyramid \
(J14)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"f9cbfeca-72cb-48c3-83ae-ea271874f5f0"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .99568
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0100379 1.09851 1.11022e-16 1.09851 [
[ 0 0 0 0 ]
[ 1 .99568 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .99568 L
0 .99568 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.57149 .52762 m .38129 .81863 L .62153 .86685 L closepath p .886 .747 .703 r
F P
0 g
s
.76836 .78222 m .57149 .52762 L .62153 .86685 L closepath p .282 .316 .719 r
F P
0 g
s
.38129 .81863 m .76836 .78222 L .62153 .86685 L closepath p .477 .838 .993 r
F P
0 g
s
.38129 .81863 m .57149 .52762 L .50401 .28981 L p .949 .879 .731 r
F P
0 g
s
.57149 .52762 m .76836 .78222 L .71525 .55225 L p 0 .151 .69 r
F P
0 g
s
.71525 .55225 m .50401 .28981 L .57149 .52762 L p 0 .151 .69 r
F P
0 g
s
.50401 .28981 m .29199 .59603 L .38129 .81863 L p .949 .879 .731 r
F P
0 g
s
.76836 .78222 m .38129 .81863 L .29199 .59603 L p .647 .761 .932 r
F P
0 g
s
.29199 .59603 m .71525 .55225 L .76836 .78222 L p .647 .761 .932 r
F P
0 g
s
.29199 .59603 m .50401 .28981 L .43466 .25229 L closepath p .886 .971 .657 r
F P
0 g
s
.50401 .28981 m .71525 .55225 L .43466 .25229 L closepath p .659 .163 0 r
F P
0 g
s
.71525 .55225 m .29199 .59603 L .43466 .25229 L closepath p .675 .675 .843 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{285.25, 284},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmmlTU2cYhl8gwYqtdrWOFsSO2lq70bF2pSooQQFFgUDCEkJYktAAhoCg
rXXp4jJ2dDqt47TT8UP7peNMf0V/gn+jf4HmXfIk0Ps5eZKRtB9gJieH817X
dd4sJ/Ec7Ipm4hOpaCYRizYG0tG5eCI239g2m85uqqlSqqo+e3ulUen1FaVy
C/PToBful431jfWN9Se2fknfVetj7WHBBuXTW1YeHTBHob79akcvmrsaO/ro
sTlGqzVnEr8UQj6CHFijOee6H/Wg0PCvMnL5Gso7eHnNHLI3DZllbtZ6T/l5
3edFHxDze/zRiktArAWij8QfeHETEP3gqbnLJ57iEmbfTrwAxDog1pL4PS9u
AeImMOnbNrEIEs9w+5YntgoTt2xiASSeFSZu8onnhIkbfOJ5YeI7m8iAxIvC
t1GJCTSLb21iHiS2CxPf8ImXhYmv+cQOYeK6TaRBYqcwcY1P7BK+Ii5xHiTq
hYmrfKJBmLjCJ3YLE1/ZxBxI7BEmLvOJV7kPWJyYBYm9wsSXfGKfMPEFn9gv
TNhvXjUDEq8LExf5xAHuiw4nUiBxUJhYLi2BHsgSn3hTmLBfY+pzkHhbmFjk
E+8InwuXmAaJJmFigU+8J0zYT3+VBIlDwsQ8n3hfmEjzicPChP24UgmQ+JD7
J6A88ZEwYT+uVBwkPhEmZvnEp8LEDJ9oFibs8aWmQOKIWfoLE+aW/T03eaQd
9dDchCeB1uKhpYppxR9nkk+0ChP2/aImQOKEx+Snea3NQ3MTHgdau4eW4LWT
Hlqc1055aPb1VzGgdXpok7zWZZa+VVreGAPGGWxM8EY3NuyDV1FgnMNGjDd6
sDHGG71r3oYqj48CPAjwKI/3A9xyKgLwEMAjxfB/PdoR3giDHTh8BOBDAB/m
8WGAD1l8GOARgA/y+CjAwzwe1Utzeu2gIQDFCArx0DhBAxYaBNAkQf08NEVQ
kIfiBPVZKAygZMGTkfuk7OHxaYCfs3gI4CmAn+XxGYB387iZe63e5JoDABrT
y816k3/lt7/+XlM/w4shErfyYj8Qz5K4A4ineTGgl3V60x5eDALxCO3xYGni
YRIPlSa+RWIzL/YBcR+JASB28eIuenK6ebEXiC/QHsOliXUkxoqJqy+V5rQU
0DqtZg4x8+26WARyQ1nIgEs83gvwC6XhqN5RFt4nnEx5eBDg6In0wFH9VFl4
v3Ay5eEDQvxkJfAQwBeeGB4W4u2VwAcBnikNR/WAxYeE9Yrgw0K8rSx8BODz
/xUeEeInysJHAZ5eVxxN5rjFo8J6RfAxgJ8vDUf1VovHhPWK4ONCvKUsfALg
c+uKo8kcs/iksF4ePgXw2XXF0WSOWjwO8KRemvOPFh6K6OUWval65dJj+5d6
9y5PALyH8Kc1jg8PJLaT+BLtJ8DjzYQ3EO6+hpMAbyL8NcI7eHw/4U3gUThx
Gog7SfyY9nOax7cR3kp4N4/7CO8k3J29mj8RmNcyCGbsIHPZ1G+tnO/OrTM0
1EFD7gR+mYaO05C7SnCZhj4De3XQdYI+IN9dDblBQ+/SkLsMc0ffmfOSN2jI
XTG6R9ZesFcH/URQPfnugtnPNLSdhtz1uoc0tI2G3FXG32loM9irg/4gKH+0
uEupf+o7s8H+Oce6/6P/ibOx7r2uqv4BwAdJCg==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 284.25}, {283., 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"8375da9b-cd0e-42b8-a17e-da7899aa335f"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(15\\). \\!\\(\\\"elongated square dipyramid \
(J15)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"a0dcebca-7cc8-4f40-9ce6-a3785bcc15ca"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.03125
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0279888 1.13234 3.33067e-16 1.13234 [
[ 0 0 0 0 ]
[ 1 1.03125 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.03125 L
0 1.03125 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.37402 .86806 m .77673 .83095 L .61576 .826 L closepath p .075 0 0 r
F P
0 g
s
.38492 .54314 m .37402 .86806 L .61576 .826 L closepath p .873 .611 .539 r
F P
0 g
s
.76063 .50333 m .38492 .54314 L .61576 .826 L closepath p .683 .611 .769 r
F P
0 g
s
.77673 .83095 m .76063 .50333 L .61576 .826 L closepath p .225 .099 .491 r
F P
0 g
s
.37402 .86806 m .38492 .54314 L .29778 .29933 L p .98 .751 .341 r
F P
0 g
s
.38492 .54314 m .76063 .50333 L .70942 .25126 L p .664 .74 .907 r
F P
0 g
s
.70942 .25126 m .29778 .29933 L .38492 .54314 L p .664 .74 .907 r
F P
0 g
s
.76063 .50333 m .77673 .83095 L .72315 .59396 L p .863 .647 .113 r
F P
0 g
s
.72315 .59396 m .70942 .25126 L .76063 .50333 L p .863 .647 .113 r
F P
0 g
s
.29778 .29933 m .27887 .63942 L .37402 .86806 L p .98 .751 .341 r
F P
0 g
s
.77673 .83095 m .37402 .86806 L .27887 .63942 L p .645 .763 .935 r
F P
0 g
s
.27887 .63942 m .72315 .59396 L .77673 .83095 L p .645 .763 .935 r
F P
0 g
s
.29778 .29933 m .70942 .25126 L .43988 .23692 L closepath p .313 .794 .906 r
F P
0 g
s
.27887 .63942 m .29778 .29933 L .43988 .23692 L closepath p 0 0 .343 r
F P
0 g
s
.70942 .25126 m .72315 .59396 L .43988 .23692 L closepath p .903 .606 .472 r
F P
0 g
s
.72315 .59396 m .27887 .63942 L .43988 .23692 L closepath p .678 .617 .781 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{280.312, 289.062},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm9tTE1ccxxeSECIgAnK/CN7vQi1aUbkJolbuiAVBuQjCUKpErLV2On3t
s310pi8+dfpv+G/0sY/9F+iec5YzSfwss7snyyQzMJOTTfL9fT6/k82GzWYz
vLi9trK5uL2+vNg6lFx8tba+/Lr17sukfVekwLIK6uxLW6sllncsa3eQf/Vi
cG4cLB8sHyynLb8TV6Vie/mg7ngrrgrlBhSxxwmxtPPvx/dWQoxV4uZvKrkt
rkTGEvEJGbd2/v74WRY36fimiic1OCbjUR13Si7rillV8UpXxGVFLK1iV9Qr
yhJicVyVbeq+ijP6si/2LTU605JTG5Sjus/5s0YVbEP3UGIOW9ewUoDFADYg
RlkxphCrenKHAVEEiDuZiOe6iwpAxAHRn4lY0ohKQCQA0ZeJWNCIo0ER8/q5
qAZECSB6U9bNP5/q5OvHWTdPdD91ACsFWI87bEbDGgBWBrBud9i0nmYjwMoB
dtsdNqU7azGHTcor9ZB6q5iwmgFbAdhbcoxqrIMe8UeuBPLNrJCrgNzlm9wE
5Gog3wiN3AWrbw8svcRqvTc87I9cB+RvskKuB/J132TaehuBfG1P8oTHnrND
pp6bgdwpx1gaefcF8tAfvgXwX2cPfwzwV4Ph6wHfBvivchJP/5lOAL4jY5u3
L/Y+mhjTd0vu+1OdBFV7OKpToLpirqoF1RlQXc4rVQ2ozoHqEqgioLrnT3Ue
VBfDUV0A1QVzFe0+XgLV+ZxVjXtUXQHVOVBFQTXkT9UOqrPhqDpAdcZcRR9M
roLqdF6pqkDVCapToIqB6q4/1TVQnQxHdR1UJ8xV9JH3BqiO55WKjgXcNFAN
+lPdAlVbOKrboGo1Vx0BVff+qXpAdcxcVQ6qPlC1gKoIVANKNeZxVv2gajZX
0awGQNWU96pBUDWaq+jg4xCoGkAVB9Udf6p7oKo3V5WB6gGo6vJe9S2oas1V
dFh7GFQ1oCoGVb8/1Qioqs1VdOR/DFRH8141Dqoqc9UhUE2CqhJUCVD1KdWo
x1lNgarCXEWzmgbVkbxXPQZVubkqAaoZUB0ORzULqjJzFX3pOAeq0rxXzYOq
xFwVB9UzUB0KR7UAqoS5qghUSx5V9Habu6plUBV7fAJ73VUxUK2AKh6OahVU
Rf5UIx5Va6CK5b1qHVRRc1UUVBugioSj+h5UheaqCKh+kGMsVSUv9m37bTfX
8S/lGE3D+ydnnmkkmFsZqyBAw4RNirHQU4+xVJhzsVRfRQYAuXHKM5tiO58+
/+f3FcXQpwIqdvLs3aoA0GgGVO2GyibrgUf/TvbmPdT9HQ/CS12vljrQIpu7
6A82zM116eY6s8Jr17yeILz0yZ7Vk30AMPokvwesRXc2GQAmN5sa3c+8x8n1
ZCJKdRerQRER3cWWx4mkIuQ29HOAQuchu1AW/+IPMQKI9zmBoInQsUMHMeqx
i3ARY4CgleoTQV3Q4XUHMe6xi5xHTADinTmCuqDvNh3EpMcuwkVMAeIncwR1
QV//Zw/xyONEsoCg56JbIaYNusgpxGNAvN13xHceEXTCUfYQM4D4MScQaiJ8
Hp6zPzPrag6j7AmUvQmtbM617IsTTvexYh4qtn1XvMl4daRM+6mrIBvxZxB/
HST+xWx73CuoHye+4LGfYPFFiCf9xSW9cMdnaMlN7Du0DKEtL6HUee6+2dxW
8ecQ3xBjPIVJoQUxii+xds/VodAjHXJ+8rQCofs6NOce6tahFyq0CqEOMcrf
iCXdQ6c16VcVegGhBh363T1UrkN/uIeiOvSnCq2JK3m05S91h1wfOfRLu4Pl
3Fm2Cv4H3nd+Cw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 279.312}, {288.062, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"8bd7f692-1750-420a-9864-20fb93fabd31"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(16\\). \\!\\(\\\"elongated pentagonal dipyramid \
(J16)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"0a1ddfac-16fa-4657-a4ec-483ac2de27e1"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.01598
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0262928 1.10716 -3.33067e-16 1.10716 [
[ 0 0 0 0 ]
[ 1 1.01598 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.01598 L
0 1.01598 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.55406 .45204 m .30183 .62588 L .58281 .75995 L closepath p .747 .593 .686 r
F P
0 g
s
.30183 .62588 m .55406 .45204 L .49747 .24073 L p .836 .828 .84 r
F P
0 g
s
.81666 .57369 m .55406 .45204 L .58281 .75995 L closepath p .597 .482 .693 r
F P
0 g
s
.55406 .45204 m .81666 .57369 L .7881 .36227 L p .4 .545 .885 r
F P
0 g
s
.7881 .36227 m .49747 .24073 L .55406 .45204 L p .4 .545 .885 r
F P
0 g
s
.38723 .8862 m .7315 .85686 L .58281 .75995 L closepath p .516 .089 .168 r
F P
0 g
s
.30183 .62588 m .38723 .8862 L .58281 .75995 L closepath p .791 .494 .487 r
F P
0 g
s
.7315 .85686 m .81666 .57369 L .58281 .75995 L closepath p .4 .174 .452 r
F P
0 g
s
.38723 .8862 m .30183 .62588 L .21354 .42772 L p .779 .439 0 r
F P
0 g
s
.49747 .24073 m .21354 .42772 L .30183 .62588 L p .836 .828 .84 r
F P
0 g
s
.81666 .57369 m .7315 .85686 L .68918 .66467 L p .984 .877 .517 r
F P
0 g
s
.68918 .66467 m .7881 .36227 L .81666 .57369 L p .984 .877 .517 r
F P
0 g
s
.21354 .42772 m .49747 .24073 L .45681 .34345 L closepath p .072 0 0 r
F P
0 g
s
.49747 .24073 m .7881 .36227 L .45681 .34345 L closepath p .621 .115 .026 r
F P
0 g
s
.21354 .42772 m .30129 .70221 L .38723 .8862 L p .779 .439 0 r
F P
0 g
s
.7315 .85686 m .38723 .8862 L .30129 .70221 L p .633 .774 .948 r
F P
0 g
s
.30129 .70221 m .68918 .66467 L .7315 .85686 L p .633 .774 .948 r
F P
0 g
s
.30129 .70221 m .21354 .42772 L .45681 .34345 L closepath p .402 .255 .564 r
F P
0 g
s
.7881 .36227 m .68918 .66467 L .45681 .34345 L closepath p .812 .576 .581 r
F P
0 g
s
.68918 .66467 m .30129 .70221 L .45681 .34345 L closepath p .673 .555 .713 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{281.375, 286.875},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt21lXE2ccx/FIEsIiENkXxaggKi4oIMgi+74IqOCCYlgEUY4etJ56bO1i
W0+Xqx4v27te9KKXfQu97NvoS+gtnXme8Z8QvoMzDEm5gHPyZEj+z+/zPJNJ
SCYPY9EXK0tr0RePFqKRgfXos5VHC88j/U/XjZv8B3y+A2XGpTLiM7c3fL4P
jfopNxvrl/3t/e39bdvtH8wrv/nc+Unf8L26Cpi3bIT1s2rjl1KfKtH3+d6Z
V2nq+eaPrzF6Ga26452u/E5dBSUsHAv1haT4W138jcQGzCJNmkUqOySj+FqX
v1VX/vhsPZyEjtnifKk7fiVOOpTnSPkbXf6FlIegPCzDeq3L38CwqGOBOK90
x8/EyYLyInFe6vLX4GRCxzJxXuiOr8Q5COUVUr6uyz8FJxs6VsoAn+qOL8XJ
hfJj4qzp8k/AoY4nxFnVHZ+LE4byGnFWdPk6ONTxtHR8qDs+E6cAymtlWAu6
/Ck4+dDxgjhR3XFNnCIovyjlc7r8sZQXQ3mDDGtWl6/CsKhjkzh3dMcVccqg
/Io4M7p8GZxS6Nguzk3dcUmcCijvkPLrunwRnHLo2C0DnNAd58U5AuV94ozr
8ig41HFAnBHdcU6cSrM8y9yKpQ/povuQrqbvt15l57veqzv/fv/eeDUx2jzz
12bJGdA5s5t3nuqtOlvZf/z4pwoslojYcdurI+7aPXB+/YpphgUkzAqsMvPC
epIfhtSt827LkGIpGQlDMi5GH7P1f5ilmulFGeYhie3UsTMSWyKx2Q5jOyU2
ILNv17HTMPtCAXIB8AMwbrYZ5k1tOvaGjDYWFoawIITdUK2+zfrxtejY63av
MdbLlGdgUsadL+MuhNgQxE6ZbVrcTpiA0eZJbAnEZkDsZGLsuIwxFlYGYVkQ
NhE/9X/equdGq44dg9EeFOCwQ+CaagMCWIhljMjQY8lHITnb7hizTR6G0WeK
cQyMHDDGtjUGZfSx5CqHyaOqDW5KTngABmAKITm4TwKUB9DIx6E+mUdI5nEK
4sMQP/zx+B6JT5f4MxCfD/GDCcencTF+023807VZU92wy/yCnksO2inzi1F1
QBUANeCO6sD5Gc0l8IrA6wMvYO+pPwrqwW0EoBiAXneAeglT9zQBUOIdaI3b
Y+Z7CBNpBqoUqG6ggu4omlU5UF1ApQPVlHKqDSg6GA4D1QFUyDt1BKiryaEq
gWp3R7UDVQ/UUaDagMrwTkWAavVO0YvQcaBa3FFXgbrokLoCVBZQl+0peimv
Aqo5OVQ1UE3uqA6gLgB1EqjL3qnzQNUA1QhUtnfqFFAN7qhOoM4CdQao+uRQ
tXafFhOoHKAa7alaoM56p7qAoreA54Cq806dBuoCUOeByt0TVDdQ9Ba9Dqhz
3qkaoC4BVQtUnneqHqgz7qgeoKqBanBIhYFqcEc1AnUKqEPuKPoE2gRUjTuq
F6gT/y/VDFQ1UPnuqONAtQBV5Y7qA4rOQ7QCdcI7FQGqDajjQBUCVe+Oagfq
mDuqH6hKoDqAiiSH6gSqEqiiPUENAEXn8bqBOpIcqgeoCqCK3VEVQPU6pEqA
uqSpQaDKgeoDqtw7RSd1B4AqSw41CFQJUKXuqFKghrxTQ0DRKfZhoIqTQ40A
VeiQqrenioEa9U4NA1UE1BhQBd4p+pblGlCHHFIN7qgJoMLuqBGg8oGaTB01
BVQuUGXeqetA5TiclfWefRQo+tLwJlAHU0dlO9yB21B5QM0AleVwVtbJhDGg
6CvcW0BleqdygLoNVIbDHeiSugNUyOGsrFOP40DRl+yzQKUnh7oHVMDhDkw9
dQ2oTKDmgPI73IHN7qgHqg3GU+pi/G68H3QVT8s4ojuLn4D4EMTPqzawKd5n
rvjZmnzFPjkdkhfN1lo64zlM7eT0j4RNQlgQwqbNVq0bCm789te/Do6+bYCA
3VsYBeQBQMdcizugR4ByAOi9uQVMAZBmd35CAVXJAeoEOA8AfTxrjQeC8YC6
mM8Hdb4809xsdheq1/0ENoUa2xEZZNeu5BVL3ijk0cffTXmxvWpONkfCpiGM
TkZsWTvll4gHO4hQj8HqDjpadxkdVec1iKCTUdaKspsQ8STlEdMQ8Rgi6LTk
1V2LmHEYQWeXUx9Bp9M7dMQtiKBDy2UEjYK+qrAibjscBX1d1LlrEXcg4lHK
I+46jKDvHrt2LWIWIlaSE0HfQltLbu85jMjc6xH3IWIZImj1RM+uRcw5jKBF
MC4jaCGStS77AUQ8THlE1GEErRNzGUGr2vTXLXrtfkLEUsojFiBiESJoQWO/
fQSNIi2pEYu2E+GFrUOeui3Zdtuy0HjHPR5Cj4WEnWIOaXhH5ctQPu+ufFO6
9WhYY1+B8ntmqz5PjtgXTZlttnmT/lxm/PHaWtQvRbP2Ra1StGxfVCdF1n+K
rUJRtdmqt+yf2xeVS5L1b4OPoShXin62L/JL0a+66Il5pQ7H3/UNalfvof+/
3N/eftt34D8b8Tt0\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {285.875, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"af00b7ee-c6e2-48e9-964e-dc770781b36f"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(17\\). \\!\\(\\\"gyroelongated square dipyramid \
(J17)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"bedf9e42-4840-49e3-bb54-9937127fa0e3"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.15669
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0869991 1.24809 0 1.24809 [
[ 0 0 0 0 ]
[ 1 1.15669 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.15669 L
0 1.15669 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.39105 .80346 m .70896 .89883 L .71596 .75306 L closepath p .599 .167 .191 r
F P
0 g
s
.52112 .46578 m .39105 .80346 L .71596 .75306 L closepath p .79 .641 .697 r
F P
0 g
s
.84021 .53695 m .52112 .46578 L .71596 .75306 L closepath p .524 .554 .828 r
F P
0 g
s
.70896 .89883 m .84021 .53695 L .71596 .75306 L closepath p 0 0 .07 r
F P
0 g
s
.52112 .46578 m .23685 .50534 L .39105 .80346 L closepath p .864 .731 .715 r
F P
0 g
s
.52112 .46578 m .56646 .29751 L .23685 .50534 L closepath p .753 .934 .946 r
F P
0 g
s
.84021 .53695 m .56646 .29751 L .52112 .46578 L closepath p .431 .613 .926 r
F P
0 g
s
.39105 .80346 m .35903 .83425 L .70896 .89883 L closepath p .373 0 0 r
F P
0 g
s
.39105 .80346 m .23685 .50534 L .35903 .83425 L closepath p .846 .47 0 r
F P
0 g
s
.84021 .53695 m .71591 .62289 L .56646 .29751 L closepath p .896 .514 .298 r
F P
0 g
s
.70896 .89883 m .71591 .62289 L .84021 .53695 L closepath p .97 .925 .612 r
F P
0 g
s
.23685 .50534 m .56646 .29751 L .31827 .44959 L closepath p .398 .813 .621 r
F P
0 g
s
.35903 .83425 m .23685 .50534 L .31827 .44959 L closepath p 0 0 .544 r
F P
0 g
s
.70896 .89883 m .35903 .83425 L .71591 .62289 L closepath p .739 .787 .892 r
F P
0 g
s
.56646 .29751 m .71591 .62289 L .31827 .44959 L closepath p .805 .494 .464 r
F P
0 g
s
.71591 .62289 m .35903 .83425 L .31827 .44959 L closepath p .703 .67 .815 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{264.688, 306.125},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm8lTVFcUxp80DTTzGBVBCCLKJDaDCCIINJMNiAyiqBiCGqkENWiGimUl
ZZLKYIbKsMgiWWWTRbJKFtnkT3CZf8Fl/gXT757bXz/b73XfK3aVC6jqfs/u
832/c+59r/u+89qZtbs3rm2u3d1YX6uf2Fq7fWNj/U79+K2t2EuBXY6zKy/2
6Kx33P0njhN/Un8h90n/Y2d/Z39n/6Xe/9HdBNzz92154Qe1CbqvPHl0747a
Pv74tDrDb0vId+4my30l4IY4gaeCbknQtwgKqqBsBOnAmxL3jdoEwHNjc7hi
UxRfwTmk4oJPxcXTeEuCv0RwQVKusYeTpZ7lNf3nbIjwC5JXoZ+FAmjhZyCW
kPBsQrwuwk8hLDcUXhPhJyRVZhEkFlfF4gHYrxgK10X4EYR7iDCHCF8X4Yck
6b2GFmticR/sGiLMxcTo8HsIryPheYSzKsIPSKrMIkQsLovF+2A3EGE+EV4S
4bsQHjQUXhThOyRpZlFALFbE4g7YzYbCCyLcImxmUYgp0sLbILaT8CJCPCfC
mxB2EGExES6JcJOketTQYlEs3gS7iwhLiHBBhBsQHjMUzovwBkmaWZQSi7Ni
cR3sPiIsw8To8KsIHyDh5YQzK8J1kiqzqCAWM2KxBvYpQ+G0CK9AOEKElUQY
FeEqSXrU0OK0WFwCe5wIq4hwSoQrEE75CfW7KvwCSZUJdxPiuFgsgzhjKBwT
4RKEZ4hwDxFGRLhIkmYWe4nFqFioM0G9M28oHBGhHNCytnCch2r71+//qjLm
iFU1sRoWqzOo3316qE1jZvGHUs36mSqltpr1jIhk9VCbBrymMUQ812liW0Ny
HRTADAEECCAHgKgh4KQAohiMHGKbh+GYJLa1xHZAbE+TvHMJIB95TxgCTghg
EnnnE9tC2I4R2/3Etl9sJ0jeDFAMQMQQ0CeAcQIoIIBSjPwwAdThQNS2EQxH
MTGrQLZDxOxVku0xsR0l2TJAFQCDhoAeAQwj7zJiuxuDcILYNhDbbrE9RfJm
gGrk3W8I6BLAEAGUE0ANAMcJ4AABdApgkAAqCaAWgF5DQNgOUIc56CaARhyI
Yf+BqSC2Dcibrb4OkryP2AEaAQgTQBMBtNsBmjAwbO3KAG3+Byc7dppRAVtV
HyKAVjtAKwCtBHCYAFrsAO0AtBgCmj0fCwbnbwfm4JAfQON9bVneYeTdlG5q
//vZ3cYBI4Z5dwHQmPKkir2hCd7hN6X0gHLA99MtiDLiD0cdD1agXkxDfbqP
f4HEFknuM5179p1TSqD9qI5d1O/HGGYTVIsdagCo2nSrFF3fC4AOYlD3pVyK
5vqjIgRVQlDDqI+1cvaS+nIItNUOOgrobr/rF90t9EWNGaIiQLE2WRWpL49A
2+yg45i/Cr/rX93g3DZqCvWx/mEZqS8FlK1Q2ZovCmhpuh5GCmi7HXQGg1rs
12nSq+Bto+ZQH+sfF5L6UkDZdUURgc4DyvreIdRXSlBH7FCLQIXS9VV1fS8A
eg7zl+vXsM6SU8YXNWmIOo/6gun68rq+cgLtsIOuAJp8j0Vwz0JZpRo6RaCF
BHoJgxory3vzJz6aVYRx1I5xBYVJFfEaYp+o2/Z+Dd57/M1YR4FdOK96E/3n
0eOUiYbtvC+rZ1kyudbxh6O+xLZtfxGpZ7u2SQcKm0QNiBIA61pcACCHACoJ
oNMfwCpYVs8B7wDZoqYNa1nyfHw9C2BnVZcdYMHzUZwRwFkAiuwArCkYIoA5
MhsMxT73uu1Qs57FQEYA054ljhWAtWjzCCBKBouhygiqxw6VWK5V2QHOEADr
qk54ltbbBrAKxshgMRRbMRyzQyUuE6rtAHOGg5W4+KkhgBIC6LUDDAGwPzOA
QTIbtYaDpVFnCYrdEEhcCdcb1nLcDpC4qm+wA8wTQJAA+shgZQjVi1oOEgC7
WujzB7DB6gbgkB1gwbCCTgCaCaCIAPrtAGEyGxlCdaCWNjvAIgFkE0Ci23mE
AAoJ4IQdoI0MliVqiaACBNWCWsKZARwGoIsAWKdgwA7QBECPHeCcIaCRzEaG
UImbJccJIJ8ATtoB6gHotwMsEwC7AV5HBouhWLNv0A6VuCN2MjOAfQAM2QHO
q03QC9APx2M6TExZO3IovWk1GXVLe/mhSnaSfexCPZ5u5Hn8eLqJu8jjxJT1
uU+lN60kY2Bpv8LHoBzpThE/1iEfTulXCr/oC/ErIZVbOl985pRwL1bjac4S
syAxG/E3K4DZnJ1Z4odaIVjMP69FHhkpZsbu6ox6zJKKCyKzJTuzy8gsAIvl
57XIIsUxswAxi3jM1PG1YidchfC8oVD/Rk392lid0At2wjfcjbtWdmbshJsg
ThIhu1+pf4e3BeGonfA9pMq+qFII74MoywF+D1f/0vABKJ3pgz+Hc7sKzn4q
2Im3Mp2vEXc4Zdz3gDekjPsJfsnXrY4T7z46v8AsudXgCfoVTsnNG0/QbwhS
7TD9wzz11h+A5Ca/9SdUWclv/e1uAnLUqRfUfL1E/19kZ39n/2Xed3b9D5+N
1VA=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 263.688}, {305.125, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"7e1039fe-9993-4cea-b62c-5f4d00e2df71"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(18\\). \\!\\(\\\"elongated triangular cupola (J18)\\\"\\)\"\
\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"9a151890-ff07-4d88-a828-0d9aa211b59c"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.06435
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0475221 1.14966 -1.11022e-16 1.14966 [
[ 0 0 0 0 ]
[ 1 1.06435 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.06435 L
0 1.06435 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.32919 .51256 m .52766 .62485 L .70292 .44639 L p .743 .722 .832 r
F P
0 g
s
.52766 .62485 m .32919 .51256 L .27829 .75996 L p .853 .639 .613 r
F P
0 g
s
.27829 .75996 m .49117 .86289 L .52766 .62485 L p .853 .639 .613 r
F P
0 g
s
.52766 .62485 m .49117 .86289 L p .87527 .48931 L .445 .26 .535 r
F P
0 g
s
.87527 .48931 m .70292 .44639 L .52766 .62485 L p .445 .26 .535 r
F P
0 g
s
.50776 .31751 m .70292 .44639 L .87527 .48931 L p .102 .519 .909 r
F P
0 g
s
.70292 .44639 m .50776 .31751 L .32919 .51256 L p .743 .722 .832 r
F P
0 g
s
.49117 .86289 m .27829 .75996 L .41822 .84295 L p .411 0 0 r
F P
0 g
s
.41822 .84295 m .64401 .95105 L .49117 .86289 L p .411 0 0 r
F P
0 g
s
.49117 .86289 m .64401 .95105 L p .87527 .48931 L .445 .26 .535 r
F P
0 g
s
.24697 .35232 m .32919 .51256 L .50776 .31751 L closepath p .795 .824 .874 r
F P
0 g
s
.27829 .75996 m .32919 .51256 L .24697 .35232 L p .994 .818 .557 r
F P
0 g
s
.87527 .48931 m .67088 .34907 L .50776 .31751 L p .102 .519 .909 r
F P
0 g
s
.50776 .31751 m .67088 .34907 L .39028 .39035 L p .302 0 0 r
F P
0 g
s
.39028 .39035 m .24697 .35232 L .50776 .31751 L p .302 0 0 r
F P
0 g
s
.24697 .35232 m .18464 .61764 L .27829 .75996 L p .994 .818 .557 r
F P
0 g
s
.18464 .61764 m .41822 .84295 L .27829 .75996 L closepath p 0 .266 .767 r
F P
0 g
s
.64401 .95105 m .8557 .75615 L .87527 .48931 L p .445 .26 .535 r
F P
0 g
s
.67088 .34907 m .87527 .48931 L .8557 .75615 L p .891 .651 .569 r
F P
0 g
s
.64401 .95105 m .41822 .84295 L .63536 .62719 L p .747 .762 .865 r
F P
0 g
s
.63536 .62719 m .8557 .75615 L .64401 .95105 L p .747 .762 .865 r
F P
0 g
s
.24697 .35232 m .39028 .39035 L .18464 .61764 L closepath p .298 .096 .428 r
F P
0 g
s
.8557 .75615 m .63536 .62719 L .67088 .34907 L p .891 .651 .569 r
F P
0 g
s
.39028 .39035 m .67088 .34907 L .63536 .62719 L closepath p .801 .561 .576 r
F P
0 g
s
.63536 .62719 m .41822 .84295 L .18464 .61764 L p .643 .577 .765 r
F P
0 g
s
.18464 .61764 m .39028 .39035 L .63536 .62719 L p .643 .577 .765 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{275.875, 293.625},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm+lPHGUYwKfdXe6zQKGcy7Ec5YZy39BCoRQKbRFaWkvv07aUHmqMGjUa
NcbEGmOMiTHEGBNj/AP82I/+C37036g78748XZbfTN/ppolJSzLvzO77zO/3
PHMscx5d27h66dbaxrULa+Gp9bU7V69duBeevL0e/Sqwy7J25UWHSNiyp59a
1lbj/OXbjf7wevr19OvpV3r6U3uUYv8+fKy++MAeJdtfpDydsayQPfW+6npb
uvKl6x3VtS5dYem6r7puSFeTdN1RXRdE3itdN1TXqsx1SLouq66T0rUgXWuq
a066zkjXquqakq4r0rWiuibsUVC6nKDA07+/eBxt7d/NfzcfOz+gyzHhumum
6Lo9WEFxOnOnxc0dHazd9qclL0S0dTiLwslFjt2q7/SfdVxhxwGbKtgpwRYB
NmC3To4esEyBDQqsHGBJkOMxd2yuYNsFGwFssuToASsQWK3AmgCWCjkeVdgx
wBYLtkSwnYBNkxw9YOUCyxFYP8AyIMcZd2yVYEOCHQNsJmCn3bG1duvsMIcB
liUFeyDqnFZ9t/n4ibM7ESwXMptU2FFXbEiwW4PlbO478XskVw9obVyu0SH6
SbX2d1Gsgz4IgnzIf8JdFQFVCFQToCqQWjwENSBIBsE4CAqhFuWwRgxVqaCi
DbJIavEQVIMgHQSjICiGWobcVVWgygTVCKhKpBYPQSUIskEwBIJyqKVfqYYN
VbmgGgRVhdTiIQiDIA8EAyCohFp6/KnyQUW/pVVSi4egAgR7QdAHghqo5YC7
qhxURaDqBVVEatGCIUNBMQh6QFAHtbS7q8pAVQqqblDVSy0eglIQlIPgAAga
oZYWd1UJqMKgon/+TaBqVqpBQ1UVqDpA1SyLzUNQDIIaELSDoBVq2e+u2geq
WlC1gapNavEpqANBKwg6oJY6pRowVDWAqgVUnVKLh6AIBI0goOPWbqilxl1V
CKpmUDWCqkdq8RDsBUErCPaDoA9qqVSqfkNVO6gaQNUPqrC7qgBUnaCqT1yV
D6ouUNUlrsoDVQ+oahNX7QFVH6joPM9D1WeoGrBbvenuFAwkLhiCWioTV+WC
agRU4cRVOaAaA1WF4RrSO26voWoCVHQtwacqG1SHQFWWuCoLVFOgKk1clQmq
aVAVG24WWtVjqDoCqn2JqzJAdRRUdL3KpyodVPOgKnw5qmOg2pu4Kg1Ui6Aq
8KfqNlSdAFV+4qpUUC2BKi9xVQqolkFFF2IH/amSQXUKVDn+VF2GqlVQZSeu
SgLVWVBlGa6rKndVCFTnQJWZuCoIqvOgyvCnOmCougiq9JejugQqunvhUxUA
1RVQpRhugR6q3aC6BqrkF1GFYlXOEP1s3QJ8kj98pwf+NuBDL4IPbsNHp+8C
Ofgi5GerwE74HmDjb6CZYJ3j9fsA2+0P1iGwhw4sGAuzp0eeM2/c5vQwLiXL
HGGNqbsRj+R8xGPGTs8Zh2DG6p37xdaMD2KS/uvJP/ag7kHSrryNE3zGUawN
QAV0G7tKet3JXUxeB3LIbp1MPXjdzLsDvBTh0aWTbbzQdp5ekm8BNB3K73TH
93jgbwI+U3L2gPZ6QK8DNEeg7c+DBmKh9mYz9iRun7gMgjxYKC3uqj5D1UVQ
FUgtHoJ+Q8F5EBSJgC7qeggCIDgHghJYWA3uqgFD1VlQlUktHoJBQ8EqCMIi
oBsHHoIgCE6BoFoEEXfBkKFgGQS1sDbo5pS+EDpsqFoCVb3U4lMQAsEJEDSK
oMJdMGIoWARBCyysUnfVqKHqGKjapBafgiQQzIGgUwR0j1gLxgwFsyDohoVF
t9a1atxQNQOqXqnFpyAZBIdBMCCCAnfBhKFgEgTDIshzFxw0FBwEwRisjRx/
qhRQjYNqQmrxEBwyFIyCYFIEWe6CSUPBMAimYWGl+1Ol2q0+fN0pOCIVeGCn
AJsGFfSBYE4EKSCIKMFhQ0EPCBZgEYX8qdJB1QWq41KLh2DaUNAJgiURBNwF
M4aCdhCsOG0wdmGpYwZXcgaQW4F82m4DMbAjhrBmgJ2JOZpxYLP2yPkiExCN
boi4Bahhc4YLsMEQW6+w85IjlVlnCGtQsAWBUWYRQ5i+mX/c7WchDlttiG1U
2BOSI+2rlYawJgVbEhhlVmEI009iLEPB9P+pzBCrH1ZZkRzp97vEENaqYKcF
RpntM4S1KdgZKJgO8AoBuxpzpuvAzkpmdNhT4IaIy0zDzgmM8skzhOmHrM5D
mQHA5hpi1TUR9RS8kyOdQWQbwtQFDOuSwCizTEOYfkLuijPiCwymKHU9wboq
edEJeKohTF0xsK4LTFW5xYruGGYc/TTjzfgV6uwOZgh1Pm7dskcBtYG5/Fty
ElXnc9btmNXjEh7n0TPejUl1Uz/hTHvkiApfFw/lrh+y3ZCgFQhS5zzWAwla
giB1MmE9kqWwCEH6+eR3hTQPQepI23pPgmYhSB0tq/dR9CPnO4P0o90fStAk
BKmDSusjCRqXVaUfsP9EahqG+XXQZzL/AASpgxDrcwnqhaBZFfSlBHVBkH6X
4CsJ6oAgdWRhfS2Jt0DQvAr6RkiNEKRfr/hWguohaEEFfSdBEQhaVEHfS1Cl
LOeTqusH6SqH+XXQj1JTMQTpt2p+ElIhBL2hgn6WoHwI0q/4bEpQLgTp14Z+
kaAsCDqlgn6VoHQIOq2CfpPqkiFIv8D0u5CCEKT+BVt/SJDlXKDfirHeVP1/
OqPts+ou58P/6M20V2Ha2vUf6b0itg==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 274.875}, {292.625, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"40a55fb0-09f7-4b9b-ba0f-a1ea5bd16b4c"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(19\\). \\!\\(\\\"elongated square cupola \
(J19)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"0a954db8-4d12-4718-9a5b-a163410b7598"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.09179
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0596985 1.16118 0 1.16118 [
[ 0 0 0 0 ]
[ 1 1.09179 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.09179 L
0 1.09179 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.24974 .59777 m .43194 .55497 L .45126 .35224 L p .839 .765 .781 r
F P
0 g
s
.43194 .55497 m .24974 .59777 L .33012 .80975 L p .809 .594 .611 r
F P
0 g
s
.33012 .80975 m .51091 .75448 L .43194 .55497 L p .809 .594 .611 r
F P
0 g
s
.43194 .55497 m .51091 .75448 L p .73482 .32362 L .43 .399 .723 r
F P
0 g
s
.45126 .35224 m .43194 .55497 L p .73482 .32362 L .43 .399 .723 r
F P
0 g
s
.51091 .75448 m .33012 .80975 L .47094 .9232 L p .671 .296 .328 r
F P
0 g
s
.47094 .9232 m .65552 .8575 L .51091 .75448 L p .671 .296 .328 r
F P
0 g
s
.51091 .75448 m .65552 .8575 L p .73482 .32362 L .43 .399 .723 r
F P
0 g
s
.26246 .38466 m .45126 .35224 L .56955 .24688 L p .694 .936 .964 r
F P
0 g
s
.45126 .35224 m .26246 .38466 L .24974 .59777 L p .839 .765 .781 r
F P
0 g
s
.73482 .32362 m .56955 .24688 L .45126 .35224 L p .43 .399 .723 r
F P
0 g
s
.24974 .59777 m .26246 .38466 L .20794 .47323 L p .967 .858 .455 r
F P
0 g
s
.20794 .47323 m .19644 .70269 L .24974 .59777 L p .967 .858 .455 r
F P
0 g
s
.19644 .70269 m .33012 .80975 L .24974 .59777 L closepath p .944 .634 .421 r
F P
0 g
s
.47094 .9232 m .33012 .80975 L .19644 .70269 L p .447 0 0 r
F P
0 g
s
.65552 .8575 m .47094 .9232 L .60498 .85634 L p .391 .846 .776 r
F P
0 g
s
.65552 .8575 m .79638 .78945 L p .73482 .32362 L .43 .399 .723 r
F P
0 g
s
.60498 .85634 m .79638 .78945 L .65552 .8575 L p .391 .846 .776 r
F P
0 g
s
.56955 .24688 m .37241 .27519 L .26246 .38466 L p .694 .936 .964 r
F P
0 g
s
.20794 .47323 m .26246 .38466 L .37241 .27519 L closepath p 0 0 0 r
F P
0 g
s
.37241 .27519 m .56955 .24688 L .73482 .32362 L p .58 .091 .059 r
F P
0 g
s
.19644 .70269 m .33853 .8172 L .47094 .9232 L p .447 0 0 r
F P
0 g
s
.33853 .8172 m .60498 .85634 L .47094 .9232 L closepath p .506 .743 .98 r
F P
0 g
s
.33853 .8172 m .19644 .70269 L .20794 .47323 L p .326 .329 .709 r
F P
0 g
s
.79638 .78945 m .60498 .85634 L .63832 .61442 L p .877 .828 .796 r
F P
0 g
s
.79638 .78945 m .83659 .5606 L .73482 .32362 L p .43 .399 .723 r
F P
0 g
s
.63832 .61442 m .83659 .5606 L .79638 .78945 L p .877 .828 .796 r
F P
0 g
s
.37241 .27519 m .53359 .3596 L .35815 .57494 L p .512 .283 .504 r
F P
0 g
s
.35815 .57494 m .20794 .47323 L .37241 .27519 L p .512 .283 .504 r
F P
0 g
s
.73482 .32362 m .53359 .3596 L .37241 .27519 L p .58 .091 .059 r
F P
0 g
s
.53359 .3596 m .73482 .32362 L .83659 .5606 L p .838 .594 .57 r
F P
0 g
s
.20794 .47323 m .35815 .57494 L .33853 .8172 L p .326 .329 .709 r
F P
0 g
s
.83659 .5606 m .63832 .61442 L .53359 .3596 L p .838 .594 .57 r
F P
0 g
s
.63832 .61442 m .60498 .85634 L .33853 .8172 L p .669 .636 .808 r
F P
0 g
s
.33853 .8172 m .35815 .57494 L .63832 .61442 L p .669 .636 .808 r
F P
0 g
s
.35815 .57494 m .53359 .3596 L .63832 .61442 L closepath p .698 .534 .661 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{272.438, 297.438},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm8tzU1Ucx0NefUXSlrapLYGUPlL6TEvf79KWPqCA5aEgAqUgrYogVBEH
ZcaO46ij44IZNy5dsmTr0iVLti79N2LOI9/chu+9c9JTZ+pMO5OTm3u+v8/3
9zvn5qa5OXd5dXP9zr3VzY211cT8w9UH6xtrjxKn7j/M7Aoc8PkOlGcexxM+
sZ32+bKN/KsQjX6xv72/vb+9bfs38RQS75dNteNX8VQkdoTSz8uL/WLroer6
AV0H0fVAdW2Jp7DYERNdAbF1T3U9RVQCUR+rri8QdRxdG6rrPqJ60HVXda2j
awRdd1SXfJLmM+haU123xZPc4Qukt5a20tnTxCyUq0q5BmVQCOXWLKq6rkS3
ICqCaA6ka0q0ClGpEPkkQIjEw2F8VclvQh4B8xRE7ynRDYiiRHRZia5jHCqI
6KISfQBRFRGtKNE1iGLbRXLfOSV6H6I6iOZBWlaiqxDFiei0El2BKEFGLJfd
opLLMQmKHQ3bZ0HuW1CidyFqgmhCiORhH0i//v259tF/GR8ZeBmBSQQOiEB5
yJaQwDkVeAmBbQjshmPUPfAiAjsRmIRjNQmcVYEXEJhCYAKO9e6BcpqlqJcM
eAzeCXfEO0D0wbsS3kkSOKMCzyNwEIGlcOxwDzyHwBEEBuB4ggSeVIFnETgu
AqVmyF2+DPmEY3AychkyTAKnVeAZ8RSGjxa9/OmFPOOMuAeezgsMIlAHe8Qu
5cWGtsVmzUcJYEoBFl2zzjwyr1TrHAI2dhq2ANiEIYyN56SCzXvCQoaZvQFj
ZYYNM5tQsFOesGLDzDRszhNWYpjZuAMWcoOVFgabpe+ELKzMsEwnLOgGixhm
NqZgM55lHjTMTMNOesKihpmNOmBBN1iFYWYaNu05ZgzGMhtRsClPWOUOYAE3
WJVhmRo26Tlm1YaZDTtgATdYzDAzDZvwLJPBWGZDCjbuCavdAczvBqszhA0q
2JgnrL4w2KjnBMQNYQMOmGtmBcJGPGFHDQ8NJ0x3iW8WAjhGsAnDHPsVdtgQ
21AYdgils0lpNIT1bYOtrLzMS3SYsJt2wNZdGQNpIvNm7GZD9gkv9ptl9BOr
FnurgGhlLX3EoNXw8PMwCJFaUsTquGEtve5WYdTSTQza7A2KSS0dxKrd0KrH
3aoEtbQTgw57gzJSS5JYdRlapdytIqilhRh0F2YwSAyipJZjxCpFrNjXmG53
q3LUwgx6DGvxMKiEwVFi0GtvUEUGq55Y9RladblbVaOWOmLQb28QI7XUEKtB
Q6tOd6ta1PIfGdSRWiqJ1ZDhQdzhblWPWiqIwYhhLR4GcVLLW8Rq1N7qCGqJ
EINxQ4N2d4MEqaWYWE3YWzWgFlMD+WEsd3kMUSOpIEgMpohBHwz86X9ev8qr
pc3dtAm1BIjVNLFKiVZ+4woVZtWSV1/m2TdHDNphUFKYQVK0MnCGYFsxRBGC
9ZhuidUX1l788Sr7kD8osAO3EflHd2IUcBpljrCs1QCxSqCmQ/ZWUVixz/rD
qKrG3qoGVuz/yRis6tytBohVK7GKw+oYsarCAMaJVYe7FauqGVaHiVUUVSXs
rTpgxS5xRFBVk73VCVixy1lFqCppbzUCK3YdNACrdnuraVhl3tkv1aXurFNA
vQesPRZEKxPuIbDOwmBLslX7MjAJTO1jdwW7SLAFTlmLRbZd+9i9jGVngu7C
sOwAY9n+L7H9Fu+yvYG1ORJSewJrOgj72N3BsinrcWD1QgxrmOtXNjssu/zX
aI8dJthjbv8YGUyUxuZ+e2mwyFFfMB4jOR6xx44TbNweO0Gwh+2xkwRbb4+d
wkTtAuwkybHW8GBiWP3jxwzBxuyxswRbY4+dw4juAmye5HjIHrtAsBUW86+x
iwRbbojtIlj9I+ESwUYtBkFjT2OidgG2THKM2GPPEmyZPfYcwZYaYtlE6Z+d
z2NEdwG2QnIsMsR2ilYmolcpXCCwsCGsTbRyl14mcpHAQgQ2T2CtopUXGPSi
n0sEFjDMrFm0eimThF3GBJgiGjFSmY5bf/8lO8WrSUVUK5KDzvTENvufOIFx
ykPptYtX8ir1uXDi4PgFRianF4Ve1Qgd7noyqQMiAIRefivXMct62PTUYjiC
CFTnYLWUWsu3/kzL9OU6vknCqdmegNzS65mv53Eyj8zRk2nlpa0hAjsEWC6p
Mwp2g8DKRCsz6yWwClQYAkydZRxr0yuQTztBHEQ+OcR5hbhF8qkGrInAygAL
A6bXpa8RWD2KO0JgxYAVAaZXwt8msAQyixFYGCNVDJhee38HI5VEPuUEEUQ+
OYRe43+X5NOGfEokLOiEAVUClL6nYJ2gUkD5BSqoTsrZQH3vwgYJHBCt3BUR
8rxzsw78CPX3C7kfdKm+qUSfuKXlRxWyU9+8cY/IOyEvhvxDJf/Ubfz8mH7Z
6bzXJE+e3C6XWyppdcuL3NEMURhM5a1vmSGHVO7tJTs/U/JHRB6HPAi5vkln
k8jfxuTkzgSPlfxzZBwjzCdK9JgwKyHPnaqeKvmXRB6F3A/5MyV/QuQRyFU2
af2hIB7fqrCvkHlpTrz9E+Q7pXzqduqUn4HfK9HXROQXrXwP/KhE35CTuTT+
WfU/c/Rnj/1fVJd8sYfu7trf3jvbvgP/AvBg1uM=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 271.438}, {296.438, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"180c002d-6a91-420d-94af-6da012b451f0"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(20\\). \\!\\(\\\"elongated pentagonal cupola (J20)\\\"\\)\"\
\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"e6bf8e41-696d-4663-a582-70cfe14d5095"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.03331
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0341349 1.12202 3.33067e-16 1.12202 [
[ 0 0 0 0 ]
[ 1 1.03331 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.03331 L
0 1.03331 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.30287 .6395 m .42879 .54412 L .37192 .39286 L p .85 .726 .726 r
F P
0 g
s
.42879 .54412 m .30287 .6395 L .41833 .77981 L p .778 .573 .623 r
F P
0 g
s
.41833 .77981 m .54019 .67872 L .42879 .54412 L p .778 .573 .623 r
F P
0 g
s
.42879 .54412 m .54019 .67872 L p .65613 .30046 L .416 .487 .824 r
F P
0 g
s
.37192 .39286 m .42879 .54412 L p .65613 .30046 L .416 .487 .824 r
F P
0 g
s
.54019 .67872 m .41833 .77981 L .55372 .86742 L p .664 .388 .494 r
F P
0 g
s
.55372 .86742 m .6752 .75861 L .54019 .67872 L p .664 .388 .494 r
F P
0 g
s
.54019 .67872 m .6752 .75861 L p .65613 .30046 L .416 .487 .824 r
F P
0 g
s
.23892 .48553 m .37192 .39286 L .39273 .27029 L p .885 .928 .844 r
F P
0 g
s
.37192 .39286 m .23892 .48553 L .30287 .6395 L p .85 .726 .726 r
F P
0 g
s
.39273 .27029 m .37192 .39286 L p .65613 .30046 L .416 .487 .824 r
F P
0 g
s
.27761 .64071 m .30287 .6395 L .23892 .48553 L closepath p .903 .568 .086 r
F P
0 g
s
.41833 .77981 m .30287 .6395 L .27761 .64071 L p .76 .275 0 r
F P
0 g
s
.27761 .64071 m .40266 .7928 L .41833 .77981 L p .76 .275 0 r
F P
0 g
s
.40266 .7928 m .55372 .86742 L .41833 .77981 L closepath p .564 0 0 r
F P
0 g
s
.6752 .75861 m .55372 .86742 L .66862 .86821 L p .323 0 .162 r
F P
0 g
s
.66862 .86821 m .79348 .75192 L .6752 .75861 L p .323 0 .162 r
F P
0 g
s
.6752 .75861 m .79348 .75192 L p .65613 .30046 L .416 .487 .824 r
F P
0 g
s
.39273 .27029 m .25155 .36386 L .23892 .48553 L p .885 .928 .844 r
F P
0 g
s
.23892 .48553 m .25155 .36386 L .29361 .52437 L p 0 0 .452 r
F P
0 g
s
.29361 .52437 m .27761 .64071 L .23892 .48553 L p 0 0 .452 r
F P
0 g
s
.66862 .86821 m .55372 .86742 L .40266 .7928 L p .252 .634 .961 r
F P
0 g
s
.65613 .30046 m .49768 .22776 L .39273 .27029 L p .416 .487 .824 r
F P
0 g
s
.25155 .36386 m .39273 .27029 L .49768 .22776 L p 0 0 0 r
F P
0 g
s
.79348 .75192 m .66862 .86821 L .71431 .7644 L p .829 .996 .764 r
F P
0 g
s
.79348 .75192 m .84593 .64464 L p .65613 .30046 L .416 .487 .824 r
F P
0 g
s
.71431 .7644 m .84593 .64464 L .79348 .75192 L p .829 .996 .764 r
F P
0 g
s
.40266 .7928 m .27761 .64071 L .29361 .52437 L p .33 .45 .831 r
F P
0 g
s
.40266 .7928 m .51111 .78806 L .66862 .86821 L p .252 .634 .961 r
F P
0 g
s
.51111 .78806 m .40266 .7928 L p .29361 .52437 L .33 .45 .831 r
F P
0 g
s
.29361 .52437 m .25155 .36386 L .35078 .32642 L closepath p .268 .188 .577 r
F P
0 g
s
.49768 .22776 m .35078 .32642 L .25155 .36386 L p 0 0 0 r
F P
0 g
s
.51111 .78806 m .71431 .7644 L .66862 .86821 L closepath p .598 .741 .944 r
F P
0 g
s
.35078 .32642 m .49768 .22776 L .65613 .30046 L p .629 .295 .387 r
F P
0 g
s
.84593 .64464 m .71431 .7644 L .65538 .58313 L p .895 .775 .721 r
F P
0 g
s
.84593 .64464 m .79553 .46687 L .65613 .30046 L p .416 .487 .824 r
F P
0 g
s
.65538 .58313 m .79553 .46687 L .84593 .64464 L p .895 .775 .721 r
F P
0 g
s
.44509 .61358 m .29361 .52437 L .35078 .32642 L p .505 .427 .701 r
F P
0 g
s
.29361 .52437 m .44509 .61358 L .51111 .78806 L p .33 .45 .831 r
F P
0 g
s
.65538 .58313 m .71431 .7644 L .51111 .78806 L p .627 .636 .84 r
F P
0 g
s
.51111 .78806 m .44509 .61358 L .65538 .58313 L p .627 .636 .84 r
F P
0 g
s
.35078 .32642 m .50955 .40789 L .44509 .61358 L p .505 .427 .701 r
F P
0 g
s
.65613 .30046 m .50955 .40789 L .35078 .32642 L p .629 .295 .387 r
F P
0 g
s
.50955 .40789 m .65613 .30046 L .79553 .46687 L p .798 .569 .59 r
F P
0 g
s
.79553 .46687 m .65538 .58313 L .50955 .40789 L p .798 .569 .59 r
F P
0 g
s
.44509 .61358 m .50955 .40789 L .65538 .58313 L closepath p .624 .551 .752 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{280, 289.312},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm9tyE1cWhoVbLcmSbCHZxmdZtuzYlmx84BAgCQ4hYxMTCKdAIMmA8UAM
ISdMUhSVySSQZGYYampqipqaSuWSR8htLnM5l7zCPEJuHa29lxZt6W+x2m2n
UhWo6t6iV+//+9fq3a12q/expVsrVz5YunVteamwcHPp45Vry6uF+Y9uVjY5
2yKRbV2VZbAQoc9rkUh1Zf5104r/8+zzs8+/o89/p8ahc+GB3fCtbHDWHi1e
bqJP923oa2qitCFGIbPTX23oroRS0usbG/oLNTHa0Cqhezb0ZwnlJPSVDd2h
JkEbOoT1hQ3dllCP9Prchj6lJkkb+iV0x4ZWJTQoods29Ak1KdowLKxPbehD
atK0YVx6rdrQDWpaaMOEhD6xofel17SEPrKhaxLaLawbNrQioX3S67oNXZXQ
ixJasaErEpqT0FUbWpbQYWEt29BlCS1IryUbuiShRQldsqGL60MRo7j2v4cP
qa3u9K7sdNTs5MpO1YV2vmh3fgfAXNqJtfmf3S8SuVCj7Xi1K6OyvuPbtuN5
wEmC3S/Y3c815KRAx/O241kZFLUVoi5p/45nhFiJH5p5uHbv+g+0RIzVeTG9
HUi8ZSVOywiPkkLEnI5VHVqaZCjU+MoC0XNW9KSIukbU8YpWEFXZl4FsG5A9
a2VPUGPO4QSQjYnsk+HeCcTetGLHRSwJxBIith947AKyZ6zsMWrM1SkNZFMi
uxfIdvvLHhXZViDbIrKzkno/EDttxRapce3AqBfLiNgU8JgHsqes7BFqzPhp
A7JZkS2LxyEgdtKKLVBjIu1ArF3ExoDHIpA9YWXnTWNDdMKQdAcA7BDACAAM
hwd0mbXdVgEYSEEKMwYAb/gDUIl6JIMBkME4ABz3AExH5LtPZPuAbBnIHtPI
5kW2S4owBcRet2J/8BSBvlsjPuNkUGQ7gNtpADgaDFAUQA4AZp4GiHoAq35n
zogwntwL7QHKi4GVR0U5BdzvBYzXGjJygFESRlzcHwDKRwIrT4hyFLh/ATAW
vAy3hmEPchaAdgrI3t5WOZGDgDH/dAa66s54rgfVFLZYfg7IW93Iq3XDf9Xc
U6zWXHjQl9GMVOsQALzqD3AAoAUApvkugrZ9/4+fzOJDOxyMhr6ybeXcdTQm
QuQrm4V0vMhK9Wn99AN4KDx+GuCd8PgowKNbL5R9VIl/eWvwrhI/Fx6Pih9X
4g9a/GGAd0PgE0r8S/74GMCje3hU/GaAR1fGTcCj7JPK7F/cGnxKiX8hGD6u
LH5aiT/gj48DfEyZfasSv39r8Bm/ocd3Mb8a9CVPzv//6Udqg+LRX+IInwV4
ey8VFTxbYAevAAfNwEFU6SAHHOyvKUBlqXwl0nr9QHh+ayy1AUvPA0tOeEuO
8sxsB5Z2y9iMbY0RVJsdwMgsqE0cWNrrbykJLDWFsDQDLCU2Ysn1WjILnY27
gI1OYGMK2Gj2t4HO7uYGNmaBjW5gYxLYSAEbezbPRg+wUQY20sFs2IMSXWfD
x0EvcDAmp0xmI9wn49Mv7T4AHQVpN8Cj+8naM9YP3w/wIwCfBfjd4fF5gC8C
fC4Y3lv8RheCAsAPAnzbBvBm0KAr8yCA5mWYdQLULouqf+jEhW5aO7X6mJ+J
1fOGAK8PJLkRMp/fFbwsdKgngY0isNELbHRtxIbjtRF5Uo8yMDIMjHQDIz3A
yGwwI1ExMg6MjAAjncBIr7+ReWAkDozEzXr9CTECLI0CSx3AUl94SwmpDTIy
Bozk5CQZCI9PCr6oxGdBHQrAyEwwI2kxMgiMjAMjGWBk0N/IAjASA0ZawRjp
B5bKwFILsDQU3lJGaoOMTAAjKWBkGBiZDmYkK0Z6gZFJYCQhg3XUH38E4F2A
bxN8F8BPAXwM1CGgkSgwsgOMkQ6lJRdYGgeWpoJZ6pTaICPTwIgDjJTCG+kW
IzlgZJafFHqMmMV+XfrCXwNwB8B7wYHJABu7aupB+J3h8X2SO4Kag2BSnwao
ncFQeUGlAapEa7rM0o8+jx7XHGWUaUB8QfBJv5ucuDVXj0fHmfGLAN8E8EPg
OMf9/qwwRtqUdZgMZqQodYgBfAetq69TBcfjH67GBBn1exZoMi4qS69Alkyu
rrfcZqFYswBLyhwnLND+xFv3G2a55tASwxHGzKYwJolhtu5XFkmhxz0qekbz
wKYo7wTKyDOqQdkqv143lLGs1vCvINtkL5IbT72kEdM6Y7FjnoSrp3+YhBvI
ToVIfTyYrNYtyx4PUYSyR/bxmv1tmI/6G0pZVIQSkOWT6gSQ1Z6rY2YdFVmW
ZuWTSmVkeBQr83X4FFCeUCo/Z9buOuVqSQLKo5IMN5DnL/DTIdwXaw5kZal8
59IaXjHPAFRZiTJ/J/J3aD2AS/UmAJSUpRoAuTRAnVWiUC55JYqP0DmAGlei
+gHKDYbSZtWrRPEd+lshsuoBqJg/6jxAjSlR3UoU/z16IQSqE6Di/qi3AWpU
ieqQs6kZAPhhxzsA8JwS0A5yCYjS5pJTovg527shssoCVNIf9UeAGlGititR
/IT5YghUK0Cl/FGXAGpYiWpRovg3iiUlah9ApQEqHR6FskoqUfyz12WAKipR
CTlxM/6AZSUAlS0OcmkFKP4d908ANaTMxQUolBWjrgDUoBIVVaL4VYKrShQq
oANQ28OjbFauF2UWupPLAfl9Vv69QJnUvQmTBcr8dswKUC4oahTxkeUXva4B
2QEgu4fWrp9HfmntulJsgtbmqU907fsff1YMf34p730AyAPAsABSSsDBYIBe
WtMvefRKTx2gBQDmLOCGEpCTDHqVAH5n9QMA6AeApACKAIAup/xO7ocA0AcA
TQIoAwD6FuJXns1kxe2k2EbhWWVvfkf7Y2oydqAeevRzk5+EuWXh+W2m401P
XpWOtFQKV5WY8pOoccFit6gxHfMiMQkkEkCCZxd8BiRKSgmeBHEbSIwBCXTX
yzM07gCJEaUETyT5HEigMYdu83mWyxdAoqCU4Kk+XwKJPJBAf0Lx1KO7QKIP
SKC/LXlS1NdAohtIODI6eR7bt6BjJ+iIHgewxN+ARLtSgqfm3QcSOSOBn3nw
HMkHoFumQTeep/lP0K3FdKt7NMQTRv8FeiRxD563+m/QI1FTFLLEM2Ufgt1j
tLv5xBN4/wN2cmQnnhT8X7CT3ata+Oqe31EzwHG6MlXjPC/ZHKHf0Kz+Z59/
m58j234B1YT2qw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 279.}, {288.312, 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"2971b9db-d863-4a48-a62e-474b5673aa8d"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(21\\). \\!\\(\\\"elongated pentagonal rotunds \
(J21)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"5b05c2df-4fc2-4a5d-9441-ba59cc7013e5"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.02667
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0318959 1.10151 0 1.10151 [
[ 0 0 0 0 ]
[ 1 1.02667 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.02667 L
0 1.02667 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.58663 .40489 m .54545 .55566 L .69083 .59987 L p .641 .524 .705 r
F P
0 g
s
.4398 .36633 m .39869 .52038 L .54545 .55566 L p .758 .646 .737 r
F P
0 g
s
.54545 .55566 m .58663 .40489 L .4398 .36633 L p .758 .646 .737 r
F P
0 g
s
.54545 .55566 m .39869 .52038 L p .44326 .77212 L .776 .586 .642 r
F P
0 g
s
.44326 .77212 m .5744 .70719 L .54545 .55566 L p .776 .586 .642 r
F P
0 g
s
.5744 .70719 m .69083 .59987 L .54545 .55566 L closepath p .652 .504 .67 r
F P
0 g
s
.69083 .59987 m .73375 .44629 L .58663 .40489 L p .641 .524 .705 r
F P
0 g
s
.58663 .40489 m .73375 .44629 L p .58838 .42321 L .256 0 0 r
F P
0 g
s
.4398 .36633 m .58663 .40489 L p .58838 .42321 L .256 0 0 r
F P
0 g
s
.59327 .82303 m .5744 .70719 L .44326 .77212 L closepath p .682 .395 .48 r
F P
0 g
s
.69083 .59987 m .5744 .70719 L .59327 .82303 L p .493 .267 .499 r
F P
0 g
s
.33592 .34194 m .29317 .5048 L .39869 .52038 L p .887 .786 .744 r
F P
0 g
s
.39869 .52038 m .4398 .36633 L .33592 .34194 L p .887 .786 .744 r
F P
0 g
s
.33114 .65358 m .39869 .52038 L .29317 .5048 L closepath p .897 .751 .692 r
F P
0 g
s
.39869 .52038 m .33114 .65358 L .44326 .77212 L p .776 .586 .642 r
F P
0 g
s
.73375 .44629 m .69083 .59987 L .79243 .64066 L p .447 .329 .625 r
F P
0 g
s
.79243 .64066 m .69083 .59987 L p .59327 .82303 L .493 .267 .499 r
F P
0 g
s
.33592 .34194 m .4398 .36633 L p .58838 .42321 L .256 0 0 r
F P
0 g
s
.79243 .64066 m .83842 .47864 L .73375 .44629 L p .447 .329 .625 r
F P
0 g
s
.73375 .44629 m .83842 .47864 L p .58838 .42321 L .256 0 0 r
F P
0 g
s
.44326 .77212 m .33114 .65358 L .3375 .77063 L closepath p .867 .538 .426 r
F P
0 g
s
.44326 .77212 m .3375 .77063 L .42652 .82551 L p .553 0 0 r
F P
0 g
s
.59327 .82303 m .44326 .77212 L p .42652 .82551 L .553 0 0 r
F P
0 g
s
.3375 .77063 m .33114 .65358 L .29317 .5048 L p .925 .653 .17 r
F P
0 g
s
.59327 .82303 m .73282 .78522 L .79243 .64066 L p .493 .267 .499 r
F P
0 g
s
.59425 .85904 m .73282 .78522 L .59327 .82303 L closepath p .171 0 0 r
F P
0 g
s
.42652 .82551 m .59425 .85904 L .59327 .82303 L p .553 0 0 r
F P
0 g
s
.31759 .3424 m .27177 .5174 L .29317 .5048 L p .873 .857 .403 r
F P
0 g
s
.29317 .5048 m .33592 .34194 L .31759 .3424 L p .873 .857 .403 r
F P
0 g
s
.29317 .5048 m .27177 .5174 L p .3375 .77063 L .925 .653 .17 r
F P
0 g
s
.83842 .47864 m .79243 .64066 L .80828 .6634 L p 0 0 .1 r
F P
0 g
s
.73282 .78522 m .80828 .6634 L .79243 .64066 L closepath p 0 0 .023 r
F P
0 g
s
.31759 .3424 m .33592 .34194 L p .58838 .42321 L .256 0 0 r
F P
0 g
s
.80828 .6634 m .85784 .48937 L .83842 .47864 L p 0 0 .1 r
F P
0 g
s
.83842 .47864 m .85784 .48937 L p .58838 .42321 L .256 0 0 r
F P
0 g
s
.27177 .5174 m .30058 .69261 L .3375 .77063 L p .925 .653 .17 r
F P
0 g
s
.3375 .77063 m .30058 .69261 L .42652 .82551 L closepath p 0 .286 .786 r
F P
0 g
s
.80828 .6634 m .73282 .78522 L .59425 .85904 L p .842 .939 .888 r
F P
0 g
s
.71387 .65476 m .80828 .6634 L p .59425 .85904 L .842 .939 .888 r
F P
0 g
s
.59425 .85904 m .57324 .78391 L .71387 .65476 L p .842 .939 .888 r
F P
0 g
s
.42652 .82551 m .57324 .78391 L .59425 .85904 L closepath p .57 .785 .98 r
F P
0 g
s
.41044 .3727 m .36099 .55873 L .27177 .5174 L p .326 .216 .572 r
F P
0 g
s
.27177 .5174 m .31759 .3424 L .41044 .3727 L p .326 .216 .572 r
F P
0 g
s
.30058 .69261 m .27177 .5174 L .36099 .55873 L closepath p .288 .243 .632 r
F P
0 g
s
.85784 .48937 m .80828 .6634 L .71387 .65476 L p .934 .849 .734 r
F P
0 g
s
.58838 .42321 m .41044 .3727 L .31759 .3424 L p .256 0 0 r
F P
0 g
s
.71387 .65476 m .76594 .46941 L .85784 .48937 L p .934 .849 .734 r
F P
0 g
s
.85784 .48937 m .76594 .46941 L .58838 .42321 L p .256 0 0 r
F P
0 g
s
.53635 .61356 m .57324 .78391 L .42652 .82551 L p .57 .567 .81 r
F P
0 g
s
.36099 .55873 m .53635 .61356 L p .42652 .82551 L .57 .567 .81 r
F P
0 g
s
.42652 .82551 m .30058 .69261 L .36099 .55873 L p .57 .567 .81 r
F P
0 g
s
.57324 .78391 m .53635 .61356 L .71387 .65476 L closepath p .756 .69 .788 r
F P
0 g
s
.58838 .42321 m .53635 .61356 L .36099 .55873 L p .623 .509 .703 r
F P
0 g
s
.36099 .55873 m .41044 .3727 L .58838 .42321 L p .623 .509 .703 r
F P
0 g
s
.76594 .46941 m .71387 .65476 L .53635 .61356 L p .771 .663 .744 r
F P
0 g
s
.53635 .61356 m .58838 .42321 L .76594 .46941 L p .771 .663 .744 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{281.375, 288},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm0tsG0UYx7fx+hUncRKnTmzaxEmbNG4b8uwjfbeUFgrpI31DKYSoaguU
llIVCQkhBEg9gFShSD0UCSRAHODAoQcuPfaYI1eOHDlyNTvfjD+v3f9sZju2
1UMi7Xiz+fb3++bb13h3M7dw59qVGwt3ri8uFI7eXrh17frix4UjN297iyJr
HGdNzpsKBUfMlxyn3NBPXjTql9X51fnV+dX5Js1fFB8JcS7607fAiYglpfnJ
JTpLtYg2UjroOK6Ye4QjvcmL9Fpa5HL4HzL8AgiPcXhUhEfF3G/68CSHx5n+
qz68jcMTHP6TPjzN4UkO/0GGnwfhGQ5v5fCH+vAsh6c4/IE+PMfhbSKc5pZk
+DkQnqdWLvv+y0diciprk+x+2LW91q1GfKNH5AAiIVpa1M6Ie+EQKc6incvw
tUScNexIGmTxRThEd3UWNPeZHoE60stZdHBHPg2HyIMs7krEGcOO9FdnQYjb
egTKYoizqCA+DIcY4SzSXIv3wyGKIIurEnHasBZj1VkQYlGPQFlMchYVxNvh
EFOVQ7X05PfHYnLc6tJcksR5w35hotfWlOtCOOwkwCZFW1PCM3qsaf/bONtK
EU7ZYztBEeYk9pRFbXsA9lU91jTbXDWW/njEHruesZUT6kv22EHGVi5XByT2
pMUONsI7WOUitEePNc22CLKdtceOMTbF2O322EnR0tAoydhpiT1hUdvpyrmm
9O/fj8sTieIsmtCLTPOXoohf5A38yqooq8bsVVNA1cYqGsHSWHZLY1Rdoo2L
RUUpOG69faoFWdHSolG9wKYHOWrlMvXjHYTNVs1ZnI6Rqg+oNulVNjt2g1Sm
BWyQCvVK7YGvN2Fb+VV0/NoIUNmq+iJPicdmf6ZPb+prjk1N1MFsnStYfHpj
KZ33W1naY3FmCpDOAanL0q46FzdAGmNpus7l3ayXJkSrhjBNk6a4p8k6lzdA
2s7SePOkaZZG61xeNUY4DqSdLI00T9rNO9KMRSkDBD0ssOnB1hUEatnS0rKY
5G/jjfFlgM8VLS3aqhtqG1QxpDTO0lGLTaekJ4C0C0hToqWry0aL8oJBeZA0
zT0dtChvgLQTSDMs7W+eNMvlzVmU98Vw0jz3NNsYaRpI+1masSivkp4E0g4g
HWRp2uKQCZC2A+kwb9OURXnHw0mL3NOERXkDpG1AOsbSaPOkEyx16OlC2Wk8
oJzQ+1LAN8Ob03TThRRsq1zCSk8eLYtJjufHDAuofKeALwl826HPa0labIx0
B5DGWTpsWNlJvTQBpDuBNMXSgmFP6yBNs3Rd86QZ0dItq17D8k7ppXEgnQXS
Pu5pJpx0HkhjQLoLSF9gaYdheQOkUSDdDaQDLG1tnnQDS2OG5Z3WS10g3QOk
m1jq/UGc3ZXTG0g0xLdFtEmxqCecIAIE+4CgSK1c9td//4jJ28G9tl1W9mnp
jJSeBtIWQ+kokK4VLd3q3e4XRP2C8j0k56Bu09RA11EbkL85fsQQv+3Z8MOG
+KriVN/qcsSDJ81xUkNeXxfykCF5hyTTg0z6kn8YwAYBrP9ZYQVD2E4frGa/
RR0eMMTO6rEo2/UAO6DHnjXMli4FVKJBANvlg2nrmAeZBcDOMQzlkzOE7fbB
1J+cY8t05CBsryFWPeY8D7CHADYLsEMrYd0KVqLRob7WkLzXT45Wk1XiBwC+
xxC/T+IvBOD364ZSNfgNK+Ejfrx4YnhsuWYH3gtUXYaq/VJ10VCFrrOdQLUx
nCoCVGjckjZUqaf9bxiq0GCww1B1UK9ygQoNdtv4ZLNJL3jTQtAK+jICVIf0
qihQoW8LSUOVes3jkqEKfe9LABUqYIAqBlToe23cUHVYr4oDFfrKHgOqUb3q
LYteuYaql/Uq015FDFXqpaLL4oOOiAQQzABBCxAU9YJ3WIB6ME1t1C+gSZzX
twDoUQl913BnnqLWrcI74hmAlrzI6aJtS7wWHeIVibjCCJTSON8No/5R3Gty
xaugV+gkuplvcLWUvEXoaCGsesvtGueDzmIjnE8MwIYZJm8bO+8xDGU2yJm1
AtgQw9RrfR/QB76q9zOqA6DQ0ElBb3CG6LLay9hugB3gDNX7jDcZJvtbZnnj
l3LZegFnHXPk+ND5qHbTej+dnEoeIPKMUG9s0gu7FFN5xNMPVuzjFeWV0rnj
OwLLSQ+BFbO8onr19K4v6XL9SDsC1s7w2pfl2p9wvkUQ3g02oFqR3o+mnWIj
WLGTPQsy/HMOL4Dwdg5XL/l+JT7Unb2nw1McfkWG32M62s5JDldvIX/L4Wj3
inP4dRn+HYejndzlcPWa9APOHR1eEVBSteJD9kRpRde/IlvU+9w/crB4bLpc
4ljv85YM+YV3KfUaOdmeo/9vWZ1/PuedNf8D9cj5Rw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {287., 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"f210e8a3-5fce-4021-8a02-be08e000dc1c"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(22\\). \\!\\(\\\"gyroelongated triangular cupola \
(J22)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"2d36bad9-04a1-4e8b-ad3a-acfc74de7a56"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.09693
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0614776 1.17632 0 1.17632 [
[ 0 0 0 0 ]
[ 1 1.09693 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.09693 L
0 1.09693 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.28018 .79669 m .52286 .92903 L .41552 .70805 L closepath p .836 .512 .44 r
F P
0 g
s
.28988 .51233 m .41552 .70805 L .52387 .4604 L closepath p .827 .728 .756 r
F P
0 g
s
.28018 .79669 m .41552 .70805 L .28988 .51233 L closepath p .934 .725 .597 r
F P
0 g
s
.41552 .70805 m .52286 .92903 L p .75598 .39961 L .548 .402 .634 r
F P
0 g
s
.75598 .39961 m .52387 .4604 L .41552 .70805 L p .548 .402 .634 r
F P
0 g
s
.48913 .31771 m .52387 .4604 L .75598 .39961 L closepath p .598 .747 .948 r
F P
0 g
s
.28988 .51233 m .52387 .4604 L .48913 .31771 L closepath p .802 .874 .9 r
F P
0 g
s
.48485 .92216 m .52286 .92903 L .28018 .79669 L closepath p .445 0 0 r
F P
0 g
s
.52286 .92903 m .771 .90017 L p .75598 .39961 L .548 .402 .634 r
F P
0 g
s
.48485 .92216 m .771 .90017 L .52286 .92903 L closepath p .148 .692 .782 r
F P
0 g
s
.17289 .578 m .28018 .79669 L .28988 .51233 L closepath p .982 .772 .545 r
F P
0 g
s
.28988 .51233 m .48913 .31771 L .39399 .3595 L p .684 .962 .73 r
F P
0 g
s
.39399 .3595 m .17289 .578 L .28988 .51233 L p .684 .962 .73 r
F P
0 g
s
.771 .90017 m .8971 .61588 L .75598 .39961 L p .548 .402 .634 r
F P
0 g
s
.71458 .39976 m .75598 .39961 L .8971 .61588 L closepath p .777 .309 0 r
F P
0 g
s
.48913 .31771 m .75598 .39961 L .71458 .39976 L closepath p .316 0 0 r
F P
0 g
s
.48485 .92216 m .28018 .79669 L .17289 .578 L p .178 .403 .843 r
F P
0 g
s
.39399 .3595 m .48913 .31771 L .71458 .39976 L closepath p .489 0 0 r
F P
0 g
s
.72238 .72138 m .771 .90017 L .48485 .92216 L closepath p .761 .826 .903 r
F P
0 g
s
.72238 .72138 m .8971 .61588 L .771 .90017 L closepath p .943 .9 .754 r
F P
0 g
s
.71458 .39976 m .8971 .61588 L .72238 .72138 L closepath p .899 .675 .59 r
F P
0 g
s
.17289 .578 m .3872 .69393 L .48485 .92216 L p .178 .403 .843 r
F P
0 g
s
.17289 .578 m .39399 .3595 L .3872 .69393 L closepath p .489 .337 .602 r
F P
0 g
s
.3872 .69393 m .72238 .72138 L .48485 .92216 L closepath p .733 .754 .87 r
F P
0 g
s
.71458 .39976 m .72238 .72138 L .3872 .69393 L p .777 .576 .627 r
F P
0 g
s
.3872 .69393 m .39399 .3595 L .71458 .39976 L p .777 .576 .627 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{271.75, 298.062},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt28lzFOcZx/FGM6MZ7YM2tGu0Lwi0r4AEMiBLNhiEWUxMbIEXSExIgLjs
4NhZKpUccvQxxxxzzDVHjjn6miN/Qq5yv8s8o+X7yk9DqcpVRlXT0+q3+/d5
n3d6tu6eS1tP73/8cOvpg3tbhbXHW7++/+Dek8LFR4/jRakjUXSkLr6NFiIz
vx1FxYn9y5uJ/+f1/Ov51/M/ufk/m7u0eU34m1vwR3NXZhaktp9FkW36i2v6
Rppy0vQn1/SVuUuZBTXS9I1r+p1sVW+aMmbuK9f0hTQdk6YvXdPn0tQhTZ+7
pqfSVDBN5WbuiWt6LE0Dpilr5h65pkfSw1HTZFcq2940ZcZzn7mVHsr242al
1O6VHriVfikrzcBKn7iV7Lq2a7PCpWSle26l+/bOLtl+tvkPcx8P3fNv/5nb
3YXShh+6DT+1d2nZ0G9cLduWakzLtnfctq6DmV3bFvFGCegX3AZY6j0X8PGe
Xse3mDJTtyyOMLeoTcK6JSwjvbnhwj6CsBSE9UpYm5RWLmHXXNg9CEtD2KiZ
2p2jSXpWCrviwu5CWAbCJqVneQi75MK2IKwcwhYlrErKzErYhgv7EMKyEHZO
wjLSs1LYmgv7AMJyELZuplW7I867iJ9DRAVEXDXTOrNo1W14BzashA3ftVO/
bMPe4j6aqVvm/6KzLvZ9iK0KxdohroSwFRf2Mwir/oE+vvjXt/bpRLHLLvY2
xNYEY9MS66MrwsnvQXJtMDmzK7nYcYo/4+JvQXydYjziW7w7m+nuxzEL1GlH
3QQqfzjUDaCOKqmUkjrlqOtA1SuptJJactS7QDUoqQxQ5WHqGlCNSqpcSS06
alNJXQcqq6QWHHUVqCYllQMqE6auANX8ChRVNe+od4A6pqQqlNScoy4D1aKk
KpUD6KlLQLUqqSolNeuot4FqU1LVQKXD1FtAtSupGiU146gNoDpegaIBnHbU
OlCdSqpWWZWn3gSqS0nVKakpR60B1Q3UjVegJh11EaiCksoDlQpTF4DqUVJH
ldSEo84D1auk6pXUuKPeAKrvcKhVoPqVVIOSOumoc0ANKKlGJXXCUWeBGlRS
TUCVhakVoIaUVLOSGnPUMlDDSuqYkjruqDNAjRwOdRqoUSXVoqRGHXUKqONK
qlVJjThqCagxJdXmP+PuoOwt/r84aIsQf0IZ335AvB+oBYg/qYzvOCDeD848
xI8r4zv9d42d8aXkOUieSJTMHR928bMQP6mM7zogfsjFz0D8lDK+m8fFJ09D
8rQyucDJgy55CpJnlMk9nDzgkicheVaZ3Lvn2RqVYicgdi5R7L4O97vkcUie
Vyb3QYd9rH37tEeCFpVh/RDWtyts5O53NlHbvQFI7N1RdUoStY/QoJnaLXr3
j14cZm5RqaPanXVIYnv2P9zF2JSfvsyrxLAAhTCQln6/dOwkxGYkVvtiPCKx
3eHYrMRq36FGJbZr/6tAMTYnsdq38+M79rLi+2lHGKgUgD5w3QRgDID2/a+Q
RaBKAPqcGgT8maFgbI3E0od6it05MP9/8dw+/Tr2v2cUgVrYv+kLGFGlPSZu
8NbOB4K8OilIq5Sephbhh2QWqLxQ9D2ZqME9Y2e4MkA7wmi9oHTIgdB+qS8T
puaAahCKjtkQ1StUNhnVJBQd9CKqB4ayHNBOh84D2iwoHT+8FfrcZLeoSEa1
wLOADjAT2gmV5oD3L38LId72W4u2S6VVyag2oei0AFGtQlUD1e2oRaDahaLz
KkS1wFAmRDsFpbNQhDZLfbVA+bfYJaC6hKKTckQ1CpVPRhWEovORRDXAUB6A
ngK0R1A6KUvoUamvHqieMNUHzz864U1oHio9gD8d4v1VBjq0ViptBKo3TA0I
RZcaEFUtVHOYOgPUoJnaRbchtgqGrQmAvjAwbKb28gM6G1Yh/W55iVi/7D/P
/2du8eMST+1Z+3WgclDLAeiyEq0VdBnQcqmvDaj+ZFSrmVabRVNApXd8VAxS
K0qqX6oaAioFQ9kO6EAydFzqa7fo7gsBSt8QgtBZgIYAOiXV5fdA5j4yX272
G4Nhg4q5IEbGGP4rZDD2nLLrV8y0PBQ2FA6jPm7aqX91+e6FuT8odlXZx6v+
2ViM9dEJk6nD7+zpcHwzB03j6e6dsRMof8jtDWURl4FKHQ71tpn6i7z2A/Rs
9kcnzyuBDajlkKh1oHJA0cuhP1h8QUmtAVVxONRFoCqBagXKH2G/qKTOA1UN
FL11JaRWZb+rSwasATAIwDmohahjQI2FKaplBah8MupNZVXLQNUDRR+UToQp
quo0UA3JqHVlVUuyMzQDQB9gT4YBqmUBaklIbShrmQeqBSj6BjAepqiqWaBa
k1H2qhd/2HE/MANAWzLgEtTSD9Q0UB1A0VdEf1HDZallAIAJ2ce6k8Vekdg+
iB2HfhNQB4C/7mMThqgHqBNAFZJR16QWAsYA6AWgBgB/Zc51AQoAjALQlwy4
CYPVCdSwPNyDANAxG38Z0y2pgGKHoIKEwG0BOgAYAGAYADqq5oH3YYhaQ9+z
9lAjQFUC5a9kuyO1tAHQC8BoMuADAVoAKMiDfBJi6Rinv9hvC4aoGYAuqCAh
dVcqIKATgHEA6HC4vxzzIwGaAGgHYCIZ8AkMVj1QbUBNAUVH2T31qdRCQCsA
0wDQaQp/Re4DqCUPVLPsWXPJgF9IBRTbBBUQkAbAX778mQB1ADQAsAAAnany
wK9giKqBqgdqESg6P+UvMH8ktdQAkAdgKRnwGwGqQofPbOuyjU3vjDXz/jcL
T2BEcpBXAx0+OLn0C7sKyKuCvJUD80o/5stCXiXknd0zoPF98QcoX0DZGYjN
QeyqmdqO+LAvpWcUkYWIM2aadY+OjXgmEenQAVh/eUW8of31kzsIEv3e3mV2
FmJvke1N4A29wSxy159HX4scpYpb+u0CH5Brtu26hX//1/4szP0+JPrDnhE1
gWUQUSsRWRNRYebcu7r/GWip9MgOR3H1ahHdbwfdr07tIbuj0vTQNf3V3GXc
I1JEfuua/i5NX7sF9kn1I/ox7ev5H898dOR7W1sXEQ==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 270.75}, {297.062, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"e675d00e-25bb-4f55-bc7c-498e707e612b"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(23\\). \\!\\(\\\"gyroelongated square cupola (J23)\\\"\\)\"\
\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"a0e562ae-fde4-4907-a94d-4a90ed28e499"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.04933
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0415833 1.12677 0 1.12677 [
[ 0 0 0 0 ]
[ 1 1.04933 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.04933 L
0 1.04933 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.25402 .78492 m .42994 .80053 L .28203 .62101 L closepath p .856 .555 .479 r
F P
0 g
s
.16854 .54838 m .28203 .62101 L .28574 .39189 L closepath p .943 .81 .683 r
F P
0 g
s
.25402 .78492 m .28203 .62101 L .16854 .54838 L closepath p .967 .691 .46 r
F P
0 g
s
.28203 .62101 m .42994 .80053 L p .44853 .23575 L .631 .554 .749 r
F P
0 g
s
.44853 .23575 m .28574 .39189 L .28203 .62101 L p .631 .554 .749 r
F P
0 g
s
.46826 .91272 m .42994 .80053 L .25402 .78492 L closepath p .753 .299 .174 r
F P
0 g
s
.46826 .91272 m .65416 .83647 L .42994 .80053 L closepath p .615 .215 .262 r
F P
0 g
s
.42994 .80053 m .65416 .83647 L p .44853 .23575 L .631 .554 .749 r
F P
0 g
s
.26021 .32326 m .28574 .39189 L .44853 .23575 L closepath p .799 .982 .897 r
F P
0 g
s
.16854 .54838 m .28574 .39189 L .26021 .32326 L closepath p .928 .967 .68 r
F P
0 g
s
.7036 .8578 m .65416 .83647 L .46826 .91272 L closepath p .115 0 0 r
F P
0 g
s
.7036 .8578 m .83422 .69712 L .65416 .83647 L closepath p 0 0 0 r
F P
0 g
s
.65416 .83647 m .83422 .69712 L p .44853 .23575 L .631 .554 .749 r
F P
0 g
s
.85309 .45135 m .68787 .25501 L .44853 .23575 L p .631 .554 .749 r
F P
0 g
s
.49355 .2404 m .44853 .23575 L .68787 .25501 L closepath p .066 0 0 r
F P
0 g
s
.83422 .69712 m .85309 .45135 L p .44853 .23575 L .631 .554 .749 r
F P
0 g
s
.26021 .32326 m .44853 .23575 L .49355 .2404 L closepath p 0 0 0 r
F P
0 g
s
.82217 .63302 m .83422 .69712 L .7036 .8578 L closepath p .873 .976 .673 r
F P
0 g
s
.85309 .45135 m .83422 .69712 L .82217 .63302 L closepath p .847 .744 .226 r
F P
0 g
s
.25402 .78492 m .16854 .54838 L .24126 .53837 L p 0 .155 .672 r
F P
0 g
s
.24126 .53837 m .33509 .80076 L .25402 .78492 L p 0 .155 .672 r
F P
0 g
s
.33509 .80076 m .46826 .91272 L .25402 .78492 L closepath p 0 .382 .817 r
F P
0 g
s
.24126 .53837 m .16854 .54838 L .26021 .32326 L closepath p 0 0 .311 r
F P
0 g
s
.73472 .36848 m .68787 .25501 L .85309 .45135 L closepath p .806 .327 0 r
F P
0 g
s
.49355 .2404 m .68787 .25501 L .73472 .36848 L closepath p .723 .25 .123 r
F P
0 g
s
.7036 .8578 m .46826 .91272 L .33509 .80076 L p .62 .782 .959 r
F P
0 g
s
.73472 .36848 m .85309 .45135 L .82217 .63302 L closepath p .974 .703 .454 r
F P
0 g
s
.26021 .32326 m .49355 .2404 L .49047 .45981 L p .517 .285 .501 r
F P
0 g
s
.49047 .45981 m .24126 .53837 L .26021 .32326 L p .517 .285 .501 r
F P
0 g
s
.33509 .80076 m .58536 .73561 L .7036 .8578 L p .62 .782 .959 r
F P
0 g
s
.58536 .73561 m .82217 .63302 L .7036 .8578 L closepath p .839 .834 .842 r
F P
0 g
s
.49047 .45981 m .49355 .2404 L .73472 .36848 L closepath p .726 .454 .516 r
F P
0 g
s
.73472 .36848 m .82217 .63302 L .58536 .73561 L p .803 .649 .692 r
F P
0 g
s
.58536 .73561 m .33509 .80076 L .24126 .53837 L p .614 .548 .757 r
F P
0 g
s
.58536 .73561 m .49047 .45981 L .73472 .36848 L p .803 .649 .692 r
F P
0 g
s
.24126 .53837 m .49047 .45981 L .58536 .73561 L p .614 .548 .757 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{277.875, 291.562},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnMlvG/cVx8fcSZESKcm0LVnWZkuy9sVaKJqiLMubVKeO3aRpAqOVXTdx
kK220aJNEbQ10AIt0EPPOfboY64+9uijrv0zclX5e+83T0PyO/QbjegGqAVw
fqPf8v28937LLOTM7b1nnzz6fO/Z44d7Qzee7H31yeOHT4euf/mklhU94Tgn
TtY+o0OO2T9wHHdDf0Wzsf+83X+7/3+6/7VJUmZe/JMzfmeSkybjr5zxW5OM
mIw/cMYzk/TQVIoePN95bvYOXj597kTMXuzgZel0r9n7NVd/YpJuLqrVrm1t
ffdDzbpMM6r1K272lUkKJiNJzaLeZrX/3Ib9pmGX2fuIG35hkrzJyICGcWk4
Zhomzd773PAzk5BSDjRMSsNJ09CW2j/nJyzxqUk6TUkeSKSt6ZRXOk0yE0Ds
Hot9LGI9QCwj9pAE7VkrHpkkZzKKoGG2PgK29NVdXhwt+6FJsibnDJDoFIkL
QOIuS+yZpMPknAUSeZEYJYmYSFiZd1nl5ybJmIxBoNItKiNY5Q6r3BeVYaDS
KypDLVU+FJXzQKUoKoNY5ces8oFJ0iZjHKicFpUBUonXqbghfoel3pfJOwmk
+urniKeXap/aZDXb+oG3y7I0jGhmzADZsyLbp5TdYVkaFwlTMg9kz4nsaSAb
BbK3WJY6h8K0BGSHwJwrKgE3GXBbACsAMCx2B5SlYNMgKQHZUZE9qZS9wbIU
FSq5DGQviGwPkI0B2essy0ZzkVnzjXQFAMYFUACAOABcCwa4KIC8ErDNAIoP
NawC2SmR7QSyCSB7VSM7I7I5pbUq2TmR7VBau8Wy1z1RdmoT0/EBLAggDQBJ
ALjiAVDDTSC7JLIppewmy14DdiPAMpjucYBKAVQ1GGpFfEkoARsM4PEY8wB2
/Pq5JIwYYKQBoxKYURZGVOlHcEZFGAxxEbWzmGb5yyzPEyHeIO8/ZKvCyALR
8tFEN802yhOtWXSdRbeaRswOnQvvKJazigDM6vuv71j/u6d+yFJ45LogiegC
aszah0/iUbeseck4gmiarAotRbS4l+Z6CoGrDLyidHXDbzmw6yRy1WxfvwYd
gyGLEoUcMCRqtnZZbMavMH4T4KNK/JzgCwAfA3FAx5Dl8IYcHg97gSFxiQPq
hkvh8ZMShyLAJ0Ec0CF6iQ2pAkNiSkPGxZA+P0PsoaUZvxgef17wAwCfBnFA
p4YLbMgGMCSuNGTEc+nVbEhG4tAm/KDEYRTgO0Ac0PXNPBtSURqCjjNnxZAx
YEhWachceEMOLxovAkNy0iHoCmQ2PP6UxGEa4DvtKuGJg1wSW98vA3hCCe8V
+ByAd4nvKPTT4fEFwS8CfKFhDBifbcDLAJpUQrukv1f8oJQ1Ex6VFf/WAKpH
wjsdHpUWVBmgegU1xah1gEopUYf3BastUZPhUTHx6gpAFT0DxB2V4wwtKaGb
+AYtVdoGyFMAOXYEJBFvKn0KCKBln7J2gwHWACANAGUBRA6+/fu/3SlaO5U3
uFvtga4JNKGEHo7ECUatAlQGoJYFlW43alFQ2aOiVgCqA6DmBJVXonr855cW
Oi3QnjcHnZAZVlRCuyWoFxm1rESNiX/9SlThqKhRQZ07KuoSQGUBakhQw+1G
DQjqghKVPyqqT1ATR0UtAVQOoE4JakqJ6vIM+/+8LJk0KLRXoHNKaKc/dBFA
OwE0L3Nt8c1Bc+LpShCo96xEi8oIal2JyjWiFpSolKAqSlQWhDIgNC7QzfDQ
eQDtAtCIQLeV0I5wUFOduuRGeN6c33Skq7RdAEDneQEBdEVFX1DW8ode2NIa
inA7Sq8yQaAOQc2hqIl3S8nj2yox4VmmRdK1HDXoVvqEAqlguG4NvSCOloY8
SrWkzSlp2vilQH9NBUNpw9gmFPIq6Y+aP+YAJnB3BaRpY9g+GvIt3pK2cMyR
PB6aNpKtaYuAVggRyahlemkNAxMhw4TzGJHamCqQS8fsZeT4kFovI3jkTP8v
aJdChzPmpR3Q0b+GcI3gP/fgo6X5+/bDpS2HjuRhvznHg9IMkdegVgBKu44R
yn5RFAhwlLDZoV0b7qFRyJcbGl9WQwTrmgBqBfv7+65TrToH8bSx2zJbyooY
XMRvdE8FQyHXquJaXINaC+FVRVAJg3KXvYMX9CFn28ItCzcVmFsCXO2oWZVe
TBM3Xse17KBwrdPL4nT2zcOXBJ4jeNQLN9DatumgZ78vWw8R8XnhdgJuNDBX
6++M9HQecGOW7nKd4FDk7KQ42w2gcX9oOUSEJwTaGx6qDe+YQE8CaMJsqRR9
uRswqCPSk6c0qMshQjkkXp0BqKQGpQ3gOUH1A1TK02vuImDPQCsh/OsX6FkA
TbcHekag58JDteEtyqAZBNCMP3QjhKc94umI0tMZf6jW04JAR5XQ2fDQLoFe
UI5e+8uWaojwdkifjimh8/5Qradp8XRCCbW/6NpUeoqgSYFOtgeKwhsT6JQS
uugP9Q9vzAuVHp3xW28bkPZXi1cCBfcQSfXN7U8d7VIw2k2zpawFvyNVA2DZ
H4AieNVsyZvIwbevvrel5urH4GaVXlnoltKrqkCTAIo6Dnm6EgxaFmgWQNEA
RdBVfygK74pACwCKpmIcQO1PzK8qPV2SQVMEULToIGjJH4o8nRVP+wB0/DVn
zC7UPjmwrfR0UqCDAIoOJMjTgNAxgZ4H0PNKT8v+UBTeYYFeBFB0coCg9hGS
a0pPBwQ6C6DDvldf9dBKMOgZgS4BKDr3QtANfygKb69A1wB0QBleC6VnvaI8
6ZtReUFVAAqdRSP/qoyipwMTvKg1o3KyEGwBVJ8SxQdjfoDS3jlyHuyTB2kA
TYl/1wEUXQVFANQ+Nrcr0LhA4wAaE+gugKKrPAS1DwPe9g6aB/vmY77lfrCf
sMdJi7oDUMUW92HsE53viE8dRpTavwek0LU3sto+GXlHZLNksQ3Qq+9J+h4A
9LSw1T7eeheEIqOUL7SQtw/l3qsPhUI0j2/u2WeH3xM9rZGdWM8+Q/1T4H7K
bO1rBZr1ci31Pmhp312g14H17KPjH/rZp1DONAwvx3HcB90/EjPTSrEUEPsR
i90XMa1lCSDGc5Jfe4CmJgFQBx/e8LYvB/hFS3veBRJRYI8VeyBiSaXY4b1+
+96DXwKX4moxR97C8EhMSShaGx/sqyQ+rl9jac/bLe46YzmPgb0xQLxltjFe
3Kjhp/WchurbUv1nXP0zqY7Uq1L9Plf/ApgVAQ3XpeEeN/yy/rjWUH1Zqj/i
6vz2lpiXI1FbkMocJH7Hi6/2pFT/nKs/k+rIcjrbpOXUvkHmN8gU+jWuleUK
/KYa94stW4kU+6Xm77kmveTG/U20LfqGi75ujK9jr2mo0p+5Er0Jh+pkpegv
XPSNZ6a4RX/joj96pF1nqfwfXP4naWrfxUPj8Qf0sqC3+/p958R/AQPHQwk=
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 276.875}, {290.562, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"9e3a4e61-1555-4ae7-ba75-e8c943ba14ee"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(24\\). \\!\\(\\\"gyroelongated pentagonal cupola \
(J24)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"b9cf5a69-4e72-4972-b466-a5a06f1295a5"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .95522
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0 1.05199 -0.00046359 1.05199 [
[ 0 0 0 0 ]
[ 1 .95522 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .95522 L
0 .95522 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.31329 .74085 m .43599 .69399 L .29428 .58121 L closepath p .836 .564 .527 r
F P
0 g
s
.49051 .81993 m .43599 .69399 L .31329 .74085 L closepath p .77 .426 .403 r
F P
0 g
s
.49051 .81993 m .61559 .7254 L .43599 .69399 L closepath p .687 .39 .466 r
F P
0 g
s
.43599 .69399 m .61559 .7254 L p .66885 .20756 L .647 .629 .818 r
F P
0 g
s
.29428 .58121 m .43599 .69399 L p .66885 .20756 L .647 .629 .818 r
F P
0 g
s
.67812 .80616 m .61559 .7254 L .49051 .81993 L closepath p .55 .194 .316 r
F P
0 g
s
.67812 .80616 m .77673 .66301 L .61559 .7254 L closepath p .459 .178 .399 r
F P
0 g
s
.61559 .7254 m .77673 .66301 L p .66885 .20756 L .647 .629 .818 r
F P
0 g
s
.20156 .59273 m .29428 .58121 L .23819 .42009 L closepath p .957 .764 .602 r
F P
0 g
s
.31329 .74085 m .29428 .58121 L .20156 .59273 L closepath p .929 .634 .463 r
F P
0 g
s
.23819 .42009 m .29428 .58121 L p .66885 .20756 L .647 .629 .818 r
F P
0 g
s
.81473 .69772 m .77673 .66301 L .67812 .80616 L closepath p .084 0 .119 r
F P
0 g
s
.81473 .69772 m .86067 .51991 L .77673 .66301 L closepath p 0 0 .258 r
F P
0 g
s
.77673 .66301 m .86067 .51991 L p .66885 .20756 L .647 .629 .818 r
F P
0 g
s
.19867 .42001 m .23819 .42009 L .29718 .26399 L closepath p .903 .964 .641 r
F P
0 g
s
.20156 .59273 m .23819 .42009 L .19867 .42001 L closepath p .977 .852 .459 r
F P
0 g
s
.29718 .26399 m .23819 .42009 L p .66885 .20756 L .647 .629 .818 r
F P
0 g
s
.49051 .81993 m .31329 .74085 L .33803 .6824 L p .357 .635 .959 r
F P
0 g
s
.33803 .6824 m .52951 .76806 L .49051 .81993 L p .357 .635 .959 r
F P
0 g
s
.52951 .76806 m .67812 .80616 L .49051 .81993 L closepath p .487 .811 1 r
F P
0 g
s
.33803 .6824 m .31329 .74085 L .20156 .59273 L closepath p .172 .412 .851 r
F P
0 g
s
.81473 .69772 m .67812 .80616 L .52951 .76806 L p .724 .828 .93 r
F P
0 g
s
.8425 .5235 m .86067 .51991 L .81473 .69772 L closepath p .854 .815 .332 r
F P
0 g
s
.86067 .51991 m .82374 .34315 L .66885 .20756 L p .647 .629 .818 r
F P
0 g
s
.8425 .5235 m .82374 .34315 L .86067 .51991 L closepath p .872 .624 .096 r
F P
0 g
s
.20156 .59273 m .19867 .42001 L .34193 .5053 L p .405 .436 .779 r
F P
0 g
s
.34193 .5053 m .33803 .6824 L .20156 .59273 L p .405 .436 .779 r
F P
0 g
s
.66885 .20756 m .46192 .17782 L .29718 .26399 L p .647 .629 .818 r
F P
0 g
s
.32016 .28637 m .29718 .26399 L .46192 .17782 L closepath p 0 0 0 r
F P
0 g
s
.19867 .42001 m .29718 .26399 L .32016 .28637 L closepath p 0 0 0 r
F P
0 g
s
.52951 .76806 m .66671 .65159 L .81473 .69772 L p .724 .828 .93 r
F P
0 g
s
.66671 .65159 m .8425 .5235 L .81473 .69772 L closepath p .811 .793 .835 r
F P
0 g
s
.73474 .34917 m .82374 .34315 L .8425 .5235 L closepath p .956 .662 .436 r
F P
0 g
s
.73474 .34917 m .66885 .20756 L .82374 .34315 L closepath p .865 .441 .209 r
F P
0 g
s
.52951 .76806 m .33803 .6824 L .34193 .5053 L p .636 .635 .832 r
F P
0 g
s
.66671 .65159 m .52951 .76806 L p .34193 .5053 L .636 .635 .832 r
F P
0 g
s
.52913 .25538 m .46192 .17782 L .66885 .20756 L closepath p .591 .123 .112 r
F P
0 g
s
.32016 .28637 m .46192 .17782 L .52913 .25538 L closepath p .492 .118 .259 r
F P
0 g
s
.34193 .5053 m .19867 .42001 L .32016 .28637 L closepath p .499 .416 .694 r
F P
0 g
s
.52913 .25538 m .66885 .20756 L .73474 .34917 L closepath p .772 .413 .376 r
F P
0 g
s
.73474 .34917 m .8425 .5235 L .66671 .65159 L p .766 .677 .764 r
F P
0 g
s
.66671 .65159 m .55218 .48052 L .73474 .34917 L p .766 .677 .764 r
F P
0 g
s
.34193 .5053 m .55218 .48052 L .66671 .65159 L p .636 .635 .832 r
F P
0 g
s
.32016 .28637 m .52913 .25538 L .55218 .48052 L p .63 .515 .703 r
F P
0 g
s
.55218 .48052 m .34193 .5053 L .32016 .28637 L p .63 .515 .703 r
F P
0 g
s
.55218 .48052 m .52913 .25538 L .73474 .34917 L closepath p .72 .581 .698 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{291.25, 278.188},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnMlz29Ydx2kS3EmRIkWJ2ilqsyRLlXfHlmVLXmTLu7zFTtKO7SZ1NGnr
2m7TibtlMp5Mp50cOrlkJkcfc8w1Rx991DV/Qo65qngLvgLB7yMfZHkmB2sG
DxTw8P18f7/3ADyABC7de/rww9/fe/rxg3u1lcf3Hj38+MGT2tk/PnYXxXZF
IrtG3am7FhGfNyMRr5B/Y6LQ/7z9/PbzG/z8XMziou99oxZ8IWZR2Rljm8+q
S+LT5tfVaiQqyqT493+q5udiFtv0KkZiXlVZPYnq/1HV/ylmjlgQJ9XzokyI
Rc9V9b+jeopUL0H9H6r6M8SRIdWrqP6pqv4ZqudI9SGY+ZOq/ldUL5Dqo1Bf
V9X/ImZy+yKpPo3qD1T1p6heJtXnRSkT8RtV/bGYye0rpPoeUcpF0c2X6/f1
2h+f7JVN+msl8UjMUmJJD5HYDYkEkfhASfwBEn1EYgwSaSnhQELLvK9UPhGz
tFgwQFRqUMlzlfeUikx7RiwYIioDUClKlXiDihfWXSX1EFIjRKoHbdFFDLmT
3HHeVVIfiVlWLKgTqS64qgaS7E7uf6rEKcEVvKlkfytmObFmjMgWIdtPZB0i
e0PJ3ofsJJHNQXbYUva6kr0H2Skim4JsncjGieyakpW7Ql6smSGyDmQnLGWv
KdkPIDtHZGMqjGbFBFG8qhRlD+0Qa2aFYlx9MkjI3qM3vCNmBbRHUh1nX3zx
ve50P3z9/aYeNcwQvRSxdEkp34ZyHcqZgLKepKFpS/mLSv4W5Acg3ynlY355
9z+3jKkAmwFpArjgA+Rx8EqqfagZkEAErBcwwKoC3ASgJAAJ1e2bASkAxggg
QwDnFeAGADlEMEEAaQBGTQC51i8rDzhJyM4S2SxkR4hsjvg+qwDXAfCNDcR/
slsfIKg8UDVL1BmFWkOKjhHZAmSHiGyeyJ72ycoIjhPZTnRJdvDsILKnlKw8
fORMsl1w22cpu+yTzXj5Xlc7vNBfIJRuUNgJpUAoS4pyFZSogOhKLkBCWPqr
QPWYUHKtBlwBIGYJ6AOgQgCdJJZFH0qOJ+KWqH6guixRxxXqMlAJS9QgUCWC
KhHUgkJdAippiRpGTy5aoo75UHJYl7JE1RFVB0GVCeqoQl0EKm2JGgMqb0LJ
tRpwAWmzBUwAkCWAConlsA8lY8lYonYDlbFEHVKoVaCylqhpoFIE1U1QBxXq
PFA5S9QeoIKXDgLSQ1AHfKik6kXNqKMENYcu7lii9ivUOaAKllHNI6rgNZWA
VAlqn0KtAFW0RO0Dyl3hsjyS6t1Sar9PW45NOi21D0A7KcTyqpl+/m49YH6v
ApwFoGQJOChK2V/KbWTjqlII33rZy+9eyuT0mgFn4NsWsF+WcQC8KSJPpi5I
Jk236WnId1nK70Xe40JWr3VlZQwVCoirk1+I/ulLkIAwVDdJ2ryCngK0J8z+
F1VHV0NUHLUMVDXMUSUQ33ag8vqm1xI6Q6BZAu1C++n+twRUnyVqCqksEEA5
CDgJQH+Yk00gFnuUrDMQ+hRaJoBSEHACsdgCxkksXQTVGUQtAjUYZrwRQFVM
KO+s8G1VHjfmfVC5Zij0eKqXoIpm1HGgapa78AiJbztQfS1pF98Q4hs0oeRa
DVgAoB5mmB2IaoigCkHUMaBGLVEDBDVsQgUS+CsfVK8Sl3gCbBvp1mXSKIF2
mKFHCdQ25l4Sc0j8O0j0uCW0B5FOElS+DUrf2Lq/Lk/pYRq4mwS7mzjItXMQ
hwNvioTo0hViY8pow4ENbWXO7yTmd+IOaN3SuP+yg0YZTTFLHGRDO3DgYNjS
QYlkY454yYT2kpBl435he17auie115iXxg7SwkgSSbHFd5Ck7DMmxdpIGkZs
BzN5YmS/fevMmr1kSeuw0SpztXXP8zDxkg7tJYe82DrIkLwcIV5Sob10wIvt
BcPWnetjO+KgSFrG9qIxSfKyQFwlQ7vqRF7YhSA7siSIl0XiRV01xxu8eDvT
HrOhMgyxS3ZmyEFDLe2cjQppLXbXhbVWlGRomViLb89aNzJkbygiLvlNyWnq
Ly3gVcBtbneJSM4ZIw/D7SPtYbxjKf2tEq7TIuMzZng/gmbIw6KUmhd2DjkI
JLudPSdKedfW2XzxYiPQ11jkse3ZGCZpd4ihcRjqIIbO75yhGvLCvrzoh42q
pY3o9mzUYYN9XVMWpbzHN2JsnrjfhpwisjlduK6v/9yxtNHGmB4d+ppH7Zpe
GqaNadgR/rgoYyoNHvKAEek0IMPTJkUpRY5b9Po24RwlgAlRLtv7j21D3usq
LzYk56RFPzVFMvmLRS2ZUPoLAhcgV06Fk2VNI08vjpbdWHs93wyw4kvRq1cb
XopeF3WKoM74uplAaVyM0EJ2s9OEtowGiQmSdxDcWMMUkUeQ1wYtBTIoYFFZ
xvxI2oAh4zxD8IuIM/5moGcJdIHEHG+R5pnXRx4jyMTOIVcI8ghSm9450DkC
OkRie8PIgwSZkaXTgIxg3GpLO09o+5DJXIuwQoJWCWiehLWDyAsEOYvYCm8W
tIfEVuBNNhuOdpHQpgmtuCO0S4Q2iSSW3xhjgkRUatFkIZGXCXIUYVV4WHPh
GFcIY4SEZUHTt9LtGDXC6LaOaGr9R5nQcUK7RmiDyFpvS4b64sTxM8Q0SjBr
BNNPguoNnEOFbX0XfyFA08S6Ja3PSGsKTwOPB1LoThH9Q8pm5HWC7EEeB7YB
EmVjjxwk3BuEWyGhtnawaHKgvyW045YR7zBpRv0V3wmCigHVT1A3CaqThNgC
epJAHZLhKsHfIvgCwdfC4eOI2RaaR3pHzaglgkqQSCsEeptAsyTSOsHrb/iX
TXh9EG6GvkugaQJlMWvoKQJNkphLlvgkEj0RDppCpAx1h6DiJNIW0NMEmiaR
Fgj+LsFHEemUgPp/A3XGhNJDLROA/4ZrJih/lshnSCQ5AnovEAkAgaS1QGUR
iREgj5XTZtkVIpsjEaTbtMUPGz+JSdzX3/hJLppEsvy/l2QofXHUuq95gAQA
Y0HAeQLIA5Bss994gAwAIzaAAkmW0+aw5KE6gBoKolZNKFmJAW4RQAmAPgD0
D2UvEEBRH9N9schJ9Bcpr4/0nmiPjWgnXLsrtFrTydcz3A/trqD2RaJdgjYT
G4ZYZ1DsUkuxNSI2CrEO396k/7xWu2yKX49Z7r74Wc4jkYYBsseYBCMbjlH0
dULBcCd3T3RLuWgVTTcLQMoMuNKml3uAuCil7AqJZR4oB8nXPwe/atpPA4AU
AKcJ4AAAkZh3F1AKa8q1Nkc2j5IBZYlQjohSrj1kls0S2TxkF02ygfRrwFqb
c4oHKKB9j1oC9DMG103n/ACgjAgOoQO9g3ToZyNutBm1eGIViO23dBsS0APA
vCVAP6lykwDiBNAHwKwlQD91c4sAHAIYQINOEcBhZP6Ekr1NZKNEtgbfEybZ
gO+QgDoA9cZ+EpBV1w/6qeamK+BJqAy3jF4/KXcnYC4i0+ZJDFhGqsXkM9ty
wxm0QdVSQj8Q+D4k9sBFxVJCP6oon6mPwYX+fYeX0a0DkRpHqSeio43VOyyJ
WuIBkchaSuhnRT8kqUsSiUOwrx/v/R2J1jFtGGBrifVGtu5TejyEnAW21Q8v
fxLYdgsakQe85g3VeVe9r0BfbGxt+OzVppiUhXnEqh8Hf4RYx8k2cVE6ykoz
Vks8AbZOJDKQmCAS+ln3P0NimEgUIFGDff2mgE9hf4BsWMaG/YStJT4Du5dI
VEWpR5TNEur4GfkbJLqJxABclIiEOpSpd3zo+8PNEiOQyCED+m0O/0IGimTD
cWyYJGwtsfU+lDyRmIZElEjo11M8h0SGSEyJUv6gQr+c40tUT5kSJh/d+khV
/zdidEzdQ75/4Imq/l852xrW6qFtHLKfq3pfiZl83uwrtUCG9At6c83bz6//
ObLr/3YrQ7s=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 290.25}, {277.188, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"dd31e3ed-1595-4d1f-9b7f-60b3e5211aa7"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(25\\). \\!\\(\\\"gyroelongated pentagonal rotunda (J25)\\\"\
\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"ededfee4-df21-44d7-ae1d-b1a180166e7d"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.08419
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0561405 1.16543 -1.11022e-16 1.16543 [
[ 0 0 0 0 ]
[ 1 1.08419 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.08419 L
0 1.08419 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.54713 .58368 m .45893 .43795 L .37903 .58889 L closepath p .748 .608 .703 r
F P
0 g
s
.54713 .58368 m .6303 .43606 L .45893 .43795 L closepath p .69 .59 .738 r
F P
0 g
s
.70895 .58717 m .6303 .43606 L .54713 .58368 L closepath p .626 .509 .7 r
F P
0 g
s
.4715 .73475 m .54713 .58368 L .37903 .58889 L closepath p .747 .592 .684 r
F P
0 g
s
.54713 .58368 m .4715 .73475 L .58578 .84157 L p .624 .445 .62 r
F P
0 g
s
.70895 .58717 m .54713 .58368 L p .58578 .84157 L .624 .445 .62 r
F P
0 g
s
.37903 .58889 m .45893 .43795 L .30354 .4414 L closepath p .806 .684 .73 r
F P
0 g
s
.70895 .58717 m .77265 .43627 L .6303 .43606 L closepath p .539 .47 .727 r
F P
0 g
s
.81826 .59912 m .77265 .43627 L .70895 .58717 L closepath p .404 .32 .647 r
F P
0 g
s
.81826 .59912 m .83748 .43881 L .77265 .43627 L closepath p .101 .128 .602 r
F P
0 g
s
.45893 .43795 m .6303 .43606 L p .78078 .44323 L .036 0 0 r
F P
0 g
s
.30354 .4414 m .45893 .43795 L p .78078 .44323 L .036 0 0 r
F P
0 g
s
.6303 .43606 m .77265 .43627 L p .78078 .44323 L .036 0 0 r
F P
0 g
s
.40876 .85169 m .4715 .73475 L .37903 .58889 L p .854 .609 .567 r
F P
0 g
s
.58578 .84157 m .4715 .73475 L .40876 .85169 L closepath p .713 .428 .492 r
F P
0 g
s
.37903 .58889 m .30354 .4414 L .24995 .60181 L closepath p .871 .701 .669 r
F P
0 g
s
.37903 .58889 m .24995 .60181 L p .40876 .85169 L .854 .609 .567 r
F P
0 g
s
.58578 .84157 m .73873 .74815 L .70895 .58717 L p .624 .445 .62 r
F P
0 g
s
.73873 .74815 m .81826 .59912 L .70895 .58717 L closepath p .407 .299 .619 r
F P
0 g
s
.24995 .60181 m .30354 .4414 L .21148 .44558 L closepath p .952 .809 .666 r
F P
0 g
s
.21148 .44558 m .30354 .4414 L p .78078 .44323 L .036 0 0 r
F P
0 g
s
.68925 .87213 m .73873 .74815 L .58578 .84157 L closepath p .434 .132 .352 r
F P
0 g
s
.58578 .84157 m .40876 .85169 L p .56549 .90574 L .402 0 0 r
F P
0 g
s
.56549 .90574 m .68925 .87213 L .58578 .84157 L p .402 0 0 r
F P
0 g
s
.81826 .59912 m .73873 .74815 L .68925 .87213 L p 0 0 0 r
F P
0 g
s
.77265 .43627 m .83748 .43881 L .78078 .44323 L p .036 0 0 r
F P
0 g
s
.40876 .85169 m .2643 .77116 L .38139 .89088 L closepath p .784 .292 .039 r
F P
0 g
s
.24995 .60181 m .2643 .77116 L .40876 .85169 L p .854 .609 .567 r
F P
0 g
s
.40876 .85169 m .38139 .89088 L .56549 .90574 L p .402 0 0 r
F P
0 g
s
.24995 .60181 m .21148 .44558 L .20878 .61953 L closepath p .99 .764 .379 r
F P
0 g
s
.2643 .77116 m .24995 .60181 L .20878 .61953 L closepath p .983 .716 .334 r
F P
0 g
s
.82638 .61702 m .81826 .59912 L p .68925 .87213 L 0 0 0 r
F P
0 g
s
.82638 .61702 m .83748 .43881 L .81826 .59912 L closepath p 0 0 .057 r
F P
0 g
s
.38139 .89088 m .2643 .77116 L .20878 .61953 L p .136 .319 .784 r
F P
0 g
s
.20878 .61953 m .21148 .44558 L .23062 .4491 L closepath p 0 0 .178 r
F P
0 g
s
.23062 .4491 m .21148 .44558 L p .78078 .44323 L .036 0 0 r
F P
0 g
s
.68925 .87213 m .74051 .79938 L .82638 .61702 L p 0 0 0 r
F P
0 g
s
.56549 .90574 m .74051 .79938 L .68925 .87213 L closepath p .697 .977 .911 r
F P
0 g
s
.82638 .61702 m .78078 .44323 L .83748 .43881 L closepath p .998 .783 .454 r
F P
0 g
s
.38139 .89088 m .40932 .81718 L .56549 .90574 L closepath p .467 .706 .972 r
F P
0 g
s
.29413 .63585 m .40932 .81718 L .38139 .89088 L p .136 .319 .784 r
F P
0 g
s
.20878 .61953 m .29413 .63585 L p .38139 .89088 L .136 .319 .784 r
F P
0 g
s
.20878 .61953 m .23062 .4491 L .29413 .63585 L closepath p .191 .21 .65 r
F P
0 g
s
.74051 .79938 m .70459 .63445 L .82638 .61702 L closepath p .924 .825 .73 r
F P
0 g
s
.70459 .63445 m .78078 .44323 L .82638 .61702 L closepath p .926 .797 .698 r
F P
0 g
s
.70459 .63445 m .74051 .79938 L .56549 .90574 L p .748 .73 .835 r
F P
0 g
s
.49089 .64229 m .70459 .63445 L p .56549 .90574 L .748 .73 .835 r
F P
0 g
s
.56549 .90574 m .40932 .81718 L .49089 .64229 L p .748 .73 .835 r
F P
0 g
s
.29413 .63585 m .23062 .4491 L .37956 .45018 L closepath p .466 .375 .668 r
F P
0 g
s
.37956 .45018 m .23062 .4491 L p .78078 .44323 L .036 0 0 r
F P
0 g
s
.70459 .63445 m .60153 .44783 L .78078 .44323 L closepath p .836 .676 .684 r
F P
0 g
s
.78078 .44323 m .60153 .44783 L .37956 .45018 L p .036 0 0 r
F P
0 g
s
.40932 .81718 m .29413 .63585 L .49089 .64229 L closepath p .593 .542 .767 r
F P
0 g
s
.29413 .63585 m .37956 .45018 L .49089 .64229 L closepath p .596 .523 .743 r
F P
0 g
s
.49089 .64229 m .60153 .44783 L .70459 .63445 L closepath p .76 .654 .745 r
F P
0 g
s
.49089 .64229 m .37956 .45018 L .60153 .44783 L closepath p .686 .558 .704 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{273.375, 296.375},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm0lzE0ccRxtptFu7ZEuWZMs2xhsYmx0CGBICJCELZN/jkARIVRIKk1OO
uaQq1+SWY44cffUxR458Db6CMt09ao/EG9yykIAqU9U9zWjm995/lh55DG+v
37/9/U/r9+/cXG9eubd+9/admxvNy7/cc1eF9wmxL++2+aaQ45YQ7U79KcjO
+8veeG+8N94b742f2/i2XNyX8/NxveKaXNTlivutuBAJOTqoP1qTi7RccVd+
1JSjeKv1cEOEW2Z+dzdc1Jufloua/GRVbn5SjiqtRw8etDd/uKF2Tu8Q4X0k
xIJsIqR6vW7jsweyiaLsV+WqidaDPze9T12Uwh2SvdxNZHeBUjvOKYz+1AUo
yCkf6r9/t+RSLPvqe/xwU63L7BZ6wAf953cNOP08oLrSiIG2m1DXhoQ7Bu4J
7MiP+PleE67H6uq/XSd3WvURY9RucvsTXYfDbW6G7DsvgUXVRzos24dqx+uv
V9WwX9XdTvadl85R0A6D9nzXmXWbmyf7zlso9exKmIISwlDCESghAiXMWZaQ
hBKWdi4hDCU0oQQHSlh9+UtYgRJiUMIslOBACYlnV8IklBCFEg6/GCU4UMKE
ZQnLUEICSpiBEiKDLaEBJcShhINQQnKQJThdJbgpdvYJsF8C+xTYT4N9FOzp
W83T7aNgXwP7JNgvgv0I2E+BfWyo9imwXwD7NNg3h2o/DvYjYD8P9lmwnwD7
BNjHeraPgX0V7NNgP/dC2lfAPgv2s2CfB/vGwOzjYD/2jO3rYJ8cmP0o2OfB
fgbsi2BfA/sU2Ed3svf/vCF/rNy9+jSol0B9HNRH+ldPgnoZ1AugPgXqZVCv
Dk+9BOpFUG+C+qilehrUHVD33jOc4svd1r4E9pNgPwb2Y2CfeSb2KbAvgP0o
2DfAvvJS21fBvgz22YHZ58G+AvY1sK+BfQnsc2Af3sm+85ZNg3rOUn0c1Oug
XgT1/GDUs6A+DupVUG+AeuHFU6+A+sTw1DOgngb1OqiPgfokqOdAvQjqocGo
N0C9DOrNl1d9CtQzoF7qXz0L6ilQnwT1IqhPW6qXvXcHPnXVpNPyYHQLoLsf
dNN96KqX6HmQTIDkFEjmLSVHQHJ0WJI5kDwAkqlBSMZBcgYksyA5B5IJkKx4
7xf9kuRXAL8Y+O0HvzT4zffkt33jy4N32EYuCnKzlnILIBcftNwBkEuB3CLI
xUCuaiNXBDkH5OYs5ZZALgpy47JXBrtWmgelBCgdBKUIKNVQydvIVVJadDLD
ILcIcjGQWwY5Z7dydORCQ5Cr+68070F8qH/NJdCMgOYKaIaCrjmn+xg62/do
xK+kmp6q7TRWvd+r+TRUkxnqoRqTw3Dr8aOtpxwrp9W88TAqP9bfzZ0OJ+X+
pE4YdI6o3unQUV8r2iYJMPGmffVOJWFMut99yopWLDWOdp0cuW/cOOR2cPA+
ckVkc78KtJX074D8RqtKKOIXUk1ufKLrWHhXhVIYBYXDwQoF2efkqu75WoLU
3JyXw0Zw7BmILaper/vrz/9kc+dXt1f/rqT71xFCXR4uqiGHmdbW1qP2tf5o
S4HrgF8JxpcAP2vwS/0DygBYUb1e5wIU5BSgxgG1qlGvWNZyGFCn+0dRVcuW
qCqgjvSGOgSoM72hzlqiDlqiKoA6GowaBdQioM4CaiwYdc6yqgGhqKoFSxRN
R8eCUWOAmgPUud5Q5y2rItR5QJUAdTwYRVXNAmrt+aKKgDqhUWuWqBlAXegf
VQHUtCWqAKiTGnXBsqopQL0KqHxvKKqqaYmibxqnekNNAuq13lAXLVETlqgs
oE4Ho6qAagDqEqAy/aPqgHodUGlA6S8V7qm1Q9UGgxoHVBVQlwE1AqhXho56
zRI1BqirgEoC6uzQUZcsUWVAvQEo+tnoXDCqBqjS8FBFQL0FqBig9DPRvTfs
UIXBoOqAygHqGqCigFobOuqyJSo7PFQGUO8AygHUhWBUA1Dp/lFXLFEpQL0L
KHrRcnHoqKuWqASgrqs+4kep5v7dmxrcCcXuUthl/JuW8TGIv6F6pyNetG9J
d86wS472nHzNciaLQPL7XSdXHgp9C4i3LWMdiP1A9urlrRf2jmVYOMhRhenL
2L0inwyjZ19oh4I3W49VwV7se4GxEX+sanK3bS93Jy9LRXh51yFPf3NzOvLc
8Q0TFZJJXXeWl3cjMG+7bClzvatEGfiU2PeDYpXPu8bMgQh9s7un+8mIiq/S
jc2WWgqhH50qLwJ5+u4WH0Ke/4dxmec2+Q59s9V1gq9A9aSu73TxEaDKgArL
PqTvunYFseDYjyG2BLERE/sqeEcBoOcR8QkACgCIG8B54x2HWD2JiE8hNg+x
SRN7xsQmg2M/g9gsxKbhhJ6AA5MAlJ6vxOeAygAqYyo4ZipIQayeucQXEJuG
2JyJXTGx6eDYLyE2BbFFE3sIDscIAPQkKb4CQBIAZQNYMN4ZiNWTpPgaYuMQ
W4ETOgsV0CHS86f4BlAxQFVNBTOmglxw7DrERiG2ZmInTWweYvXsLL6FWAdi
J0xsHQ6HOvJqlZ4KxU2IDUNs08RWOi8/NRHrSUN8pxYRf5hq8uExCyesBIZJ
Y6jvDPG9XJDSfqNUMEoJo6QvJPGDXIRg7wNm70znvKv21odF3JIL9butWbN5
Kug5oFbd0jv+LBfq/z2Pmx1jhhM2nB/15r+ZzbNwmEL0fUCoZ7rwUEL8YSK2
nyjuUGZ0bH5Pb/63qexXvUJdbC/Q/zLfG79cY7Hvfx4vhSE=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.375}, {295.375, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"ac8246c8-f1c1-4790-a482-a84a2af3e9df"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(26\\). \\!\\(\\\"gyrobifastigium (J26)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"fd0ce266-2ebc-4ab9-89da-91ab8f35d3cc"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.22148
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.116274 1.30993 0 1.30993 [
[ 0 0 0 0 ]
[ 1 1.22148 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.22148 L
0 1.22148 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.52762 1.19624 m .41539 .73102 L .8482 .59464 L p .614 .493 .692 r
F P
0 g
s
.26849 .97959 m .41539 .73102 L .52762 1.19624 L closepath p .951 .687 .501 r
F P
0 g
s
.8482 .59464 m .44809 .29034 L .41539 .73102 L closepath p .645 .607 .796 r
F P
0 g
s
.26849 .97959 m .41539 .73102 L .44809 .29034 L p .982 .887 .537 r
F P
0 g
s
.8482 .59464 m .97819 1.08498 L .52762 1.19624 L p .614 .493 .692 r
F P
0 g
s
.52762 1.19624 m .97819 1.08498 L .75868 .83912 L p .635 .772 .946 r
F P
0 g
s
.75868 .83912 m .26849 .97959 L .52762 1.19624 L p .635 .772 .946 r
F P
0 g
s
.75868 .83912 m .97819 1.08498 L .8482 .59464 L closepath p .976 .679 .382 r
F P
0 g
s
.44809 .29034 m .2938 .49037 L .26849 .97959 L p .982 .887 .537 r
F P
0 g
s
.8482 .59464 m .75868 .83912 L .2938 .49037 L p .838 .46 .335 r
F P
0 g
s
.2938 .49037 m .44809 .29034 L .8482 .59464 L p .838 .46 .335 r
F P
0 g
s
.2938 .49037 m .75868 .83912 L .26849 .97959 L closepath p .631 .611 .812 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{257.562, 314.562},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm1lTFFcYhls2AdlEREB2EYIGCLjgAhEVWcUFRECQbVgVZTWiKUxMIqnE
pJLKnpSXXuZveJnL/BVvyUyf45cBn9M5XT2VK62anmb6+Z7zft09zkwvPRNr
c9P3JtbmQxOl7SsTS3PzodXStsWV8EvxuxxnV+RxptSJzG85zpuJ+y8uMtF/
vJt/N/9u/n+dX1Hz4bfjt1EvOPGRV7b+Xu1136nfqEXL7lOiLHrziCDPFbK0
ozr8CP8VnrpDfKWgRYCSNCr/L4SJTTO+G/BnCr8PeIpE0NA9gNLA+ZnCFwDP
APypwu8CniURPKBscD5R+B3AcwDfUPg84LkSQUNzAOWD87EZLwD8kcJnAS8E
fF3hM4AXS2INTQNUBs4HZrwc8DWFTwFeIRE0FAKoCpzq3eJMAl4N+JIZPyIR
NDQBUA041V7ujANeB7jay50xwOslgoZGAToOznkzfgJwtYs5twFvlAgaGgHo
DDjVTuAMA94E+JQZb5YIGroFUAs41QZzhgC/ALjaYM4g4K0SwQNqA6dapc4A
4B2Aq5Xr3AS8SyJoqB+gHnAOmfErgKvOnBuAXwNcdeb0Ad4riTXUC1A/ONXY
znXABwDvM+ODEkFD1wAaBqfinKuA3wZcceH1+TY+JhE8oAlwXlZ4D+AhwLsV
fhnwaYmgIffJfWEeTB1RkF708sVfkWfE26PxBMF1ybyM7cGFH8Y0rZwm/Aj/
pabRvc6C4qJZkWBSuHk8ChM9Q7eYC3dbhj5nViR7hvYoTPEM3aQKu6AwzTL0
WbMi3TO0R2GGZ+hT5sIsy9CNZsVeS8VJsyJb4s9Jtx54juWIx8yK/ZaKBrMi
F0J74HmWI9aZFfmWilqzogBCe+CFliMeNSuKLBVHzIpiCO2Bl1qOWGVWlFkq
Ks2K8u2hdxQeVoWdUHgYxp72p6gERUhWXZW5sEpCb/v4/HPS/WSrNBdWw4jj
/hRHQDHqThNEoTUelqPSgf/aGkigvvgkbrO8acZjC9SCamjH+gg/nDh3un3D
HjJr66S7GMjqIWM/aBNAW27WNoD2RnDtMWk9BrITkPEaaBP9aU+C9ipok0Bb
ZtY2SusxkJ2GjN2g3e1Pe0YyxkDWBBk7QJsM2lKl7QDth6BtA22KP+05aT0G
svOQ8QJoU/1pL4D2PGj3gLbErL0orcdAdgkyNoM2zZ+2DbRNwbXt0jrJ0kFW
bJZ1QsZToM3wp+0CbWNwbbe0fhJkWSArMst6IOOx4NoroG0Irr0qrdeDbK8/
2XXIWAvabNAWmrW9oK0Jru2T1t8H2T6zrB1kNyFjdXDtAGirQLsftAfN2kFp
PQayW5CxIrh2GLTloM31px2R1kl2AGQFZtkoZCwJrh0DbRFo8/xpx6X1GMgm
IWM+aAtAm2/WhkCbF1w7Ja3HQDYDGXNAWwjaPLN2FrT7gmvnpPUYyO5AxkzQ
FvnT3gVtBmiLQXvArF2Q1n3K2kC2CBlTQVviT7sE2pTg2mVpPRlkZSDLNctW
IWNicO0aaBOCax9I6/EgK/cne+hOE6IzRuYPg2W/2bK+o1PHv8IN4r5U6a9w
TQrjtl6+er1jdVCKnP/YW921kQSyCn+ye5JsD8gO+ZPNS7JMkNFW95DNSLIc
S9k+s2xSkuWBjHZuD9mYJCsCWak/2bAkKwNZiT/ZYNQOaifLVrJLIOuXZNXB
Zb2SrBZk9DHgIbsiyRpARp97HrJuSdZoKdtrlrVLsrMgow96D1mrJGsB2UF/
shZJ1goy+vblIWuWZJ2Wsiyz7LQk6wFZvj/ZSUl2PbisQZL1W8oyzbI6SXYL
ZPTN30N2VJKNgox+6njI3pNkIZDRbzsPWYUkm7WUZZhlZZJsAWT0Y9ZDViTJ
lkCW409WIMkegIyOMGhZK8gOSLJ1y2TpZlmOJNuwTOYhy5JkT0FGB3s8ZOmS
bBNkdJzLQ5Yiyb62lKWZZUmS7DuQ0eE8D1mcJPsRZJn2svCz436H/g08dHg1
2uMWvrAs3KMKt32lePXaLf7dn6LdUkHHsrWiI4AiVSk6LRV0eF4rumQl/gGF
dBZCF16GsWkD0skWregJoEhRiiuWCjqTpBVXLRV0wkwrrslK9FnYC2P/YqlI
Voo+SwWdRtSKG5YKOluqFf2WCjoprBU3ZSX+alm4WxUOwtg/g4LOc2vFkKUi
3qy4ZamgCw20YhgUP1mmSFKKEVmJtmPrwlEYW/2/ztdv6I025rNMdzpuLHvr
mhNdMWGs+LfFqAEmZT24KzAuyjQFph8E0qtjGqDvI9P4KGgGoOeRqduEfovP
ArQpkP7knwPoqUD6F8q89LQhi/TBmLtQ/5FA+vjyAkDLAulzbfcAWhBIX3dw
H6BZgfSlPYsSNySLqtWiZagfEahGQSsADQhUr6BVgHoFOqGgNYB6BDqtoAcS
t1MWNatFD6H+ouwM5xW0DtCHYtJXGT8C6LRA+sLoxwAdF0hftv2xxP1AFumL
yjegvlogffH7E4AqBNIX6X8CUIlA+j6BTwEqEEi909XdUW7cXFmk77b4HOoz
BdJ3hXwBUKpA+u6VZwAlCqTvstkEyF2ubwT6UpLqm5O21AuB551d/wCPM0yF
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 256.562}, {313.562, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"e2d4cf20-6d77-4886-8481-14c79448ba80"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(27\\). \\!\\(\\\"triangular orthobicupola \
(J27)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"951468e3-1c8c-4c82-98a3-f22a97c74896"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.04632
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0401125 1.1306 4.44089e-16 1.1306 [
[ 0 0 0 0 ]
[ 1 1.04632 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.04632 L
0 1.04632 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.69065 .8599 m .82587 .58614 L .58569 .71723 L closepath p .424 .188 .451 r
F P
0 g
s
.58569 .71723 m .29486 .70497 L .36562 .85325 L p .664 .233 .213 r
F P
0 g
s
.36562 .85325 m .69065 .8599 L .58569 .71723 L p .664 .233 .213 r
F P
0 g
s
.60644 .41931 m .58569 .71723 L .82587 .58614 L closepath p .568 .459 .689 r
F P
0 g
s
.29486 .70497 m .58569 .71723 L .60644 .41931 L p .77 .634 .711 r
F P
0 g
s
.54837 .23212 m .60644 .41931 L .82587 .58614 L p .189 .413 .848 r
F P
0 g
s
.60644 .41931 m .31607 .39365 L .29486 .70497 L p .77 .634 .711 r
F P
0 g
s
.31607 .39365 m .60644 .41931 L .54837 .23212 L closepath p .701 .776 .91 r
F P
0 g
s
.36562 .85325 m .29486 .70497 L .19408 .54522 L closepath p .699 .291 0 r
F P
0 g
s
.31607 .39365 m .19408 .54522 L .29486 .70497 L closepath p .986 .83 .603 r
F P
0 g
s
.44791 .37432 m .19408 .54522 L .31607 .39365 L p 0 0 0 r
F P
0 g
s
.31607 .39365 m .54837 .23212 L .44791 .37432 L p 0 0 0 r
F P
0 g
s
.82587 .58614 m .79216 .40636 L .54837 .23212 L p .189 .413 .848 r
F P
0 g
s
.79216 .40636 m .82587 .58614 L .69065 .8599 L p .973 .924 .673 r
F P
0 g
s
.54837 .23212 m .79216 .40636 L .44791 .37432 L closepath p .719 .316 .284 r
F P
0 g
s
.69065 .8599 m .63591 .70707 L .79216 .40636 L p .973 .924 .673 r
F P
0 g
s
.69065 .8599 m .36562 .85325 L .63591 .70707 L closepath p .664 .836 .966 r
F P
0 g
s
.19408 .54522 m .44791 .37432 L .63591 .70707 L p .569 .512 .752 r
F P
0 g
s
.63591 .70707 m .36562 .85325 L .19408 .54522 L p .569 .512 .752 r
F P
0 g
s
.63591 .70707 m .44791 .37432 L .79216 .40636 L closepath p .787 .592 .637 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{278.25, 291.125},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2llTHFUUB/AJzLAPWwj7NiFIFgkhwADDvg4T1rCEYCAJxmiixsQsbqWl
ZSwtLS21TOkX8MnKV/DRRx/9Gj76inPOuRxnJv8LtzNMytKkir6TPuf87mW6
h77Tfee379+4fmv7/s1r283Ru9t3bty8dq95+vbd+K7sQz7focr4T0uzj17v
+Hy7G/5XRRvzn+evn7/+n77+iZps+lx8KDt+1B2+7J1fl8/tmE+M7wOJP6LG
v7Mb9mXv6EcqHn5Pkn7QpAAlZdErE/qemgDtyAP1DyTpO2pyKJKv9Sb0rYaK
QP1dSfqGmlyKFIOktyXpa2ryKFKinZjQV9Tk045yUP+WJH2pSRVab0JfUFNA
O6pA/RuS9Dk1hRSpBkmvS9Jn1BRRpFY7MaGHGmoA9a9J0qfUBCnSqPUm9Ak1
xbQjBOpfkaSPNakFJF2TpI+oKaFIq3ZiQnxWldKONlB/VZL41CqjyAmtN6H3
NfQiqN+SpHepOUyRdpC0KUnvaFKHdmJCDzR0FtRvSNI9aioo0q31JsRn3RHa
EQb1FyTpDjWVFOkDSWuSdFuTItqJCd2ippp2DIL6ZUl6U5OGtd6E+KypoR1j
oH5Rkm5q0gRIWpCkG9TUUmRSOzGhV6mpox1RUD8rSdc1Kab1JsRnTYPseLJ+
RpJe1qR5kBSVJD5/GimyqJ2Y0BVqWmz1k5K0pfXx+KOHv3HO749+9vlpW6hv
UZa8D1yzqTVcYuB4OhcGact/FAZAt2NCXNLfLQCIKu27ExCjQmzoKHIBEVKi
TYdvCi9q3wWg8JQOvwn0PSTEuhKFgOjRvo9o34mFfE4Ug8IR7TsI+o4IcUGJ
EkDEtG903eoXYk3P7HJArNA2IB9OTl/V9MMgfZ23yf30SeEKNfwxqwSFa7TN
SuiH0/lTXQ3SV1PTlzW9xvZb+PwyrD8f80/8tXkHzlNTRTvqQe3ynrVLWtsA
as/zNpBUa+p3Af4jxH/9mgGwtD+woEAIAIuJB0SKfVm8TT5IvQkY/8E/BrAF
gGUDLCzYvGKtAJsHmN+OzVHD16vjAJvzhs0qdhJg5wAWsGPnqCnf4cv1wWB8
7T8NsBmA5dixGDU8ETkDsCjA8gDWI9iMYmcBNu0N46sSz566ATYFsHw7Nq1Y
GGCTT4EF5RP+JDYOsAI7NqVYxBErBFi3YHzBLZLrx5PYKMCK7NiEYsPpY+PU
8HVmDGDDAAvug/F1bzx9jGcY/H1lCmCDACu2Y6OKRQE2ALASgHUJNkINfxOL
ASwCsFI7NqzYLMD6vWFDis0BrA9gZftg/NV1EWC93rBBxZYAFgZYuR0boIav
rCu2aVsKdhhgZwWLKLYKsG6AVdgxvrDzhGMdYF1PgXFkA2CdADtix3gqx9Ou
S+ljvYptAawDYFUA6xRMrngSom8uBB4A2wPYK4BtB2z1M2fRm4DYU4Ct8cZe
BewJwNba2V7H0SK2DrBnEs5RB7YNsPXPnO13ZFsB2/DM2Ygj2wLYJsB22Fl0
gh31xg44jjYE2GZvLBptszd20HG0TY6sOWRDjmxjZtgGR9b8TRh2ZOszw9Y5
suYKNuLI1qbPohOs2pE1E55Rx9F6ZMcc2UpHtjuj7LgjW+HI9mSUnXBkyx3Z
sJ1FJ1iZN3bScbSljqy5JzXlyJZkhi12ZM1tzmlHNpgZtgiwITsbdWQLHNl+
O4tOsHxv7IzjaPMc2YidRaPN9cbGHEeb48jKvEPuEDqwgcywfkdWpjPmGdf+
bHZm2CxH1jyRmbOygUSWf+L/j89zPVGpJ5WNkOmK3D/f55fch1gAxGXa8vdu
VDhiL9zUwnjg8R9/7b6r8Xm51VkEzoY6fmJSDk8TwEbt2MWEN4TGRKBHdgmw
azrGXIA1AmzMjq0oVgAw9H3LYOcBtqRYEcDQV02ZnJhn4snYvGLF6WOzipUB
DN0JkImIPOtLwWLguB4AG9UxVgAM3QQxz7lXATapWBXA0I2aPbBxxWoAhu5R
yQzGrJVIxkYUq0sfG1KsEWDoDp/MVswqkGRsABxXj+w6YPt0jCGAofujUTsW
VuwYwNBtYINdBFiXYi8ADN2gnrFjnYod94ZtAOy0YqcAhp4QxOxYOziuHtmX
AHtSx9gBMPSwRiYysqgkBWtTrDN9rFWxLoChZ1Jmvc8mwI4qFgYYevS2BxYC
h8IjuwXYRh1jP8DQg8s5O1av2CDA0CNVg10GWI1iwwBDD3tlaiWrolKwSsVG
08cqFJsAWC7AzKKyqwArB8f1ANhSHeM0wNDyArNwbhtgQcViAEMLH/bAChWb
BRha3yGzL1ktl4LlKTafPpaj2BLA0AIbmcqZJaLJmB8cV4+srFz1J7I6whWm
8BqiVVxOrY+u3zKbTqz8p4iXNPKSq7GUwZJsVnDyMtl22pM630pI+oWaSumR
d/Dv9i9aMf789X/vte/Q3yeR0as=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 277.25}, {290.125, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"44346f9f-bd1d-49bd-81d0-9e04e8028ffb"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(28\\). \\!\\(\\\"square orthobicupola (J28)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"eb19734c-4c35-4c74-ba6f-cfbf2c4fdb36"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .85913
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0 1.03893 -0.0445304 1.03893 [
[ 0 0 0 0 ]
[ 1 .85913 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .85913 L
0 .85913 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.49274 .70814 m .56618 .64306 L .34436 .6018 L closepath p .682 .222 .153 r
F P
0 g
s
.78179 .58726 m .56618 .64306 L .49274 .70814 L p .186 0 0 r
F P
0 g
s
.56618 .64306 m .78179 .58726 L .70992 .36106 L p .64 .555 .743 r
F P
0 g
s
.70992 .36106 m .49477 .42486 L .56618 .64306 L p .64 .555 .743 r
F P
0 g
s
.49477 .42486 m .34436 .6018 L .56618 .64306 L closepath p .758 .62 .707 r
F P
0 g
s
.22047 .47656 m .34436 .6018 L .49477 .42486 L p .849 .779 .782 r
F P
0 g
s
.49477 .42486 m .38399 .2888 L .22047 .47656 L p .849 .779 .782 r
F P
0 g
s
.38399 .2888 m .49477 .42486 L .70992 .36106 L p .666 .739 .905 r
F P
0 g
s
.34436 .6018 m .22047 .47656 L .37161 .58221 L p 0 .238 .727 r
F P
0 g
s
.37161 .58221 m .49274 .70814 L .34436 .6018 L p 0 .238 .727 r
F P
0 g
s
.49274 .70814 m .72685 .64927 L .78179 .58726 L p .186 0 0 r
F P
0 g
s
.70992 .36106 m .78179 .58726 L .88651 .45275 L closepath p .436 .43 .754 r
F P
0 g
s
.72685 .64927 m .88651 .45275 L .78179 .58726 L closepath p .589 .843 .483 r
F P
0 g
s
.61139 .21514 m .70992 .36106 L .88651 .45275 L p .141 .44 .876 r
F P
0 g
s
.70992 .36106 m .61139 .21514 L .38399 .2888 L p .666 .739 .905 r
F P
0 g
s
.38399 .2888 m .28495 .32311 L .22047 .47656 L closepath p .864 .996 .779 r
F P
0 g
s
.53284 .2429 m .28495 .32311 L .38399 .2888 L p 0 0 0 r
F P
0 g
s
.38399 .2888 m .61139 .21514 L .53284 .2429 L p 0 0 0 r
F P
0 g
s
.62029 .51335 m .72685 .64927 L .49274 .70814 L p .642 .766 .938 r
F P
0 g
s
.49274 .70814 m .37161 .58221 L .62029 .51335 L p .642 .766 .938 r
F P
0 g
s
.37161 .58221 m .22047 .47656 L .28495 .32311 L closepath p .317 .359 .748 r
F P
0 g
s
.88651 .45275 m .79499 .30336 L .61139 .21514 L p .141 .44 .876 r
F P
0 g
s
.79499 .30336 m .88651 .45275 L .72685 .64927 L p .877 .825 .792 r
F P
0 g
s
.61139 .21514 m .79499 .30336 L .53284 .2429 L closepath p .534 0 0 r
F P
0 g
s
.72685 .64927 m .62029 .51335 L .79499 .30336 L p .877 .825 .792 r
F P
0 g
s
.62029 .51335 m .37161 .58221 L .28495 .32311 L p .625 .55 .749 r
F P
0 g
s
.28495 .32311 m .53284 .2429 L .62029 .51335 L p .625 .55 .749 r
F P
0 g
s
.62029 .51335 m .53284 .2429 L .79499 .30336 L closepath p .769 .63 .707 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{307.062, 263.75},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmutPFFcYxkd2l4vLVRBEbgsIi4uAuCB3AaV4QZRLvVK1lHprrVqkNa21
1dhbalvb2tqkl6RJTZN+aNKkTZN+8KMf+9F/oX9Cv9I95z37MMgzy1k3Ej9A
MrPDvOd5fud9Z3Zm58wZnZ47d/q16bnzM9Oh3bPTl8+dn7kSGr40G9vlW+M4
a6KxJSPkqO15x4mv9F+bWpl/VrdXt1e3nb/Vh199R96UHX9hh2/+tuOkqa05
Cf2BUCZCsxL6HaEchC5L6DeE1iF0UUK/qo+A2lGC0AUJ/YJQOUKvSOhnhKpV
yKe2zkroJ/WRrnbUQ3VaQj+iG2nzP9x+ILL5h/f/VIujA5ugmRHNd9AEqCa2
XuiHFk6L8B66mEWEmWqtbasgPCXCuxBmE2E2hBUQnhDhFxDmEWE+hGUQTonw
MwgLibAQwlIIj4nwEwiLibAExSmG8IgIP8RBKiXCchCLIDwkwlsQVhBhFYQL
59mkCG9AGCLCWgjzIRwX4XUIa4kwDGEuhAdF+DaEYSKMoDhBnMH7RXgVwggR
toC4FsR9IpyDsIkIoxAufHX3iPB1CFuJcDuE6RAOi/AihG1E2A2hH8IhEb4K
YQcR7kBx5Ao0H7+H7xT1eZx33US9C+oBaX4GzXeQ5sNqrfvWL81n0HyQNN+t
17LP/Dl9IpzGtWLIi2P2/fvoH53PDhGehHAPEQ7pdQDC+KIMDHkKBiNeBXGR
Y0vsYKj14jR6xOwozA4Qs53EzE/MusVMf+F1dSeI2QAxCyxjZkIxM204bmmb
Tmy7xPYw+jhJzPqJWSYx63SZmdDE8Qf6KDHbPmKb5W0r1z8/bI01c+4lzkHi
3JG0cw9xziHO293OgUXOiUrSRexzve2ff6zSsSV2Wqv18mdIJ0HlE1T7iqMm
CcpPUGME1UFQ6wiqLTkUy6qdoIoIKiqoCYIKWKLaCGp9cqh0ywJGCaqEoLYl
h2JZtRJUKUG1CmqcoDJWDpVpWcCtBFVGUFsFNUZQWZZZNRNU+dNBNRFUJUG1
COogQQUtC7iFoEIE1ZwcimUVIajqp4PaTFC1BNUkqAMElWNZwKeEYlmFCaqO
oLYIapSgci1R9QQVJqhGb1SeZQHrCKrBG7WfoPIts6olqAhBRVJH1RDUFoLa
LKgRglpnWcAVRFUTVDNBNSSHYgWsIqgWb9Q+giqyzKqSoFoJKpw6qoKgogRV
L6i9BLXesoBlBNWWHKrYMiuGaieoOkHtIagSS9RGguogqE3JoVgBNxBUZ3Ko
DZZZlRBUN0HVCmo3QZVaoooJqid1FCtgEUH1EVSNoIYJqswyq0KC6ieo6hVH
PUdQ5ZYFLLBE1XijKiyzyrdE1aaOyrNEme/VEEFVWqJyLVF13qgqS1Q2QQ14
o3apDz0GVJ0CgOVS7wKYkNMlgyAhS1TQEhVeWrZkUVmWqAb3eed3o9Riez5k
etH0kYi4Lw4uhnBsT++MhIzGpZdVw5DxanZpYJSA5elmcpKbU2BxTuZQ2V74
/JZIk+LeBMiNKSDZ2WGeePaxI9f1QBfW9v6YlvDwmWdT9w9b1+Hripst/wMq
4IbqRdVlECDzaL/fC6Qbedv7F9k76k2G54P2KGH4SDKev3HTvAAmiQOWgEIC
0K8EfABolBk3OuhlqxsxsxGYpc3ff/if51E2w21jBOAn/S4gqGG1Ni+xlqL6
gDKDiONeKN2IAXYCECSAHgDM2OsEAQRILmyAoB9lyyco9jvVZDWZArQb+RUR
aCfyIyPmi1C6EQNsB2ADAXQAsOjlwmJAOsmFDVFFUcAKgmoHyrwhOeyF0o2y
CaAZuVQTQBQA83LnCAFkkFzYeGUjcqknqG2Po45aotiAbxhZRQhqK1Dmtdox
L5RuxHKpAaCZAFoAMK8DjxNAJsmFDclXoWxRgmoCyrwTnfJCpcklZSmgDLl0
EEAjAL0CeIEAskgu7P1MCXLpJajNruvB14+u6fuagZ6whPoItBD5DRBoA/Iz
b6hPeqF0IwbIA2CIAMIAmHfopwhgbfyys5CLXlQJclC0vcS+Dvb9Yv+il71u
JAnEux87M+JdHyXeteSAGMo0oQRBCcB2gthWE1szAeKlhLaxc0rV3HEwz+II
sQ+hIoNiOpPQdIpYVMLCzON42fOYyb6YhbY5TswqYCZPVmaS15OZlZHaGdsz
KdiWElszAeZsCrYlxFYexJxzKdgWo6Jmdo+eZqN3BInFMWKxHhbyQCXzfBJc
YRKZFcLMTFO6gP6wlJhFASzk6cfMOvS+ZSQyy4OZmW91KQUzNq/B9PEy0mSV
OkrM2BwM08fZZe73iWyDSNjMTLuCnrE0mUUWLOSpxnljmZ9ticwyYCZPMGa+
6pOZBWBm5utdRXKsPuySyGYqmZ69RXoWsLT1EVv3nELzk8PLjE8Uk+cN5x3S
L79Fv5SFmUl53dLikFrrXfIs4LyLzrNKjKm1X+4+uvkNwvER4QiEZjrrTXBY
t4bR/JQ0v0U4aUQ4CKGZGvy+pbAXQjNF+QN0kOXTgeZy8XQ+0h984KYNjeVi
5HwMb9aVJjS/Is31DN6lY2sRtLsq7W7zdnVod03afQq85Banx35vx1u+Jy0/
f7x6jhr5ijeSg+LcUR+6TTFCUg7nS5AKEJJeOl8hlI3QHQnddX3J46G7EvrG
1aF4vXT8W4nfg/R72aG/mc/QPP7V7Wdz21nzP25hbBw=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 306.062}, {262.75, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"1830e412-8534-4112-b1c6-7729b52a5521"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(29\\). \\!\\(\\\"square gyrobicupola (J29)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"dc2ae264-7c46-4757-8ead-367fa61d3b3e"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .92068
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0 1.04492 -0.0158744 1.04492 [
[ 0 0 0 0 ]
[ 1 .92068 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .92068 L
0 .92068 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.4939 .75154 m .64755 .71753 L .42295 .67572 L closepath p .58 .08 .031 r
F P
0 g
s
.42295 .67572 m .25519 .53799 L .31243 .60331 L p .58 .043 0 r
F P
0 g
s
.31243 .60331 m .4939 .75154 L .42295 .67572 L p .58 .043 0 r
F P
0 g
s
.42295 .67572 m .64755 .71753 L .68638 .48821 L p .674 .552 .708 r
F P
0 g
s
.68638 .48821 m .46035 .4498 L .42295 .67572 L p .674 .552 .708 r
F P
0 g
s
.46035 .4498 m .25519 .53799 L .42295 .67572 L closepath p .79 .663 .723 r
F P
0 g
s
.23426 .36356 m .25519 .53799 L .46035 .4498 L p .819 .816 .847 r
F P
0 g
s
.46035 .4498 m .4555 .27526 L .23426 .36356 L p .819 .816 .847 r
F P
0 g
s
.4555 .27526 m .46035 .4498 L .68638 .48821 L p .615 .657 .868 r
F P
0 g
s
.68638 .48821 m .64755 .71753 L .82574 .63991 L closepath p .513 .401 .663 r
F P
0 g
s
.82574 .63991 m .64755 .71753 L .4939 .75154 L p .453 .885 .865 r
F P
0 g
s
.69858 .31363 m .68638 .48821 L .82574 .63991 L p .268 .341 .753 r
F P
0 g
s
.68638 .48821 m .69858 .31363 L .4555 .27526 L p .615 .657 .868 r
F P
0 g
s
.31243 .60331 m .25519 .53799 L .23426 .36356 L closepath p 0 0 .512 r
F P
0 g
s
.4555 .27526 m .4024 .25197 L .23426 .36356 L closepath p .608 .953 .902 r
F P
0 g
s
.67248 .29432 m .4024 .25197 L .4555 .27526 L p .011 .57 .812 r
F P
0 g
s
.4555 .27526 m .69858 .31363 L .67248 .29432 L p .011 .57 .812 r
F P
0 g
s
.4939 .75154 m .67639 .66973 L .82574 .63991 L p .453 .885 .865 r
F P
0 g
s
.82574 .63991 m .85001 .46612 L .69858 .31363 L p .268 .341 .753 r
F P
0 g
s
.67639 .66973 m .85001 .46612 L .82574 .63991 L closepath p .888 .917 .838 r
F P
0 g
s
.49011 .50681 m .67639 .66973 L .4939 .75154 L p .587 .668 .895 r
F P
0 g
s
.4939 .75154 m .31243 .60331 L .49011 .50681 L p .587 .668 .895 r
F P
0 g
s
.69858 .31363 m .85001 .46612 L .67248 .29432 L closepath p .534 .025 0 r
F P
0 g
s
.23426 .36356 m .4024 .25197 L .49011 .50681 L p .483 .411 .7 r
F P
0 g
s
.49011 .50681 m .31243 .60331 L .23426 .36356 L p .483 .411 .7 r
F P
0 g
s
.67248 .29432 m .85001 .46612 L .67639 .66973 L p .781 .686 .76 r
F P
0 g
s
.67639 .66973 m .49011 .50681 L .67248 .29432 L p .781 .686 .76 r
F P
0 g
s
.49011 .50681 m .4024 .25197 L .67248 .29432 L closepath p .673 .519 .668 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{296.625, 273.062},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmllXU1cYho8kJ2HGMAQZIgmIghBDNCKTDKLECFEEiuAEFLWi1gGxtrWr
tqXzsDp51ave9YbVq/4Ff0Jve+ll/wLN2d/Ox0nybtgh2NWuhWvl5HB89/N8
e599TqYdX1i5ffPthZWlxQV/dHnh4e2lxcf+kQfLiUOOPYaxpyXx8PgNa3/d
MJIb8a/V2sg/dvd393f3/9X9J9aTaV2Pv9OBFfHksI6sP7vzh7hSHetrq2tu
a/c3Ci1bT3nr4r8SIRlPhKyH4eb4rxR/lMakJpkNS62tyzr0CzV8wB4XiFey
52eK3wceN2hYyw2/pYb32FMI4gEu63OK3wUe1PAQe55TwyX2lIJ4kOPvUvw2
8KCGES5wmRreYo8HxHvYQx0xbgJPOWg4yA1vUMNF9lSBeNTaOq1D8xR/E3hQ
w5jY0rGXay/FHJwjxDwba1RGw+SGyYcFuE6AOVADQo2k1ZB4JP5KbIX8KsGu
cTX1AHEGIExGXCHEVVCPD8CGAczNsMsEuwJg+wHsFIAVMGyWYLPcuQBADAFE
ESNmCDED6mlUTaw0WDHDLhFsmutpBogBgChlxDQh3gD1IFg/gO1lGFGMSa6n
FSD6AKKcEVOEmAD1IFgvgFUybJJg41xPu+qiT0N4GUGFGBdAPUEA6wKwfQy7
SLA419OhiahhxDghxkA9YQDrBLA6hlGvjHNcTwQgjgOEjxHnCRED9SBYBMAa
GBYnWJTr6QKIowARYAQNTOImlVkPgoUBrIlhowQ7A2DdANYBYM0MO6eG9QBY
CMAOMiyWHewIgLUw7KwNJg70ql6D0xCHGRFNR/QBRBtAtDNiRH3mUJcOA1hI
vhgZ8q2cRRq2YZWdawWwMICdSoehbh4CsGMANrRdWATABjNHzzBWrWfY4YMA
2wmwA2osqvYAwHYBbH922CaA7QHYk3as04ZdVZ34RkDuA+S+TcmoZj8g9wNy
r+2epzEUDQA7CLA9dqzWUCDyECB3b0pGNfsAeRiQu7Im1wPyGUA+YSebaWT1
YNcCfBTgO7eHrwH4GMAf3x5+H8CPAnxENQNXjTyx3fpm7AWqOFAdI9XZLHuC
8OcB/uj28FUAPw7wYTt+ewNVAVQTQNWRu6ocqKaAKpS7ygNU00B1RK1yaKrK
gGoGqIK5q0qB6jJQtb8e1RWgalOrnJqqYqC6BlSHSRXLoVdFQHX99agKVSr5
sU8p0B22/C368urvP8X9ZQdUbqXKySqp2wGbS98WVNtMTZupnH1mii05nDug
dG4x4aUucbOztvB6y0Xv0NQ71PpzmqeX3tWZdr14WAM5n7tS3WNnilJhc+6U
bWN8VR0zd0glDs1pCtrVAhcQnLC28peCF2uvNrn5J6Wu3KWdtgFMSIXYCfSz
QO/OXR/hPucD6SUgzc9O6gbSMEuLgHT69UhDLC0F0ikgLVBLRzWHN8hSD5BO
AGlhdlLU0zYwpcqtrfzGM1NalLu0lXtaDXoa15QGs5MeYmktkI4CaXF20nwg
PcBSH5DGgLRELR3T7GkjS/1AGgXSUrU0rjl7A2AiBYB+JDv9eU39fu5zM5Ce
BtIytfQCkKJXmXqWtvAlMwxUe9WqcaBCbw5qWdUO+jegKZWf4C5qSqtZGgLS
k0DqyV3qBROpA+h7gb5crZ8AegfQV3KfI0DaDaQVaumkptTD0hNA2pWddApI
0VcBZSztAdJOIK1US+m3Q/ylzYboJF8mxwG+So2f3gRfAibMAOhRWFMZ2lpZ
xD0aBqIQEHnVIvoZOOML0wJ2jABHEDiq1Y4Z7HCxIwYcbcCxT+2YzZh3RsKY
FIwBQSsQ1KgFYjFAxuqc5CmP89zKEisWF4ihmQA1NgNYrRp2lWucArAmAKtT
w67bRjTZTVRjQBMrv5ac08Q2AGy9GjuvifUBrE+NXeARnQSwOgDbr4Ytghov
8sTJEnZDs8PVANugxt7UxFYBrF+NvaWJrdDEyq/T39r09HgALKCGLalOTxq2
DGAb1dg7mtgSVdfF3UH++nFXBRODUKy6ZsQLSd7641d/yd+D7m06cAWq1xCx
HM5pceTvbfc1O+dWvV0TRLdFTBs9KXigKTBVn2ZE1wstgfydXGAfamIdqo/4
LhrvJHaAsI+UWLx8zmRUmYUSDeVP+xurQSfkVy1JgKxFECu4gtPUbAVUcMHa
ivZejssVE09AfIznUzUXJZd5vAPisdS4ffHLU+5DlENeZsoVO+8B5pC1daRW
LFcvvQ/i/YAuF189A/He1Lh9+dkHXHE3CMk1cx8CZoTjVVyCXPL3HMTDqXH7
8sePQPwIxyuZLpdefgzibalxsbdA8U+4gy08xhsheoUyPgXMJlACvVgYn4G4
n+MVHKeVt3K9b2rcx3GPFReTVa6j/YIrruNQGYfo/mB8BZhejpdw/DHFvwbx
Co4Xcfwpxb8B8b0cz7fi4mqkySbXP6fGSzjuYjqdaeM77mAhnxInh+hcGN8D
pslMB8e/pPgPIJ7H8Tw+JXKp9o/iyeS4Id5FG+K2LFoQz/iJS31BB8S9+j+0
8n53//+7b+z5Bxi3pKc=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 295.625}, {272.062, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"338442b5-8155-4cb1-97d2-5fa11d2169cd"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(30\\). \\!\\(\\\"pentagonal orthobicupola \
(J30)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"bcc66488-49d3-4391-a8a2-f4c52d927d53"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .77897
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0 1.04749 -0.0836331 1.04749 [
[ 0 0 0 0 ]
[ 1 .77897 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .77897 L
0 .77897 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.5494 .61558 m .36144 .59437 L .38955 .59851 L p .092 0 0 r
F P
0 g
s
.38955 .59851 m .59267 .62141 L .5494 .61558 L p .092 0 0 r
F P
0 g
s
.59267 .62141 m .73017 .57551 L .5494 .61558 L closepath p .04 0 0 r
F P
0 g
s
.58749 .44306 m .5494 .61558 L .73017 .57551 L closepath p .655 .591 .772 r
F P
0 g
s
.36144 .59437 m .5494 .61558 L .58749 .44306 L p .728 .665 .787 r
F P
0 g
s
.58749 .44306 m .39429 .41847 L .36144 .59437 L p .728 .665 .787 r
F P
0 g
s
.39429 .41847 m .21997 .51541 L .36144 .59437 L closepath p .802 .737 .792 r
F P
0 g
s
.38955 .59851 m .36144 .59437 L .21997 .51541 L closepath p 0 .341 .736 r
F P
0 g
s
.73017 .57551 m .84977 .48177 L .69922 .34086 L p .569 .58 .824 r
F P
0 g
s
.69922 .34086 m .58749 .44306 L .73017 .57551 L p .569 .58 .824 r
F P
0 g
s
.84977 .48177 m .73017 .57551 L .59267 .62141 L p .669 .971 .909 r
F P
0 g
s
.58749 .44306 m .69922 .34086 L p .36718 .2954 L .661 .751 .917 r
F P
0 g
s
.36718 .2954 m .39429 .41847 L .58749 .44306 L p .661 .751 .917 r
F P
0 g
s
.17944 .39675 m .21997 .51541 L .39429 .41847 L p .823 .85 .868 r
F P
0 g
s
.39429 .41847 m .36718 .2954 L .17944 .39675 L p .823 .85 .868 r
F P
0 g
s
.21997 .51541 m .17944 .39675 L .36057 .48227 L p .349 .553 .91 r
F P
0 g
s
.36057 .48227 m .38955 .59851 L .21997 .51541 L p .349 .553 .91 r
F P
0 g
s
.59267 .62141 m .71077 .52493 L .84977 .48177 L p .669 .971 .909 r
F P
0 g
s
.71077 .52493 m .59267 .62141 L .38955 .59851 L p .645 .769 .939 r
F P
0 g
s
.69922 .34086 m .84977 .48177 L .85567 .35848 L closepath p .401 .534 .876 r
F P
0 g
s
.71077 .52493 m .85567 .35848 L .84977 .48177 L closepath p .863 .923 .866 r
F P
0 g
s
.56552 .24124 m .69922 .34086 L .85567 .35848 L p .284 .615 .957 r
F P
0 g
s
.69922 .34086 m .56552 .24124 L .36718 .2954 L p .661 .751 .917 r
F P
0 g
s
.57009 .4306 m .71077 .52493 L p .38955 .59851 L .645 .769 .939 r
F P
0 g
s
.38955 .59851 m .36057 .48227 L .57009 .4306 L p .645 .769 .939 r
F P
0 g
s
.36718 .2954 m .27727 .27911 L .17944 .39675 L closepath p .761 .976 .919 r
F P
0 g
s
.49137 .21938 m .27727 .27911 L .36718 .2954 L p .465 .877 .942 r
F P
0 g
s
.36718 .2954 m .56552 .24124 L .49137 .21938 L p .465 .877 .942 r
F P
0 g
s
.36057 .48227 m .17944 .39675 L .27727 .27911 L closepath p .511 .54 .822 r
F P
0 g
s
.85567 .35848 m .72169 .25265 L .56552 .24124 L p .284 .615 .957 r
F P
0 g
s
.72169 .25265 m .85567 .35848 L .71077 .52493 L p .8 .771 .827 r
F P
0 g
s
.71077 .52493 m .57009 .4306 L .72169 .25265 L p .8 .771 .827 r
F P
0 g
s
.56552 .24124 m .72169 .25265 L .49137 .21938 L closepath p .027 .586 .81 r
F P
0 g
s
.57009 .4306 m .36057 .48227 L .27727 .27911 L p .648 .616 .804 r
F P
0 g
s
.57009 .4306 m .49137 .21938 L .72169 .25265 L closepath p .737 .664 .778 r
F P
0 g
s
.27727 .27911 m .49137 .21938 L .57009 .4306 L p .648 .616 .804 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{322.5, 251.188},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmstPVFccx0dmBoaB4f0GYXgL8lAQRQTk/RAUQVGL1goWxVqrtSQmtU2b
NmnS2iZt0iZt2qRduOjCTbdNXLJ02a1/gks3XdB7zu/MFxi+B84NXTQNJPfc
O4fffD+/7znnnnvn3nN2cXVl+d7i6p2bi/Hxh4sPVu7c/CA+dv+hVxU8EAgc
GAoEAn/HA+p43Ts0hf4bVoX5sH+8f7x/vKfjn9UuTZ1fv0nFj2oXVBUp609/
eRHQh+vPn62pzavzSh3+k4R/r3YhVZFKwiOqjKiq7yT8W4RHSXgO1L+S8G+Q
TBYJL0b45xL+JdTzSPhBJPNYwr+AehEJr4f6qoR/BvVSEt4C9Xcl/BOoV5Lw
TqgvS/hjqFeT8B6EX5fwRwhvIOEDqgyrqjckfBXJNJPwYV1K3Yu1v/Rse0W+
+ACcVvLFIV2G8cXEpgQui8A9kDtsiW4ie5v3SUpM+Z7MRRG7g2y6iNhpIhZW
ZYqqMhK3kE8PkegjEhGSz6yILSGfPiLWS8SiROy8iF2H2KCjWAYRmxGxq7A5
ZhtOSWIxtJSR0ENHV0wSiZNEIofkM71JzPzLE9OCE0S2m8jmEdkpkb2ySfbz
JzLwzhDZ40S2AIaNmIzYEMSMINPrInrFJM0JUb6kd+Etyol0p4j8MSJfQuTH
RX4+qRW8zfsk5W4N3klQZQQ1JqiLBBVyRHUQVAU6YQdA2BFwhACqiBdz7btA
UKmOqHaCqiaoIUHNEVQaQbEzrY2gaghqUFCzBJXu6KqVoOrQQwZwngCijoAW
AmgkXvoFNUNQmY6oZoJqIqg+QZ0jqJgjqomgDhNU795RhwiqFT1kAGcJINsR
0EgA7cTLSUFNE1SOI6qBoI4SVLegpggqzxFVR1CdaDYDOEMA+Y6AWgI4Trx0
CWqSoAocUTUE1U1Qx+yoQkdUnKB6CKpTUBMEVbQH1Cn0kAGME0AJAYwTQBUB
9BMvRwQ1RlCljl4OEtQAQbULapSgyhxRFQQ1RFBtghohqApHVBlBjRBU695R
pQQ1akcNE1Sl47BgqBGMO9NDQwRQ5eileJdme/nqpdonUIMEFXdEFVlRIaAM
ztAGCK3GkVZgpYW30JIMnibIWkdkvkNbelsgRZd0rPQTfL3jWMlzxAf3jmfu
c/eO7yP4Bkd8jiM+ZMf3Evwhx8bPdsSH7fhTBN/k6D7miE+143sI/rCj+0xH
fJodr+/Y9KzW6ug5g0CHCTSyC9RMPwtPXum9tzHbLIOoYwbpbq2uMvC2gG6F
ZsemT3dset85eKWuanRsjDTHRKL+EgmrUrcImwlYi6Q6JpLhdiomEklFInWO
LRJyTCTTXyIRJOJ6LWSJsHEa85dIFIlUO3ZN0DGRLLdJOpFIBhKx3/aENyei
N3XVH3NshTY7PAa4/aYutAVu4TLTO3CzcYaWO7S+zWy2HdpHoLkwy35t6Ie5
2usoQeX4Q+UDxX5DDQIVWn+69jppTA0SfK4/fCHw7Ddiryr1kEpXeB03QKB5
dmg/gRYByn4Dn4DnHOK5l+Dz/eFLgGcPFjqBL4TnfwFaBmgugbYDWk48dxN8
gR1/muDLcRqxZ1BN6Oc4PJ8g0EJ/0Ep4Zk/W6uG5kXjuJPgif/g48OxxZRz4
FnjuINBiO3SAQKsBZY9jKwDtIJ7bCL7EH74W+AjBF6OfT8BzK4GW+oPWA8oe
p+fBcz/x3OwPP0jwDcCzdxRZwA/DcxOBlvmDHsIJxV7ypAM6STzXE3y5P/xh
eBZ+gu41QaKLz8FuHeFV2HlDhNcCXgqszRNrcYI66A/VBtQCHFTZHOiqI7uI
JTpn7bXO+CrJu9w2IoKmjZ+tv0LyhjdMeK2Edw02GKUYlBQFSWqno3YUs/Ym
sVZsm8jN6PWgOrlj/lDX4arIdnUMyjm53ZVBjTg24A3iKo9A9a1XSOah7dAu
f9BF+Mu13cUGZZrfjjpuR7GmXCL+YrZfULoqA71mXgGNOrq6CVcMkA5AjLjy
iVomrtJtD2t0r2UTaI8dyppyGf4iBBWCv1w0oHn1qF816Aome5t4Cdmeeeqq
fOLFoCaAaiGoFTgIEoD+VEi0zcvaM9BuJtrvJNmQqU2fwonmMO+Xp6HTZNMx
P1q2p2Ik9AtQ/Z9Gm01Tp+ZWJcPEzLv7GYjV79I9O4mZNQezEKslYreIWDHa
x6yQuACJmh3PslKShZGYh0R8lzlhJ0tm9clliFXa5jKrJXnlKst49HlYscsc
vEUiKR8jtgCxctu1w0HMrAm6BrHSHS+vJbAkb/dlNVdYBvjO9wE7ZWHEbuCU
UP+fe65j1KcCor3gqG2WeS3ZtPOJ9hVHbbOk7W29k39p6bnnAXNd2659iTSm
LNGRNZLmFtDTSJEZe7vEvGN6RvY2kc0ishccZTevUkySzSSyc0R2YzY06yfv
ErEoEZslYgWq1FVmGeg9IhYhYjPoig2JayJxX+9Cm7sUUmlE6izJKxeib4no
A+QVhFiYiE0TsWyILYnYQyIWJGJTRCwGMbMsd2Ph7EaLiVpCS60PxH1N4tsr
8m29Slcv250ksCjC70r4R5tPRZVm4lTUdcNEIgKJ90RCr4ROVxUnSXgqwt+X
8K8R3k7CQwg3S6B/ULvour56JUxvBD2SoF+hWao1Q5s1EfyhBP+O4GySgAZ8
LJF/IDKcFKla6FMJ+hOzrlkSrk/M/9B6+/3j/8dx4MA/jlsfjw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 321.5}, {250.188, 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"86927334-f359-4bb4-8c54-252ac6be4338"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(31\\). \\!\\(\\\"pentagonal gyrobicupola \
(J31)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"c7fc833e-9099-4ca1-ab14-c38216be07e9"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .7687
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0 1.03609 -0.088159 1.03609 [
[ 0 0 0 0 ]
[ 1 .7687 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .7687 L
0 .7687 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.36637 .5317 m .5291 .59376 L .60669 .44111 L p .727 .658 .781 r
F P
0 g
s
.4872 .57775 m .5291 .59376 L .36637 .5317 L closepath p 0 .334 .661 r
F P
0 g
s
.60669 .44111 m .5291 .59376 L .70577 .59185 L closepath p .661 .576 .748 r
F P
0 g
s
.70577 .59185 m .5291 .59376 L .4872 .57775 L p .205 .719 .886 r
F P
0 g
s
.4872 .57775 m .67625 .57543 L .70577 .59185 L p .205 .719 .886 r
F P
0 g
s
.70577 .59185 m .84315 .52377 L .74016 .3657 L p .575 .544 .783 r
F P
0 g
s
.74016 .3657 m .60669 .44111 L .70577 .59185 L p .575 .544 .783 r
F P
0 g
s
.67625 .57543 m .84315 .52377 L .70577 .59185 L closepath p .535 .922 .908 r
F P
0 g
s
.44197 .37487 m .26824 .42149 L .36637 .5317 L closepath p .795 .744 .806 r
F P
0 g
s
.36637 .5317 m .26824 .42149 L .38967 .46368 L p .17 .482 .898 r
F P
0 g
s
.60669 .44111 m .44197 .37487 L .36637 .5317 L p .727 .658 .781 r
F P
0 g
s
.38967 .46368 m .4872 .57775 L .36637 .5317 L p .17 .482 .898 r
F P
0 g
s
.60669 .44111 m .74016 .3657 L p .4619 .24962 L .633 .7 .894 r
F P
0 g
s
.4619 .24962 m .44197 .37487 L .60669 .44111 L p .633 .7 .894 r
F P
0 g
s
.27798 .29565 m .26824 .42149 L .44197 .37487 L p .785 .841 .894 r
F P
0 g
s
.44197 .37487 m .4619 .24962 L .27798 .29565 L p .785 .841 .894 r
F P
0 g
s
.74016 .3657 m .84315 .52377 L .88825 .40479 L closepath p .427 .48 .812 r
F P
0 g
s
.88825 .40479 m .84315 .52377 L .67625 .57543 L p .785 .883 .917 r
F P
0 g
s
.38967 .46368 m .26824 .42149 L .27798 .29565 L closepath p .338 .44 .819 r
F P
0 g
s
.65583 .24147 m .74016 .3657 L .88825 .40479 L p .321 .538 .907 r
F P
0 g
s
.74016 .3657 m .65583 .24147 L .4619 .24962 L p .633 .7 .894 r
F P
0 g
s
.71206 .45633 m .67625 .57543 L .4872 .57775 L p .619 .71 .911 r
F P
0 g
s
.5266 .38116 m .71206 .45633 L p .4872 .57775 L .619 .71 .911 r
F P
0 g
s
.4872 .57775 m .38967 .46368 L .5266 .38116 L p .619 .71 .911 r
F P
0 g
s
.67625 .57543 m .71206 .45633 L .88825 .40479 L p .785 .883 .917 r
F P
0 g
s
.4619 .24962 m .40991 .20397 L .27798 .29565 L closepath p .673 .934 .969 r
F P
0 g
s
.61885 .19428 m .40991 .20397 L .4619 .24962 L p .415 .803 .989 r
F P
0 g
s
.4619 .24962 m .65583 .24147 L .61885 .19428 L p .415 .803 .989 r
F P
0 g
s
.65583 .24147 m .80682 .27529 L .61885 .19428 L closepath p .082 .553 .903 r
F P
0 g
s
.88825 .40479 m .80682 .27529 L .65583 .24147 L p .321 .538 .907 r
F P
0 g
s
.5266 .38116 m .38967 .46368 L .27798 .29565 L p .551 .537 .793 r
F P
0 g
s
.71206 .45633 m .80682 .27529 L .88825 .40479 L closepath p .808 .773 .821 r
F P
0 g
s
.27798 .29565 m .40991 .20397 L .5266 .38116 L p .551 .537 .793 r
F P
0 g
s
.61885 .19428 m .80682 .27529 L .71206 .45633 L p .729 .668 .79 r
F P
0 g
s
.71206 .45633 m .5266 .38116 L .61885 .19428 L p .729 .668 .79 r
F P
0 g
s
.5266 .38116 m .40991 .20397 L .61885 .19428 L closepath p .653 .575 .755 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{324.625, 249.5},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmtlPXFUcx6fMwDDAsA172fcdCrYUaIu0FFpr9w1KW/a2dKVArdpGGxsT
E2I0RhNjNCZGjYk++trHPvbRf6GPvPuEc5b5Oh2+h/6uSGIMJHPu5c6Zz+f3
+907dzlzjk8t35i7M7U8PzNVObI4tXBjfmapcvjeYnSTf4fPt2PI5/P9WelT
62vRVdvov8Oqsf9sr2+v/8/Xn6lFWB3/75sNP6tFodqQvvbjl899frW69uy3
F/o7kqTah6bnZ+hZldAz+or+F2119wem+1O1yFAb9pLuyei+ZLp/pBem08qK
sQ+SD6aqVm9aMB98ohaa5FcftN2jH9QfPkAQ6XDfNYgPE9wKEyCwfQSWCdht
A/uAwJKFsGwkN29gj5FciCD6CCIP8Vw3iEcknjQC6yWwAsDmDOw9xBMmCLaj
i5HStEG8S+LJJLAeAitFPJMG9pDAsglsN4FVAHbVwB4guYgQUYXkxg1imcST
R2DdBFaHeMYMbBHxFBFEF0E0AHHRIO6TeBhsF4E1I7lzBrZAYCUE1klgbYjs
jIHdRXLlBNFOEJ1AnDKIOyQeKawLyR03sFuIp5ogWgliD+I5ZhA3STw1BNZC
YHsBO2pg8wRWS2DNBNaP5IYN7DqSaySIJoI4gHiGDOIaiaeJwBoIbBCwgwY2
i3hahYhDSGnAIGZIPG0EVkdgI/aKhZvAKGmfwU4TbAfB1nrDTiLhLgKreQ3s
xfM/9PVwv4FNkBi7CbbaiQ0Aa9E2zCsIs4fwKp285Fd4sXAt9DIJ1xveH4+P
3pOo9tUy9xrVOFH1ElW5UOV3qy4RVT9RlQlVAaLa601VKlSlEFVPnEofAPuJ
YOe/JLBvnVmKHdbrVcVCVSpR7dm8apio0ohqd7wqAJXVMVuhMLENbGMJiUVf
0S+Fal9/jBQIk80g+jc2r88XZu9R7xfq84TZZxJ9t1sfEOpzhdlnEX3X1uhZ
9tne9MlCfbYw+xyi3+XWpwj1WcLsc7dGnynMPkL0nW59UKgPC7PPJ/oOtz5V
qE8cW3Blv4F+lOhDm9Cz7AuJvt2tTxPqQ8Lsi4i+za1PF+pThdkXb40+KMy+
hOhb3foMoT5FmP1Ob/qwUB8QZl9K9C1bo2fZlxN9s1ufKdQnCfUV3vRZTn1y
vF6/1G3fEaKsJMqmf6IMvKJ02KqJrdHYLhJbjqC+rsQ8qnKJqk+1ehM7VGuJ
oMGboDeuct/+vhp76U5Dm1dGiHKPavWjTVCp9NogUdUTVb1blUdU3VClQzVA
VA1EVedNFT+cYIsYPTfEStlPpI3epPlE2oH8Isivl6iaiKrWrSogqlaoCpHV
bqJq3ryqhZSyBPl1E2kLkda4pYVE2oj8KqDqdKn0JpvVBSIoJoJ6klUVStnm
OkD0pqS1Fy9XE/Kr9qavRX4NyK/Z9a3TmwJEWuOWlhBpFaQtyLTBdaYMmFOC
J+lOIq0ghW5HzrWuK5DfnCY21mtEKZGWIdNuqKqJqgyqMFGRQ6rp0Ut9gdFE
VuMSmHtQ43LXXZ2ucbbbbL4tAZjtS/ctIvIiUus+FKDUdWfvN6es9WHY899o
QgGir+h/sUDYmbAAVRhAFYqIPg9VKHDrx4g+GXp2TYtAP4Ts813PtH6zK536
S0QfhJ7dkeSQ3TCMQCKukQ2/2UnrA7GX2XESSAiBsFvPLNThGHZDlmtYKWDO
tk79ZaJPV6393XO9PkzqcAJ1CJNAQqhDNQnE3tlcIYFkoA7s8SsNdTiLOoSI
Pgh9nVt/legzoWdP/qnQjyL7oGtYXe+GRm/6HOjZsEsK2Q2XEEiA/PIRq0IL
CcPeMk+QMCIIgw29+VGFCewEn54eobvhrNrulk4SaT6kPn9sgFn7kuCbjbuF
WM+2DzdThF0Yz14xsy90+eZ0a/fey1VN7XCzpwm72J5G4/eKR+wMwRYR7KwQ
a58sZ4XYGW/YOSF22hv2mhA7KcS2uLFsl014w14XYq8SLPti2JGYG8IiXBFG
a7HzQuxlb9ibQuy4sAh2MO6WEDsmjNZibwuxo8Jo7cDpHSH2ojfsXYItJNgL
wiJsgGXRnhdGawev7wmx57xhF4TYM0Ks/aHhvhB72ht2UYg95Q27JMSeJFh9
4deb7M97ywTGDqsTBNakWn2DYX+ofSCEHSewetXq0Uz7y/k7amFng61HvE0Q
NUhOXdVXV9ditx92CoOeiaffLyDEtwixCsQkBdTR9BvYI8DyCOwogZUD5gfM
znD5ALlGCOwIgZWg9gHABgzsCSLLJrARAitCZCmADRrYU0SWRWDDBJYPWBCw
Qwb2MSILE9hhAssFLBUwO7P3E8DSCewQgWUDFgJsxMBWkGYagR0ksAzsgDTA
7FS2TxFZKoENElgIkWUAZifZfY7IUgjsTQILAhYGzE76+wKRBQhsgMACgGUC
dtLAvgIsicAO6DYQDwMqC6jTBvU1kvT5Y0Mx+vP7E0Ly+ezDRDYQZw3iG0Sj
BxYr1VoOOp03nb5Tiwq1oXJt17PYA26sk51D+j1I+9Dp7wPGzlX9AZ360SkZ
nezs2J/QqQ+dEk5N5pnX9wt6lqmeeebgia4lXAJs91/Voky989hs0O/+h6bd
b69vr8ev+3b8BfeaYWE=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 323.625}, {248.5, 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"524624fe-b163-45a6-84cc-4a785d1f4fb9"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(32\\). \\!\\(\\\"pentagonal orthocupolarontunda \
(J32)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"026ca5a0-c4da-44c4-bc72-a9eb821b80c6"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.1069
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.06633 1.16449 -2.22045e-16 1.16449 [
[ 0 0 0 0 ]
[ 1 1.1069 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.1069 L
0 1.1069 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.61241 .74697 m .55824 .56541 L .35382 .5441 L p .72 .502 .594 r
F P
0 g
s
.55824 .56541 m .47531 .37747 L .35382 .5441 L closepath p .714 .604 .732 r
F P
0 g
s
.74007 .57607 m .55824 .56541 L .61241 .74697 L closepath p .581 .422 .631 r
F P
0 g
s
.47531 .37747 m .55824 .56541 L .74007 .57607 L p .57 .532 .774 r
F P
0 g
s
.35382 .5441 m .26813 .71237 L p .61241 .74697 L .72 .502 .594 r
F P
0 g
s
.35382 .5441 m .47531 .37747 L .41497 .34143 L p .901 .962 .82 r
F P
0 g
s
.41497 .34143 m .28343 .52277 L .35382 .5441 L p .901 .962 .82 r
F P
0 g
s
.28343 .52277 m .26813 .71237 L .35382 .5441 L closepath p .975 .894 .679 r
F P
0 g
s
.60208 .25536 m .47531 .37747 L p .74007 .57607 L .57 .532 .774 r
F P
0 g
s
.41497 .34143 m .47531 .37747 L .60208 .25536 L closepath p .765 .963 .93 r
F P
0 g
s
.61241 .74697 m .43077 .84513 L .61948 .87061 L closepath p .561 .227 .359 r
F P
0 g
s
.26813 .71237 m .43077 .84513 L .61241 .74697 L p .72 .502 .594 r
F P
0 g
s
.61241 .74697 m .61948 .87061 L .77 .76467 L p .232 0 .336 r
F P
0 g
s
.74007 .57607 m .61241 .74697 L p .77 .76467 L .232 0 .336 r
F P
0 g
s
.43077 .84513 m .26813 .71237 L .24711 .83415 L closepath p .794 .431 .369 r
F P
0 g
s
.24711 .83415 m .26813 .71237 L .28343 .52277 L p .799 .712 .176 r
F P
0 g
s
.74007 .57607 m .77554 .38061 L .60208 .25536 L p .57 .532 .774 r
F P
0 g
s
.84415 .5716 m .77554 .38061 L .74007 .57607 L closepath p .26 .236 .641 r
F P
0 g
s
.77 .76467 m .84415 .5716 L .74007 .57607 L p .232 0 .336 r
F P
0 g
s
.77554 .38061 m .69611 .22221 L .60208 .25536 L closepath p .301 .497 .882 r
F P
0 g
s
.60208 .25536 m .69611 .22221 L .49488 .31511 L p 0 0 0 r
F P
0 g
s
.49488 .31511 m .41497 .34143 L .60208 .25536 L p 0 0 0 r
F P
0 g
s
.61948 .87061 m .43077 .84513 L .24711 .83415 L p .196 0 0 r
F P
0 g
s
.28343 .52277 m .26275 .63398 L .24711 .83415 L p .799 .712 .176 r
F P
0 g
s
.26275 .63398 m .28343 .52277 L .41497 .34143 L p 0 0 .106 r
F P
0 g
s
.69611 .22221 m .77554 .38061 L .84415 .5716 L p .825 .463 0 r
F P
0 g
s
.41497 .34143 m .49488 .31511 L p .26275 .63398 L 0 0 .106 r
F P
0 g
s
.31364 .8538 m .56593 .87844 L .61948 .87061 L p .196 0 0 r
F P
0 g
s
.24711 .83415 m .31364 .8538 L p .61948 .87061 L .196 0 0 r
F P
0 g
s
.61948 .87061 m .56593 .87844 L .77 .76467 L closepath p .547 .922 .779 r
F P
0 g
s
.26275 .63398 m .31364 .8538 L .24711 .83415 L closepath p 0 0 .519 r
F P
0 g
s
.71177 .31383 m .69611 .22221 L p .84415 .5716 L .825 .463 0 r
F P
0 g
s
.84415 .5716 m .81211 .54987 L .71177 .31383 L p .825 .463 0 r
F P
0 g
s
.77 .76467 m .81211 .54987 L .84415 .5716 L closepath p .923 .897 .49 r
F P
0 g
s
.49488 .31511 m .69611 .22221 L .71177 .31383 L closepath p .445 .028 .153 r
F P
0 g
s
.45984 .73497 m .31364 .8538 L .26275 .63398 L p .366 .265 .606 r
F P
0 g
s
.26275 .63398 m .3987 .5064 L .45984 .73497 L p .366 .265 .606 r
F P
0 g
s
.49488 .31511 m .3987 .5064 L .26275 .63398 L p 0 0 .106 r
F P
0 g
s
.62149 .51649 m .81211 .54987 L .77 .76467 L p .841 .812 .822 r
F P
0 g
s
.45984 .73497 m .62149 .51649 L p .77 .76467 L .841 .812 .822 r
F P
0 g
s
.77 .76467 m .56593 .87844 L .45984 .73497 L p .841 .812 .822 r
F P
0 g
s
.3987 .5064 m .49488 .31511 L .71177 .31383 L p .524 .258 .454 r
F P
0 g
s
.56593 .87844 m .31364 .8538 L .45984 .73497 L closepath p .631 .747 .931 r
F P
0 g
s
.81211 .54987 m .62149 .51649 L .71177 .31383 L closepath p .883 .676 .618 r
F P
0 g
s
.3987 .5064 m .62149 .51649 L .45984 .73497 L closepath p .537 .37 .602 r
F P
0 g
s
.71177 .31383 m .62149 .51649 L .3987 .5064 L p .524 .258 .454 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{270.562, 299.438},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt3PlrXFUUB/DXmXmzNMlM0smeJpksTdJM1jZ7uqXZ2yzd1brGWm3V2pJU
RERQIyIWEUFEpCCiCEIRBEEQ/NEf+2P/hf7YfyHOPfe965vJ9705d940rZDC
Wzrv3vM5575l1pfltdvXrt5Yu339ylpqfn3t1rXrVzZSczfXMw8F9xjGnnhm
SqcMsb5lGPaM/iXEzPrP7vru+v94/S+xCIhj+5x84E+xCNLBHtzaMFJb1lFv
nJXb/xCL0Ja9mbpam34XC1M8YOZu+k1tiqlNZ+Sme2pTSe6mX8UiLB4oE5sM
SmvrwYY8F1dlo1/EIiIeSbg3+kksouKRCmoUUo2shiuy3Y+qXdKz3Q8KrcHt
lmW7uypenWe771W7BmpnZrWzi1mSjb9TjRvzN/5WNW7OGZ7MZARoHrR3MnVZ
lB2/UR1b9Dp+LRYxsaUNdAyCjguy41dK7GSKVscvVceDTHFedryjOqb1On6u
auwFHUOg45zs+Jnq2K/X8VPVcRB0NEHHWdnxE1XjMLPjjOz4keo4qtfxQ7GY
FluioNG0bPSBii7O+Fqr0ebUhpgyophni2H3YO+LBZ2OoTzBHt67S2cHyuyk
DPaeWNBVJ+I/2LtiYV343IKZKpg9uQWdkkHXVdDS4gW9JRZ0fYqDoGMeQWMg
6AkZ9KZYBOR1N/9YZqbM/+Q83553AvtcE84fOwJiH5ex36GF3JQBCClnlmEy
y7CoG0wKVYUoVNUxSb0NKO7OiTCr8qC4VSEKVXVUUm/5qCqqR73JpFBVMSZ1
ZMep6z6oEiY1KalrgOKewprUGz6oMiY1sePU6z6oOKDQs8K4pK4CKsmkEsyq
PChuVeV61Gs+qqpgUmOSusKkxv1TrwKqkllVknll96C4VSEKVTUqqTUfVVXq
Ua8wKVRVFXMANSlUVTWzqhFJveyjqhpmVRb1EqCqmFXV6lEvMilUVR2TGt5x
6gUfVL0e9TygqplUA5Macqe4Ve3Xoy77qKqRSR2W1HM+qCY96llA1TCpZkCh
N+8eFLeqFLOqQ5J6xkdVmtQlJjUBqBbmAGpSqKpWZlWDkrroo6o2ZlUWdQFQ
tcyq2vWo80wKVXWASQ3oUaiqDj3qnI+qNKmzgKpjVtXFpPrdKW5VmtQZZlWI
Oggo9FmrRa26VSXeEBu9AOhm1tIngZU8w3Z5Sn6ylti6c/lu0xatbUfTzKo8
UHm1CCnUgnuFK957QQMV1iuN5TxXJMswAjSXj2UoMWVeFIq59Q3J/Qf2RJ/E
cs9rK40lZhpBkMYozYPONMQb5PsP6MNP9GSAxtwjkWqQSAgkMgISiasRQS/B
0Ij0uCdSBRIxQSLDIJEqlQh6N4JGxErkNDORCEhkCCTSoHYNeresmUglSCQK
EjkMEmlRI1LKTCTtnkgSJBIDiRwCiXSpRML+E9kHEtkLEhkEifSrXWPQJ+92
HvA49ciBPjKmLxHiQB4A8pCY05UEUd2SOuVG5ZSL0H6AjtJcPvbo4QdUNxpt
Dz4B+ATg+wA/lsNnJvpqDX5x6pFDHORQAXLoATmMwxzEfNsX32n3DMpABvuY
GaBRCIl5MA9aCtAkQNPMssM0zx71g5JfZPKVgO8G/ATgI4DvcudLAF8N+C7A
T/rn9wK+xgevOfgxwNcCvtNH9R58FPB1gO8A/BE9foHJNwC+HfBHmYPf7c6H
1dW9aedQE9SM+DbAHwO8Cfi0Ox8CfDPgW5k8qt6DDwK+BfApwB/X4+eZfKsP
Hg1+jzsfAHwb4JsBf6IQ3nTy1mRkzubtZBMgpwohQzlk5sq5XdvvQ+t1G1/x
G6zHQs0BqhtQDYA66faqIIfqc1B0SeoBQB0ApgsAcg7B9JOlagE1A6ggoPr1
qBomhapyUrSHegFQBYBZZi0DTwVQCYC5YgJJAMy7vnrPBgbRCblJJySiKpgU
qsWiZrMuaps29+S1cqAtMIfxkLaWANpiUbQ+oJUB7RTNTaem3usOOwUzR3A/
PBDDLepwYWSpa2WPjSwB5GmPwRzJz6B9FgPMEpdxnsqb9DJpk3E1dydDWaRh
2L998KNFgbZcFA091YddNTycRSBNQK7gAsfctSBzOPW1GaCFmFoIaKtF0dBI
BoB2JucsFzttvBDKdFI0iVDncDEeguk6dF5CdgEThYQPZYU3xHehviPT0NBL
jgtFSpOCXRTBaG3SPUQYhHC+E/n570eUBcpMM2yXY/+IsPZk2KNIuR7RC9qZ
k2tmyvxPzrcdwYUAHQAwAbBaKNCudljULWzOc6nHuEcA0AoqiAFqWVVwVA9o
AUAJAJZygWkARAGQAkAZAE4p4Jge0KT2QTkIu6DCnnAPGwNh94O8KwAwp4Ap
PaABAEkATCtgWg+oB0AVAOgDHnpoRg+oA0A1AOjjO7r4zroDewFQrXZtPQg7
qQYms+HOo3/s88y+fYyrVIEyGoA37nimsznD/rSRrVUCrRFoI27VLep5SeA1
AW9IeQHB5Vy2PNASgJarHdcKqMFsitaW9IAEqKoNUP2OV65iEO1JDOuKHhkH
5AFA9oDqrFtyTwKqFFBlgOoAVLeigmCfeaBlAC0BaBdAO7NR543UXCqmDo8e
ALQrIASq0qSioCqEtjmeq62DBA7qeT0+Avg+wKeya6a1S3pUGFADgGpUlAnq
c6K0JQ6ooNp/QwCozwZoTf5wWF7/qTU6wwKgAgTUgX2FDhULpQs0XbblCyDT
idIkrgZjAKpWlYRBePm7a3nlsv46gP0GKuuXZRMgcjI7Mq3J39zLH/1RaxnQ
2vHiten2OOUqTgRkaEWkY5ZuFUZFJsBo/rfj5E0bslbx9JK5om4PUeqZhRWC
bkCiu7k7QYiYChEFIeQNMfKWUcoCPYOFs0PQmrzrSd7fTB0rQceQ6hgDthXi
Y5V+KQgRcBtEOhrkfXLGFyqLoPVWxA5h7WLqRjtK3tvp+IME6/IBSukp+lsa
u+u768VaN/b8C3B6w1w=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 269.562}, {298.438, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"663b04af-6ad0-4136-b78c-e8453c74e0d0"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(33\\). \\!\\(\\\"pentagonal gyrocupolarotunda \
(J33)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"009b5d61-c8d9-4c3d-a1ed-e05f2b891dd2"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.188
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.100141 1.25904 4.44089e-16 1.25904 [
[ 0 0 0 0 ]
[ 1 1.188 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.188 L
0 1.188 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.51741 .6459 m .46028 .84229 L p .77103 .77304 L .575 .398 .604 r
F P
0 g
s
.77103 .77304 m .70264 .59767 L .51741 .6459 L p .575 .398 .604 r
F P
0 g
s
.70264 .59767 m .5519 .4475 L .51741 .6459 L closepath p .618 .544 .749 r
F P
0 g
s
.38847 .56126 m .51741 .6459 L .5519 .4475 L closepath p .839 .757 .772 r
F P
0 g
s
.46028 .84229 m .51741 .6459 L .38847 .56126 L p .882 .726 .684 r
F P
0 g
s
.61247 .93082 m .46028 .84229 L .39434 .98399 L closepath p .64 .334 .436 r
F P
0 g
s
.46028 .84229 m .61247 .93082 L .77103 .77304 L p .575 .398 .604 r
F P
0 g
s
.32464 .76775 m .39434 .98399 L .46028 .84229 L closepath p .908 .663 .557 r
F P
0 g
s
.38847 .56126 m .32464 .76775 L .46028 .84229 L p .882 .726 .684 r
F P
0 g
s
.5519 .4475 m .70264 .59767 L .81606 .56021 L p .395 .492 .84 r
F P
0 g
s
.55271 .30065 m .5519 .4475 L p .81606 .56021 L .395 .492 .84 r
F P
0 g
s
.5519 .4475 m .55271 .30065 L .37728 .4176 L p .867 .88 .844 r
F P
0 g
s
.37728 .4176 m .38847 .56126 L .5519 .4475 L p .867 .88 .844 r
F P
0 g
s
.81606 .56021 m .70264 .59767 L .77103 .77304 L closepath p .327 .265 .634 r
F P
0 g
s
.32464 .76775 m .38847 .56126 L .37728 .4176 L p .982 .903 .581 r
F P
0 g
s
.72324 .91944 m .61247 .93082 L .39434 .98399 L p .007 0 0 r
F P
0 g
s
.77103 .77304 m .61247 .93082 L .72324 .91944 L closepath p .223 0 .244 r
F P
0 g
s
.33972 1.01331 m .39434 .98399 L .32464 .76775 L p .97 .653 .302 r
F P
0 g
s
.32464 .76775 m .26387 .77668 L .33972 1.01331 L p .97 .653 .302 r
F P
0 g
s
.29696 .54397 m .26387 .77668 L .32464 .76775 L p .982 .903 .581 r
F P
0 g
s
.37728 .4176 m .29696 .54397 L p .32464 .76775 L .982 .903 .581 r
F P
0 g
s
.77103 .77304 m .72324 .91944 L .73818 .78925 L p .836 .811 .325 r
F P
0 g
s
.81606 .56021 m .77103 .77304 L p .73818 .78925 L .836 .811 .325 r
F P
0 g
s
.39434 .98399 m .33972 1.01331 L p .72324 .91944 L .007 0 0 r
F P
0 g
s
.81606 .56021 m .72239 .36441 L .55271 .30065 L p .395 .492 .84 r
F P
0 g
s
.72239 .36441 m .51271 .26549 L .55271 .30065 L closepath p 0 .419 .791 r
F P
0 g
s
.37728 .4176 m .55271 .30065 L .51271 .26549 L closepath p .782 .996 .865 r
F P
0 g
s
.80067 .5494 m .72239 .36441 L .81606 .56021 L closepath p .73 .358 0 r
F P
0 g
s
.73818 .78925 m .80067 .5494 L .81606 .56021 L p .836 .811 .325 r
F P
0 g
s
.29696 .54397 m .37728 .4176 L .51271 .26549 L p 0 0 0 r
F P
0 g
s
.51271 .26549 m .72239 .36441 L .80067 .5494 L p .83 .492 .414 r
F P
0 g
s
.33972 1.01331 m .55476 .97195 L .72324 .91944 L p .007 0 0 r
F P
0 g
s
.72324 .91944 m .55476 .97195 L .73818 .78925 L closepath p .851 .948 .88 r
F P
0 g
s
.26387 .77668 m .32289 .88767 L .33972 1.01331 L closepath p 0 0 .418 r
F P
0 g
s
.36116 .63693 m .32289 .88767 L .26387 .77668 L p 0 0 .447 r
F P
0 g
s
.26387 .77668 m .29696 .54397 L .36116 .63693 L p 0 0 .447 r
F P
0 g
s
.55476 .97195 m .33972 1.01331 L .32289 .88767 L closepath p .581 .748 .956 r
F P
0 g
s
.43844 .3873 m .51271 .26549 L p .80067 .5494 L .83 .492 .414 r
F P
0 g
s
.51271 .26549 m .43844 .3873 L .29696 .54397 L p 0 0 0 r
F P
0 g
s
.29696 .54397 m .43844 .3873 L .36116 .63693 L closepath p .156 0 .373 r
F P
0 g
s
.80067 .5494 m .62856 .57743 L .43844 .3873 L p .83 .492 .414 r
F P
0 g
s
.73818 .78925 m .62856 .57743 L .80067 .5494 L closepath p .901 .732 .664 r
F P
0 g
s
.73818 .78925 m .55476 .97195 L .32289 .88767 L p .756 .693 .791 r
F P
0 g
s
.36116 .63693 m .62856 .57743 L .73818 .78925 L p .756 .693 .791 r
F P
0 g
s
.32289 .88767 m .36116 .63693 L p .73818 .78925 L .756 .693 .791 r
F P
0 g
s
.62856 .57743 m .36116 .63693 L .43844 .3873 L closepath p .726 .539 .637 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{261.125, 310.188},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm8tTFEccx8fdnX3A8hQEBBV8gIpBAQFFfICwCAgioiAPEVEjGKMRY0zU
PExSOSSXVKVyySWH5JLKMVeOOXrMNUf/BK9k+9fNr3qHb8/2urrBKqna3qG/
3Z/vt7tnZme2ZofnH9y6cWf+weLCfG3//fl7txYXlmsTd+8nq4KbHGeTm3y1
1zpie9Vx1gr6C4tC/fNu+932u22r7W/FW0AcR59rFU5I1Kz+83hpVR1lT6T6
Db0FWU2+nIAoCfGZbPQ1M8MsPZLSM5ZiLD2U0lcsxVl6IKUvxRuZFgqJtj6S
0hcslXKvu1KiAdFAyli6o0nUq4Kl21J6ytJWlhal9ISBNSy9L6XHLO1g6YaU
aFJcUVHH0oKUPmVpN0vzUnrEUgNLc1L6RC5fsmIfS7OaRL0OsDQtpYfcq4ml
y1L6mKVmnt5LUnrAUhv3GpfSsniLiIoOlsakdJ+lTpZGpUTLFhUVXSyNSOke
SydZOqtJBOxhaVBKd7lXL+2Nct9Uf06/bPQhN+ozN6J9IyaUBGiUkI0+4Eb9
5ka3udEAaNQnGy2Jt7w0jRa50SAPPOGVhkD/XtnolniLp/ZXaNpz80VFYHXl
+988B/UZwDwtO95k46Re60xRG0FAnH62VYlucO+A6KyaJzv6IzxReiTsui8s
BGAJzqNGs8CIIEC4ANHnRVxjRAggwr6IHg0RMyGiANHrRcwzwgWImC+iWyKu
8kAQIg8gTkOEMUXcF3FKIuYYEQaIAoDo8SKuMCICEIW+iJMaImpCFANEtxcx
y4goQJQAxCltV1+Zkpe3JzQYnQJjAFZqglEehZjxRZQBxEmQ57iETTMsD8DK
TTDKoyPowyUfILYAxAmQp0vCpnxhlSYY5VGIyzwkhKgCiOMQQSniALEVILrA
kI5J2KQvrMYEozwKMcGIAoDYBhDHQJ5ODUZXF4UAtt0EozwKcckXUQsQnSDP
UQ1GF11FAFZnglEehbjIiGKA2AkQR0GeIxI27gvbbYJRHh1BbUoAYg9AHAF5
OiTsAudBsHoA6zDDxnxhey1h7RpMXbWvh+0DsHYz7DzDNgPYfktYm4SNMqwM
wBoBrC0NLGCCvWcJOyxh5xhWDmBNAHY4DUxJ4hJOAFHGgwDbSmWIsQrdKskj
luRmIzk1sMIOAyyahxaAbcGBWzIjtwLyQVGGvTDjIrUBBN3D0RkxuPpi5c+1
O+/nY/TuiHuydTHFzZdj2KvagcdOjhn1eCgf5SHvtkKax7Jp5+0ANtVsU0A2
Qd1GfE2QLFMv45t0X9fjK8eIThBHgXk5z+PmVzHXJ3bZCVCZuk+gz5hOEKSQ
Z6Eyd0GOgSARDrKdgrgpq65WPnXpU82DwBxdRhynMqSb82LsspyDg+YYIRAD
XRB1iZJM9+bOtINNA6t///VcqUl7ipBhkCEQJAyCoCvuVg4SBUEasg8SAUHQ
fQR9ZITkWWB9kHrLIIeyD7KfZ6QUBNmTfZAoCIJuFus5SMWbCRIDQdC9805e
mm0gyO7cBdnGM1IHgtieM5rNQfJAEPTNShUHaQBBdmYWZBAEiYMg6Iumcl6a
A/9vkGKekWYQpC77IAVUunqQtW8R5TczJHUA8x3APJiZeSGf3B3dOI9nv8vS
Fw26JWNfl8fbDXy3Z+9bJEq6Hk0KYoml6MhmiexNB4BpCZueBQY1lquYzkDV
JQ3IZCh3VmhU1ZbT1rohrIqB1QiwqrKcwI1rdQ5Y2V6Xq3vlM5ZrlUOrUWC1
xXICN67VeWBVnr0V2i3GgFWZpVVbZlYXgBW6RX0NVuPAqjQzq37Ltcqh1UVg
VWxp1b4hrNBaTQCrorfeahJYoS+DQmarhOVa2VqhUXVkZnUZWMXfeqspYJVn
uVY+Vmi3mM6d1QywillO4JGcW/VZrtUssIpYTuDGtboCrMKWE3jUbIXWai53
VleBVchyAjO0mgdWwQ1r1Wu5W1wDVgHLtep8FStXt6JX8n/x8GK2+AUqQyn4
zMloOa6/GpnuylHSG545FxPgAtgx815TZMIGTMl0GDVCI72pJfPbyaxg1zXY
vy9fGIepHudIMAwNTl9dAVNAK16hkeem8GxD8lrQE7vqSzbzYaXQycNKlKmT
i+5P1RM7/ZwfGcxbGqDjVjfwjCUOrK4Cq+CbsZoDViHLaVMPXp0BVvnA6gqw
ct+M1SywCr+KVUizIruYpVskM7cB7BYFbjPALaomU3Ojl5if7owdpoFDzNbB
9TjIRYoAmylgk5feZhAPBDlcztChR3fAAwkDm0lgk5+djWtpE09vM+RjEwI2
E8CmQJ0XdBuHnxDO1OEScCi0cNCP+yV6eGDJ8FgFGkORr8NZnzEEwRjGgUOx
55gXfXt1PBrAuudRLgJyyWsho8wleFYUfNgED5h4pVnwLgDeZjDyPjMsyCX+
jncNW2bGjhgnVNb9tPKSmlPkYcAuz46dfCXrkiVVDQCDLaLUfyxhi3UZ2wew
FTbYIMBGRKke1l+PrfRiz1mmjXHaEwBbpc3y2odpX2YGcTboNBlQ7v7MsEWM
bQfYrV7sqM+Zp4xRLQBVDaYgkR5awct10JSPqs6kR1VxvkbTylOVPH/LZ1kN
qGpGNZh2eaoaSY/azqhdpjMKnaDOp0fV8VzVmk6eVHVRosbwtckuDlRj+uij
PpO+lHqmVJquBKhqxpeyjyllpqsjqpqTlAuY0siUYtPFL/W55ktp4tktABSX
s9z0pRziLDHTLRr1Ub9zHF93GIvHcNcQLrz1cvi3lah3O/dOCuJTR4rqI+Je
mo604y3LRrQbUa9mlh5pkqd/Izd6am5Uz42eyUaX2KSOpe+8Ug1LP3ilCpZ+
lNKE5rp2EizmRj+bG+Vzo1+0RmQSYelXKU2C/qT/rukk/yEr6Hy4gX6L/G57
42w7m/4D9chjTA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 260.125}, {309.188, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"c071e81d-07ff-49b0-8f8c-5d2d8a3f2025"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(34\\). \\!\\(\\\"pentagonal orthobirotunda \
(J34)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"59eebc4a-0ae4-4697-9933-4b51f9c4e831"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.08694
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0572707 1.16812 -1.11022e-16 1.16812 [
[ 0 0 0 0 ]
[ 1 1.08694 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.08694 L
0 1.08694 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.40932 .76516 m .46072 .60391 L .35944 .4665 L p .864 .678 .649 r
F P
0 g
s
.46072 .60391 m .5371 .44055 L .35944 .4665 L closepath p .762 .67 .761 r
F P
0 g
s
.58631 .73283 m .46072 .60391 L .40932 .76516 L closepath p .738 .536 .619 r
F P
0 g
s
.5371 .44055 m .46072 .60391 L .58631 .73283 L p .651 .537 .711 r
F P
0 g
s
.71514 .46522 m .5371 .44055 L p .58631 .73283 L .651 .537 .711 r
F P
0 g
s
.5371 .44055 m .71514 .46522 L p .59081 .25818 L .575 .669 .903 r
F P
0 g
s
.59081 .25818 m .45449 .31867 L .5371 .44055 L p .575 .669 .903 r
F P
0 g
s
.45449 .31867 m .35944 .4665 L .5371 .44055 L closepath p .76 .741 .835 r
F P
0 g
s
.58631 .73283 m .74645 .64975 L .71514 .46522 L p .651 .537 .711 r
F P
0 g
s
.70386 .81873 m .74645 .64975 L .58631 .73283 L closepath p .566 .361 .562 r
F P
0 g
s
.58631 .73283 m .40932 .76516 L .40004 .87827 L p .651 .31 .381 r
F P
0 g
s
.70386 .81873 m .58631 .73283 L p .40004 .87827 L .651 .31 .381 r
F P
0 g
s
.35944 .4665 m .23253 .53875 L p .40932 .76516 L .864 .678 .649 r
F P
0 g
s
.35944 .4665 m .45449 .31867 L .39196 .28299 L p .882 .96 .846 r
F P
0 g
s
.23253 .53875 m .35944 .4665 L p .39196 .28299 L .882 .96 .846 r
F P
0 g
s
.74645 .64975 m .84302 .53662 L .71514 .46522 L closepath p .456 .4 .706 r
F P
0 g
s
.76089 .35687 m .71514 .46522 L .84302 .53662 L closepath p .362 .421 .788 r
F P
0 g
s
.71514 .46522 m .76089 .35687 L .59081 .25818 L p .575 .669 .903 r
F P
0 g
s
.84302 .53662 m .74645 .64975 L .70386 .81873 L p .127 0 .363 r
F P
0 g
s
.40932 .76516 m .26501 .73446 L .40004 .87827 L closepath p .841 .487 .384 r
F P
0 g
s
.23253 .53875 m .26501 .73446 L .40932 .76516 L p .864 .678 .649 r
F P
0 g
s
.39196 .28299 m .45449 .31867 L .59081 .25818 L closepath p .558 .89 .986 r
F P
0 g
s
.86837 .63841 m .84302 .53662 L p .70386 .81873 L .127 0 .363 r
F P
0 g
s
.70386 .81873 m .77438 .82681 L .86837 .63841 L p .127 0 .363 r
F P
0 g
s
.59333 .91624 m .77438 .82681 L .70386 .81873 L closepath p .139 0 0 r
F P
0 g
s
.40004 .87827 m .59333 .91624 L .70386 .81873 L p .651 .31 .381 r
F P
0 g
s
.26501 .73446 m .23253 .53875 L .20833 .64061 L closepath p .984 .727 .339 r
F P
0 g
s
.39196 .28299 m .24286 .42925 L .23253 .53875 L p .882 .96 .846 r
F P
0 g
s
.24286 .42925 m .20833 .64061 L .23253 .53875 L closepath p .791 .737 .212 r
F P
0 g
s
.59081 .25818 m .76089 .35687 L .72387 .3232 L closepath p 0 .322 .735 r
F P
0 g
s
.84302 .53662 m .86837 .63841 L p .72387 .3232 L .838 .464 0 r
F P
0 g
s
.72387 .3232 m .76089 .35687 L .84302 .53662 L p .838 .464 0 r
F P
0 g
s
.40004 .87827 m .26501 .73446 L .20833 .64061 L p 0 .174 .701 r
F P
0 g
s
.40004 .87827 m .44542 .89218 L .59333 .91624 L closepath p .191 0 0 r
F P
0 g
s
.32047 .73552 m .44542 .89218 L .40004 .87827 L p 0 .174 .701 r
F P
0 g
s
.20833 .64061 m .32047 .73552 L p .40004 .87827 L 0 .174 .701 r
F P
0 g
s
.59081 .25818 m .72387 .3232 L p .37993 .36959 L .579 .143 .178 r
F P
0 g
s
.37993 .36959 m .39196 .28299 L .59081 .25818 L p .579 .143 .178 r
F P
0 g
s
.75707 .73414 m .77438 .82681 L .59333 .91624 L p .72 .881 .956 r
F P
0 g
s
.53891 .77487 m .75707 .73414 L p .59333 .91624 L .72 .881 .956 r
F P
0 g
s
.59333 .91624 m .44542 .89218 L .53891 .77487 L p .72 .881 .956 r
F P
0 g
s
.37993 .36959 m .24286 .42925 L .39196 .28299 L closepath p .145 0 .102 r
F P
0 g
s
.77438 .82681 m .75707 .73414 L .86837 .63841 L closepath p .937 .963 .746 r
F P
0 g
s
.20833 .64061 m .24286 .42925 L .37993 .36959 L p .404 .294 .614 r
F P
0 g
s
.32047 .73552 m .20833 .64061 L p .37993 .36959 L .404 .294 .614 r
F P
0 g
s
.79319 .5076 m .86837 .63841 L .75707 .73414 L closepath p .949 .814 .676 r
F P
0 g
s
.86837 .63841 m .79319 .5076 L .72387 .3232 L p .838 .464 0 r
F P
0 g
s
.72387 .3232 m .79319 .5076 L .59945 .39863 L closepath p .831 .533 .484 r
F P
0 g
s
.72387 .3232 m .59945 .39863 L .37993 .36959 L p .579 .143 .178 r
F P
0 g
s
.44542 .89218 m .32047 .73552 L .53891 .77487 L closepath p .565 .633 .877 r
F P
0 g
s
.59945 .39863 m .43636 .5644 L .37993 .36959 L closepath p .644 .436 .586 r
F P
0 g
s
.37993 .36959 m .43636 .5644 L .32047 .73552 L p .404 .294 .614 r
F P
0 g
s
.59945 .39863 m .79319 .5076 L .75707 .73414 L p .772 .636 .711 r
F P
0 g
s
.43636 .5644 m .53891 .77487 L .32047 .73552 L closepath p .616 .568 .777 r
F P
0 g
s
.75707 .73414 m .53891 .77487 L p .59945 .39863 L .772 .636 .711 r
F P
0 g
s
.53891 .77487 m .43636 .5644 L .59945 .39863 L p .772 .636 .711 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{273, 296.688},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnMlTHEcWxlu9Nw1Ns4MQu1gaiU0gZEmITSwChAABQrIsyxjLI3nGownZ
MzERE3ObOTnmMBEcfFCELzr66KuP/hP8L/g4R101lZmvHt3VX1a/HEa2DiKi
sprKyu/3vcyqrKx18/Drp0++PPz62dFh9+qLwz89fXb0VffK8xfeotiZSORM
nTcNdUfU7zeRiJ/ov3qV0D/vf7///f638++XapZU+9Rzs+BYzdJqQfLNcXch
qn59abL+pWYptSDPWb83Wf/kUm2c9cxk/Z2z+jjrdybrLyw4wllPTNYfudQ0
Zx2ZrC/ULK4WzHPWocnSSL1gmbMem6ynehZTS950R1p1L7LKKz0yKxlfcV6J
Vlzj9R6a9T7Xs0TJer7oBq/8wKz8JGTlO7zygVn5s4BNb4pEdWqWeaurqajg
vil4BArGQMFtLrhrCn4KCsZBwbtccMcUPAQFE6DgHhfcMgU/AQWToOA9Lrhp
Cj4GBVOg4IFK9aINU/Bjl4LUVD9/8zcz/8occtaN1CMglQZS+2w+pqQo1xdb
M2IfAbEMENtlsYQWi7MYCd4yeg+BXpWtLX1LXpxKM0FpsbJvd9XIfwjks6Hb
WCZEdMWIPgCi1aFbfDZQod7k7SMqNcvoL3LTAO4DQA0AbIJKQagYQC0a1AFA
5QDqpI+oFQIWDOCeELDOgDoAiAPAvAHsA0AtAKyByqoXxkKoPYDKA9RJL90k
jGXOAHZtAH28u8myLW6yd21VpMW8jE/XX+rMV18ce/95qT7EXQc11iokzxry
jq31qZ/xwJTrQTU+o1J9GJ3gcNvdoNu2/VMvSgJonmMeYminEHrDQLdsPQ31
KuXQFo60C1S0I/6OrR+l/qcc38UxN3PMPQCaANAZA90E0AxDcwDazzFXM/S8
MFKC3gbQNEPzADrCkcZBRTviNwA+yRtXPcBPqVQfUAaE1XvdoNYBKsGRNgHU
NO3BatlPr35QU0Sv3C8MkshrgBxncqstyAA5RmlxbfcKq+CaMXILGImxkbPA
yCQwklCpLtEnrAfCrwJ8lPHnAP4SwKcZL92/rhq8GW+UDu59eBeAjwN4luFd
bvDlQOzqSEFBlJPHADkHmr9D6OED42FJzWKmkyiHjgJonsN1ROmhV9TspZYu
JIBqYBQ6PiUB6opBLRbVrDryKtwggF4A0GZQqW3CSB3xwwDfyjEjKIp52g1a
ANB2hqLRB4o0BDoEoIMA2snQZmGklw10AUALADoAoD2gdRveDr4f4Ps45kYh
dMoNeh5ABxiKRuOO0GEA7QXQAkPzbwfaA6AXQevmhPhJN3w3wI9yzI7QeQC9
CKCdADrB0Boh9JIbtANApxiKzob/D9BzAHoFtG4a4FMAP+GGbwf4qxxzRhhz
CHQEQNsAdIahKWGk4wY6B6CjANoKoHOgohPCmB3xLQC/wDEjKIp5zA3aDKBL
DA1em/sfoGMA2gigqwyNCqGjbtAGAF0PtG7EbNGnRdUD1G2OrwoARgxgFgAm
bJcQAoCt4lhCqs0RVQtQ228HlQOoneKepgxw0Q1QAwB3i2J5/fP3ehNIu6Eu
AVTWioozinAosAtutCpA26Wz0WJaWICEvAGQk7ZLZwHkXggSRTlsR04BZAog
9wPN501eB6LSyv2zIz4J8PcAPibEF9zwCYA/+PXwcSE+AfDorInwMwA/DfBR
gL8vxKPohyrhE8V4Pamt+CFAJoURV0TGS5ARdf+rnJYCNHRRKYR2RaV0X/ft
AQKNhWJJC1GDbijUSBk31PUKqJfHP+ntAUVVBVDoPk8Iqnh7UCjCIVoW0NDd
voq0RAnNDxDVJUKiAAfsyMuBuvQmz7VKS5vyAcBXCyMOwU8BfBzgUQ/zG+Nr
hPh+g78mxCcBHh3caqmXLcLrSW0rg3bkJECmfn1kGiDRCCKv07LHCEJolwAt
40TDAQ7YkRMAmQXIPYCswwES7aowQCmtPrDNRsJRKLAagAoO3RWkwQ01DlA5
IaoRoPrfCdQYQOUBagegmlRKt/GsgFEAqBMCmoti8TurPoP6QBhLPUBt21B0
29cKQLE0AMAWALRAgF6AZJuA7J0KVfSf1z/q5g4ACj8EwrhwCl4T4BW3PuIV
AK8F8Datm3OcecQsPmQh5CBAtgqRDRhZ0r2aXI9rpkjJ7Rsf2AaAt619XqIE
6NctGBoQ1b+BXs49C7gbjlwwBiziltV3L7DRDmysAxt53jPiCo8HJzNCI93A
yDmhkdrAtm3MlFuiNrkhtNQJLHUCS2vAUg5YQrUUYikGLHWcwlKN0BJtQbM2
S2WPKvhGuoGRWxVG176RhJuRBKibVmCpB1haPYUlOiGeE1pqAZZ6gaUV2ymm
ruu03ci80EgTMNInNJIBdZMClgp2S0lgqQFY6geWlitcVPAtoVoiSwtCS/Wn
sJQSWqILkos2S/TEarmRQWBkqcKlKt9Ixs1IGtRNDbA0JLSUEFqiy9M3hZaq
gaUCsLQotFTlZikDLFUBS8NCSzHe4auBEbo3sSQ0kgZGLgIjC8BIFNRNiKVl
myXqvFyM4PsKOQAfscOzoD7iwMYosDGv07L7N7V2BytCB1HgYMzq4KRFIhb8
qB1f7R8HTvB6UlITADkHkHk7ctWKPIlYSUwC1KxK6TmZcgDdY75lA+h2QRFc
V2ncdJ3ustTex69+8SdddyMAdFmlOjf25sdfXgf2ErSh0hMCaxUqjcBeq/l4
1LuOMz7thl8X4jMq1S8HoOGBfspJ5+YAHvUR9EzIhhCf4+jRqPY8R9/ohr8t
xNdz9OgUsIOjbwP4LMDTU0CbAJ8F+FaOvhHgWzn6Ljf8HSH+HOPRhaR6xp8H
eHTspKe9toT4bq78KoCv5sofBng0miD8thDfz9Gj6+RJjn4c4NFAj57v2xHi
C4z3Ml6aOzOaHGXyZTfyXUCuAuRRJl8DADTSpydDd4WAMZ2aZR5AQxxRe0LU
CEDNABQ6t5u2o1CDXQCoG26ofWFUwwA1C1DobJ6e0b4nRA0B1Jwb6kCIGhSi
0JUcesb+vhDVD1ALABW1ox4IUX0AtahTfL2OXpD5EMhngHwvkL9ZWf6hUL7H
Kl92WZVeX/pIqNwFlJdClR8JlTuA8opK9TCTXmf7WCjWDsRWg2KPgVgaiJ0N
FaOXCz8RirUBsWUWm7eLoTBbbK2hxehV3kOhWJNto9Fi5oy15B37MLEG2/6j
xeiF6SNhnSGxeRajN8Y/E4rV2forLUbvxj8RitXaunQtZsar9I2FymI1tkOR
FjPDP/qwQ6lYCohV2w6hWsyMpsynJFD3l7Ud63VpMyQx36hApTOg9FUubY7M
5uMXqHQKlL6iUr3IHAHN1zpQ6QQoPc1s+pDFH9RMr5MUSkyxBH044zlLxIFE
DEhMsgR9o+MFS0SLzvSLTl91139CNv1V5M9qpntbg/Eh3nmCvyZ9ROSvaqZV
xziLPj2iv2Wi330d4Cz6YMk/OKuDs+gzJ9+omR69N3EWfRzl31yqmrPokyrf
cla86GDtH5hppe+4MujzLTr3Hfq+zPvf7+bvyJn/AlY+fjc=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.}, {295.688, 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"4ac6a88b-b98c-4f50-826f-ea48156ed2a3"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(35\\). \\!\\(\\\"elongated triangular orthobicupola (J35)\\\
\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"d4fcb7bd-df66-4535-a450-bc58552b737b"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.22836
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.118205 1.26638 0 1.26638 [
[ 0 0 0 0 ]
[ 1 1.22836 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.22836 L
0 1.22836 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.69548 .90162 m .78263 .63867 L .53808 .60005 L p .602 .413 .599 r
F P
0 g
s
.53808 .60005 m .44808 .8496 L .69548 .90162 L p .602 .413 .599 r
F P
0 g
s
.44808 .8496 m .53808 .60005 L .31856 .47541 L p .817 .651 .677 r
F P
0 g
s
.54724 .32905 m .31856 .47541 L .53808 .60005 L closepath p .784 .677 .746 r
F P
0 g
s
.53808 .60005 m .78263 .63867 L .79754 .35532 L p .583 .507 .735 r
F P
0 g
s
.79754 .35532 m .54724 .32905 L .53808 .60005 L p .583 .507 .735 r
F P
0 g
s
.32305 .36822 m .31856 .47541 L .54724 .32905 L p .798 .978 .903 r
F P
0 g
s
.54724 .32905 m .57388 .21016 L .32305 .36822 L p .798 .978 .903 r
F P
0 g
s
.54724 .32905 m .79754 .35532 L .57388 .21016 L closepath p .461 .673 .956 r
F P
0 g
s
.31856 .47541 m .21806 .73237 L .44808 .8496 L p .817 .651 .677 r
F P
0 g
s
.29396 1.01172 m .44808 .8496 L .21806 .73237 L closepath p .84 .606 .585 r
F P
0 g
s
.69548 .90162 m .44808 .8496 L .29396 1.01172 L p .602 .264 .369 r
F P
0 g
s
.21806 .73237 m .31856 .47541 L .32305 .36822 L p .875 .894 .471 r
F P
0 g
s
.73913 .83448 m .83362 .54733 L .78263 .63867 L p 0 0 0 r
F P
0 g
s
.78263 .63867 m .69548 .90162 L .73913 .83448 L p 0 0 0 r
F P
0 g
s
.79754 .35532 m .78263 .63867 L .83362 .54733 L closepath p 0 0 .353 r
F P
0 g
s
.57388 .21016 m .79754 .35532 L .83362 .54733 L p .872 .504 .346 r
F P
0 g
s
.32305 .36822 m .21235 .64813 L .21806 .73237 L p .875 .894 .471 r
F P
0 g
s
.21806 .73237 m .21235 .64813 L .29613 .95461 L p 0 0 .296 r
F P
0 g
s
.29613 .95461 m .29396 1.01172 L .21806 .73237 L p 0 0 .296 r
F P
0 g
s
.29396 1.01172 m .55196 1.07624 L .69548 .90162 L p .602 .264 .369 r
F P
0 g
s
.55196 1.07624 m .73913 .83448 L .69548 .90162 L closepath p .611 .854 .491 r
F P
0 g
s
.55196 1.07624 m .29396 1.01172 L .29613 .95461 L closepath p .151 .591 .931 \
r
F P
0 g
s
.57388 .21016 m .59373 .40008 L .32305 .36822 L closepath p .565 .266 .42 r
F P
0 g
s
.83362 .54733 m .59373 .40008 L .57388 .21016 L p .872 .504 .346 r
F P
0 g
s
.21235 .64813 m .32305 .36822 L .59373 .40008 L p .574 .373 .57 r
F P
0 g
s
.48607 .69703 m .59373 .40008 L .83362 .54733 L p .838 .665 .667 r
F P
0 g
s
.83362 .54733 m .73913 .83448 L .48607 .69703 L p .838 .665 .667 r
F P
0 g
s
.48607 .69703 m .73913 .83448 L .55196 1.07624 L p .762 .721 .814 r
F P
0 g
s
.55196 1.07624 m .29613 .95461 L .48607 .69703 L p .762 .721 .814 r
F P
0 g
s
.59373 .40008 m .48607 .69703 L .21235 .64813 L p .574 .373 .57 r
F P
0 g
s
.29613 .95461 m .21235 .64813 L .48607 .69703 L closepath p .563 .438 .668 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{256.812, 315.438},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm9lSFGccxQeGYRXZkU0YRBEGhn0dEIYdQRCXIKBRETfcI1aWMpUyFStl
KqlUUsVlHsFXyKWP4K2PkFcg8y2caeD01930mHihlemZ9JzzO+ffPfSsvbD+
4v6dx+svNjfWwzPP15/d39zYCk8/fZ5YFUwLBBL/BdKGwgFxeydxWy/kvzSx
0P/z+fbn2//D7T/FVVA8Jh+pFX/Iq5BYs7M99kBef/hpTT5qHyrJ7+IqXaxJ
F5JAEKLEJSDv2FTK36DMoEqxVOv0v8BdZfxVXgXRQpgZIiiWMkAbf0FiFpGH
IL+t5G9ITjYxZpKq6wrxMxLziDELiVr+GvJ8Is8hOdeV8SdSlSFykaiNPyKx
kMiPkMSryviKJDJEPhK18QcklhB5AeSrSv495GVEXkQKLivjS1KQIYqRqI3f
IbGCyEtJ4iVl/JYkVtohZIA2fo3EGiIvJ4lLyvgCxlpiPIYcLd8iBZmxEsZF
ZfwKOfVEXk0KzivjM5LIEDVI1MYnSDxJ5LUkcVYZH8HYSIx1yNHyh6QgM9aT
xCmF2ERixM4o79Xy+ySRGRtgnFDGu8iJEvkpUjCujLdhbCfGRuRo+QYpyIxN
JPGMQqwjsYsYm5Go5TdJIjO2kMSYQlxHYi8xtiJRy69B3k/kbZAPKPlVUpAZ
O0jBXoVYReKQnVHXl/IVksiMXSSxSyGWkThCjN3E2KmMl2GMezNeIqU9Ii6K
K/kCY/QQxt3stW1xEa9A1raz7fZyD4F1KNgFAssTyyyxqsM/rBjNmvzDqgAL
e4MtEVgDxqxyuQMMsAiaFbts1q5g5wmsG7Bc/7AhjBn0DxsXy5D667U1LhLj
tFxmyHXv376V14kL28oGypRcBkFJXBIPfbF0Pjp5xAbFUh4aOgmsTcEWbCfd
CwsB1u4Nxpplk4Fb7bHnXHbMQccUwPIAi3iDsYGPkoHZU3JUYedddixAxxTA
igBrtIfNuYSVkoEb/GPL0NEjjO2UCsBOEFirgp112ayKDFznH1uNjgbYrEtY
LWDH/cPCZOAq/9h6dDTAZlzCTgJWSWAt3mCNZGD2ds8j9jQ6GmDTLmERwNhb
X4+wVjIwew+vsVMEO0OwUXQsJrCIPYx17ACs0D+siwycb4+ddIntQccUwPoA
y7OHTbjcFQNk4GxvWNYxho7sU7Bmb7BhwLLsYeMuBx4hA2d4w7KOcXQ0wMZc
dhwHjH2s6hE2KZcZ1oF35EsaWwqbb1osgxZj3GX8rGV7707QZI9g2Wc/KmLU
xyDN9gi3LTRixGWLFCDYIBF7hNtBNOKMj0E8Itgg+plo2EeL/x7BBtGvc4Z8
tEgdIuYDEf2UEIM+EG2fEmLAB6I9ZYh+gpj1j3DboiNliD5xJZ8j2eFuzsGo
n123t97uXjLFirjLDp1WVNCKEl98aljsEDD5EuKoQMhPu3pcjnYAUYIWbS5b
dO1HVALRdFhEHRD1LgexIvRd4rOBxLX4mkrDql326baHRQAr8w/rwP4qcDnm
HliGBTan97oul+OyXI+RFwMv6I3XT4aNC5iMmPdmHJd/Hqrcu7/f6/uc4w+M
IxtohwAlLolX3YllujoaHOT1GnmjhBeSy70basIzeYSQs9A0Nbwc8OKE12fl
hfbx1H4ZJtAjgI4cDjpEoAWADh8OGiPQYrKjBgi+3+6BOSd/MjO37yjeT6JK
0D8FAX0koBwBff4DeklAJQK6ScCAt4AeElCDgE77gAGXAd0koJbs7jb/UV0k
KoxZoiRg0FtAJwloQECLfcCg4e+BtW4EtNkJ6ty6nQQ0IaCRBMS8BbSRgBay
ixv8R0VJVBSzGAJihj3ANlA7oGECHbJCnVu3kIAuBNT6D4iQgF4E1NgHDBk2
C2s9QHZrBcEPW/HO/ZtI1CD6pyDgNAkYRkC5/4BGEjCKgBISoH/UM2zYA6z1
OKBFTlDn1idJwCTZxUf9RzWQqGnMkk8CRrwFnCABZxGQZx9wxrAHWOtzgOY4
QZ1bh0nAIgIyScCot4A6EnCB7OKgfdSIYQOx/pfQ3xHq3L+GBCyLpVw17h+2
YtkYux3j3rDVBLtqjx01bE/WkKHGrCjnhhUuseP+sSvY++qLNT01H7fSCJhy
BrgdbE8X58FKXWKn/GOT46rvrfWu5eOWGQGzzgC3g+3p4jxYoR1W9lI/udAP
Lt6r2DjYnDOgyAiYtwKcx8k3ws59BNiEYbSjRsCCM8DcYNEKcB4nx+EY+teH
lzJUYycNvfII6gpBnXdG5RpHXHIG2I4lAResAOdtFDLC1G9w9bGDt8my2zLW
8yFMgExjgz0A53HSjbDLCjZtaBM0Ar44HCC5PZadAWyEJOCKFUC2hxSt7Zer
Y+T+z/eUOHnwW7GKM1m5nfD2P3qOXdOq1WS3SXZtyddba862EGxLsOlTjmbp
PInHYsIhN8oCeaJYM3pzkTaHtGtGxxE4ZuD4Ujmsv9xLHht35ZOQX7eXF0I+
BvkNe3kx5KNkdENOKYzJd5k3lVw+l+m3nbui5Hvd9f2iCmz95Bv6W/tF1SB1
k56aaf01akIuLhZjBzHeshjlPcchjxK5OiNGHfgz9taKoPsdJboIUSVEpyHS
JyIuQ3QMolMkWDPlQ1E+6kux0eqJXNNvgF4Cei2R31PyDciLIK9GY32y5j2I
CiCqgOiBEj2EKB+ichKsmU8hz4O8hMg1fQvyHMgLiVyfiPoN5FmQ5xO5PrX1
JbZxBrZxrr38FejJw1UWkT9W8teQK73+mxJhBz1PlOcNGiXuf6e/khL3qJPq
LOfPPlcrpPsTOn34823/twNp/wJmkXZI\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 255.812}, {314.438, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"4b8ce098-2ed8-4ecc-b283-7b6551e448b5"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(36\\). \\!\\(\\\"elongated triangular gyrobicupola \
(J36)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"b2acea89-6914-44f7-8644-6504680fa82e"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.27328
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.13764 1.31423 1.11022e-16 1.31423 [
[ 0 0 0 0 ]
[ 1 1.27328 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.27328 L
0 1.27328 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.37632 .47182 m .2159 .60642 L .42378 .74734 L closepath p .868 .659 .617 r
F P
0 g
s
.29255 .38487 m .2159 .60642 L .37632 .47182 L p .913 .976 .781 r
F P
0 g
s
.37632 .47182 m .45816 .25692 L .29255 .38487 L p .913 .976 .781 r
F P
0 g
s
.65262 .41545 m .37632 .47182 L .42378 .74734 L p .68 .534 .681 r
F P
0 g
s
.37632 .47182 m .65262 .41545 L .45816 .25692 L closepath p .7 .715 .86 r
F P
0 g
s
.45816 .25692 m .65262 .41545 L .81074 .48733 L p 0 .371 .821 r
F P
0 g
s
.65262 .41545 m .70458 .69303 L .81074 .48733 L closepath p .356 .312 .671 r
F P
0 g
s
.42378 .74734 m .70458 .69303 L .65262 .41545 L p .68 .534 .681 r
F P
0 g
s
.73659 .9176 m .70458 .69303 L .42378 .74734 L p .631 .377 .516 r
F P
0 g
s
.42378 .74734 m .4361 .97316 L .73659 .9176 L p .631 .377 .516 r
F P
0 g
s
.4361 .97316 m .42378 .74734 L .2159 .60642 L p .892 .587 .462 r
F P
0 g
s
.85299 .71281 m .81074 .48733 L .70458 .69303 L p .107 .023 .469 r
F P
0 g
s
.70458 .69303 m .73659 .9176 L .85299 .71281 L p .107 .023 .469 r
F P
0 g
s
.81074 .48733 m .60863 .31915 L .45816 .25692 L p 0 .371 .821 r
F P
0 g
s
.45816 .25692 m .60863 .31915 L .29255 .38487 L closepath p .45 .023 .136 r
F P
0 g
s
.2159 .60642 m .21379 .8353 L .4361 .97316 L p .892 .587 .462 r
F P
0 g
s
.21379 .8353 m .2159 .60642 L .29255 .38487 L p 0 0 .257 r
F P
0 g
s
.4361 .97316 m .21379 .8353 L .35372 .95795 L p .557 0 0 r
F P
0 g
s
.35372 .95795 m .58743 1.10069 L .4361 .97316 L p .557 0 0 r
F P
0 g
s
.58743 1.10069 m .73659 .9176 L .4361 .97316 L closepath p .559 .21 .334 r
F P
0 g
s
.63754 .54579 m .60863 .31915 L .81074 .48733 L p .916 .558 .34 r
F P
0 g
s
.81074 .48733 m .85299 .71281 L .63754 .54579 L p .916 .558 .34 r
F P
0 g
s
.85299 .71281 m .73659 .9176 L .58743 1.10069 L p .761 .933 .581 r
F P
0 g
s
.2963 .61381 m .29255 .38487 L .60863 .31915 L p .603 .319 .458 r
F P
0 g
s
.29255 .38487 m .2963 .61381 L .21379 .8353 L p 0 0 .257 r
F P
0 g
s
.35372 .95795 m .21379 .8353 L .2963 .61381 L closepath p .18 .177 .618 r
F P
0 g
s
.60863 .31915 m .63754 .54579 L .2963 .61381 L p .603 .319 .458 r
F P
0 g
s
.70185 .89317 m .63754 .54579 L .85299 .71281 L closepath p .906 .674 .576 r
F P
0 g
s
.58743 1.10069 m .70185 .89317 L .85299 .71281 L p .761 .933 .581 r
F P
0 g
s
.70185 .89317 m .58743 1.10069 L .35372 .95795 L closepath p .682 .762 .912 r
F P
0 g
s
.2963 .61381 m .63754 .54579 L .70185 .89317 L p .673 .524 .675 r
F P
0 g
s
.70185 .89317 m .35372 .95795 L .2963 .61381 L p .673 .524 .675 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{252.25, 321.125},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnOlyE0cQxwedliz5vi/k2/KFMRhjbMAy4AsDxoQrCQFzBEgggKFCpUhR
5E6KSiqV8JFH4DV4lXzkCahydqdHjST/te71ShSuhCrtmp3p/6+7Z3a0mt3Z
E6uPbt24u/ro9rXVxNza6v1bt689TMzeW7MO+Xcopd4qtSOVUPbf69Z/zebt
uvXPKvx/t613a/bObzfpL3Tggd4F7CPrD1Ui/fHZB36iKvf1zp9ZxTKwtvrQ
91TpK3unraJs/4yK7gL7GFd6SpXugErlDHlClb5gSC3bf0NFt4F9PVd6TJVu
gUpNDHlElW6CSm2stEaVbrAnnVxEeVLXgX03QygZ6hqolGSlL6nSKkOGuYji
VFeA/QhDPqdKl0GlvaxEfqpLDBm3i3RPuEpFnwL7UXsbtA/51l+uPDSlb56v
6GFilQw/AYbDbBjWhgE2NMYUkrrI/gyyRUxbBLMs0kgKUl0AyF4WqMzx1fpY
/ttbOmb+mYjVeSDWyWL1+cS010biLIfRzoYtwDAAvLhIEh8BL1pYrB2IBYEY
JUadAWINLNYDxEJAjBKjVoBYDYsNALEw58dILHN+qthwBBhGgBeUGHUKeBFn
sTEgFgVilBh1EohFWGxSKEaJUUscXJglpoFEKZA4TRLHgT8+FjsGxGKcYiOx
aO9C9oFFUL0MsCkJaoHdPwUMy4HhiQxDU2QZauOTQKICSCyRxDyzl4FhJTA8
nmt4Op+hLhVVrwaceTKcy4hRqZQeg5BEDZCYcydRCyRm3UnUcdzGkHaBDMNU
viQ0APwR1yqNQGXGUWVFqJIilWN6F8xRoZQgqSYgNb01qWbO7hYFWoEvB0nq
6IYWTimf3mafX+g0aQOyU95ldwLZSe+yCSB7gGSPAFk/kEUdL8GNUwCxDuDj
uHfZTiC7j2RngGxAKNsFZMe8y3ZzRgsg1gt8HCXZFJANCmX7gOxud7LoREWy
I95lk0B2F8lOA9mQULYfyA5vR9nDQDZcHNkSYQcbALJD7mSl3hrZQ0A28l+T
PQhko0JZ1GSD21F2CsiWAtkzwtx+uLIoCQMkOwlkY0BWX2roS7FB72LHWcy/
/uqHV6b0n1cv7H0hvJ1lQIkGBBhgICjRhnEAMOKAkWJGHDCsj/5uR191LkFT
DKrOyZb1sa4L7W12e/cAaL876DhDGwDUD6Dd+aETAFoGoKMMbQXQAICiazOX
0CGGdgBokFuyAKg+RvUCVBjE154fuh9AywG0k6FDHqBJd9A2ho4CaAkntQCo
RkaNA1QUxId+0BnoOIBWAGgNQ6cAtBRA0Y9Tl9ByhqYANAagLd6hUYbOAmic
WxLF10eofQBVCVBBRi0BVBmID80+uIYqe6plI68c8NDEyWY8fegcAFRw7rYi
a45ZsloaAapABHXuULpHaB8vAEA1AKBpNhHgogdA7yYAcyyZfGnvYSw13Bou
ATQmBRhgIIhRB8KpKhqtHtDQlG9haA2cP5cM+qIMZjHSDYX6RCMIC82i9xQO
2QSQaMbfAZl5jWVw1v9ou9l53Azw8feHb+GWfY/QNhAzukfkgI8BfECI3ynE
d3vHn8+HN/f/XUFLATQohLaDmMPe8SFhyjsAHt01LRK+E+DRHWAHfBTgw0J8
F7c4irnLOxS1eDeI2f/+8D0Aj54jcMBHAL5EiO/llBcAGhG2czInZvsrx2EM
KwGoqBDVD1AOvdcLaoBTWQAAaquBjFjSLdSZHxUGqFLvqDFhVFJUP0B15Ueh
qGJCVJJbqMcdIC7sAn0M6PUO2Gy0eP3mhVZ3QIUAqmwL46KNss+cviKidNqS
xQF0gVgcUEGAKheiOgGq3x2qwtXFQoBRBudACwBapTCwBKYNFIe2E9MGi0Oj
C+1gFi3deA5IP0BWuUJuCHCoOLRWhwBdIquFyGYH5HB+pA8ga4TIppxzz/pY
evY2++vFoUm94BuF+KyE4yd76oXIBiFyeFsj64XIXZnIDQ+BNQpptYDmLxqt
RkgbyddnldXtZahqgAoUB1UlRO32jqoUokYzUPpaoxkA0KRexVYBLcIIyoWA
PbnJSqWHKRgLQpUBVHATlKtY4kLAXgJk3oBJD7fSMycGUKH8qP0A1SDsAlEh
yjzENgFQaKwrAOqAEIUSGBGizOODkwBVJ0SVCFHmAcgpgKoVosIAFc6POghQ
0i/8kBBFXY+eY9JnEwKgzhAAgJL8gGkQC7oERii/EEV9O+sRRbdX2y5RMwCF
fiIhlE+IAs/zbv7DL5iJ0h/7eysK5MEjzU4/YXPbx5YtzS97DMiiCQUtq/sf
EjNPc89yJ0USZ+2tvtaJ5ZeYB/6gOa5le5t+Aur1m5xmigCAeZB9QQhYsLd6
uUoYAFBDGcAiAKDJzaMcQVwYAT3LmLUWJw1AU7aHOIJKIeAwAZYAAE1JT3AE
dcIUGcAJAEC3GfZwBM3CCMzCh5MAgO7iDHMECWEEBnCKezryu5f97hb6bRaP
nAZ+oxt+Hex3vxBg1risAIAPAFo4gl0AgEZBsxSH1q/hO8ON7PVeoSgNemaF
3Ya76NXs5ATQQ1+mNNrRasiMLNjOlbFzh4TOGbFzQCzMns0Ixcx6qPPcr3zs
z7wwOLOcS6+w1CVLQkOzlOzjjEAsQ228CCTQtReNqrTSVru/IDSk0TJj2e+c
O8PLwOkjQgmz9u4Ks5Eh+gFiFgdeZcNpoaFZmHgdOD0llDCLIt+t+HZpeJMN
0UmDDGlha9aS9rTT+4AE+vW5TBLvFsyPCQ3N2tE7gD0KJNDkh1kEe5fZu4WG
ZinuPTZEQ6GD4QPg9IBQwqwpXmM2GueRIQ1t9PIA8/z0RkM0/0XDmPoaON0l
lDBrqR8zmwzxNC6NNvS+BPMkq4xiVpA/AY62OfDoJQDqW+a1OlQ2q+afcmW6
/tgw436J6j0DvtRji8/I4jtWrsP1LlO9H4BytaPFj6xchetdoXo/c72KnMTb
CTBvTvgV4GOgunlDw2+sqSvpv+jVEuo5F0WAvan0O8CFWMm8IeIPVgpy0Q0q
+pOLfFxkXj7xV460TaVXa6i/M4rSncxYfRAvSdkuO7XjX00bX5Y=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 251.25}, {320.125, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"68c7cdf6-853a-49a4-9a2d-754287b3d359"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(37\\). \\!\\(\\\"elongated square gyrobicupola (J37)\\\"\\)\
\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"3885f185-09e3-40d8-8235-f2afeced0814"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.0855
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0567234 1.16608 -1.11022e-16 1.16608 [
[ 0 0 0 0 ]
[ 1 1.0855 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.0855 L
0 1.0855 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.78397 .80903 m .55926 .86827 L .55729 .66657 L p .573 .367 .563 r
F P
0 g
s
.55729 .66657 m .768 .60288 L .78397 .80903 L p .573 .367 .563 r
F P
0 g
s
.33333 .62907 m .55729 .66657 L .55926 .86827 L p .757 .514 .566 r
F P
0 g
s
.6892 .37767 m .768 .60288 L .55729 .66657 L p .637 .552 .743 r
F P
0 g
s
.55729 .66657 m .47978 .4507 L .6892 .37767 L p .637 .552 .743 r
F P
0 g
s
.33333 .62907 m .47978 .4507 L .55729 .66657 L closepath p .749 .612 .706 r
F P
0 g
s
.57867 .22598 m .6892 .37767 L .47978 .4507 L p .672 .728 .891 r
F P
0 g
s
.47978 .4507 m .35763 .31107 L .57867 .22598 L p .672 .728 .891 r
F P
0 g
s
.35763 .31107 m .47978 .4507 L .33333 .62907 L p .836 .757 .775 r
F P
0 g
s
.17447 .71388 m .19762 .50125 L .33333 .62907 L p .938 .685 .528 r
F P
0 g
s
.33333 .62907 m .32079 .83343 L .17447 .71388 L p .938 .685 .528 r
F P
0 g
s
.55926 .86827 m .32079 .83343 L .33333 .62907 L p .757 .514 .566 r
F P
0 g
s
.33333 .62907 m .19762 .50125 L .35763 .31107 L p .836 .757 .775 r
F P
0 g
s
.88755 .67292 m .78397 .80903 L .768 .60288 L p .132 .046 .484 r
F P
0 g
s
.768 .60288 m .86319 .45776 L .88755 .67292 L p .132 .046 .484 r
F P
0 g
s
.768 .60288 m .6892 .37767 L .86319 .45776 L closepath p .437 .434 .758 r
F P
0 g
s
.75852 .30014 m .86319 .45776 L .6892 .37767 L p .178 .466 .888 r
F P
0 g
s
.6892 .37767 m .57867 .22598 L .75852 .30014 L p .178 .466 .888 r
F P
0 g
s
.32079 .83343 m .55926 .86827 L .61778 .94726 L p .584 .061 0 r
F P
0 g
s
.78397 .80903 m .61778 .94726 L .55926 .86827 L closepath p .399 .01 .181 r
F P
0 g
s
.48704 .24293 m .57867 .22598 L .35763 .31107 L p .369 .835 .788 r
F P
0 g
s
.35763 .31107 m .24553 .33676 L .48704 .24293 L p .369 .835 .788 r
F P
0 g
s
.19762 .50125 m .24553 .33676 L .35763 .31107 L closepath p .898 .978 .808 r
F P
0 g
s
.3527 .91052 m .17447 .71388 L .32079 .83343 L closepath p .738 .231 0 r
F P
0 g
s
.61778 .94726 m .3527 .91052 L .32079 .83343 L p .584 .061 0 r
F P
0 g
s
.22375 .5582 m .24553 .33676 L .19762 .50125 L p 0 0 .092 r
F P
0 g
s
.19762 .50125 m .17447 .71388 L .22375 .5582 L p 0 0 .092 r
F P
0 g
s
.61778 .94726 m .78397 .80903 L .88755 .67292 L p .723 .973 .731 r
F P
0 g
s
.77691 .52327 m .88755 .67292 L .86319 .45776 L p .973 .663 .31 r
F P
0 g
s
.86319 .45776 m .75852 .30014 L .77691 .52327 L p .973 .663 .31 r
F P
0 g
s
.57867 .22598 m .48704 .24293 L .75852 .30014 L closepath p .47 0 0 r
F P
0 g
s
.17447 .71388 m .3527 .91052 L .4224 .77009 L p .338 .429 .808 r
F P
0 g
s
.4224 .77009 m .22375 .5582 L .17447 .71388 L p .338 .429 .808 r
F P
0 g
s
.3527 .91052 m .61778 .94726 L .71236 .81483 L p .625 .78 .956 r
F P
0 g
s
.88755 .67292 m .71236 .81483 L .61778 .94726 L p .723 .973 .731 r
F P
0 g
s
.48383 .46847 m .48704 .24293 L .24553 .33676 L p .5 .261 .485 r
F P
0 g
s
.24553 .33676 m .22375 .5582 L .48383 .46847 L p .5 .261 .485 r
F P
0 g
s
.88755 .67292 m .77691 .52327 L .71236 .81483 L closepath p .918 .822 .736 r
F P
0 g
s
.71236 .81483 m .4224 .77009 L .3527 .91052 L p .625 .78 .956 r
F P
0 g
s
.77691 .52327 m .75852 .30014 L .48704 .24293 L p .768 .481 .498 r
F P
0 g
s
.48704 .24293 m .48383 .46847 L .77691 .52327 L p .768 .481 .498 r
F P
0 g
s
.48383 .46847 m .22375 .5582 L .4224 .77009 L closepath p .595 .495 .71 r
F P
0 g
s
.4224 .77009 m .71236 .81483 L .77691 .52327 L p .755 .651 .747 r
F P
0 g
s
.77691 .52327 m .48383 .46847 L .4224 .77009 L p .755 .651 .747 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{273.188, 296.5},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnMlvHEUUxjszPZs9Hu/7NrbHdrwkjtd4S7wRx1mcxRACISzOAkmUEEgi
JLCEQBwQByQOSEgIcQo3jlx9zJEj/wbHXM1UvZpHd/vrmdcZT+JAYk11p6fe
9/uqq7qml+pa33x06+a9zUe3r2+mTz7Y/OTW7esP06v3H2Q3hQ9Y1oHq7Odg
2lLrO5aVS/S/GpWY/7xaf7X+H1z/WS0iqs0/oA0/qkVUbYjsbFlWWK3dp6++
V4uY2pBSX4XU2j366luOauSoO/TVN2phqw1pjrpFX32lFjqvZe9sLW2ptZ0n
W1vqoz21c8SHFPGlWugNOoBAuZCs41xgC7u4ToFbjIqCwDKVao/NTNykwM+Z
mACBKSY2MPE9CvyMieUgsJaJ9Uy8SoEPOTAFAhuZWMPEtynwU7ZaDQLbOLCK
iZcp8GMm1oLALraaYuIbFHiXiQ0gsJeJSSZuUOBtJjaBwEEOTDDxPAV+xMRW
EDjCVuNMXKfAG0xsB4HjTIxw4BkKvMbENAicZmKYra5R4PtM7AaB80ykyJ3c
T88qRb/L2F4QvaRSfbytUPYrDOsH2VdVqsWWKftbrD4Isp/UKW0z/6xFCrzE
nGG/QC27RNk3OPtIIc7vp3XxDecCGxwLFrjOxAnfQJsDTfACxZ5h6FHf2Igr
Ngc/TgJrDJ8BAmsYbmJXGT7vG4vhx0hgheHHfQXCToFsM1epu55nSYzaCX2l
emYluPBiZcNAdqaksktcJUtCMRuITT+rWASIHS2B2GJesVNALArEpp5VLAbE
JksgtuBoJOpH0PKRPS2UnSheNg5kx/etbALIjpEs9WG2Q7bKr9aQchlQHt3n
yuVA+QgpH8PKy0LlJFAe2efKFUD58J4op4DyIVKe14uIR5ka9QuQPyOUH947
+UogP0Tyc7uO9Cp9Xlvl+Z1c3H+oKoAafO6oWSEKdRgIVQ1QA6VB1QDUwZce
VQtQ/YSaAahwEag6gOp76VH1ANVLqGmAsoWos0JU5v+G8q0r3elLa8gAjgrL
oi/+9KbsF79s/UGFerydPfSyqb5ncKI05Dkm2wqc25+PtzU+plJd8EWAbwD4
nmD4acZHAb6CSz8bDD8F8BGAn2R8AuBrGT9RGvwY45MA38w7f6Q0+BHGVwJ8
B5d+IBh+EuCjAD/M+BqAzzC+pzT4AcbXAfwQ49tLg+9jfCPAj3LdNwuP+zx4
VPcZxrcA/BSXvlZY+u5g+C7GtwP8POMrSoPvYHwa4Jd558dLg29lfDfAr3Hp
Q8HwE8Km18T4XoA/p1K9qal4VD2jDgLUBZ3ueflqGDrkBw3RgVc0qpJRhwHq
vE7pKvrvv7b1x7L2oohJ5h7x3a8RF9ewYd8REJ5g+HhAOCp5lz8cHTsxhk8V
aFEGnD2KVOpuZeiyJKARm43MCI2EgRF0KVbQiO00wjbmfVug24YdzMa4X6vQ
Lo4Lyx4BUHRxXQhqtqlzZAVeEOKjAI9uI5QIHwN4dG+mEF53W4vCeo4XD3U2
t407f+qPZcFiIwcJoYN0IQcRlwPjwjom3PtlwAa6x1fQRthpI9uvqNTdIGaF
lsqBJXQ7No8lG1iygSVp71QiSxFgaVrYfiqAJXQ7PKClKLAk/TFJAUvoqYKx
NCa0FAeWJoWWKoEl9AgloKUEsDTxYi2VAUvoFAS1pWqhpU5/S2FgKQksjQkt
1QBL6HldQEsVwJL/WeJzsZQClkaElmqBJfSwNKClSmDJ/xzebakeWEJPm/NY
CgFLVUVYagCW0BP/gJaqgaVDL9ZSDbDke53nsdQILKFBFsbSqNBSHbA0KLTU
BCyhESkBLdUDSwPCimsRWuoIZqkBWEJ3BfbMEn5M2wJs9AtttAIbaCySwEYr
sIFux6A20wZsoAFcAhttwEZGuDc6zJWdw4b+KN20E71rHEEHoPaUnNoJqOgG
HKJ2mktnJ7UgMA2AXUJg2lPHjuIdwbRuQOsUtqg0Ll5nXmAPAHYIi9cNilc6
Wo9KQ4VLlAEMdIM6AMPZL1pWHwC0CuvIucu2d7Z37zI3qh+g0L3+QrWzTX/u
xudGHQSoZiGqC6C6HCgz4Hk3oCnIkatVQkq826s9BLTRI5lCfdG248/Sh6MH
NAxA9cK6b88DMk9+Rhh0GIDQMy5UonygjBc0AkC1QlBbHlCvF3QEgNBDQ99T
B/P6iWpc7p9I587znK8gaLUQ2gxadRjgM/74UYBHz2mLwff648cAPiXENwnx
fbu7lHz4iiAXHrrGo/7QUeEul0LrQZkjAG8GP40J8WhgAMLXCfFmmNe4EF+2
x3gzdm5CiEejMnzvpOgaj/tDJ4XQ+DPcUcqVOQbwZmjilBAfE+KrhHgz3vOo
EI/G4ZwrAm8Gzk4L8WgUEip9pRBvhgXPCPFhIb6CG1xZMCjq10JCaBKUOQHw
Zgz3rC8+4sTrj/rVRecdUqQZkD7ni7RdSB9auZBmhuzP+9F0xVwEgARXW9Jf
9pifrC4DOhbiwHc5ALheYkCN0eylJ09zH/3m7kmAjAmR5l2PBYB0nb0RTnW4
T57qsSeLRUDNeyuLAHoYQCu5pDMAGuE6S/mjlgBqGKAaGTUGUDYoXwWAmreI
lgF0CEA7eKcOA2hYCDVvRK0A6ACA9nJJM0VAp4JBh7mkHQAaAlBUpwb6GoD2
A+g4l7QRQi11mbqbYl6kOwEofYAyy5QqD0X1ndUAYN4hXAWADAAs874rU4B/
fes16lmzXcFusR4gtsZuQ24xj0cjuwZku4HseZWG/cSoP7ZOAbE0ENvQaeE2
aF6VPQ1kO4HsRaGseYX3DJBtF8omuXrMq9NngVibUAx1pHlkW4uQNS+UrwPZ
FiB7QShrXms/B2SbipClfsBMJuCWbRTKopM0OvDppXWPbL1QNsH1b6YPuAjE
6vyOI8GJjpHdALI1Qo/ogoiOUOt1IFstdItk6Qg180y4ZSuLkDVzOlwCsimh
bJQrihqn9SYQSwYR83gMKHtOKGsm0LgMZMuEbtFVOLV5mlDCI5sQukWy1PrN
zCZu2TiQXRfKmulHrgDZqFDW5vqnVmS9A8QiQjF0J8vIXgWy4SJkqT3RvCIe
2RCQPSuUNVPI0KQ3u0b3oVYUAirUfGjKFIc5Sx9lSsJ2SnAN0K63PnCEKf+W
ZaZwOa1j8Y1h2hHWTbXQZzcrAGTxdD53Od8czkfeafYenW8c5yOz1hecb9iz
j5Q5M/nQ12oRV1t6QKZrlOk7Vmr1ZFJfm/mPfuBMtSDTDcr0E2dKOjLl6shk
+pUz2SDTTcr0m1roopupnvS3+2jeq1fr8nXrwD8Mj8+e\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.188}, {295.5, 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"d4032b2c-45e6-440a-8fe9-a75bac9bffe7"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(38\\). \\!\\(\\\"elongated pentagonal orthobicupola (J38)\\\
\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"1f5b3f35-b17a-43c9-9735-aa3c03693293"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .93619
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0 1.0359 -0.00853748 1.0359 [
[ 0 0 0 0 ]
[ 1 .93619 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .93619 L
0 .93619 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.45204 .75461 m .5333 .63564 L .39648 .54939 L p .746 .518 .585 r
F P
0 g
s
.39648 .54939 m .31053 .66431 L .45204 .75461 L p .746 .518 .585 r
F P
0 g
s
.31053 .66431 m .39648 .54939 L .30205 .42893 L p .85 .673 .662 r
F P
0 g
s
.46815 .41838 m .30205 .42893 L .39648 .54939 L closepath p .706 .658 .799 r
F P
0 g
s
.39648 .54939 m .5333 .63564 L .60923 .5062 L p .642 .575 .764 r
F P
0 g
s
.60923 .5062 m .46815 .41838 L .39648 .54939 L p .642 .575 .764 r
F P
0 g
s
.59349 .78617 m .67246 .66141 L .5333 .63564 L p .589 .318 .475 r
F P
0 g
s
.5333 .63564 m .45204 .75461 L .59349 .78617 L p .589 .318 .475 r
F P
0 g
s
.60923 .5062 m .5333 .63564 L .67246 .66141 L closepath p .566 .479 .716 r
F P
0 g
s
.28322 .30989 m .30205 .42893 L .46815 .41838 L p .691 .728 .879 r
F P
0 g
s
.46815 .41838 m .45825 .29878 L .28322 .30989 L p .691 .728 .879 r
F P
0 g
s
.60533 .31259 m .45825 .29878 L .46815 .41838 L p .509 .586 .868 r
F P
0 g
s
.69978 .44787 m .60533 .31259 L p .46815 .41838 L .509 .586 .868 r
F P
0 g
s
.46815 .41838 m .60923 .5062 L .69978 .44787 L p .509 .586 .868 r
F P
0 g
s
.30205 .42893 m .20994 .54244 L .31053 .66431 L p .85 .673 .662 r
F P
0 g
s
.20994 .54244 m .30205 .42893 L .28322 .30989 L p .943 .876 .74 r
F P
0 g
s
.69978 .44787 m .60923 .5062 L .67246 .66141 L p .419 .398 .73 r
F P
0 g
s
.28499 .66035 m .31053 .66431 L .20994 .54244 L closepath p .775 .307 0 r
F P
0 g
s
.45204 .75461 m .31053 .66431 L .28499 .66035 L p .514 0 0 r
F P
0 g
s
.4367 .75725 m .59349 .78617 L .45204 .75461 L closepath p .218 0 0 r
F P
0 g
s
.28499 .66035 m .4367 .75725 L .45204 .75461 L p .514 0 0 r
F P
0 g
s
.68794 .74198 m .76775 .61163 L .67246 .66141 L p .099 0 .135 r
F P
0 g
s
.67246 .66141 m .59349 .78617 L .68794 .74198 L p .099 0 .135 r
F P
0 g
s
.67246 .66141 m .76775 .61163 L .69978 .44787 L p .419 .398 .73 r
F P
0 g
s
.28322 .30989 m .18517 .42483 L .20994 .54244 L p .943 .876 .74 r
F P
0 g
s
.20994 .54244 m .18517 .42483 L .26349 .54431 L p 0 .081 .635 r
F P
0 g
s
.26349 .54431 m .28499 .66035 L .20994 .54244 L p 0 .081 .635 r
F P
0 g
s
.45825 .29878 m .35825 .23658 L .28322 .30989 L closepath p .622 .815 .974 r
F P
0 g
s
.51035 .24852 m .35825 .23658 L .45825 .29878 L p .308 .685 .977 r
F P
0 g
s
.45825 .29878 m .60533 .31259 L .51035 .24852 L p .308 .685 .977 r
F P
0 g
s
.18517 .42483 m .28322 .30989 L .35825 .23658 L p 0 0 0 r
F P
0 g
s
.68794 .74198 m .59349 .78617 L .4367 .75725 L p .505 .804 .999 r
F P
0 g
s
.60533 .31259 m .69978 .44787 L .77447 .49351 L p 0 .221 .743 r
F P
0 g
s
.69978 .44787 m .76775 .61163 L .77447 .49351 L closepath p .08 .196 .685 r
F P
0 g
s
.6901 .62648 m .77447 .49351 L .76775 .61163 L p .962 .943 .662 r
F P
0 g
s
.76775 .61163 m .68794 .74198 L .6901 .62648 L p .962 .943 .662 r
F P
0 g
s
.4367 .75725 m .28499 .66035 L .26349 .54431 L p .44 .574 .892 r
F P
0 g
s
.4367 .75725 m .52437 .70971 L .68794 .74198 L p .505 .804 .999 r
F P
0 g
s
.41535 .57055 m .52437 .70971 L .4367 .75725 L p .44 .574 .892 r
F P
0 g
s
.26349 .54431 m .41535 .57055 L p .4367 .75725 L .44 .574 .892 r
F P
0 g
s
.35825 .23658 m .25721 .35568 L .18517 .42483 L p 0 0 0 r
F P
0 g
s
.26349 .54431 m .18517 .42483 L .25721 .35568 L closepath p .269 .266 .671 r
F P
0 g
s
.60533 .31259 m .67563 .34994 L .51035 .24852 L closepath p 0 .243 .668 r
F P
0 g
s
.77447 .49351 m .67563 .34994 L .60533 .31259 L p 0 .221 .743 r
F P
0 g
s
.25721 .35568 m .35825 .23658 L .51035 .24852 L p .524 .203 .366 r
F P
0 g
s
.52437 .70971 m .6901 .62648 L .68794 .74198 L closepath p .707 .788 .915 r
F P
0 g
s
.58381 .48078 m .67563 .34994 L .77447 .49351 L p .889 .698 .638 r
F P
0 g
s
.77447 .49351 m .6901 .62648 L .58381 .48078 L p .889 .698 .638 r
F P
0 g
s
.41535 .57055 m .26349 .54431 L .25721 .35568 L p .519 .469 .74 r
F P
0 g
s
.58381 .48078 m .6901 .62648 L .52437 .70971 L p .679 .668 .832 r
F P
0 g
s
.52437 .70971 m .41535 .57055 L .58381 .48078 L p .679 .668 .832 r
F P
0 g
s
.51035 .24852 m .41163 .37368 L .25721 .35568 L p .524 .203 .366 r
F P
0 g
s
.25721 .35568 m .41163 .37368 L .41535 .57055 L p .519 .469 .74 r
F P
0 g
s
.41163 .37368 m .51035 .24852 L .67563 .34994 L p .754 .497 .544 r
F P
0 g
s
.67563 .34994 m .58381 .48078 L .41163 .37368 L p .754 .497 .544 r
F P
0 g
s
.41535 .57055 m .41163 .37368 L .58381 .48078 L closepath p .643 .569 .757 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{294.188, 275.375},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm8lv1FYcx4fMPtkmTIasZM8kmZAEUraQAFnIwr7vSwmUrQhBWVoEqlqV
VlUX0UOp1EulqkLqoTmi3nrkyLH/AsceuaZ+y3zHyXyf89wJqIdEssfxb/l8
38/2s/1s75+9f/3Krdn7Ny7Ptkzfnb1z/cbley1Tt+86q4KrAoFVGWdKtQTE
8nwgkJvJvy4x0/+sLK8sryxbLd8QP1FxHP2pVlwXPyViRWT+yYYzpWLpD2W6
BtNqmH5VpqswNcH0kzJdgSkrTBGx9IMyfQDTgDAFgmJx/uXj7+Rx/VQ5XV7k
FIKTnqTte+V8yZjRmZzQnPu3yn1W/EiffuIelXO1Tv8FvlaBFz0D4+Bo9/fh
zmSVwv0r5X7B072CyPpCBZ73DEyCo93Pebqn4P65cj8L9/XEPU1kfaoCz4if
kIlTA452P+3pXk84j1TgKc/ARnC0+0lP92a4P1TuJ+DOmt9KZD1Qgcc9A9vB
0e7HPN0zcL+n3I+Kn7CpFT1E1h1XoLH5veBo9yOesvoI55YKPOwZOACOdj/k
6T4I95vK/aCn+yYi67oKPIDADSRwMzjafT/KzDhDcL/qcjfKGiGyLqvAfZ6B
O8DR7ns93cfgPqvc93g2eoLIuqACd3sGTpLA8ypwRvzEhKWPBE6ZA6dBDM8/
efyXPEd1LpHi9Yvn8tRxwZVCWhz72Nic9HFyBRJiLkWtNbYmjIy5SeTR4qaQ
uUQk1gmcpDJ9FQSnjYI9008ifZCkr4X6Mot6OJPzn5q7y3xGoXYBFSKoFrQk
ZIkKE9RphZoAKkxQXWIuqzJN0kbMaceRNkLSZuVcrXv+7KWsMtMdJYBTLoA8
iqIWAGcKSOcJQokTyklFGQMlZk1x5jJilKBKCeqEQo0CFbdEheR84dbf7g+6
E9CEJTSM9o0QVDlBHVeoHUCVWqKiQA0RVCVBHVOo7UCVWaLipJSbCDRpho4A
Wm4JTaB9DFVFUEddKG0SPajAMWgPgZYBOkigKQI9oqDDBFphCa0g5e0n+Goz
fhvBV1riK9FmBk0T6GEFHSLQpCW0CtBeAq0h0EMKupVAqyyhKVLoLoKvNeO3
EPxqS3w12pwh0HoCPaigmwk0ZQldA2gHgTYQ6IHiobWk0C0Ev5bg97vwUne1
JbQOLW0mqCYzagtQtu1rIO1rJNBmAt33X6GNaF8DQbUS1N7CfTaQVFdttvts
E6C1BNq2FDSUhyqw7aHaQipcTRR0EAV7lkVBK1rOuJ2Eu9vdQxVwbXvGdnCr
CDezFDe8kKs3t+25oJOUvZzI6CYyZpZPRgY1YPAeAp92w4NuuLiyTebccx0Z
u/JhQrohJEGEZP0JCRIh7GqPCcmSDRMhktYRSVNK0pBlbWwl9aI2YSKknwiZ
NAthtbG96F4HIUEiZIAI2WUWEiJCbG85+hdtJLHLD75jvKzDRgKdMEPDBGp7
R5cvvmOYm/s7V3uqYVxp2GapwfbeNQsNISFh0Q7AtsBbEpLvLqKWQsbMQiJE
iM1wwcIONGEpZPTtCOmAkLLihUQthbDeqg1CKomQ9WIurXrPGLbEs2Eh49WE
XieOEiEhSYS4u803b+Tw39uS1IyKpIoXEiNC2OgcE7IWQtYQIeqMFoIQLcZD
S5xoYYOSxit7qaWOaMnq8UK3FoviFCMof1fTSAT1LC1oxFIQGxVmgmogqIkI
6l602ziTk1nM6VHOxCVy3XBeXG4k3LnmKBSUhqBWIqjLo0ITyyci5brNLhTR
aVmVMbOg0tzlgUuQQUt+bCVDtHQQLUF/WsoW7T6mouRHlnqIkHZ/QrYbi7K0
kHIIWUeEtBIhIX9CZEVKTBukFPgBgm8m+LA/fLmYy32j2zR8K/EbisfvMLU+
NH/v2Wv5qkQb0RAj579BomYtURMxq9m5xE7hSBKTc5505vKhUAMRF0GBNhNJ
DURStHhJFahX2vT0Qo/uF0qq9ydp1FJSCpIqiaT8s5thIqmOSIoVL6kOGy5G
JQXEHlmopoaoiZvVjBnPAAvVtKBAJUKNNI4R/Bp/+HGCjxN8RszlqgkCTRNo
onhot5wvPHLHCb7aH35imfGrCb7UjN9F8DGC77HEJwm+rHh8luDZDsfwrPX6
mnCS4KME32uJr7Bs/TLgWfHLCL7cjJ8i+AjBr7NsvU/89DLjEwRfUTy+zxIf
I/hKM36G4MOWeLbto/7wuwk+RPD9lq2PEHyyePyAJT7sD7+H4IMEv94SHyT4
KjN+bxH4UYIvscRPFI9XredvQK0mSD3Eu48gSwhyg0XBBSpVPGrQVFw9FFQI
0MP26mkpf7CziSTdjqSO4cWrf3KbidZLMw54MDYSxjAYEmFxJEwtDWKN2QpQ
mIBYh6MfBKlH+AVPAzcTxiYwov4YhxZv+oB4+lkIGAQgTgDsnDFjBmwlgAEA
Sv0B5BslMpCl7UPacpKWnWp3u9Ja6M4CUEkA7EpGP2M+At1DJG0X0lb5S3vU
M22H62gtTMsu+/Qz+eOucuS6A7YjtgGQJgB2Ua9fajgB3Wz3k+OFclWNv7Sn
kJapbYDaepKW3Xbp9z7OkHKwTqYWgEZ/gLPQzbqUNNI2kbTs3lm/mXOe6Ga9
egqAFgJg4wX6faML0P0eSZtE2jZ/aS8iLVNbjrTtlmn1K1mXSDnYKTwBQKc/
QP5zHpY2hrRdJC0bu9Kvz10hutllZxiAHgJgQ3X6pcD8F07scrIEaXv9pc1/
bqXUhpBWdrPirfnCfGw8Vb+v+SGpg7zzC5mSsVFi/Z7pTYiTd+76ofCTV+o7
iG5/yW4hWcZVQCeZmJwDP5eW7bBseF+/63ubNLgVaquQlnULHmnvQG0zktUi
WZ1Mxp+D6JfG7xJd9UjVLFKF8ieFgidy+t32e5BRi9hOyEh6xj5AbJoUPIss
i68uRCP0xwGfkEYkIWQQKSLmFA+hogKBQwh0XcyK/86qmEcEG0f0qIiWS+eU
+2MgosRJfwvyKckZJHXZgcCLKvAzlT2XWNpliOoq9cdxC5OMIInqlwJfih/Z
4o0wXVOmb2Dqg+mGMj2FKQOT/uzpR5iaYdIfUP0MUy1M6igJ/AJTEs34SJl+
gymOqPvK9DtMJTB9rExzKL3+SE4eRP+j71tXlt/9cmDVv/yuzXw=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 293.188}, {274.375, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"c9840c43-de3e-4c7b-a9a6-9ed9564cb533"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(39\\). \\!\\(\\\"elongated pentagonal gyrobicupola \
(J39)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"005efdd9-f2a5-4756-9d61-6ee4ef938772"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .89836
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0 1.04131 -0.026141 1.04131 [
[ 0 0 0 0 ]
[ 1 .89836 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .89836 L
0 .89836 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.60937 .73428 m .60129 .58557 L .42936 .59727 L p .676 .445 .563 r
F P
0 g
s
.42936 .59727 m .42981 .74592 L .60937 .73428 L p .676 .445 .563 r
F P
0 g
s
.42981 .74592 m .42936 .59727 L .27461 .54843 L p .812 .557 .553 r
F P
0 g
s
.50269 .44733 m .42936 .59727 L .60129 .58557 L closepath p .699 .615 .759 r
F P
0 g
s
.27461 .54843 m .42936 .59727 L .50269 .44733 L p .762 .693 .786 r
F P
0 g
s
.75496 .66755 m .74016 .51617 L .60129 .58557 L p .498 .309 .555 r
F P
0 g
s
.60129 .58557 m .60937 .73428 L .75496 .66755 L p .498 .309 .555 r
F P
0 g
s
.60129 .58557 m .74016 .51617 L .63997 .37154 L p .625 .592 .796 r
F P
0 g
s
.63997 .37154 m .50269 .44733 L .60129 .58557 L p .625 .592 .796 r
F P
0 g
s
.50269 .44733 m .34726 .39278 L .27461 .54843 L p .762 .693 .786 r
F P
0 g
s
.34726 .39278 m .50269 .44733 L .63997 .37154 L p .675 .741 .9 r
F P
0 g
s
.27461 .54843 m .26802 .69971 L .42981 .74592 L p .812 .557 .553 r
F P
0 g
s
.26802 .69971 m .27461 .54843 L .18774 .44937 L p .965 .705 .491 r
F P
0 g
s
.34726 .39278 m .18774 .44937 L .27461 .54843 L closepath p .83 .781 .805 r
F P
0 g
s
.81552 .56137 m .79698 .40576 L .74016 .51617 L p .038 0 .459 r
F P
0 g
s
.74016 .51617 m .75496 .66755 L .81552 .56137 L p .038 0 .459 r
F P
0 g
s
.63997 .37154 m .74016 .51617 L .79698 .40576 L closepath p .507 .545 .83 r
F P
0 g
s
.41138 .74945 m .42981 .74592 L .26802 .69971 L closepath p .322 0 0 r
F P
0 g
s
.60937 .73428 m .42981 .74592 L .41138 .74945 L p 0 0 0 r
F P
0 g
s
.60516 .7369 m .75496 .66755 L .60937 .73428 L closepath p 0 0 0 r
F P
0 g
s
.41138 .74945 m .60516 .7369 L .60937 .73428 L p 0 0 0 r
F P
0 g
s
.21219 .3292 m .18774 .44937 L .34726 .39278 L p .818 .888 .894 r
F P
0 g
s
.34726 .39278 m .38056 .27371 L .21219 .3292 L p .818 .888 .894 r
F P
0 g
s
.57228 .25932 m .38056 .27371 L .34726 .39278 L p .675 .741 .9 r
F P
0 g
s
.63997 .37154 m .57228 .25932 L p .34726 .39278 L .675 .741 .9 r
F P
0 g
s
.57228 .25932 m .63997 .37154 L .79698 .40576 L p .416 .604 .925 r
F P
0 g
s
.18774 .44937 m .17655 .60497 L .26802 .69971 L p .965 .705 .491 r
F P
0 g
s
.26802 .69971 m .17655 .60497 L .32457 .65329 L p .211 .546 .929 r
F P
0 g
s
.32457 .65329 m .41138 .74945 L .26802 .69971 L p .211 .546 .929 r
F P
0 g
s
.81552 .56137 m .75496 .66755 L .60516 .7369 L p .804 .964 .911 r
F P
0 g
s
.17655 .60497 m .18774 .44937 L .21219 .3292 L p 0 0 .072 r
F P
0 g
s
.79698 .40576 m .73581 .29038 L .57228 .25932 L p .416 .604 .925 r
F P
0 g
s
.75236 .45008 m .73581 .29038 L .79698 .40576 L p .959 .657 .236 r
F P
0 g
s
.79698 .40576 m .81552 .56137 L .75236 .45008 L p .959 .657 .236 r
F P
0 g
s
.38056 .27371 m .35656 .23726 L .21219 .3292 L closepath p .651 .959 .933 r
F P
0 g
s
.56458 .22148 m .35656 .23726 L .38056 .27371 L p .414 .827 .973 r
F P
0 g
s
.38056 .27371 m .57228 .25932 L .56458 .22148 L p .414 .827 .973 r
F P
0 g
s
.57228 .25932 m .73581 .29038 L .56458 .22148 L closepath p .16 .613 .934 r
F P
0 g
s
.60516 .7369 m .41138 .74945 L .32457 .65329 L p .652 .773 .937 r
F P
0 g
s
.60516 .7369 m .65828 .63094 L .81552 .56137 L p .804 .964 .911 r
F P
0 g
s
.47901 .57291 m .65828 .63094 L .60516 .7369 L p .652 .773 .937 r
F P
0 g
s
.32457 .65329 m .47901 .57291 L p .60516 .7369 L .652 .773 .937 r
F P
0 g
s
.21219 .3292 m .20151 .48902 L .17655 .60497 L p 0 0 .072 r
F P
0 g
s
.32457 .65329 m .17655 .60497 L .20151 .48902 L closepath p .413 .516 .854 r
F P
0 g
s
.65828 .63094 m .75236 .45008 L .81552 .56137 L closepath p .858 .838 .825 r
F P
0 g
s
.20151 .48902 m .21219 .3292 L .35656 .23726 L p .388 .178 .47 r
F P
0 g
s
.57248 .38364 m .56458 .22148 L .73581 .29038 L p .839 .538 .48 r
F P
0 g
s
.73581 .29038 m .75236 .45008 L .57248 .38364 L p .839 .538 .48 r
F P
0 g
s
.47901 .57291 m .32457 .65329 L .20151 .48902 L p .601 .593 .815 r
F P
0 g
s
.57248 .38364 m .75236 .45008 L .65828 .63094 L p .772 .719 .803 r
F P
0 g
s
.65828 .63094 m .47901 .57291 L .57248 .38364 L p .772 .719 .803 r
F P
0 g
s
.35656 .23726 m .35319 .39952 L .20151 .48902 L p .388 .178 .47 r
F P
0 g
s
.35319 .39952 m .35656 .23726 L .56458 .22148 L p .66 .395 .508 r
F P
0 g
s
.56458 .22148 m .57248 .38364 L .35319 .39952 L p .66 .395 .508 r
F P
0 g
s
.20151 .48902 m .35319 .39952 L .47901 .57291 L p .601 .593 .815 r
F P
0 g
s
.47901 .57291 m .35319 .39952 L .57248 .38364 L closepath p .696 .623 .771 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{300.312, 269.75},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnMlzE0cYxQdrs2RZli3bsuVFxsYGm9XExvvGYhYDgbDvmCXgbFAsVVQo
kqpwSlG5JadwSuWU4phrjhw5cuVP4MjVmV70PJbeoE9GZqnCVdMz6ul579df
9/S0RjM+NH/v5vXv5+8tXJ3v2Htn/vbNhat3O2Zv3XGzAmscZ80md6nucNT2
ouPkEv23WSX2w+ftz9uft52/1KpSnSO/mIw/1KpaZYQXn1157ATU5uLLJw/1
eVSh0p9NyV/VKq4yUnkl3cUt6aa6+CNT/BGKZ0nxoEp11o+m+G1wbCTFI1B/
YIovqFVEZQyT4lGo3zfFb+qVKXSl19RtghwYh89dc+DXaqUzKtSBtrh7oD54
jEgk4H3bSFyDRFAoUQuKH4zE1Tx8JcPExolYHXi+NWLz4IkIJRrAs2AkLhMe
qVgaYjeM2EXwxIQSzajSNSNxHhJxoUQrKK4YiXOkSlKxdvBcMmJnwFMjlFgL
ngtG4jThkYp1geesETsJnjqhRA94DIhzHBL1QokNoDhhJI6RKknFNoLHqDhH
wZMWSmwGzxEjcYTwSMW26dTk2T/nkJE9DLLMu4sdIowlyWqQw0ZsDmRtK5XY
D4kskWBD6lZP5d48G9FDr63cPlK5MsjOgrFTKLaNiB00YnsIYxlkd4GxuySx
IMSs4JzRm4FeD9Gb9NULLdPLQR4wotOk7mWUnyLy60uSD3jl3Su0SpefRns/
easAsZp971aT6F+9QoN+ocGe92mgdyVzAXMvUSu3ChKr3Z+8VYhY7TJWE2ih
vg9hMCXsxGFisPOTMogQgxmPQV5zs/OFWbHWYHWxVuOewcXaiWvFrFitplfH
qpJYTX20VkMqjams7cQgSgwmSzPoUWmtyqpc/Pfpc7v3+X8v9BG6u+bPpoo4
j+lV0OOc9Ov0jSrVe5vyzN3F/eSmOmsTIYgRgomSCUKo/gZCEAZBb1kI9NkY
VVvDxC0Gtx7iVkXcxt/qpq/2ugXdw57+/lLvV7aTxLwa5l1lMfdOBZW3u7i9
SaWBHIemGCMstSq1c3QZi4FwRvUqlMdiOv86RCNMMEYJRgohya4EoyAkXSCI
EgLWI9IgaC0LQSdpFClLBizNZWHpQDSqCcEOQtAOgsayELSDIEkIBgnBWhCk
CEGcEBhrZ+QtHbONNAoDGiBA3QBKlg+oBXGpJxhfEIwNOGET5cNoBkaaYPQT
jI2IRlX5MJpI8zQRoG0EaAuAosIeKwBqRFxaCMZWgrEdGOHSMIb1yjuJSOop
QdLm5b5X1gGpnSBtIUiDQAqsDlItabYsgdtE4EZUGjRD0zuD1CA2XcR+I7Ef
t7OfYp13pDSQaoB0E5A+AjKxOiBx0jQ9BKm3SGxevdRTGtpIJSLFEJs+ArK+
SGzKCFIJkM0EpMc3IiGA5BYFVLSx+AgTIw3EcLoFcXEXt6IqLf4FQoC2FJ9+
ArRO0GMMSklAQ8LGCwJugMB1CqMVJHDsm2SJcAHSqFJMFsOQMIbDxTCDXkxE
cJigdQgjGBZGsAQ0s8+dUBZSZYUBi5SJSodnkoC0CcNTSUDYDZii4VnemSaE
SCw20dVBYlFqEUYpRpDYHTFRc00TkIwwNnECwm6ULgPho2fF4jePXwlixO7G
MLRqYYyGiqMFCBrrUVK0hDBqK0RjUWsUotWUDy0oRGsQoiUJGvuBwaLtKHIe
unAWUNa49ULM2pVg8ghGhGgpIVodQWM/PK0QjTVurRAtVT60SiFaUohWT9DY
z6gCtKiwQWuEaI1CtB1etIJ7TVVCqsQHp2LNGBdSNdmZoYdKL6pdht9KEheS
VK06SbWwpWJCkoyd1HtJ8iG8I6h6LExGEH2vBKw1IkKC1rze6mmFQd4KSSFB
eNUIaoWtEBIStBOCobcS1AkJgkKCrEr1dHSZ7/KmTwkDXyE07ZCY1gtrWlbT
Bl/ToNdUbU/6tafOcne8ePM6N+zmhlxm2Siop+Pj14o6aTs+zmtTXajJz0pn
saC1wCBIDAoCaZ4xUCZpYjWqUiv29/PXeueI3zits8KlmbL6DcE0CtNBYppG
TSuJ6bC/aTMxHYBpAqbbiWkDTGMS06XJc4aY9sM0BdMtflM+nVVFTO0dpAF0
mlZitRVWTbDq85v42t/zCq1G863aiJX3HqNrpRa3V7qpPiF7/L6v2GepBabt
xLQP9etE/Tr9vlDqrCSxGvNY5XUaZroeputhmvX77m/bWWC61GmYaTdMN8G0
hZhWwbSemI57TC13oVUnrPph1eR3K0pnNRCricKTov+JHmgd3z6UhfMO9JyU
39042619nb1TROVsFxu5QvNWmI+j2km/e6e6XDMxt8/RDOVV213cTzl7Nv5l
YD8D+7jf7W+dlSH2U8Z+mNiHYM+uZGnYz8I+qu2DXnvUvc3ffISYR1Rq27PQ
vB7mczAP0d8i9DhQ6GwfNxslzjFUm00Ka+F8BM4V+Hmzw99qjFjFYZUgVjWw
OqGs7KhVaECe0ssZJGDAvnJ5H8XIjcAndWry1DxH2WWJqfcxxzzTJJqOfTuP
oVaniRULoLWaJFYp1I/dPonA6qywVvbx0yli1QArdhsuBKtzwlpZq2lilYYV
u4VbAasLwlrZB4RniFUz2spZempMfboo1LaPVO8k2i0q1aCXSxPb5SeW11el
9bcPru8Wyp4vTXaPUFbaB+3LA7NC2TNEVo+1OvL2/Yq9QrFTRKwVYvaFlX1C
MTaUZCDmfYtIIHaciDVDzL7GdUAodoyIpSH2lRGbE4odJWJ6fqOzjhuxg0Kx
I0QsBbJTRuwQEcsQsS+JWB3Ezhixw0Kxw0QsCTHzzqTrKBM7SMRqIGbfe9SN
ah99KpSYIxLVkLhkJHRT6jLNRGI/kYhDYt5InIBEmkjsIxIxSJiXdc17k3be
WygxSySikLhuJM5BIkUk9hCJCCS8L9faeU2hxC4iEYaEfdl3HhIJoUQAJ4J9
5fgaJOJEYoZIVIDCvgJ9A/2iikhMUwkH72AvACBKjp7UaRBH28vhHXPsdzg2
Qo6dwCztnil+C8VDpPiASsOL5tKrMu1FIPei+h0cHSBHr1Npjcr6yRS/j+Km
fK60O3l304T6+Jsp+cBTi5zIn2bXQ7XS79L/YzL0Jekj+qcFn7c/7Laz5n+8
Bxpv\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 299.312}, {268.75, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"81031feb-765b-408d-98be-db64b5cd1f6c"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(40\\). \\!\\(\\\"elongated pentagonal orthocupolarotunda \
(J40)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"ddd64bc3-e08e-486c-9dc0-f0e99686b432"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.09429
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0605207 1.16984 1.11022e-16 1.16984 [
[ 0 0 0 0 ]
[ 1 1.09429 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.09429 L
0 1.09429 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.38288 .60719 m .50339 .48877 L .40146 .36553 L p .788 .681 .746 r
F P
0 g
s
.50339 .48877 m .57401 .34017 L .40146 .36553 L closepath p .73 .673 .794 r
F P
0 g
s
.73032 .418 m .57401 .34017 L .50339 .48877 L p .666 .595 .766 r
F P
0 g
s
.50339 .48877 m .65539 .56482 L .73032 .418 L p .666 .595 .766 r
F P
0 g
s
.65539 .56482 m .50339 .48877 L .38288 .60719 L p .717 .558 .673 r
F P
0 g
s
.65539 .56482 m .81369 .57139 L .73032 .418 L closepath p .596 .509 .727 r
F P
0 g
s
.79123 .74527 m .81369 .57139 L .65539 .56482 L p .598 .449 .65 r
F P
0 g
s
.65539 .56482 m .63166 .73227 L .79123 .74527 L p .598 .449 .65 r
F P
0 g
s
.63166 .73227 m .65539 .56482 L p .38288 .60719 L .717 .558 .673 r
F P
0 g
s
.38288 .60719 m .27558 .48648 L .24555 .66037 L closepath p .84 .678 .681 r
F P
0 g
s
.40146 .36553 m .27558 .48648 L .38288 .60719 L p .788 .681 .746 r
F P
0 g
s
.4615 .75973 m .38288 .60719 L .24555 .66037 L p .81 .589 .603 r
F P
0 g
s
.38288 .60719 m .4615 .75973 L .63166 .73227 L p .717 .558 .673 r
F P
0 g
s
.63166 .73227 m .66777 .87335 L .79123 .74527 L closepath p .597 .379 .556 r
F P
0 g
s
.48913 .90312 m .66777 .87335 L .63166 .73227 L p .681 .43 .536 r
F P
0 g
s
.63166 .73227 m .4615 .75973 L .48913 .90312 L p .681 .43 .536 r
F P
0 g
s
.4615 .75973 m .32664 .82089 L .48913 .90312 L closepath p .761 .484 .513 r
F P
0 g
s
.24555 .66037 m .32664 .82089 L .4615 .75973 L p .81 .589 .603 r
F P
0 g
s
.4021 .31535 m .40146 .36553 L .57401 .34017 L p .576 .88 .993 r
F P
0 g
s
.57401 .34017 m .58837 .28831 L .4021 .31535 L p .576 .88 .993 r
F P
0 g
s
.58837 .28831 m .57401 .34017 L .73032 .418 L p .289 .592 .947 r
F P
0 g
s
.75718 .37221 m .73032 .418 L .81369 .57139 L p 0 .189 .706 r
F P
0 g
s
.73032 .418 m .75718 .37221 L .58837 .28831 L p .289 .592 .947 r
F P
0 g
s
.26603 .44544 m .27558 .48648 L .40146 .36553 L p .815 1 .806 r
F P
0 g
s
.40146 .36553 m .4021 .31535 L .26603 .44544 L p .815 1 .806 r
F P
0 g
s
.81369 .57139 m .84753 .53748 L .75718 .37221 L p 0 .189 .706 r
F P
0 g
s
.84753 .53748 m .81369 .57139 L .79123 .74527 L p 0 0 .241 r
F P
0 g
s
.23338 .63303 m .24555 .66037 L .27558 .48648 L p .873 .798 .309 r
F P
0 g
s
.27558 .48648 m .26603 .44544 L .23338 .63303 L p .873 .798 .309 r
F P
0 g
s
.79123 .74527 m .82375 .72507 L .84753 .53748 L p 0 0 .241 r
F P
0 g
s
.82375 .72507 m .79123 .74527 L .66777 .87335 L p 0 0 0 r
F P
0 g
s
.32108 .80662 m .32664 .82089 L .24555 .66037 L p 0 0 .337 r
F P
0 g
s
.24555 .66037 m .23338 .63303 L .32108 .80662 L p 0 0 .337 r
F P
0 g
s
.66777 .87335 m .6905 .86348 L .82375 .72507 L p 0 0 0 r
F P
0 g
s
.6905 .86348 m .66777 .87335 L .48913 .90312 L p .194 .724 .769 r
F P
0 g
s
.49712 .89567 m .48913 .90312 L .32664 .82089 L p 0 .354 .749 r
F P
0 g
s
.32664 .82089 m .32108 .80662 L .49712 .89567 L p 0 .354 .749 r
F P
0 g
s
.48913 .90312 m .49712 .89567 L .6905 .86348 L p .194 .724 .769 r
F P
0 g
s
.67871 .31024 m .58837 .28831 L .75718 .37221 L closepath p 0 .452 .849 r
F P
0 g
s
.58837 .28831 m .67871 .31024 L .53229 .35643 L p .302 0 0 r
F P
0 g
s
.4021 .31535 m .58837 .28831 L p .53229 .35643 L .302 0 0 r
F P
0 g
s
.75718 .37221 m .84753 .53748 L p .72441 .45217 L .909 .506 .123 r
F P
0 g
s
.72441 .45217 m .67871 .31024 L .75718 .37221 L p .909 .506 .123 r
F P
0 g
s
.35368 .35784 m .26603 .44544 L .4021 .31535 L closepath p .526 .845 .545 r
F P
0 g
s
.53229 .35643 m .35368 .35784 L .4021 .31535 L p .302 0 0 r
F P
0 g
s
.83553 .59857 m .84753 .53748 L .82375 .72507 L closepath p .755 .686 .141 r
F P
0 g
s
.84753 .53748 m .83553 .59857 L .72441 .45217 L p .909 .506 .123 r
F P
0 g
s
.26603 .44544 m .35368 .35784 L .38008 .50444 L p .157 .044 .464 r
F P
0 g
s
.23338 .63303 m .26603 .44544 L p .38008 .50444 L .157 .044 .464 r
F P
0 g
s
.82375 .72507 m .6905 .86348 L p .69548 .66258 L .89 .929 .838 r
F P
0 g
s
.69548 .66258 m .83553 .59857 L .82375 .72507 L p .89 .929 .838 r
F P
0 g
s
.38008 .50444 m .29895 .6832 L .23338 .63303 L p .157 .044 .464 r
F P
0 g
s
.29895 .6832 m .32108 .80662 L .23338 .63303 L closepath p 0 .093 .645 r
F P
0 g
s
.60356 .83684 m .6905 .86348 L .49712 .89567 L closepath p .532 .886 .982 r
F P
0 g
s
.6905 .86348 m .60356 .83684 L .69548 .66258 L p .89 .929 .838 r
F P
0 g
s
.32108 .80662 m .29895 .6832 L .47988 .69691 L p .488 .624 .911 r
F P
0 g
s
.49712 .89567 m .32108 .80662 L p .47988 .69691 L .488 .624 .911 r
F P
0 g
s
.47988 .69691 m .60356 .83684 L .49712 .89567 L p .488 .624 .911 r
F P
0 g
s
.53229 .35643 m .67871 .31024 L .72441 .45217 L closepath p .768 .429 .412 r
F P
0 g
s
.38008 .50444 m .35368 .35784 L .53229 .35643 L closepath p .541 .29 .484 r
F P
0 g
s
.72441 .45217 m .83553 .59857 L .69548 .66258 L closepath p .883 .71 .662 r
F P
0 g
s
.47988 .69691 m .29895 .6832 L .38008 .50444 L closepath p .553 .482 .73 r
F P
0 g
s
.69548 .66258 m .60356 .83684 L .47988 .69691 L closepath p .735 .703 .821 r
F P
0 g
s
.53229 .35643 m .72441 .45217 L p .47988 .69691 L .719 .553 .664 r
F P
0 g
s
.47988 .69691 m .38008 .50444 L .53229 .35643 L p .719 .553 .664 r
F P
0 g
s
.72441 .45217 m .69548 .66258 L .47988 .69691 L p .719 .553 .664 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{272.125, 297.75},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt20lzE+kdx3EhqbV4k7zIli3vxiu2MTsMGC+ADcZmX4bJhMQhkwGSySxM
apKQPalUTVFzyy05znGOXH2clzBvgSNvwdGz6O9W69vy0zZTmUpBVbcbtZ7f
5/n3Lql7Y/Pzxx98tPn5k0ebg6ufbX7y+MmjZ4MrH39WfilxIBY7kC8Pk4Mx
Nb0di1VG+l+rGtn/vJ1+O/12+gc3/W/1J6322V+bF/4lL6S312KxpJp6amZ9
JbPaZNYvzKx/yqw+NctTU5tm1p9l1qS0+rGZ9VuZdVxmPTCzPpVZ52XWPTPr
V+qPFpbVrISaim9/+/Spmdx+/feiPgbdNW//pf5jZq2ZwdfQ0w2T0tA2vmPa
PoW2C9KfLLe9bdo+gbbz4jZD2/IQVy/cNAGPIeCsBOQDFZeH8v/MWA7A5fbX
TNiHEHZaKulwDNswYR+oP7qrp6U/RYhIQsS6ifg59OeEhJUgzJPlYyMeQcRR
KWkAIlLQnysm7GcQNif9GYGwNIRdNmGbEDYrYWMQloGwVRP2UwgrqHGPemnK
MWzFhP1E/elWc7q2X6w9t2/aevGNGmJ66U5AYlaWvT/Hvqmco7OmITGhxvGw
qhuhoxcM8FA2sRmITUnsqGPssok1Bx6z201mnumhPH0IjKwYtPabwFgyxvv6
j1dlWKe8umqhJoGGAGoGaNFAP/KtBIuUV6EaV6+YcUBzgg46VmfR9wBNADoG
aJug/Y6VLhj0AaBJQEcBLQjaGw19F9AUoCOAFgXtAbQF0PMGvQ9oGtBhQEuC
djtWatF7gGYAHQK0X9Aux0rnDXoX0Cygg4AOCVqIht4BtAHQAUAPCkqnS0LP
GfQ2oE2A9gE6LmgboDlAzxr0FqDNgPYCOiUoXWXUQW8C2gJoCdAZQXOO6DsG
vQFoDtAeQOcEbY6GXgc0D2g3oMcEbQQ0D+gZg14DtA1QOrefFLTBsVKLbgDa
DmgnoGcEzThWetqg64B2AFoA9JygqWjoVUALgHYAuiCo54ieMugaoJ2AtgO6
LGgiGnoF0CKgrYBeEtSoFbO8JdZ6J413Gbxu8PLgXVbjhDkC7hvIAXDVXqn6
l10rUCeiUS1ArX8/VDNQG7Ka2gE4boBVAEoANAJwzVfLq5ff6A2CqGPRqAag
rutxUijL0fYQUcuGal6VVq/Ao9HIDJA3AsuyPJSv5NV49106Ip8G/ibwCUf+
iOFXgO8D3gP+FvBJ4OkkFZFPAn/bkafq56LxCeDvAO85Vh+RjwN/F/iUI394
N97z83pQO9F9IDNA0iV1HbI/ULGi3nWkqLpZQ10CakCN9cH1AQBZx1p2AwJr
imppcKRm9k81AkWfKetQVWvo+ZZeQ7QAiaKqpvdPNTlShwx1MZTyhKoMYZt6
i+OCfINkzpGcCif7Agu0PKjDmR7vdjj7H/N5R34yGp8Ens4lrcDTF2x1+F7g
PUe+zZGfMPwFx+pTwNOJ/A3wVH0aeLqM6QCevh+OyGeAp4u4AvAN0fgS8FlH
vhN4/euAPndNRUMbAL0eBeXtnfge4JuAD34GUXAX8PRbjeWXHat35YvA0+9O
dXiqvgX4DeC7gfe+H34d+B7gk7LBHYqG5gC9CmgJ0IQL2g1o3hHtBTQeRJcc
K20FdA3QPvvhxIe6kFRnWyTSC5L6UmM6GtkO5BUg+wNVqr/1tSJoHY7agBon
9gAUAFgFYNAF6AKg0xHQy6vyjdyr199VFljFW3QsqAu8lbD9Tb+kufh2fYpK
KzpS3VJaaq9UN1CXws4b9rtqB6oTqB5HqiBUw16pElAXwy6/9EtNigqcBewx
Y8FxURJ6IeyKV1fVIvXNhFNUXx9Qy2EfLexPVUTZXyb3DjQL0Favllj+a73L
FYAaAGop7GOv/YExQC0C1bEPKiObReeuVP5rc2NIK3hD4C2GfaNkf5omz/6I
oazqbaNlH2hS0FIQXeIia/gm4EeAPx/2DapG+2DX858L9JuSwDcCfxD4eeRj
6i4oB9lTsj0c1XqjYZ5+aTgcWBYgBaWlgRoDSv+EqK8FDu5C6Vm3KqsU0ZQj
qn+hTZltcutlBVWnVtWFIdma7Dd4F8J4u3hr0QlApwXNADrsgmag5rgjr+80
8MxB24G/GMrX3F01DdqgFNsG2oiLlg0UGwuheoQqhlGBrarmK8wAqu9LpWXY
LlQfULQB+ym7C+5U9fw/r9VQXqLlcZN6qRfQZkFHoqErUF8G+LwaN2/rc2wt
n5btZgL40V14XXMW0D6pOWm/bfOhUvFMNHLVseIJNc6ol44CMLYLEFrTjB7b
xffyOx0dEbgMFaSBmgVqLozSHT7sA+xlcG3sYYidhdjxYOwV6HcKgDkAaCWP
wyKa9VGhFRBwCICJcGDNsZYjQE3tlYpVOKSOAkW742Q4dRWq8oA6BtT4Xqmd
qlypMUfKbnfrsjEQcByAUcc1NOcDHGohio7XRNkfuTfq1nICgGHHPcfeQ7Bz
f9nOJpAA6iRQg47UMR9Vc91bAU4BMOB4oLS3tlyHWuJAnQaKTt5EnfBRkWoh
gE5b9u6mG/uopeRInfJRNZ/GKsAZAHocLzrsTXbmFlHPX4t8oj0H8XTNRvFn
fPG6/7SAzgLQ5XhRaG/8NPfVJqv7r55Sqk0uOCb779gN7Totm46wC/UA4L8P
ufI9oe23TqXO02U5Zc+/oewhyLa3p+ubtvWcRQjLO4YtBMOWICwHYYMQZh+G
uFs3rNmxZzVhyxDW6BhmH0K5VzeswbHMZV+YrNz3tuzJjqumD6+UbR/0uS/7
U8xEm0FrC47x9C3HRV985dhsY2mTTDnGms+EVc+G2B4bwGGv9YDqB8o+aqUf
uElJ5+chkb6koET7RNn71YnUxzgk0rdY9oG3h9WJZ+2nVl+imqblaR+/8z/k
VlmeCcl7J9BDtelRfeZquepZvtowfZLUfeuFCHNpWvV4Ym2EvpazG9WLV2Y3
K0KYfVBx53FJTyLmJCKrInR/2iHCPnH5IUT4P02WI9Sg7gS2/clBmH0W9El1
WGCTnZCetUtYI4SZCyzzeG1gBxuTiKIUl4IIc10T+wgihiWiX3oRhwj7rOzH
ENEvEUPSC/tc76fw9hIszpIap+yB78jWtxW68mzxM8jpqi4+ZeaWG+vXzIEj
9hto2C4NO6RhSjXUPTfP3cW+gIY5aZivbqinHpqGvwvbogOrv0HC9LbkVYeZ
/SL2e+hFFpZfWvrjSYR9mPwPEOFV71c7hehefGIa/gkallnV/8ppSTdMq4a6
O1+Yhn+pbqhnZWTF/NG86W/yJt+prvweU0Bg4/urafMP36JVG4l645dmln7f
D+hx/7fT/3/TsQP/BWxMlIs=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 271.125}, {296.75, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"4f61d2ce-f17a-4ce7-8171-3c953807dc05"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(41\\). \\!\\(\\\"elongated pentagonal gyrocupolarotunda \
(J41)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"c0a8468a-263e-48e4-91c4-19555235edf7"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.08349
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0559158 1.16333 0 1.16333 [
[ 0 0 0 0 ]
[ 1 1.08349 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.08349 L
0 1.08349 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.44 .67205 m .5514 .54684 L .43057 .43048 L p .756 .618 .707 r
F P
0 g
s
.5514 .54684 m .59602 .38606 L .43057 .43048 L closepath p .708 .62 .757 r
F P
0 g
s
.75661 .4388 m .59602 .38606 L .5514 .54684 L p .638 .547 .736 r
F P
0 g
s
.5514 .54684 m .70799 .6018 L .75661 .4388 L p .638 .547 .736 r
F P
0 g
s
.70799 .6018 m .5514 .54684 L .44 .67205 L p .674 .493 .633 r
F P
0 g
s
.44 .67205 m .31589 .55604 L .29371 .7219 L closepath p .8 .609 .643 r
F P
0 g
s
.43057 .43048 m .31589 .55604 L .44 .67205 L p .756 .618 .707 r
F P
0 g
s
.52593 .81144 m .44 .67205 L .29371 .7219 L p .765 .516 .558 r
F P
0 g
s
.69629 .76751 m .70799 .6018 L p .44 .67205 L .674 .493 .633 r
F P
0 g
s
.44 .67205 m .52593 .81144 L .69629 .76751 L p .674 .493 .633 r
F P
0 g
s
.2725 .48878 m .31589 .55604 L .43057 .43048 L p .894 .916 .83 r
F P
0 g
s
.43057 .43048 m .39634 .35481 L .2725 .48878 L p .894 .916 .83 r
F P
0 g
s
.39634 .35481 m .43057 .43048 L .59602 .38606 L p .698 .842 .952 r
F P
0 g
s
.59602 .38606 m .57402 .30671 L .39634 .35481 L p .698 .842 .952 r
F P
0 g
s
.57402 .30671 m .59602 .38606 L .75661 .4388 L p .406 .639 .951 r
F P
0 g
s
.70799 .6018 m .85432 .57513 L .75661 .4388 L closepath p .55 .456 .701 r
F P
0 g
s
.84607 .74861 m .85432 .57513 L .70799 .6018 L p .528 .368 .608 r
F P
0 g
s
.70799 .6018 m .69629 .76751 L .84607 .74861 L p .528 .368 .608 r
F P
0 g
s
.24735 .66562 m .29371 .7219 L .31589 .55604 L p 1 .831 .515 r
F P
0 g
s
.31589 .55604 m .2725 .48878 L .24735 .66562 L p 1 .831 .515 r
F P
0 g
s
.74641 .36173 m .75661 .4388 L .85432 .57513 L p 0 .159 .698 r
F P
0 g
s
.75661 .4388 m .74641 .36173 L .57402 .30671 L p .406 .639 .951 r
F P
0 g
s
.69629 .76751 m .52593 .81144 L .54573 .93578 L p .606 .321 .459 r
F P
0 g
s
.52593 .81144 m .37894 .86883 L .54573 .93578 L closepath p .703 .388 .442 r
F P
0 g
s
.29371 .7219 m .37894 .86883 L .52593 .81144 L p .765 .516 .558 r
F P
0 g
s
.69629 .76751 m .72752 .88952 L .84607 .74861 L closepath p .497 .256 .479 r
F P
0 g
s
.54573 .93578 m .72752 .88952 L .69629 .76751 L p .606 .321 .459 r
F P
0 g
s
.33792 .82252 m .37894 .86883 L .29371 .7219 L p .734 .305 0 r
F P
0 g
s
.29371 .7219 m .24735 .66562 L .33792 .82252 L p .734 .305 0 r
F P
0 g
s
.85432 .57513 m .85152 .50636 L .74641 .36173 L p 0 .159 .698 r
F P
0 g
s
.85152 .50636 m .85432 .57513 L .84607 .74861 L p .777 .656 .1 r
F P
0 g
s
.51745 .89387 m .54573 .93578 L .37894 .86883 L p .052 .515 .891 r
F P
0 g
s
.37894 .86883 m .33792 .82252 L .51745 .89387 L p .052 .515 .891 r
F P
0 g
s
.46405 .28239 m .39634 .35481 L .57402 .30671 L closepath p .637 .899 .985 r
F P
0 g
s
.39634 .35481 m .46405 .28239 L .37307 .38142 L p 0 0 0 r
F P
0 g
s
.2725 .48878 m .39634 .35481 L p .37307 .38142 L 0 0 0 r
F P
0 g
s
.57402 .30671 m .74641 .36173 L p .57693 .32634 L .33 0 0 r
F P
0 g
s
.57693 .32634 m .46405 .28239 L .57402 .30671 L p .33 0 0 r
F P
0 g
s
.84607 .74861 m .84251 .6919 L .85152 .50636 L p .777 .656 .1 r
F P
0 g
s
.84251 .6919 m .84607 .74861 L .72752 .88952 L p .863 .995 .763 r
F P
0 g
s
.24784 .51632 m .24735 .66562 L .2725 .48878 L closepath p .907 .796 .316 r
F P
0 g
s
.37307 .38142 m .24784 .51632 L .2725 .48878 L p 0 0 0 r
F P
0 g
s
.7141 .84357 m .72752 .88952 L .54573 .93578 L p .588 .904 .983 r
F P
0 g
s
.54573 .93578 m .51745 .89387 L .7141 .84357 L p .588 .904 .983 r
F P
0 g
s
.72752 .88952 m .7141 .84357 L .84251 .6919 L p .863 .995 .763 r
F P
0 g
s
.76345 .37837 m .74641 .36173 L .85152 .50636 L closepath p 0 0 .46 r
F P
0 g
s
.74641 .36173 m .76345 .37837 L .57693 .32634 L p .33 0 0 r
F P
0 g
s
.24735 .66562 m .24784 .51632 L .34778 .57872 L p .175 .263 .716 r
F P
0 g
s
.33792 .82252 m .24735 .66562 L p .34778 .57872 L .175 .263 .716 r
F P
0 g
s
.85152 .50636 m .84251 .6919 L p .68933 .48814 L .958 .74 .565 r
F P
0 g
s
.68933 .48814 m .76345 .37837 L .85152 .50636 L p .958 .74 .565 r
F P
0 g
s
.37307 .38142 m .46405 .28239 L .57693 .32634 L closepath p .472 .076 .207 r
F P
0 g
s
.40648 .78257 m .51745 .89387 L .33792 .82252 L closepath p .323 .598 .945 r
F P
0 g
s
.34778 .57872 m .40648 .78257 L .33792 .82252 L p .175 .263 .716 r
F P
0 g
s
.74315 .69523 m .84251 .6919 L .7141 .84357 L closepath p .909 .935 .816 r
F P
0 g
s
.84251 .6919 m .74315 .69523 L .68933 .48814 L p .958 .74 .565 r
F P
0 g
s
.51745 .89387 m .40648 .78257 L .54591 .65097 L p .715 .754 .883 r
F P
0 g
s
.7141 .84357 m .51745 .89387 L p .54591 .65097 L .715 .754 .883 r
F P
0 g
s
.34778 .57872 m .24784 .51632 L .37307 .38142 L closepath p .373 .212 .53 r
F P
0 g
s
.54591 .65097 m .74315 .69523 L .7141 .84357 L p .715 .754 .883 r
F P
0 g
s
.57693 .32634 m .76345 .37837 L .68933 .48814 L closepath p .801 .484 .453 r
F P
0 g
s
.34778 .57872 m .37307 .38142 L .57693 .32634 L p .662 .466 .609 r
F P
0 g
s
.57693 .32634 m .68933 .48814 L p .34778 .57872 L .662 .466 .609 r
F P
0 g
s
.54591 .65097 m .40648 .78257 L .34778 .57872 L closepath p .601 .547 .766 r
F P
0 g
s
.68933 .48814 m .74315 .69523 L .54591 .65097 L closepath p .788 .659 .721 r
F P
0 g
s
.68933 .48814 m .54591 .65097 L .34778 .57872 L p .662 .466 .609 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{273.438, 296.25},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt3ElwFNcdx/Fm9kUzI2m07wtCEgjM5nghMWGRBEISQgJhsBNbxtiQYGMD
cZyQrUKlUmWnKkkVR445+uirjxx9zDVHjj76qvRb5q+Znu/T9NCSyweo6qdh
5s3v0//eu2d6ljYe3Lr50caD2zc2RubvbXxy6/aN+yNzd+/5T8X3eN6eNn+Y
GvHU403PqzT6X7tq7H9ePH7x+MXjH8XjP6k/cbWe/qvqCU8/s/mw9YhegxOq
/Yd5/Y+B1/3B/5/fptVTfzed/gCdUqrVT8U2V23mI9P9IXTPSfe4dP+z6f57
6F5UbUw9lVTdk+qR6ef9Drq3SXpa0j8z3T+H7p2SnpXu90z330L3HknPqe76
0V3T/TPoPgDd75juv4HuIzIyeel+23R/AN3HJX2r+wem+33oPqHaZG33G6b7
Peg+ptqEmatf3X9iX/324X01eAH2XZPzqasoO0Pqc2KqTcgU0o/eNmGfqD96
agzJqOQhIlkboV+8ZiLuSkS/RJQgIqvawHxaNxEfS0SPRHRARF7GIisRaybi
I4nokmnRCxFFGYutiBUTcUciyjIWAxDRJmORkYglE/FriWiViFGI6JCx2IpY
qIoIzN4WKWkfhHXJ+KQlbN6E/QrCsjJm0xDWJ2EpFaZrmTVht12bJd39EIQN
Spl6s2Jftf+80yb2lmuTqGOPQeywjGMMYk+Z2A/1n0R1rEzFVyF0TELteOm1
XK/KJ6D7hGr11LHeTZn1P3d1D4zoSfPG9+WNp+GN41Vv/P6bx+qvD+g36u1K
3PXGMbveVt5YGVSAld8T2X/v9SOPdF+VRHmjjfM2JC+m4myAH+UMHQ5U5w/+
/0xbPal+aoB3twXOADAEQBKAE1WALVJNkMqgipxzLeDh49+pWtRtNFYyC1Q/
UGmgXjfUL4GKh6T6gMoC9ZqhfgFUAiiagL1A5YB61VBvA5UEah6obqDybuot
oFIhqS6gCkC9YqjrQKWBOgdUJ1BFoH5iqGuyBmUAWACgDEDJDbwpQDYk0A5A
GwAvG+CqADkALrj21wGgHYDjBlgXIA/AIgAlAMpu4IoALSGBIgCdAByrAgLL
E9WyBFQBqC6gjhrqMlBU1bLraC5AdbuptZDUiuvYM0D1AnXEUKtAFSJQfUAd
NtQloIpAXQIqDVS/m1oBqgTUquv4P0ANAvWSoS4C1RqBGgLqkKGWgWoDag1P
sOqpYTe1JCtuGYDLuk1WA3pQxw7jEHrQhC5KaEeToXshdMaEXtg2dD0wKVTY
Pgg7YMIWJKwTwq5WhVWm4USDsMDsonGkWBrH/Sb2PMTS2OrSdS3TEDZtws5B
WBeEXdGtOcX49qtv9OA/nnInz0Nyd6PZbpNtOo74lImfg/ieRuuCiVYXCfy2
doJTJZOGmgWqt9Eabql4c9TZCFQSqEk3dUYW9f5G22ALpJ4DsC9Nn/paz9C+
H4byB89eY2mwJ7NeBjxaBbf1/NZelalHLwKajY4mdFu7vNAGexn4XHQ+KTUT
ugRoPjqahppp3058AXjagm/DZ6RmQhcBLbrQmNmEOqmcUHREtqNUC0zUhicd
Fi09L1qQ+ohaAKoNqL1hqBLUR+ed5wFtB7T6KOfpf3r0xm0bvlUqbXiya9Fy
dLQdaqaLFfPAd0Tny1IzXYwhtAvQsebQTkG92ut85HVH97rFo5m4A0CPAHMA
9OwQYJ978uVT3b3+Eq31+sAbjeb5g+/5rX7qDUD7o6O9gCZUqys9AejA7qAp
qfQVQIcAHYmOZgU9BuhwdLQP0Lygh384tCjz9CCgI7uDtkql04COATocHS0L
OgHoeHS0H9BOmbxjgO7dHbRbKh0CdGJ30D5B+wCdBHRIDkOm3dQAUAMyUbuB
mtpJakiq6thtalSoVqCmn5caBGpcqBagDgA1+LzUPplXWaBmdpKakqqSQB3c
SeqAUP4L6gDNSt5LoAzAyrWNNwTejGoTZtdQD/RHB3RB9rmvnz5Tg3+M4bf6
MhMtETuA7gc0o1pdKW0ymkSHXUtJAC1IpbQb6IuOTgJalkpp174D6D5Ae6RS
OjDdBj0bcp5OADokldL5SpMoVToO6LhUSmejvW50NmSlY4BOS6V0XWEbdA5Q
2vCMAnpIKqXrY02iVOkwoMelUrqKug06H7LSIUBfk0o9fZm4Yvq7Mb8t2hcs
qJ2p5tCtI4tTiiqpR4XN7777L9dyDmJp194PtZzWrXnOBzTSrdqYu4zzIb1e
8M6A16Vb80nC/zafUolhyZ6myLiQ/mBOnu1nNQvgOY9xA95Z8Dp1m6j21NCI
pBI7gZwFsgNLDKAXQtbZAegcoGVA40F0sZlTpQA6HxJNWNouutWLb1i+PQKf
dPNLIflW4M8B3w58KjpfAv488G3Ap938MvB06aMgm8BFQFsBzbjRiyHRPNRM
fAn4bHQ+F4HPufkV4OliXhb4pd3hqfo08MvAF4HPu/lLIatPAX8R+EJI3u64
VoHvBj4J/ArwLSH5/c3xiR3m7Tcp1kLyMeAvAZ8Pyc804pPVvB7UwcZlIHMh
SftVmctAduk2UUN66itwkbUrLk1vOdcByIYEDrmBzh0B7Lew1gEoVy0hq0++
17OGqExI6rCbapNa4ooKLIJrgKZDovZrelcBLQqaAnQV0BSgLW70TUBbAhNV
wWngabUjnmo+6ua3PhLPA0ob2rCo/ULpNUDTghYBpZ1LMiR63I2mYEKXgKdd
ayIkb79nfB34uNRcBpQOJ+IhUfvt6bcAtV+fqfcugBcLuTA7PLU16AWKDk7D
UvZL7vqr+7qWPgDo4JsAmnZwb0Dm0TNdi/2+U71nzjWS1Z4e1JsKYNTc6pAQ
ww72g4p6xpzGJWoYhwD3bdh0v4qKQYtB8PzU06ukE3gHgLhq9VMdAATP8V1A
zT00tUBSKqAVR18nsZuS+lh7788GxKZkvNsg9qRq467Yn5nY9yA2I2PbCrGv
y2Wx2ObjZ5shFtA33FROKNqMvSxUCig6LzhpqBtA5WViFYA6LFQeKDoBs9T7
QBWkqhagZmS+lICiU017w9tNoIpSVQ6oSamqHSg6lbZ3830AVKtUlQVqTKhu
oOiahb3P8EOg2oTKADUoVD9QdHXGfJ5g7uCMmclRmWx0mNQjwHBzwJ1aoHJH
eR2w9cHIXgBiAJjPCcydwnaNr1RAR5dFAaY0kKwG9KC2YvYu2U9hrGMQmpMF
d0aH1l5y9CoXi82N4VsjWbnaaw+3dVRKxu+witJdzHVYc497rLbEmHQ/qrrr
5+z9wp8Dpjvp7va+5IeSWbIbfDUifiddx0Hpbk7oza8U2E1FffdJ1eoJas5g
vL9Iegt0H5N0c0jl/VXSc9B9ULqbXaH3N0nPQPde6W42r+Y3FOySXd+9Q7rb
m/i/kPQkdC9Jd3MntfkZBztL6rvnZMp8bLr/U9LNPrbS22zPdbD5FQHv3xIc
lzlsfhzBeywh5pcefhS/fPHi8e499vb8Hy1utd0=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.438}, {295.25, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"4d4a3995-937a-4eaa-9361-cc160ef301b5"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(42\\). \\!\\(\\\"elongated pentagonal orthobirotunda \
(J42)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"6e21bb3b-f642-41ce-b058-7839b090bfb5"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.04938
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0420089 1.11185 0 1.11185 [
[ 0 0 0 0 ]
[ 1 1.04938 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.04938 L
0 1.04938 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.38094 .4194 m .49869 .51438 L .62811 .46497 L p .638 .637 .833 r
F P
0 g
s
.49869 .51438 m .60095 .61893 L .62811 .46497 L closepath p .594 .491 .707 r
F P
0 g
s
.35626 .5716 m .49869 .51438 L .38094 .4194 L closepath p .743 .633 .737 r
F P
0 g
s
.60095 .61893 m .49869 .51438 L .35626 .5716 L p .692 .495 .616 r
F P
0 g
s
.52017 .74652 m .60095 .61893 L p .35626 .5716 L .692 .495 .616 r
F P
0 g
s
.35626 .5716 m .36556 .71535 L .52017 .74652 L p .692 .495 .616 r
F P
0 g
s
.24139 .62038 m .36556 .71535 L .35626 .5716 L closepath p .822 .595 .595 r
F P
0 g
s
.24139 .62038 m .35626 .5716 L .38094 .4194 L p .872 .758 .734 r
F P
0 g
s
.38094 .4194 m .43312 .30344 L .28167 .36236 L closepath p .773 .8 .875 r
F P
0 g
s
.59199 .33158 m .43312 .30344 L .38094 .4194 L p .638 .637 .833 r
F P
0 g
s
.62811 .46497 m .59199 .33158 L p .38094 .4194 L .638 .637 .833 r
F P
0 g
s
.38094 .4194 m .28167 .36236 L p .24139 .62038 L .872 .758 .734 r
F P
0 g
s
.75546 .49667 m .62811 .46497 L .60095 .61893 L p .538 .439 .69 r
F P
0 g
s
.60095 .61893 m .72602 .65677 L .75546 .49667 L p .538 .439 .69 r
F P
0 g
s
.72602 .65677 m .60095 .61893 L .52017 .74652 L p .577 .352 .539 r
F P
0 g
s
.72266 .35868 m .59199 .33158 L .62811 .46497 L p .471 .525 .832 r
F P
0 g
s
.62811 .46497 m .75546 .49667 L .72266 .35868 L p .471 .525 .832 r
F P
0 g
s
.36556 .71535 m .40849 .80521 L .52017 .74652 L closepath p .679 .323 .364 r
F P
0 g
s
.40849 .80521 m .36556 .71535 L .24139 .62038 L p .836 .383 .142 r
F P
0 g
s
.52017 .74652 m .64463 .79066 L .72602 .65677 L p .577 .352 .539 r
F P
0 g
s
.64463 .79066 m .52017 .74652 L .40849 .80521 L p .595 .196 .256 r
F P
0 g
s
.18991 .48996 m .19512 .64369 L .24139 .62038 L closepath p .992 .74 .43 r
F P
0 g
s
.30289 .76474 m .40849 .80521 L p .24139 .62038 L .836 .383 .142 r
F P
0 g
s
.24139 .62038 m .19512 .64369 L .30289 .76474 L p .836 .383 .142 r
F P
0 g
s
.28167 .36236 m .18991 .48996 L .24139 .62038 L p .872 .758 .734 r
F P
0 g
s
.28167 .36236 m .43312 .30344 L .49858 .26675 L p .413 .86 .798 r
F P
0 g
s
.43312 .30344 m .59199 .33158 L .49858 .26675 L closepath p .434 .723 .986 r
F P
0 g
s
.72602 .65677 m .64463 .79066 L p .83526 .72117 L .322 .066 .361 r
F P
0 g
s
.83526 .72117 m .84152 .6094 L .72602 .65677 L p .322 .066 .361 r
F P
0 g
s
.84152 .6094 m .75546 .49667 L .72602 .65677 L closepath p .467 .371 .663 r
F P
0 g
s
.28167 .36236 m .23747 .36817 L .18991 .48996 L closepath p .902 .982 .714 r
F P
0 g
s
.37665 .30633 m .23747 .36817 L .28167 .36236 L p .413 .86 .798 r
F P
0 g
s
.49858 .26675 m .37665 .30633 L p .28167 .36236 L .413 .86 .798 r
F P
0 g
s
.63223 .29237 m .49858 .26675 L .59199 .33158 L p .208 .606 .949 r
F P
0 g
s
.59199 .33158 m .72266 .35868 L .63223 .29237 L p .208 .606 .949 r
F P
0 g
s
.75546 .49667 m .84152 .6094 L .86911 .54374 L p .076 .229 .72 r
F P
0 g
s
.72266 .35868 m .75546 .49667 L p .86911 .54374 L .076 .229 .72 r
F P
0 g
s
.40849 .80521 m .53396 .8541 L .64463 .79066 L p .595 .196 .256 r
F P
0 g
s
.70547 .8388 m .64463 .79066 L .53396 .8541 L closepath p .466 .023 .11 r
F P
0 g
s
.64463 .79066 m .70547 .8388 L .83526 .72117 L p .322 .066 .361 r
F P
0 g
s
.24888 .62744 m .19512 .64369 L .18991 .48996 L p .03 0 .46 r
F P
0 g
s
.27722 .44651 m .24888 .62744 L p .18991 .48996 L .03 0 .46 r
F P
0 g
s
.18991 .48996 m .23747 .36817 L .27722 .44651 L p .03 0 .46 r
F P
0 g
s
.53396 .8541 m .40849 .80521 L .30289 .76474 L p .262 0 0 r
F P
0 g
s
.86911 .54374 m .79051 .37816 L .72266 .35868 L p .076 .229 .72 r
F P
0 g
s
.79051 .37816 m .63223 .29237 L .72266 .35868 L closepath p 0 .388 .805 r
F P
0 g
s
.86911 .54374 m .84152 .6094 L .83526 .72117 L closepath p 0 0 .097 r
F P
0 g
s
.19512 .64369 m .24888 .62744 L .30289 .76474 L closepath p .129 .327 .793 r
F P
0 g
s
.51138 .33521 m .37665 .30633 L .49858 .26675 L p .461 0 0 r
F P
0 g
s
.49858 .26675 m .63223 .29237 L .51138 .33521 L p .461 0 0 r
F P
0 g
s
.30289 .76474 m .43054 .81451 L .53396 .8541 L p .262 0 0 r
F P
0 g
s
.53396 .8541 m .43054 .81451 L p .72452 .78673 L .497 .821 1 r
F P
0 g
s
.72452 .78673 m .70547 .8388 L .53396 .8541 L p .497 .821 1 r
F P
0 g
s
.23747 .36817 m .37665 .30633 L .27722 .44651 L closepath p .396 .122 .376 r
F P
0 g
s
.43054 .81451 m .30289 .76474 L .24888 .62744 L p .348 .481 .852 r
F P
0 g
s
.83526 .72117 m .70547 .8388 L .72452 .78673 L closepath p .728 .988 .806 r
F P
0 g
s
.63223 .29237 m .79051 .37816 L .78066 .48355 L p .752 .386 .36 r
F P
0 g
s
.51138 .33521 m .63223 .29237 L p .78066 .48355 L .752 .386 .36 r
F P
0 g
s
.41056 .48315 m .27722 .44651 L .37665 .30633 L p .523 .27 .472 r
F P
0 g
s
.37665 .30633 m .51138 .33521 L .41056 .48315 L p .523 .27 .472 r
F P
0 g
s
.86911 .54374 m .83526 .72117 L .72452 .78673 L p .925 .822 .725 r
F P
0 g
s
.78066 .48355 m .79051 .37816 L .86911 .54374 L closepath p .951 .611 .331 r
F P
0 g
s
.78066 .48355 m .86911 .54374 L p .72452 .78673 L .925 .822 .725 r
F P
0 g
s
.24888 .62744 m .37942 .6726 L .43054 .81451 L p .348 .481 .852 r
F P
0 g
s
.37942 .6726 m .24888 .62744 L .27722 .44651 L p .48 .391 .677 r
F P
0 g
s
.54528 .76956 m .43054 .81451 L .37942 .6726 L closepath p .48 .57 .868 r
F P
0 g
s
.43054 .81451 m .54528 .76956 L .72452 .78673 L p .497 .821 1 r
F P
0 g
s
.27722 .44651 m .41056 .48315 L .37942 .6726 L p .48 .391 .677 r
F P
0 g
s
.78066 .48355 m .59966 .4584 L .51138 .33521 L p .752 .386 .36 r
F P
0 g
s
.59966 .4584 m .41056 .48315 L .51138 .33521 L closepath p .603 .366 .531 r
F P
0 g
s
.72452 .78673 m .54528 .76956 L .68489 .63883 L closepath p .75 .736 .84 r
F P
0 g
s
.72452 .78673 m .68489 .63883 L .78066 .48355 L p .925 .822 .725 r
F P
0 g
s
.37942 .6726 m .41056 .48315 L p .68489 .63883 L .644 .544 .727 r
F P
0 g
s
.68489 .63883 m .54528 .76956 L .37942 .6726 L p .644 .544 .727 r
F P
0 g
s
.68489 .63883 m .59966 .4584 L .78066 .48355 L closepath p .787 .604 .653 r
F P
0 g
s
.41056 .48315 m .59966 .4584 L .68489 .63883 L p .644 .544 .727 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{277.875, 291.562},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnNtvG8cVh9fkLu/iTRSpK0WJulCSFSe2bF0tS7JiWfEliZpe4qBtLNeo
08KoYaU3KEWLGEUDBAEKtI9+zGP/BT320Y9+zZ/Qx76yO2dmj5bkb8hZ0LQC
1AJ2uNrZPd83Z2ZvJJd37n/+6OHj+59/9uB+Ze/p/SePPntwVLnxm6fuovA5
yzo34E7ViiXm65blFfRXFIX65838m/k38z2f/0q8RMQ++De54K/iJSwWROpH
luWIuS9l1ZdcleaqP8mqP3NVUVRRwN/Lqi+4apy3eiqr/shVs1z1WFb9jqsu
cNUjWXXEVcuiyhZzv5BVT7hqRVTRXLj+78N7ITF3KFd6DFaKiZXkbF39WT+X
q/8KrJ7imGqlX4oXm51opRyv9FO50kPxQgtc6cPBw/qz7WNvcripKovetp/I
bQ/ZIiQ2VapqYzffXoiaCEEbjnCIj2WITxlvgxApUVILJthiHGTlRzLYzziY
A4Ll2GeIg1XZR4X4hJsUBSGK7JPnEDUO8ZEM8TFbxEGIEbZIcIhFDnEgQ/yY
QyRAiAkOEeIQFznEBzLER9yQFAgxI8qQHBqt6bwjQxywRRqEqFEpl7khKMwV
tlAhPuAQmQ4hnt97RoNwlUPckiHucoisNoTDIbxJhFrjUPsy1C3OSd7Axp3c
BIuysZGnhnsy7D4bFgzDhkHYddARuxKwx4ABQ4CjA1AUFXaX01EyDBsBYTc4
7I4Mu8O2Q4ZhYyDsVQ67JcNu04tcSRynROhBQ0AcAK4xYFMPQImZA4AEAGyB
Dl2XqC0fSpw7xGg1bUtKh6K2tAGYdnIfAOyAtqz4UbYPdRRkpGYAbVtPu0Yv
ThNNNtAUmW2bwVU/yJ/BIzqFHTWNkJwhNN92CAaE6o+EjdB+HVQt++/zA8qc
Su4mwNsAj04HaK8oAPxmb/Co9UXdYUWNVoFXCsvS4CowiAADdEpFBoO642XX
BknDLkAG601d4E7uKBNl4y63pFeKAiV0qYKSMgyU1oIpbQClGFBCF2BIaVR3
mm9SCgOlS3qlOFBCl5Wo48aA0kowpXWglABKEUOlsqGSDZQu6pWSQAldv6OO
qwCl5d4oofsTlKUJoHQFKDlA6R2ptAaU+oASuutCSpNnq4Q6bgooXQZKEaD0
tl4pzScNVhLzC8BgGhgsBTNYBQaZpqRYGvwswF8C+CjAX9Djs6KkRWgg1LqH
rgBoTkKPD/9FmZ8C5HlAvgjIMUB+qwNZLXPxYnJ73y1p0QQQWQAi7/RGJMoZ
GQUic6IUZwg3bCs+DvCLEr9siE8xvgTwVVGK07ibr2+/PlG1L55/KyZ3N3ZL
qp0Bconu5bLcSQUgNyJKcUJ3G9EqF2O58WByV4BcHsj1c+YyuqvamFRvlcuw
3CCQSwK588HkSiyXAHJp7tYxIDfAcrneyI1wt0Z1bx/E5CGiVW6U5RJALgXk
FqTcZSDXD+TKnLkQkCPyIvCaZK9w914oaVVR0i3tEsDPiZJq0wA1Hww1RaVc
5qIIdxlAz1Mpl/3n5Yl4dU/3WvySYQ8g/BWAn6fSZryaQvKI0Kox59ModsGd
a2q2O7kWoux8dJ4LlooqUFoBSjWg5HAy0MGu1huRWSASA7lB1w6vQGkVKM0A
pTjnBp3BZ/UiprsLEpkGIimQG3SB/QqU1oBSFSilOTfoonbm9YlkQW7Qjewr
UFoHShNAKc+5QfeK08FE0ADeACIVIDKgdnFfbviNsoBjBWlcBRrjQKPI+UDv
w0zpTztZw45BImUgMtQ0VkQeZl4ffliUtGi6e+im7rKnCTrma7OX8mpv8CMA
Pw7wk8HwaOhtAfzw2eKHAL4SDJ8xTP42wJcAfuJs8aj1bYaeKX5Hdzdi0Poe
4QsAP9kb/HWA7+8NHo38XYDPA3w1GD5t2HpTPGp9mxONKf5dgM8atr5H+AzA
T/UGfwPg02eL7wP46e7xaOTfBPgkwM+cLR61vs3lRp9h8vcBPm7Y+u8HHr3v
lDLEvwfwUYCffX34CMDXeoO/BfCOYetnguHRyL8N8LZh69vgk4atR/gwwM/1
Bn9H95Z6d3j6PJnuDPVQxw+lyf3fOh8MRN84oEWheuXghaq9d/ydmOR/E8Dg
LpV2g0FwOH3hhYJEADwkSlpU1hqcJl7X9lkdXn1PNQHIDpOHAfl9UdK2ix14
tFIfAMQYUOrQtJOTl+TaCaWqXBThEDTB0IJ2TNkMVeA23GXATQFuH3NzHfZf
xXU7RpSNO9C8XmTFUCTDIukOh1FPJBxMZBWIJIFInkWSHU4nnogNRNAhRb39
ugZE0EAfYJFYh7O6J+IEE1k3FCmxiG0oEgUi6BSjRDaASByIDLOIRR9zex7Q
Ida9A0rGKDvcBNB4MOhVw4aPUSn3/+N/fqcOlA33NJ5BEhigKzv1OckmMIgB
g3KTgbK4DgxSwQyuGRo050BNdBi/xkf9TDD4FoBHtfCwHy6GoMJvgCwEFNnu
QsRWOv69cgUo5YASuuVRSjtACV0KICWHc7MMRPKvTyTKIktApB+IoDtw9fnq
9S5EYqCT3gZKhWBKu0DJMVSKc24uAJEiEEHvzSiRd4GIbSiSZJHzQKQUTORG
FyIp0Ek1oDQYTGkPKIUNlfo4N7NAZBiIoPduF/QiKDejQCTDIlNAZCSYyM0u
MpIFnVQBSqNAid5WV7cHJLIPRNDNFhLJcUbKfP4ZB9AyQ9WX997rAppn6Aho
cwXgRxmvvi8pn+hy/HiaLPJvRRZAwksAPgHgp5/bqW+w3m4DLwP4ALe3CJCT
ADnI7XUrTuovvPHnGchn4uwGA03LiwzvB/AqgJeoVHdqLlvxLwVGD4KkZ4DE
NJAocAZCQqBpF1RfuL6LXVAfDHEa0sBgBhicfowfBgYqG+837Qa68TfM+CTA
zwJ8thFPc/JOXD2X2QhFbR4F+Y8CfA3gM74DnxoEsCeU0ofiJaRL/hi3PgLw
8wCf4tbbAKqecDnw5aHd8abM+DDALwB8gvEOwKuHjH7AbUbQSlPyRSe9BVAx
RkUASj3N9UPxEpZHzFbUuCjpa4WoLRHQk6hV8p7e+gmjBnVDiha5V6Uv6+IZ
EHjMtLlVUYBSjxaePiE90HaXKTAKXUeFGBUDKHlPrB5RD9e3LbrrpN4o6I6W
tKjC0D71xoQPSpPlIdX9G4E+5TblQPh+Dr/I4emtl7DOX4V9wGHTbc/iayIs
qcZBMPX860N12PQlQ0wp3aUbLdoSkZuGERqx8i5Q/ZhBCyPe9tJ5x5ChHg/+
NejUqO6+hRbtAgDaF+RdkvqxhpZGOLobWFq0BxjoIKYenX6CGSHACHGi9g0Z
8o5G/qSEq93EOD1C3QLxQjy05ZWu9Vt5vNu2LM/rZZ22u02l49/au2hQ14nW
H3Ar99tsqR7aPwadLFPccoUir8vUb3a0sJr7XgRSvy3wF8DYBqvL6w3rGe+M
m2IlypG8EJA/L9LKXvcF8/pGBfsKsC+K1emA/qFc6WsmVkWV+OhMHqgt6xuw
/QCvpH445O+8fYSr5MCz/iFe6AdNvpALyO579BMub+b/P+etc/8DZIrhEA==
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 276.875}, {290.562, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"dd8e6767-b13d-48de-93c5-7a7d8e1fc804"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(43\\). \\!\\(\\\"elongated pentagonal gyrobirotunda (J43)\\\
\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"f4e83a1f-d253-45da-aab9-141bd8477c75"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.02393
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0308504 1.09297 3.33067e-16 1.09297 [
[ 0 0 0 0 ]
[ 1 1.02393 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.02393 L
0 1.02393 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.31439 .40745 m .41849 .50318 L .55916 .45598 L p .693 .678 .831 r
F P
0 g
s
.41849 .50318 m .52834 .60578 L .55916 .45598 L closepath p .661 .545 .712 r
F P
0 g
s
.28442 .55964 m .41849 .50318 L .31439 .40745 L closepath p .795 .677 .735 r
F P
0 g
s
.52834 .60578 m .41849 .50318 L .28442 .55964 L p .744 .536 .613 r
F P
0 g
s
.70073 .48786 m .55916 .45598 L .52834 .60578 L p .619 .505 .701 r
F P
0 g
s
.52834 .60578 m .66837 .6413 L .70073 .48786 L p .619 .505 .701 r
F P
0 g
s
.66837 .6413 m .52834 .60578 L .46541 .73151 L p .644 .418 .561 r
F P
0 g
s
.46541 .73151 m .52834 .60578 L p .28442 .55964 L .744 .536 .613 r
F P
0 g
s
.69535 .35544 m .54836 .32574 L .55916 .45598 L p .569 .583 .827 r
F P
0 g
s
.55916 .45598 m .70073 .48786 L .69535 .35544 L p .569 .583 .827 r
F P
0 g
s
.55916 .45598 m .54836 .32574 L p .31439 .40745 L .693 .678 .831 r
F P
0 g
s
.28442 .55964 m .31038 .70343 L .46541 .73151 L p .744 .536 .613 r
F P
0 g
s
.19772 .609 m .31038 .70343 L .28442 .55964 L closepath p .881 .626 .548 r
F P
0 g
s
.19772 .609 m .28442 .55964 L .31439 .40745 L p .942 .832 .706 r
F P
0 g
s
.31439 .40745 m .39186 .29354 L .24833 .34842 L closepath p .812 .862 .885 r
F P
0 g
s
.54836 .32574 m .39186 .29354 L .31439 .40745 L p .693 .678 .831 r
F P
0 g
s
.31439 .40745 m .24833 .34842 L p .19772 .609 L .942 .832 .706 r
F P
0 g
s
.46541 .73151 m .6081 .77142 L .66837 .6413 L p .644 .418 .561 r
F P
0 g
s
.76126 .7252 m .66837 .6413 L .6081 .77142 L closepath p .59 .358 .532 r
F P
0 g
s
.66837 .6413 m .76126 .7252 L .85894 .61642 L p .473 .364 .649 r
F P
0 g
s
.70073 .48786 m .66837 .6413 L p .85894 .61642 L .473 .364 .649 r
F P
0 g
s
.6081 .77142 m .46541 .73151 L .38759 .79146 L p .634 .226 .252 r
F P
0 g
s
.31038 .70343 m .38759 .79146 L .46541 .73151 L closepath p .714 .336 .332 r
F P
0 g
s
.85894 .61642 m .81712 .4651 L .70073 .48786 L p .473 .364 .649 r
F P
0 g
s
.81712 .4651 m .69535 .35544 L .70073 .48786 L closepath p .502 .528 .816 r
F P
0 g
s
.38759 .79146 m .31038 .70343 L .19772 .609 L p .696 .171 0 r
F P
0 g
s
.64976 .28987 m .49498 .26015 L .54836 .32574 L p .36 .667 .974 r
F P
0 g
s
.54836 .32574 m .69535 .35544 L .64976 .28987 L p .36 .667 .974 r
F P
0 g
s
.39186 .29354 m .54836 .32574 L .49498 .26015 L closepath p .506 .752 .984 r
F P
0 g
s
.24833 .34842 m .39186 .29354 L .49498 .26015 L p 0 0 0 r
F P
0 g
s
.38759 .79146 m .53647 .83537 L .6081 .77142 L p .634 .226 .252 r
F P
0 g
s
.6081 .77142 m .53647 .83537 L p .79979 .75704 L .282 0 0 r
F P
0 g
s
.79979 .75704 m .76126 .7252 L .6081 .77142 L p .282 0 0 r
F P
0 g
s
.17106 .47629 m .19661 .63261 L .19772 .609 L closepath p .767 .526 0 r
F P
0 g
s
.32149 .75288 m .38759 .79146 L p .19772 .609 L .696 .171 0 r
F P
0 g
s
.19772 .609 m .19661 .63261 L .32149 .75288 L p .696 .171 0 r
F P
0 g
s
.24833 .34842 m .17106 .47629 L .19772 .609 L p .942 .832 .706 r
F P
0 g
s
.69535 .35544 m .81712 .4651 L .86 .47877 L p 0 .233 .736 r
F P
0 g
s
.64976 .28987 m .69535 .35544 L p .86 .47877 L 0 .233 .736 r
F P
0 g
s
.85894 .61642 m .76126 .7252 L .79979 .75704 L closepath p .078 0 .236 r
F P
0 g
s
.24833 .34842 m .25079 .35379 L .17106 .47629 L closepath p 0 0 0 r
F P
0 g
s
.41265 .29597 m .25079 .35379 L .24833 .34842 L p 0 0 0 r
F P
0 g
s
.49498 .26015 m .41265 .29597 L p .24833 .34842 L 0 0 0 r
F P
0 g
s
.86 .47877 m .81712 .4651 L .85894 .61642 L closepath p 0 0 .536 r
F P
0 g
s
.53647 .83537 m .38759 .79146 L .32149 .75288 L p .005 .523 .858 r
F P
0 g
s
.57476 .32865 m .41265 .29597 L .49498 .26015 L p .516 0 0 r
F P
0 g
s
.49498 .26015 m .64976 .28987 L .57476 .32865 L p .516 0 0 r
F P
0 g
s
.86 .47877 m .85894 .61642 L .79979 .75704 L p .986 .902 .618 r
F P
0 g
s
.29817 .61536 m .19661 .63261 L .17106 .47629 L p .371 .273 .612 r
F P
0 g
s
.33408 .43378 m .29817 .61536 L p .17106 .47629 L .371 .273 .612 r
F P
0 g
s
.17106 .47629 m .25079 .35379 L .33408 .43378 L p .371 .273 .612 r
F P
0 g
s
.32149 .75288 m .47826 .79855 L .53647 .83537 L p .005 .523 .858 r
F P
0 g
s
.53647 .83537 m .65425 .82976 L .79979 .75704 L p .282 0 0 r
F P
0 g
s
.65425 .82976 m .53647 .83537 L .47826 .79855 L closepath p .26 .707 .958 r
F P
0 g
s
.86 .47877 m .75262 .36527 L .64976 .28987 L p 0 .233 .736 r
F P
0 g
s
.75262 .36527 m .57476 .32865 L .64976 .28987 L closepath p .658 .18 .105 r
F P
0 g
s
.19661 .63261 m .29817 .61536 L .32149 .75288 L closepath p .404 .493 .836 r
F P
0 g
s
.79979 .75704 m .65425 .82976 L .75784 .71382 L closepath p .801 .962 .914 r
F P
0 g
s
.79719 .53046 m .86 .47877 L p .79979 .75704 L .986 .902 .618 r
F P
0 g
s
.79979 .75704 m .75784 .71382 L .79719 .53046 L p .986 .902 .618 r
F P
0 g
s
.25079 .35379 m .41265 .29597 L .33408 .43378 L closepath p .54 .274 .462 r
F P
0 g
s
.47826 .79855 m .32149 .75288 L .29817 .61536 L p .513 .575 .855 r
F P
0 g
s
.79719 .53046 m .75262 .36527 L .86 .47877 L closepath p .93 .619 .43 r
F P
0 g
s
.49967 .47195 m .33408 .43378 L .41265 .29597 L p .62 .366 .512 r
F P
0 g
s
.41265 .29597 m .57476 .32865 L .49967 .47195 L p .62 .366 .512 r
F P
0 g
s
.75784 .71382 m .65425 .82976 L .47826 .79855 L p .683 .704 .863 r
F P
0 g
s
.29817 .61536 m .46157 .65891 L .47826 .79855 L p .513 .575 .855 r
F P
0 g
s
.47826 .79855 m .46157 .65891 L p .75784 .71382 L .683 .704 .863 r
F P
0 g
s
.57476 .32865 m .75262 .36527 L .79719 .53046 L p .751 .522 .584 r
F P
0 g
s
.46157 .65891 m .29817 .61536 L .33408 .43378 L p .595 .484 .698 r
F P
0 g
s
.49967 .47195 m .57476 .32865 L p .79719 .53046 L .751 .522 .584 r
F P
0 g
s
.33408 .43378 m .49967 .47195 L .46157 .65891 L p .595 .484 .698 r
F P
0 g
s
.75784 .71382 m .64033 .60207 L .79719 .53046 L closepath p .821 .709 .741 r
F P
0 g
s
.46157 .65891 m .64033 .60207 L .75784 .71382 L p .683 .704 .863 r
F P
0 g
s
.79719 .53046 m .64033 .60207 L .49967 .47195 L p .751 .522 .584 r
F P
0 g
s
.64033 .60207 m .46157 .65891 L .49967 .47195 L closepath p .648 .536 .713 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{281.375, 288},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnEtwHEcdxse7s++HVitrJa1eK+stLFt+yZZkWW/Jlh/gEAIxwSCcQOyC
BGxTUBgKClV4VFJFFZXcfMwxR105cuSYq48cc8x1mf53z5fR7jdST+RVUZRd
Nb3j7pnv9/W/e6Z7Xrq98/Tdd36+8/Thg53a1uOdX7z78MGT2ub7j72s+AnH
OdHjLbWao9brjuMn8q+qEvOfV+uv1l+tt2T9b+rHVcfdRzrjz+onrjLc+q7j
JNTaX3TRLrbNoehPuuiPKOpA0e91kfxIRhVFv9FFv1U/SZUxhKInuujXKJpE
0Xu66Kn6SamMGRQ91EW/VD9plXEZRW/rovdQtKSKpIY7uuhn6ierMhZVUUyt
xeufTXbrrermn3Nfby6sjJyq3PqHK0/qz+/t+osQZ6GSJCo/0Co/gUpciZiN
jIy3oy92FmIZJSZrRuJtVClJJHIqdRFB2bFA/NzTYjvwkyJiJfg5BbESEXtT
i92HWIaIVeCsX4mZUk9MBNtRTSP2FqqZJ2JVOKvAWYU4e0OLvQlnBSJWg1gb
xHqI2He02BsQKxGxUVQzA7E+VM5IvI7KlYnEFPzEIFEjfl7TYnfh5yQROws/
Q0Tirpa4A4kKkTgnqc771+7HatEHWT/qZXRuQaeb6MwQnaRKzXmi2d4dLXsD
slVLeznIsl5xW8tuQrbPUrYdsmVU3YhtoEkHLMUqEGsjHrcDsgndA+xk+yCb
I7I3tOy6+nH1kW0nOwTZFKpuxNYg5u1zb+W57KdUBy21x6HtEsubAUq87kPM
RupMrCD9lqjTKpURZkvLrkI2QWR7LWXPq1RistkomySyPZayFyXdH451DVgB
IE0A7PALBYjvDS27DNkskbU9O8xCdr1RNkdkO6PImrwvnj+SHremAUsAFAig
wxJwWVIXAANZDTBi+oBtZrAzOWNc4YwVzbiGepQIgw04jDH31TkaDD9gyxq0
CFCZgIoEdD4UFA+CvPFKpfs77WIAGtNDVTOUjc2sdvMEGifQqxp6FTXtJNCc
ZU0XLKELAajUtItAs5Y1vUqgLoHOa+gCoD0EmrasKYMmCHROQ+cR3iqBsmkl
q+k1S+iVANTMrZqhCcuaMmiSQC9r6BygAwTqWtZ0iUBTBDqroVcArRFozLKm
DJom0EuN0CGBukGoWr9IGCuWjIuacRmM4YaKOREAGQK4EACYIjUrURBBSRaL
0ioBZAngvAbMogajWvb5sz2J1BmivWapfU5rX4L2WCA6HkAtXnt4qZzeJwhq
naByBDUTQDXEaZRAM6jfMIFuEGieQM9q6MUD61cEatASVSCoMwGURf3KCGoP
gW5ZQqc19AKBspp2oaadltAigZ7W0PMI6gRB9QJVIqjrBNVGUN8IoBrqN06g
g4DmLaElAp3S0HOW0BG0ZJJAty2hk9Ggk6hpzBLaTqATGjpDoKxNp1UqWbcI
oEwA4xpwlgAmCeCMpDrv0w/35NxsixoLoE6HarvQNvo3w+SlZx/gnwWo0b+3
eO2j0sN74r72+Y9c1r4MfJzg2YFeMtM9H28sjIf3ENYtmQPX0kEBUY8rekPz
jh7dSIIY2TxsINGhaJWlJLHEBpwcseRGs8TGA2YpbWkpQywlWmMpQyyxaUcK
PSgdboSdYdkAzYxkiRE21UqS2LTIUo5YYjPLBLGUaY2lvEqlGVhsYmikfDT8
iCW+jURk+YBbFMXW2CgRG0v8bkxbaxy0hzkwj1ZCoWy6NWwJLRPoIqDtrYF2
EOg8oF7B53v/9Ht+1IqfsvTQSTzILcR43bfQcPgd0OxHMVIhRi4gGAlipEUR
6SJGZmAkFc0Iu8QZsjTSTYxMw0imNUamiZEqMTIFIznLPjIWbqRmGZFeYmQM
nbVwfEb6MFaMIA5tlg3yEvADJA6DgbPVsRkZJEb6YKQjmhF2D2LQsosOESM9
MNJ5dCMDlhE5RYx0oot2HZ+RYWKkjIj0ECNslHsJRkaIkTYY6T0+I6PESB5G
+qMZYTcE+y076zgxkoGRwaMb6bOMyAQxkkBnHTo+I5PESAwRGSZGyq0xMmWu
/X0j6tdR965b4oB1DnEgBsaODyo9UrLc+md7L0ypmn4qCxHjP0uMVKOcLCQr
TYywHtnRGiNDMJInRmpHNyKPPOUli9ARXrJKBM9OERHx8kBbrizj9R8/+9yU
7n78Qi2OeTkuZOIjWSeJr4Gj+8ojLGnqy0tdfUQ2m+uBuW5ijp3gWS829w7Z
k7EEzBWJubRKJetU2PWNZPURc2wYZJE70JzMdJp9ZRG0gbArXymtEV/Vr+FL
SqrESBFGqmE3QOK6bZuNsAkLaz3zbGAuECDPiJjpJpbKsNRJLBVgaZJY6o5m
aZ5Y6iKWKrDUHnYvT7KmiSU2v2RDtnlss0AsVYilKiwViKUULJ0jltjcm0XJ
WLpqaakfB1s27Oa9ZF0ilk5Gs7RILLHjrIYoJclDG9/QHDHELpRYs5lHfNeI
oZPE0AgMOfLc3fejN1skRsrRjCwRIx3EyAQaa4VAS5ZQ81R1mUDLBDopqc7z
oAJmeHbdfgB+heDbLfGrBF+Mhl+1xE8Q/BrBs5sm7IrUPD1fI/iSJX6d4PPR
8OsE32YZfIbPWuLNCwsbBM9mAgy/QfC29/AMfpPgC5b4TYJPR8NvWeJZ228R
PLuVyu7XmVdUrhN83hJ/neCT0fA3CD5nib9B8K4l3rwLtE3wWUv8NsHb3tk3
+JsEn7HE3yT4WDT8LYJn1wes52t8Ioj3H6zQ3m7e+LptiWQ1viWpuw95MO0O
oaUsabdVGvpwzLwr900CSFoC7gQa0G8s9vjRoL5FUIkoKHM7PRRwlwDcKMEy
TfPvL7+QxVHz2maaeYPxNUJj18zhHSEepHldX6X7o5kNx3/7CPhtgncJnj3k
Ny+Ivk7wsa9x2vPxSYJPheP1t2CJIF4WdfBOHXKi95FpgkyGI/XncO4+ZAht
i9CyhMbeeTFv+H63Ib5hFdskqDxBsTd+DOp7BHXYTMVHFSVNBFGyKA3z5rd8
PyiH7mGzL1+0ZDpkUPQrPfn6UnYYP2Qu6+uVG+IRMPeWX/fdF1Ksiszzu4On
6fu0ZQ/zdv39QDRFddfsMnTIdYev2A5F82XCjwIdzyiqxf8ctEl0OSykImo+
7NhBqyQg1kPElohYG8T0FafzAGIpJSZbV4jYtbAeJPvqCzjnHYil4axMxBaJ
WAFi5rOjn0IsC7EiEbsadhgFP8R6SJo2hwrniOwCkc1B1nzu9ggei/CYJmJz
RCwLMT0N1l9mx/VA6Yu5ROwKEctAzHxA+T7ESqimt486txstakrO5ZKl52fO
4/06/mssyot/0M0SnQT86FmK86v9Ombzlb0vRULqOhM2tAU/tZWP6c19K9+P
q3TM5/PNEnFI6HHX+R2s5BuseIt3GHipnBWHw0b64CfNf4BYFn7y8NNHpia+
gB4m9N8UEIEMcdMGNxXqxsGH4x9AJ0V0OqBTarBkWvH7WuWvUEmgOt2oTkbt
K6Xmo/yP0P9dAu0FNI454A/1jn/nJ0bZpKp2k++TzZ8s+AfbWB1o3nbtau2R
3u4T9SM7PtMZMlb+D/39iVfr/9/rzon/ApoK8vM=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {287., 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"61916195-ed8c-4d1d-963c-67d4df100dab"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(44\\). \\!\\(\\\"gyroelongated triangular bicupola \
(J44)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"ee12c7aa-d691-4e9d-b3dc-14bed982ff48"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.11693
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0694759 1.20506 -1.11022e-16 1.20506 [
[ 0 0 0 0 ]
[ 1 1.11693 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.11693 L
0 1.11693 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.71619 .71261 m .54672 .5381 L .35467 .65971 L p .735 .499 .571 r
F P
0 g
s
.54672 .5381 m .39578 .40175 L .35467 .65971 L closepath p .841 .733 .745 r
F P
0 g
s
.61854 .31098 m .39578 .40175 L .54672 .5381 L p .649 .724 .903 r
F P
0 g
s
.54672 .5381 m .76262 .45951 L .61854 .31098 L p .649 .724 .903 r
F P
0 g
s
.71619 .71261 m .76262 .45951 L .54672 .5381 L closepath p .596 .498 .714 r
F P
0 g
s
.71619 .71261 m .52611 .84646 L .75908 .77714 L closepath p .294 0 .071 r
F P
0 g
s
.35467 .65971 m .52611 .84646 L .71619 .71261 L p .735 .499 .571 r
F P
0 g
s
.76262 .45951 m .71619 .71261 L .75908 .77714 L p 0 0 .322 r
F P
0 g
s
.35467 .65971 m .28897 .80674 L .52611 .84646 L closepath p .806 .477 .432 r
F P
0 g
s
.35467 .65971 m .21127 .53466 L .28897 .80674 L closepath p .952 .683 .491 r
F P
0 g
s
.39578 .40175 m .21127 .53466 L .35467 .65971 L closepath p .885 .776 .737 r
F P
0 g
s
.76262 .45951 m .81111 .49898 L .61854 .31098 L closepath p 0 .049 .557 r
F P
0 g
s
.75908 .77714 m .81111 .49898 L .76262 .45951 L p 0 0 .322 r
F P
0 g
s
.39578 .40175 m .36556 .31771 L .21127 .53466 L closepath p .869 .985 .839 r
F P
0 g
s
.61854 .31098 m .36556 .31771 L .39578 .40175 L closepath p .626 .886 .988 r
F P
0 g
s
.52611 .84646 m .53198 .88592 L .75908 .77714 L closepath p .071 0 0 r
F P
0 g
s
.52611 .84646 m .28897 .80674 L .53198 .88592 L closepath p .442 0 0 r
F P
0 g
s
.61854 .31098 m .62087 .37336 L .36556 .31771 L closepath p .468 0 0 r
F P
0 g
s
.81111 .49898 m .62087 .37336 L .61854 .31098 L closepath p .744 .225 0 r
F P
0 g
s
.21127 .53466 m .36556 .31771 L .3385 .43414 L p 0 0 0 r
F P
0 g
s
.1697 .66804 m .28897 .80674 L .21127 .53466 L closepath p .977 .675 .346 r
F P
0 g
s
.3385 .43414 m .1697 .66804 L .21127 .53466 L p 0 0 0 r
F P
0 g
s
.75908 .77714 m .7103 .67055 L .81111 .49898 L closepath p .984 .902 .589 r
F P
0 g
s
.75908 .77714 m .53198 .88592 L .7103 .67055 L closepath p .838 .943 .892 r
F P
0 g
s
.53198 .88592 m .28897 .80674 L .1697 .66804 L p .254 .581 .944 r
F P
0 g
s
.81111 .49898 m .7103 .67055 L .62087 .37336 L closepath p .912 .664 .551 r
F P
0 g
s
.3385 .43414 m .36556 .31771 L .62087 .37336 L closepath p .559 .108 .137 r
F P
0 g
s
.1697 .66804 m .42949 .74701 L .53198 .88592 L p .254 .581 .944 r
F P
0 g
s
.42949 .74701 m .7103 .67055 L .53198 .88592 L closepath p .809 .865 .89 r
F P
0 g
s
.62087 .37336 m .7103 .67055 L .42949 .74701 L p .796 .609 .649 r
F P
0 g
s
.42949 .74701 m .3385 .43414 L .62087 .37336 L p .796 .609 .649 r
F P
0 g
s
.3385 .43414 m .42949 .74701 L .1697 .66804 L closepath p .555 .468 .712 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{269.312, 300.75},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm8lvFEcUhxvPZnvGMx7vGC9jsFmN8YJ3gw1e2QkECCQEDCEBIUSCSRQl
UaRIkSIF5cYxxxxzzDV/AsdcOXLMkasz9V71z037156ynVGkyEi9uJfve6+6
u7q6priw/PzhgyfLzx/dXy4sPlv+/OGj+yuFhafPiptiuzxvV01x6i14Zn3V
8/yZ/Muamf1jZ31nfWf9f7X+0izqzfP+qW5YMYsusyG/ulKcx8zq6p/jWic8
0IPumUXebBmUg+I4yB74SeA4i3jRUjCTlzB/TcppiXdO8x339dxls6gwW1Lm
PFGMhkIqTl6FzHWb/efdVcRdIDIGkVgL+F1EjCDuKEIWMS0OP4o+gogTxMdh
RCOiOEQQCYK4rQghibsVUfQQRJIgPlLEbSA6EUWXI+LDMKIbiDaCSBHELUVI
MLYE/ERaCKKSIG4qQoJJmj1HEUU9QVQRxAeKuAXEEKLIEUQ1QdwII0YRRTVB
pAniuiIkn5TZM4UokgSRIYhripB8Ks2eGURRPHJF3+ByXpac/b6efQNnzweK
Yf3hV8OHr8kqVl/9+ps9/O/fX4ifIa4oQjKv0grAR6RCiOLkyTPLIn9POdfA
WSv9GuEkghyExFCXw6i1e6GOhlScV6hoPeySwqRgq7WO8ONqIrC4zEvfKRcV
KxcgjafGPngRWFvfrYddUNgVwHoCFcF6WJLEyB6I82FsF8pxP8GmECNL+JzC
5DJnNE0/xiMEVkliZM/9WcXKJa8xe5qB7SfYKsTIEj4TgGW09vFhwwSWJjGy
6m1JsZcQYw7lOEGwGcTIEl5UmNw/WU3Ej3GawGpIjKwWX1Cs3Ek5sycB7BzB
ZhEjS3g+AMvamss0EjytvfToMwRbS6Jlr605FcgNWmv2XIqC2WbGesSsIs4B
cZkg6kg87GV+WmFyM+ajYPWIh6V0KoDIaQX8YuUPe1ARJsCLBNtAYmRtlhkV
nIEg5ihoRNws9WnFLqEcXbHNJG7WXDsZEPh35jrBBSJoQdysOE4odhHYpGPc
u0ncrKU6pYIFFIyroBVxs+KYVOw8sJWOxdEmc94wnwpAc1rzuMXahlhZEYwr
dg7Yakdsh33pBWOV2lJ4s8jdldeJMLVM/Si9MSWeBjHjSCyE7gKDDsIk3RpH
WJeZy6ZRRZxCPK6IfchwRBEzQOQcb5BuIIYDCEmk1jGKnkCp+DfBoMKmAcs7
wvYT2IDCTiK5OsfkNoCdAKzeMbK1khoKICS5hq0iphCFK2Ltkh9XxCQQTZu5
8fxSefNS7uIgTFJq3j5sArCWTT1fccAs0PLGkelux+u/MW8MvNYt1FAB3nCA
J/nuceS1B2pnn+cXYjmho4C2O0L3hC5zcSpW/mb+7tM1FBBII7CjjAJpVndu
5gXrILA3xwgyKDgKWoggVkIgGXSVUSAfNHu30DjzBfFowTAy2Of4PG5FIBl0
b6bV6iAYDgj8b+dyCI5DsH8LDXtfkHARHHAU1BFBsoRAukAOllEgHTaHHAV5
IkhFC4aQwWFHQa1jBiMBgWRwxFGQc8wgKJCeul5HQZYIKqMFgxD0OT7J/6qA
ZZAhgqoSAul8PbYNAcvANs4HIOh3FKQdM1gnGHAUVG9BIF3cg46CKiKoLiGQ
dseQo6CSCNLRgn4Ihh0FKccMxrYqSDpmEBRI+3GkPIJjEIw5PskJIshsVcAy
iBFBTQmB7Bkvj6APgglHQYWjYDwgkE+0qUgB/10jtz1o/B2oZ77gI3lHwTvh
UAomuHwJWGxDmKhKIeyuUy/fmsmLvEjnzTwWRZwIlFiIWGHmsmmUYJfMXAqx
YvXV6zehK84uzkTgng2p4mYej6oN55FBIqD66+0bKWp23SYCNUhIlUJW7NUx
g6xSoopDZXUb2AaIrQo29i6fgq06lFhxKparmZd+kqx+kOjTKFfWnBuDvobo
Y0TP6jrb3TpE9Flkz9rDx3FZa4k+QfSsLt9An4eefbH0I/v67euPE309Cp99
tPZC30T0yc3ph4m+Cdmzr/4D0O8m+kqiZ00Bqx8h+hbo24i+G9e+jeiriJ41
1myn/CjRt6LwWX9aAdl3EH2a6Flr1+rHiL4d2TcSfRv0XUSf2Zx+nOg7oWcd
ts3QdxN9lujZ95bVTxB9Fwqf9aw34NofLI++B9mz3ypqkf1hoq8levY5a/WT
RH8AevbjSxr6o0SfJ3rWo2F/m5si+kMofPZzWgr6fqKvJ3rWY2P1J4i+F9mz
nznjuPZDRN+wOf1Jou+DXv2+Xd/kw0TaRKSsp9BKp4m0H9Lx7QtmogR+Ub5+
I5JRomqx766ASiZTHDPR+AGCZ0W1uzT+lCOeXf7W0vjTjvgBgm+T+bofJCx5
1rHY2WPTviF5zpF8jJA7zFw+B+zoh3lHGKtcOsOwBQI7RmC9BFYIwxYdYazW
XYtsNhrG0mRvkLUys6Nslhxh+6MurcDssKIzjmn2RN2BArPjqM46wth7Wh5G
2WQHjp1zhO2NqjgkMjvs7rwjrEBgzYDZcYYyzEmO6SOIzqg6UxB29ORlIHoJ
op0gGoGwQz6vAnGYIPZEvY8EYYetXgfiIEG0EkQdEHb87U0gegiCNcbzQAQH
Essx+wiiOapVIwg7IvoOEF0E0RjVLpNNdmj3PSA6CKKBIGoQxbIiHgDRRhB1
UW1jQdiR8g+BaCWIPEFUA2EH9D82C6m8mwkiF/V9IojPFPEUUTQQRDbqC0sQ
jxTxDIg6gsgQRAqIx4r4EohagmBdDEkgnijiayCyBFEZ9aEsiKeK+BaINEGk
CCIOxBeK+B6IKoJIkp4Z/95cUcAPAKQIIE47W4p/faVn/4iz4+TsWEhvlp4t
Oc/7CedW2J6twLlmkn3f6ME/m4U/6MrUsvZYjeY7PegXHPS9bjDz//q/zuys
76yXe93b9Q/ymxaN\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 268.312}, {299.75, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"c0fe18c7-8c89-4e25-969c-23fae12f546d"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(45\\). \\!\\(\\\"gyroelongated square bicupola (J45)\\\"\\)\
\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"5e52e4b9-22ad-4d16-bcac-9032d743a5c0"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.07202
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0510866 1.15306 3.33067e-16 1.15306 [
[ 0 0 0 0 ]
[ 1 1.07202 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.07202 L
0 1.07202 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.51004 .38261 m .63648 .55068 L .79827 .48211 L p .574 .585 .827 r
F P
0 g
s
.63648 .55068 m .7619 .70207 L .79827 .48211 L closepath p .519 .429 .693 r
F P
0 g
s
.58493 .83976 m .7619 .70207 L .63648 .55068 L p .637 .452 .616 r
F P
0 g
s
.63648 .55068 m .46764 .6818 L .58493 .83976 L p .637 .452 .616 r
F P
0 g
s
.46764 .6818 m .63648 .55068 L .51004 .38261 L p .737 .633 .744 r
F P
0 g
s
.46764 .6818 m .36298 .82029 L .58493 .83976 L closepath p .737 .467 .52 r
F P
0 g
s
.22018 .64732 m .36298 .82029 L .46764 .6818 L p .853 .636 .608 r
F P
0 g
s
.46764 .6818 m .33688 .51682 L .22018 .64732 L p .853 .636 .608 r
F P
0 g
s
.51004 .38261 m .33688 .51682 L .46764 .6818 L p .737 .633 .744 r
F P
0 g
s
.33688 .51682 m .51004 .38261 L .43725 .26957 L p .82 .844 .866 r
F P
0 g
s
.51004 .38261 m .66739 .30063 L .43725 .26957 L closepath p .627 .769 .948 r
F P
0 g
s
.79827 .48211 m .66739 .30063 L .51004 .38261 L p .574 .585 .827 r
F P
0 g
s
.33688 .51682 m .24836 .41578 L .22018 .64732 L closepath p .944 .828 .701 r
F P
0 g
s
.43725 .26957 m .24836 .41578 L .33688 .51682 L p .82 .844 .866 r
F P
0 g
s
.7619 .70207 m .86128 .63911 L .79827 .48211 L closepath p .21 .144 .56 r
F P
0 g
s
.7619 .70207 m .7354 .84763 L .86128 .63911 L closepath p .021 0 .216 r
F P
0 g
s
.58493 .83976 m .7354 .84763 L .7619 .70207 L closepath p .414 .119 .353 r
F P
0 g
s
.58493 .83976 m .50254 .91825 L .7354 .84763 L closepath p .328 0 0 r
F P
0 g
s
.36298 .82029 m .50254 .91825 L .58493 .83976 L closepath p .652 .214 .197 r
F P
0 g
s
.79827 .48211 m .80877 .40348 L .66739 .30063 L closepath p .048 .318 .803 r
F P
0 g
s
.79827 .48211 m .86128 .63911 L .80877 .40348 L closepath p 0 0 .447 r
F P
0 g
s
.36298 .82029 m .28762 .80814 L .50254 .91825 L closepath p .568 0 0 r
F P
0 g
s
.22018 .64732 m .28762 .80814 L .36298 .82029 L closepath p .887 .457 .111 r
F P
0 g
s
.66739 .30063 m .59704 .27648 L .43725 .26957 L closepath p .068 .615 .837 r
F P
0 g
s
.66739 .30063 m .80877 .40348 L .59704 .27648 L closepath p .53 0 0 r
F P
0 g
s
.24836 .41578 m .21822 .56999 L .22018 .64732 L closepath p .81 .735 .21 r
F P
0 g
s
.22018 .64732 m .21822 .56999 L .28762 .80814 L closepath p 0 0 .412 r
F P
0 g
s
.43725 .26957 m .59704 .27648 L .34727 .34458 L closepath p .304 0 0 r
F P
0 g
s
.43725 .26957 m .34727 .34458 L .24836 .41578 L closepath p 0 0 0 r
F P
0 g
s
.24836 .41578 m .34727 .34458 L .21822 .56999 L closepath p 0 0 .184 r
F P
0 g
s
.6276 .82303 m .7354 .84763 L .50254 .91825 L closepath p .627 .931 .969 r
F P
0 g
s
.86128 .63911 m .7354 .84763 L .6276 .82303 L p .915 .922 .805 r
F P
0 g
s
.76506 .59319 m .80877 .40348 L .86128 .63911 L closepath p .989 .764 .506 r
F P
0 g
s
.6276 .82303 m .76506 .59319 L .86128 .63911 L p .915 .922 .805 r
F P
0 g
s
.50254 .91825 m .28762 .80814 L .39705 .70025 L p .55 .682 .926 r
F P
0 g
s
.39705 .70025 m .6276 .82303 L .50254 .91825 L p .55 .682 .926 r
F P
0 g
s
.59704 .27648 m .80877 .40348 L .76506 .59319 L p .826 .553 .525 r
F P
0 g
s
.39705 .70025 m .28762 .80814 L .21822 .56999 L closepath p .395 .425 .774 r
F P
0 g
s
.76506 .59319 m .53607 .46225 L .59704 .27648 L p .826 .553 .525 r
F P
0 g
s
.53607 .46225 m .34727 .34458 L .59704 .27648 L closepath p .642 .353 .465 r
F P
0 g
s
.21822 .56999 m .34727 .34458 L .53607 .46225 L p .558 .412 .638 r
F P
0 g
s
.53607 .46225 m .39705 .70025 L .21822 .56999 L p .558 .412 .638 r
F P
0 g
s
.76506 .59319 m .6276 .82303 L .39705 .70025 L p .745 .649 .753 r
F P
0 g
s
.39705 .70025 m .53607 .46225 L .76506 .59319 L p .745 .649 .753 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{274.938, 294.688},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm1lTG2cWhmXUklgkEEJiBwkQi4AABoOxhdkxtkO8xIkn48okwc5iM0nZ
EzuZykylplLMVCqVi/wJX85fmMtczuX8Df4C0bfoVXfrbelrtZyaC7uqP7Wl
089zzulF3aL7neOXTz776vjl08fHucOvj58/efr4Re76s69Lb4UvhEIXUqVp
KhcS8+ehUHmQ/3rEoP/zZv7N/Jv51z7/rXhJiH3wF/XGN/IlLN45v6WmUIcY
e8Vb36mglyRoXIyS9KUKekGCpsVoibdazl89fKE//d/Pp/IoIP/3VC39F/HS
cl5eRn4UcS1TmkocMar3TvXRRC72ueI8BycPdyvhhMXYojI71b7HCvGMFJID
LE5gEcDCgH2iYF8hnywQXQTR6qrr1AH7k4J9CdgwYD0E1oZ8okA8VIg/AzGI
PvcRRAcQMZ0LDtslzB8U7ASwPuQzQGCdznxcsAcK9gSwDGAjBJYknbLEKJfV
sC8ASwE2RmDdNTO7r2CfA5ZEz/IElgYsgnw04jMgEshnmiB6vYpzZXZXYeUW
Kz9pB3aOYPucmblgdxTsEXJsBWyBwAYBq7RdI46BiACxTBDDXlu7K7Mjhf0Y
ZYaxAtYIdoRkphEfiZeYeGOdLJhzLujK4qZCyJ1QlrRBEOPOY4ALcUMhPkR/
ZG8KMubnk1fitUigeTla9j6hMI18iN7IZYEsBZXGFq+Kp2qme6DYfwRbRBZ0
kMhXCMIQsHUx4zzAyjmN/QBdCBNsVMPFeyWsRK8Qwaw+9Lp6Izuxr0QPbNtN
tagV+bNNdN6Zv6tBO0rwPgQWEbSTShaJagEqtTLkh+J/2vKeba+qtsRRBmMv
Mbagbin2fbCjhN0J9jxhr7i2Tp32piLfQ28YuZv0pkAcl7zy31CWu8g/Riw9
yJ+x18QYVju0hN2xHQGrYRmS8iTBXgH2qsLeli9h3Z+CRLNs+5Atw14F9orC
HiHbdgIbAGyCwDYAu6xgb9eEDZPSswS7hbW1prC3SOlMMIJsGXYb2FWFvYFs
4wSWI9kOE+yu7VuovGMvK8FhTcE4sh0i2D1v7HXSDibIkwr6/akODFVTqIUJ
HC36VZ22ryjBPhEkiGAGgky9CuoLWAVzpFmp16OaRy0+BXuGgkVSS6enyoJK
62rYOojtIsrxdkQcjnJZy/5EKxCxy6cGRew4skb6xy7/9punvIzaGhTtGoqu
ktrYJbJ7MyxNpXMYMToPFEve+jai30CdlmedTmmYSBf9STchdf+A0CQp+6Lf
cTVarKvrr0e1i/oOiMDyFuwYCvbkqA4U/3n1q46n20iE2Bb82XZtnRO20lRa
cWIkX+jB9OwEao/ow2KUHW6ClJ3JMmkU0mtEGvWWbhtWyhrdBmkxuNS00g6y
dteJPkb0b/nTs5oTqLkJUnZ1xWrugnQtuJRdODJpCtIVIm31lm4FqDRN1u5S
cL1pzb2omUnbiHTen5RtUgOQLgSXhg0rHYJ0jkjbg0tZpaNk7c74028GqDmL
mpm0g0jnvKXsByomHYd06vVIWaMnIZ0g0ng9acQu1ZM4YagWTZM1mvOnvBag
zgLqbEhqXuccRKNElCCi2fqifSJagGi4EZHlEtFilshK6ye2zno2+0rjqmWU
41OwwcthLVuFo5c4uoijYHfUL+IyBOngAlbBVbJCkkSVrKNq8VrjRVTQCNbg
KLcJQac/QbFm3tvAxgm2m2Bn3FjW7z3S71YiSNUR6I8encjLHHqEOkAFDQks
CLRkhzgO4Yg24NAXuyW+nNskglsQWI0KLCFwbUhFojqSY8S+auQk+pshomm3
KEJEV4jothjD6qhRG4sd+ERmEUGrGPYuWlUvWxc2RvJeJYJ7clTbxdnZfzUj
1OPP1ooiLnk6wnCUptIWUhr1L5HVqilvVTsp7KJX51zSCKTsEOKQWjapFDPv
omGxMXjZV5T2bpBiO9BXpmIltkPFTldqqBKkvjnD+uKQslNth7Sqr8w7a1hs
F7zssmayprcTrS0Y2lKwsUvk2rYkqXLSsLtpeNmvPQ5vxOVVq5bJ84ZF90HO
fi00kHejzxOG9Q5AqZxlo3ND4rYeUmrOsNRhMcq3DERplJU1xGfl6Oxf3mt/
PJHXLCe2MwJRF6tuyLCrTdCniX4wQPWT/vQZtHwgQM1aes1Q2ktq7g1Q85Q/
fR/RpwPop/3p+9HyJkidPwY4d6dhUmcygHLGrqxf5yDRdwbYyLR+q0bFI2gt
E5nWWagvypLa2gMoZ+3K+q2t1NkE6XaNOsdIndEAyrn6ynGijARX7tRT6kug
xkXz9UV5WZtlr03Mv2to0L+eq78jVp0OTboaF2ouucVPpgt2Hu/FhL0X/z4r
T/rOUV+aPZ62Y0tSdLGCtePI0LFY0zFGHDE4bho69F/d97kjSxztcBw2xTFK
HAk49g0dF2s6RogjKUfnDrfjz+a8qYl89WlVCuVsGwocd01VlTNIHBk4rhk6
9N0510kRA0TQD0ExuKCfCIYgWDcUXLILqrrUSxyjcKz5cxySIjJEMAbBiqFg
1VuQJoI8BEuGAn3vY+UmxR6CnQZ2oQGsK+9uIpiFYM5QcNlbkCSCtyAo+BPc
RGO6CHaJHCYmDQXrNoGrggRRLaOCvKFA33p7CxXECXYV2PFGsR0Euw5s1hCr
7z+u3NvbRrBFYEcaxbYS7Cawg4bYohsbI9gdYPsMsfre7iPbNlE+t7aIYB+C
TAOC6h/XNfYQ2JQhVl1jht6RLxF73vgLxxGgyUagVX/NuANewpC3aePJT94l
e2+bIWxLwW6jkfeRj0/EXYKIGiLUBUupkGqE5Q/xHkGE5P1oZUIoR5bWT308
wNKyp5ba8avD1Ym37aGaO7ZV8OrsXEzi7skz9ezSkDfiIRBHBBETY0TtGNUI
dc5se8DpBkrugrvbe8GPsOABcfcAEScI/bTPJ0DsEkQ/0o8ShH4yqfIIXOXw
lYO7xXvBT7FgkbgnxBhWXZHhlScK10n4GMLfVuGVRyNXSXgW4epBE9tjmRdR
xSiquKeC1FO75BvdRR8C/X21YOWJ1nmvNkvPByr8GcJnkEw/mB+qoMrTv5OE
mUH4xyr8BcLHSXgKKTxS4d8gfNR2FC4z9YPDf0XQEGF2IVw/r/wdwvtJeBwp
6Iej/47wNFKIg/lcBX2PoG7CbEO4etI69A+Ed5LwKFL4VoX/gPAOEm6B/jcV
forwyjVuGMzvVdC/EGQRpvzfDyryR7K5SdI/1ec/gaQi1R72f/Tk/Jv532c+
dOE3L3gRTA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 273.938}, {293.688, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"3a1ab63d-9b10-403f-9f44-689801862140"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(46\\). \\!\\(\\\"gyroelongated pentagonal bicupola \
(J46)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"10ef30b3-68ca-4480-ae86-8868470c52c3"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.04192
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0374298 1.13136 -5.55112e-16 1.13136 [
[ 0 0 0 0 ]
[ 1 1.04192 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.04192 L
0 1.04192 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.56858 .40392 m .54749 .58257 L .73375 .60657 L p .688 .618 .773 r
F P
0 g
s
.54749 .58257 m .61975 .75577 L .73375 .60657 L closepath p .7 .57 .705 r
F P
0 g
s
.45378 .82935 m .61975 .75577 L .54749 .58257 L p .763 .599 .675 r
F P
0 g
s
.54749 .58257 m .37994 .6515 L .45378 .82935 L p .763 .599 .675 r
F P
0 g
s
.37994 .6515 m .54749 .58257 L .56858 .40392 L p .798 .719 .777 r
F P
0 g
s
.61975 .75577 m .77235 .75639 L .73375 .60657 L closepath p .524 .333 .564 r
F P
0 g
s
.61975 .75577 m .61962 .88039 L .77235 .75639 L closepath p .503 .221 .419 r
F P
0 g
s
.45378 .82935 m .61962 .88039 L .61975 .75577 L closepath p .628 .319 .428 r
F P
0 g
s
.73375 .60657 m .85153 .57715 L .7601 .42808 L closepath p .416 .365 .693 r
F P
0 g
s
.73375 .60657 m .77235 .75639 L .85153 .57715 L closepath p .38 .245 .569 r
F P
0 g
s
.73375 .60657 m .7601 .42808 L .56858 .40392 L p .688 .618 .773 r
F P
0 g
s
.37994 .6515 m .28773 .79727 L .45378 .82935 L closepath p .828 .626 .629 r
F P
0 g
s
.18471 .65862 m .28773 .79727 L .37994 .6515 L p .894 .727 .668 r
F P
0 g
s
.37994 .6515 m .28599 .5127 L .18471 .65862 L p .894 .727 .668 r
F P
0 g
s
.40775 .35261 m .28599 .5127 L .37994 .6515 L p .798 .719 .777 r
F P
0 g
s
.56858 .40392 m .40775 .35261 L p .37994 .6515 L .798 .719 .777 r
F P
0 g
s
.40775 .35261 m .56858 .40392 L .68321 .27832 L p .723 .773 .892 r
F P
0 g
s
.56858 .40392 m .7601 .42808 L .68321 .27832 L closepath p .663 .668 .845 r
F P
0 g
s
.45378 .82935 m .43887 .90791 L .61962 .88039 L closepath p .609 .17 .181 r
F P
0 g
s
.28773 .79727 m .43887 .90791 L .45378 .82935 L closepath p .753 .313 .207 r
F P
0 g
s
.7601 .42808 m .82884 .39726 L .68321 .27832 L closepath p .234 .422 .843 r
F P
0 g
s
.7601 .42808 m .85153 .57715 L .82884 .39726 L closepath p .172 .255 .708 r
F P
0 g
s
.76387 .68292 m .85153 .57715 L .77235 .75639 L closepath p .931 .965 .671 r
F P
0 g
s
.77235 .75639 m .61962 .88039 L .59879 .81577 L p .843 .974 .877 r
F P
0 g
s
.59879 .81577 m .76387 .68292 L .77235 .75639 L p .843 .974 .877 r
F P
0 g
s
.59879 .81577 m .61962 .88039 L .43887 .90791 L closepath p .694 .912 .97 r
F P
0 g
s
.82884 .39726 m .85153 .57715 L .76387 .68292 L p .967 .83 .657 r
F P
0 g
s
.28599 .5127 m .19716 .45912 L .18471 .65862 L closepath p .953 .853 .705 r
F P
0 g
s
.32885 .28578 m .19716 .45912 L .28599 .5127 L p .89 .898 .828 r
F P
0 g
s
.28599 .5127 m .40775 .35261 L .32885 .28578 L p .89 .898 .828 r
F P
0 g
s
.40775 .35261 m .51955 .21841 L .32885 .28578 L closepath p .788 .898 .921 r
F P
0 g
s
.68321 .27832 m .51955 .21841 L .40775 .35261 L p .723 .773 .892 r
F P
0 g
s
.28773 .79727 m .29104 .8187 L .43887 .90791 L closepath p .56 0 0 r
F P
0 g
s
.18471 .65862 m .29104 .8187 L .28773 .79727 L closepath p .68 .229 0 r
F P
0 g
s
.68321 .27832 m .70089 .28098 L .51955 .21841 L closepath p 0 .382 .704 r
F P
0 g
s
.68321 .27832 m .82884 .39726 L .70089 .28098 L closepath p 0 .151 .638 r
F P
0 g
s
.43887 .90791 m .29104 .8187 L .45354 .71787 L p .686 .759 .906 r
F P
0 g
s
.45354 .71787 m .59879 .81577 L .43887 .90791 L p .686 .759 .906 r
F P
0 g
s
.76387 .68292 m .73589 .49597 L .82884 .39726 L p .967 .83 .657 r
F P
0 g
s
.73589 .49597 m .70089 .28098 L .82884 .39726 L closepath p .912 .688 .586 r
F P
0 g
s
.18471 .65862 m .24104 .63245 L .29104 .8187 L closepath p .041 .208 .71 r
F P
0 g
s
.19716 .45912 m .24104 .63245 L .18471 .65862 L closepath p 0 0 .499 r
F P
0 g
s
.51955 .21841 m .70089 .28098 L .50524 .28523 L closepath p .599 .104 .05 r
F P
0 g
s
.51955 .21841 m .50524 .28523 L .32885 .28578 L closepath p .38 0 .006 r
F P
0 g
s
.53935 .50973 m .73589 .49597 L .76387 .68292 L p .815 .747 .788 r
F P
0 g
s
.45354 .71787 m .53935 .50973 L p .76387 .68292 L .815 .747 .788 r
F P
0 g
s
.76387 .68292 m .59879 .81577 L .45354 .71787 L p .815 .747 .788 r
F P
0 g
s
.19716 .45912 m .32325 .42201 L .24104 .63245 L closepath p .341 .219 .566 r
F P
0 g
s
.32885 .28578 m .32325 .42201 L .19716 .45912 L closepath p .258 .013 .339 r
F P
0 g
s
.32885 .28578 m .50524 .28523 L .32325 .42201 L closepath p .491 .19 .382 r
F P
0 g
s
.45354 .71787 m .29104 .8187 L .24104 .63245 L closepath p .645 .64 .831 r
F P
0 g
s
.50524 .28523 m .70089 .28098 L .73589 .49597 L p .813 .624 .647 r
F P
0 g
s
.73589 .49597 m .53935 .50973 L .50524 .28523 L p .813 .624 .647 r
F P
0 g
s
.53935 .50973 m .45354 .71787 L .24104 .63245 L p .696 .606 .751 r
F P
0 g
s
.24104 .63245 m .32325 .42201 L .53935 .50973 L p .696 .606 .751 r
F P
0 g
s
.53935 .50973 m .32325 .42201 L .50524 .28523 L closepath p .729 .567 .671 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{278.875, 290.562},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnMtzFNcVxpuZ7nm/Jc1o9EBCAiShN0jogQQCPXkJDHbsPBwMxA7kYRJM
niQpp5JKVSqpSlXKm1SxZOklW5Zeeql/wUuWbJW+99w+mun5enRaSBROUNXc
GXWfPr/vO/fenu6emb56+9G9j39++9H9u7d71x/e/sW9+3c/61178NBdFD1k
WYfK7qOv11Kvty3La/RfRTXmn7ev377+H3n9L/UUVeP8r7Tgn7zAim7foSmw
/aQ9Yellf6agv3OQrWJonYrSkRHV6kV/ovC/cXgMhMc4/DGF/4XDkyA8yeG/
pfDPOTwDwjMc/isK/yOH50F4nsMfUvjvObwEwksc/oDCf8PhrSC8zOE/o/BH
HF4B4VUOv0/hv+TwDhDexeGfUPinHN4Nwns4/C6F/5TDe0B4P4d/ROH3OLwP
hB/n8A8p/GMOPwbChzj8exR+h8MHQfgIh79P4bc4fBiEj3P4uxT+Aw4fBeHt
qu1Wi25Q+PfV0xW1oHN768lTE/7i2Rd6nrxTE2RWPZ68ox6uTtXSsudffKnD
p3UKm1OYNNcpi7YfIWVqW5u3NdvT5k7d5p6Sa5TjuzVKzrseLF0WN5vOG1WZ
zFo3lU431STpJiX9QD/ZnNQkPuFzqHLbgHDKVzj34e4oVEvLzJ91uSltCNAc
IS0KaJeIRoPIqaN5hRvgwiWEIBuALhLoO76ecR9uFVRbP26OAp9SvKNaLdhA
3wPQKID2A2hSCI0Dz2vh8Ee40JnAEbo7dJWg74aB+jxL8QmAXyH8TYC3Ab4X
4HPCkicBfpnwNwDeAfjDXPKiEJoC0AvhoN3AsxSfBvjzhH8H4GMA3wXwJSE+
A/BLhL8O8HGA7+CStwmHWYbns0FdA6gEQFWBUyk0B5wuhsO3A3xZiM8D/ALh
NwE+CfBlLnSHsHcLAHqGoFcBNAWgbcCzFF8E+HnCXwH4NMC3sOduIbQEoHPh
oCXgGeFRPyP8LOEvA3wG4IsAf1iIbwH4GcJfAvgswOe55EeE0FaezwZ1EaBy
AJUDTqXQMnA6RfgNgM8DfBbg+4XDrALwp8Lh01zo40JoO4CeJOg6gBYANAU8
IzwqOcJPEn4N4IsAnwT4ASG+CvAThF8V4hNc8hNCaAeAjoeDxoFnKb4T4McI
vwLwJYCPAfywEN8F8KOEXwb4FoC3ueTjwlHeBHoBQFsBNAo8I3xgjxvBoaAR
AJ3Yw9h+uUWn1QZ/HuDbIN7971SoqWwzzzANcgkgyz6kUjgtpFV87tyHK1e1
9b08QvhzAF9RrbZ4eg9vEB40Gg6qy2yHgbYBqB0MPRs0ifSiyPaNOS/Zsydf
6ZLrEkzt4WjAU+MEq1kM2qHpRbZPjftw/3NbLenkHo6PPEmxYEkLQFKeJcWB
JIclSedeEUiKh5OUYUkpICmuWr1oVCipACQlgiWdAZKSPHYzQFKaqyR9K8gD
SclgSfNAUpyrVACSslylwT2c0nmS0kDSMEmaA5IcllQCkopcJXSINL3L+bQn
KRNOUoQltQFJLSzpWJizbbmkWSBJ/9cO1LRxn/UJ1aSBmmywGn1CoUdxB8BX
uRi9QnwK4HPB+NPqyZx+NuI72b307DAJ8Pld8GaVi9cSuoCQw1yHzj1c6fOE
FMIJ6QRCjrCQqnDCxICQoqRDUB36uUPQZRmEdwC+JMEj9wPsXnpRygb4VoA/
IcEPsXt09Q/howDftlf8CLsvCPERgC/vgjer1Eerlh5mjULGWQi68Nzsg6Hq
q8MnuRPSgiFo6R1bKCjaDU+zY/TphoaabgtETesnuwb1OGinP8MWY4A2ptoE
zdBdaI6PRgYrADnPBtFnYz2qzalF8e2t51/7RlST+jaTUQYyFlkG+sixpNos
Tf9GGaj2Q3uTcU61NnWA57xv/5DosGNZtXG1aFJY4jpQ7RB+rM9hHvveTdDh
17I5x9BFfv61Bk+/PvwFgD99MPii0P23Hx8F+LwQP/Pm4dEUG3x1PBp6c0L3
IfE5oft9wNsAn33z8Kj48weDR6fmyP1rxCP3Z14d7wA8ulaC3C8APDpUM/gp
gI99O/Co+IvC4g+EwyeF7vcBHwf4hND92YPBoyuHyP3/Dx4Vfwng28ON/ATA
O0L3CF9RrfkE75WhyPN5AC0zdDgcFF0zR04RtPZE/MVL+kjozcUnAT4qLPkF
gG8F+JFweP/HJ0HulwGergHZjDcS9kEBKsAKUFDECkZfnwK6HujUKfC6oomM
1LZ3uMEy1OsVQF0NpDb4HjswYL6JzV2pO9VW4atCZK4JcjwcErlcA8isbz65
D3X97aV/V2469hTAZ1QbCSrtOoCmATQaDppWrV6Epu6GEIqcjgVDk+zUXZGY
fKZXPn26RWFLQiEpofsmQuIsROswa10lWk1EtXrRolBSUihpPFiSzR0SA5Js
1WrB80DSRSApASTZ4SRFuEpJICnGVZoRSooLJU00l+SOxEY1SS7QFFBzGaiJ
7UGNXpMD+BQXY1KIdwDekRVDzRwlAQnJspAxoRBbKGQynJACd8gwEHIFCIkC
IbFgIVNASBYIKXFFBoVCIkIh5iuC00IhrVyRY0DI1dcnpMwV6QsU4tQK0Q+1
104AuPl25mkAzwB4leE9AL7pq4Kldz6B0BkARXuHLi59F4BeU63ZzzWipoJR
yF83+6sG+dOoVDBqVuiql12Vdynl1vY3upRNoHMAmgLQPvbXEjh4bIYaMKrr
dDAXmT3K3ELgNHbquJ7pJvB5oekBrnQ2aK+q19oKKpiwNFnqvl/k4dFb7RB7
TwH8JV9HKwkHJGSE6xAXCokBIehd1nzDfUEoZJQrYu9y8OEJiYcTsgiEJICQ
CRZi6S/teTroMNHM9EYyOjicDUc+yeQNYDck9CyAxgF0Urc0z7786ht+KP9r
QEY6nIxzQhljPA4dhdevlgE+A/DonGUuHH5nGiQV3jf6znLP58PhlwAenQwM
75wzeR3g9nejkAVQEZKET5HN76bOC2UMchVy3AlnALKwf8jjjCwBvzMAXjS7
w1q45U2yuq+ge1wHcI+Birew6Wnu8DZfh1vhUf1ssR1YnAQWm0CXhdCdI4lO
djUBUGXV6rW0w6j7sYQHsAGgBxSwG/gbAdDKXqHd7OoIQJ0AqPaaUnqT05Ry
FUDRxYNOhh7lUg7yAOlQAPM71DVhxiqo3XFg6KjQ0FI4fIUNnWBD/UKUcboO
UJGgExOf0xHgtEeIN7833hDiW9jpBDvt5q6r8jBcDZe2WHNpotFLVejFQOkn
gE4t1LuSRme6vvJNA2RFiDQ/y6cfONp1SMuqOcGf42qVhZnXazNjM1lOvwgs
FOtnlC899Yz5YWiD8Awo01m2UAiyoNeam07U/uLVE5xiwctAcEZYmSaABAPW
WG1amJby1f062UsbA+XYAA5iTUtOmek31+ZUyFN7BSSzge4qSLvpTxvhtNe4
CNGmXWZuuqJ/jK5jbvr0WAGWzIbXmX2TiSjc3AGm9uYGXjk3eUN1kvBi21MK
u4ruCEFPO/UzNXU3bvLu76Uw9655j1NcrLGs+CoNStbCVTN3y3kfuFlhPXGQ
ogT0mGQfsJ4LnCIFUhRACrrNS81Nb3ZmbAakyIMUdLMbuqOPz9LOHiwHkuVA
MnPzoQ9ZzywocR4kS3OJze2ObnGKKVZRAhumgAqT4jawNM7JWkGyJEj2Q0p2
h/WMcooKSBEHKW5Rih9xiiFOUQUpYiDFR5TiE2DpGCgxSmtzic39qn7Mevpr
3tgbN4wAPSbFfaDnMCfr0cnw5Sdzi62fsIYu3uyImYi1m1lGrrnz186ZgDmm
dLfQr+5R0KdAVyuoU69qtUBzh7AHnL3E2btUkP42MqWl24j5TvEqHGTuk/YZ
kJDk8KIK199b/wOFP+Kc8foprHOam8v9moNsYMbh8H9QON3gbeeyhHo2G+jP
+qx/U9zv1JOu939oge7jN+gue29fy19bh/4L1GZfbA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 277.875}, {289.562, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"d9d5f6dc-5567-43c2-bb26-39527f43c9d4"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(47\\). \\!\\(\\\"gyroelongated pentagonal cupolarotunda \
(J47)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"67179187-720d-491f-8a89-7b21ce46075f"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.0977
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.061676 1.17959 1.11022e-16 1.17959 [
[ 0 0 0 0 ]
[ 1 1.0977 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.0977 L
0 1.0977 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.57381 .4502 m .7104 .44001 L .5633 .33297 L closepath p .517 .609 .884 r
F P
0 g
s
.68591 .58245 m .7104 .44001 L .57381 .4502 L closepath p .528 .526 .797 r
F P
0 g
s
.57381 .4502 m .5633 .33297 L .41617 .38908 L closepath p .642 .708 .895 r
F P
0 g
s
.44073 .56071 m .57381 .4502 L .41617 .38908 L closepath p .753 .644 .74 r
F P
0 g
s
.68591 .58245 m .57381 .4502 L .44073 .56071 L p .711 .566 .689 r
F P
0 g
s
.68591 .58245 m .79069 .60034 L .7104 .44001 L closepath p .373 .376 .734 r
F P
0 g
s
.71657 .74488 m .79069 .60034 L .68591 .58245 L closepath p .399 .304 .631 r
F P
0 g
s
.44073 .56071 m .55291 .69419 L .68591 .58245 L p .711 .566 .689 r
F P
0 g
s
.55291 .69419 m .71657 .74488 L .68591 .58245 L closepath p .66 .48 .63 r
F P
0 g
s
.29081 .60193 m .44073 .56071 L .41617 .38908 L p .823 .691 .719 r
F P
0 g
s
.44073 .56071 m .29081 .60193 L .3106 .77219 L p .789 .568 .601 r
F P
0 g
s
.55291 .69419 m .44073 .56071 L p .3106 .77219 L .789 .568 .601 r
F P
0 g
s
.64865 .88412 m .71657 .74488 L .55291 .69419 L p .675 .426 .537 r
F P
0 g
s
.55291 .69419 m .47935 .82781 L .64865 .88412 L p .675 .426 .537 r
F P
0 g
s
.3106 .77219 m .47935 .82781 L .55291 .69419 L p .789 .568 .601 r
F P
0 g
s
.41617 .38908 m .39403 .31444 L .26263 .42375 L closepath p .777 .907 .931 r
F P
0 g
s
.41617 .38908 m .5633 .33297 L .39403 .31444 L closepath p .64 .829 .973 r
F P
0 g
s
.41617 .38908 m .26263 .42375 L .29081 .60193 L p .823 .691 .719 r
F P
0 g
s
.71657 .74488 m .77483 .76478 L .79069 .60034 L closepath p .112 0 .41 r
F P
0 g
s
.64865 .88412 m .77483 .76478 L .71657 .74488 L closepath p .164 0 .24 r
F P
0 g
s
.3106 .77219 m .29081 .60193 L .17115 .55233 L p .917 .66 .535 r
F P
0 g
s
.29081 .60193 m .26263 .42375 L .17115 .55233 L closepath p .902 .741 .672 r
F P
0 g
s
.80899 .45316 m .7104 .44001 L .79069 .60034 L closepath p .303 .339 .734 r
F P
0 g
s
.7104 .44001 m .80899 .45316 L .71378 .34203 L p .188 .505 .91 r
F P
0 g
s
.5633 .33297 m .7104 .44001 L p .71378 .34203 L .188 .505 .91 r
F P
0 g
s
.47935 .82781 m .49631 .94304 L .64865 .88412 L closepath p .68 .337 .386 r
F P
0 g
s
.31576 .88631 m .49631 .94304 L .47935 .82781 L p .783 .413 .355 r
F P
0 g
s
.47935 .82781 m .3106 .77219 L .31576 .88631 L p .783 .413 .355 r
F P
0 g
s
.71378 .34203 m .55335 .2661 L .5633 .33297 L p .188 .505 .91 r
F P
0 g
s
.55335 .2661 m .39403 .31444 L .5633 .33297 L closepath p .581 .834 .993 r
F P
0 g
s
.26263 .42375 m .25961 .39955 L .17115 .55233 L closepath p .765 .922 .553 r
F P
0 g
s
.26263 .42375 m .39403 .31444 L .25961 .39955 L closepath p .649 .961 .779 r
F P
0 g
s
.79069 .60034 m .77483 .76478 L p .80537 .52272 L 0 0 0 r
F P
0 g
s
.80537 .52272 m .80899 .45316 L .79069 .60034 L p 0 0 0 r
F P
0 g
s
.3106 .77219 m .18833 .73241 L .31576 .88631 L closepath p .885 .508 .32 r
F P
0 g
s
.17115 .55233 m .18833 .73241 L .3106 .77219 L p .917 .66 .535 r
F P
0 g
s
.64865 .88412 m .65761 .87389 L .77483 .76478 L closepath p .501 .829 .531 r
F P
0 g
s
.49631 .94304 m .65761 .87389 L .64865 .88412 L closepath p .342 .81 .726 r
F P
0 g
s
.39403 .31444 m .55335 .2661 L .52841 .32143 L p .159 0 0 r
F P
0 g
s
.25961 .39955 m .39403 .31444 L p .52841 .32143 L .159 0 0 r
F P
0 g
s
.17115 .55233 m .21858 .56835 L .18833 .73241 L closepath p 0 0 .448 r
F P
0 g
s
.17115 .55233 m .25961 .39955 L .21858 .56835 L closepath p 0 0 .259 r
F P
0 g
s
.77483 .76478 m .78247 .73128 L .80537 .52272 L p 0 0 0 r
F P
0 g
s
.78247 .73128 m .77483 .76478 L .65761 .87389 L closepath p .692 .945 .664 r
F P
0 g
s
.71378 .34203 m .80899 .45316 L .80537 .52272 L closepath p .901 .496 .094 r
F P
0 g
s
.49631 .94304 m .47386 .8747 L .65761 .87389 L closepath p .648 .876 .983 r
F P
0 g
s
.31576 .88631 m .47386 .8747 L .49631 .94304 L closepath p .438 .733 .989 r
F P
0 g
s
.52841 .32143 m .55335 .2661 L .71378 .34203 L closepath p .637 .128 .022 r
F P
0 g
s
.18833 .73241 m .30049 .75552 L .31576 .88631 L closepath p .276 .425 .831 r
F P
0 g
s
.18833 .73241 m .21858 .56835 L .30049 .75552 L closepath p .339 .339 .713 r
F P
0 g
s
.52841 .32143 m .33205 .4108 L .25961 .39955 L p .159 0 0 r
F P
0 g
s
.33205 .4108 m .21858 .56835 L .25961 .39955 L closepath p .136 0 .339 r
F P
0 g
s
.31576 .88631 m .30049 .75552 L .47386 .8747 L closepath p .513 .619 .895 r
F P
0 g
s
.65761 .87389 m .47386 .8747 L p .67816 .62927 L .773 .801 .875 r
F P
0 g
s
.67816 .62927 m .78247 .73128 L .65761 .87389 L p .773 .801 .875 r
F P
0 g
s
.71378 .34203 m .80537 .52272 L .67816 .62927 L p .81 .561 .562 r
F P
0 g
s
.52841 .32143 m .71378 .34203 L p .67816 .62927 L .81 .561 .562 r
F P
0 g
s
.21858 .56835 m .33205 .4108 L .49712 .50012 L p .541 .447 .697 r
F P
0 g
s
.30049 .75552 m .21858 .56835 L p .49712 .50012 L .541 .447 .697 r
F P
0 g
s
.80537 .52272 m .78247 .73128 L .67816 .62927 L closepath p .914 .785 .704 r
F P
0 g
s
.47526 .72301 m .47386 .8747 L .30049 .75552 L closepath p .56 .625 .874 r
F P
0 g
s
.47386 .8747 m .47526 .72301 L .67816 .62927 L p .773 .801 .875 r
F P
0 g
s
.49712 .50012 m .47526 .72301 L .30049 .75552 L p .541 .447 .697 r
F P
0 g
s
.49712 .50012 m .33205 .4108 L .52841 .32143 L closepath p .626 .384 .531 r
F P
0 g
s
.67816 .62927 m .49712 .50012 L .52841 .32143 L p .81 .561 .562 r
F P
0 g
s
.67816 .62927 m .47526 .72301 L .49712 .50012 L closepath p .728 .614 .73 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{271.688, 298.188},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnEtsG9cVhmmSw4dIiaIoUW+JetZyrdjW+2G9n5Ys25VbN62bpKrjxE7j
xrWMoEVapKiRoIVRoEC2XnqZpbdedullt1l62WW36tx7Ln8Oh//QM5JodGEB
c0kNz/2//5y5czkz5HDv4PG9uw8OHt+/c1DYenTw8N79O4eFzS8e2asiZ0Kh
Mxl7OVcIqedHoVCx0X+NqjH/vHv+7vm756f2/Dv1EFX72h9kxT/VQ0StCB+N
2K1+7eh5Qe+PavlS4v6BuKiOiyDOXuy+dhtWqx5L+N/BiZPwKMIfSfi3UE+R
8BjCH0r4E4TXk/CkavWqBxL+Ncw0kvA01H8r4X+Ceo6EZxB+X8L/iPA8Cc8i
/FMJ/xLh7SQ8h/C7Ev4I3jtJeB7hdyT8C6j3kvA2hB9I+OcI7yPhnQj/SMLv
I3yQhHcj/AMJv6cfJGhEltAQ6diLjrel4yfqQa8YVuEx9ayAoF9I0F2irm3p
IPuF5795ol989fSp/Z/dJqXqxdFxS3TuADaE3rqz0bY7aomUahNqVTOs/FQk
DiChDeh+FpHIQaIBEvsi8WuSTT/8xIlYF1KKQ+yGiH0IPwOQSBKJIfhRGZf2
+dA10fmAmOqDYooojqpWD9c9kbgNK6Vs6knHi2Yz4SDA7rwrEr8kLgoQyxCx
S0RsR8Teh58CNlUjkRhTrY4zLm6VdwzL/FDZcRwdDfFnxH4PJFq8JMy611+1
6S1yRcRuwkUvJFqJxASR2BaJfeKnG2LtwcRuwE8ppU4iMUkktkTiOvHTBbEu
Ijal2yjEjOCm6O3BUhe2cA9RmeYqG6KyW64SljnSS8UqUykmuC5SOyTBDogO
ENGZKqJrIroNf52QGjqe1Bbx1w7RYSI6V0V0VUQ38VbRBqmznlIRp5QdrNry
3XfJIWteKthD2V7ERyO29TlCmfdJWRTKBoobVwRL5s9iGqM+ARECWHAAXGmk
gAoDdYGgLvtEXRbUOnJpUoCIl+xCMNk1Rwah0Ire9Dmdh+xRTw9fFN9NWL0W
fdLmvWk6HbNO0ezFLprd6mR/7BMaJdA5ga76hFqAjhDokk/orDc0S6AJ3Zrj
KPtAR4HZrsrwFsHPCH5FP0QdeG2BOUgibcZd9smdrsptJNw0uGzqXPVZbsNd
9s/NgMveBxiX5TslXJnOLBdXNjeDZwHvJfA1n/DJN8MzBN4MeLdPeIzAJwS+
WDHAV/Rct+KaDtPESCuMsGOMdZ9GxoMZSREjHTDSRoxsECNxYmRMjCycoCJd
ZBpgh5SbPmsT0BKrTQ9qcwpGLhMjEWKkjhjpgxF2nL7lc58xRuaJkahPIwMw
kq2NEb8VGYYRdta07XPqNEbmfFYkSYyMwEiaGLlSGyMJYuQ8jNQRIzs+j1KM
kVlixPJp5D0YSdTGiN+KXCIzCruWsevzkNpYmvFZmzixNI7anIKRaWIk5tPI
JIyEiZG9KmdFE8HgMQKfUa1edf3NoKkTgOaR5XV+ihyQYRHGZccoe/nspbZ+
rSptktDix6TZi5xf7ZHLEgF5UcJboDzVVt+tHfiJE+AXCT7ihQ87ajxOoIkT
QKOqNdfCjomK+ETFSX5bbugYgSYJNEygSwSaQH7Ow5r/vHrh3JLeUMsJ1Yvq
tkpAdSS7VcfuopAGa6iXTpDqMnGQIg6WHfNQ0YEreW8bPPk1gk6jykuuKtuL
nYBq6VR/kcDrjopvhiEneJ1wG0jKcxhSUcI1ZxYXCDfln5tBvrMk34Bcj3w3
CDdL8p0kDixvB++pB/1KyjXWQnonqYQ2Eeg4gcbeAEXah2qR//R8ogu5Rcg5
lHmM8OLBeYd6lQUoSzdP0h3FmKoLBo0BKmcA5kWebivSPU/SDUhWu/ChFtsm
qHaS5FkCTQWD1pW2LKYqVuMOgh/2iZ94A95zNHWivIPYnA3egAsEkHDkt7//
wnNLdpP8CiS/Y+GjwBsLrMI9SLaXcDM14xZI5p3EQWPNHPQRB+3EQfY4Dqwy
B8UhwKbqfmyAVoy25mDIuGu02Yv9Xqra8j2MHY4MkSrkSBVOwVKEWFohloZR
kSafRiZrY+QsqU0DsdRycktRYokdu40QS2liKf/2LJ3D5qrDAG4Pho8RvOUT
f55UJEYqcgqWYsQSO5cYRUUsYqTD28hFYsQ6gZELurWctdGLmou6T24jTmyw
E7qLrk2k8D1vGa9XsZynvKFRAk0SKLsmcQFjIHL0r1c/+BgDNTJyHtnHiBG2
V9TIiHOeqDTSdnIjdcTIvNe0br69VGmk9e0ZKb3RNRIjbAqvYiRCjKSJkTli
ZBBGcsQIe3urkZE+DNY8McLe+gMaqSdGZomRXlSkgxhpIkama2OkG0a6iRF2
bFojI6WzogIxwg7TjRG5bmQ5jZhFfYhWCZ/2Og80XxSohLOzlFOEt2JQDhM4
OzXzAW8i8CkCb0Hm5wi8vrbw0nWVUQJPHw+eI/BJr2tYGn6RwNkZfxk86oLb
s4c/buma3TjhJgl35lS4aQyzKcJNBOa2EO6E1wVpne8c4bKLZ6fDLV1xXyBc
dpGwOjdPuOOEGwN3mXDZFdEyrnNGVefsldAxArUAXSNQdiG4CrSNQC8RaBgj
apNAI95QfdHdfCfGLyqkPhmqpLBr+v4petWelq34dGTerdJOVEZVq7vecJkL
uSRcb4vM0lnV6kktcvT0WVHMltXS11UbdjtzyTKP/ZBNEFmn72IBZx2AqFcB
uyFbfwxZU++Vz/5dXCyvySyvWn1jR5Ofsjg/LjTS9u5RBGQIIItM2gjgGgDm
+6wTBJAEgB2cpwHoJoA9R6le/Pd7PXIMapKg6oFip+kxoPoJ6qpjqCuUwRna
FKFlQQtFitcZNSgM0I8IaFe3VhnIlds0obWAdp6I7rgKZS+2DdWWjzPzpdwZ
AsjrVtY9efZa+/FGcf8L/uXtJWQOrioZV8jGsBfzlqUZs141qmCo1oyEZz9o
GNss21XSWhLkHEE2E2REtWGv7b9VBSRfpC37dlo1UJTkNkiQm1WQ8p3hsq8I
FpE5grSQGwNtVAGZWxoWCKiJgOIktz5PZMV+a+7KWCS0LKElCK1AaOucth6M
lkQRGWONM8wtNUuE0UgYKZIRm2JXOc3cBrRMaBlCSyMjxljhDHPr0gphNBBG
A8mog9CWOc3ca7VKaPWElkFGjLHEGeb+sjWfjEaSUasnrfxt0NwXt05QaYLK
Ih0GWCSA3WCAHMmlmaAWCOqqoDYIKkVQzciFAS4TgLmNcpMA6gggT3LJEtQ8
QZmbPrcIKklQrciFAeYIQO70M8O5HJAggHaSS4MXynn76xUCiBNABzJgsrOQ
/Ukw2S7iO0UAMwCYe4B3ggDMLbiVstOQvSmyu0Q2RmR7iG92cjEFgLn9+arX
wbkL0EsAcQKYBEDunTU7QTkgSgAFFIbJTkDW3Pl9jchGiGw/8R31ArgOW00G
1wkqTFADyIABxgngVjDAkDkWcuSiF7V/Mv8/F3nZsyynvF5Ut7PwHIoUtbTS
GNF7X/Rklyo/XQypI+qiFOtrbvzf53116ebUs19J3E1XSUJ62rWDMjJCDl8W
X33++kgt9kmD3epV5hcM9ADXfmKqY4N6licdR9BRnVC9elm0XdTRo0B9Xm7X
v7L3sGrN18rtzvrZR9JRl0tHD5OOg+ioPng3WLOYX3i4DYEBItDHfKv/Ppbe
H6J3H+ndUwX/iQgcQKCHCHSpVg8q81saHyO8k4S3I/xzCf8U4e0kPI/w30n4
Zwhn27BZtXpU/V7CHyA8R8KzUD+U8IcIz5LwBqibH1Q5RHgDCU8j3PxOS+ln
Q1IkPInwryS89KMkSRIeQ/ifJbz0kycxEh7FKPmLhH+N8IgOjzrDEfxEgv+K
YInGGNMj5xsJ+gY72t9khd7j/49+OOfd89o9D535H9uuYnM=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 270.688}, {297.188, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"b6a4eb05-ee17-4eef-9162-18688bd7a65a"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(48\\). \\!\\(\\\"gyroelongated pentagonal birotunda (J48)\\\
\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"6a8b8931-d203-4bbc-af54-a68ea4434c53"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.0261
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.031649 1.10097 0 1.10097 [
[ 0 0 0 0 ]
[ 1 1.0261 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.0261 L
0 1.0261 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.54775 .59193 m .65654 .47604 L .49787 .43795 L closepath p .669 .577 .742 r
F P
0 g
s
.54775 .59193 m .6928 .6363 L .65654 .47604 L closepath p .613 .49 .689 r
F P
0 g
s
.56341 .74219 m .6928 .6363 L .54775 .59193 L closepath p .633 .448 .615 r
F P
0 g
s
.54775 .59193 m .49787 .43795 L p .28465 .59679 L .738 .615 .722 r
F P
0 g
s
.28465 .59679 m .41788 .68977 L .54775 .59193 L p .738 .615 .722 r
F P
0 g
s
.41788 .68977 m .56341 .74219 L .54775 .59193 L closepath p .655 .464 .614 r
F P
0 g
s
.2923 .75003 m .41788 .68977 L .28465 .59679 L closepath p .801 .575 .595 r
F P
0 g
s
.56341 .74219 m .41788 .68977 L .2923 .75003 L p .679 .34 .395 r
F P
0 g
s
.49787 .43795 m .59674 .33278 L .42709 .3239 L closepath p .696 .709 .858 r
F P
0 g
s
.49787 .43795 m .65654 .47604 L .59674 .33278 L closepath p .642 .617 .81 r
F P
0 g
s
.33438 .43922 m .49787 .43795 L .42709 .3239 L closepath p .72 .718 .848 r
F P
0 g
s
.49787 .43795 m .33438 .43922 L .28465 .59679 L p .738 .615 .722 r
F P
0 g
s
.28465 .59679 m .33438 .43922 L .20314 .4891 L closepath p .857 .749 .743 r
F P
0 g
s
.2923 .75003 m .28465 .59679 L .20314 .4891 L p .958 .703 .506 r
F P
0 g
s
.80233 .51682 m .65654 .47604 L .6928 .6363 L closepath p .589 .475 .691 r
F P
0 g
s
.65654 .47604 m .80233 .51682 L .84179 .39353 L p .524 .551 .825 r
F P
0 g
s
.59674 .33278 m .65654 .47604 L p .84179 .39353 L .524 .551 .825 r
F P
0 g
s
.20314 .4891 m .33438 .43922 L .42709 .3239 L p .831 .935 .897 r
F P
0 g
s
.56341 .74219 m .69448 .76865 L .6928 .6363 L closepath p .544 .311 .512 r
F P
0 g
s
.6928 .6363 m .69448 .76865 L p .88378 .56779 L .38 .185 .486 r
F P
0 g
s
.88378 .56779 m .80233 .51682 L .6928 .6363 L p .38 .185 .486 r
F P
0 g
s
.53712 .84277 m .69448 .76865 L .56341 .74219 L closepath p .541 .208 .353 r
F P
0 g
s
.53712 .84277 m .56341 .74219 L p .2923 .75003 L .679 .34 .395 r
F P
0 g
s
.42709 .3239 m .59674 .33278 L .52937 .25078 L closepath p .633 .777 .95 r
F P
0 g
s
.84179 .39353 m .70732 .27385 L .59674 .33278 L p .524 .551 .825 r
F P
0 g
s
.70732 .27385 m .52937 .25078 L .59674 .33278 L closepath p .588 .758 .959 r
F P
0 g
s
.21195 .74865 m .35987 .84912 L .2923 .75003 L closepath p .805 .335 .109 r
F P
0 g
s
.2923 .75003 m .35987 .84912 L .53712 .84277 L p .679 .34 .395 r
F P
0 g
s
.15246 .57688 m .21195 .74865 L .2923 .75003 L p .958 .703 .506 r
F P
0 g
s
.20314 .4891 m .15246 .57688 L p .2923 .75003 L .958 .703 .506 r
F P
0 g
s
.84179 .39353 m .80233 .51682 L .88378 .56779 L closepath p .229 .235 .658 r
F P
0 g
s
.42709 .3239 m .52937 .25078 L .35584 .2923 L closepath p .661 .914 .978 r
F P
0 g
s
.42709 .3239 m .35584 .2923 L p .20314 .4891 L .831 .935 .897 r
F P
0 g
s
.20314 .4891 m .20765 .40108 L .15246 .57688 L closepath p .917 .906 .505 r
F P
0 g
s
.35584 .2923 m .20765 .40108 L .20314 .4891 L p .831 .935 .897 r
F P
0 g
s
.53712 .84277 m .6562 .82555 L .69448 .76865 L closepath p .202 0 0 r
F P
0 g
s
.81452 .73342 m .69448 .76865 L .6562 .82555 L closepath p .099 0 0 r
F P
0 g
s
.69448 .76865 m .81452 .73342 L .88378 .56779 L p .38 .185 .486 r
F P
0 g
s
.35987 .84912 m .4711 .84817 L .53712 .84277 L closepath p .021 0 0 r
F P
0 g
s
.4711 .84817 m .6562 .82555 L .53712 .84277 L closepath p .127 .676 .74 r
F P
0 g
s
.78634 .31019 m .70732 .27385 L .84179 .39353 L closepath p 0 .303 .792 r
F P
0 g
s
.52937 .25078 m .70732 .27385 L .78634 .31019 L p .404 0 0 r
F P
0 g
s
.4711 .84817 m .35987 .84912 L .21195 .74865 L p .351 .588 .933 r
F P
0 g
s
.78634 .31019 m .84179 .39353 L .88378 .56779 L p .959 .655 .235 r
F P
0 g
s
.35584 .2923 m .52937 .25078 L .47739 .27038 L closepath p 0 0 0 r
F P
0 g
s
.47739 .27038 m .52937 .25078 L p .78634 .31019 L .404 0 0 r
F P
0 g
s
.38645 .7366 m .4711 .84817 L p .21195 .74865 L .351 .588 .933 r
F P
0 g
s
.21195 .74865 m .21735 .67398 L .38645 .7366 L p .351 .588 .933 r
F P
0 g
s
.15246 .57688 m .21735 .67398 L .21195 .74865 L closepath p 0 .013 .581 r
F P
0 g
s
.88378 .56779 m .81452 .73342 L .85826 .61189 L closepath p .739 .82 .355 r
F P
0 g
s
.79368 .44505 m .78634 .31019 L p .88378 .56779 L .959 .655 .235 r
F P
0 g
s
.88378 .56779 m .85826 .61189 L .79368 .44505 L p .959 .655 .235 r
F P
0 g
s
.35584 .2923 m .47739 .27038 L .31245 .37213 L closepath p .24 0 .049 r
F P
0 g
s
.20765 .40108 m .35584 .2923 L .31245 .37213 L closepath p .131 0 0 r
F P
0 g
s
.32264 .5467 m .21735 .67398 L .15246 .57688 L p .339 .205 .548 r
F P
0 g
s
.31245 .37213 m .32264 .5467 L p .15246 .57688 L .339 .205 .548 r
F P
0 g
s
.15246 .57688 m .20765 .40108 L .31245 .37213 L p .339 .205 .548 r
F P
0 g
s
.85826 .61189 m .81452 .73342 L .6562 .82555 L p .817 .905 .901 r
F P
0 g
s
.4711 .84817 m .58527 .76851 L .6562 .82555 L closepath p .651 .867 .981 r
F P
0 g
s
.6562 .82555 m .58527 .76851 L p .85826 .61189 L .817 .905 .901 r
F P
0 g
s
.38645 .7366 m .58527 .76851 L .4711 .84817 L closepath p .607 .717 .923 r
F P
0 g
s
.78634 .31019 m .6423 .30986 L .47739 .27038 L p .404 0 0 r
F P
0 g
s
.79368 .44505 m .6423 .30986 L .78634 .31019 L closepath p .827 .497 .431 r
F P
0 g
s
.31245 .37213 m .47739 .27038 L .46683 .40423 L closepath p .549 .263 .434 r
F P
0 g
s
.6423 .30986 m .46683 .40423 L .47739 .27038 L closepath p .589 .296 .44 r
F P
0 g
s
.21735 .67398 m .32264 .5467 L .38645 .7366 L closepath p .572 .526 .765 r
F P
0 g
s
.31245 .37213 m .46683 .40423 L .32264 .5467 L closepath p .542 .357 .58 r
F P
0 g
s
.85826 .61189 m .71474 .62771 L .79368 .44505 L closepath p .876 .742 .71 r
F P
0 g
s
.58527 .76851 m .71474 .62771 L .85826 .61189 L p .817 .905 .901 r
F P
0 g
s
.38645 .7366 m .50936 .60323 L .58527 .76851 L closepath p .674 .655 .823 r
F P
0 g
s
.32264 .5467 m .50936 .60323 L .38645 .7366 L closepath p .605 .545 .761 r
F P
0 g
s
.71474 .62771 m .58527 .76851 L .50936 .60323 L closepath p .7 .667 .815 r
F P
0 g
s
.46683 .40423 m .6423 .30986 L .79368 .44505 L p .728 .557 .66 r
F P
0 g
s
.32264 .5467 m .46683 .40423 L .50936 .60323 L closepath p .637 .498 .677 r
F P
0 g
s
.50936 .60323 m .46683 .40423 L p .79368 .44505 L .728 .557 .66 r
F P
0 g
s
.79368 .44505 m .71474 .62771 L .50936 .60323 L p .728 .557 .66 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{281.375, 288},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt3MlvG/cVwHGGHO4iJUqkFkoUKVKkKFG7l9hJHNu1YzuOncRZnMZt2jhp
0CRomyIOUBS5FGiBojAKFIWPPfroo6855k/wtcccc+xVnd/Cp+HwO+SMFcct
YAPzIz2jee8z7zc7ybl++6tPP/nt7a8++/h24/KXt3//6Wcf32lc+uJLd1Ti
uVjsuQV3aDRi6v1BLNZv9L+qaux/nr1/9v7Z+yO9/6d6Savt609mxN/VS0qN
SB18FItl1bs/mEl/k7+dVpMy6t0XZtJf1Iv+25pM+rWZpOPm1IiuBPyFmfS1
eimoEcdkrptmkk6Z19u9c3DaTDq4e/5z9Ro/uHf1jqPePa9mS6p3N8xsd8SR
VHPFzZ+788USOoI7oxrcmP0Qp1QI/XdvmBC/kxAZCeFAiIxqde4TKoSeeM2E
+FwKVVAh7IxKr8JQsIJ4jovnqgn2iXRISTxpCFGSEPsS4ooJ8ZF60ZMq4KFg
FQm2K8EumWC39Yv584bdNVdEloVgVQm2LcEummAfBgXzGSnssnRATzrgvAmr
1y/b+W5YO+Np06OeOk5A2JZoN0R71oT9QL8kRdvwqKclaBGCrknQrgQ9Y4L+
3FeCRoB6EspCqXqq7alRL5kEt6QYDoQtirsEwdZVq6cmDr65+8BOffT152qI
rerWjLP/Yi+YpO/DUlF62kAIsiaQFEBaqtVTXzTpfxoy/YQsfRmSdnRrxrlJ
deI0pG966vCf+6f1+mDrcFOKn4b0OUk/C+lXZZnzkHQlOOm7sPSpoPS+4hOk
KZAiQBq6dQRiMaeN5R2wUCkOd7YLIGiIoASC+kjBW9IF2aC8vhqQYFkEZRAs
6zY5IOh3yinDuAGFyAAoLYVYAkYNVsmKavUcy751wh3cfYlqBzfSE4b0JpCo
RofH0hqQlqQyVajMYjTS69JZ+SCIr7OIVBVS7Qik44Z0HapEuIRUqQGkeSE1
gFQFUgJIxwzpWhSSr16EmxVcC3AL0XCvAW7C7oE9OKlWC0BlAXUANA8gB0D7
BvSqrFNFzUj6GXozbQNjBra2NQDNRQNdgQoVfRWKmfOKTtCZnl6enmz5JEiC
YM8ILgcJ9KguJJ2UpDtQgDKkT0H6XZP+FemRkmet7a+hlL4g6fch/Uy09BeD
ll6vGeuQPi/pT0D6aUifhvQ7Jv2FoA1Ej4ofvLV3t1+RW/fUYFyr4MrBCnoS
hCUQZkC4bYTnB/fCeq1MosttNa4edIWko7wApKlopHNQtLTgsoDLCa4KuJTg
zgBuEnBZwG0Z3FnAJaVHC4CbFBydeCYFdw5wxWi4M9KZjtRrCkhl1dqpw6SE
kC7ITocgOYBsGshLUCXHlGBYMy8FyoMmDuv9K1CqPAjzIOwZob560KR5INWE
lEJSTB1qhg25aIYXpLsWwdAUg7mP0D9OqOEaJM8+RnI7yU2uAcToqNbeNRlO
moGkE5B0I1rStm7NuPtfP9BFeBPSp6OlPw3plyD9qm4dSW8JN0IKqOoRBS1f
AdzBXe1UO7glvCFb6BOCNAGSAAjVxgnZO+uGdApINSCtAMkB0ltASjwZUgNI
SSC9DaT4kyHVgZQC0ju6TXpJeojpvX4g43lgLANjGRiZQIYzwHDfT4KgG01Q
A0EWBO/6+ib2w6RfgvQ5SH9TtuQRSU9C0jokXYSkeUj6nmeZ++te4ejpq5C+
ELTMvvS0zq1FS78A6Ytjevy7bx4G9rhNfwLSN4LOZ3zpJ3+89HOQfmrMFqfS
W0JEwQoIKiAojdn19AWjCtExjOPAaAad5foYM4E75SfGmAFGeczhyhLcY4Nq
x2+fEUnTQKqEJCWARIcrSzoGpBaQSkCaHXOe0Sc5IavUjkaaAtJcSFIyZJUi
kiaBtBB0WugjpaKR9oG0CqQikKpPl1QA0mJIUjokaTUaaQJIS0B6HUiZaKQ9
ILWBlAfSMpCuAykLJLrYiEjKAakOpGtAyj0ZUhZIjSOQqONahrQLpA6QMkBa
AdJrQJoIWaWIpDSQmk+XlALSKpCuHp20A6QukBwgtYH0KpCKIUnNaKQEkDpP
lxQH0hqQrgBpCkh0m9KStoG0rtukl6QHdTbYA8blJ8lwBhju+00QXAJBKWTf
rIwTHPaNKsBWyPTTIQtg029B+g3V6uvh7R85qR5FS/oKJC1DUrpDPy6pHfev
u9+qwfyPVreLIQ204A1j2BxjuPfnb3VnO0qiR3UBcgEglaNDvOu9glhMWiy0
wyTLbMiOGWHpenYFfUu/ODkF0kw69P4EQHPRQL0xu0uLcf9nWu/ak5dq0Qld
WBz1XP3ouKLg6AT4PODmQ1ZuBG4NcA7gSoKjy6pzgFuIhtsIiUsBbkbWObpY
J1wVcPRxdSMY1wFcGnBzUrlpwJ0F3OLRcW3AZQBXFRzdCXs5JE5/z0AfkprB
a9oqkLJAWhIS3Rk9A6QakOiLHysenNYSKQekuqxfdH88LMmRKrX8kBZA8gBp
SW3oEwuCLAMkLpBVzz4+bvbZw5ACQNoCoc+8XgJIPTTE/lEsZk6t6kAqAqkr
JGPqi0Zo0l6NHvQ8j27pKAMmx2O6Zw4g4Vg91ervrp8CxwpWRR/Nh06L+gWp
QeapoMx23MMHj9TgxnZb/c2q3UDN4Vc4vdUYAA1VYxFMJTBteEwP7j/SkfPK
pH9t0AFT097J9Jr0n3o4SR/H1GkBTNNgWtetIybrKkuploO2q5Rd22yNtMXW
aZvrNA+mMpjWfHVyB7fvVDvYnwuCnA06/9W/O0kePPruu/5Wanu045VyCWeB
WwFuB7gJ4K5IV08ANy/cScv1FnaA690i7uktpn9l3D/czISkt4GeBPq6VNqB
z4f68Hmos/2QaCckvATwuaBjgQ+eAviewJsKp/cu3WikKSDNA6kJpAyQjunW
jHNJumYtqNwIZgKYRWAuAHMFmFlg7gNzNZi5G5I5AczFoLMOHzMPzF1gtqWr
158ubicI56uhZe6FZOaAuQTMZWAWgLkFzI7UcCMY5wAuA7jloDNdH64IuE3A
rT0uLg24OuAWATcJuN5InP1O3X5IXBJwjaDLFh+uFLTT9uG6YXBJwDmAWwHc
POCmAdcF3HoYXApwccA1g65Gfbgy4DojcfbbrMcCK5f04vSgNvI2gGYBVAFQ
G0AbYUD+aplD8jCkDJA5gLQA0vPs0fpXm71gkrruMF8dPQqkGQTRke03n4+P
qcite9/ritirsIB7Kz7NQtCp3Q+hcQdX47Z6FK3DJSBVgdQYSdqORkqq1v54
aZg0BaQlIC0DadNPOhG4WQ2S0lKlGpAmgVQDUg1IW7A+b0XD5aRedFwuAK4O
uMUgnP0ZjiadBFICSAWpF50VTgCpAaQqkLYflzQlpNmg29U+UhNI80DagS7c
joabkS6kC6cs4FqAmwvC6cj250jPAykOpIrUi67kM0BqA6kCpF2o10403LzU
i27HhMWVAbd3dFxVKkd3qVKAWwPcdBBOL7b9ZZ35JjbfUagLg+5vJoHRBUYJ
GPtQo93xoKZ0Gt2MdgC0AaBJAB17PNCqVIg+TYgDqBcSRBWyXWZ+9TB0u2pN
ipPUlqTXooeY3ucN5y+ELMjo/OtSi7j9ZMqbX+8+hlNPQOrj41J7NyB1uuLm
TZpVejhBPmjZdKXsT6YPf8O0K8GoUNmgjtLznsRg/XXi4fdqUOvEw+/1vWza
VjIjN9lT/gR7kCAjCejokwq5w7KpXvTUu79zoqUqStJFSJoM2oV7H4Ghf/a3
D7HLEpsuNRIjj1j2mSUvS8V2IMGiJKAL+vjIU4izJsE5qNMWpFqRVOZWm+NN
ZXz9yPbRMIc/bd2GeGsSzw1l74UPhPJ1qw16AbibEH5Ltdp4eB5nn4RzUVy0
nJu6NXug+/8+kEFBDy8E7RN6LoFmA4L2dJvwBnX/Z1pv7xzeT7PPE7ocMkFX
tfZ3aMNhD+/I2icdXZES9CBYB7QZCNuAbrIJroJ7HVK1xD2hEvQfrWG15nkQ
5jEHcdlR+0I0QVsE7YKEtY+fug7GNUjQgARTkGBWEthHZB0+YaMLYWuy6GUI
NiPB3jbB3gRtJ2iX4NNWIEEJOs+muiFuKse8uBcgbFHc9vFib4N7FcLOgbsq
68SEhDXPGzIPu7EfYQ4Hq0CwGmjTEvaWCXsTtC1IMC1FWIGwjoQ1j5yKvSda
WvQp0DYhbBy6zCZ4H9wrQUc7+7QPlcDxJlDvf2ni3QoZbwLoLdXqHah5gFns
Z7L0TQiRC+or/WHSJybEB+BpQLD04MqpQ/zGhDh8UhktSBIUJdXqjxHvmBAf
gmIZgiVEUVAh9Ed2fzQhbouibu/3eGbUQ0wfYvuz2WcFfgyZa77Masa4zPhX
M+Ov1EtbjfiHGaFXm/+hxyI+e///+z723H8BULn43A==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {287., 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"b4724f68-8453-4ac4-81c3-cee0b1abb438"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(49\\). \\!\\(\\\"augmented triangular prism \
(J49)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"086bd1fc-c866-496b-a63a-672b570f9360"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.19346
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.102903 1.24733 3.33067e-16 1.24733 [
[ 0 0 0 0 ]
[ 1 1.19346 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.19346 L
0 1.19346 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.58813 .69331 m .78318 .96461 L .8433 .49414 L closepath p .394 .294 .622 r
F P
0 g
s
.47253 .29593 m .20904 .64988 L .58813 .69331 L closepath p .811 .691 .732 r
F P
0 g
s
.8433 .49414 m .47253 .29593 L .58813 .69331 L closepath p .524 .519 .792 r
F P
0 g
s
.37097 .94248 m .78318 .96461 L .58813 .69331 L p .76 .367 .309 r
F P
0 g
s
.58813 .69331 m .20904 .64988 L .37097 .94248 L p .76 .367 .309 r
F P
0 g
s
.8433 .49414 m .43724 .42461 L .47253 .29593 L closepath p .677 .168 .025 r
F P
0 g
s
.20904 .64988 m .47253 .29593 L .43724 .42461 L closepath p 0 0 0 r
F P
0 g
s
.37097 .94248 m .20904 .64988 L .43724 .42461 L closepath p .278 .191 .574 r
F P
0 g
s
.43724 .42461 m .8433 .49414 L .78318 .96461 L p .831 .693 .711 r
F P
0 g
s
.78318 .96461 m .37097 .94248 L .43724 .42461 L p .831 .693 .711 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{260.562, 310.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmltTFEcYhhdZWM4iQaMkBjQSWEFgo8HTgoAcRERAARFJcCUoaIwESYw5
VCpVqVSucpV7/4A3qfIf5Dfk95j9+uu8DJt3Nt2b2SQXSxXTQ7/f88xMDzs7
O73TmZ2N9ceZnc21TNvEdmZrY3Ptadv4k+1sV3lZLFYWz/72t8Vk/XUs9ufC
/FTIwv5RWi+tl9b/s/WvpNknr82fAh2xuPS8fpk0r1r5/VHT5ygvl9Ss/aDR
l4gqJcoW4PWejb/XomfSmCQB/i9RNaLvNPpCGrNLtYi+1ehzRA2IvtZoRw8z
29GI6Hlu1ITomUZPER0kh7GjRdvSVEpyCLyNPpMmIR2HEW3nRi2ItjTaQnQU
0acaPZGmSjpaEX2SGx0j+7qpRUZTLclx8DZ6jKgd0QONzBZqpKMD0XpulES0
ptEjaWqlowtRRqOHiHoQrWpk9qZOOvrIYazkFqXA22hDmnrpOI1oWaMHiPoR
LWl0X5oG6TiHaDE3uoBoXqN1RANkX+e06GNp9ksyCN5GZqAapWMI0UxuNIJo
WqN7iMYQTWlkhrdZOkYRTWp0F1R2N4dTv5hd/f3Vq2xRdlm5dycmAozZ9X2C
2OPLlhswATBNjn5UFatQlBNFvSwr9g67BT8CGCdgE7Z9BuBIAGwIA48A7AM4
pOCHACsI2AqwG+CggisAKwnYDrATYFrBOwATBOwCeIKM7/mAwvxPVxFFCuPb
hm1bcBlgNQH7se23AZ5V8DbAGgKmAe5e8T5QcAlgLQFHADYDPB0A68LASYC7
V/aUgrcA1hFwBmAdwF4FFwHWE3ABo1pNTky3KhagaCCKZWw7jm0HQXNt3E/A
u7I0V/mTWj6P8kZSfl+Wpiup5TdRfoCUb5jl3uPpUPAGwKYCwJowcDMcnAP4
hh84C7DZcVc7FZwBeLAA0Lx3HvIDrwN80w+cBni4AND8Ax3xA6/lBdnpsOAU
wBY/8CrAtxx3NRkAE3r18gInAR71A68AfMcPnADYWgBYGQayUbXgOMA2P3AM
4DE/cBTgccdjPBkAzYX2XT/wMsATfuAIwHY/cBjgewWA8TCQjaoFhwB2+IGX
AHb6gYMAk47H2BUAy/VNywscANjlB6YBdhcAmrfjU37gxbwgG1ULXgDY4wee
B9hbAGgj+SQgsOe2zxEF2ws2YPY+5yxR9Pkp+oki9a8r2IG4npHoFOyMuJ7U
6BTsX8v1hXQq8HrIUbi+iKNTXCQK12tQHgW7/rHhtIo0UbBrb3EVA0Th+tbh
qWDD2aOKQaJg73x5FJeIwvXtOjrFEFGw2xQ2nNEphomC3WUVVzFCFK43ib2R
KS4TBbvHzaMYJQp2f+2pcL23t4oxomAfSIqrGCcK9nkqAgUbzj5VTBCF68fB
6BRXiML106xVTBKF60fw6BRXiYI9eiiuYoooXJ+cpCJTXCMK1wc/0SmmiYI9
8GLDGZ3iOlG4Pq+zihmicH1W6Klgw/m+KmaJwvUZaXSKOaJgz4HZWESnuEEU
7DF2cRU3iYI9j8+jmCcKNhcQgYKdVDuBsUAUbCrDU8HmX9iBWMUiUbC5n+Iq
bhEFm7oqrmKJKNgcXB7FbaJg83/spJ6JTLFMFGzekx1IdIo7RMHme4urWCEK
NnFdXIWZRo5VBBXmN/t37CHB7Oyomba2X7UJIH9L7O6rbOBRePmqNOZx4T8t
Ml8LMNNk98KLzFc8miSZDS/6BkWD4UU/S3NAkm5SpA/wYi9gagkv+hVFVeFF
v0ljZtb0eZgW/I++pVVaL637rsfK/gAKJ3F1\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 259.562}, {309.938, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"f9b8defb-fd27-44c2-a961-3b69fbe5b5d2"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(50\\). \\!\\(\\\"biaugmented triangular prism \
(J50)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"3b3c21bf-0303-4d3a-8f5a-dc91dc11e9ef"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .97864
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0107602 1.05405 -5.55112e-17 1.05405 [
[ 0 0 0 0 ]
[ 1 .97864 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .97864 L
0 .97864 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.3559 .58007 m .70913 .565 L .42525 .29301 L closepath p .613 .626 .84 r
F P
0 g
s
.3559 .58007 m .46272 .87864 L .70913 .565 L closepath p .605 .392 .566 r
F P
0 g
s
.3559 .58007 m .15532 .61049 L .46272 .87864 L closepath p .88 .528 .376 r
F P
0 g
s
.42525 .29301 m .15532 .61049 L .3559 .58007 L closepath p .912 .929 .81 r
F P
0 g
s
.80758 .29713 m .42525 .29301 L .70913 .565 L closepath p .551 .612 .867 r
F P
0 g
s
.74549 .74925 m .80758 .29713 L .70913 .565 L closepath p 0 0 .247 r
F P
0 g
s
.46272 .87864 m .74549 .74925 L .70913 .565 L closepath p .247 0 .267 r
F P
0 g
s
.74549 .74925 m .46272 .87864 L .15532 .61049 L p .549 .623 .878 r
F P
0 g
s
.41117 .43709 m .42525 .29301 L .80758 .29713 L closepath p .435 0 .046 r
F P
0 g
s
.41117 .43709 m .15532 .61049 L .42525 .29301 L closepath p 0 0 0 r
F P
0 g
s
.15532 .61049 m .41117 .43709 L .74549 .74925 L p .549 .623 .878 r
F P
0 g
s
.41117 .43709 m .80758 .29713 L .74549 .74925 L closepath p .804 .643 .682 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{287.75, 281.562},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmdlSVFcUhlsExRFRRHHsSDQxKgICzTzPiMggigjSICg4gIDilGiMlUqV
lUqlUpXKRS5zmVfJa+Q1SK+9dv851f4L9kWuUlAF63DW9/3n9Bn6DLs/ufpg
9nFydX4mGe9aTi49mJ9ZiXcuLqdmbd8Wi207nfotisdkej0WS/9xP3H54//Z
mt6a3pr+306/lFIt5/6TyIzYdpmzvhDLld9YpfxNyKyEQi+kZMmMeWk5OuX8
9cef6/5LJFal5JoU158DmS2gX4T/SS3C4c+lZEtnBvhOG38mJUc6U8B32/gq
8Engewnu131Fyg7pjAPPC8HHBHeb56CNL0vZKZ1RpBfY+FMpudIZBn7Expek
7JLOdeDHbHxRym7p9AM/aePuWNkjnV7gpwmeyMS7sWXO2PhjKXul04H0z238
EfA24F/Y+EMp+6TTDPwrG1+Qsl86DcAv2fi8lDzp1AIvtfEHUg7omZXGywle
nYlXYkNW2vh9KfmamU5P2PiclIPSuQy81sZnpRySzkXgDTZ+T0qBdM4Db7bx
GSmHpXMOeNsmeIEeKWm8g+A1ik8j/Qw2ZLeNJ6UU6lGeTu+18SkpR6RzAni/
jd+VclQ6RcCv2/iklCLpFAIftvEJKcekcwj4aAiejy1zi+C1it+Rclw6+5F+
28bHpZyQzh7gEzZ+G/gu4FM2PiblpHR2AJ+x8VtSTq27S1can9sE/2zdXfRM
6KaUuHQe2tBoZMEff//bQ3L1FOU+EetUvAExh4hs3b04gi2TS8RZWxyGuJuI
92xxCLtuHxHZXomK7ojKI+K0LQ5CzCdi0havS3GHfAER7xKxXsUBiIVEnLTF
a1KK9Iz/VGQnhBf7IR4n4p1NRPeVdIqI47Z4FWKciOxU92KfFPedWUzEMVvs
hXhWRPMbqEHxHimH9bry6XJu2GI3xAtEHLHFLinuWlNCRPZVHBXdFbOUiEO2
2AmxnIiDttghxV3SK4nILjJebIeYIOI1Ijaq2CbF3XPUEpFdBb3YCrGeiFc3
Ed0tVxMR+2yxBWILEdn13YvNUtw9YTsRe2yxCWInEdkNiBddcTetPUTsssUG
iH04mToJ3qS4OwXdvfQAWQ67/4qK7hZ/kIittlgHcZiILbborqXukWWUiOzO
0os1EG8RsckW3a2me6YaJ2KjLSYgThCxnojNEdE9I04Rsc4WqyBOE5Hd1HvR
PSm7h9hZItbYYgXE+0SstsUrUtxD+QIR2eOKF8shPiJilS2WSXEvGRaJWEHE
lojoOk9xMm2AlwJfJcsps8XLUlz6GhHZ46QXSyC+JOJlW7zkirZSopNfkYgS
O+IiiXhDItjDc3T1MyJek4gLJKI1sukCItgTf2tktwVEnLcjygIjvrQjygMj
2JsOH3ElMOKcHVGBA4rtyrO2WBV4QBWTiDaNSARGsDdJPqLaijBfQXmxJnDT
sZdePqI2MOKUHVEXGMHe1PmI+g134AlbbAzc+sftiKbAiCIS0a4RzYERR+2I
lsAI9jLVR7QGRhTaEW2BEYftiHbsSnYMsFfHXuwky2bXh0N2RFdgRD6J6NCI
7sCIA3ZEjxXhtsoGYm/g1t9nR/QFRrDxBB9xdcMduMcWrwVuOjb04SMGAiNy
SYQeP/qaJCCCjdf4iMHAiB12xFBgRI4dMRwYwcapfMQIdiU7Brbb4ihZ9gsS
kWVH3DQjsqMRMq0njL653GShsX/xMQvPimTe3iQzvdL6zaEvfjPwVWTqyaUv
k92MZbT6tTVJfHfb72bp0a0v0jOgeSTpkaMv5zOgOUAjCiUJNANId6IOImRA
U4B0o+vARAZ0ByuuW1HHRrJ0Rtqf0NYc8W8A0k+sAz0Z0BAg/TA6eJQBDQDS
9dTxqwyoD6s7q9ACgbqRpMvRcbYMqAOQRujYnZvRhtYjbT0hfiMgP1q9SKBa
rO6SQksESiBpRaGnBKoA9EyhZQKVAVpTaIVAJYB0fF2Hot2Mi2i91tZz4p/D
Z/paoTUCFSPpnUIvCBQH9F6hlwQ6CeiDQq8IdAzQ9wq9JlAhVvwHhd7ggxfA
/6itb4ifB+hHhd4SaC+gnxR6R6BdgH5W6FsC5WB1f1HoPYGykPSrQt+5kg1I
aur3N+1+iET4n3TL/RPfmv6vpmPb/gHH+6p0\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 286.75}, {280.562, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"715928bb-7fbf-4c42-a130-e43189e8bf33"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(51\\). \\!\\(\\\"triaugmented triangular prism (J51)\\\"\\)\
\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"4f2f8ea5-1caa-4cef-b2f2-540350bf2591"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.14944
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0835993 1.22428 -1.11022e-16 1.22428 [
[ 0 0 0 0 ]
[ 1 1.14944 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.14944 L
0 1.14944 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.47767 .87923 m .78953 .8178 L .61867 .51568 L closepath p .51 .372 .628 r
F P
0 g
s
.38211 .92439 m .78953 .8178 L .47767 .87923 L closepath p 0 0 0 r
F P
0 g
s
.24165 .59483 m .38211 .92439 L .47767 .87923 L closepath p .908 .5 .17 r
F P
0 g
s
.47767 .87923 m .61867 .51568 L .24165 .59483 L closepath p .779 .671 .744 r
F P
0 g
s
.61867 .51568 m .78953 .8178 L .76907 .39966 L closepath p .206 .237 .673 r
F P
0 g
s
.41252 .21397 m .24165 .59483 L .61867 .51568 L closepath p .783 .707 .78 r
F P
0 g
s
.76907 .39966 m .41252 .21397 L .61867 .51568 L closepath p .363 .529 .887 r
F P
0 g
s
.33228 .48574 m .38211 .92439 L .24165 .59483 L closepath p 0 .047 .579 r
F P
0 g
s
.41252 .21397 m .33228 .48574 L .24165 .59483 L closepath p 0 0 0 r
F P
0 g
s
.76907 .39966 m .33228 .48574 L .41252 .21397 L closepath p .692 .363 .416 r
F P
0 g
s
.72292 .77615 m .78953 .8178 L .38211 .92439 L closepath p .459 .886 .892 r
F P
0 g
s
.76907 .39966 m .78953 .8178 L .72292 .77615 L closepath p .936 .765 .294 r
F P
0 g
s
.33228 .48574 m .72292 .77615 L .38211 .92439 L closepath p .522 .509 .782 r
F P
0 g
s
.76907 .39966 m .72292 .77615 L .33228 .48574 L closepath p .729 .452 .507 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{265.5, 305.125},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm91TE2cUxiMJEAKhfCoq0qhFBsX6MYgKIhggQOQbDAgiBkQBxTrKdNpp
O22HdpxOp9NO67QdL3rRv6G3vexl/w0v+y/Qfd9382R5eZLsm7DTXsBM2HWf
c57fOSfLZrO7jia31lY3k1vrK8nI4Ivk87X1lZeR2AcvrE3+Qz7foTLrdSni
E+s7Pl/ql/wJiV/2Pw7WD9b/p+ubYlEk9ts3jg2+gNiy88f8xo69V/+q1KcI
9wtVrv3skKzNqUTrZdmkgl6roCfID0L6UZdCkH5Q0gaksLRVEPvH950eVIn8
PVIVpG+VtA6pFtI3ulQP6ZWS1sRCVnEE0tcOSW44BmlbSY+R1QjpS11qgvS5
kh6JhXw/IpA+c0gy6zSkT5S0iqxmSB/rUguZ5oeOIKm0It+WHiL/HKQtXToP
6YWSViBdhPRcly5DeqakZbEoFhvaIT3VpQ5IG0pKQroOaU2XuiA9UtIDsSgR
G7ohPXRIMqsX0rIuRSE9UNISDPvJoBcdQTI/hnxbuo/8IUgLuhSHdFdJi5BG
Ic3q0jikO0q6JxalYsMkpGldmoY0qaQFSAlI47o0B2lUl+Yh3VbSPKRFSMO6
tESmGVNBcgZB9R6k8p2SzF+B1K+kOWStQorq0mNIvUqahbQB6aYurQspoHYq
KSXEokztW5Yk33n/zp8vt7WGuvTwJYQHc4QH1Y6SCg9nDr8D9wTCa9yETyL8
sAgvcjQ4g6BRBB3PHDSEoIgeJPe/kNjQh6BmGiSdehB0Vg+aglMngi5kDrqC
oHY9SO745TiM2QeZ9MT++Ssulr4bjnDp2YbwbhkeQLidsiejBRnRrBkTKOkU
MgZzZ0hGEzJGsmaMg3EUGZMuM+qQkciaMYaMKmQsuMwoR8aDrBnyCFQhNpQg
YzV3hmQUIWNdZhTvytDe+BGxqBRbnrkMllVZe9H29t8yVmRtmuQWiVR7N7TS
ZOqT3Aa30aDIDb6WscJJ+sl9361LSJVhmdhliF5UUXtLW8ttGodpwKXpY5em
8oBRTEwDaNqF1TDqY1YlpL4V7VBhvayBid+7D7idDkCZ2l33AkoJYNkMMARA
KQEEMYx8bOXHUJDYhkjdS2aAQQDKCKAcdTNbP7G97rCV5wghYhsmdd/LF1Du
ErBgBogBUEEAlRhMPrbyzDFMbKtI3bMEEMgMGACgkgCqCSCRB0D+Nb9DADUY
jKFtP+pmtnWk7uk8ALLuKgKoJ4ApM0AfANUEcBiDycdWfqjWENsGUve4GSAK
QJ1LwFgeAKnUE8BRDGZfbY+TuuMEUJwZcAuAwwTQSADDeQBk60cI4AQGY2jb
C9sGYvsuqTuWB8CW5ImOBWEdRAhqwAzVQ1Csq5MY1j4AjhLAKdJLtPCxsV5O
oxePAM2kl5sEVZJj13WxC5whqG6CKiWoa2aoFozNI0Ar6aXTDBUlKHZwOUtQ
+rfjfUKdw9gMAX0uAW2klw5vUOcJ6ooZqp+g2OfL+xhbOwEECwdcJL1c8gZ1
iaAumqEGCIqdTlzG2DwCtJNezpuhYgRVS1BXCKrNG1QHxmYIGHQJuEp6afUG
dQ29GAKGCICdE3eSXpoJqqxwVBdBvecN6gbGZggYJgD2DeUm6eWkN6gegoqY
oeIExb7Y9WJs+wBgvdwivZwwQ9122UuUoBoJKkRQV81QfRjbcQIoLxwwQHpp
MEONEBS7eBAjqCPeoAYxNkPAKAGwCzjDpJc6b1Bxgqo1Q42ZoOyHBzwBjJBe
qsxQ4wTFruGNElQlQVUUjhrD2DwCTJBeys1QEwTFrqhOohePANOkl6AZapKg
2OXnGYIqLRzFuprB2AwBUy57SZBeAt6gZgnK7w1qDmMrIoBwZsA0AbBbHPNa
L9bS+sAo2HYBdWcxmyFm7O6ONPOrw0fBZndRmX/n5du3Lt6yDgW4QwDsZlcC
1ZYIgEQZ2rK6px3Hnb11s5M2Q0D6wFaJurPYJlyOYwzjqIEtu6xhaDviOIHZ
Ow52Nd4GzBIAuxWa/qg/hrr3wXYQ42iSdfPbzfb59hwxZfeFB1DrKdTq86fc
nH8lbh3Tp9Vn4GgXddelRQ86bREW/jwsundXIe/9dJlZdDm+jaYsepTFPLFg
t/Wvw+I0Gukzs+jALE6iCvsptQViwR5+aHd8P0xZxM0s0te0mmChTkzVI3+a
hZ9YXEAjjbCYymzBqmhDFY0YZ8LM4uzuv01ZhfNhSBeNtKCRBlgsmlk07z4E
SYuksrhPLNhjMuk7KPWwWDWziKCRWlisK4sluSh2WqiX3InS32RS78Jm7rQm
pFWDZj/Uq56BDexO86nbj/aZQCpjy5nBQQ1oK4y0j3Knpe9eVyDtU5WW5PXV
ISOEjC+yZlSjtDKM7iuVsay/abLtFCAIwKvM4WGElyDcfnRdPjZtl5oqIYCg
7/Wg9MM8fgT95AjSwMWOU81UW7+o8IfwlI+IyadN3jgkueE3tWEVsb+rDeL3
f/2fHg7WD9YLWfcd+hc8b6zw\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 264.5}, {304.125, 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"da5f8871-4b48-4838-a9fb-9299f2e696a8"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(52\\). \\!\\(\\\"augmented pentagonal prism \
(J52)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"2f92bc67-147f-4f4c-b109-dd0c1c3d2a64"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.30777
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.152781 1.34442 0 1.34442 [
[ 0 0 0 0 ]
[ 1 1.30777 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.30777 L
0 1.30777 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.80846 .66097 m .59405 .35104 L .29011 .56612 L p .681 .557 .708 r
F P
0 g
s
.29011 .56612 m .49913 .87369 L .80846 .66097 L p .681 .557 .708 r
F P
0 g
s
.13718 .45026 m .29011 .56612 L .59405 .35104 L p .801 .896 .911 r
F P
0 g
s
.51601 1.00934 m .49913 .87369 L .29011 .56612 L p .857 .414 .005 r
F P
0 g
s
.27332 .73404 m .51601 1.00934 L p .29011 .56612 L .857 .414 .005 r
F P
0 g
s
.29011 .56612 m .13718 .45026 L .27332 .73404 L p .857 .414 .005 r
F P
0 g
s
.86545 .77127 m .80846 .66097 L .49913 .87369 L p .235 0 .134 r
F P
0 g
s
.49913 .87369 m .51601 1.00934 L .86545 .77127 L p .235 0 .134 r
F P
0 g
s
.59405 .35104 m .47564 .20737 L .13718 .45026 L p .801 .896 .911 r
F P
0 g
s
.47564 .20737 m .59405 .35104 L .80846 .66097 L p .675 .225 0 r
F P
0 g
s
.64515 .47348 m .47564 .20737 L p .80846 .66097 L .675 .225 0 r
F P
0 g
s
.80846 .66097 m .86545 .77127 L .64515 .47348 L p .675 .225 0 r
F P
0 g
s
.27332 .73404 m .13718 .45026 L .47564 .20737 L p .547 .328 .535 r
F P
0 g
s
.47564 .20737 m .64515 .47348 L .27332 .73404 L p .547 .328 .535 r
F P
0 g
s
.51601 1.00934 m .65835 .9265 L .86545 .77127 L closepath p 0 0 0 r
F P
0 g
s
.27332 .73404 m .65835 .9265 L .51601 1.00934 L closepath p .254 .518 .91 r
F P
0 g
s
.86545 .77127 m .65835 .9265 L .64515 .47348 L closepath p .941 .711 .561 r
F P
0 g
s
.27332 .73404 m .64515 .47348 L .65835 .9265 L closepath p .621 .453 .634 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{248.875, 325.438},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm1lXFFcQgFs2wQ1UUBERFJFNFlGjGE0gigSRRSTuorgFjCgCavacJI/5
C3nMYx7zu/KYkzcz01Vdwwzf7SmPyUke4jkzkzBV31d1p6e77+2e8bnV+UeL
c6sLD+aaR5bnluYXHqw0X3i+nPlT6YYoiv6Mog3DzVH2v99k/lef/nyT+Zd5
8/+Xf/5lNftSkh33H+QPK/FLafYvb36a/in+RPSt5fil3N5KHtmQ7yVkyXDl
2beUo/+ibyXoeYEiGxiHx4nfSdCikarsLc1/CvmbLOgbCfoMgjavqenXAdna
vpbwBdNVG0nfmgdSNZC+kvDHRtoJQV9K0CNg1kL4FxL+EMLr4ucyC9eUzyXj
vlVRz3GvJW4OyHs545Vk3IOMhtSMWaulieNeStwdIDdzxqpk3DJyi25Fa+OS
QZRNOroJ+EMpabK5RzcgrbXgo8o8opL4OX+Dly09umZldjgTn0niVXB3ppS8
JGkz5ut2+hYl8Qr4epwI+VZG04DocyLkOxtNWfnHILEUEp9I4iS4jzsRC4KY
AMR7ToTsKKJLVv7A2yWOgfu0E/GpIEbNfRYSyyDxsSR+DO4PnAjZmUUjgBh0
ImQHFw1b+ecgsRwSH0jieXCfdyLuC+IcIC44y1fEkJU/6nTL7jczTOvdF50I
2R9nPqzEPeEsWhPPgpsQ5L4riDOAmHIiZgVx2sq/8naJA+CecSLkgBOdNPd1
Z+JtSXwP3ISoAMQtQZwAxE1nFYo4ZuXPOhPlSBj1g5sQVL4cFaOjgLjnrEIR
vVb+Q2fidUnsATchqPxrgjhi7nmnWxO7wE0IcstBPXMcX4944kR8Ioh2K/+Z
s3xNbAM3Icg9I4hWcy87E+XkInPKtd694ixfES2AWHVWIecn0UFAvHIiLocR
r52IqXAj3ipSEN4qJsOfCFWxERATYYS3iok1GxRVEW9klZA4Hk58ucb988ov
2dfMPHI94pIgDgNi2dwlWUSwihTEi4IqMg+B6d/++E0mz4QdC2OXAFsaP5cZ
VtFEvihk2gcsWs8VfwvvKVQq5PI8ctpAjAq+HfALVm5VwahmHpmRzj4X3/4+
DgvmoX5SlTpVcoqcmQWuVz2yXrb8M4KH0AupypyqC6Kiw9ic9VINgnKnYDgs
uAe9kKoCVHRcURUd1WdBVeNUUVfnw6rbNmw7QbDRKZB5jJzapJxYJr3UOlU0
bCmq69bLbhBUOgUfiaAbBFehF6+Khm0orJqxXvaCoMrZiwrorHUaeiHVJqdq
MKy6DKoGUG12qj4MqyZt2Pa/u6AXBOPQC6m2OFUfhFVj1ssBEGx1CmSqHfWB
YBR6IdU2p+pMWDVivRx6dwFNAIehF1JVO1Xvh1XnrJc2ENQ4BadFQPPhIeiF
VNtBRYsuKapBULU7VdSVrIzI8kCB6qwNWxcIdjgFp8KCM9ALqXY6h01Vx0E1
YL30gKDWKTgZFpyCXrwqGjZZNcKVnxPWy1EQ1Dl7SREch15ItcupEgcuhPWD
qh9Uu52q42FVnw3bCRDsAQEtoavgJAh6oBevino5FlYdsV5OgaDeKegPC7qg
F1Ltdapkt6zf0HxVu/XyPgganJ9LiqANevGqqBc5XOKa8iHr5cN3EPSGBS3Q
C6n2OYdNVadBdQBUg6BqdKp6wqomG7ZzTgENm5yV64lAvqAReiHVfmcvKaoG
6+UCCJqcApkt4TWTeuiFVM2gouupKard1suoU0C9yCwWLyHVQS+kOuDsJUVV
C6qLoDroVMmKg04H8lXbbdjGQdCi6xtrBPEj8//JZ0HQGqg/jC9ev6z+6Mwp
X7XV6p8CwaGU+rvC0C1QP+FbU/CdYXzu1p4rAD0cP6+7QUR5dGG1EsoNk7nc
jjC+wsq9CtA2Lld5Q8Arg3KJ3M7k9jC5FMjXgNzBZFnw1TWafHLc/s13RmVH
+jZQOpkia+WyKhVXQLldBV+iqCBRsUM//h6/Bvo4AhS5DpF3K0KWknlEenH5
rTjDBdXoI7hldQNKLsvoUm1hSQlsBmA92WddI4gRI4AoNcQ0IHoNIZeo8m4x
SRBlhqAdxjrEKCDKDTGZipDLdXq1Ih9RYQja7fatGdhkF9sssDGAbTTYWAim
C0lBRJUh6IjZC/Uo7BLANhlsJPRBF8B0pMYBttlgw6GtOX5Xt+EJQGwxBJ2m
dUE9CpsE2FaDDQX3E/kw/a5PAWybwei8u92a0531ZUBUG+JscOePB+tpgNUY
jOY0hwHWGYbtMNhA8NCMZ1xXALbTYCdD5ym6IhMjZgBRawiaSB+EehT2CcDq
DHasyClmAtPZ0VWA7TIYrYw0WXM6x74GiN2G6C0yFUnqUdh1gO0xWHeRKVQC
0+WFGwCrNxgtxzVYc7qGdBMQew3RUWTZIKknBbbPYLSqWg8wXam7BbBGg7WG
Fprid3UR9jYg9huipciyWFKPwu4ArMlgtJRfBzBd6p4FWLPBmoosPiYwXaK/
C7ADBmsMLQDrjjBG3APEQUPQ9aPtUI/C5gDWYrD6Iuv4CWwwDGs12J7QxRo9
/sSI+4A4bIhdRS4oJfUo7AHA2gxGF1s3A0wvEj8EWLvBdgCsyprTOwEeAaLD
EHQhuxLqUdhjgHUabBvANgJM77f4FGBdBqM7E8qtOb05Zh4QRwyxCRBlUI/C
FgDWbbBKgJUC7FIY1muwCoCVAExvcHoCsD6DlSEsSk5x8n4Ik2QftWy6HUlv
kXsKif3Z53hOorfiLYaCdGoRBz1LHQ29H/I5BOU+TL3ncym0BRaMXEp47guk
98++SN2F6D3CyxCU2wPelaAVCModA/Re71UIaoQWNPwlhOeOwHrf/CsIyp2D
6C3+ryEodxamv0H4HIK2W9CTcFANtKDhX0B47sRdf3ryJQTlpi76Q5qvICg3
35IPUn+2lR+Um2fqj4G+gaASaEHD5Zdn65YG9AdO362BJYn61n/iR37/v/zL
L9GGvwDqAvbl\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 247.875}, {324.438, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"bdad8d27-d5e0-45c5-af52-cedd7bcc7ee2"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(53\\). \\!\\(\\\"biaugmented pentagonal prism \
(J53)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"c45a5a3b-b14d-4cc0-a77a-1b72089ea111"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.17701
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0961296 1.26615 0 1.26615 [
[ 0 0 0 0 ]
[ 1 1.17701 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.17701 L
0 1.17701 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.62921 .45954 m .61307 .69622 L .8049 .71318 L closepath p .424 .445 .778 r
F P
0 g
s
.37537 .63515 m .61307 .69622 L .62921 .45954 L closepath p .778 .757 .834 r
F P
0 g
s
.54553 .89082 m .8049 .71318 L .61307 .69622 L closepath p .439 .145 .367 r
F P
0 g
s
.54553 .89082 m .61307 .69622 L .37537 .63515 L closepath p .838 .56 .519 r
F P
0 g
s
.25708 .51089 m .37537 .63515 L .62921 .45954 L p .805 .864 .893 r
F P
0 g
s
.37537 .63515 m .25708 .51089 L .36659 .71599 L p .777 .323 0 r
F P
0 g
s
.54553 .89082 m .37537 .63515 L p .36659 .71599 L .777 .323 0 r
F P
0 g
s
.62921 .45954 m .53511 .31749 L .25708 .51089 L p .805 .864 .893 r
F P
0 g
s
.53511 .31749 m .62921 .45954 L .8049 .71318 L p 0 0 .429 r
F P
0 g
s
.84856 .7698 m .8049 .71318 L .54553 .89082 L p .098 0 0 r
F P
0 g
s
.54553 .89082 m .55962 .96724 L .84856 .7698 L p .098 0 0 r
F P
0 g
s
.36659 .71599 m .55962 .96724 L .54553 .89082 L p .777 .323 0 r
F P
0 g
s
.8049 .71318 m .84856 .7698 L p .53511 .31749 L 0 0 .429 r
F P
0 g
s
.25708 .51089 m .53511 .31749 L .33349 .34867 L closepath p .774 .979 .912 r
F P
0 g
s
.25708 .51089 m .33349 .34867 L .36659 .71599 L closepath p .014 .067 .573 r
F P
0 g
s
.84856 .7698 m .66953 .50683 L .53511 .31749 L p 0 0 .429 r
F P
0 g
s
.66953 .50683 m .33349 .34867 L .53511 .31749 L closepath p .763 .314 .187 r
F P
0 g
s
.66953 .50683 m .84856 .7698 L .55962 .96724 L p .751 .691 .793 r
F P
0 g
s
.55962 .96724 m .36659 .71599 L .66953 .50683 L p .751 .691 .793 r
F P
0 g
s
.36659 .71599 m .33349 .34867 L .66953 .50683 L closepath p .717 .612 .74 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{262.375, 308.812},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2tlbE1cYx/FIWBQQUVARlaKIIosgIiIoqKwiiCAKWFQisomyu1S72dXu
y+Nl/wxve+ll/yaamffwJk2+J+Y0vejTwvOQGTK/85mXyczkzJnpD63NTj0K
rc1Nhkq7V0JLs3OTq6Vdiyvht4JbAoEtmeHfhtKAN78eCGy8+D9Z3ov5Y3N+
c35z/j81/8qbpHvH+3N546UsDL8RXH87dDz8qqeC8OJnEnrhTTK9JTkQeiqh
NZV2QeiJhBZUKobQYwnNqFRqD4VUqoDQmoRuqVQLoVUJjXgTf0njO0IBf8ut
v/nt93Vz1qQWK9LipjdJky0bbuHPnYb4cmw8Q+MNEF+S+A1/IosC+a/9M3iW
19B/66Rbw2xdYx00XJSGw1FbwG8ojXO1LW3ihei2GX9ta1a+XYEaO3A9tur8
14E0/zWoH0n4NwqrBuyRG7ZDsSrAHgo2BFgQsJ2KVQI274YVKEY7vyO2W3eb
o4A9EGwQsHTAirSycsDm3LBixcrs2DXAMgA7oNhhwGbdsBLFDgE2I9gAYJmA
lSpG57tpN+ywYiV27CpgWwErU+wgYFNuWLnuZ/sBuy9YP2DbAKvQyvaljlUq
VgTYpGB9gGUDVq3YXsDuuWEnFNsDWEiwK4DlAFanWGHqWL1iBYBNCNYLWC5g
DYpR3+GuG9aoWL4duwzYdsCadKfNA+yOG9ailW0H7LZgPYDtAOycYrmAjbth
rYplp45dUGwbYO8L1g1YPmCXFNsK2C03rEOxTDvWBdhOwLoUywBszA3r0f2M
+uGjgnUCtguwK1pZGmAjbli/Vmb+pQ5oWAANB7SKUbeG17ShKbUdGhba1mje
e/vmD2+aiNgNRJ+uO+gRMZtu2P6PUD1XYurxwHRgr7uxvcBm2Fn6oGmz90Qf
tnHYkBvWDTVmAztoP0xoZ+yMPoOminVAjXnAXrOfZOhQjpyxdgE24IZdhBoT
sHSKphNhW3S/Ig676oa1Qo17gZXuGH5b0tfIeWD3AdtnZ6naZv3XD9gx6mtQ
jWehxoPASq8KO1d5wJ6JvryIw3rdsEaoMQFLXVPqzET6bOWAXXbDTkGNR4GV
XRI79tQVrAf2WOpspCNdBZgc2nhZRB3pWqixGtguN7ZGa6y1Y3RRab2miamx
DthONzZy3dUAmHwd4iU5YRVQ4z/AHtUamwCTbgUOaNCFZjnUeBbYS27sEWCb
7SwNDNEFe2QooRWwi27YIaixDdgLwtIYXRaw72mNl1LHSqDGdmDbhB0GloZk
IiNP3YC1umH7ocYeYM8LGzfcaxnQKgb2cupsZDiwH7Bzgt1MEtsDNV4FtsWN
LdQaB+3YCGA0ZFkANQ4B2+zGRkaPbwJ2VrBRwIKA5UONCdgxYK3D5THsKLBN
bmxkSH8csDOCyaU732DIg7r+JhW52TEBQKMAMsARd6MkB8oIgXI6obJNK7hv
bzseu2kD3uhJ/OqngGiIJuJWH7k3NQdtT0nb27D6dFi9IxEEYh6IeiH8sbm0
SEuxwj+L0OZkVBt/ybI9dDeqto06KF5nj69AvFbiE0nqJh5KMn5C4veSjNfY
41R7tcQnk9RN/H6S8SqJTyUZr5T4NMSX3OKkH5f4TJLxConPJlmMic8lGT/2
jri5ReiHHkBowV7CPMTn1TQfyUMI0VFt4o8gPmPfPyg+pSWYA2ABQpP242UR
4hNqmlPHEoTu2M80FB9X05yTlyF0y34KX4H4iJrmK3QVQjfs37gUH7Z/769B
fFBLMH23xxAasHf1nkC8T802CT2FUC+YCeI9apprnmcQ6gLTxD+AeLua5jL3
OYQugpkgfgHi5tr8BcTPawlmfOVDCLWAaeIfQbxJTTP29TGEGsFMEG9Q04xL
fgKhejBN/FOI16pphqJfQqgGzARxGmcxo+afQfy4liDXFoHPIUTjSyb+BcSP
qDlmD5WBaeJfQrxUTXPn7isIlYBp4l9DfL+adyX0CkI0PJsgXgRxc+f4G4jv
1hLMLflvIVQApol/B/F8NaftoR1gmvj3EM9V0zyi8gOE6GaIif8I8Sw1zXNH
P0GIbgIliNOtKPOI1M/+JD06rgWYB8l+iRHD041H336NWrQBm8fc/D/+RQ9E
bs7/P+cDW/4EPtFITA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 261.375}, {307.812, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"6c376b25-7afa-4e3a-b8d0-8a0031972f3b"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(54\\). \\!\\(\\\"augmented hexagonal prism \
(J54)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"04ee1de1-572a-4065-b9f7-90382fb31934"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.05729
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0439761 1.14593 0 1.14593 [
[ 0 0 0 0 ]
[ 1 1.05729 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.05729 L
0 1.05729 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.71055 .66144 m .50117 .50868 L .33668 .69819 L p .718 .521 .623 r
F P
0 g
s
.50117 .50868 m .40629 .32612 L .22416 .52362 L p .873 .782 .757 r
F P
0 g
s
.22416 .52362 m .33668 .69819 L .50117 .50868 L p .873 .782 .757 r
F P
0 g
s
.50117 .50868 m .71055 .66144 L .8648 .65567 L p .338 .518 .887 r
F P
0 g
s
.40629 .32612 m .50117 .50868 L p .8648 .65567 L .338 .518 .887 r
F P
0 g
s
.33668 .69819 m .55099 .86094 L .71055 .66144 L p .718 .521 .623 r
F P
0 g
s
.8648 .65567 m .71055 .66144 L .55099 .86094 L p .313 .016 .29 r
F P
0 g
s
.55099 .86094 m .69458 .87676 L .8648 .65567 L p .313 .016 .29 r
F P
0 g
s
.69458 .87676 m .55099 .86094 L .33668 .69819 L p .209 .469 .885 r
F P
0 g
s
.59969 .69382 m .69458 .87676 L p .33668 .69819 L .209 .469 .885 r
F P
0 g
s
.33929 .50107 m .59969 .69382 L p .33668 .69819 L .209 .469 .885 r
F P
0 g
s
.33668 .69819 m .22416 .52362 L .33929 .50107 L p .209 .469 .885 r
F P
0 g
s
.53657 .28253 m .40629 .32612 L p .8648 .65567 L .338 .518 .887 r
F P
0 g
s
.40629 .32612 m .53657 .28253 L .33929 .50107 L p .028 0 0 r
F P
0 g
s
.33929 .50107 m .22416 .52362 L .40629 .32612 L p .028 0 0 r
F P
0 g
s
.8648 .65567 m .78968 .46117 L .53657 .28253 L p .338 .518 .887 r
F P
0 g
s
.78968 .46117 m .8648 .65567 L .69458 .87676 L p .913 .838 .758 r
F P
0 g
s
.69458 .87676 m .59969 .69382 L .78968 .46117 L p .913 .838 .758 r
F P
0 g
s
.78968 .46117 m .58944 .37391 L .53657 .28253 L closepath p .653 .097 0 r
F P
0 g
s
.33929 .50107 m .53657 .28253 L .58944 .37391 L closepath p .185 0 .132 r
F P
0 g
s
.59969 .69382 m .58944 .37391 L .78968 .46117 L closepath p .897 .801 .745 r
F P
0 g
s
.33929 .50107 m .58944 .37391 L .59969 .69382 L closepath p .561 .539 .788 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{276.812, 292.625},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm0l3VEUUgB/d6czzQGbSkIRMJCEJIQwJCVOCKAqKouAUAQ0igojHAefp
qDgc9agbly5dutSlS5f+BZf+BeyqW33tfvmuvD6y0HPgnH7Vea/u992q7q73
XtXj2Oq1tfOXVq9dOLuaXbm6emXtwtkXs8uXr+Z2pTdE0YbW3GsgG7n3N6Mo
v/H/2twm/HHn/Z33d97/595/5Yq0+82+JTu+cEXG/4jTN3/o8D9nf+QNOf6p
KyrC8ZEo64/n6kUp9+51qfSxK6pu5utEZflaeeJ1qfehK2rcjjJfL1NUL9SN
XpPK77mizu0pB2ju5TN4RSq/7YoGt6PCV04XVpaWhX3hX/SSBPpmNrkjVVag
94TqPrcWt6MGqpeB56oEviwfQu5ILQRm1BOqX3NFu9tRD9XLwXNZAl9wRZcV
WAGBz0vgFQ1stAJ9goXVO92OZqheCZ6LEnhZA1sgsEo9ofrzWr0NqleDZ00C
L2ngRgisUU+o/pxW74DqteA5L4EXNbArYeA5CXxWA7shsE4TDNUvaPVeqF4P
nlUJXNMPlgIb1BOqP6PV+6B6I3gel8CnNXCzFeg9ofp5rb4FqjeD54wEntPA
fheYlq/S+uqnpfrZYk8qDGU3bvzma//x2y+SVrMmGAKfKm5P6mY+LoxEucj8
y4ubIIdTglpVVFZRGY9KF6Jy4Nw2Jb/BfDYB8WTxx5KSoW49orwYEcvnpMCe
UNgmhVUBrFIbV6/5rEP0KKIGEDWaD31FTwjscYV1K6wOYHUKqwPYcYE9prAu
hTUArEFhtdq4gHhUEZ2KaAJEk/ZPDeRzTGBnFNahsBaAtWo+1ZpPQJxWRLsi
2gCxsRgRy+eowB5R2EaFtQOsQxtXqfkExMOKaFNEJyC6NR86IawI7JTCWhXW
DbBehdFZbFlgDymsRWG9AOvTxv196g2IB13RLR95HpEFxGbNJwP5HBTYSYU1
KmwLwPoVVqb5BMQDxYgQ6MYvhyHYYDEsltmSYO9XbINmNgiwIe2plGYWECcU
Ua+IIUCMaj4pyGdBYMcVVqewEYBtU1jsgjVw7lNOrXLGgDPhtn4kn5fAezWw
RgPHIXBKE9hbENglv7p84CQEzvhtceN3CeKYIqoUMVUa4h5Nv0IRM4CYLkD8
+fuvviN3C+JuRZQrYtbqgXAWdIiACZSjSskoZQ4o2/02U0SJJXSXosoUtRtQ
k7E25V65v2Rb2FU7BXtEsWnF7v332BXFphS7YH3zYtgMYGcFu6zYgjsw99ci
sMeBXW6zD7ui1x3Zb/3UYrAKG3bIFT0ycq2HjQGsCmA7BHZQYYesESUGq7Zh
B1zRIV/Jqet/xIZQanqJgv2uaJWxY71gCQQjIKgFwYwI/IjbKCelnCCMwuux
w4Cts7GLrvA35J2QN315h0DQAIJpEexzhZ8+6APBPAi2gqDRFvhRPy0nr3zH
3C5sOJTD+tyHoAU0Gg2CqhlUUwVdRCpzuBsAQYstWATBMLRlp3VdElO1gWq7
rRpJqNoMqo22aslS+W67DYL9IBiFttBJNguqDlBN2qoxUE1bV7IxVaetOmCp
fLeRYBMIukEwYQvGoS10hdQLqh5bdTChagJUPaDqtVWHLJXvtqSCTSAYtwWT
0Ba6lO0GVZ+tOpxQNQqqLlBlbdWypfLdRoJOEGwBwTZbMAVtoduSDlD126oV
S2Xe95BgAARjIjgCgmloywCo2kE1WJpqBlT91iRDTLXVVt1lqXy3kaANBMMg
GBXBURDsgLbQPXwrqEZKU82Cqi+hahRUI6K621L5biNBCwjGbME9INgJbekB
VTOotpWmmgMVzfo0gWoCVMOiOmapzGmlRhBMlibYDW3psGYcY6opUA2J6l5L
5dtyGwT3gWAPtIWmGutBNV2aai+oWq1Z35hqB6i2iuq4pfLdRoJaEMzaghMg
mIe20IxxDah2lqZaAFVjQtUcqAZFdb+lMme/q0CwyxY8AIJ90JZ6ayEiptoD
qgFbtQgqWmOoANVeW3XSUpmLGOUgmLcFD4JgCdpSnVC1AKp+W7UfVLRUlAHV
Plv1kKUy16LKEgpCt50CwQFoSzmo0glVg7bqoLaFBKmEgjAKPAyCQ9AWWZ3M
FKr8K/d3rnNLwh8GfOof8Ev20P+IhQ8rAjfWragavHAGPg28Zb/NaLp5mpXa
iI1acdu0lUO4EDxjBcY+1EUb8ajZjFt/L8KltV82PQIxNJyEu5gnbvFd+qch
L9zU+aVo/+EdhkAalkPgU7f4TeYRu+378LMJEXSiCzMg5zR9CqSTcZgQehrc
S4CgS4eAeAYQi4Cgy5swm7eWEEEXY2Fy84L2AAXSBWOYLr4I7gVA0PVzmCl/
DhDzpSEuafrkHofAsEBxGdx7AEG3MmGN50pCBN3ZzQniBU2/xMAXwb0LEHSv
HBYJrwFiDhBDgAhrci9p+uSmOYc9EvgyuGcBQTMkYaX1lYQImsUJiFc1fQqk
maawPHwd3DOAoNmwsDT9OiCmAUFzd7JKEJ7KvDWCZhoD4k3tAUqfplsXJfBt
cG8HBE0OhycG3kmIoAlsmSSP3tX0Swx8H9wTgGgHhExqRx8AYhwQtKoQnub4
UNMndysEysxw9BG4xwBBC0Ey4yuP6SZA0GJVQHyi6VNgEwSGp2o+BfcIIGgt
MTwo9BkghgFRDwiZ8Iw+T4igJdOA+EJ7gAJpCVdmQKMvwb0VELTMHJ67+goQ
g4CgdXWZUIy+1vTJXWkHfgPufkDQAwIyARh9mxBBD0OEJ+G+c4W/zs9CYBkE
yixa9L0rKt2RTghMQaBMWUU/aGBTaYE/amC1D1z3vIzMuEQ/ab1UTJArw1RG
9LMrPCE8f+lV/6H/WHDn/f/3fbThL4tzIfo=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 275.812}, {291.625, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"95a8e9fb-08d8-4a28-901a-0d772ddd7e87"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(55\\). \\!\\(\\\"parabiaugmented hexagonal prism \
(J55)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"838e05d1-e3a8-4a49-a8a2-2b074720d236"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .90546
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-1.11022e-16 1.00652 -0.021834 1.00652 [
[ 0 0 0 0 ]
[ 1 .90546 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .90546 L
0 .90546 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.41381 .67913 m .5403 .49843 L .36752 .35566 L p .777 .616 .68 r
F P
0 g
s
.50356 .23 m .36752 .35566 L .5403 .49843 L p .613 .626 .841 r
F P
0 g
s
.5403 .49843 m .68343 .38322 L .50356 .23 L p .613 .626 .841 r
F P
0 g
s
.5403 .49843 m .41381 .67913 L .41636 .76989 L p .067 0 .138 r
F P
0 g
s
.68343 .38322 m .5403 .49843 L p .41636 .76989 L .067 0 .138 r
F P
0 g
s
.36752 .35566 m .23397 .53598 L .41381 .67913 L p .777 .616 .68 r
F P
0 g
s
.41381 .67913 m .23397 .53598 L .21205 .77153 L closepath p .787 .611 .662 r
F P
0 g
s
.22038 .61573 m .21205 .77153 L .23397 .53598 L closepath p .769 .678 .129 r
F P
0 g
s
.22038 .61573 m .23397 .53598 L .36752 .35566 L p 0 0 0 r
F P
0 g
s
.36419 .49092 m .22038 .61573 L p .36752 .35566 L 0 0 0 r
F P
0 g
s
.51459 .2839 m .36419 .49092 L p .36752 .35566 L 0 0 0 r
F P
0 g
s
.36752 .35566 m .50356 .23 L .51459 .2839 L p 0 0 0 r
F P
0 g
s
.41381 .67913 m .21205 .77153 L .41636 .76989 L closepath p .462 .041 .155 r
F P
0 g
s
.68343 .38322 m .72349 .20294 L .50356 .23 L closepath p .586 .622 .855 r
F P
0 g
s
.7106 .44993 m .72349 .20294 L .68343 .38322 L closepath p 0 0 .243 r
F P
0 g
s
.7106 .44993 m .68343 .38322 L p .41636 .76989 L .067 0 .138 r
F P
0 g
s
.41636 .76989 m .21205 .77153 L .22038 .61573 L closepath p .546 .626 .882 r
F P
0 g
s
.50356 .23 m .72349 .20294 L .51459 .2839 L closepath p .285 0 0 r
F P
0 g
s
.41636 .76989 m .56944 .65753 L .7106 .44993 L p .067 0 .138 r
F P
0 g
s
.56944 .65753 m .41636 .76989 L .22038 .61573 L p .585 .632 .864 r
F P
0 g
s
.7106 .44993 m .51459 .2839 L .72349 .20294 L closepath p .802 .617 .652 r
F P
0 g
s
.22038 .61573 m .36419 .49092 L .56944 .65753 L p .585 .632 .864 r
F P
0 g
s
.36419 .49092 m .51459 .2839 L .7106 .44993 L p .789 .622 .674 r
F P
0 g
s
.7106 .44993 m .56944 .65753 L .36419 .49092 L p .789 .622 .674 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{299.125, 270.812},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmtlzFUUUxi9JLmQhZCfbDVnMAiEEAiGYAgkxQAhLgJCEsBPCkrATwirI
oqgIKCiWllKlpZRWUeiDrz76aPHku4/+G/Ge7pmPyb3f6Qnli1ZB1dwzmf5+
3znd09OzFFuGJ0aPnBqeGBsZruoeHz47OjZyvmr9mfH4odQZkciMhfFtTlVE
9icjEf/H/GuSH++P1/uv9//H+39KiMrc3mEP/CEhy0z21MkXT55OerM+0mfb
f5eQLkdnTm6MRFJkL02EcTkukLhwu5X/BnmWyFMtqMp/lZAhLbmQZ+jyZ3Av
RjGzdfn3kMfgPkeXfw15DdzzdPkXGMoGuBfo8scSUqfK5+ryzyWkSUsdiikh
cu80fYZiauBepssfSZglLZVwr9DlD8lAVuryT3FWy+Beo8s/kZCJs2o0tbr8
gQQzYwshb9Dl9yVk23PpF9Ooy+9JmGNniu/epMs/lpBj56HvvliX35WQa2e5
796iyz+UkI+Lz2hadfkHEgonzaXsF7NCl9+RUCIt7brofQnF0rJSF70HkVlE
nhuNqB3Gt8EYxBPJCiSIo+xbAKMEbNPBmwBnEXC5Dt7AQKUTcBkBvcX1XYCZ
ApoT4pBfhzyb5Fmig9cklPrLWyLI5qMHXpVQZtffZLBZB68AzCfgIh28DLCQ
gOxK88BLEsqlpQhj6ZBfhLyE5FmggxcAlhFwvg5OAIwRkK1QHnheQsxfghPB
eh0cB1hJwDodPAewmoBs7fXAsxIq/PXcngSH/AzkdSRPtQ6eBthAwCodPAVw
AQHZPSsJbCQguzf2W/AkwCYCxnTwBMBmjKVDfhzyFpKndDrgUgKyZwoPHAPY
SsBiHRwF2EZA9tDjgcckzPNvW4lgUQhY4d/K7Fg65EchX0Xy5OvgEYCrCcge
Fj3wMHrWQcDcENBk7CRgjg6OAOwiIHsM9sBDKHUtxtIhH4a8m+TJCgFNgT0E
zNTBgwA3EZC9PnjgAZS6mYDpOrgfYC8B2fvNQAA0pW4jYFQH9wHsw0lwyPei
wH6SJ0UH9wAcNGA0CJot/ndkZ0Bsihoy4rQp4pe63TDdlVBNwGwXRHvQQ69p
CE37AnxC5Tsh2j8dEXMatKJBp8iracCZzhP1O0VDiSKWbpcV7XA6eaI+p2i3
FZn3yUot3Z6ASHXyRNucor1WtNWZbp8V9UowEyl18vHTvzBBnhtkdwgYsxdD
MjhEwP0W3AJwFgEHCXjAgpsBZhCwn4AHLbgJYJaAKYkXJ5OX27U2Oc82Ag5b
cKME80CdR8BeAh6yYA/AAgJu0cENAIvQs81EPhKQm5eTEpJnAwEPW7AbYBkB
u3VwPcAYAdcR8IgF10kwL2CVBOwi4NEAaF4tqzEkYfK50lJL8nQQ8FgALJKW
egK+RcBRC64FOJ+Aq0JA802hET1bSeRjAbn5YtFM8qwg4PEAmCctSwjYFgKa
TypLCdhKwBMB0Hy6aSXgUgKetGAXwDYMSZjcfFFqJ3maCXgqAGbbAU8Gmwh4
OgCaL2SrCbgwBDRf4tagZ41EfiYgz7BzPTlPPQHPWvBtgOsIWBcCmg+R3QR8
g4DnAqD54NlDwGoCjgfAqF3i/CEJk5vnoq0kTwUBzwdA07KdgOUEnLBgJ8Ad
BCwl4IUAaPozgJ6Fyb2muNzkGiQZi4jFxWSLe0//lhh/ckq2KCAWl4IWabDw
bJhLfphLdIqLq6BcYnWZ9ym+xZ+3479mPAcxsjnE4opukWZ+p472AKls9qvZ
Rqdpm0lsr+q2M6d2OMEsnZi9o5ulkxr7MY6vaJYxzQ6nEdtrum3mNG1TiO11
3TYrYRyjQTOzyQy9oRtka2MXqEssblqLNcQiJ8TC78YN3SIX3egj4C0dzCe5
e4nFbd2igFhswuy5o4OFBOwhuR0WReh3NzJ+pMuLScYuktFhUUIsOonFXd2i
FEV3oOj7urycZFxJMjosYsSinVg80C0qiMXLh7GHOjgPvV1OMjrAKpKxhVg8
0i2qiUUzin6sgzUoehHJ6ABrScb5yPilDtYRsJ7kdljUE4taYvGVbtGAfteg
6G90+QKScR7J6LBoJBYxYvFEt1iIostQ9LdW3kHkzSTjXJLRYbGYWBQSi+90
iyXEIg/l/6CDLehtLsnoAJeRjC8/lPyog60EzCC5HRbLUXQ6AX/SwRUkdyqK
fqaDb3pPXwHQbHIvfq5j7Qn5RP6zLjcLa6Uc+iUgMgde2AOmh/+h/470ev/f
70dm/ANIOb8V\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 298.125}, {269.812, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"0baf8146-6a2d-4802-ae9f-d1e77b98753b"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(56\\). \\!\\(\\\"metabiaugmented hexagonal prism \
(J56)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"e0c8bc85-2746-47bf-85b7-a899d93df36a"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .97528
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.00894083 1.06455 0 1.06455 [
[ 0 0 0 0 ]
[ 1 .97528 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .97528 L
0 .97528 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.31791 .44767 m .33142 .58651 L .51177 .43597 L closepath p .808 .859 .886 r
F P
0 g
s
.54692 .67537 m .51177 .43597 L .33142 .58651 L closepath p .661 .536 .702 r
F P
0 g
s
.54692 .67537 m .33142 .58651 L .35445 .70466 L closepath p .713 .311 .284 r
F P
0 g
s
.35445 .70466 m .33142 .58651 L .31791 .44767 L closepath p 0 0 .172 r
F P
0 g
s
.74506 .39407 m .51177 .43597 L .54692 .67537 L p .641 .523 .703 r
F P
0 g
s
.51177 .43597 m .74506 .39407 L p .34877 .41346 L .339 .813 .899 r
F P
0 g
s
.34877 .41346 m .31791 .44767 L .51177 .43597 L p .339 .813 .899 r
F P
0 g
s
.54692 .67537 m .78276 .64124 L .74506 .39407 L p .641 .523 .703 r
F P
0 g
s
.54692 .67537 m .35445 .70466 L p .86646 .63066 L 0 0 0 r
F P
0 g
s
.86646 .63066 m .78276 .64124 L .54692 .67537 L p 0 0 0 r
F P
0 g
s
.82387 .35509 m .74506 .39407 L .78276 .64124 L p .061 .101 .59 r
F P
0 g
s
.74506 .39407 m .82387 .35509 L p .34877 .41346 L .339 .813 .899 r
F P
0 g
s
.78276 .64124 m .86646 .63066 L .82387 .35509 L p .061 .101 .59 r
F P
0 g
s
.35445 .70466 m .38994 .7013 L p .86646 .63066 L 0 0 0 r
F P
0 g
s
.31791 .44767 m .34877 .41346 L .38994 .7013 L p 0 0 .37 r
F P
0 g
s
.38994 .7013 m .35445 .70466 L .31791 .44767 L p 0 0 .37 r
F P
0 g
s
.82387 .35509 m .62443 .36187 L .34877 .41346 L p .339 .813 .899 r
F P
0 g
s
.62443 .36187 m .82387 .35509 L .86646 .63066 L p .881 .684 .632 r
F P
0 g
s
.38994 .7013 m .66923 .66101 L .86646 .63066 L p 0 0 0 r
F P
0 g
s
.86646 .63066 m .66923 .66101 L .62443 .36187 L p .881 .684 .632 r
F P
0 g
s
.62443 .36187 m .43032 .53313 L .34877 .41346 L closepath p .468 .095 .247 r
F P
0 g
s
.38994 .7013 m .34877 .41346 L .43032 .53313 L closepath p 0 0 .495 r
F P
0 g
s
.38994 .7013 m .43032 .53313 L .66923 .66101 L closepath p .611 .75 .944 r
F P
0 g
s
.66923 .66101 m .43032 .53313 L .62443 .36187 L closepath p .856 .668 .647 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{288.25, 281.062},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2ktPE1EYBuChd8pdwQKCFLTc7yBYRMWYgBt3rrxBuURINKgQN9WFiXHj
io0x0cSYEDdq4salC/8IS3+CW+w5M/N5aN+h3zlMiSYlYWbozPc+c07PTDsz
3Mhsr689zGxvrGSSC08yj9Y3VraS85tPci8FKyyrIpn7bUlaYnnfstyJ/OkU
E+eP8nJ5ubxcXv7PlvfErE6c0ybsF36KWbt4oXb/15ddK7hPp7vc6jF7o29i
1iDWDHhv9FnMwvJ0Gdrfak7Lbfa+7Ir5Be+yT1QWFlW5WrfOqU2D2lG79iPV
Vsra8IFap/6wgHdiFhFramRAUA3I/bVHhbkIGTPlHfaG9uYECAvphe1Q2CkQ
FtYLe03NbAVhEb2wV7RnZ0RYwO5+rYgXFNEF9geFTYOwETvsGYV1g7C4XthT
6ql+EFbNbKYT9pj2bASE1eiFPaCwCRBWqxd2n8KmQVidXtiqmMk1F0FYvUGY
s0qcRETgDIhtYL6vw3bsCu1jmgZto17EspzZpxjLuuXMs/IUg3qxidlwJz4j
ZyElXv7KPZ0C8af04peUfnWirYCcBg+0ZBJQCT1qEVBBOQ0plOTGgdasp90D
WghrY0BrYQ6CIVu7C7QwTVXN7k504LfqkXcAGSl457Ly3czmHTkDgG9j9q/D
3wZ8lMn30bHWcXQ0xkR7QJtLxAcBnwJ88vj4c4DvLA0fAjz6PO9ijvdBhXe+
VRSiYYAmAXpWD0UHGRrliO8AfIrZ5Zp8BPDtgO8+Oo/eccS30jHed3xoC2hz
ifgo4BOA7z8+Hl0RDDDH+4DCex5kMYA2AnSI2WYWWglQdCE1XGq0AaAjpmic
idYBdFQPRd9N0JCKAx5d/o4dH19FJ5FJ5jju10OrAFoJ2mzCew6uaoBGATrF
7GhjNALQaT/RGoCGAHrBFEWHEUIDAE37j4ZV1L3ZZc36CdXmtU4Al5ijs48D
iLuAWblWMxZdcaFjTgLOVdj7H7+ddexeUjXPgZdvOL9y+xk/IfXtcJAc61Lc
cV1AFRvXLhUhinuyMKZiRKGToa9UXE6Lf+qgwdhrilZR+8aZ7WNR1YCqJYr7
Ua5SBPTJg7/Yyd5F6wnlflPyAT1B6KAeunhop1YBqpEo7lduFhUHVIKoXuao
7DGlWohC126+UqeJ4l6lGlPtRKHrcWOqElBJori3O1SKMewR2kUo9w7TIShq
aQyg58BZk3tTz+GXDu1ehKaopYhC47PblOoh6jSzVSwqCqh+otB9YF+pQaK4
t9ONqWGiuM8gHCpDFDoAEDVK1ElTCrUqDKgJotCzH1+p80ShR2FosKdMqWmi
uI/wjKk0Ueg55oSYyi/SPRwgBIBZAtBT10ExFWPIvWGwfOAcyLvP7FKXwTkw
CtAUoeMK6jnEEXWFWoWAMwSk8wHUbUEAXCUAPdZPEDBnClwjAP1HQz0BCxwg
AIB5AgIAiImpeGOtG6bAdTEN2i1ww27aYSvMUYRiF8RUht0+etgchS0XC8PP
CmcpYEMJUPqp4IHmFFVsMitGqOKpXbHquZMFtb1U+7xYrdpb4rtfrlCOsJd6
hW1U+FqvsIl2dUevsI7Et0rh3x6VSzHa6IO90VqRdHeIyJpP3jXir1tyt78q
G8l/R/luvyA/Av6h/ycrL5eXy8v2slXxB8XVEe4=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.25}, {280.062, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"ea58b5d2-46fb-41fb-b166-29c9002fcd61"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(57\\). \\!\\(\\\"triaugmented hexagonal prism \
(J57)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"dc1c2fa8-2f9a-4d31-b8a8-8e8018a79230"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.06823
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0496673 1.14358 0 1.14358 [
[ 0 0 0 0 ]
[ 1 1.06823 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.06823 L
0 1.06823 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.47003 .32912 m .24878 .39364 L .44271 .54946 L closepath p .642 .612 .804 r
F P
0 g
s
.23835 .61791 m .44271 .54946 L .24878 .39364 L closepath p .8 .576 .598 r
F P
0 g
s
.56574 .75913 m .44271 .54946 L .23835 .61791 L p .791 .552 .575 r
F P
0 g
s
.44271 .54946 m .56574 .75913 L .74064 .77406 L p .435 .421 .745 r
F P
0 g
s
.47003 .32912 m .44271 .54946 L p .74064 .77406 L .435 .421 .745 r
F P
0 g
s
.2547 .3862 m .24878 .39364 L .47003 .32912 L closepath p .245 .754 .732 r
F P
0 g
s
.23835 .61791 m .24878 .39364 L .2547 .3862 L closepath p 0 0 .012 r
F P
0 g
s
.56574 .75913 m .59079 .9906 L .74064 .77406 L closepath p .451 .288 .568 r
F P
0 g
s
.3638 .84408 m .59079 .9906 L .56574 .75913 L closepath p .779 .526 .553 r
F P
0 g
s
.23835 .61791 m .3638 .84408 L .56574 .75913 L p .791 .552 .575 r
F P
0 g
s
.64156 .30323 m .47003 .32912 L p .74064 .77406 L .435 .421 .745 r
F P
0 g
s
.47003 .32912 m .64156 .30323 L .41739 .36419 L p 0 0 0 r
F P
0 g
s
.41739 .36419 m .2547 .3862 L .47003 .32912 L p 0 0 0 r
F P
0 g
s
.53177 .86865 m .3638 .84408 L .23835 .61791 L p .372 .382 .741 r
F P
0 g
s
.57164 .62207 m .53177 .86865 L p .23835 .61791 L .372 .382 .741 r
F P
0 g
s
.41739 .36419 m .57164 .62207 L p .23835 .61791 L .372 .382 .741 r
F P
0 g
s
.23835 .61791 m .2547 .3862 L .41739 .36419 L p .372 .382 .741 r
F P
0 g
s
.53177 .86865 m .74064 .77406 L .59079 .9906 L closepath p .876 .899 .844 r
F P
0 g
s
.53177 .86865 m .59079 .9906 L .3638 .84408 L closepath p .244 .537 .923 r
F P
0 g
s
.74064 .77406 m .79146 .53972 L .64156 .30323 L p .435 .421 .745 r
F P
0 g
s
.79146 .53972 m .74064 .77406 L .53177 .86865 L p .881 .865 .819 r
F P
0 g
s
.79146 .53972 m .71288 .33282 L .64156 .30323 L closepath p 0 .067 .63 r
F P
0 g
s
.41739 .36419 m .64156 .30323 L .71288 .33282 L closepath p .174 0 0 r
F P
0 g
s
.57164 .62207 m .71288 .33282 L .79146 .53972 L closepath p .884 .836 .794 r
F P
0 g
s
.53177 .86865 m .57164 .62207 L .79146 .53972 L p .881 .865 .819 r
F P
0 g
s
.41739 .36419 m .71288 .33282 L .57164 .62207 L closepath p .606 .481 .684 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{275.375, 294.125},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt21lzFFUYxvEmmQnZ9zDZ94SEEAxLIPu+7xJCEBAMEQwii4CUW1laWFqK
pYVluRUWpRde6UfwI3jJLZe59CvEOUveGib/Dt2ZmZRlkapMd/qc9/ecPumZ
7pl0Zlfurl2+vnL36upK9fjtlVtrV1fvVI/dvB3elLzHcfYUhL8bqx21vuE4
mw/6q1A92B9erL9Yf7H+v13/Uy2C6rm/Yjb8rhapakNgo9lxktXaBdP0WC0y
1IYM1ZSk1s6bph/VIlttyJOms6bpoVrkqQ0hAZdN05dqUaQ2VEjVkmm6rxbF
akOdNC2apo/UokRtaBZwwTS9L00tqilFrc2bpnvS1KCa0tVacOPRB38YYMN+
ObOm+23pXiXdsyO6rz/5W79gzpnuN6R7iXQvdu/+pnTPV931nNbo7gHpbkts
xRW1KJW51wEHdUXwmYrNILsbl6QsKGXtUeMKf4fnVz0+OxPThrioFrWqpR8K
k6FwyhSeU4ty1TIBhQH3Qn10hMwhePbSX7ZTmNDMlD9s0Rzs4ZZMwGhkKYBN
GkwfS7mqpTB2TM9vlmopB2wMsFTAJgw2rhZp5vDeio36w0bVImAOsa3YCGBp
z8FsUxjT4CFgh4FNB3bcsCNqoV8W2gAbAizDC3YYsMGdYkcAoydRFmBjCcWO
AtYLWA5gownFjgHWDVjuc7CoI47YLmDzgB3xx3YCm++PbQe2A9gCYIf9sSeA
LXRnh+UX1QHY8Z1inYAdA2wfYEMJxboAOwJYMWCDCcW6AWsDrCSeWClgA9FY
D2CHACvzgvUC1gpYOWD9XrCDgFV4wfoAa4kndgCwKsD6IrCopzyxzbGz/cDu
B7YG2N5dZweAbUwM2wBsHbA97uwgsPWxs0PA1gJbnxi2Adhud3YY2GpgG93Z
IXlujXrE9gPWFY2NAVYJWJMXbBywinhi5YAdAKwzGpsArCyeWClgBwHriMYm
ASvZARZ1xBEbArY1gay9fHHFpgArAqxFPepN4Yb1p082B7vdQL3aTWIHFB01
EyfcA6YhoMDtWahnIgUCttkDrwH1sgep/gJmICAPAmolIMNfwCwE5EJAtUxR
duwBORBQKXuQ6y9gDgKiPzeTSz+9KR8CtnkKUECW24WqnqIifwHzEJAJASHZ
g5C/gAUISIeAIgkoTUxAgUxRhXuAfqdgP37dyqYCmyfjrgS2a6dsjoy25jls
1HRQQAoEZMm46/wFnIKAIASkS0Bj7AEBCEiTKWqCgG73gCUISIaAFNmDA7EH
JEFAQAJa/QWc1o/ByAD97ZjzlJ2WNn/octSoFZYkIzwSD8xRn3htdXrcnTMR
jjq1q+J2d4JeIJZ3naBL/NOxE0seCfsmjj4TO+WPoE+zF3edGAPiJBB0aPXF
jRgHYsHjjsSPmABiPjEEzUW/ISaBmPNHTAExGzsx43EuLDENxLTHUQzEjZgB
YmrXiVkgJhNDHAXCfkg7B8S4x1HEj5gHYswfsQDEaGIImk770f7LQIzETgx7
3BFLnARiKDEE7Yj9A8wiEIO7TpwCYiB2ot/jdFpiCYg+j6Owf8o7DUTvrhPL
QPTsOnEGiC6PxKg/Ql+I209AdeErUNgJhW1SGG5YX3+6OYjNv5d7dfR7Fb0p
STFRe2Oxs4B1ANYigwoAZvfwHGAnAGsWLMUfdhywJsH2AmZv9zgPWDtgDTJn
qYBN+sPqZGTpgNk7gV4F7BhgNYJlxo5VCZYFmL3F6gJgRwGrECwbsBl/WKn8
AnLdsYuAHQasREaWD9isPywkWAFg9oa41wBrA6xIsCJ3bAWwlwDLlznbB9i8
PyxXRlYMmL2j8RJghwDLFqzUH9YKWJZgZYCZqx9nVS30TWItQKTLTJUDYS5d
nMsR4+l88I9+Idb3bNaDmCqDqgTR3huqb5O0r3dhMcV034qlCFbtjq0Jlq6w
vWotBFhAsBrAzKWJueUzYl/D3+Ff2iabC2ySsLXA2vtkr8kYi2SH0wBLNtPq
6lyH4RXL8JKiRPWLagTMXL2Yu2H1oKoUofvsh+72NuBbkF2pH21i+Mysihvc
ibefTYwqrINCc3Hh3JHCCiikiTcXBc47MOgyIOj4sndG35Nsn4XvQnYJEPRE
MSd75z3JpsIKKLR3en8A2SEg6GlviQ8lmwrpJcecbc2d30nm5XdrYQkU2jvX
P4ZBF/gjPpHsQigMQeFFU3gfsvOAoDOKOck5n0p2PhTSec0WfgbZOUAUAmH/
H+Bzyc6FQjrbm7OM84UUUiJdc6yawgcw6Ex/xFeSnQWFdPH0uin8GrLTgaCL
OXM2c76R7AwopEtKW/gQslOByADiiiG+lew0KEyDwjdM4XdSuNdf4fcw6CAQ
9I5hzRA/SDYV0vuWq6bwJ8hOBiLoTvws2VRIb8DMedx5pBfByGy5hKGya6bs
F8kzgZtx+MbxLVPzWC10yzadfo2YC/tO1rlpmn6LaNqsumGa9A//of9G2s11
Z8+/STmFMQ==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 274.375}, {293.125, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"ba038c21-d62b-4679-93c0-798213e62771"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(58\\). \\!\\(\\\"augmented dodecahedron \
(J58)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"85049305-92f6-4614-98d6-2ce3bfe05fb8"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.08042
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0544785 1.16292 0 1.16292 [
[ 0 0 0 0 ]
[ 1 1.08042 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.08042 L
0 1.08042 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.51177 .55456 m .4106 .73698 L .61622 .7311 L closepath p .664 .516 .673 r
F P
0 g
s
.4106 .73698 m .51177 .55456 L .31387 .5634 L closepath p .783 .669 .738 r
F P
0 g
s
.61438 .38537 m .51177 .55456 L .61622 .7311 L p .572 .481 .714 r
F P
0 g
s
.31387 .5634 m .51177 .55456 L .61438 .38537 L p .772 .747 .831 r
F P
0 g
s
.4106 .73698 m .31387 .5634 L .28686 .75735 L closepath p .913 .69 .587 r
F P
0 g
s
.4106 .73698 m .48411 .86492 L .61622 .7311 L closepath p .629 .341 .462 r
F P
0 g
s
.4106 .73698 m .28686 .75735 L .48411 .86492 L closepath p .792 .384 .277 r
F P
0 g
s
.79673 .67984 m .61622 .7311 L .48411 .86492 L p .373 .02 .231 r
F P
0 g
s
.79718 .45511 m .61438 .38537 L p .61622 .7311 L .572 .481 .714 r
F P
0 g
s
.61622 .7311 m .79673 .67984 L .79718 .45511 L p .572 .481 .714 r
F P
0 g
s
.28686 .75735 m .31387 .5634 L .28 .38967 L p .997 .816 .462 r
F P
0 g
s
.47777 .27247 m .28 .38967 L .31387 .5634 L p .772 .747 .831 r
F P
0 g
s
.61438 .38537 m .47777 .27247 L p .31387 .5634 L .772 .747 .831 r
F P
0 g
s
.47777 .27247 m .61438 .38537 L .79718 .45511 L p .198 .549 .931 r
F P
0 g
s
.22876 .72092 m .28686 .75735 L p .28 .38967 L .997 .816 .462 r
F P
0 g
s
.48411 .86492 m .28686 .75735 L .22876 .72092 L p 0 .267 .664 r
F P
0 g
s
.48411 .86492 m .57969 .91237 L p .79673 .67984 L .373 .02 .231 r
F P
0 g
s
.57969 .91237 m .48411 .86492 L p .22876 .72092 L 0 .267 .664 r
F P
0 g
s
.57969 .91237 m .79159 .78694 L .79673 .67984 L p .373 .02 .231 r
F P
0 g
s
.79718 .45511 m .79673 .67984 L .79159 .78694 L p .758 .621 .056 r
F P
0 g
s
.57525 .26234 m .47777 .27247 L p .79718 .45511 L .198 .549 .931 r
F P
0 g
s
.79718 .45511 m .79232 .3871 L .57525 .26234 L p .198 .549 .931 r
F P
0 g
s
.79232 .3871 m .79718 .45511 L p .79159 .78694 L .758 .621 .056 r
F P
0 g
s
.28 .38967 m .22351 .47078 L .22876 .72092 L p .997 .816 .462 r
F P
0 g
s
.22351 .47078 m .28 .38967 L .47777 .27247 L p .068 0 0 r
F P
0 g
s
.47777 .27247 m .57525 .26234 L p .22351 .47078 L .068 0 0 r
F P
0 g
s
.22876 .72092 m .41988 .82176 L .57969 .91237 L p 0 .267 .664 r
F P
0 g
s
.57969 .91237 m .41988 .82176 L p .78832 .6036 L .784 .797 .863 r
F P
0 g
s
.78832 .6036 m .79159 .78694 L .57969 .91237 L p .784 .797 .863 r
F P
0 g
s
.79159 .78694 m .78832 .6036 L .79232 .3871 L p .758 .621 .056 r
F P
0 g
s
.22876 .72092 m .22351 .47078 L .41417 .39228 L p .525 .448 .711 r
F P
0 g
s
.41988 .82176 m .22876 .72092 L p .41417 .39228 L .525 .448 .711 r
F P
0 g
s
.79232 .3871 m .78832 .6036 L .54727 .61734 L p .786 .535 .558 r
F P
0 g
s
.57525 .26234 m .79232 .3871 L p .54727 .61734 L .786 .535 .558 r
F P
0 g
s
.57525 .26234 m .41417 .39228 L .22351 .47078 L p .068 0 0 r
F P
0 g
s
.54727 .61734 m .41417 .39228 L .57525 .26234 L p .786 .535 .558 r
F P
0 g
s
.41417 .39228 m .54727 .61734 L .41988 .82176 L p .525 .448 .711 r
F P
0 g
s
.41988 .82176 m .54727 .61734 L .78832 .6036 L p .784 .797 .863 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{273.812, 295.812},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmmtPG0cUhpcYKAXRGhoSIJSYpCJFEUrUKBAQN+M7vmAMjrmFxIEkkJRC
gV7SW5S2qqomaquqqqIq6i/Ix/6FfuQv5K9Qz5zxYXd5x92FZpUPWPLOMPO+
zzkzuzsWu5Mu7qzeWS/urC0XA7Gt4ubq2vJ2ILqxVWryVRlGVVPpeyFgiPqe
YZQP8tMsDuqP4/px/bh+pPozUdSK+2ubGn4RxZui4cSev3SsFtW93SdPyt8T
ouFjEv/A4nop9pnFJas4Upv6GB+R8bEoakRPMzDWchwlfyQK2dAi5LLWwKIP
SfSNLIjkp69xEtAb2XifjF8x/RSQ+8Eo7pHxCzaeBsZmjqPkD0GCKGILG++Q
8TNrHFlrZ9EyiT5hUStgdrC8SPIdkAwaxVkw/CVCbHHENmDs4ohKvmmVy1o3
ixZJtAHSQuN5n43zZFxnejuQXwSjKJDxARvPAGMvx1Hy+yBBFPEyG/NkXLXG
kbWrLJom0V0WdQBmPxhFlowrbHwXGAc4jpIvg1GgiENszJCxaI0ja0EWpUh0
k0WdgBkCo0iQcQmkhcYT4YjKuMgRzwJ5nOUxks+zPADkSZZHSD4H0urk4WdZ
HiJ5oSI9B4Y/RsY8G7uAcYbjKPkMSAtFLLBxhIw5axx1/5VFQyTKsugcYC6B
UQyQcRKkhcZziyMqY5ojngfyZRCxj4wpEBElveIOEeDJuac3JnXXhmwqHb/b
/rucROn21nImdJe+TKBGYJyPJgFgZzipOgCrMLsItr+CN7iDxQHsNGf2FoDd
1sNiAHaKM2s6OuwdzuwkgBX1sCiANXNmrQC2fzf0EyICEH7Op90JIgwQb3MW
nQBx0wmikREBJ4gQQDTwQM4DxJIdMQ4Q9ZzFBYC4YUcEAaKOs+g5LKKWs+gF
iEU7YgwgqjmLS04QowDh4yyuAMSCM0Tp0Afc83Y3/YhUs9ug74AT77AofPQr
c1A+Z5cPmRIV66iwDB/WOAKMs06Mo8BYeKXGMWC8/kqNQWDMOzGOA+O0aWH8
53mdKF8xIgQQOXeIMEBMeY6IAETWc0QUICbdIWIAkfEcEQeItB4x7DALlwiU
RcodIgEQSc8REwAx4TkiCRAJd4gUQMQ9R6QBIuY5IgMQUXeISYCIeI7IAkTY
c8QUQITcIXIAMX50xKA4yqe1pQ7FkNY+PWcacOSztybRVLe3u/vSeVII1iqO
ftHU5g42A2C1nFmPO1heHKVq8BDGcha7L6V59AgDUYixI0ysQgQ9R+QAYtxz
xBRAhNwhsgAR9hwxCRARd4gMQET1iJH/+oE5HCIFEDHPEUmAiLtDTABEwnNE
AiAm3CHiAJH0HBEDiJTniChApN0hIgCR+Z8Q8v/va3pjGBgnnRhDwJiFRtmA
4hyQj7E8CORTdrl8oCY1o07k/CAx+EIKxZQOAWPObozYjMIyAIzTdmOUE7zm
RB5n+VUgn7HL6cE6PUgzjekD4M3bvUnsvezEm8beXuC9bvdm+AzbTsRFJ+6s
PTIBeoC3YPfmcNbdwDtruvfUp3zvzWDKe+4oed0sdAHOnJ5TMN2Xaj7As3nF
mddz5nScDnecBR2nDXAW9Jwb+Dy36rIxvwVc0uXQ4nAsinNLx2nWnSPz28/b
Ore/4rWqXrCu6NyNOrdtDIpzVy0owRfSXV/xHqPXE2qziW3uFaCu4rKkXl+v
yaLGDpDXd60OYMtfoR7o5qG64rJNb89oS8f+6A3Tu9Ty6msLq4wbVuM+WO0W
2KwwRfs/urTE0i4XzXSkQA7KtmPNIc5YtZHiU2t/mPvVDo3Prf1BEEkpH1ZI
cISxaoPJl1bsIPerXSpfW/v7QVilfGRVXmHSLPU/5n7beb4EmMrzrZXZy0xa
mIzvRYHW3R5W0tJDO9OQshtEV54fdZ5zTKdFxfgJKQW3k5W0gBhPRVFNS/HB
wEr0M4ta2a+2fv1qv1QppRYAU47fZOEzO8RWNIVdJdHvaqLFK/dyl9oN9wd3
NYAgSvSMRW+wf526/izHN02Lj0W0v8t4bp5AcWGoGOrWNP4yDaIcWnXJP16j
HZTH9denblT9CwKi7eg=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.812}, {294.812, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"35db5a0f-7545-4feb-9f36-f1ea19592025"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(59\\). \\!\\(\\\"parabiaugmented dodecahedron \
(J59)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"88163bfd-0ff3-4df2-970b-9f580e13406e"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.01648
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0271458 1.10449 -3.33067e-16 1.10449 [
[ 0 0 0 0 ]
[ 1 1.01648 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.01648 L
0 1.01648 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.23618 .47139 m .35239 .64623 L .43445 .459 L closepath p .782 .632 .694 r
F P
0 g
s
.23618 .47139 m .43445 .459 L .36691 .31384 L closepath p .772 .758 .841 r
F P
0 g
s
.36691 .31384 m .43445 .459 L .64013 .4744 L p .657 .704 .881 r
F P
0 g
s
.69164 .67224 m .64013 .4744 L .43445 .459 L p .705 .54 .662 r
F P
0 g
s
.51189 .78201 m .69164 .67224 L p .43445 .459 L .705 .54 .662 r
F P
0 g
s
.43445 .459 m .35239 .64623 L .51189 .78201 L p .705 .54 .662 r
F P
0 g
s
.54974 .23033 m .36691 .31384 L p .64013 .4744 L .657 .704 .881 r
F P
0 g
s
.64013 .4744 m .72291 .34001 L .54974 .23033 L p .657 .704 .881 r
F P
0 g
s
.72291 .34001 m .64013 .4744 L .69164 .67224 L p .365 .325 .681 r
F P
0 g
s
.35239 .64623 m .23618 .47139 L .22075 .63736 L closepath p .906 .63 .509 r
F P
0 g
s
.51189 .78201 m .35239 .64623 L .22075 .63736 L p .823 .404 .245 r
F P
0 g
s
.69164 .67224 m .8164 .68304 L p .72291 .34001 L .365 .325 .681 r
F P
0 g
s
.8164 .68304 m .69164 .67224 L .51189 .78201 L p .351 0 .184 r
F P
0 g
s
.50018 .87777 m .51189 .78201 L p .22075 .63736 L .823 .404 .245 r
F P
0 g
s
.70085 .81712 m .8164 .68304 L p .51189 .78201 L .351 0 .184 r
F P
0 g
s
.51189 .78201 m .50018 .87777 L .70085 .81712 L p .351 0 .184 r
F P
0 g
s
.23618 .47139 m .22607 .41797 L .22075 .63736 L closepath p .831 .703 .168 r
F P
0 g
s
.23618 .47139 m .36691 .31384 L .22607 .41797 L closepath p .827 1 .805 r
F P
0 g
s
.36691 .31384 m .54974 .23033 L .5409 .2775 L p .022 0 0 r
F P
0 g
s
.22607 .41797 m .36691 .31384 L p .5409 .2775 L .022 0 0 r
F P
0 g
s
.8164 .68304 m .84112 .46385 L .72291 .34001 L p .365 .325 .681 r
F P
0 g
s
.54974 .23033 m .72291 .34001 L .84112 .46385 L p .731 .204 0 r
F P
0 g
s
.22075 .63736 m .30687 .78637 L .50018 .87777 L p .823 .404 .245 r
F P
0 g
s
.30687 .78637 m .22075 .63736 L .22607 .41797 L p .174 .181 .626 r
F P
0 g
s
.86748 .64805 m .84112 .46385 L .8164 .68304 L closepath p 0 0 .374 r
F P
0 g
s
.86748 .64805 m .8164 .68304 L .70085 .81712 L closepath p 0 0 0 r
F P
0 g
s
.5409 .2775 m .54974 .23033 L p .84112 .46385 L .731 .204 0 r
F P
0 g
s
.50018 .87777 m .30687 .78637 L .37782 .65191 L p .623 .737 .928 r
F P
0 g
s
.70085 .81712 m .50018 .87777 L p .37782 .65191 L .623 .737 .928 r
F P
0 g
s
.5409 .2775 m .32126 .40537 L .22607 .41797 L p .022 0 0 r
F P
0 g
s
.22607 .41797 m .32126 .40537 L p .30687 .78637 L .174 .181 .626 r
F P
0 g
s
.86748 .64805 m .738 .43638 L .84112 .46385 L closepath p .947 .605 .336 r
F P
0 g
s
.84112 .46385 m .738 .43638 L .5409 .2775 L p .731 .204 0 r
F P
0 g
s
.32126 .40537 m .37782 .65191 L .30687 .78637 L p .174 .181 .626 r
F P
0 g
s
.86748 .64805 m .70085 .81712 L .64166 .67215 L closepath p .784 .822 .882 r
F P
0 g
s
.37782 .65191 m .64166 .67215 L .70085 .81712 L p .623 .737 .928 r
F P
0 g
s
.738 .43638 m .86748 .64805 L .64166 .67215 L closepath p .805 .648 .688 r
F P
0 g
s
.5409 .2775 m .738 .43638 L .64166 .67215 L p .704 .53 .65 r
F P
0 g
s
.32126 .40537 m .5409 .2775 L p .64166 .67215 L .704 .53 .65 r
F P
0 g
s
.64166 .67215 m .37782 .65191 L .32126 .40537 L p .704 .53 .65 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{281.375, 286.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm1tTU1cUxyMJBEm4EyDcjOGOIIKAohVQEJGbiCIookRAwQtSiq2to611
nNra6XQ6nel0xkc/gq9+BB/9Cj72sa80a6/NMoT/iftwFGUqMzk7OWut32/v
c03IzlBkZX7uVmRlYSYSOrEcWZpfmPkq1Ht7ObrKvcPl2hGMPspCLnq+6nKt
LdRfES30i8/PPz//nz7/mxo3nRf3ecVf1HjUieJefdmkThkVucfxP6nx0tok
CifRs+849Ac1qbQiWUJ3OfQ7NWm0wkshl3tVTsRo+A4n/UaNnyKpUq9DT6nJ
pBVpoH6Zk36mJosifqnXoZ+oyaEVGRJa4tBjavJoRRZA3+KkH6kpoEi21OvQ
D9QEaUUuqL/OSQ94k0cjAanXIbVdy2hFvoTmOfQtNaWrale8ePRco2mnkCgA
dHNc+I0UplgVKo9OvyNdSAXp+cBzhQvV1t1FER8VKmaB0HXSkiRlWtFV+jSn
L1IT4k29Mb0AdGaKC29KYZ5VofLo9AVqdnOP1/oeBPQLnH6NmjBFihLSdfqc
pJeC9EJJn+D0WelMCKSjbo1x4YwUhmUURULXSRFJqjKkj3LhtGzSWqtC5dHp
l2VP14P0t90a4fQpoe+VvpeAzgxx+kWhN1vR4woHuXBSDu9Ww+HrwvNiPGBY
OMCFE2I8tH6vxKX3c/o4Nep07bA6WOIKT3LhmHi6DAv7uPCsGLsNC09w4agU
9iY8a3o5/TQ1JRTpNzyZj3PhiBQOGhb2cOGwFJ4yLOzmQnWUFfPRvDYytCGO
cfqgpI8ZXjOPcmG/FE4YFnZxodrn6h4yaVjYyYV9Uji1/iodl97B6b2SHjG8
6xzhQrXr1J1w1rDwCy7skcKrhoWHufCYFC7IyBKkqz0QoIhntbZ2zRMtVNYF
4Ea39EMMU3slnSLpAHbdENbOMLWnknnHbB52MAZWAjg3ZCPlgeoD76i+BXqR
AzhtMRwdisIUMAiwi4bYVnvY24bYFmtskRVWrUKw/ZuA6XX/PhulB79C70Sb
7bFjN+ur5y+ojR71UYOHD9mNgqbNCDwi0BKvONA79X3WjmLLQ26Dw0cOlZkK
HI32HDfjNlT0EX2XQsv1O8YnA0sG0r0fRpop0iQgbbAnvQGkHiDNEanNUSFB
MhDk0VJdhxKMAF2CrhsKAm9PJdlYe+ypFoDKazUWrOoAqtKPq5oHqp2Gqjrn
qjSgyrWnKgOqq0Dl2zqV3+ocev+qdKDKdq6aA6oM56pdQDULVJlAleVcNQNU
WYajqnWuyjYc1XtQ5VjdOpyprgBVrnNVCKgiQJUHVBnOVdNAFdg6Vb6hqsa5
qgCo0u2pdgPVJaAq3DpVEKj8zlVTQFVs9T5wW6tKgCrNnioMVJNAVWo4qmrn
qjLDUdlUXQCqEFDt3Faq80AVBqpUe6pyoJoAqnKg8m6dCo2qyp5qHKgqDUf1
aagqgGoMqKqBKsVadQSoKg1VNUCVvK1UZ4GqDqg8W6dCo6q0VlUB1ShQ1RuO
6j2oGoDKva1Up4GqEaiS7KmqgWoEqPbpf5TEqNQj+nrtEmuKPwXwTYYjqXCu
ak4wkgTnz0fADwN8i1p61uETk2sAeQiQW+N2wTs6jLCDANv2YbAHaJm0iaEP
ANhB0Ed9zqDbHtpXCNsufUwAQ33st9o9KTGwTqueqekzPQCxh5Y+WuVZffX6
DT61ut5xPXr28h96RI/w6FJNp2kFqpCoMoCq0lpVCVQBUVVafUJV84IKgUof
HUeBqgKoKkSVD1R+GdVuoKq2VpUDVYuovEq1/iuKNdEeINIfqo4BURiIumnp
4z21Eab/HdENYCEA61dLvVlev1HANoCts4cdANgWgNX/q+4B2DKAHQTY/QBb
7xzbDLD6q4njAFsCsMMAuw9g9VcqvQBbbIhtBNhGa2wRwI4AbAPA6u/rTgBs
0BBbD7BN1thCgB0F2DqA1V+R9gFsgSG2FmD1t7onATYAsGcAtgZgW+xhzwJs
FcDq78n7ATYXYMcAthJg2+xhzwFsOcDqSQcDAJsNsOMAGwZYPRNiEGCzDLHo
LtFujc0E2PMAuwtg9YySIYDNMMSWAexha2w6wE4CbAnA6kk7wwDrN8QWA6ye
RHQKYNMAdgpggwDb4RyL3pp0MnYEYFMB9hLAFgBslz3sZYANAKyeenYaYFMA
dhpg8wBWT4UbBdhkgI0AbA7AdltjPQB7BWCzAVZPEDwDsG5DbBbAHrfGJgHs
LMCit9l6AqWaqKk/kWqsekRfu64CVDpA6ambarIo6hLi+ACnL4YTM1LqyjxA
pAGEnrd6jrtiUbgTFOqZshNSeA0UekGhnpF7QQrnQGEKKNRzgNWsYxWZAYXo
s5iernxZjOi4d4NCvqLybG09I54/rMUUqgdtcT6Xef63SuZLjGddskumZs9J
3sW43hCMD16e466S1C1G5fAByLPl1YozEhrn0E2pGpaQngW/KKE+CqnO6en3
SxLqlqoIh5Yl1CGhWQ6tSKhdQtc49LWE9otL/8TirnS+QaoWOXRPqmok9CWH
7ksoLMAVDn0voVKp0r90eSihQgnpn848klCuhB5w6LH00C+uhxx6IlVeqXrM
oV9U44k9mSXlCaf8KtVPeYU61D6hHyB9fu78uWvHf8tVbb0=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 280.375}, {285.938, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"346cee64-3424-45ea-b4b7-fa937fa80ee8"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(60\\). \\!\\(\\\"metabiaugmented dodecahedron \
(J60)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"0a736c39-22dc-4454-9498-2ed2fccbcdbd"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.1313
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0758719 1.21417 3.33067e-16 1.21417 [
[ 0 0 0 0 ]
[ 1 1.1313 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.1313 L
0 1.1313 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.37831 .61943 m .569 .68327 L .54038 .48143 L closepath p .755 .651 .746 r
F P
0 g
s
.569 .68327 m .37831 .61943 L .4548 .81199 L closepath p .792 .56 .586 r
F P
0 g
s
.569 .68327 m .4548 .81199 L .67264 .7905 L closepath p .62 .319 .438 r
F P
0 g
s
.569 .68327 m .7225 .58187 L .54038 .48143 L closepath p .602 .543 .76 r
F P
0 g
s
.569 .68327 m .67264 .7905 L .7225 .58187 L closepath p .482 .319 .583 r
F P
0 g
s
.50317 .30892 m .54038 .48143 L .7225 .58187 L p .503 .562 .849 r
F P
0 g
s
.2245 .54441 m .37831 .61943 L .54038 .48143 L p .809 .766 .813 r
F P
0 g
s
.2998 .34179 m .2245 .54441 L p .54038 .48143 L .809 .766 .813 r
F P
0 g
s
.54038 .48143 m .50317 .30892 L .2998 .34179 L p .809 .766 .813 r
F P
0 g
s
.4548 .81199 m .37831 .61943 L .2245 .54441 L p .894 .598 .477 r
F P
0 g
s
.7225 .58187 m .67264 .7905 L p .83277 .63525 L .083 0 .387 r
F P
0 g
s
.83277 .63525 m .81852 .47669 L .7225 .58187 L p .083 0 .387 r
F P
0 g
s
.7225 .58187 m .81852 .47669 L p .50317 .30892 L .503 .562 .849 r
F P
0 g
s
.67264 .7905 m .4548 .81199 L .35124 .87805 L p .403 0 0 r
F P
0 g
s
.1966 .70255 m .35124 .87805 L .4548 .81199 L p .894 .598 .477 r
F P
0 g
s
.2245 .54441 m .1966 .70255 L p .4548 .81199 L .894 .598 .477 r
F P
0 g
s
.67264 .7905 m .73387 .84143 L .83277 .63525 L p .083 0 .387 r
F P
0 g
s
.73387 .84143 m .67264 .7905 L p .35124 .87805 L .403 0 0 r
F P
0 g
s
.81852 .47669 m .67649 .295 L .50317 .30892 L p .503 .562 .849 r
F P
0 g
s
.2998 .34179 m .50317 .30892 L .67649 .295 L p .043 0 0 r
F P
0 g
s
.26011 .5944 m .1966 .70255 L .2245 .54441 L p 0 0 .075 r
F P
0 g
s
.3286 .35229 m .26011 .5944 L p .2245 .54441 L 0 0 .075 r
F P
0 g
s
.2245 .54441 m .2998 .34179 L .3286 .35229 L p 0 0 .075 r
F P
0 g
s
.81852 .47669 m .83277 .63525 L p .58279 .3209 L .923 .568 .339 r
F P
0 g
s
.58279 .3209 m .67649 .295 L .81852 .47669 L p .923 .568 .339 r
F P
0 g
s
.3286 .35229 m .2998 .34179 L p .67649 .295 L .043 0 0 r
F P
0 g
s
.28078 .85308 m .35124 .87805 L .1966 .70255 L closepath p .813 .34 0 r
F P
0 g
s
.35124 .87805 m .52471 .90152 L .73387 .84143 L p .403 0 0 r
F P
0 g
s
.28078 .85308 m .52471 .90152 L .35124 .87805 L closepath p 0 .549 .798 r
F P
0 g
s
.67649 .295 m .58279 .3209 L .3286 .35229 L p .043 0 0 r
F P
0 g
s
.73387 .84143 m .52471 .90152 L .47878 .72276 L p .83 .816 .836 r
F P
0 g
s
.83277 .63525 m .73387 .84143 L p .47878 .72276 L .83 .816 .836 r
F P
0 g
s
.28078 .85308 m .1966 .70255 L .26011 .5944 L closepath p .071 .103 .588 r
F P
0 g
s
.83277 .63525 m .68334 .54736 L .58279 .3209 L p .923 .568 .339 r
F P
0 g
s
.47878 .72276 m .68334 .54736 L .83277 .63525 L p .83 .816 .836 r
F P
0 g
s
.52471 .90152 m .28078 .85308 L .47878 .72276 L closepath p .698 .74 .883 r
F P
0 g
s
.3286 .35229 m .58279 .3209 L .68334 .54736 L p .664 .486 .635 r
F P
0 g
s
.26011 .5944 m .3286 .35229 L p .68334 .54736 L .664 .486 .635 r
F P
0 g
s
.28078 .85308 m .26011 .5944 L .47878 .72276 L closepath p .602 .518 .732 r
F P
0 g
s
.68334 .54736 m .47878 .72276 L .26011 .5944 L p .664 .486 .635 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{267.625, 302.75},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm1lPG1cUxx3GKzbEIYGYAsGsYTGBsO87mLAmZKOhSUpI01ApapJGiqqo
laq8VGofI/Wlb+lj1ae+5iP0ka/Qx34F13fx8Rj/xz4XM1VUgeSZYXzP73fu
mTuexeONvVdPv3i29+pgfy+efLn3/OnB/jfx5a9fpldZZzyeM+H060rcI5ZT
Hk9mIv8iYqL/OV0+XT5d/uiW/xCzgNhn76gV78UsLHdibyqodufMqyz1z7tt
j5WiHTwdcEuF/aKY6XeCIsorlvyg+U3V/GeyRKl5GDTfVs3fillIvBMTzS0V
mN/8hmr+nZj5xTsNRD/v3Pw1NY8TPQaaX1fNX+Q2l0v1oPmWav4VVbhRNJdL
3tTvb37TzdOBMhghNhXiMRkvCURQLEWYiA2FeJBbEpnFBTPEDiHqKIt6JmJd
IbYJUUuIVoBoAIg1hZBVtWgoyI4kAOISQKzaEPotMY48cminJ5WU1CAzKU3c
zCNG5X9RK5XZj2Sik8xErzljRfWickQvMmErRWB6XRomgUsA2wiwSYXdANgA
wC4zscvOWJRt0h3sChO7pLDrzCIgbBxgF52xKNtrANsEsAsKu8bMdpWZ7Qlg
UbbzZtg1JnZOYVeZ2HWAbQbYWTPsBhM74yr2GhO7xcROl45tAdip0rGtADup
sCsAGwTY68xsC2BRtjeY2U4obJKZ7TYTO146tg1gx8ywN5nYUYVdZmJvuYO9
zcSOlI5tB9hhhV1iYu8A7GWAHTLD3mVmq7GLABtiYlG2g2bYHSZ2wBmLivAp
wHYAbL/CLjCzvcfEXv3PsagIuwDbCbB9CjvPzPYzJra3dGwXwF5R2DmALQfY
+8xsC2BRtg/cwT5kjgSNnWUW4QSwKNs95s57AliUbY/CzjCL4BL2EbMIBbCo
CPtm2Glmto+ZRwd3sVNM7BPmAf3jwH7JPLXT2EmADbuDRdk+dQd7wMQmFHaC
WYTjYCudOHKVYVLOfZU3fVKHh4eZl7xnhS7DDPH2LaTRaZmY5tYB3QDRqvFj
jLGMyk99MRQU2zcyghAJ0C08Q8ETIIiQoK50gfyIk7BzYBug+9KGgn3Qgyrq
gaGg2CElI6gmwUUg6FaCMWYPHgFBjATVpQv2gKAObI0qM1Wxk5CMqoH6chyB
DPycRlEzwdA3Jsxsf337QcxzTkcz2baCwlSYqYKUd5lQyaVdoGqnvhQQjBYs
jJcEO0DQSQL0bVQBgf26KBp7J4vlF6ojm/sWkCZIGjKTqttJXpJqcYC6eBPY
esHmQt/UmXtD5N2i0TdAfTN0qPvcvhxHprBhUNg10NUhkvuAvKuY3LLL0yNT
TLO7g0gh2+NVoB8lveWsH2HqLaAPkz4J9BP6QG7b0GI54ez1Aa8XeCtA/RdA
BlNiap2QtJI6O0eja942lhl19QKVD6iipJoGvXJJWgWKOs7UdzvrLaD3A/15
6vMYkC44S4eZ0gCQVpN0mClNlC69CArdD/SLZvoyoA8CfYz63EfjeBmoekpX
fUKqHtC/olKfXapf4sM3X1QPStrJVF45nrKB+tYBREln0VABUQSIGknUxhT1
2kXeI6L051i+Iw7q1wRsKydia6IeNdIIXAXkPjvZPgI9nrMA20LYepD6CQja
QJViTNVVm0qfDOcL2qkHFwF2zRk7SNhzANtB2AtMbD8H2wXKEQWC9SKCIx8k
qDDd1INKGjGbADtghu0hbBjkXUAwBARoxPSCEgWYqkEzVR/1xQ8EW86CYSBA
e20/CSymYMhMMHikWGI33HbGjjCxA5Q3gunvMkcBrMKpCHrdnx/+dszREJvd
eGUCy6it/mp3DAjQQaT3SN5Kkq9CA9FQ1WMbiPmCDSDQ336PAwE68mY/DILu
CLpAsQxVE0BVXvCjOQIE6KN5zExwGfTFUDUJVCGnw6Psy1kgQAdF/ezHFBCg
08lW0BeXVM3Ul/NAgE6D9OMx00CALgKaQF9cUmVPIGuAAJ1A6ieIZpiCehLE
3BHUgWLVAtUSUOlnt2aBCl2G1tpOIl0RxEBfkApd/enH2+aACl3R19jOs10R
VIO+xIEK3TJQ2z7nqYlCd1+ytwdazAQLQIDuZZ2zXWblC+aAYNZMEAXFMlQt
AhW6LZi9VdUJBDNAMGcmqAB9MVSpx7zw/dUKyj8BoNMAOl8cGgE59wD8lDNe
PUiXd9+5nNLtA7xJwFuw83C6QZCuIT6J0/VTugOANwF4+nFw+xOlmTSzX2cM
A9i4GcwCfUbYETGVq/SPAOSTuWVZhmwt/hsD0YMUvWqLlismQPM+MZVF1L9D
kVFyxThoniC6/nWPfIhe/vpiCDTvILr+IVP29yWi5U9/UVcspwHWRsYdhdgm
hCTI8dUNApvIvasCb1MZ/RR4GQQ2kPGhCrxLxiAFNoPAWjI+UoH3KLCcAhtA
YA0Zn6jA+2Lmyw1EZx9VZDxQgVIsf2MToMALILCSjM9UYPZ3VD4KRGef5WR8
rgJfkLGMAstBYICMr1Tgt2IWUcb85hZ5XqvmP4hZSI8VfXGa3f/eqEY/Ut2+
VytSSnK6fLr8v1v2nPkXzbbosA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 266.625}, {301.75, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"97892361-9553-4c62-b0c2-6fb263c05760"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(61\\). \\!\\(\\\"triaugmented dodecahedron \
(J61)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"0a374141-f344-49c0-9268-f9cf44077572"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.13093
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0758012 1.20561 0 1.20561 [
[ 0 0 0 0 ]
[ 1 1.13093 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.13093 L
0 1.13093 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.52639 .32954 m .36042 .43304 L .56199 .51327 L closepath p .656 .651 .833 r
F P
0 g
s
.36042 .43304 m .39325 .64863 L .56199 .51327 L closepath p .728 .594 .707 r
F P
0 g
s
.74489 .6162 m .56199 .51327 L .39325 .64863 L p .668 .49 .634 r
F P
0 g
s
.70109 .30809 m .52639 .32954 L .56199 .51327 L p .509 .547 .831 r
F P
0 g
s
.84394 .49967 m .70109 .30809 L p .56199 .51327 L .509 .547 .831 r
F P
0 g
s
.56199 .51327 m .74489 .6162 L .84394 .49967 L p .509 .547 .831 r
F P
0 g
s
.36042 .43304 m .23589 .55973 L .39325 .64863 L closepath p .868 .688 .656 r
F P
0 g
s
.35188 .89929 m .46459 .84431 L .39325 .64863 L p .893 .593 .471 r
F P
0 g
s
.19716 .71015 m .35188 .89929 L p .39325 .64863 L .893 .593 .471 r
F P
0 g
s
.39325 .64863 m .23589 .55973 L .19716 .71015 L p .893 .593 .471 r
F P
0 g
s
.39325 .64863 m .46459 .84431 L p .74489 .6162 L .668 .49 .634 r
F P
0 g
s
.36042 .43304 m .52639 .32954 L .31698 .35089 L closepath p .715 .883 .959 r
F P
0 g
s
.36042 .43304 m .31698 .35089 L .23589 .55973 L closepath p .941 .935 .763 r
F P
0 g
s
.68883 .82646 m .88695 .73233 L .74489 .6162 L closepath p .551 .373 .593 r
F P
0 g
s
.88695 .73233 m .84394 .49967 L .74489 .6162 L closepath p .394 .379 .724 r
F P
0 g
s
.46459 .84431 m .68883 .82646 L .74489 .6162 L p .668 .49 .634 r
F P
0 g
s
.46459 .84431 m .35188 .89929 L p .74881 .86885 L .348 0 0 r
F P
0 g
s
.74881 .86885 m .68883 .82646 L .46459 .84431 L p .348 0 0 r
F P
0 g
s
.31698 .35089 m .52639 .32954 L .70109 .30809 L p .112 .665 .737 r
F P
0 g
s
.88695 .73233 m .68883 .82646 L .74881 .86885 L closepath p .231 0 .075 r
F P
0 g
s
.60128 .31544 m .34018 .3446 L .31698 .35089 L p .112 .665 .737 r
F P
0 g
s
.70109 .30809 m .60128 .31544 L p .31698 .35089 L .112 .665 .737 r
F P
0 g
s
.23589 .55973 m .31698 .35089 L .34018 .3446 L p 0 0 0 r
F P
0 g
s
.19716 .71015 m .23589 .55973 L p .34018 .3446 L 0 0 0 r
F P
0 g
s
.88695 .73233 m .74881 .86885 L .85479 .65131 L closepath p .925 .967 .772 r
F P
0 g
s
.88695 .73233 m .85479 .65131 L .84394 .49967 L closepath p .853 .6 .061 r
F P
0 g
s
.84394 .49967 m .85479 .65131 L .69904 .54388 L p .922 .555 .309 r
F P
0 g
s
.70109 .30809 m .84394 .49967 L p .69904 .54388 L .922 .555 .309 r
F P
0 g
s
.69904 .54388 m .60128 .31544 L .70109 .30809 L p .922 .555 .309 r
F P
0 g
s
.2736 .85758 m .35188 .89929 L .19716 .71015 L closepath p .809 .341 0 r
F P
0 g
s
.35188 .89929 m .52772 .91939 L .74881 .86885 L p .348 0 0 r
F P
0 g
s
.2736 .85758 m .52772 .91939 L .35188 .89929 L closepath p .073 .597 .874 r
F P
0 g
s
.2736 .85758 m .19716 .71015 L .26022 .58641 L closepath p .034 .052 .546 r
F P
0 g
s
.34018 .3446 m .26022 .58641 L .19716 .71015 L p 0 0 0 r
F P
0 g
s
.85479 .65131 m .74881 .86885 L .52772 .91939 L p .822 .793 .825 r
F P
0 g
s
.69904 .54388 m .85479 .65131 L p .52772 .91939 L .822 .793 .825 r
F P
0 g
s
.26022 .58641 m .34018 .3446 L .60128 .31544 L p .656 .465 .613 r
F P
0 g
s
.2736 .85758 m .4812 .72004 L .52772 .91939 L closepath p .694 .716 .866 r
F P
0 g
s
.52772 .91939 m .4812 .72004 L .69904 .54388 L p .822 .793 .825 r
F P
0 g
s
.60128 .31544 m .69904 .54388 L p .26022 .58641 L .656 .465 .613 r
F P
0 g
s
.4812 .72004 m .2736 .85758 L .26022 .58641 L closepath p .595 .496 .712 r
F P
0 g
s
.69904 .54388 m .4812 .72004 L .26022 .58641 L p .656 .465 .613 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{267.625, 302.625},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm0lvU1cYhk08D3HmhpDJmRxnwCTBZCQjZCAzIRCGAg2UIQwFAapaVVXV
XVWW3WaJ1D+Qv9Bll2z5CV12m94z+PPJ9Xvt78ZUaqVU8rXxPc/3nPec65s7
dW333dNHL3ff7T3cTSy+2X39dO/h28TCqzfWV95THs+pqPVKJzzi86HHk13I
/2Jiof9x8vnk88nn//3nA/EWFL/xTfXF7+KtXHwROPzr/bLHe0g/f2v1umq0
L96iYk0taLSmGv0m3sJije/ww9t93chqLpEGAK4q8FcC40xwRYE/E1jvDvxe
vIXEmgQAzwBwWYGvydjDBK8o8AmBQwBsBOCSAu8ReJEJLipwh2Z63h24TeAV
JrjAAZsAOK/AawQuA7AZgJft4ArTyAKR8ZICtwhcY4JzHLAFgLMKvErb6jrT
aILSuME0znDAVgBOK3CTurrJBKcMUBqvugM3yLjFBCc5YAKAFw1QdnWbCU4o
cJ2MCGwD4PjnAGVXbzDBMQWukRGB7QActYM7THBEgasE3jwueIsJDnPADgBe
UOAKgbcB2AnAjB28wzRqUP7tCTuByHjeAKXxLhMc4oBdABxU4BXq6j2m0QSl
8T7TOKDAJTIiMAnAc3bwKyaYNkDZ1V0AdgPwrAIXyfiAaWSByNivwAUCv2aC
fRwwBcDeEsF5Ah8zwR4O2APAlALloUBErHnCBLsNUBqfHhfcY2bU4CXq6nFA
aXzmBJaJr1L25s+dthez+Rx1i99cVn/ptP2bzWepusvm3xTZg3zal7/e7BjN
UrdeuQNnyIjAXAdxc9k6r9G0raZf1vz450d6iQ50OWNmeI1Y/7KWsnmHM/gS
gAGNm7kSYECSqtgUFXshiklPBJRo5ZR4DvoTpSCsEs9AiTjoT5NzscmCxSqp
P6wSe6BEDehPA6fYExrielDitFz6qIQu02VUCdt3fdkunaZUhavII2J5VeAR
qNIIelVXvJ7MZmH7PxzIZqLwA1C+mTrJLVomakriPg1dO+hkNbOej+p9CfrX
Qf1T9fxH6mVntVMVnaD5sKqEQu9lW6u6RYmlNzsS0nMT2JIgR0UJ3gBl2wG2
FLDFmbaQmgpLpguIiRbKICmv0fT00yCWXD4MRnIDZEuDbNHi8nGSe4E8QtnW
gXKAUpYsipFoBYjOg2zhAsoOQxlUm3y+Mg4GdoFmcAQoQ6UqKyjlPEg5SsPJ
EI2RyA9EVSDbLFBOgJR+N/KAk1zmmAHKSUrJFQXEN0EgqiHRJBDNgGxlpSrr
wMCO0kZzWSr9plK+PHJ7sES2g92EUo6SMgSUX1DKEZBynobTWqFd2lTYJ3sZ
Br7T5MsA3xL5igVyFJwBYzgAVMvGBOqJsiawsFT+9YsAaSOlStN0rbkTjFAq
JGgmQR/IsmpujH//4bhFtBoqn9qz5qtawQB2A+na55QmKF/SUeUnVfaltsvC
SrkmBpTtpGynOds8nmiYsiFRJxjQFpBywzag1kvsUqwl3qW0GXJJlQN5F6Vs
BspNoPTKZd6BHsvWDaI2ML2+AlEThlwf+OTLUxS1nib0GhD5cUDtuEABkaOX
HLUg1hawBYrbZL0KYOsHw1kJvChlUE9m1uvhSs9SxAqmKlREpVeJI2mhQ+N6
jqQxIN12J81QvkqgGgSDGqQN5gZQRYCq1VDZ8qFBHaJ8AZDvX5JmSOoF0h0g
jYqlvpLgav6GbYMqensLCGIlCSR4G5QtNwYru29uNvYZDEHGSHBw8MkxQZwS
tLgT5DaBMiFgzEaeagSo0G540JZF6fKl14G0Egxlkzv9OWNj50krnOdvFEjR
X9k0yIz0aF+C9C3u9P2UOcyUxoFU/yjGgBQdNfWBzEiPdtpIn3Cn76HM5UCK
/hii36k+sBgHUnQknAKZkf4qU9/uTp+kzJVMaQxI9dngBJCic5oukBnp0WEV
0ne603cYBz35UnTYGgVS80qhTYpOTNtBZqRfZ+qT7vS5E5J6pjQCpPp2wiSQ
ovP/VpAZ6e2nXk76lDt97iSzEUjtJ5lCFwZSfQNyCkjR9ZwmkBnpV5j6Xnf6
M5S5hSkNAam+PzwNpOgCWu4iSAJIl5nSfnfSejDQXH0Q6PVd+BmgR1cn6yhz
J5AuMaVpd9JakJmrDwC9fkhiFujRdedqytwNpItM6YA7aRXIzNX7gV4/ijIH
9OiOQu4qdB+QzjOlQ85SlLkcZObqfUCvnxS6xMwcpcxpptQLpBl30gjIjPSX
mXr9IJd6FNRv6rP3wIwbNoNMURkQDRcXhUG2IaCcYyr1Y3HqwVrfEaXHY9xj
u+DowNcExwvWDYAUyDBbwKAfk1ywbRRiVe5O66hjUd+Rop7s8Q+s5wXdHQOV
p3Fl/QipfCqrLFdQNvNIs1Op3PyJdlNGHblmCoBTAJxW4BKBk06gvn0km8uH
+uTYo6y5+0n68eFVM17l/ieK53Xafi4aXc1uj9q9TsV8opbP6Zc1JpbyK/28
9SaBAQLPAjAjljKcfhh9i8AQgT0AlDdf5Vr9/wZsGxuMiG29rF+ptZTVu0CJ
XnJvqBLXyR0ndxsAk+RWUvXMvj7nyoLNAGwj400F3iKwmsAGADYReFeBdwis
pYx1AKynrj5QoOTlzbYaMlYBsJqMjxX4ULyFjw4OOq2Nk/G5Al+It8jRGUXX
AMJkfKXAb8nopYw+APrJ+E6BP4m3mN7o9aWy3B7sO9XoFxqIH9UXh4o6+Xzy
+T/52XPqHz19RvA=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 266.625}, {301.625, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"86160e7e-ac9d-4eb5-b159-6d5de57ed835"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(62\\). \\!\\(\\\"metabidiminished icosahedron \
(J62)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"5d8d8a01-39f5-48d3-ab78-d9b09aa42ac1"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.07982
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0545689 1.15407 0 1.15407 [
[ 0 0 0 0 ]
[ 1 1.07982 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.07982 L
0 1.07982 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.70054 .2149 m .32327 .23185 L .59713 .40221 L closepath p .585 .724 .939 r
F P
0 g
s
.70054 .2149 m .59713 .40221 L .85661 .56871 L closepath p .364 .443 .809 r
F P
0 g
s
.58348 .75822 m .59713 .40221 L .27984 .56521 L closepath p .713 .568 .689 r
F P
0 g
s
.58348 .75822 m .85661 .56871 L .59713 .40221 L closepath p .54 .422 .667 r
F P
0 g
s
.59713 .40221 m .32327 .23185 L .27984 .56521 L closepath p .769 .722 .81 r
F P
0 g
s
.29151 .86519 m .58348 .75822 L .27984 .56521 L closepath p .779 .505 .521 r
F P
0 g
s
.10241 .51927 m .29151 .86519 L .27984 .56521 L closepath p .958 .662 .429 r
F P
0 g
s
.27984 .56521 m .32327 .23185 L .10241 .51927 L closepath p .939 .879 .748 r
F P
0 g
s
.85661 .56871 m .58348 .75822 L .29151 .86519 L p .676 .972 .911 r
F P
0 g
s
.10241 .51927 m .32327 .23185 L .70054 .2149 L p .599 .336 .489 r
F P
0 g
s
.76852 .51859 m .70054 .2149 L .85661 .56871 L closepath p .907 .554 .09 r
F P
0 g
s
.76852 .51859 m .85661 .56871 L p .29151 .86519 L .676 .972 .911 r
F P
0 g
s
.10241 .51927 m .35479 .73421 L .29151 .86519 L closepath p .087 .299 .78 r
F P
0 g
s
.29151 .86519 m .35479 .73421 L .76852 .51859 L p .676 .972 .911 r
F P
0 g
s
.70054 .2149 m .76852 .51859 L p .10241 .51927 L .599 .336 .489 r
F P
0 g
s
.76852 .51859 m .35479 .73421 L .10241 .51927 L p .599 .336 .489 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{273.938, 295.75},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2vtvk1UcBvB3W7uNbY5dGWMXujEsu9/Yxm7sfr+C4jUaJ6AbC8PBwlSG
giA6p6BAQBQiElAEp0SiMTHRn/x3+Bdq3/M9/banPOfllBSjyUjWHtrzfM7z
tn17eduxqYXp/QenFmb2TnkGDk+9NT2z94in/9Bh/0VxMZYVk+7/83ose+yz
rMCJ+Jdhn8j/rI3Xxv+D8a/2WbL9GN5FF1y3z7LtC5J8V3cfs+J8/PD2Xz1B
k1Z40mZ7Uqw9mqSrFu2zLPuCBpAfp0mvc36I85J+wT5Lsi94FV4lQf9Vgt8f
Pul5MOmNkCYPVtLEHiubPAemT7MpJ+0Bk2aAOUbTnwXTDzzOdBdPl5FRSjwD
ErOOid0gcRBUktN3gelzeIGRx01MgsQhcepWEoFqwxSbALF5vJBMjIPEYYeF
hig2BmJHnlhsFMQWwu4g/58VK07VnaqfiBFAHHVYeZBiwyC2aLhyX9SIIUC8
DYg4QPQSMQiIdw1bSGIAEMciI/oBsWS4IT1RI/oAcRwQLkB0E9ELiPcNW0ii
BxAnDFt0EdENiJNPhnADopOILkB8EBnRCYjThhsiiQ5AfGjYoiNqxE5AnAFE
PCAoa7UD4mPDFpJoA8SyYQta3moFxCf/OtECiBVAJACCbgSrGRCfGbaQxA5A
nDVs0Ro1ogkQ5wCRCAi6Ha1GQHxh2EISDYA4HxmxHRAXDDekOWpEPSAuAmId
IOjetOoAccmwhSRqAXHZsEVT1IgaQHwZGVENiCuASAIEPSytKkB8bdhCEpWA
uGrYoiFqRAUgrgEiGRD0yLbKAfGNYQtJlAHiemREKSC+NdyQ+qgR2wBxAxAp
gKBd1PIC4qZhC0k8DYhbhi1qo0ZsBcR3gHgKELSXWyWAuG3YQhJbAPFDZEQx
IO4Ybkh11IgiQNwFRCog6OnK8gBi1bCFJDYD4ifDFpVRIwoB8XNkRAEg7gFi
PSDoSdPKB8Qvhi0kkWefiSNU9+2gmJMGppeHTJdXpQ3/bZ9TaUHE+X70PRAj
tGL5w6UDxCoTCTZhsGeUhWIuxiR4h70kruSgFGDle1ZSWUEvAIriVpTABt5k
KgNsIHrPUxr6QHOFo4IKfWnwowLO5KYOaOgOIEErVpyCl3KBbWQWvVfdpmfj
AHuF2Xxm0Qc0yXoM2UvMesBtjA4uePULuMACF3iBLdzbgS0yZD9n1sssuQE1
cEsg0c0Ph7PslIdtvw1KohgQ8aDUMmNVXMqBSADEGSbqQvoEbiR6cVZeHZ2w
U4zV21ipPp0I0ifUNH6clRhixx0x+WSwVYeJ4BLYc9GNVK7HkkCzRbWZvPt8
4W+nnIgFJraDPg5YMsDmVUyM5HszryExx0QD6OOApQBsVsVkM1/4+2aFEJNm
ONgIWjgQqaDFPsaaACY/FpUaYlMqJkby43KZIRH8dmwH6OOArQfYyyomRvKY
TLmOEJNe5GAzaOFApIMWe8D+hTZOHrOqMGR3qx3FqENPZABigokW0EdilYbY
qIqJUbeeyARE8FvTVtBHYlU6TAQHVEKM+vTBbNCim4k20EJi1YZYB2PtAJNf
cdUYYm0qJkZDemIDIJqZ2An6SKzWEGtUMTEa1RM5fC81gF0C3T4SqwPYRtCn
BvSZ0BO5gKhkogP0kVi9IVbGWCfAJvXYJoB5VUyM6Btz5aCqE1HCRBfo44Dl
8T1XrBJiRD82UA4wB4L5oEUBE92ghcQaDbFNKiafvbVEASBymOgBfSTWZIhl
MdYLsJf0WCHA0lVMjF4hYoeOEJPSwP6FNs4B84A+yaDPa0Q0GxKJTPSBPg5Y
EcDcjPUDbIqwFkMsVsXEaJ+eKBanLibsc/H683ARqbRqFfWO6uPl36Rg2yO2
IBBEjzgHwgOIHl77AAXbQXAzCKJd2YEoNCRmidgJiAJABJ8Z5/TBfF0wbG1J
dAAiDxDBl5x5fXATCIp3GeKiIxTsBMFcEGzm4NHIgo0cfIeCXSCYA4LBTypL
FOwGwQ0gWMcrvqcPZoNgDQdPUrAHBLNAsJKDp/XBTBCs4G38iIK9IJgBgqW8
4rI+mA6CXg5+SsE+EEwDwRIOntMH14Ng8JDReQr2g2AqCHp4xYsUHADBFBAs
5ODlyIJ5HPyKgoMgmASCuRy8Flkwh2+c6xQcAsFEEMzmFW9EFszg4C0KDoNg
PAimcfB2ZMHgMeS7FBwBQTcIJvOKq/qgCwTXcfAeBUdBMA4E4zl4n4L0U0R8
aDuBt+u3R092sfw7TR4Pq2RPCn6N8EfoJHfoJNHVnvwnTQn9MWfg1eQvukr8
5z/0Q+m18drYZGzF/APqgpP2\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.938}, {294.75, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"b8fb8dae-59a0-49b6-838e-ab6cbbad28ff"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(63\\). \\!\\(\\\"tridiminished icosahedron \
(J63)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"2d0463f2-fe0c-47ac-a61d-c5eee9f2ae68"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.08874
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0578923 1.17144 0 1.17144 [
[ 0 0 0 0 ]
[ 1 1.08874 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.08874 L
0 1.08874 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.70489 .63303 m .43621 .39986 L .36944 .75156 L closepath p .721 .602 .723 r
F P
0 g
s
.63622 .95328 m .90447 .69924 L .70489 .63303 L closepath p .384 .182 .478 r
F P
0 g
s
.36944 .75156 m .63622 .95328 L .70489 .63303 L closepath p .66 .438 .572 r
F P
0 g
s
.40112 .25892 m .43621 .39986 L .70489 .63303 L p .085 .418 .866 r
F P
0 g
s
.72494 .4547 m .40112 .25892 L p .70489 .63303 L .085 .418 .866 r
F P
0 g
s
.70489 .63303 m .90447 .69924 L .72494 .4547 L p .085 .418 .866 r
F P
0 g
s
.36944 .75156 m .27625 .92291 L .63622 .95328 L closepath p .743 .356 .319 r
F P
0 g
s
.28611 .60827 m .27625 .92291 L .36944 .75156 L p .952 .876 .471 r
F P
0 g
s
.40112 .25892 m .28611 .60827 L p .36944 .75156 L .952 .876 .471 r
F P
0 g
s
.36944 .75156 m .43621 .39986 L .40112 .25892 L p .952 .876 .471 r
F P
0 g
s
.63622 .95328 m .27625 .92291 L p .72494 .4547 L .754 .778 .873 r
F P
0 g
s
.72494 .4547 m .90447 .69924 L .63622 .95328 L p .754 .778 .873 r
F P
0 g
s
.27625 .92291 m .28611 .60827 L .72494 .4547 L p .754 .778 .873 r
F P
0 g
s
.40112 .25892 m .72494 .4547 L .28611 .60827 L closepath p .638 .384 .518 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{272.812, 297},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2vtTVHUcxvFDRGWMo5SNidwRcENAbnILuUPcRa6GCCtigBKJZJllJplm
F0sts9S0bKZ/xH+jf8X2nM/ysNM8z9d22h/6AWaAw57X+/tddjm750J/eHV+
bim8ujAbzulaCb83vzB7NqdzeSVyU3KS5yVtj3yGcjx/+annrX8JPtL8L9Ef
Npc3lzeX/9Pykv/tOX/7ehRzg5fs3/L08fG1YMt7aKtOB9+ex6roZ1A/iCXJ
sSTy0zq6p1FKlGI7j4i7xk8R/iLGdKAtQHc0SiUT3za+SPhWjOlA24BuapRG
Jr5hfIHwVzGmA70G9I1GO8nE143PE74LYzrQbqBrGmWSia8Yf4fwbIzpQLlA
axrlk4kvGT9JeAHGdKAioIsahcjEF4zPEV6MMR2oBOi8RmVk4nPGTxBejjEd
qBJoVaNqMvEZ47OE12BMB6oDWtaogUxsLzTeccIbMaYDNQEtatRCJrY/Qi9M
eBvGdKAOoDmNusjEdge9GcK7MaYD9QLNaNRPJp4yPk34IMZ0oCGgSY2GycQT
xo8RPooxHWgcaEyjI2TiYeNThE9iTAeaAhrSaJpMPGD8KOFhjOlAs0B9Gs2R
ibuNTxJ+EmP2aBRMHNwUWfHkyV/rg7sGnkGT4if/uEddFr5NwmMIt5CwU4eT
CLeSsEOHEwi36/AICccQ7iBhuw5H8Ki/TsI2HQ5hxnQdTpBwEGEWCVt12Icw
j4QtOuxGWEjCZgvHSdiFMBRf2I6whIRNOmzF01FOwoMWjpGwGTNWxhc2Iqwh
YaMO6xE2kPBNC0dJWIuwiYQNOqxG2BpfWIGwk4T1Fo6QcGOnpoeEdTosxYx9
8YXFCA+RsNbCYRKGEI6QsEaHhQgnSHhAh/kIJ3V4mIS5CKdJWK3Djd35WRJW
6TADM87pcIiE6QgXSFipw50Il0hYocMdCM+QsNzCQyR8BeFqfOE2hB+ScL8O
Nw5kPyZhmYWDJEzFjBfjC19CeJmEpTpMQfgFCUssHCBhMsLrJNznCj3/ENrd
BGu+J6jYUH/MwP7ejg9vEf5GwvhtwkOa/0D4Xs1/JLwoYfwO4YWa/0R4QcL4
XcL3aP4z4fma/0J4XsL4PcJzNb9PeE7C+APCszX/lfAszR8Snpkw/ojwDM1/
I3y38T7Cf4+PPyY8XfM/CN/1DB68GTjGjPMuxPkLsocvQ3P25GRqzp76LM3Z
32G25uyvPEdztg3las426DzN2ctFvubstWuP5uyVsUBz9rpbqDl7EyjSnL3F
7NWcvd+FNL+FjWKfRjfJmA7OdhdKNP+O8FLNbxBepvm3hO/XnO0PlWv+NeEV
mn9FeKXmbIeuSvMvCa/W/BrhBzS/SniN5mwvtlbzK4TXaf454fWarxHeoPln
2CgOanSJjOngnxLepDk77GjW/BPCWzRnR0PR81q9/5K3aX6B8HbNPyK8Q/Pz
hHdqzo4YuzT/gPC3ND9HeLfm7xPeozk7TO7V/CzhfZqvEN6vOTvYH9B8GdvQ
kEbvkjEdnJ2oOKz5acKHNT9F+Ijmi4SPas7OzoxpPk/4eAx/wV9zgqDoVaDg
UUz117BzZna63K6JBIidA7TT/3YFL0DNBEUvZK0AVRFk114iL1KRj5f9Nexk
dfS62VWMlEmQXbey/zgIUBpB04buA7GrKjOG/vS/pfhr7Hqrgf/R/65sLruX
vaS/AdQTiVQ=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 271.812}, {296., 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"cbbd0f0a-c28c-45c0-a0ed-f968d7b15aba"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(64\\). \\!\\(\\\"augmented tridiminished icosahedron \
(J64)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"5d3c93c2-2e1b-4647-8112-709bd96ea7fd"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.03144
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0331256 1.12098 0 1.12098 [
[ 0 0 0 0 ]
[ 1 1.03144 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.03144 L
0 1.03144 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.48859 .48849 m .21877 .49957 L .2683 .73793 L p .776 .439 .416 r
F P
0 g
s
.71881 .68632 m .48859 .48849 L p .2683 .73793 L .776 .439 .416 r
F P
0 g
s
.74567 .35963 m .48859 .48849 L .71881 .68632 L closepath p .59 .501 .721 r
F P
0 g
s
.21877 .49957 m .48859 .48849 L .74567 .35963 L p .667 .902 .978 r
F P
0 g
s
.2683 .73793 m .61599 .86202 L .71881 .68632 L p .776 .439 .416 r
F P
0 g
s
.71881 .68632 m .61599 .86202 L .85451 .57799 L closepath p 0 0 0 r
F P
0 g
s
.89594 .40829 m .71881 .68632 L .85451 .57799 L closepath p 0 0 .07 r
F P
0 g
s
.28735 .35904 m .21877 .49957 L p .74567 .35963 L .667 .902 .978 r
F P
0 g
s
.74567 .35963 m .66157 .26097 L .28735 .35904 L p .667 .902 .978 r
F P
0 g
s
.85451 .57799 m .66157 .26097 L .74567 .35963 L closepath p .75 .327 0 r
F P
0 g
s
.21877 .49957 m .28735 .35904 L .2683 .73793 L closepath p 0 0 .39 r
F P
0 g
s
.2683 .73793 m .21877 .49957 L .28735 .35904 L closepath p 0 0 .39 r
F P
0 g
s
.28735 .35904 m .2683 .73793 L .21877 .49957 L closepath p 0 0 .39 r
F P
0 g
s
.85451 .57799 m .61599 .86202 L .2683 .73793 L p .731 .629 .745 r
F P
0 g
s
.28735 .35904 m .66157 .26097 L .85451 .57799 L p .731 .629 .745 r
F P
0 g
s
.2683 .73793 m .28735 .35904 L p .85451 .57799 L .731 .629 .745 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{280.25, 288},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmu1TE1cUhxeSgFTQ2NGq4wtB6nu1tdZWW6mAEN4ULLRYKagBU6Ejo6W0
peILCiLYiCAoClhnWjvtTGf6wQ9+42+j2XtujpvNbzf3JoH6AWZIFvY5z++e
TXaz2b0nQ72d4e5Qb1dHKFDVE7rS2dXxQyB4uSf6L0+WYWRtiP4GAoa5vGAY
sQfxs9F8kH8sLy8vLy8vyvIr88lj7nfn6B8vzSev+Y/shfkX84ZYtyB/jDaC
/mUoF0CtBP3D6nwAfUPQX2xabULZ5pKs/4NXreVVsuo5r9pgUc830gGkhaBZ
hrZwvVw1zau28aoztGqSV+0A6q8JGufW9gLoNEERNu0XkJchCTYTN8LcQSCT
0BBDhwH0FUEDDB3FiV8Sd425Msw1EdfHXBBzjcT9yJujVnC+OC42yC8I/p6l
9VgquW7mGl2kpwjuYvi0C9xAcJjhVhe4nuAQw+dtGz76a+4j0cf4d3YdFbZx
Ydgl5STBLbwFuxRTaqmwmVO6FQtrqLCRC3sUC6upUGxxscf8BAo9oLDKUhjD
X8yLYlVFkBQNnN2XauEvioWVVFhvGbRhtIvX7KriBtNUoFFUkILeJV6LQmj6
FQfibrmmaDlOlhPiyWezUFsZVF1XVJWTqi5hI7cb2eIx/g2nusk0taqNl1m1
uPEBl6OF3G61iqO6oTiqUj3tTZcRFlscMf1m0tcAvcdRn3zUgfSj3LZ1kekQ
h4ytJK0GUi+Q3nKRFrK0MBVp8o2y2R5QBQJ8IOC2y6i3xDn8rztR1w+66DcJ
h9ei91saCIKEnJQS4hsI6OmHXPQbcQMyoRIk5P4vCXdcEtbHHZL81pRYTAWI
WQFihvF53TsJL4JfHF78trfw1lTScFPrXJoqopjjICYPxNzFTa1VbKowlTTc
1Nsg0uMcWQ4i3wKRI7jBRUobxWl+xbRARtJWgzSvc1oZSFsJ0u7htFXpp6He
IuD7YAGI8jlHlSo2FsGN5Ss2VqSXdh80tlKxMRl1DETlO0YlNJYH0nLSTxsD
jWlGfQ6iCkDUAxCVqxi1Lf2oHBCV6xxVAqJWgahxEOVbuigviFqRftQEiMoG
UXnpv1YPzUdxlogCUC/FKQRYdijixW6epnnSfPRkUpZwiElbOwV38ETtu3rH
jUf8qmVKZhsjeuE1tY95jBmQTbMMHZ+2L4JM9bPpCcvQp4+LDH2CP82kbIZl
6CNYUzZrOQ21nz/vIhU6TUFntLOWQ07iuHboyeYshxfLmDSHNMdDonPM2IiM
nXqeZ+zZrVf4m2UfjG0JmY3ObNG3nwwongHFLj3FHFDs1lPMAsUePcUMUOwl
Bfrehb4hPwWK9/QUT4Bi35IrpoFiv57iMVC8Twr03RxdNHkEFB/oKaaA4oCe
YhIoPnRWoMtXaBRSgS6+oCt4aBQH9RQPgeIjPcUEUBzSU4wDxcd6igdA8Qkp
0PU4D1CMAcXhJVfcB4ojeooIUHyqp/gVKD4jBbo+i67p3wOKo3qKUaAoWXLF
CFDQebu81o7vuqDkY8nLUFpp8rK7oKwsedkwKCtPXnYHlMk7SXSjJOGWYNIK
6+uA8QpnfAjglc74IMCDzvhtgMs70OIGlzhRuwWgajs0AKCalKCbAKq1QzcA
JOcSWG9Dxt7o/QA/4YxfBbicfCCexJqfASTnQZxiqNcZamLoCoDk9Itmhi4B
SE7oOMNQJ4DkFJFW3nZhAMnJKWfZFAKQnOkSYqgNQHLazAWGWpyhiww1A0hO
1PmOB94EIDnl5xKbGgAkJxldZqgOQHK6Ug9DVQCSE59eT+KpcIb6GCoFkJxd
1c/dlQBITuG6zqYjAJJTwAYYOgQgORltkKEDADpL0DBD+wB0jqBRhvY4QxHu
bieAzhM0xqZiAIUImmCoEEDtBE0xtAlAHQRNM7QeQBcImuGBr3OG5ti0BkBh
gp4zVACgbwn6naE8AF0k6E+GfADqJOhvhqLrzeOZZGg3khMNbaVylfjjDZpu
ubz85i8bWf8BK7swRw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 279.25}, {287., 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"02fd2a6b-c48c-41c8-93de-dd23f8e4fb17"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(65\\). \\!\\(\\\"augmented truncated tetrahedron \
(J65)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"b9996606-19f1-41bf-b0e4-2e3c1e1ffe04"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.01586
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0259259 1.10782 -2.22045e-16 1.10782 [
[ 0 0 0 0 ]
[ 1 1.01586 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.01586 L
0 1.01586 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.33954 .51893 m .42216 .76395 L .58673 .58128 L closepath p .75 .568 .649 r
F P
0 g
s
.58673 .58128 m .42216 .76395 L p .84803 .56449 L .292 0 .242 r
F P
0 g
s
.84803 .56449 m .78773 .48037 L .58673 .58128 L p .292 0 .242 r
F P
0 g
s
.58673 .58128 m .78773 .48037 L .7437 .28996 L p .649 .707 .89 r
F P
0 g
s
.33954 .51893 m .58673 .58128 L p .7437 .28996 L .649 .707 .89 r
F P
0 g
s
.33954 .51893 m .2585 .34069 L p .4389 .87864 L .844 .505 0 r
F P
0 g
s
.4389 .87864 m .42216 .76395 L .33954 .51893 L p .844 .505 0 r
F P
0 g
s
.2585 .34069 m .33954 .51893 L p .7437 .28996 L .649 .707 .89 r
F P
0 g
s
.42216 .76395 m .4389 .87864 L p .84803 .56449 L .292 0 .242 r
F P
0 g
s
.78773 .48037 m .84803 .56449 L .7437 .28996 L closepath p 0 0 .468 r
F P
0 g
s
.2585 .34069 m .25625 .41143 L p .4389 .87864 L .844 .505 0 r
F P
0 g
s
.7437 .28996 m .45922 .21096 L .2585 .34069 L p .649 .707 .89 r
F P
0 g
s
.25625 .41143 m .2585 .34069 L .45922 .21096 L closepath p 0 0 0 r
F P
0 g
s
.25625 .41143 m .35545 .70928 L .4389 .87864 L p .844 .505 0 r
F P
0 g
s
.4389 .87864 m .66345 .78268 L .84803 .56449 L p .292 0 .242 r
F P
0 g
s
.66345 .78268 m .4389 .87864 L .35545 .70928 L closepath p .614 .737 .933 r
F P
0 g
s
.66133 .22795 m .45922 .21096 L .7437 .28996 L closepath p .121 .613 .91 r
F P
0 g
s
.66133 .22795 m .7437 .28996 L .84803 .56449 L p .915 .553 .109 r
F P
0 g
s
.25625 .41143 m .45922 .21096 L .66133 .22795 L p .399 .072 .291 r
F P
0 g
s
.77723 .53721 m .84803 .56449 L .66345 .78268 L closepath p .89 .989 .749 r
F P
0 g
s
.84803 .56449 m .77723 .53721 L .66133 .22795 L p .915 .553 .109 r
F P
0 g
s
.35545 .70928 m .25625 .41143 L .4468 .45152 L closepath p .343 .326 .695 r
F P
0 g
s
.66133 .22795 m .4468 .45152 L .25625 .41143 L p .399 .072 .291 r
F P
0 g
s
.77723 .53721 m .66345 .78268 L .35545 .70928 L p .685 .7 .858 r
F P
0 g
s
.35545 .70928 m .4468 .45152 L .77723 .53721 L p .685 .7 .858 r
F P
0 g
s
.77723 .53721 m .4468 .45152 L .66133 .22795 L closepath p .764 .563 .626 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{282.438, 286.875},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt21tvE0cUB3Dj2LFjx4njXEgIScMtQK4khFwhFyAh5EYSwp0ATqANlBQa
wq0ItaoqoQqpqqpWVSUe+9hHXnns1+hjH/kKqWfO5LBY/7OdsQG1EkjetXfP
/P4zu+sN3rWn0+srN1bT6zeX0w0n1tJ3V24u32sYu7OWWVSwJRDYsi3zqG8I
qOcbgcDmRP+rVRPz4uPzj8//Z8+/UbOoOp5/ogVf61mBWrKxlJxQj0ChmsbV
omdU9FTNgmpBhVpVrJ49oVV6ppvv4FZ3adVXvKqVV92gVY/ULKQW9KlVEfXs
Cq16yKuGdGeoa6+fV+s34SIV3Vez8Jsi/XTjz59/f6v4MhWvZxWHuNg0CKoW
engXqcWamhUi3tMq42Samf6Zf4FzBOgtEMkehGmceUXTzb4qJgiws4Td8cVC
ACvgARlilXc7IsKACIP+nCbsti8WkTDdH0PcUrMiiYgCIgL6M0vYiprFJKwI
YFGAnSLsM18sLmF6cIbQx3hcIooBEQP9mSLsui9WYolNErakZsUSVgqwOA/O
EGlfIgmIBOjPOGFX1SwhYSlL7ARh+tRQImHlACsB2Bhhl32xCjdMn1VKJazK
Ehsl7IIvttUN06erpITVWO4Ag51RszIJ22bZs+OELfhitW7YvJqlJKzOcpgG
m/PF6i17dowwfcool7BP3LAZX2yHJXaUMH3+qZCwnW7YhJpVStguN+ykL7bH
EhshbNwXa8wBE7fZPsvjzIvpvTlsiaGeDXuwlITtzwErk7BmS2zIgyUlrCUH
rFTCWnPASiSs3RIb9GAJCTuQA1YsYZ2Wx5kXi0vYQcueHfFgMQnrygErkrBu
S+ywB4tKWE8OWETCenPACiWs3xIb8GBhCRvIAQtJ2OEcsAIJG7TE+j1YUMKG
csD0mkGAjVhifR7MrJqff6ke9PmxF9hH3eyTwA6pqd5HB0HAsfwDohzQBgJG
LQN65YBiNdWbaB8IGHMLmAABSR7BLhBwAgSUgoAeOaCCR1AHAk5ajsAnoIZH
UA0CJtwCJkHAdh5BCgRMWQZ0ywE7eAQJEDCdf8AeDoiCgBm3gCkQsI83URAE
zFoGHJIDWnkEc/ljbXpKy/54+Zd60IUvtKnR4d5F9jSwW4AdVlMdYHs0OgYU
cYDtGcExIKGmehE6aaJNdJACZkBAEwgo4xEMW47AMaCSA2z/NDsG1HBAn2VA
JwWckt5PWQH1HHDo/QTs5IAOy53c4RbQyAFtliMwAbMgoBEENHNA0/sJaOf3
wV7LTXTALaCTR7DbcgQmYA4E7AYBPRzQ8H4CBjgAXTtCAe1uAUMcgK7B+QTM
g4CdIOA4B1Ra7uQ2t4BxDkCXcdEIHAOmOABdBPcJOA0CGkDAHL8P0FV/tIla
3QIWeATohgcagWPAeQ5AN4l8AhZAQD0IWFRT/V+iMoC1uGFp3t5o2/pgdQBb
1lNa9vfGKzUP6I+L6EJIM9lngL0d2EtZduaReZWZ6kXo9ss7CCjkAHQnzCeg
1jIgxgHo1l8TBZwFAdssAxIcgO51OgakQUAZB7TIWI1lbyvMbvX2cT+x5wBb
/eFYNHTENsnsVsvelgPWHGrnAVtl2VvEtuTPpgDbKrOVebDmT8kFwFZ8OPaa
Jdsus+Uu7y38n6aLgE1Z9haxHfmzScB2ymxZHqz5BHUJsMkPx161ZLtkttSy
t6WANdchLgO2xJItAWy3G4s2AmJ7ZDZh2dsEYM0FyEXAFlv2FrF9MhvPo7eO
rG1vzRX1K4CNWbLFgB2Q2aI82MP5s3HAmttXVwEbBewVS3ZQZiN59NaRte3t
ELHXAFtoycYAOyyzYcuNUATYETcW9Rax5hsLacCGLNkoYI/JbEEevX0HLOqt
+d7MEmCD0odKC3bUy4a9rH5kXsOTYQRQY/9OoQMJUebLaMt6FnqLEpRCoIx7
lTebzKUjjgTqBd2so68g6g/PaI+jhhOehnoN2qdh0HDS09CsevHqtXrQtrwA
nBBwzJcnbwCnQE01tmCJTctYhLFZN+xTgMUYm7TEZmSsRE31oTwGsAKAeb8A
m4WluGcjltisjFUxdgRgQYDRVVP6nm8WVsNYryU2L2N1jHVpLOzF9EO9e+gi
S+AmABoYaLfszWkZ281Ys09vzBe8bwFgLwONPsA5GWhmQN82MaczT+Pzctt2
bluH29Kn0cDnoG0nt63J2oyqwxflht180FfIDW+Dhv2cWAoaXpIbDnLDuGqo
z5LmZweroHyEywu5fFEuH+XyoKdbm8eOyfkCNBxX0yD9xRGLtK4X0V98+qFB
VtFRlq7LRcNcRKci8wuQt4sOc9yKXNTPEu3fwJegqIeLVuWiLo6jHtOPOrKK
Olhak4vauWidiu5J7xW96IFctJ+lx1S0DooaueiJXLSL455S0X3pdKSlb+Si
ei76Vi6q5bjvqOgBKKpm6ZlcVMVF31PRQ1CU4rjnclGSpR+o6BEoSnDRj3JR
jOPMj6Ieg6IIS7/IRWEu+pWK9G+gzMnPFHHYb7hEzTOPF7T2iSdl841vVukX
/6Hfln18ntvzwJZ/AFylCt4=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 281.438}, {285.875, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"ea4fb61a-d947-43dd-b546-0b6b45e406a0"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(66\\). \\!\\(\\\"augmented truncated cube \
(J66)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"b8e789c5-98ed-4dab-8dc3-0a3f35b3d888"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .97095
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.00731429 1.04693 0 1.04693 [
[ 0 0 0 0 ]
[ 1 .97095 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .97095 L
0 .97095 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.27753 .45496 m .32789 .62689 L .44245 .49423 L closepath p .779 .643 .711 r
F P
0 g
s
.44245 .49423 m .32789 .62689 L p .74837 .52961 L .62 .408 .573 r
F P
0 g
s
.74837 .52961 m .61141 .45335 L .44245 .49423 L p .62 .408 .573 r
F P
0 g
s
.44245 .49423 m .61141 .45335 L p .64848 .23217 L .681 .753 .906 r
F P
0 g
s
.27753 .45496 m .44245 .49423 L p .64848 .23217 L .681 .753 .906 r
F P
0 g
s
.70094 .34911 m .61141 .45335 L .74837 .52961 L closepath p .499 .471 .757 r
F P
0 g
s
.61141 .45335 m .70094 .34911 L .64848 .23217 L p .681 .753 .906 r
F P
0 g
s
.32789 .62689 m .27753 .45496 L .20127 .34967 L p .982 .718 .448 r
F P
0 g
s
.33028 .78559 m .32789 .62689 L p .20127 .34967 L .982 .718 .448 r
F P
0 g
s
.32789 .62689 m .33028 .78559 L p .74837 .52961 L .62 .408 .573 r
F P
0 g
s
.20127 .34967 m .27753 .45496 L p .64848 .23217 L .681 .753 .906 r
F P
0 g
s
.64878 .84199 m .7697 .69101 L .74837 .52961 L p .62 .408 .573 r
F P
0 g
s
.46086 .88014 m .64878 .84199 L p .74837 .52961 L .62 .408 .573 r
F P
0 g
s
.33028 .78559 m .46086 .88014 L p .74837 .52961 L .62 .408 .573 r
F P
0 g
s
.87192 .52818 m .74837 .52961 L .7697 .69101 L closepath p .412 .263 .567 r
F P
0 g
s
.70094 .34911 m .74837 .52961 L .87192 .52818 L p .414 .415 .751 r
F P
0 g
s
.33028 .78559 m .27812 .84891 L .46086 .88014 L closepath p .721 .283 .21 r
F P
0 g
s
.27812 .84891 m .33028 .78559 L p .20127 .34967 L .982 .718 .448 r
F P
0 g
s
.82282 .3352 m .64848 .23217 L .70094 .34911 L closepath p .406 .588 .916 r
F P
0 g
s
.87192 .52818 m .82282 .3352 L .70094 .34911 L p .414 .415 .751 r
F P
0 g
s
.137 .37979 m .20127 .34967 L .27333 .23103 L closepath p .806 .989 .734 r
F P
0 g
s
.1928 .75823 m .27812 .84891 L p .20127 .34967 L .982 .718 .448 r
F P
0 g
s
.13022 .5529 m .1928 .75823 L p .20127 .34967 L .982 .718 .448 r
F P
0 g
s
.20127 .34967 m .137 .37979 L .13022 .5529 L p .982 .718 .448 r
F P
0 g
s
.27333 .23103 m .20127 .34967 L p .64848 .23217 L .681 .753 .906 r
F P
0 g
s
.7697 .69101 m .64878 .84199 L .7511 .74961 L closepath p 0 0 0 r
F P
0 g
s
.7697 .69101 m .7511 .74961 L .86147 .57452 L p 0 0 0 r
F P
0 g
s
.86147 .57452 m .87192 .52818 L .7697 .69101 L p 0 0 0 r
F P
0 g
s
.46086 .88014 m .27812 .84891 L p .7511 .74961 L .649 .796 .953 r
F P
0 g
s
.7511 .74961 m .64878 .84199 L .46086 .88014 L p .649 .796 .953 r
F P
0 g
s
.82282 .3352 m .87192 .52818 L .86147 .57452 L p .881 .593 .076 r
F P
0 g
s
.64848 .23217 m .46614 .17842 L .27333 .23103 L p .681 .753 .906 r
F P
0 g
s
.61897 .25381 m .46614 .17842 L .64848 .23217 L closepath p .53 0 0 r
F P
0 g
s
.61897 .25381 m .64848 .23217 L .82282 .3352 L p .65 .092 0 r
F P
0 g
s
.27812 .84891 m .1928 .75823 L p .7511 .74961 L .649 .796 .953 r
F P
0 g
s
.82282 .3352 m .80804 .36573 L .61897 .25381 L p .65 .092 0 r
F P
0 g
s
.86147 .57452 m .80804 .36573 L .82282 .3352 L p .881 .593 .076 r
F P
0 g
s
.27333 .23103 m .46614 .17842 L p .63725 .42934 L .592 .359 .532 r
F P
0 g
s
.137 .37979 m .27333 .23103 L p .63725 .42934 L .592 .359 .532 r
F P
0 g
s
.46614 .17842 m .61897 .25381 L .63725 .42934 L p .592 .359 .532 r
F P
0 g
s
.13022 .5529 m .137 .37979 L p .63725 .42934 L .592 .359 .532 r
F P
0 g
s
.49139 .60187 m .69569 .64705 L .7511 .74961 L p .649 .796 .953 r
F P
0 g
s
.27347 .65201 m .49139 .60187 L p .7511 .74961 L .649 .796 .953 r
F P
0 g
s
.1928 .75823 m .27347 .65201 L p .7511 .74961 L .649 .796 .953 r
F P
0 g
s
.86147 .57452 m .7511 .74961 L .69569 .64705 L closepath p .866 .882 .846 r
F P
0 g
s
.1928 .75823 m .13022 .5529 L .27347 .65201 L closepath p .379 .403 .76 r
F P
0 g
s
.80804 .36573 m .86147 .57452 L .69569 .64705 L p .843 .686 .688 r
F P
0 g
s
.80804 .36573 m .63725 .42934 L .61897 .25381 L closepath p .768 .488 .511 r
F P
0 g
s
.27347 .65201 m .13022 .5529 L p .63725 .42934 L .592 .359 .532 r
F P
0 g
s
.69569 .64705 m .63725 .42934 L .80804 .36573 L p .843 .686 .688 r
F P
0 g
s
.69569 .64705 m .49139 .60187 L .63725 .42934 L closepath p .802 .664 .711 r
F P
0 g
s
.63725 .42934 m .49139 .60187 L .27347 .65201 L p .592 .359 .532 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{288.875, 280.438},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm1t3FFUahpt0d46Q8zmEJEDOJwLBwYiAoAEEBAdHHNYgBiZDEDGQBAMh
gAmRiEFGlji6nMOVl3M5f8FLLufWS3/C3GZq72/XR3fnqaZ7imY5a8laXd3U
fut59rd3dVd1pevY2MzE+OWxmYvnx1oPTo1dmbh4frp1dHLKWxVdF4msa/Ue
9a0R83o1EvEX9l+bWbj//Pr619fP+fWSeYqb/e1bWbFgnqJmRWz18emVmHn1
WJpumSe7osg02a0eSdOcblVmmvLsDhxbvSu7sv94KOFPlFOt4TyTteu+kNC0
Ehs1ZIF23bKEJpXUoqG4hpYk9JGS2jWUr6EFCU0oqUdDBdqnWxIaV9I2DRUp
aU5CY0raqaFiDc1K6H0lvaKhEg3NSOi0kvZpaL326YqETilpVEOlSrosoZNK
OqKhMg19KKETSnpbQ+UauiCht8yTbXpXQxUa+mNCSNaYkHl4/UzqndSw+kO5
PmzbOQEcA8Dp5IFyrW5jD2eWss79i5wV2FGAnUmeZPuqUHvhNjwCG36QvDOm
9KJYEWcE8SYgzj99h0T1HWK2LoUaTgvnMHD+lDBLvtbFD0H8gl3KsP94867/
nny67Xuy7UHYdsIu47qt/4jY2V/b698JahRQF+0ymojy9N4ypRKHeAMQHwIi
BoiTgngdEJcAkW+XyRNaBsWdEOwBwF4Owqb0zCH2A+JjQBQCQt5jkdcAMQmI
4gyLO5IdtgR65hD7AHEFEBsAIbt7ZC8grgKiLMPiZH+M7AHsFGDLoWcO8Sog
pgFRCQjZHyO7ATEDiOoMi5Mp844na7HXAFsDPXOIEUDMAqIWEDJlkZcBcR0Q
9cmIlJJkiCK7AHYDYI0wUqXaMwf7DcDmANYExcnARF4CxE1ANKctTjrinSSs
hc0DrCVtcQ42DLBbAGuF4nZmh9ictrjtAtsBsNsA2xpUXAp2SLDbAXsHsO3a
xzSwIYAtAKxDYSU6ZlKfdza4FrEIiC4oszChZz8/LreHVDd6g4C9C9hu7VmB
OxfyYQ7oeAPAWwJer/LiaXn9wPsMeP12GU8s2z5MqVHDTJkYGc5IH+DvAX5A
u+s1OK6jrmXLmHolrmUvA3swYSgCYT0A+xxgfWYZdR399z//pR2NBbO7gX0f
2D3a0ZhBJ+xQzxiJLhB8AYJO7XxBhgLZ3bwN1wpWgj4D7Kri8IIHIGjTIdqQ
G8EmraAsN4KNWkFVhoL+7AQNWkFNbgS1KqjPjaBah6gpN4IKrWBThoK+7ARl
WkFbbgTrtYItuREUawUd4QVfBn2lsqu6MxT0ZieIqqAvO0EHCB7aZSxRoAM0
+Jzwlj70vPoq68wRygB3ZIjteeFYO3Xu5DU07EHCND3x+vhEDtDDQKbjdXcw
WZbxJLKjZ9zxNPjEo7VDe2enTxSb7YCnUd0HVQxU28OrPgdVPEMVzU9XeFWm
A5hGtQyq/Nyo7oGqMMRcpVF9BqqiEHPVGaxaAlVxiAFMo7oLqpLcqBZBtSHE
XOVIRXPVEaxaAFVpiAFMo/oUVOUhBjCN6g6oKnKjug2qyhBz1R6sugWqqhBz
lUY1D6qaEAP44lXtGapqQ8zV1mDVTVDVhZirNKo5UDWEGMA0qhugasyN6jqo
mkLM1ZZg1SyomkNU9ctQfQKqTblRXQNVS4aqvOx2ixlQtQWq4okq+/D+73+a
E34a8JufH34K8FtC4O33KoJuDYSuuVDcuba75879aFVXgdyewbxGgrHeQy7L
fwzsjuzYMhLxRLZ2/SPAd/4v+NSum2XypE6AqhtUqV/9n6GKmqUdqgsg6HlG
Lf5bye0tnSCIQS3nQdUbVIvtXFewIK4VnANsH2AHFes1/PTzT34p/jiRpQDK
OAu+fvD1mqVdlWd0KWPnpF0ZSs+AdACk3VpkDKRdwdJCHc8/gGoQVJ2qys9O
VQz1vQfSbSBtV2kBSN3lhO4gqd3wFKi2g6pN568oO9V6qO8kSHeAtEXrKwFp
T7B0g9Z3wqjsB9cwCJpVsB4EvcGCMqjqsFnaD/346g9P/mOlNGuNKi0NlvZk
KD2g9ZUaqdXT+71O568MpH3B0nIdyr1aX53WRx/0NVpfZXaqSqhvl0pbtT46
jleptAqk7q8avUHSPNlBfFWX1kfnVuWqqgbVQLCqGurrV+mQSuk8v1SltdlJ
a0DaqTvNiA4qfTsr0Z2mDqTuT6Z9QdI8mSu/vgNaH10fKNL6GrNT1UF9G1V6
VOujSy35Km0CKfzh3ZfWa331qnpH66OLfTFVbQTVULCqEeqrUOkZrU8u0cYS
pTp7m4KV/RkqS3SXGdc65WK3jblHK4jg5xG+qEmHsUArmjR4u25zdrBm6LUl
zhiiazBnOobaAmz385WBILbt1A2ANQNs+Bkwt86DWeD18NiNgJ0DLO3q7tdO
g4BtBOxNwNLb9qVgbANgbwG2ITfYesC6X41tA2wdYO8Alj4m02BrAbsA2BrA
7grG1gB2EbB0+Ho5GFsN2CXA0gHYYYcAW5Uhlk4mRoKxlYC9B9iK7LAVgF0G
bDlg5ceoSb/Xo1M7H3sfsHTGuPuFY0sBuwJYOqmW3won/RaSvir42AfhsSWA
fQjYYsDuCY+l70t7g7HFgP0KsIXB2GHAFgL2EWDpi+S+YGwBYL8GLH0pzhL7
GLD0td79bHsnYOOA/QawUcDuD8bGAPstYOnKRxpsFLDf2WU8EetfvXE3h7ij
I1+r+5vdPJa0eTZbPq3HrBtN3CyWtJn3+h8JW/jVOpE9JNrTqb9D6GBCKKX8
v0L8UHD8e4i7myl2Qfw7iMstS0m/4Pfjf4G4u9tjBOJf64mtu1nlFQg9AqaL
74b4nyF+XOKvQvxLiLubb/ZAfAXib0t8L8TvQ/y3Et8H8WWIu3uUXoP4kg7f
uxLaD6FFYLr4AYh/CvFTEn8d4rch7m4TewPi8xD/vcRHIT4HcXcD20GIz+p4
uJvrDkHoGjBd/DDEpyH+vsTfhPhViJ+V+BGIT0L8A4kfhfhliI9J/BjEL0Hc
3T/5FsQvmKVdNS6h4xAaM0v7eTghIXmzxDRkniPmPkM/5+4wfcc85ZsVx7Vp
SprslMblU9dvcrfBntWtRrRpXprGtWlQm9y9upe0aas23ZOmq9rUoE0r0jSr
3SjTpq+kaV63imnTN9K0aJ5s+d/LCjvOv6AbuP9fXkfW/RfhHn0c\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.875}, {279.438, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"7c55f22c-619a-4e84-9e89-af3cde3272ee"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(67\\). \\!\\(\\\"biaugmented truncated cube \
(J67)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"da52b4da-7a9e-4ba3-9c2f-4bcbc77192ba"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.1332
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0766814 1.21764 0 1.21764 [
[ 0 0 0 0 ]
[ 1 1.1332 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.1332 L
0 1.1332 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.75785 .7252 m .65342 .61653 L .52096 .71007 L p .668 .451 .581 r
F P
0 g
s
.65342 .61653 m .50718 .543 L .52096 .71007 L closepath p .75 .601 .691 r
F P
0 g
s
.5875 .40799 m .50718 .543 L .65342 .61653 L p .69 .64 .794 r
F P
0 g
s
.65342 .61653 m .73684 .48506 L .5875 .40799 L p .69 .64 .794 r
F P
0 g
s
.65342 .61653 m .75785 .7252 L .84702 .59238 L p .539 .443 .694 r
F P
0 g
s
.84702 .59238 m .73684 .48506 L .65342 .61653 L p .539 .443 .694 r
F P
0 g
s
.5875 .40799 m .41574 .42069 L .50718 .543 L closepath p .719 .679 .81 r
F P
0 g
s
.44945 .83818 m .52096 .71007 L .50718 .543 L p .879 .696 .651 r
F P
0 g
s
.32418 .85242 m .44945 .83818 L p .50718 .543 L .879 .696 .651 r
F P
0 g
s
.21717 .72893 m .32418 .85242 L p .50718 .543 L .879 .696 .651 r
F P
0 g
s
.20281 .54003 m .21717 .72893 L p .50718 .543 L .879 .696 .651 r
F P
0 g
s
.28989 .41317 m .20281 .54003 L p .50718 .543 L .879 .696 .651 r
F P
0 g
s
.50718 .543 m .41574 .42069 L .28989 .41317 L p .879 .696 .651 r
F P
0 g
s
.52096 .71007 m .44945 .83818 L .62259 .82349 L closepath p .694 .45 .551 r
F P
0 g
s
.52096 .71007 m .62259 .82349 L .75785 .7252 L p .668 .451 .581 r
F P
0 g
s
.73684 .48506 m .72451 .38121 L .5875 .40799 L closepath p .549 .662 .911 r
F P
0 g
s
.84072 .49115 m .72451 .38121 L .73684 .48506 L p .182 .357 .803 r
F P
0 g
s
.73684 .48506 m .84702 .59238 L .84072 .49115 L p .182 .357 .803 r
F P
0 g
s
.84702 .59238 m .75785 .7252 L .76246 .81521 L p .063 0 .285 r
F P
0 g
s
.75785 .7252 m .62259 .82349 L .76246 .81521 L closepath p .461 .138 .332 r
F P
0 g
s
.41574 .42069 m .5875 .40799 L .72451 .38121 L p .359 .812 .942 r
F P
0 g
s
.28989 .41317 m .41574 .42069 L p .72451 .38121 L .359 .812 .942 r
F P
0 g
s
.79169 .81844 m .76246 .81521 L .62259 .82349 L p .013 0 0 r
F P
0 g
s
.67102 .83328 m .79169 .81844 L p .62259 .82349 L .013 0 0 r
F P
0 g
s
.46543 .85079 m .67102 .83328 L p .62259 .82349 L .013 0 0 r
F P
0 g
s
.32115 .85845 m .46543 .85079 L p .62259 .82349 L .013 0 0 r
F P
0 g
s
.32418 .85242 m .32115 .85845 L p .62259 .82349 L .013 0 0 r
F P
0 g
s
.62259 .82349 m .44945 .83818 L .32418 .85242 L p .013 0 0 r
F P
0 g
s
.84702 .59238 m .85737 .67676 L .84072 .49115 L closepath p 0 0 .106 r
F P
0 g
s
.76246 .81521 m .85737 .67676 L .84702 .59238 L p .063 0 .285 r
F P
0 g
s
.84072 .49115 m .75069 .35281 L .72451 .38121 L closepath p 0 .273 .778 r
F P
0 g
s
.28437 .38679 m .28989 .41317 L p .72451 .38121 L .359 .812 .942 r
F P
0 g
s
.42526 .35515 m .28437 .38679 L p .72451 .38121 L .359 .812 .942 r
F P
0 g
s
.62891 .34042 m .42526 .35515 L p .72451 .38121 L .359 .812 .942 r
F P
0 g
s
.72451 .38121 m .75069 .35281 L .62891 .34042 L p .359 .812 .942 r
F P
0 g
s
.76246 .81521 m .79169 .81844 L .85737 .67676 L closepath p 0 0 0 r
F P
0 g
s
.28437 .38679 m .20281 .54003 L .28989 .41317 L closepath p .798 .932 .563 r
F P
0 g
s
.21717 .72893 m .32115 .85845 L .32418 .85242 L closepath p .616 .135 0 r
F P
0 g
s
.75069 .35281 m .84072 .49115 L .85737 .67676 L p .914 .719 .625 r
F P
0 g
s
.62891 .34042 m .75069 .35281 L p .85737 .67676 L .914 .719 .625 r
F P
0 g
s
.54634 .48017 m .62891 .34042 L p .85737 .67676 L .914 .719 .625 r
F P
0 g
s
.56411 .69313 m .54634 .48017 L p .85737 .67676 L .914 .719 .625 r
F P
0 g
s
.67102 .83328 m .56411 .69313 L p .85737 .67676 L .914 .719 .625 r
F P
0 g
s
.85737 .67676 m .79169 .81844 L .67102 .83328 L p .914 .719 .625 r
F P
0 g
s
.20281 .54003 m .28437 .38679 L .25639 .46664 L p 0 0 0 r
F P
0 g
s
.17019 .62771 m .21717 .72893 L .20281 .54003 L closepath p .988 .766 .376 r
F P
0 g
s
.25639 .46664 m .17019 .62771 L .20281 .54003 L p 0 0 0 r
F P
0 g
s
.32115 .85845 m .21717 .72893 L .17019 .62771 L p 0 .072 .63 r
F P
0 g
s
.25639 .46664 m .28437 .38679 L .42526 .35515 L closepath p .252 0 .057 r
F P
0 g
s
.17019 .62771 m .27919 .76176 L .32115 .85845 L p 0 .072 .63 r
F P
0 g
s
.27919 .76176 m .46543 .85079 L .32115 .85845 L closepath p .427 .663 .96 r
F P
0 g
s
.17019 .62771 m .25639 .46664 L .37278 .59869 L p .461 .38 .678 r
F P
0 g
s
.37278 .59869 m .27919 .76176 L .17019 .62771 L p .461 .38 .678 r
F P
0 g
s
.54634 .48017 m .42526 .35515 L .62891 .34042 L closepath p .682 .402 .491 r
F P
0 g
s
.42526 .35515 m .54634 .48017 L .37278 .59869 L p .651 .405 .535 r
F P
0 g
s
.37278 .59869 m .25639 .46664 L .42526 .35515 L p .651 .405 .535 r
F P
0 g
s
.46543 .85079 m .56411 .69313 L .67102 .83328 L closepath p .719 .707 .839 r
F P
0 g
s
.56411 .69313 m .46543 .85079 L .27919 .76176 L p .683 .658 .819 r
F P
0 g
s
.27919 .76176 m .37278 .59869 L .56411 .69313 L p .683 .658 .819 r
F P
0 g
s
.37278 .59869 m .54634 .48017 L .56411 .69313 L closepath p .761 .607 .687 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{267.375, 302.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt28lPG2cYx3HHHoPBrDbEQE3YMWY1YQk7IRAgW9t0lXpoC1GrpFWbKsmh
Us49VD32VCmHHnL0sdcc+yf03+ixV+p38YM9fG3eGVqpqkDyzDAz/n2ed2Y8
HntePzh68fiLb45ePHl0NHjw7Oi7x08ePR/cf/qsNCt2JRK5kiw9Zgcjavok
EikP9F+LGth/Lqcvpy+nL6fPmf7VTJdOIZ+ZGT+rUaua0XhSPH4ZianJkz/f
vFKPSFQNE2rWx2b1H9SoTc1Iw+pJWf0ds/r3kj4Eq6dl9QOz+lM1alIzZmD1
rBp6atauWf1rNYrrE2Ls5PXxT3pt9bx5ePagHpp59i+yY3K+lJzoyU4kET0p
B9rVS2E6cA5ihyD2pok9ViNdb4OKtSupOlW0BwC1egSAbQN8KkBC6k5A7HSw
2E8kNgl1NwEwCcAYAFsG+EiAVqm7FWInIDYHsZsm9qHsxg6ouw2AXDDggdSd
lrpTEDsGsXmI3TCx99RIh12FutMAjAIwCcB6BWAX7ZhjpaIFGQCGAZiqDdyt
Bfja0gMUnRimgVqrTXVKW7IADAAwC8CqAe7I3khBC/oB6Adg7hzA14J2acEQ
AFkACgCsGOBQWkCvg2EA+gC4DsANP9AmdY9DbG+w2IPqWF/dOQAyACwCsOwH
WqTuScfYJYhdMrH7ahSrdb6cAqAbgOXawG0BmqXuOYilt+QViF30xzZB3QUA
UgCsArBggD010ufLRql7EWI7IHbtnNiYxPrqXgKgHYB1AK4bYFfqjkvdqxDb
CrGbEDvvj/Wg7jUAkgBs1QZuCRCTurcgthlityG24I+NQt3bACQA2AFgzgD6
MqxRLdmFMLouPS9MXwXsQ1gcwnYhbNaE3ZSwQwjzIGwPwmb8YXcgLApht2uH
bUtYafnz42J5n9hCvcpsQ56NmvZHRVWSb/8e+GpV4l0ImzJhWxLmQZjeJfq4
vOcSEYeIvYp6fn+l2x25D2GTJmxTwhohbEfqiaow3+anGvP+2ATEbvtqVNEB
gQ0BmgHYkLrjIWI98xZ4NnYN6g4IrEvdBKxI3YlgsWsS2waxy1B3EwB03J4B
2gFYkLpbHOueMLGrEtsJsfNQd2ggBcCs1N0eLHZFYrsgdhrqDg10A5CXulPB
Ym9IbAZic1B3aKAHgFGpuztY7LLE9kLsCNQdGugDYAiAq8GAJQGyAFyTDdMb
IlafsK5BbBbq7nMEcn5gAIBeqbs/WOyixA5BbAbqDg0MA9AldQ+GiNVLRiE2
BXUHBBakbgI6pO6RELF6yTjEtkHdAYHrUncOgKTUPR4iVi/JQ2wT1B0amASg
QerOB4udl9hpiPWgbgLowm3cD8xowKsEpOoZx6orQ+3n5+qqI3peoLCCVFhQ
YTY2eIR+4nxFI4vFP/Q4ePvmfHkxySs91EeM4h966dQ/GetJrOsxVBlrF6mP
MCp6DoBGAXLBgFmpuwCxzRI7FiLWoe4WAVzPNXWAWQDaBRhyfHGNGWDGsQWd
AgxcHKAWdAlwzXETjdXeRDMAXBUgGwKInp5/qmN7Jdb1cmPMd8x3vC7XXnVi
LgNZNdSzMiEBdQIxCAID0gLXK8k6QB6AYQHSwYACABMAjArQGQbwTgGDjIOR
E8P184015tkYAyMvRqvji2y00ohXG3aDjQA0LVAyGHSdGzMMxpwY9AH8XIMb
MwTQvECuXyVYaKEONADQokANYaBYJVR6C1bD6tNWFtBlQb2LozFA+wBdFZS+
rKIvT+zBvujYUkLX5URX5+2EAGpVDwBbeljdFvo21L73LjlSmX+H8oDqPod6
85u+XkTKXq4vO1LpmlRcqPJDkYfByDiQKYfWlR6lA0oNqzcufdte+UWNQ4s7
HfnYxXlqfQfwm8DHgb8FfL423wB8m2PrG4CnmzCWX3HkWx1bnwD+ZjC+Efik
Y+uJpxtm9p7DqmPrmx35ZuDpNmAdnlrf5LjxW4DfAN7evllz5BsdWx+QX3fk
Gxxb3wY83Zy2N9M2HHnPke8Anm65W37T8dBz5TuBvwG8vSu55chHHfnUxfnG
8pn/lFfT26B1gUb9PuzN4W2HXR2pQXUDRT1XKu9D16HqbcMMUNQLp/L+Oe5C
sw2/Kv5llkXMpZtP6wmm3TrngFFa6RGxfTDOer3gUd+oQlCvNNToMqBvAUo9
viy664jG1FDPWgA0C+gMoLYzyB6gcUAbpKUFQPuDobcB9QBNCDoD6ACg1PvQ
dtfZd0SbBJ0CdBBQ6lNp0QNAY4AmBZ0AdBhQ6ilaB6WWtgg6BugIoBOA2u5W
h44tbRN0BNBRQKmrrUXvOKLt8pIZAHQcUOqXbDvE3QU0CmhKWpoFNBcMveeI
pgXtA3QCUOribXsU3tcj/g4kI1AGoEmAhsNBvQJ1ATQNkP4FgA6zXV0f1Inv
k/iUY3yXGurfI9gO32/r0ZnvvbKS3A7Js5B8+sMIc4a0v484k9wvya2QPAfJ
p7/QMNsi8q7/eNKvjfKrpKnWLk2qWR9WRpwpbkiKa6j1TqF/GfK5SXkIhYxI
hFfrWlf/WuRbE/GeGtnzWPmJpecU7f0x9RxP2JfmOe+XWfsFu3rt6B3Wof79
0az0QUVtVe9JaTXrF7OS3hrNakbRzNBH9n/oxzyX05fT/9fpyJW/AWgX9gg=
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 266.375}, {301.938, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"f767f3e2-4617-431a-94e1-02c6684af4c3"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(68\\). \\!\\(\\\"augmented truncated dodecahedron (J68)\\\"\
\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"6476284a-b79c-4927-bbaa-29af7f41809e"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.08196
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0553378 1.16005 -3.33067e-16 1.16005 [
[ 0 0 0 0 ]
[ 1 1.08196 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.08196 L
0 1.08196 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.48664 .56798 m .47144 .66097 L p .74876 .69243 L .622 .476 .663 r
F P
0 g
s
.54925 .49753 m .48664 .56798 L p .74876 .69243 L .622 .476 .663 r
F P
0 g
s
.47144 .66097 m .48664 .56798 L .39933 .59926 L closepath p .75 .598 .687 r
F P
0 g
s
.48664 .56798 m .54925 .49753 L p .52624 .34068 L .783 .731 .805 r
F P
0 g
s
.39933 .59926 m .48664 .56798 L p .52624 .34068 L .783 .731 .805 r
F P
0 g
s
.63753 .47515 m .54925 .49753 L p .74876 .69243 L .622 .476 .663 r
F P
0 g
s
.63753 .47515 m .56521 .41162 L .54925 .49753 L closepath p .652 .604 .788 r
F P
0 g
s
.54925 .49753 m .56521 .41162 L .52624 .34068 L p .783 .731 .805 r
F P
0 g
s
.47144 .66097 m .50981 .74354 L p .74876 .69243 L .622 .476 .663 r
F P
0 g
s
.47144 .66097 m .39933 .59926 L p .44144 .85981 L .826 .558 .533 r
F P
0 g
s
.50981 .74354 m .47144 .66097 L p .44144 .85981 L .826 .558 .533 r
F P
0 g
s
.39933 .59926 m .31711 .57931 L p .44144 .85981 L .826 .558 .533 r
F P
0 g
s
.31711 .57931 m .39933 .59926 L p .52624 .34068 L .783 .731 .805 r
F P
0 g
s
.71963 .51106 m .63753 .47515 L p .74876 .69243 L .622 .476 .663 r
F P
0 g
s
.63753 .47515 m .71963 .51106 L p .77028 .38091 L .429 .56 .885 r
F P
0 g
s
.56521 .41162 m .63753 .47515 L p .77028 .38091 L .429 .56 .885 r
F P
0 g
s
.49988 .81945 m .58957 .78448 L .50981 .74354 L closepath p .675 .415 .52 r
F P
0 g
s
.50981 .74354 m .58957 .78448 L p .74876 .69243 L .622 .476 .663 r
F P
0 g
s
.44144 .85981 m .49988 .81945 L .50981 .74354 L p .826 .558 .533 r
F P
0 g
s
.52624 .34068 m .56521 .41162 L p .77028 .38091 L .429 .56 .885 r
F P
0 g
s
.31711 .57931 m .25347 .61088 L p .44144 .85981 L .826 .558 .533 r
F P
0 g
s
.25347 .61088 m .31711 .57931 L .27096 .51235 L closepath p .896 .743 .684 r
F P
0 g
s
.27096 .51235 m .31711 .57931 L p .52624 .34068 L .783 .731 .805 r
F P
0 g
s
.74876 .69243 m .76313 .59411 L .71963 .51106 L p .622 .476 .663 r
F P
0 g
s
.76313 .59411 m .78436 .50585 L .71963 .51106 L closepath p .437 .393 .711 r
F P
0 g
s
.71963 .51106 m .78436 .50585 L p .77028 .38091 L .429 .56 .885 r
F P
0 g
s
.68154 .76569 m .58957 .78448 L .49988 .81945 L p .347 0 .015 r
F P
0 g
s
.58957 .78448 m .68154 .76569 L .74876 .69243 L p .622 .476 .663 r
F P
0 g
s
.74591 .76987 m .68154 .76569 L p .49988 .81945 L .347 0 .015 r
F P
0 g
s
.75655 .79785 m .74591 .76987 L p .49988 .81945 L .347 0 .015 r
F P
0 g
s
.70233 .84116 m .75655 .79785 L p .49988 .81945 L .347 0 .015 r
F P
0 g
s
.60106 .88193 m .70233 .84116 L p .49988 .81945 L .347 0 .015 r
F P
0 g
s
.49775 .90133 m .60106 .88193 L p .49988 .81945 L .347 0 .015 r
F P
0 g
s
.43797 .89174 m .49775 .90133 L p .49988 .81945 L .347 0 .015 r
F P
0 g
s
.49988 .81945 m .44144 .85981 L .43797 .89174 L p .347 0 .015 r
F P
0 g
s
.53675 .28662 m .44357 .31357 L .52624 .34068 L closepath p .656 .784 .942 r
F P
0 g
s
.53675 .28662 m .52624 .34068 L p .77028 .38091 L .429 .56 .885 r
F P
0 g
s
.28202 .42174 m .27096 .51235 L p .52624 .34068 L .783 .731 .805 r
F P
0 g
s
.34878 .3444 m .28202 .42174 L p .52624 .34068 L .783 .731 .805 r
F P
0 g
s
.52624 .34068 m .44357 .31357 L .34878 .3444 L p .783 .731 .805 r
F P
0 g
s
.80583 .45737 m .78436 .50585 L .76313 .59411 L p 0 0 .211 r
F P
0 g
s
.8196 .47117 m .80583 .45737 L p .76313 .59411 L 0 0 .211 r
F P
0 g
s
.8189 .54951 m .8196 .47117 L p .76313 .59411 L 0 0 .211 r
F P
0 g
s
.80272 .66263 m .8189 .54951 L p .76313 .59411 L 0 0 .211 r
F P
0 g
s
.77822 .75907 m .80272 .66263 L p .76313 .59411 L 0 0 .211 r
F P
0 g
s
.75655 .79785 m .77822 .75907 L p .76313 .59411 L 0 0 .211 r
F P
0 g
s
.74591 .76987 m .75655 .79785 L p .76313 .59411 L 0 0 .211 r
F P
0 g
s
.76313 .59411 m .74876 .69243 L .74591 .76987 L p 0 0 .211 r
F P
0 g
s
.74876 .69243 m .68154 .76569 L .74591 .76987 L closepath p .424 .204 .474 r
F P
0 g
s
.27096 .51235 m .28202 .42174 L p .21975 .66762 L .869 .8 .31 r
F P
0 g
s
.25347 .61088 m .27096 .51235 L p .21975 .66762 L .869 .8 .31 r
F P
0 g
s
.25347 .61088 m .23498 .68632 L p .44144 .85981 L .826 .558 .533 r
F P
0 g
s
.23498 .68632 m .25347 .61088 L p .21975 .66762 L .869 .8 .31 r
F P
0 g
s
.78436 .50585 m .80583 .45737 L .77028 .38091 L p .429 .56 .885 r
F P
0 g
s
.44357 .31357 m .53675 .28662 L p .43149 .33763 L 0 0 0 r
F P
0 g
s
.34878 .3444 m .44357 .31357 L p .43149 .33763 L 0 0 0 r
F P
0 g
s
.28202 .42174 m .28264 .36937 L p .21975 .66762 L .869 .8 .31 r
F P
0 g
s
.28264 .36937 m .28202 .42174 L .34878 .3444 L closepath p .873 .953 .858 r
F P
0 g
s
.44144 .85981 m .35387 .84487 L .43797 .89174 L closepath p .683 .183 .051 r
F P
0 g
s
.27324 .77743 m .35387 .84487 L .44144 .85981 L p .826 .558 .533 r
F P
0 g
s
.23498 .68632 m .27324 .77743 L p .44144 .85981 L .826 .558 .533 r
F P
0 g
s
.28264 .36937 m .34878 .3444 L p .43149 .33763 L 0 0 0 r
F P
0 g
s
.59808 .27244 m .53675 .28662 L p .77028 .38091 L .429 .56 .885 r
F P
0 g
s
.53675 .28662 m .59808 .27244 L p .43149 .33763 L 0 0 0 r
F P
0 g
s
.22178 .7106 m .27324 .77743 L .23498 .68632 L closepath p .926 .542 .161 r
F P
0 g
s
.21975 .66762 m .22178 .7106 L .23498 .68632 L p .869 .8 .31 r
F P
0 g
s
.35387 .84487 m .27324 .77743 L .22178 .7106 L p .219 .491 .898 r
F P
0 g
s
.43797 .89174 m .35387 .84487 L p .22178 .7106 L .219 .491 .898 r
F P
0 g
s
.77028 .38091 m .80583 .45737 L .8196 .47117 L closepath p 0 0 .448 r
F P
0 g
s
.28264 .36937 m .27138 .37906 L p .21975 .66762 L .869 .8 .31 r
F P
0 g
s
.27138 .37906 m .28264 .36937 L p .43149 .33763 L 0 0 0 r
F P
0 g
s
.49775 .90133 m .43797 .89174 L p .22178 .7106 L .219 .491 .898 r
F P
0 g
s
.77028 .38091 m .68906 .30836 L .59808 .27244 L p .429 .56 .885 r
F P
0 g
s
.68906 .30836 m .60201 .27751 L .59808 .27244 L closepath p .32 0 0 r
F P
0 g
s
.59808 .27244 m .60201 .27751 L p .43149 .33763 L 0 0 0 r
F P
0 g
s
.75655 .79785 m .70233 .84116 L .77822 .75907 L closepath p .724 .965 .701 r
F P
0 g
s
.50831 .86595 m .49775 .90133 L p .22178 .7106 L .219 .491 .898 r
F P
0 g
s
.45912 .79488 m .50831 .86595 L p .22178 .7106 L .219 .491 .898 r
F P
0 g
s
.36722 .71716 m .45912 .79488 L p .22178 .7106 L .219 .491 .898 r
F P
0 g
s
.27396 .66823 m .36722 .71716 L p .22178 .7106 L .219 .491 .898 r
F P
0 g
s
.22178 .7106 m .21975 .66762 L .27396 .66823 L p .219 .491 .898 r
F P
0 g
s
.77028 .38091 m .8196 .47117 L .79651 .43868 L p .699 .289 0 r
F P
0 g
s
.74534 .34486 m .68906 .30836 L .77028 .38091 L closepath p 0 .24 .734 r
F P
0 g
s
.79651 .43868 m .74534 .34486 L .77028 .38091 L p .699 .289 0 r
F P
0 g
s
.60201 .27751 m .68906 .30836 L .74534 .34486 L p .52 0 0 r
F P
0 g
s
.8189 .54951 m .79651 .43868 L .8196 .47117 L closepath p .95 .695 .237 r
F P
0 g
s
.49775 .90133 m .50831 .86595 L .60106 .88193 L closepath p .546 .839 .998 r
F P
0 g
s
.27138 .37906 m .25145 .45481 L p .21975 .66762 L .869 .8 .31 r
F P
0 g
s
.32676 .36755 m .25145 .45481 L .27138 .37906 L closepath p .2 0 .278 r
F P
0 g
s
.43149 .33763 m .32676 .36755 L .27138 .37906 L p 0 0 0 r
F P
0 g
s
.77822 .75907 m .70233 .84116 L .60106 .88193 L p .802 .777 .83 r
F P
0 g
s
.74534 .34486 m .6563 .31376 L .60201 .27751 L p .52 0 0 r
F P
0 g
s
.6563 .31376 m .53937 .30228 L .60201 .27751 L closepath p .56 .067 .04 r
F P
0 g
s
.60201 .27751 m .53937 .30228 L .43149 .33763 L p 0 0 0 r
F P
0 g
s
.7637 .58566 m .80272 .66263 L .77822 .75907 L p .802 .777 .83 r
F P
0 g
s
.6709 .56014 m .7637 .58566 L p .77822 .75907 L .802 .777 .83 r
F P
0 g
s
.55941 .6009 m .6709 .56014 L p .77822 .75907 L .802 .777 .83 r
F P
0 g
s
.47725 .69255 m .55941 .6009 L p .77822 .75907 L .802 .777 .83 r
F P
0 g
s
.45912 .79488 m .47725 .69255 L p .77822 .75907 L .802 .777 .83 r
F P
0 g
s
.50831 .86595 m .45912 .79488 L p .77822 .75907 L .802 .777 .83 r
F P
0 g
s
.60106 .88193 m .50831 .86595 L p .77822 .75907 L .802 .777 .83 r
F P
0 g
s
.25145 .45481 m .23112 .5682 L .21975 .66762 L p .869 .8 .31 r
F P
0 g
s
.21975 .66762 m .23112 .5682 L .27396 .66823 L closepath p .265 .27 .678 r
F P
0 g
s
.74534 .34486 m .79651 .43868 L .73975 .47076 L p .858 .531 .433 r
F P
0 g
s
.6563 .31376 m .74534 .34486 L p .73975 .47076 L .858 .531 .433 r
F P
0 g
s
.8189 .54951 m .7637 .58566 L .73975 .47076 L p .95 .761 .613 r
F P
0 g
s
.73975 .47076 m .79651 .43868 L .8189 .54951 L p .95 .761 .613 r
F P
0 g
s
.8189 .54951 m .80272 .66263 L .7637 .58566 L closepath p .959 .8 .641 r
F P
0 g
s
.23112 .5682 m .25145 .45481 L .32676 .36755 L p .595 .444 .647 r
F P
0 g
s
.27396 .66823 m .23112 .5682 L p .32676 .36755 L .595 .444 .647 r
F P
0 g
s
.36722 .71716 m .27396 .66823 L p .32676 .36755 L .595 .444 .647 r
F P
0 g
s
.47725 .69255 m .36722 .71716 L p .32676 .36755 L .595 .444 .647 r
F P
0 g
s
.55941 .6009 m .47725 .69255 L p .32676 .36755 L .595 .444 .647 r
F P
0 g
s
.57867 .47948 m .55941 .6009 L p .32676 .36755 L .595 .444 .647 r
F P
0 g
s
.52832 .37888 m .57867 .47948 L p .32676 .36755 L .595 .444 .647 r
F P
0 g
s
.32676 .36755 m .43149 .33763 L .52832 .37888 L p .595 .444 .647 r
F P
0 g
s
.52832 .37888 m .53937 .30228 L .6563 .31376 L p .683 .366 .433 r
F P
0 g
s
.53937 .30228 m .52832 .37888 L .43149 .33763 L closepath p .648 .334 .427 r
F P
0 g
s
.6563 .31376 m .64954 .39092 L .52832 .37888 L p .683 .366 .433 r
F P
0 g
s
.73975 .47076 m .64954 .39092 L .6563 .31376 L p .858 .531 .433 r
F P
0 g
s
.73975 .47076 m .7637 .58566 L .6709 .56014 L closepath p .848 .709 .709 r
F P
0 g
s
.36722 .71716 m .47725 .69255 L .45912 .79488 L closepath p .629 .611 .813 r
F P
0 g
s
.64954 .39092 m .73975 .47076 L .6709 .56014 L p .778 .599 .657 r
F P
0 g
s
.64954 .39092 m .57867 .47948 L .52832 .37888 L closepath p .702 .489 .596 r
F P
0 g
s
.6709 .56014 m .57867 .47948 L .64954 .39092 L p .778 .599 .657 r
F P
0 g
s
.57867 .47948 m .6709 .56014 L .55941 .6009 L closepath p .764 .603 .679 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{273.625, 296},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm8tz3FQWhzvdUj/dD3fc7fYjxgmQB8/EIQ4Oduz2I7bzcOIEwmsYMIHK
YyYzIQlQBdRUzWSoqSlYsJjFLMyCqixZZjvLLFlmO0v+hGyNzjlXx2r5p/aV
26agKq7Slay+9/vOudK9UtvSuZW71z6+uXL3+pWV4fnbK7euXb9yZ/jUX297
u1K7Eold3d5ycDhB22uJhF/wT5UK88uT7SfbT7Z/1e0faOXQePyz7PieVgXa
cV12/Fd3pNa+qWS57lX56D+06qIdGfrIpa2P5aPvaFWiHQX6yGtLI/6eGfr8
24dS81talWlHmWs6WtMsXPkDqfxvWlVoR5UqJ2nL0UrvSaWvJT9vRz3kvsdu
v/q7Uv3vtGrQjpoy01SJt96WSn+jVY8J/v7FG4z88Z0bnt0ruXu6gMxV2WXh
fEGrmoTtYUx1D8GwEpV57esQLKNBvS6wz2hVl/7fCGtQmaZdOZO4Trpe42VB
3FFEDiD2cCn7/n+Pk5YA1kMxnFvK6bLgeIvX2itTrZ19XmA3FVa2hLkKc0Gu
ZwV7Q7FVS2xWsSmN0cCuKqxmCStQmVRYKMZFwX6k2IYltqgxCnfNv74a4ooS
ByyJFSp5MM8L4o+Bk3b1zn2u3QtgQwC2W8M7JbB3FZYnWDKqCxGszmVrx80I
lsfpbvqkojGiwxwTe1mxdY22YtmPDYCdFuwlnaIGNdpiHCwHYmLkIdhNO/Zp
jAVLWB+IsSnYJZ1rDyrWZpIgYD/ATgmWxw/P9y9q6q7lgerX1E2MZ2hlLk5H
Es0RDTRlSRwAgU4K+zStMjLbeWxTyRPQkmAVX6uGo7AciMmaB2NKjsxG2CiV
rOoHsEGFTQZgppIHY2AeYI9zKfsefLlKizeCvbIgc+sWVTmgGgOqkqocoNqj
qpOiWrBUnQCqPir5Wjdkg80C7DjADnIp+x6u/sjT6rpgIlqAzpgJIBjg0lWB
v7SKxuOJTkZ1UCATb/F+kxKfuEY6bymdBNIGkLptpa9FS9NA2gTSOpBmgLTf
RuoC6TSQ1oA011Z6IlrqAOkskPYAaR5I+8LSU5bSOSDdDaRdbaVj0dIUkM4D
aTeQloC0YSNNAukCkFaAtNJW+mo86WLUnBmSVqlkwXqnHg+q3KCKF5o/zgJ8
EeBrIKd6WDTXRnTOUlQHopreHo4GRU6LKEHfDDY6CsDRAI6qJuN98PjhKn+Y
CCvXjxd9dAH48sDXD3x8/2xSIJ1ZuNKxgJJDughEWSAaBKKiJuaSIBkQzKrg
EhBkgGAICPIqyGgGrwQEoRMaqVygGgaqjKpypDKfPn4wxodjG6R7gdRRaYGl
jkqN+Gi093XgTQHv08CbDNx1mrPDRJAKRiBfOEfixZAEMTzLpaMxmAFQxkkb
4QwQXubSCQpp+1AgRz8fgbstcP9wHtnMsJ4SVX9u+/Bv6jeEQzqrdneACt0c
Hgh29IMHvCToG2MHBid4KGn7WXMjFZQYkcllwyHdVIJvQVvOXbHQueuV6GBE
WactOi98Pwqnih2PwAERDIEIUjsWgQsiGAQRuCCC0rZEkNZxMQC86cjMWyfs
mNIsSLsX6DM7o88Bfb1zfRPo3wL6PND3AH0u8qBb61H2XUBfBfr8zuiLQF8B
+kJU5yfX4ktLQFreaWkZSItAWozq6K1IKzqeu4CqZKOasjyPqyC/LJCWtypF
+fUAaRpIK5uMXfOTeDmevgb07q+nrwN9CuirQF/capf3Bm5AwrcMNSDqCk4S
P90PThK2ykYoT0LUgSqvOSVJhTt30vJ8ZilfT1FWuVBWpNsGKZ9QvMtZ++nh
I9ajo5fWTB0gPRwtRd27W6UFkvIWGqUuyHkb9BXVd2vOaOZNac6ZTaRcCXVv
SafDhqrQZT0JMt2ytKD5DWn3OlCaoH+LRVpOBvqz2ZRRgHxZ9T2jScpNK1dL
8MVgE4ujFmNqf7P4PInMZWYj+UhsckpTeInIoSOB+qjF4bY4/L56A3yh8jUj
QJPrQMOWY9sMNc08KIOPA3x2M3wqiPdOOSpbh+jFzlUTQJUCqmWgGgOqNFCN
RKscoDoPVCd2RrUEVONA5XauOgdUE52rXKA6A1STQIUuCDFVp4FqamdUi0DV
jKcaB6oMUC0A1TRQobuIo/FU80A107kqC1RzQDXHpRtU6Z3fsXj4WYA/tX34
GYBf4NJpwbcn5wC5CciL20KeAuQzev01/9V4DcAKAHYSwM5uFTYBYEuB084/
xV7ZeSw/EDMOGp63i2fsy59p8W4YvdL8T9EOdiwaVlHYKIBdiAerKuwogC3H
g/Uo7DCAXYwHqyvsRUvY6MYR4MN6FcbPIfGHb8RD9Clin96aJdfurz4KRXYp
HnZAsQOE5fko3Tl2j2JrGm2hc+xTii0rtmSJPR6N3avYrHZCdQvY/cpJani9
8Th8yT8QOCixWvPd8UHOST73WjOhATjoHDb//p+M4tQt4zGcqShObQuc0EHb
D7A98bDNKCz3PYKhPjPPaUwD2AEQY3c87IwlttI5Fh0o29FlsLOW2GI87FwU
lg8UgqHUwaNDPuwQiDEfDztvic11jn0OYLMAi66f5kmxBUssuhYs662VeXxw
0RLmAtgFhZmHHfmZVfP3GP8Io4bB25b/PZZ/HRvEWct40PVzCWAnBXsuEusG
sbxQMxSheZZ2ySLCdYSjCIMxlPNRFO60JdzWPHZ8YZMIWm7KTYI+xU/GoJb1
iCHA6VAveIv8kTD4HHmbKQN9owkEITOOeZ1kc8o8OCYyu3g3ZO1n2tZvbq0I
82LAZUvELJW8y7ye8KZlw2kdLebViLdAw/2gYVMbnpaGb1s2nNSGZ6Qhv/yA
unZCa5r3S/5AK5RF8O9I/rxk2rwX1eYEaCMDUt7tQLGPgTYy8hLvR7UZ1SzM
a0Ef6Nn9DKg+okdSzmN5Jczcp2+sfljp5mWqj8BhGAYNX1CPHHF5SY1Je0H1
Q+oxb4hd1epPger7lW7eP7uu1YdA9X1a3bzT9ietzjf+jjT0Q7gilW6CVPu5
lEH9zaM1f+HH4GtqMS/k/UUtfYGgTBPvAuiV/AJCl5qvScNb2rAXNCyr0dGG
N6ThbW1YAw17qOTYJbXEXZBhN2hYoZKn1E+k4aegYQU0zGuon0nDz2nlStIb
qzta/Supzqss7UiB6sz5h9T8J6246b9kB4+e39Bbn0+2f7/biV2/ABnKgt8=
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.625}, {295., 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"904c1d44-98e5-4145-b6f5-151d1a0a1ada"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(69\\). \\!\\(\\\"parabiaugmented truncated dodecahedron \
(J69)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"408eb24c-39e3-43ee-8790-e240fc986d59"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.085
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0569464 1.15247 4.44089e-16 1.15247 [
[ 0 0 0 0 ]
[ 1 1.085 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.085 L
0 1.085 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.53353 .62522 m .61101 .56333 L .51878 .52697 L closepath p .684 .561 .71 r
F P
0 g
s
.51878 .52697 m .45624 .45337 L p .32405 .74491 L .804 .643 .683 r
F P
0 g
s
.53353 .62522 m .51878 .52697 L p .32405 .74491 L .804 .643 .683 r
F P
0 g
s
.44622 .36697 m .45624 .45337 L .51878 .52697 L p .616 .613 .825 r
F P
0 g
s
.49604 .29924 m .44622 .36697 L p .51878 .52697 L .616 .613 .825 r
F P
0 g
s
.59024 .27896 m .49604 .29924 L p .51878 .52697 L .616 .613 .825 r
F P
0 g
s
.69125 .31743 m .59024 .27896 L p .51878 .52697 L .616 .613 .825 r
F P
0 g
s
.75577 .39886 m .69125 .31743 L p .51878 .52697 L .616 .613 .825 r
F P
0 g
s
.75825 .48798 m .75577 .39886 L p .51878 .52697 L .616 .613 .825 r
F P
0 g
s
.70178 .54958 m .75825 .48798 L p .51878 .52697 L .616 .613 .825 r
F P
0 g
s
.51878 .52697 m .61101 .56333 L .70178 .54958 L p .616 .613 .825 r
F P
0 g
s
.53353 .62522 m .49532 .71383 L p .67459 .84037 L .579 .384 .581 r
F P
0 g
s
.61101 .56333 m .53353 .62522 L p .67459 .84037 L .579 .384 .581 r
F P
0 g
s
.49532 .71383 m .53353 .62522 L p .32405 .74491 L .804 .643 .683 r
F P
0 g
s
.70178 .54958 m .61101 .56333 L p .67459 .84037 L .579 .384 .581 r
F P
0 g
s
.45624 .45337 m .3669 .43181 L p .32405 .74491 L .804 .643 .683 r
F P
0 g
s
.3669 .43181 m .45624 .45337 L .44622 .36697 L closepath p .765 .722 .812 r
F P
0 g
s
.41617 .76044 m .51106 .79912 L .49532 .71383 L closepath p .727 .482 .557 r
F P
0 g
s
.49532 .71383 m .51106 .79912 L p .67459 .84037 L .579 .384 .581 r
F P
0 g
s
.32405 .74491 m .41617 .76044 L .49532 .71383 L p .804 .643 .683 r
F P
0 g
s
.77382 .59152 m .75825 .48798 L .70178 .54958 L closepath p .493 .425 .709 r
F P
0 g
s
.77382 .59152 m .70178 .54958 L p .67459 .84037 L .579 .384 .581 r
F P
0 g
s
.3669 .43181 m .44622 .36697 L .38999 .30548 L p .776 .748 .827 r
F P
0 g
s
.38999 .30548 m .3085 .37259 L .3669 .43181 L p .776 .748 .827 r
F P
0 g
s
.3669 .43181 m .3085 .37259 L .28338 .4734 L closepath p .837 .747 .765 r
F P
0 g
s
.3669 .43181 m .28338 .4734 L p .32405 .74491 L .804 .643 .683 r
F P
0 g
s
.57856 .84893 m .51106 .79912 L .41617 .76044 L p .705 .239 .142 r
F P
0 g
s
.59316 .89354 m .57856 .84893 L p .41617 .76044 L .705 .239 .142 r
F P
0 g
s
.54275 .9149 m .59316 .89354 L p .41617 .76044 L .705 .239 .142 r
F P
0 g
s
.44176 .90106 m .54275 .9149 L p .41617 .76044 L .705 .239 .142 r
F P
0 g
s
.3333 .85615 m .44176 .90106 L p .41617 .76044 L .705 .239 .142 r
F P
0 g
s
.26634 .80084 m .3333 .85615 L p .41617 .76044 L .705 .239 .142 r
F P
0 g
s
.26558 .75904 m .26634 .80084 L p .41617 .76044 L .705 .239 .142 r
F P
0 g
s
.41617 .76044 m .32405 .74491 L .26558 .75904 L p .705 .239 .142 r
F P
0 g
s
.38999 .30548 m .44622 .36697 L .49604 .29924 L closepath p .697 .732 .878 r
F P
0 g
s
.51106 .79912 m .57856 .84893 L .67459 .84037 L p .579 .384 .581 r
F P
0 g
s
.75825 .48798 m .77382 .59152 L p .83794 .58912 L 0 0 .464 r
F P
0 g
s
.75577 .39886 m .75825 .48798 L p .83794 .58912 L 0 0 .464 r
F P
0 g
s
.79763 .67712 m .77382 .59152 L p .67459 .84037 L .579 .384 .581 r
F P
0 g
s
.77382 .59152 m .79763 .67712 L p .83794 .58912 L 0 0 .464 r
F P
0 g
s
.22328 .47652 m .28338 .4734 L .3085 .37259 L p .923 .843 .747 r
F P
0 g
s
.22328 .47652 m .23968 .56493 L .28338 .4734 L closepath p .928 .819 .718 r
F P
0 g
s
.28338 .4734 m .23968 .56493 L p .32405 .74491 L .804 .643 .683 r
F P
0 g
s
.23968 .56493 m .25542 .67001 L .32405 .74491 L p .804 .643 .683 r
F P
0 g
s
.32405 .74491 m .25542 .67001 L .26558 .75904 L closepath p .894 .601 .484 r
F P
0 g
s
.3085 .37259 m .24886 .37162 L .22328 .47652 L p .923 .843 .747 r
F P
0 g
s
.24886 .37162 m .3085 .37259 L .38999 .30548 L p .823 .943 .903 r
F P
0 g
s
.49604 .29924 m .49681 .25179 L .38607 .25823 L p .63 .816 .972 r
F P
0 g
s
.38607 .25823 m .38999 .30548 L .49604 .29924 L p .63 .816 .972 r
F P
0 g
s
.49681 .25179 m .49604 .29924 L .59024 .27896 L closepath p .592 .785 .972 r
F P
0 g
s
.67459 .84037 m .57856 .84893 L .59316 .89354 L closepath p .481 .104 .246 r
F P
0 g
s
.25542 .67001 m .23968 .56493 L .22328 .47652 L p .811 .578 .02 r
F P
0 g
s
.26558 .75904 m .25542 .67001 L p .22328 .47652 L .811 .578 .02 r
F P
0 g
s
.29605 .29928 m .24886 .37162 L p .38999 .30548 L .823 .943 .903 r
F P
0 g
s
.38999 .30548 m .38607 .25823 L .29605 .29928 L p .823 .943 .903 r
F P
0 g
s
.76817 .35524 m .69125 .31743 L .75577 .39886 L closepath p .264 .461 .866 r
F P
0 g
s
.76817 .35524 m .75577 .39886 L p .83794 .58912 L 0 0 .464 r
F P
0 g
s
.82224 .7146 m .79763 .67712 L .75987 .7738 L closepath p .184 0 .361 r
F P
0 g
s
.67459 .84037 m .75987 .7738 L .79763 .67712 L p .579 .384 .581 r
F P
0 g
s
.79763 .67712 m .82224 .7146 L p .83794 .58912 L 0 0 .464 r
F P
0 g
s
.59024 .27896 m .69125 .31743 L p .52929 .30554 L .505 0 0 r
F P
0 g
s
.49681 .25179 m .59024 .27896 L p .52929 .30554 L .505 0 0 r
F P
0 g
s
.67459 .84037 m .59316 .89354 L .65784 .90698 L p .398 0 .154 r
F P
0 g
s
.65784 .90698 m .74106 .85137 L .67459 .84037 L p .398 0 .154 r
F P
0 g
s
.74106 .85137 m .75987 .7738 L .67459 .84037 L closepath p .413 .138 .383 r
F P
0 g
s
.69125 .31743 m .76817 .35524 L p .52929 .30554 L .505 0 0 r
F P
0 g
s
.82224 .7146 m .75987 .7738 L .74106 .85137 L p .097 0 .254 r
F P
0 g
s
.24886 .37162 m .21167 .43574 L .22328 .47652 L closepath p .965 .918 .577 r
F P
0 g
s
.26634 .80084 m .26558 .75904 L p .22328 .47652 L .811 .578 .02 r
F P
0 g
s
.25622 .77355 m .26634 .80084 L p .22328 .47652 L .811 .578 .02 r
F P
0 g
s
.2382 .68005 m .25622 .77355 L p .22328 .47652 L .811 .578 .02 r
F P
0 g
s
.21997 .55826 m .2382 .68005 L p .22328 .47652 L .811 .578 .02 r
F P
0 g
s
.20989 .46409 m .21997 .55826 L p .22328 .47652 L .811 .578 .02 r
F P
0 g
s
.22328 .47652 m .21167 .43574 L .20989 .46409 L p .811 .578 .02 r
F P
0 g
s
.2594 .36281 m .21167 .43574 L .24886 .37162 L p 0 0 0 r
F P
0 g
s
.24886 .37162 m .29605 .29928 L .2594 .36281 L p 0 0 0 r
F P
0 g
s
.38607 .25823 m .49681 .25179 L .44231 .24558 L closepath p .259 .76 .889 r
F P
0 g
s
.44231 .24558 m .49681 .25179 L p .52929 .30554 L .505 0 0 r
F P
0 g
s
.54275 .9149 m .65784 .90698 L .59316 .89354 L closepath p .334 0 0 r
F P
0 g
s
.29605 .29928 m .38607 .25823 L .44231 .24558 L p 0 0 0 r
F P
0 g
s
.79254 .37935 m .76817 .35524 L p .83794 .58912 L 0 0 .464 r
F P
0 g
s
.76817 .35524 m .79254 .37935 L p .52929 .30554 L .505 0 0 r
F P
0 g
s
.74106 .85137 m .80509 .79249 L .82224 .7146 L p .097 0 .254 r
F P
0 g
s
.80509 .79249 m .83835 .68371 L .82224 .7146 L closepath p 0 0 0 r
F P
0 g
s
.82224 .7146 m .83835 .68371 L .83794 .58912 L p 0 0 .464 r
F P
0 g
s
.74106 .85137 m .65784 .90698 L .66648 .88447 L p .645 .958 .773 r
F P
0 g
s
.80509 .79249 m .74106 .85137 L p .66648 .88447 L .645 .958 .773 r
F P
0 g
s
.29605 .29928 m .34985 .28806 L .2594 .36281 L closepath p .132 0 .084 r
F P
0 g
s
.44231 .24558 m .34985 .28806 L .29605 .29928 L p 0 0 0 r
F P
0 g
s
.21167 .43574 m .2594 .36281 L .20989 .46409 L closepath p 0 0 0 r
F P
0 g
s
.26634 .80084 m .25622 .77355 L .3333 .85615 L closepath p 0 .195 .71 r
F P
0 g
s
.66648 .88447 m .65784 .90698 L .54275 .9149 L p .422 .832 .973 r
F P
0 g
s
.34985 .28806 m .44231 .24558 L .45167 .26513 L closepath p .18 0 0 r
F P
0 g
s
.52929 .30554 m .45167 .26513 L .44231 .24558 L p .505 0 0 r
F P
0 g
s
.54275 .9149 m .54585 .89273 L .66648 .88447 L p .422 .832 .973 r
F P
0 g
s
.54275 .9149 m .44176 .90106 L .54585 .89273 L closepath p .365 .784 .977 r
F P
0 g
s
.79596 .69684 m .83835 .68371 L .80509 .79249 L p .968 .932 .685 r
F P
0 g
s
.80509 .79249 m .76165 .81039 L .79596 .69684 L p .968 .932 .685 r
F P
0 g
s
.66648 .88447 m .76165 .81039 L .80509 .79249 L p .645 .958 .773 r
F P
0 g
s
.83794 .58912 m .81992 .46939 L .79254 .37935 L p 0 0 .464 r
F P
0 g
s
.81992 .46939 m .74808 .37857 L .79254 .37935 L closepath p .927 .553 .278 r
F P
0 g
s
.79254 .37935 m .74808 .37857 L p .52929 .30554 L .505 0 0 r
F P
0 g
s
.83835 .68371 m .79596 .69684 L .83794 .58912 L closepath p .983 .9 .649 r
F P
0 g
s
.2594 .36281 m .34985 .28806 L .45167 .26513 L p .526 .31 .529 r
F P
0 g
s
.20989 .46409 m .2594 .36281 L p .45167 .26513 L .526 .31 .529 r
F P
0 g
s
.3333 .85615 m .25622 .77355 L .2382 .68005 L p .577 .619 .858 r
F P
0 g
s
.44176 .90106 m .3333 .85615 L p .2382 .68005 L .577 .619 .858 r
F P
0 g
s
.54585 .89273 m .44176 .90106 L p .2382 .68005 L .577 .619 .858 r
F P
0 g
s
.21997 .55826 m .20989 .46409 L p .45167 .26513 L .526 .31 .529 r
F P
0 g
s
.66648 .88447 m .54585 .89273 L .60815 .83071 L closepath p .67 .788 .937 r
F P
0 g
s
.76165 .81039 m .66648 .88447 L .60815 .83071 L p .794 .811 .866 r
F P
0 g
s
.64583 .3502 m .74808 .37857 L .81992 .46939 L p .831 .661 .672 r
F P
0 g
s
.5501 .39937 m .64583 .3502 L p .81992 .46939 L .831 .661 .672 r
F P
0 g
s
.50045 .51141 m .5501 .39937 L p .81992 .46939 L .831 .661 .672 r
F P
0 g
s
.51996 .64144 m .50045 .51141 L p .81992 .46939 L .831 .661 .672 r
F P
0 g
s
.60039 .73429 m .51996 .64144 L p .81992 .46939 L .831 .661 .672 r
F P
0 g
s
.70646 .75363 m .60039 .73429 L p .81992 .46939 L .831 .661 .672 r
F P
0 g
s
.79596 .69684 m .70646 .75363 L p .81992 .46939 L .831 .661 .672 r
F P
0 g
s
.81992 .46939 m .83794 .58912 L .79596 .69684 L p .831 .661 .672 r
F P
0 g
s
.2908 .60961 m .21997 .55826 L p .45167 .26513 L .526 .31 .529 r
F P
0 g
s
.39914 .59314 m .2908 .60961 L p .45167 .26513 L .526 .31 .529 r
F P
0 g
s
.50045 .51141 m .39914 .59314 L p .45167 .26513 L .526 .31 .529 r
F P
0 g
s
.5501 .39937 m .50045 .51141 L p .45167 .26513 L .526 .31 .529 r
F P
0 g
s
.45167 .26513 m .52929 .30554 L .5501 .39937 L p .526 .31 .529 r
F P
0 g
s
.60815 .83071 m .54585 .89273 L p .2382 .68005 L .577 .619 .858 r
F P
0 g
s
.76165 .81039 m .70646 .75363 L .79596 .69684 L closepath p .88 .81 .776 r
F P
0 g
s
.60815 .83071 m .70646 .75363 L .76165 .81039 L p .794 .811 .866 r
F P
0 g
s
.74808 .37857 m .64583 .3502 L .52929 .30554 L p .505 0 0 r
F P
0 g
s
.21997 .55826 m .2908 .60961 L .2382 .68005 L closepath p .375 .339 .691 r
F P
0 g
s
.60039 .73429 m .60815 .83071 L p .2382 .68005 L .577 .619 .858 r
F P
0 g
s
.51996 .64144 m .60039 .73429 L p .2382 .68005 L .577 .619 .858 r
F P
0 g
s
.39914 .59314 m .51996 .64144 L p .2382 .68005 L .577 .619 .858 r
F P
0 g
s
.2382 .68005 m .2908 .60961 L .39914 .59314 L p .577 .619 .858 r
F P
0 g
s
.52929 .30554 m .64583 .3502 L .5501 .39937 L closepath p .727 .437 .488 r
F P
0 g
s
.70646 .75363 m .60815 .83071 L .60039 .73429 L closepath p .781 .773 .846 r
F P
0 g
s
.50045 .51141 m .51996 .64144 L .39914 .59314 L closepath p .677 .556 .71 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{273.25, 296.438},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm0tsHEUaxzvT3fOyM+OxY8cOBAxEAYPzMElwEjtO/I7f7zwcWNY8skmW
XdjAol0tByQjrbSIAxLHPXL0ca8cc/SRa44cc+Q69PdV9TfdPf8aV3uciJVi
qavH3V/9fl9V9XOme2Hri3sf/2Xri/sfbvVOP9z67N79Dz/vnfr0YbDIPeQ4
hyrB9EavQ5+rjhMW/NdOhf7n+efnn59/jn3+kmY52l9+UAv+RrMs70ButU/t
StVt/i8oOfI7FfkJzQq0wKPAIECHcnieSub8W4Xfo1kLLciC8BKVvOgbFX5X
wvMgvEKlR4u+VuEfSXiBwnlVpwR9pYI+kKCcBHnV7dntDH06Kin8U4X/kWZF
yZjDixLeLfS/q/A/SLgn4W0SfkzoD1X4HUmG+5lXdUn4CxL+qQq/LeGRcaH/
wnBd8UWp+ImqeJNmJVrwigQdpyD+9EAFbdCslRa8Hg9i0p9U0Jqk0C9BLwnp
YxW0IhuUV+112sJxm92myTkVr8grP1AVl2nmqgGvr3hWKr4sFd+PVNThQUWu
nKWSwy9IxV5J9T1VcclUMeFmhF7204N/1Xq9lsqmIi7SLKM2sHrOOwlOMAWc
oEykdysCS6TnA+wgwHpUuvEcNxR2AWA96a4hAMvGYRy3pmDz0mCUGYIVpME1
2EoElsjMBdhhgG2RHGtbpBpfZ05yRFvkFQArSY41mOo2Z1ZgrvTZNYBok3xq
+9qcQszEEYl8RgGsXWC1vft6EpYBsDEA65TG1TKbUrDrDWHjAHY0nhnXnVCw
aZr5il5fsYdKT450XHEsUlG30WDUo/nzzo4rx1Y9FIyYEsQsQBwRRIEQnhzN
dZz+CzYNhk0KbM40NgwrSz5dADYcgXH4PIBVuFTLAhhNgSDMsQNghxR2QnJE
2LLk2CM5VgDssoKNC2wBwA5Hdo4wsxKAXUrCFgGsKLATklkrgF1UsDGBLQFY
XmB9BONz3iWbilmp2M9drtY++XaUpmAjoTKez6DCjgp22XQQZuwZgM2bsbwV
eyasCzaSs5aCdyICXrMKz0nBf+cBMWcmXpWUmcgxgwCR3QPhqpNLLamwhQiG
8rmgYCOSD4JdtMwsCjNmdhnAfDPsSsPMhixh5yMwY2ZXAMwzw4YbZpYSxgcm
3wQbsYSdi8CMmV0DMNcMu9wws1EAy+wBM2Y2bgl7W8EuNcxsPzBjZpNc+lEY
Tw7v+haAqQaAcxEA11oHgGkuvRgA1UXymURXJKUZk3QGS99O1kXSOSCNVkxc
Lq0CxDyVmaQxUXEFVFyUigPpKi5Fkg43kDNPFbEMEMvPHLEEEKsAcTqyGycQ
i80jFgBi7f8RMQ8Q688cMSv38rdAxVPmijMR9863/+NdNyVC3Yt4gtCYlJRp
Lv0YZZ8JTSXaFEzB6YDKeB/fSIedkD7OAthGOtg4yBFhUY79CjsEsKMAm2se
ew1g881jR6RHW5qHXQE5HgB2GGBbm8cOAWzJEvtWBFv31VQIK+8Dpldtrqrd
7qIMT3tzsGByal85JhI9EDaV8Q4eAKqOdKphS9UZoDrSvMqlkrut9t3w0eax
PmhBH2hBt6XqTbMqKy14Awh6mhfkQVtOANWx5lUFactrQPBC84IW0Bb+8YJ/
KjpuOuXoL2eqcs9rge2gMqfOZD/89zGvRF1kJWiVjmkVbBth9W9B+8SWQN4Z
EfRI3l1AELuE++VHPpg1UJWp9NTQhnmj/Xc/WL0swNLknJS8K0CwGrkHI4GW
WPZS6HhTHOiE0tgxYhrghOO0dBQ6F6Z3tADHgLSjABwrXPoxR2JQkKgIRBek
MehS6QBFg9IiH4iWEptXMAVbPJXwGIKkBSAdkta5T0eaB9IRKnkDWGlekAOC
MS7jbVkEKtesurrHyTFUjT871QRQzQOVl07lAdUUUM01r3KB6jpQzTavygDV
LFBdByq/edUcUE3vR+VHVXLxvQTwkwCfNeOvJVri8O5Yj53YB5YPKKsHBEv0
LMKOAWxuD+wNwBk1pRe9HkFJrQPYVdNGzIuCFb8+2QmzCy/JEXsDsEfAOTQk
ewTGDR+1xPNvFkzPAthbZhjqVP6dR5+pU8FuAlj0F6hfdh9xTxbTYW8B7AW5
6MwQVq+lASJ0Dgj60wnOicAFgrxZMGYpGEh0jJI0rboNVKelLVnLzjplFmwC
QT9oi2/ZlgaqO0DVJ23JNy94FwhOiqCYTjBuKTgBOgup0LicNqvek2u0XmlB
q2UL9sLqA9ejR4/Die9ie0BLDkzpRpVBZ4TSirSubNlpZ9KpDlPpqw0gVLVZ
tkqrJvbYFEJVu7TKBV35lKTdVPKiDssOPLsPgV62u/uYD/ntlm1poEJj1cWl
L6pwcnhDeSrKI1TqJwEDVWLMSumkk5Zd2pHoUhJngf6w5YgOpNO3A30e6Fss
W59SXwH6ItDbHrBT6ssy4iUgLVh2uf4hfApI7wBpCbS5DPQ5yzZH9dwW1NLD
QFoBUnQZ0UA6LVLU0hbp3k6gQpcRqHvPRVR6lTOgbpI2gbQIWtoF9B7Q8yW2
/gEkIvVqUiW+DbwF4O0GXnRVy/cJvEg/Pld7jJUilbTuQjw054H5GJd+1CwX
6Z60MlP98ddH+sHEWdC/yJaVQX2JHV7MwdAYPjGauoFzljYPtO1lKn11bq0X
6ObMA8ENIHCB4JXIsAUCLalX6SczF4BqA19ccbe8CvAewOtnWfkhel6zDqAO
fRlux9MP2i7LtrWW6A8nTE6fBAMEf1Lf9aln3GvfJ6Rqi0asCiL6/UbY772W
sKsKtiawpUjH7Ow+4clx1IZiwVO3+kH3hryFSHKaRw8mBCXYy/TtVz1W3ZAG
W11t8wjPCzNA4AFBN2iBD1T6ufObQDUNVFmg6rJUqYtt/YZHXDUJVHmg6pBu
ywGBfvie3xaaAsQiIFZA8mhI1IWBetdFP7BfL2gFgrJJMKOI78pOOgKIJUBs
bdgJ+t2I9yXRIYBtA9ii5TCqw72zJXkPAkE7EORNO1X0HZOPJO/zAHsEYLOW
+6oW3JW8zwJBFxC44MCm3rty7ku2pwCsm0t8J4K2MQ39s2TYB6DHEhmaYPq9
or9KhidN/VmIN21dVfxMsnjVdMip0KJ89cHP1UT3o9O3xn4u+XQTtqw+EcKL
IiQbdWBSrxnqr3iCaiW19W/uhuYAwJDjAOXoQ4Lj/INm/Otyp6kuL9JvtH0l
4RUQ/iKV+rKZw7clvADCO6nkrtZv4P1HwjMg3KeyjRbdVeHfy3gEkRTFFw2O
ftfySxXEXf07esP2+eff52fn0G/x3boJ\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.25}, {295.438, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"aba6a199-44ea-4012-a95c-353c366aa54d"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(70\\). \\!\\(\\\"metabiaugmented truncated dodecahedron \
(J70)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"82ac4705-01fa-4de7-903c-33315d27dd47"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.08693
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0576268 1.15825 0 1.15825 [
[ 0 0 0 0 ]
[ 1 1.08693 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.08693 L
0 1.08693 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.63356 .44945 m .53599 .46469 L .59807 .54019 L closepath p .697 .6 .743 r
F P
0 g
s
.59807 .54019 m .68432 .57962 L .72105 .48796 L p .629 .523 .715 r
F P
0 g
s
.72105 .48796 m .63356 .44945 L .59807 .54019 L p .629 .523 .715 r
F P
0 g
s
.68432 .57962 m .59807 .54019 L .60741 .63782 L closepath p .638 .516 .698 r
F P
0 g
s
.59807 .54019 m .53599 .46469 L p .47265 .76162 L .763 .608 .687 r
F P
0 g
s
.60741 .63782 m .59807 .54019 L p .47265 .76162 L .763 .608 .687 r
F P
0 g
s
.60741 .63782 m .56022 .72225 L p .82958 .69627 L .509 .301 .533 r
F P
0 g
s
.68432 .57962 m .60741 .63782 L p .82958 .69627 L .509 .301 .533 r
F P
0 g
s
.47265 .76162 m .56022 .72225 L .60741 .63782 L p .763 .608 .687 r
F P
0 g
s
.51934 .37804 m .53599 .46469 L .63356 .44945 L p .701 .664 .81 r
F P
0 g
s
.51934 .37804 m .44316 .43926 L .53599 .46469 L closepath p .722 .677 .806 r
F P
0 g
s
.53599 .46469 m .44316 .43926 L p .47265 .76162 L .763 .608 .687 r
F P
0 g
s
.63356 .44945 m .61906 .36216 L .51934 .37804 L p .701 .664 .81 r
F P
0 g
s
.70023 .34412 m .61906 .36216 L .63356 .44945 L p .56 .563 .814 r
F P
0 g
s
.76483 .42446 m .70023 .34412 L p .63356 .44945 L .56 .563 .814 r
F P
0 g
s
.63356 .44945 m .72105 .48796 L .76483 .42446 L p .56 .563 .814 r
F P
0 g
s
.56022 .72225 m .55942 .80521 L p .82958 .69627 L .509 .301 .533 r
F P
0 g
s
.55942 .80521 m .56022 .72225 L .47265 .76162 L closepath p .694 .45 .55 r
F P
0 g
s
.72105 .48796 m .68432 .57962 L .7659 .56805 L closepath p .539 .424 .67 r
F P
0 g
s
.7659 .56805 m .68432 .57962 L p .82958 .69627 L .509 .301 .533 r
F P
0 g
s
.44316 .43926 m .51934 .37804 L p .3654 .28785 L .796 .881 .908 r
F P
0 g
s
.35366 .47502 m .44316 .43926 L p .3654 .28785 L .796 .881 .908 r
F P
0 g
s
.44316 .43926 m .35366 .47502 L p .47265 .76162 L .763 .608 .687 r
F P
0 g
s
.76483 .42446 m .72105 .48796 L .7659 .56805 L p .414 .369 .699 r
F P
0 g
s
.47265 .76162 m .37713 .73912 L p .52733 .91065 L .712 .266 .191 r
F P
0 g
s
.55942 .80521 m .47265 .76162 L p .52733 .91065 L .712 .266 .191 r
F P
0 g
s
.31147 .66183 m .37713 .73912 L .47265 .76162 L p .763 .608 .687 r
F P
0 g
s
.3026 .56015 m .31147 .66183 L p .47265 .76162 L .763 .608 .687 r
F P
0 g
s
.35366 .47502 m .3026 .56015 L p .47265 .76162 L .763 .608 .687 r
F P
0 g
s
.51934 .37804 m .61906 .36216 L .55685 .31064 L closepath p .694 .741 .887 r
F P
0 g
s
.51934 .37804 m .55685 .31064 L p .3654 .28785 L .796 .881 .908 r
F P
0 g
s
.27986 .47261 m .3026 .56015 L .35366 .47502 L closepath p .87 .764 .742 r
F P
0 g
s
.27986 .47261 m .35366 .47502 L p .3654 .28785 L .796 .881 .908 r
F P
0 g
s
.63858 .29053 m .55685 .31064 L .61906 .36216 L p .559 .71 .941 r
F P
0 g
s
.61906 .36216 m .70023 .34412 L .63858 .29053 L p .559 .71 .941 r
F P
0 g
s
.37713 .73912 m .30356 .7457 L p .52733 .91065 L .712 .266 .191 r
F P
0 g
s
.30356 .7457 m .37713 .73912 L .31147 .66183 L closepath p .856 .595 .543 r
F P
0 g
s
.55942 .80521 m .60875 .85647 L p .82958 .69627 L .509 .301 .533 r
F P
0 g
s
.60875 .85647 m .55942 .80521 L p .52733 .91065 L .712 .266 .191 r
F P
0 g
s
.23555 .61374 m .31147 .66183 L .3026 .56015 L closepath p .851 .673 .661 r
F P
0 g
s
.3026 .56015 m .27986 .47261 L .21053 .52496 L p .892 .774 .724 r
F P
0 g
s
.21053 .52496 m .23555 .61374 L .3026 .56015 L p .892 .774 .724 r
F P
0 g
s
.7659 .56805 m .81202 .5059 L .76483 .42446 L p .414 .369 .699 r
F P
0 g
s
.81202 .5059 m .7659 .56805 L .82271 .61092 L closepath p .378 .322 .668 r
F P
0 g
s
.82958 .69627 m .82271 .61092 L .7659 .56805 L p .509 .301 .533 r
F P
0 g
s
.30356 .7457 m .31147 .66183 L .23555 .61374 L p .88 .618 .539 r
F P
0 g
s
.70023 .34412 m .76483 .42446 L .80086 .41396 L p .194 .404 .84 r
F P
0 g
s
.76483 .42446 m .81202 .5059 L .80086 .41396 L closepath p .153 .245 .706 r
F P
0 g
s
.70023 .34412 m .73355 .32993 L .63858 .29053 L closepath p .251 .573 .941 r
F P
0 g
s
.80086 .41396 m .73355 .32993 L .70023 .34412 L p .194 .404 .84 r
F P
0 g
s
.63858 .29053 m .53884 .2607 L .55685 .31064 L closepath p .553 .742 .964 r
F P
0 g
s
.55685 .31064 m .53884 .2607 L p .3654 .28785 L .796 .881 .908 r
F P
0 g
s
.21053 .52496 m .27986 .47261 L .24997 .42938 L closepath p .916 .897 .794 r
F P
0 g
s
.24997 .42938 m .27986 .47261 L p .3654 .28785 L .796 .881 .908 r
F P
0 g
s
.23555 .61374 m .22522 .69839 L .30356 .7457 L p .88 .618 .539 r
F P
0 g
s
.19185 .66361 m .22522 .69839 L .23555 .61374 L p .997 .772 .447 r
F P
0 g
s
.18246 .5516 m .19185 .66361 L p .23555 .61374 L .997 .772 .447 r
F P
0 g
s
.23555 .61374 m .21053 .52496 L .18246 .5516 L p .997 .772 .447 r
F P
0 g
s
.30356 .7457 m .22522 .69839 L .28028 .78169 L closepath p .873 .483 .295 r
F P
0 g
s
.30356 .7457 m .28028 .78169 L p .52733 .91065 L .712 .266 .191 r
F P
0 g
s
.80086 .41396 m .81202 .5059 L .82271 .61092 L p .771 .57 0 r
F P
0 g
s
.59916 .89762 m .69335 .8525 L .60875 .85647 L closepath p .396 0 .116 r
F P
0 g
s
.60875 .85647 m .69335 .8525 L p .82958 .69627 L .509 .301 .533 r
F P
0 g
s
.52733 .91065 m .59916 .89762 L .60875 .85647 L p .712 .266 .191 r
F P
0 g
s
.73355 .32993 m .80086 .41396 L .79291 .36655 L closepath p .037 .318 .804 r
F P
0 g
s
.79291 .36655 m .80086 .41396 L p .82271 .61092 L .771 .57 0 r
F P
0 g
s
.79155 .38693 m .79291 .36655 L p .82271 .61092 L .771 .57 0 r
F P
0 g
s
.79822 .47528 m .79155 .38693 L p .82271 .61092 L .771 .57 0 r
F P
0 g
s
.81056 .59689 m .79822 .47528 L p .82271 .61092 L .771 .57 0 r
F P
0 g
s
.82293 .69599 m .81056 .59689 L p .82271 .61092 L .771 .57 0 r
F P
0 g
s
.69335 .8525 m .77965 .79059 L .82958 .69627 L p .509 .301 .533 r
F P
0 g
s
.82958 .69627 m .77965 .79059 L .82998 .73129 L closepath p 0 0 .039 r
F P
0 g
s
.82998 .73129 m .82293 .69599 L p .82271 .61092 L .771 .57 0 r
F P
0 g
s
.82271 .61092 m .82958 .69627 L .82998 .73129 L p .771 .57 0 r
F P
0 g
s
.53884 .2607 m .46615 .25031 L .3654 .28785 L p .796 .881 .908 r
F P
0 g
s
.46615 .25031 m .53884 .2607 L .63858 .29053 L p .556 0 0 r
F P
0 g
s
.44904 .26499 m .46615 .25031 L p .63858 .29053 L .556 0 0 r
F P
0 g
s
.50176 .30211 m .44904 .26499 L p .63858 .29053 L .556 0 0 r
F P
0 g
s
.60843 .34753 m .50176 .30211 L p .63858 .29053 L .556 0 0 r
F P
0 g
s
.72202 .38058 m .60843 .34753 L p .63858 .29053 L .556 0 0 r
F P
0 g
s
.79155 .38693 m .72202 .38058 L p .63858 .29053 L .556 0 0 r
F P
0 g
s
.79291 .36655 m .79155 .38693 L p .63858 .29053 L .556 0 0 r
F P
0 g
s
.63858 .29053 m .73355 .32993 L .79291 .36655 L p .556 0 0 r
F P
0 g
s
.18246 .5516 m .21053 .52496 L .24997 .42938 L p .881 .938 .567 r
F P
0 g
s
.24875 .74998 m .28028 .78169 L .22522 .69839 L p .728 .271 0 r
F P
0 g
s
.22522 .69839 m .19185 .66361 L .24875 .74998 L p .728 .271 0 r
F P
0 g
s
.77965 .79059 m .69335 .8525 L .59916 .89762 L p .761 .967 .929 r
F P
0 g
s
.24997 .42938 m .22334 .45194 L .18246 .5516 L p .881 .938 .567 r
F P
0 g
s
.22334 .45194 m .24997 .42938 L .28119 .35818 L closepath p .819 .94 .578 r
F P
0 g
s
.3654 .28785 m .28119 .35818 L .24997 .42938 L p .796 .881 .908 r
F P
0 g
s
.24875 .74998 m .32283 .8362 L .28028 .78169 L closepath p .613 .129 0 r
F P
0 g
s
.28028 .78169 m .32283 .8362 L p .52733 .91065 L .712 .266 .191 r
F P
0 g
s
.82998 .73129 m .77965 .79059 L p .59916 .89762 L .761 .967 .929 r
F P
0 g
s
.82293 .69599 m .82998 .73129 L p .59916 .89762 L .761 .967 .929 r
F P
0 g
s
.75403 .70201 m .82293 .69599 L p .59916 .89762 L .761 .967 .929 r
F P
0 g
s
.64735 .75109 m .75403 .70201 L p .59916 .89762 L .761 .967 .929 r
F P
0 g
s
.55043 .82247 m .64735 .75109 L p .59916 .89762 L .761 .967 .929 r
F P
0 g
s
.50603 .88362 m .55043 .82247 L p .59916 .89762 L .761 .967 .929 r
F P
0 g
s
.59916 .89762 m .52733 .91065 L .50603 .88362 L p .761 .967 .929 r
F P
0 g
s
.19185 .66361 m .18246 .5516 L .21171 .53897 L p 0 0 .515 r
F P
0 g
s
.18246 .5516 m .22334 .45194 L .21171 .53897 L closepath p 0 0 .238 r
F P
0 g
s
.3654 .28785 m .46615 .25031 L .44904 .26499 L closepath p 0 0 0 r
F P
0 g
s
.21171 .53897 m .22334 .45194 L .28119 .35818 L p .408 .173 .442 r
F P
0 g
s
.25449 .58735 m .21171 .53897 L p .28119 .35818 L .408 .173 .442 r
F P
0 g
s
.34057 .57328 m .25449 .58735 L p .28119 .35818 L .408 .173 .442 r
F P
0 g
s
.43627 .4971 m .34057 .57328 L p .28119 .35818 L .408 .173 .442 r
F P
0 g
s
.49875 .39092 m .43627 .4971 L p .28119 .35818 L .408 .173 .442 r
F P
0 g
s
.50176 .30211 m .49875 .39092 L p .28119 .35818 L .408 .173 .442 r
F P
0 g
s
.44904 .26499 m .50176 .30211 L p .28119 .35818 L .408 .173 .442 r
F P
0 g
s
.28119 .35818 m .3654 .28785 L .44904 .26499 L p .408 .173 .442 r
F P
0 g
s
.19185 .66361 m .22163 .65612 L .24875 .74998 L closepath p .014 .2 .711 r
F P
0 g
s
.21171 .53897 m .22163 .65612 L .19185 .66361 L p 0 0 .515 r
F P
0 g
s
.32283 .8362 m .41913 .88698 L .52733 .91065 L p .712 .266 .191 r
F P
0 g
s
.41913 .88698 m .32283 .8362 L .24875 .74998 L p .485 .546 .844 r
F P
0 g
s
.52733 .91065 m .41913 .88698 L .50603 .88362 L closepath p .315 .725 .978 r
F P
0 g
s
.50603 .88362 m .41913 .88698 L p .24875 .74998 L .485 .546 .844 r
F P
0 g
s
.55043 .82247 m .50603 .88362 L p .24875 .74998 L .485 .546 .844 r
F P
0 g
s
.52967 .72262 m .55043 .82247 L p .24875 .74998 L .485 .546 .844 r
F P
0 g
s
.44794 .62505 m .52967 .72262 L p .24875 .74998 L .485 .546 .844 r
F P
0 g
s
.34057 .57328 m .44794 .62505 L p .24875 .74998 L .485 .546 .844 r
F P
0 g
s
.25449 .58735 m .34057 .57328 L p .24875 .74998 L .485 .546 .844 r
F P
0 g
s
.24875 .74998 m .22163 .65612 L .25449 .58735 L p .485 .546 .844 r
F P
0 g
s
.22163 .65612 m .21171 .53897 L .25449 .58735 L closepath p .136 .131 .587 r
F P
0 g
s
.79155 .38693 m .79822 .47528 L .72202 .38058 L closepath p .9 .578 .428 r
F P
0 g
s
.82293 .69599 m .75403 .70201 L .81056 .59689 L closepath p .925 .835 .736 r
F P
0 g
s
.79822 .47528 m .81056 .59689 L p .44794 .62505 L .777 .616 .68 r
F P
0 g
s
.72202 .38058 m .79822 .47528 L p .44794 .62505 L .777 .616 .68 r
F P
0 g
s
.81056 .59689 m .75403 .70201 L p .44794 .62505 L .777 .616 .68 r
F P
0 g
s
.50176 .30211 m .60843 .34753 L .49875 .39092 L closepath p .68 .391 .478 r
F P
0 g
s
.60843 .34753 m .72202 .38058 L p .44794 .62505 L .777 .616 .68 r
F P
0 g
s
.75403 .70201 m .64735 .75109 L p .44794 .62505 L .777 .616 .68 r
F P
0 g
s
.55043 .82247 m .52967 .72262 L .64735 .75109 L closepath p .723 .711 .839 r
F P
0 g
s
.49875 .39092 m .60843 .34753 L p .44794 .62505 L .777 .616 .68 r
F P
0 g
s
.64735 .75109 m .52967 .72262 L .44794 .62505 L p .777 .616 .68 r
F P
0 g
s
.34057 .57328 m .43627 .4971 L .44794 .62505 L closepath p .613 .494 .694 r
F P
0 g
s
.44794 .62505 m .43627 .4971 L .49875 .39092 L p .777 .616 .68 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{273, 296.688},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm0tzE1cWxxupJctPXjbGYBMRA8bEGGRjjN/Y+A2Ox4xjQng4xmFCGCZk
SGZSCUnVzLhqKpVUzWxY5iNkyZZlPkK2WWbJMltH55zbR92t/xVXljyVqcJV
fbvd95zf/9xX95V079LGZw/u/2Xjs482N7JzTzY+efDR5qfZ2cdP8reSezxv
z/78cTrr0fW25wUJ/x2gxPzz+vr19etr6/XXdErR2Pmv3PiSTj7d8Le/87wa
uvpGsj6nU5puNGjWPyXrb3TiG82UxcCvJOsJneroRhtlJenqC8l6TKda0XrY
/ankkREdIfO/i/kjOmXoRi2ZJ+iqnYw43Cdi9FCD3AuYHcp8LOYfqvlBYP6G
0v8s5h9odR3WEDqV+UCM7tGJbxwDzIL5fTHf4JMY5c3ZJav0U2p+T8zfB+ad
QKfguC6O68DxJHA8TSlr3xHHu8CxSwM8o+a3xPw2nUxWgf7Dvaf8hOaMbo3t
XfG5BSTi3vkj751PY7JrgngPIN4CCB8gVgVxEyB6ACJNaTJakBVB3NDCnwOO
tUB7WRzXgDZC1Ee1GbEkiHcA4jxANGkUhfAXBbEKEDmA2AeimBfEHwGiDyAO
RqMwuebPmxHYilbnAEC0KKLQZ43jH0AUCNGqBelSxBVBLAPERYBoo9TXsRor
yGWBve0IK8Tjb//4/Q98dUIjM7AlABssWT91BOMY3wQxjgn2GsBeAtgDGuM+
jTGrMYZhI7auw5aHNKhj6j0i3ldBKEMA1qihtGsoHaCElwS7CLDDtkGWkOoK
sEcBdrA8bCbU2YKit9qxCwCLajSt0fZqtM2VY5MabT9h+e3eaMfOA+wop34Y
q7EOEtTY//LsIR35//KpmRAEPcI03RzAj1HK9GEAq6c07YIw9/IIxowCWBOl
4XhmAWwcwMYArNEFhiKbALCGOGzGMTIn2LQjbNLWAIHdM/mANmjHogJfAdg6
O/aKY7TTNqzpmQybcoTNAljtrsImHWHzAJZxgaGmWASwmjjssmNkVwEsDdr1
omAnHLFLAJuqHPs2wPp27LgjdrlyLGqoFduDFWPHHKO9DrAJO3bUEbvKaU0Y
y0cFyHc49eNI7qcGxdMMvjEBAGsOMQ24gG5wmo6AQpAiBirNTU5TygBBDJcE
3KKUc/MZxpP9Lrh43w41e0x2KNQe9B9loQ5553+OGAWIu3aEvOv8EIIxI4Cy
XkWKrxRDMg0yiEE8o+R22gRBlPYNz52/f/qcPUpQZJSkYhSp20uhOR2hDG6H
NPnYkorQKgxwQOvJJ1Ss6jfs0IGinjTEU9Ch2DOnL1aZJLJLUjkglSpP6gKQ
SgKp80CqBki9X54UKtU5baE6q0DR4OgvT6MXFKd8tX7HyjsL1OqrosZlMx/u
ijUaHPuCEeiDT4eh4OXgeVtBqSLfewVqjZWqcTbrFL4f5Kt9OyCzIz0CtoxR
NvuMjU6D0MsUyEVaYotFRMpXKSN3Cqjtr5ZaKqIWFPAEkDxQuWS6hORxbaoW
q1BRt+57lVYyrJXv6pRGB1YHKOoh94FVhQjaQQStuxZBEkRwBERwuOwI+qyd
LBqBDyJooZQ7xpFd000B3SZK0zLOn373M/c/VHLU0cuUTwP5jBa7UeVR56uC
fI2p+5C8lr1ZxZt3RzxDKd9qVynX58lOpMy9vBQd3jEVdX1K76hyo6LHVbTJ
/YGWs+uiwZwGup2U8i00P6iObgrodml5a21DmHMTpGlyzV9+vlaxfLfKZ4D8
uot8v2Nr+0C+R+XTQD780fDlTy+4i+1SIL0aCPrEcDf0fQEFYoKJdQNX/STQ
z6l+AujfCX3xEejHYqhGEP06BtarL5gAghc5jZb1dqzR80fel9Lk/5U8nq8N
A8n3gGSyepIjQPKmVbLoGXferhp/yJDaGFC7AdT8qqiNA7W1stUu2GrU/Lhb
rLEKNNKgyZwEJoHAdSBQU54A/bfFt64AgZUdCFC0W748pLxc8JAKRtMUUFkG
KhkHFWrsXRMI6in3nEVcpZaAVK1dagBIpYAUapxr5UldBFI+kJoGUotAqq5y
qRkgtWCVKhqY5o0+WIHaHFBrAAUrU2oWSM2WJ3UJSCWB1ByQmgZSjXapIUcp
VKpdkkKlmrL1DH6jedGfR3pFbxjoocfSPNCbDE3nQ9Mbs8Lhx19f4iLKIphU
WFIOj1bGFMuMU8qzxsZXQV9djgUgMKLz82YSSISGzmiJWK8BFC/74FuHykEt
AdQFjaotjpIfNf0oilZhFVNySjkap4yXoDCkV307yvE1Ebx4/hMdYtSl9ZIN
taH5884KdCLehlZiPmXscY2w0469DLBLAJtR7FHFniwPi6KtV2yLYrvs2El9
eSPYXoXtVdhpAOt1gR1UWEabpxvATJtPKQzVXqvCEhrZWwBm3oDhtSzB2LwK
sEcpZVgPgOXssGsA1sapGSC/vmRgCey0Y4yHHbHme50ZgF0E2ENa9F4AM990
zwLYAoC1gBjPAqz5rWsOYOcBttkRa35EngfYOYA9oEU/B2BmlcOCI2wfiLEE
dhFgZ21D0QELVlGWwjZq0XMAZtatXQWwGQBrADGeB1iZdUSWyKLZboCt0xj7
AEymFJFlvGiWHsBqQYxcdHnHRNYWl+LUOJbVrOBdBtgpgE1FyyrrySILsAPv
SeDtOwZ1uTxs0tb3wiu8VwBMPoX7YVjJ/mZQ162oQlxegGCYPJciy+UDxwn9
kg4pGsdV4Bj5mqLEiJOHV2TDQIAYA4izGrTZJrAGHEdsjjFtgyhslBgGjj2q
aPY23FTzQZt5TMc43lLHAeCI3r8ynGTzi+nWxY5nNECz8WNdzc/ZzGM6xnFD
HXuAY7fqmD0qm2p+Bph3qbnZFXMftNQp4HhKHc2OnD+pzklgfoJSviXbbmTr
k1kxX2zeqXSzpeihmmeB+XE1XxfzR2reAcyzai5bqbyP1fwIMH9DzTfF/BNQ
R/WUNkiAgbnZr8UbzTirfvv6i+0YvV3NPxRz3hrHz5P9wLwNdAyzjewLdWwC
jq2UPhLLwia+OmC5X9vqYzH/l4LTwLyBUob9Vcz/reZJYJ5Wc7NL71sNJqFZ
TyXrP3Ri93/IDS7v72g35Ovr3/+1t+c31JS+jw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.}, {295.688, 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"b3cc41e7-8635-4517-8aa8-721b02df3b25"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(71\\). \\!\\(\\\"triaugmented truncated dodecahedron \
(J71)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"36c181c2-9109-4f55-919b-0147c86ee8ed"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.09752
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0617588 1.17581 0 1.17581 [
[ 0 0 0 0 ]
[ 1 1.09752 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.09752 L
0 1.09752 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.51557 .61494 m .42098 .61168 L .41871 .70832 L p .744 .596 .692 r
F P
0 g
s
.41871 .70832 m .51364 .71077 L .51557 .61494 L p .744 .596 .692 r
F P
0 g
s
.51364 .71077 m .59703 .66374 L .51557 .61494 L closepath p .677 .54 .691 r
F P
0 g
s
.51557 .61494 m .47176 .53008 L .42098 .61168 L closepath p .744 .611 .71 r
F P
0 g
s
.48161 .43879 m .47176 .53008 L .51557 .61494 L p .624 .561 .763 r
F P
0 g
s
.54365 .37455 m .48161 .43879 L p .51557 .61494 L .624 .561 .763 r
F P
0 g
s
.63653 .36387 m .54365 .37455 L p .51557 .61494 L .624 .561 .763 r
F P
0 g
s
.7238 .4136 m .63653 .36387 L p .51557 .61494 L .624 .561 .763 r
F P
0 g
s
.76907 .50432 m .7238 .4136 L p .51557 .61494 L .624 .561 .763 r
F P
0 g
s
.75433 .59829 m .76907 .50432 L p .51557 .61494 L .624 .561 .763 r
F P
0 g
s
.68779 .65834 m .75433 .59829 L p .51557 .61494 L .624 .561 .763 r
F P
0 g
s
.51557 .61494 m .59703 .66374 L .68779 .65834 L p .624 .561 .763 r
F P
0 g
s
.63681 .74204 m .59703 .66374 L .51364 .71077 L p .634 .452 .62 r
F P
0 g
s
.51364 .71077 m .55153 .78974 L .63681 .74204 L p .634 .452 .62 r
F P
0 g
s
.51364 .71077 m .41871 .70832 L .39439 .78677 L p .735 .494 .564 r
F P
0 g
s
.55153 .78974 m .51364 .71077 L p .39439 .78677 L .735 .494 .564 r
F P
0 g
s
.47176 .53008 m .48161 .43879 L .44541 .36905 L p .851 .766 .768 r
F P
0 g
s
.42098 .61168 m .47176 .53008 L p .44541 .36905 L .851 .766 .768 r
F P
0 g
s
.59703 .66374 m .63681 .74204 L .68779 .65834 L closepath p .615 .444 .628 r
F P
0 g
s
.34589 .65612 m .41871 .70832 L .42098 .61168 L closepath p .812 .653 .685 r
F P
0 g
s
.34589 .65612 m .42098 .61168 L p .44541 .36905 L .851 .766 .768 r
F P
0 g
s
.39439 .78677 m .41871 .70832 L .34589 .65612 L p .848 .62 .593 r
F P
0 g
s
.44541 .36905 m .48161 .43879 L .54365 .37455 L closepath p .717 .718 .85 r
F P
0 g
s
.55153 .78974 m .61795 .82272 L .63681 .74204 L closepath p .565 .325 .511 r
F P
0 g
s
.54368 .87409 m .61795 .82272 L .55153 .78974 L p .596 .27 .388 r
F P
0 g
s
.55153 .78974 m .47809 .8388 L .54368 .87409 L p .596 .27 .388 r
F P
0 g
s
.39439 .78677 m .47809 .8388 L .55153 .78974 L p .735 .494 .564 r
F P
0 g
s
.68779 .65834 m .63681 .74204 L p .64012 .87214 L .321 .103 .418 r
F P
0 g
s
.75433 .59829 m .68779 .65834 L p .64012 .87214 L .321 .103 .418 r
F P
0 g
s
.63681 .74204 m .61795 .82272 L .64012 .87214 L p .321 .103 .418 r
F P
0 g
s
.34589 .65612 m .31915 .73462 L .39439 .78677 L p .848 .62 .593 r
F P
0 g
s
.27181 .64542 m .34589 .65612 L p .44541 .36905 L .851 .766 .768 r
F P
0 g
s
.34589 .65612 m .27181 .64542 L .31915 .73462 L closepath p .869 .645 .597 r
F P
0 g
s
.39439 .78677 m .31915 .73462 L .35487 .8185 L closepath p .873 .543 .423 r
F P
0 g
s
.47809 .8388 m .39439 .78677 L .35487 .8185 L p .773 .381 .312 r
F P
0 g
s
.5623 .2998 m .54365 .37455 L .63653 .36387 L closepath p .622 .647 .854 r
F P
0 g
s
.54365 .37455 m .5623 .2998 L .46102 .29344 L p .707 .734 .872 r
F P
0 g
s
.46102 .29344 m .44541 .36905 L .54365 .37455 L p .707 .734 .872 r
F P
0 g
s
.81486 .58346 m .75433 .59829 L p .64012 .87214 L .321 .103 .418 r
F P
0 g
s
.75433 .59829 m .81486 .58346 L .76907 .50432 L closepath p .404 .354 .689 r
F P
0 g
s
.47809 .8388 m .4417 .87293 L .54368 .87409 L closepath p .619 .178 .179 r
F P
0 g
s
.35487 .8185 m .4417 .87293 L .47809 .8388 L p .773 .381 .312 r
F P
0 g
s
.46102 .29344 m .37313 .34874 L .44541 .36905 L closepath p .794 .819 .871 r
F P
0 g
s
.22762 .57895 m .27181 .64542 L p .44541 .36905 L .851 .766 .768 r
F P
0 g
s
.2343 .48007 m .22762 .57895 L p .44541 .36905 L .851 .766 .768 r
F P
0 g
s
.29114 .3905 m .2343 .48007 L p .44541 .36905 L .851 .766 .768 r
F P
0 g
s
.44541 .36905 m .37313 .34874 L .29114 .3905 L p .851 .766 .768 r
F P
0 g
s
.61795 .82272 m .54368 .87409 L .64012 .87214 L closepath p .55 .205 .335 r
F P
0 g
s
.31915 .73462 m .27181 .64542 L .22762 .57895 L p .867 .469 .003 r
F P
0 g
s
.35487 .8185 m .31915 .73462 L p .22762 .57895 L .867 .469 .003 r
F P
0 g
s
.5623 .2998 m .63653 .36387 L .69331 .33974 L p .473 .611 .907 r
F P
0 g
s
.63653 .36387 m .7238 .4136 L .69331 .33974 L closepath p .464 .578 .884 r
F P
0 g
s
.76907 .50432 m .81486 .58346 L p .71682 .34044 L 0 0 .528 r
F P
0 g
s
.7238 .4136 m .76907 .50432 L p .71682 .34044 L 0 0 .528 r
F P
0 g
s
.69331 .33974 m .7238 .4136 L p .71682 .34044 L 0 0 .528 r
F P
0 g
s
.69331 .33974 m .61701 .27278 L .5623 .2998 L p .473 .611 .907 r
F P
0 g
s
.5623 .2998 m .61701 .27278 L .54594 .24777 L p .514 .816 1 r
F P
0 g
s
.46102 .29344 m .5623 .2998 L p .54594 .24777 L .514 .816 1 r
F P
0 g
s
.84604 .62414 m .81486 .58346 L p .64012 .87214 L .321 .103 .418 r
F P
0 g
s
.83145 .70966 m .84604 .62414 L p .64012 .87214 L .321 .103 .418 r
F P
0 g
s
.77405 .80514 m .83145 .70966 L p .64012 .87214 L .321 .103 .418 r
F P
0 g
s
.64012 .87214 m .69931 .86757 L .77405 .80514 L p .321 .103 .418 r
F P
0 g
s
.54368 .87409 m .4417 .87293 L p .69931 .86757 L .12 .667 .818 r
F P
0 g
s
.69931 .86757 m .64012 .87214 L .54368 .87409 L p .12 .667 .818 r
F P
0 g
s
.4417 .87293 m .35487 .8185 L .36645 .86896 L closepath p .769 .334 .219 r
F P
0 g
s
.36645 .86896 m .35487 .8185 L p .22762 .57895 L .867 .469 .003 r
F P
0 g
s
.37313 .34874 m .46102 .29344 L .44645 .26159 L p .781 .957 .926 r
F P
0 g
s
.44645 .26159 m .35452 .31943 L .37313 .34874 L p .781 .957 .926 r
F P
0 g
s
.37313 .34874 m .35452 .31943 L .29114 .3905 L closepath p .819 .967 .9 r
F P
0 g
s
.54594 .24777 m .44645 .26159 L .46102 .29344 L p .514 .816 1 r
F P
0 g
s
.81486 .58346 m .84604 .62414 L p .71682 .34044 L 0 0 .528 r
F P
0 g
s
.4417 .87293 m .36645 .86896 L p .69931 .86757 L .12 .667 .818 r
F P
0 g
s
.2343 .48007 m .20206 .56 L .22762 .57895 L closepath p .992 .882 .569 r
F P
0 g
s
.34676 .8633 m .36645 .86896 L p .22762 .57895 L .867 .469 .003 r
F P
0 g
s
.30007 .79666 m .34676 .8633 L p .22762 .57895 L .867 .469 .003 r
F P
0 g
s
.24528 .69398 m .30007 .79666 L p .22762 .57895 L .867 .469 .003 r
F P
0 g
s
.20749 .60202 m .24528 .69398 L p .22762 .57895 L .867 .469 .003 r
F P
0 g
s
.22762 .57895 m .20206 .56 L .20749 .60202 L p .867 .469 .003 r
F P
0 g
s
.61701 .27278 m .69331 .33974 L .68934 .30956 L closepath p .054 .42 .866 r
F P
0 g
s
.71682 .34044 m .68934 .30956 L .69331 .33974 L p 0 0 .528 r
F P
0 g
s
.29114 .3905 m .35452 .31943 L p .41869 .32255 L .034 0 .179 r
F P
0 g
s
.2343 .48007 m .29114 .3905 L p .41869 .32255 L .034 0 .179 r
F P
0 g
s
.20206 .56 m .2343 .48007 L p .41869 .32255 L .034 0 .179 r
F P
0 g
s
.61859 .28507 m .54594 .24777 L .61701 .27278 L p .435 0 0 r
F P
0 g
s
.61701 .27278 m .68934 .30956 L .61859 .28507 L p .435 0 0 r
F P
0 g
s
.36645 .86896 m .34676 .8633 L p .69931 .86757 L .12 .667 .818 r
F P
0 g
s
.83145 .70966 m .84928 .60671 L .84604 .62414 L closepath p 0 0 0 r
F P
0 g
s
.84604 .62414 m .84928 .60671 L p .71682 .34044 L 0 0 .528 r
F P
0 g
s
.44645 .26159 m .40372 .29166 L .35452 .31943 L closepath p 0 0 0 r
F P
0 g
s
.35452 .31943 m .40372 .29166 L .41869 .32255 L p .034 0 .179 r
F P
0 g
s
.50659 .27785 m .40372 .29166 L .44645 .26159 L p .269 0 0 r
F P
0 g
s
.44645 .26159 m .54594 .24777 L .50659 .27785 L p .269 0 0 r
F P
0 g
s
.62187 .85695 m .69546 .86176 L .69931 .86757 L p .12 .667 .818 r
F P
0 g
s
.50499 .85543 m .62187 .85695 L p .69931 .86757 L .12 .667 .818 r
F P
0 g
s
.39774 .858 m .50499 .85543 L p .69931 .86757 L .12 .667 .818 r
F P
0 g
s
.34676 .8633 m .39774 .858 L p .69931 .86757 L .12 .667 .818 r
F P
0 g
s
.69546 .86176 m .77405 .80514 L .69931 .86757 L closepath p .569 .911 .69 r
F P
0 g
s
.20749 .60202 m .20206 .56 L p .41869 .32255 L .034 0 .179 r
F P
0 g
s
.61859 .28507 m .68934 .30956 L .71682 .34044 L closepath p .596 .023 0 r
F P
0 g
s
.54594 .24777 m .61859 .28507 L .50659 .27785 L closepath p .606 .128 .092 r
F P
0 g
s
.83145 .70966 m .77405 .80514 L p .59733 .6737 L .891 .825 .776 r
F P
0 g
s
.84928 .60671 m .83145 .70966 L p .59733 .6737 L .891 .825 .776 r
F P
0 g
s
.77405 .80514 m .69546 .86176 L p .59733 .6737 L .891 .825 .776 r
F P
0 g
s
.39774 .858 m .34676 .8633 L .30007 .79666 L closepath p .246 .515 .909 r
F P
0 g
s
.41869 .32255 m .40372 .29166 L .50659 .27785 L closepath p .371 0 .03 r
F P
0 g
s
.84928 .60671 m .81958 .53097 L p .71682 .34044 L 0 0 .528 r
F P
0 g
s
.81958 .53097 m .84928 .60671 L p .59733 .6737 L .891 .825 .776 r
F P
0 g
s
.61859 .28507 m .71682 .34044 L p .3888 .40641 L .738 .458 .505 r
F P
0 g
s
.50659 .27785 m .61859 .28507 L p .3888 .40641 L .738 .458 .505 r
F P
0 g
s
.25311 .58509 m .24528 .69398 L .20749 .60202 L closepath p .194 .196 .633 r
F P
0 g
s
.25311 .58509 m .20749 .60202 L p .41869 .32255 L .034 0 .179 r
F P
0 g
s
.69546 .86176 m .62187 .85695 L p .59733 .6737 L .891 .825 .776 r
F P
0 g
s
.81958 .53097 m .76755 .42628 L .71682 .34044 L p 0 0 .528 r
F P
0 g
s
.71682 .34044 m .76755 .42628 L p .3888 .40641 L .738 .458 .505 r
F P
0 g
s
.3888 .40641 m .41869 .32255 L .50659 .27785 L p .738 .458 .505 r
F P
0 g
s
.30706 .74117 m .30007 .79666 L .24528 .69398 L closepath p .091 .275 .758 r
F P
0 g
s
.39774 .858 m .30007 .79666 L .30706 .74117 L p .351 .542 .901 r
F P
0 g
s
.74905 .51334 m .81958 .53097 L p .59733 .6737 L .891 .825 .776 r
F P
0 g
s
.74905 .51334 m .76755 .42628 L .81958 .53097 L closepath p .922 .658 .521 r
F P
0 g
s
.24528 .69398 m .25311 .58509 L .3164 .62897 L p .297 .288 .68 r
F P
0 g
s
.3164 .62897 m .30706 .74117 L .24528 .69398 L p .297 .288 .68 r
F P
0 g
s
.30706 .74117 m .40914 .80471 L .39774 .858 L p .351 .542 .901 r
F P
0 g
s
.39774 .858 m .40914 .80471 L .50499 .85543 L closepath p .526 .721 .963 r
F P
0 g
s
.76755 .42628 m .74905 .51334 L p .3888 .40641 L .738 .458 .505 r
F P
0 g
s
.32383 .5096 m .25311 .58509 L p .41869 .32255 L .034 0 .179 r
F P
0 g
s
.41869 .32255 m .3888 .40641 L .32383 .5096 L p .034 0 .179 r
F P
0 g
s
.58246 .78633 m .62187 .85695 L .50499 .85543 L closepath p .709 .768 .898 r
F P
0 g
s
.62187 .85695 m .58246 .78633 L .59733 .6737 L p .891 .825 .776 r
F P
0 g
s
.3164 .62897 m .25311 .58509 L .32383 .5096 L closepath p .403 .27 .584 r
F P
0 g
s
.58246 .78633 m .50499 .85543 L .40914 .80471 L p .692 .732 .881 r
F P
0 g
s
.59733 .6737 m .66263 .56711 L .74905 .51334 L p .891 .825 .776 r
F P
0 g
s
.74905 .51334 m .66263 .56711 L p .3888 .40641 L .738 .458 .505 r
F P
0 g
s
.48597 .73267 m .40914 .80471 L .30706 .74117 L p .593 .553 .779 r
F P
0 g
s
.42786 .6212 m .48597 .73267 L p .30706 .74117 L .593 .553 .779 r
F P
0 g
s
.30706 .74117 m .3164 .62897 L .42786 .6212 L p .593 .553 .779 r
F P
0 g
s
.43395 .49933 m .32383 .5096 L .3888 .40641 L closepath p .576 .392 .595 r
F P
0 g
s
.54014 .5623 m .43395 .49933 L .3888 .40641 L p .738 .458 .505 r
F P
0 g
s
.66263 .56711 m .54014 .5623 L p .3888 .40641 L .738 .458 .505 r
F P
0 g
s
.32383 .5096 m .43395 .49933 L .42786 .6212 L p .582 .42 .628 r
F P
0 g
s
.42786 .6212 m .3164 .62897 L .32383 .5096 L p .582 .42 .628 r
F P
0 g
s
.40914 .80471 m .48597 .73267 L .58246 .78633 L p .692 .732 .881 r
F P
0 g
s
.48597 .73267 m .59733 .6737 L .58246 .78633 L closepath p .77 .714 .8 r
F P
0 g
s
.59733 .6737 m .54014 .5623 L .66263 .56711 L closepath p .755 .621 .711 r
F P
0 g
s
.42786 .6212 m .43395 .49933 L .54014 .5623 L closepath p .69 .512 .641 r
F P
0 g
s
.54014 .5623 m .59733 .6737 L .48597 .73267 L p .735 .613 .723 r
F P
0 g
s
.48597 .73267 m .42786 .6212 L .54014 .5623 L p .735 .613 .723 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{271.688, 298.125},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnMlzFEcWxovuqu6u3tVSq1sSCGHEIoFkMBo2s0gsAmRks4lFLEbgcQCe
MWNDzETM3IbTBJc5cOTIkaOuOuroo/8Fjhznqqn3MuupqvvLVpYEhA8oorKr
qzK/3/deZi1di2YXnj/6818Xnj9+uDB07teFvz16/PDZ0PTTX4NF6U2Os6kS
TKNDDs2vOE5Y8F+VCv3l8/zn+c/zsfn/0odH28s/1YL/0EeWN6D0ypTalFZe
D1WdFJVp+voPVfPfUjNLFZ10WJWru1S6tOi5qv4vqV4C1bNcqmVP9AacovIX
1ZqZLNcNWvtUcvUUteaVP6uGf+cPVX1KTU4PkCiKRFokflISHACv6gUNK9LQ
lYaPVMNnHRvWpKFHDXnuR9XwF2nYAA3rLbl6ErK5xQ9K4il9cJ0aSZRprkuI
Gan+QFX/WYgFqu6rXM7rSvmVpWcvKirGdon7SuIvQkyLhC8SAyThx6O9pxr+
JCOjKtV3UHVXsqqj1X/ObdXwsRCD9TlnhOvMc6ChzgjpeDIyeJlu/UhCdqmx
RsxriZJIjJFE2AVqckKoHqr87ZaS/VFMeUC2ILL7SFYPuNdUOZi7oSR+EIkc
kMiJxIRIuCTB6ZpTEg8luDyQyIjEYZHwSILnrimJBZEoAglXJI7FXbR01RUl
dl/EyizmRsVEahKkOgVELyvR7yPbNnU/CbfK6945Hc92i94ls14lEnsgwQbP
ihgy950SuwfEqkDsnIgpa6FWqHPXUmeGSl6kG94BDbtAw4ti4FvV8DZoWAMN
Z6XhrGo4b9nwUqSbw6zNKIlbQKI7mcRNINEDJC4DiQtK4oalxBWzxHUgUQcS
V4HE+WQS14DEOSUxZykxZ5a4BiR6gcR1IDGtJK5aStwwS1wBEg0gcRNInFUS
l4FEM5nEJUuJeSBxRkl8ByT6gMRtIHFaSXwLJPo3LoFc3AUSp5TErKWLDhIX
gcQAkLgHJKbMEsjF92aJb0wuHoI2k+Y2UeyrB6+58YJZYsYo4YoETQ6do7Wr
nFQqF4wp9GIqWglKnTBLtcYUTMExj8p4eu+bZc9byrqWsseV7Lk1xs4HlEVu
PZMsHw916NOWHjNALDrm3799wZ3XQRZ5zBplXZHV0jr6s5bKPlC+21H5jGUq
zMpeTDlMyTGzPDJeAPJ31pY/bSlfBPK3WzoymIJvqowOwCMKdcoyUSWAmt84
CkVVtkS5AHVYoaYsUVWAuvXpUDcBKgNQhxRq0hJVA6gbyVAnLVHdlqgsQB38
5KgTlqg6QF0HqBxA/WnjqDmA8pOh+gCqAVDXACoPUBMKddwS1fx0KB7sfKEH
AQoAcEABjlkC+IjOF6OCA9yTN/qQs/jiDX86TuxX2Tq5fFKfo0W9zPCEEU50
dLgEQCUA+moNUBjgkzcMG+AyHUUGJ11BqX9rL+krYx1QX5tQLLEFAFwBzESi
evf7Mk0BPigZikbIfjM0+hvtwdQrThvCZ7iMD9DVyyy+4NEuUuOPGvGu4LUF
5CArCTgDElCikhehQ88+s4PeyMl46KBTInyxMSnhdxOcJXT3HjGC0lFQ0G1U
rj26CgI9DmJvUMlr95vxdYBPA3w/wJdB569emBxgE/GEf2k20gOMuJZGKpKH
g4IfBPhxhT+8ATzqhi7BHwDdkNBINzDiWRrpBh0yLhnZZjZyyNJIxtJIj2Rk
DGTkC2Bk7OMY6RUjI5KHHcnwNYDPWuKboEN2gIx0sHTQ0lLO0lKfZGS7ZGQE
4Pea8V0A71vi+6nspkVVkIeERqrASD5J14TX75deL/HK5deLgWhQVtXYbXez
x+ymAtwUEo9Tl8zotYERtrSFy3iq9pjNoVFcAuaKibfmDDC3GZjbm8xcEZgr
WZqriTkfmOsH5saBuVGzuQIwV7Y0VxVzhY9jzqcyrTYnO0tlsVQGlprA0j5g
acRsKSOWgrG8f786vZ+ZeUufFUuTRTFZ3bhJdJRNiUn2qNeSy2BSNzVtB2Ah
uo8P9iPktwu47gWu99u7pnyyryw0TOXaO0J08pSXXPcA13Xg+gBwvTviWt+/
breZBjbRgQPZzInNBrDZsw6behUNUbLqA8MulQy1PbxmxGYfsNkNbE6YbR4B
NnPAZgbk1faccfUH5GZguAsYPggM70pmOCt5tbW5+kN68OPYRJtVHuTV9reZ
PuVu91oBXg+ZvR4FXjPAa4HLDj9Yufr2T2eoKH3spEMnnKc6lXyRZidwUzK5
0WeqK62XLEIPHvBQFg98zSm8+vQyDC3cXw8DI0Vg5PB6jVSozKm9lx2+8MHx
4aB9ucwWNlsayQMjR1qNHANG0JEVGdliacQ3GcE7z09hKQcsHTVbOg4spS0t
DVpaygBLX//xLB2VETS6cSNbLY24ptxEjZwARlKWRoaAEbTLTQMjx9ZrpAyM
bLPMSMpkBJ+UnuQPL2opPMUPztTbbXxhzIcXtcETaZz8uGiVATeGtqG6MapD
D6q2A7db9D2ZnTTTojcmw9gSofQF6HAg7UkmOwxkh0SWBu3ib+FIgUnTA5dv
5aZMeUKUQaEwpGVAnlgvagdADQjK+9io/mjvB6kjXELoKYGiMb4TQBsSXxag
OvRa9LGC6tQydznaxyFoXaB+MuhpAEX7s10AWhNowTKpezA0mBz9wLQduSrk
UjLymchOTJMl7AKA7wbwksAr64G3hk1l/HiSA0ZGgJG8GOlKZuSsyYgetu34
UYDPCb4b4I+bryQjvAvy4AIje4CRDNjMa5aW9EX+aUtLaUtLruSmnszIOUsj
KWBkL5du1IjYaAAb6Dxj3GzDkxFiA6dPhy7CJOKeB9xMS/i0rY4TjRf1AwA6
3f7SDMhKYGORIBaX3oUTr2sCEPqpoe9pXzCBOmxZGkeXhDS09wNBUyvzL991
2LGG5KyQewAZ/djTt7ZnADnacQGeLbD2TkDOcxnfiKuW0Sf2EJT6Dly7kaKk
AOFRCvTDBd8AvAfwLuiLrcBIRYyUgZHDwMgBsxEXGMlIHgYBvib4YjL8RYBP
A3wO5KEfGKmLkTwwgi6UTSQz4ksemoRPqd1KCM0BKLq0qR9imwXQFIAWBFoH
MW8WfCYZXr2ggE9wKiDhXQC+FWyKKUsbB9e2UZXIqwC+TSJPiFQviLgxpENv
cbYHXQTcYSp5ERpRh6KM+Nlyj4RTALK7IrkMg0A3HPRDuPyijN7zt/vOAsDO
CGBx+R1bQllqAzTEd8Yo64lsOJE88q8fjb4s8k2RT1u4Dia6w7Dcmqqv1kDp
VUdevGdnfS1Jo2W7AcoFKHQDU11q1y9RuVGUhGgRWAbQxuQagX7Q/2oLQ3Ma
+pBBi18s/S9EDwNMFmDQcwAdgMGkd0lxqp70LZV2tA/QowCtX8SIvhqnsUHv
UxnfR3ZFEqwtBKZCI4PASB4Y2S2p1i8uzZnw+rdUOzTDZbyn+yKH53boToGe
MkNdEHMZ4LMScxPEXAH4YcHrF9eum/A6gnaoL9A6gFYBlB8r40X6nb0bAOoJ
tAigBYHWALQGoEMS6bQZmgWJzgF8WfAVgO8G+K2C16993jTh9clEO7Qq0CKA
1gF0i0D1G6+3ADQHYvYAviZ4H+B7AX5A+vmCGe9LzAjaAzYoD+CbAN8neP3i
8jzA50H0KWCkLtG7AN8P8KtP9arzy9hr33G8G8XTfL/QgvoUt4bR+V4bqC5x
zppBRR2nBnBMJSon6Gs1sg9+9V5d/tYvq98xbZu9K3yIb779Pa96r10i+oY9
//+Ja1Td03HpWlxH1+T/YsAa81Sz5aigKz2MOAoqccVpKn3VkCvx/9vIq/10
sKpBc0/VKhb7A/2LmM/zn+c3Mu9s+j+OKNos\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 270.688}, {297.125, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"4bd49586-da9b-4ace-857e-7ed104552440"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(72\\). \\!\\(\\\"gyrate rhombicosidodecahedron (J72)\\\"\\)\
\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"e4370c6c-90fb-409d-a13d-513fe7e7291a"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.09723
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0616425 1.17542 -4.44089e-16 1.17542 [
[ 0 0 0 0 ]
[ 1 1.09723 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.09723 L
0 1.09723 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.53212 .76072 m .51147 .6404 L .38624 .6472 L p .75 .542 .614 r
F P
0 g
s
.51147 .6404 m .53212 .76072 L .63223 .67851 L closepath p .68 .495 .629 r
F P
0 g
s
.51147 .6404 m .54846 .51724 L .44674 .44449 L p .76 .64 .728 r
F P
0 g
s
.38624 .6472 m .51147 .6404 L p .44674 .44449 L .76 .64 .728 r
F P
0 g
s
.54846 .51724 m .51147 .6404 L .63223 .67851 L p .662 .535 .699 r
F P
0 g
s
.63223 .67851 m .66995 .5538 L .54846 .51724 L p .662 .535 .699 r
F P
0 g
s
.63154 .43073 m .54846 .51724 L .66995 .5538 L closepath p .637 .571 .763 r
F P
0 g
s
.54846 .51724 m .63154 .43073 L .52867 .35457 L p .688 .655 .812 r
F P
0 g
s
.52867 .35457 m .44674 .44449 L .54846 .51724 L p .688 .655 .812 r
F P
0 g
s
.60687 .83718 m .71018 .75108 L .63223 .67851 L p .61 .384 .548 r
F P
0 g
s
.63223 .67851 m .53212 .76072 L .60687 .83718 L p .61 .384 .548 r
F P
0 g
s
.66995 .5538 m .63223 .67851 L .71018 .75108 L p .519 .388 .642 r
F P
0 g
s
.80186 .66634 m .77391 .54145 L .66995 .5538 L p .519 .388 .642 r
F P
0 g
s
.71018 .75108 m .80186 .66634 L p .66995 .5538 L .519 .388 .642 r
F P
0 g
s
.63154 .43073 m .66995 .5538 L .77391 .54145 L p .534 .508 .773 r
F P
0 g
s
.38624 .6472 m .29628 .69872 L .40442 .76966 L closepath p .823 .592 .59 r
F P
0 g
s
.38624 .6472 m .40442 .76966 L .53212 .76072 L p .75 .542 .614 r
F P
0 g
s
.44674 .44449 m .34437 .52513 L .38624 .6472 L p .76 .64 .728 r
F P
0 g
s
.29628 .69872 m .38624 .6472 L .34437 .52513 L p .862 .688 .664 r
F P
0 g
s
.34437 .52513 m .44674 .44449 L .39793 .35686 L p .819 .774 .81 r
F P
0 g
s
.52867 .35457 m .39793 .35686 L .44674 .44449 L closepath p .742 .747 .856 r
F P
0 g
s
.60687 .83718 m .53212 .76072 L .40442 .76966 L p .699 .372 .419 r
F P
0 g
s
.56306 .28287 m .52867 .35457 L .63154 .43073 L p .536 .642 .901 r
F P
0 g
s
.697 .31972 m .56306 .28287 L p .63154 .43073 L .536 .642 .901 r
F P
0 g
s
.63154 .43073 m .73524 .41323 L .697 .31972 L p .536 .642 .901 r
F P
0 g
s
.77391 .54145 m .73524 .41323 L .63154 .43073 L p .534 .508 .773 r
F P
0 g
s
.34437 .52513 m .25156 .57225 L .29628 .69872 L p .862 .688 .664 r
F P
0 g
s
.29065 .4402 m .25156 .57225 L .34437 .52513 L closepath p .889 .784 .74 r
F P
0 g
s
.39793 .35686 m .29065 .4402 L .34437 .52513 L p .819 .774 .81 r
F P
0 g
s
.52212 .89926 m .60687 .83718 L p .40442 .76966 L .699 .372 .419 r
F P
0 g
s
.40442 .76966 m .39183 .85453 L .52212 .89926 L p .699 .372 .419 r
F P
0 g
s
.39183 .85453 m .40442 .76966 L .29628 .69872 L p .848 .521 .432 r
F P
0 g
s
.39793 .35686 m .52867 .35457 L .56306 .28287 L p .684 .821 .949 r
F P
0 g
s
.76919 .78754 m .71018 .75108 L .60687 .83718 L p .415 .108 .333 r
F P
0 g
s
.71018 .75108 m .76919 .78754 L .80186 .66634 L closepath p .352 .146 .454 r
F P
0 g
s
.85257 .60937 m .82189 .4791 L .77391 .54145 L p .191 .172 .605 r
F P
0 g
s
.77391 .54145 m .80186 .66634 L .85257 .60937 L p .191 .172 .605 r
F P
0 g
s
.73524 .41323 m .77391 .54145 L .82189 .4791 L closepath p .344 .384 .759 r
F P
0 g
s
.29628 .69872 m .27784 .78152 L .39183 .85453 L p .848 .521 .432 r
F P
0 g
s
.29628 .69872 m .25156 .57225 L .20065 .56613 L p .98 .702 .424 r
F P
0 g
s
.27784 .78152 m .29628 .69872 L p .20065 .56613 L .98 .702 .424 r
F P
0 g
s
.60687 .83718 m .52212 .89926 L .66053 .87892 L closepath p .487 .08 .195 r
F P
0 g
s
.60687 .83718 m .66053 .87892 L .76919 .78754 L p .415 .108 .333 r
F P
0 g
s
.29065 .4402 m .39793 .35686 L .42581 .28401 L p .83 .978 .884 r
F P
0 g
s
.56306 .28287 m .42581 .28401 L .39793 .35686 L p .684 .821 .949 r
F P
0 g
s
.7861 .3847 m .697 .31972 L .73524 .41323 L p .107 .344 .813 r
F P
0 g
s
.73524 .41323 m .82189 .4791 L .7861 .3847 L p .107 .344 .813 r
F P
0 g
s
.25156 .57225 m .29065 .4402 L .24203 .42597 L p .973 .9 .686 r
F P
0 g
s
.24203 .42597 m .20065 .56613 L .25156 .57225 L p .973 .9 .686 r
F P
0 g
s
.24203 .42597 m .29065 .4402 L p .42581 .28401 L .83 .978 .884 r
F P
0 g
s
.81961 .73571 m .85257 .60937 L .80186 .66634 L p 0 0 .209 r
F P
0 g
s
.80186 .66634 m .76919 .78754 L .81961 .73571 L p 0 0 .209 r
F P
0 g
s
.48652 .91366 m .52212 .89926 L .39183 .85453 L p .526 0 0 r
F P
0 g
s
.39183 .85453 m .34862 .86592 L .48652 .91366 L p .526 0 0 r
F P
0 g
s
.27784 .78152 m .34862 .86592 L .39183 .85453 L closepath p .784 .291 .032 r
F P
0 g
s
.56306 .28287 m .53024 .25831 L .42581 .28401 L closepath p .417 .827 .975 r
F P
0 g
s
.53024 .25831 m .56306 .28287 L .697 .31972 L p .033 .551 .867 r
F P
0 g
s
.63332 .89223 m .66053 .87892 L .52212 .89926 L p .03 0 0 r
F P
0 g
s
.52212 .89926 m .48652 .91366 L .63332 .89223 L p .03 0 0 r
F P
0 g
s
.81961 .73571 m .76919 .78754 L .66053 .87892 L p .574 .901 .651 r
F P
0 g
s
.20065 .56613 m .21637 .70142 L .27784 .78152 L p .98 .702 .424 r
F P
0 g
s
.34862 .86592 m .27784 .78152 L .21637 .70142 L p 0 0 .496 r
F P
0 g
s
.79381 .45836 m .7861 .3847 L .82189 .4791 L p .856 .552 .024 r
F P
0 g
s
.83747 .60525 m .79381 .45836 L p .82189 .4791 L .856 .552 .024 r
F P
0 g
s
.82189 .4791 m .85257 .60937 L .83747 .60525 L p .856 .552 .024 r
F P
0 g
s
.697 .31972 m .67226 .29715 L .53024 .25831 L p .033 .551 .867 r
F P
0 g
s
.697 .31972 m .7861 .3847 L .67226 .29715 L closepath p 0 .152 .612 r
F P
0 g
s
.42581 .28401 m .32794 .32466 L .24203 .42597 L p .83 .978 .884 r
F P
0 g
s
.32794 .32466 m .42581 .28401 L .53024 .25831 L p 0 0 0 r
F P
0 g
s
.73548 .79992 m .81961 .73571 L p .66053 .87892 L .574 .901 .651 r
F P
0 g
s
.66053 .87892 m .63332 .89223 L .73548 .79992 L p .574 .901 .651 r
F P
0 g
s
.24203 .42597 m .21904 .50018 L .20065 .56613 L closepath p .696 .732 .219 r
F P
0 g
s
.21637 .70142 m .20065 .56613 L .21904 .50018 L p 0 0 .365 r
F P
0 g
s
.21904 .50018 m .24203 .42597 L .32794 .32466 L p 0 0 .026 r
F P
0 g
s
.85257 .60937 m .81961 .73571 L .83747 .60525 L closepath p .887 .832 .364 r
F P
0 g
s
.52296 .86624 m .48652 .91366 L .34862 .86592 L p .393 .632 .95 r
F P
0 g
s
.39504 .78274 m .52296 .86624 L p .34862 .86592 L .393 .632 .95 r
F P
0 g
s
.34862 .86592 m .28789 .78639 L .39504 .78274 L p .393 .632 .95 r
F P
0 g
s
.21637 .70142 m .28789 .78639 L .34862 .86592 L p 0 0 .496 r
F P
0 g
s
.2362 .64182 m .28789 .78639 L .21637 .70142 L closepath p .042 .198 .701 r
F P
0 g
s
.21904 .50018 m .2362 .64182 L .21637 .70142 L p 0 0 .365 r
F P
0 g
s
.67346 .36726 m .67226 .29715 L .7861 .3847 L p .858 .433 .21 r
F P
0 g
s
.7861 .3847 m .79381 .45836 L .67346 .36726 L p .858 .433 .21 r
F P
0 g
s
.43276 .29963 m .53024 .25831 L .67226 .29715 L p .658 .24 .241 r
F P
0 g
s
.53024 .25831 m .43276 .29963 L .32794 .32466 L p 0 0 0 r
F P
0 g
s
.32794 .32466 m .30921 .39529 L .21904 .50018 L p 0 0 .026 r
F P
0 g
s
.43276 .29963 m .30921 .39529 L .32794 .32466 L closepath p .279 0 .159 r
F P
0 g
s
.75128 .66528 m .83747 .60525 L .81961 .73571 L p .947 .9 .747 r
F P
0 g
s
.81961 .73571 m .73548 .79992 L .75128 .66528 L p .947 .9 .747 r
F P
0 g
s
.48652 .91366 m .52296 .86624 L .63332 .89223 L closepath p .545 .844 .999 r
F P
0 g
s
.51846 .37029 m .43276 .29963 L p .67226 .29715 L .658 .24 .241 r
F P
0 g
s
.67226 .29715 m .67346 .36726 L .51846 .37029 L p .658 .24 .241 r
F P
0 g
s
.62637 .76881 m .73548 .79992 L .63332 .89223 L p .757 .849 .92 r
F P
0 g
s
.63332 .89223 m .52296 .86624 L .62637 .76881 L p .757 .849 .92 r
F P
0 g
s
.21904 .50018 m .30921 .39529 L .38997 .47131 L p .429 .3 .602 r
F P
0 g
s
.2362 .64182 m .21904 .50018 L p .38997 .47131 L .429 .3 .602 r
F P
0 g
s
.70413 .51196 m .79381 .45836 L .83747 .60525 L p .914 .723 .63 r
F P
0 g
s
.83747 .60525 m .75128 .66528 L .70413 .51196 L p .914 .723 .63 r
F P
0 g
s
.28789 .78639 m .2362 .64182 L .34243 .63099 L p .447 .467 .787 r
F P
0 g
s
.34243 .63099 m .39504 .78274 L .28789 .78639 L p .447 .467 .787 r
F P
0 g
s
.30921 .39529 m .43276 .29963 L .51846 .37029 L p .56 .296 .472 r
F P
0 g
s
.73548 .79992 m .62637 .76881 L .75128 .66528 L closepath p .839 .807 .819 r
F P
0 g
s
.79381 .45836 m .70413 .51196 L .67346 .36726 L closepath p .859 .588 .528 r
F P
0 g
s
.38997 .47131 m .34243 .63099 L .2362 .64182 L p .429 .3 .602 r
F P
0 g
s
.51846 .37029 m .38997 .47131 L .30921 .39529 L p .56 .296 .472 r
F P
0 g
s
.62637 .76881 m .52296 .86624 L .39504 .78274 L p .677 .679 .845 r
F P
0 g
s
.54536 .51811 m .51846 .37029 L .67346 .36726 L p .761 .527 .579 r
F P
0 g
s
.67346 .36726 m .70413 .51196 L .54536 .51811 L p .761 .527 .579 r
F P
0 g
s
.54536 .51811 m .70413 .51196 L .75128 .66528 L p .776 .659 .733 r
F P
0 g
s
.49661 .6804 m .54536 .51811 L p .75128 .66528 L .776 .659 .733 r
F P
0 g
s
.75128 .66528 m .62637 .76881 L .49661 .6804 L p .776 .659 .733 r
F P
0 g
s
.49661 .6804 m .39504 .78274 L .34243 .63099 L closepath p .61 .566 .78 r
F P
0 g
s
.39504 .78274 m .49661 .6804 L .62637 .76881 L p .677 .679 .845 r
F P
0 g
s
.51846 .37029 m .54536 .51811 L .38997 .47131 L closepath p .669 .466 .601 r
F P
0 g
s
.34243 .63099 m .38997 .47131 L .54536 .51811 L p .647 .521 .696 r
F P
0 g
s
.54536 .51811 m .49661 .6804 L .34243 .63099 L p .647 .521 .696 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{271.75, 298.125},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnEmQFMcVhovu6n3vmZ6efYHZZ2AYxD7AgNjBaLO1GEsKYSwbsGUcgOyw
CEXYJnxQELpx5MiRo64cOerIlSNHHXUd18uX9Tq76q+erOlGQmEmorJ6ann/
l//LzFq6qy5duXPt8y+u3Ll+9crk2VtX/nbt+tXbk2du3vIWJbc5zraKNy1O
OvR5w3H8Qv1VqdD/vP78+vPrz7E/f0uzFPWpr3nBN7LA3Xh86FCSPn3Fq/5L
swwtyNEqlz79nVf9m2Y5WlCRvW7zKhU3TwsastdNXvVPmhVpwYis+jOv+pJm
ZVowJQGv8apbNKvQglnZ6w+86ibXzFuwLHtd4VVfyKpV2esTXnVDVh2UvS7z
qmuy6qis+pBXfU6zOi1Yp1WOWrfx/MaqGqA+4I2u0qxGS5Ib9y/c1Rt5m6td
jqjSlR31zu/zvgq8xJk44Szofb0oOlI43poqU23xfKDfcNBPaVagJRkKmuBP
4VCHA3XyJidBpdrjPQ72Mc2ytKAACLMg7CEQ1lUlL9N/ztss8FuapblZhQXy
VCoeFDYFwr7FYT+imdqxLiZUAO1+EDYNwl4ywupVXlhFXAXcVSC1D0hlxG8t
8KFwV4W7HwTbC4LlAPcFDvtBe9gAbUNcRmHzIOx5DquacTIqeYOAexUIFIDA
ORZQTVr1npLYMQrC7gZhi+KtDvZrGfeKgHYMhF0BYcuA9rQh4EYJTACBXUCg
AgROscB7UoO82LFDkoeCVUGwkxzsXel5OUA7A2iXgEBNXNZh3+kYdg6EXQRh
+wD3cRZQA0emfXxbAmEXQNh+EHY9GDYNuJeBQB+VTVo0AMIe47BqPMrKEK9o
VyjYwIY6Xj6998BnfHBPDeMD4qgOcak9RIBsl0l2+6EKsaDCuhJWh24CzDXW
+BXNcnwUi9JwRUPrLAbovclJRPlxmIUu0kydK7CS2sbxTUkwgRdf7+0JKJF5
KEXl5gk+xMpqKFSnIrsDlpGcC0TngGjSUvSgIVqIEk1ZirpU6mNBpNR5qd8K
kEpbSqVB/Vp9XFt5TqS8LW9ceOg3Fu6HCe78dklEetWg3lnRU3KB1jkPqmsr
nxFnQ6JnRDQFRGeBaN5SNAfqXDIS+/w+d4mDBog+oQuDtMb/smWK81HyKooW
PS2iOSA6BWpvK18Qy1GdD7D8KZEvAPkJIF+xNL8Iap+PBjkpraAIQEbF/Lql
fAnI56Ll3xT5MpAfBj7YgpQlDTl9ju7La4T9THBCCKqAYBAQ9Fs2hCqwIr05
S4HtDrMMAJaGJUsNsKR0abL46dlnAOV5YA4D9UnrGLRMSk2SYiF+XMQHgHgN
uGGL0QfcSMQBagKgCgAasgTqjwm01wBSZzVDAKgo6Rm1xGhIeizE10V8BIjn
gRtjlo21GXCDRF2SD5wYrBog6vxxDIBkAci4pR9N8WMzeXViPQHk00B+opfy
x6T2k0A+KW1gu6XogGH+D08eKfNTQH63IZ9hAZJPmfJqogDTcfqBboCeuHHM
YIDOGOqqbDrgAsnPWMrXjeHJTn7FkFdVnyV5tY2taDVgOAnHlD8q8nNG7R/d
+44m/s82/a3DZnYLDOrANg8ZvDLJnST+iYRvS84SaVcQCdmSESTb4bF1ZleM
B3Kkozd5Kt04h9GcgJS3AKLWLACQsjgyEOfyIpCkiiXSTgMpEYVUF6Q+S6SU
eFOPB7ImIIsApCEgVUsQF3izFSS9ii5DCQu5NChwpTj3FlRlG90joUY9Ko3a
9lJVn0iGaRLd00yKQeg+gbqdpOSHLc1YZvnDHZvMDhFFN1/GqNTfHPVQdFZE
naR/H0vp5ahs0L+FjaePnwQaJqo48j3EgJrjIpWqapPdS/HdCr5ioi+1eIJZ
Xmod7khXaS8AgiFLw5deGoGtB50J0FENESz+7ARLllnoQMD3bVIBAkXRcwzU
GBY3x5i1xFjuIh89xNjZRVJeLYwDxmFAI6jDyeXAoWGHJdKuyAThK+LlaIwk
wNhuibHShTMLryzSfoDk9hipU7KW4mFMWWLsfjUwVrtI0PwvHmnSEmlPzGQt
vhyMNyKd6Yhh26m7x9g8QXPxkCYA0rIlUqcEdRjuUILGLZ3ZFzNB/38YnJTQ
FxoxCcYsCQ4AAnXJqAD4vM1vnp2aZq8ZmkZv+fHFEwWT2Hjx7LK6Rpr/6UAG
jHQQiIZJEkug587Goxq1pDoEqPqo1L998Ih0q/WQZHJaNh20HEq6AaoH8kVQ
jOa2obVa8k9BVYukwoZ1QEMZHLYcexFaRTKY7h1Qg0r11QVyaA1glIBDPQRS
38WrL/hSG7dvf6/XPnzwlCb+b96StCCG5XC7WoyHlqBSfdtWBWgJKtWiGUu+
PHByi6TK+iFAlRKqKUB1FFBlAVW+K/88KkU2AviywjduyZeWrJa2RqX2HQMs
eWEZsWRJAa+KmKrtJk47lXmZnF39TvUaxFcSvkHAdwzwJQFfhGs94KsKXz/g
W1ela/JJJqtbZHKFSXMhrLpg1SyxHPriYnMifM8lSSwWLb8hWGWAdZxK5U2f
Pgb5JKSx3DuMQcHId8To3xqGa4kxLBiZyCTxsmffP1ORNwUK3SlNWbKMCYsb
2c9cYdE8KE07e4IzSaXaW2VDG+1L+3bE109b6k+JHccCafAmryNS2T7E1KJZ
Dktfvuz3XWuQSX1Eo2WPHz+XicKvSUN1AVD95QBNtM5JfBjvP6/Uv3IMuxUJ
p39dH4mUidN2A0hpDWa24r0ALhUPTgZea7hRAJcVv94ASOmtImUB0jBAGgFI
BeDXLmlfOcsGHxMO+TUE4EoAbhk4F4mpHw/YCH53GzeZgwCuIslcAkh5G6Qj
lkgomU2AVAd+zQG4gg3cUQBnO1g0AFy/+DULkIrWSPoBPDuQfgDSBC5NSZMv
bzKk+rczdJM/Ji7d7TikohT2AbghcWkSuBQTbh2k0PZIXANwo8C5UYBZ6ZhM
/RO64wDO9gyqCuDGxbkRgFS1QTphiYSSWQFIU8CvJoCrbTLM+mldMTD1zwbt
/CoBuB3iV8M48Q2DVMUl/QvQN0GTt3WpCEBmgUs14BKCqxguPXjBvx7VmCcB
JrpQQJgFgDkvflUBXAPAlQHcHoY7BVpawjKZOQC3BDwsAswBgFmUBHsrNKfC
M1n16aadfVlAuBMQ5qThDUZx6VN5wtJo+ufgp4XKNqkZQLUiSc0CtxBVAVPp
n+yfkcvDu2Zulbnoej0FmPYAp1xANwTo8phOP+9xtgPdKKBzAd1ecSwJmIYB
U1baV4J4AmOaNu6ccd1mYCGqJKA6EPCM/Q6zZIybt74/ftc8aJD43UFjKApm
SZksaqIt10g/ycRh1XQHVf103PkoVR4B3DZVh061jQo//4Emz16vdKO6kytp
SII0mM9XGoMmahlOhHyGyiQfUMLyycBgSAioPWg/LgZACKFMZSWq9gWpPTqc
JizlDwflHR/BKfPY//tHPwYa3z5AUxUadGZrS2M+TaxSN0Hy/qsFQqINEc1C
UT/3oaeh9QlnuGq7gcqw5Dl4Ee2oY0S4Guaz20ZOSa5VoRUgNS4V8lbouz+R
Kuus8jZQQVVbAno7qNSHurCAfmD+HaNteGFbAvpHshFhUbpDD/rrVxCEaWfj
hA1wmy8oaAmoTzNdhDVfohDwG9Vgqgsp84UQSEr3Df/INKPCth8FfbfNN2EE
kjgtoUYB67Qq8SCuXwvyPgg6A6wYjBn+ohFe8c0JabNjK0YjvfkKk4CXc4C1
LzJt2F/zxSsBK1rU9cig2AD9cpuPQNB5wFyOGZ57NL87B4XX38DFC/quEVTf
JgqT5mIG1a8RugyStyikWcuUOfKOo9+BmiNc1z6yfiXTx1GR/VdT2MbTr4f6
BMRbDpCSUdPSB9B4ouE+jQqmFm3HrZxbifMZzZI84rfk7z/foIn3GsMB9Iuy
rkqAWRAgRWWKeziMwilz/ihRtoMoBSpd7nHtUfSBlNPjXJco4yBKVaKU5NDP
1jl/kR1HwI79UomMpOMz3vGm7NgEOw6LYkJ21G8luyX9qR/sOCY7XuXN74hO
FWzepFI9Tfon3vwfsnkRbF6Tzf/Km38lm+ei3FcPiX7Jm38tm6eiUq6i3+XN
/yWbe1tS+9RbO2qj//BG92Sjb3iBauGv0PvyXn/+5X52tv0Pshd9DA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 270.75}, {297.125, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"5721c248-0f7a-4afa-b9e6-c92ef148100c"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(73\\). \\!\\(\\\"parabigyrate rhombicosidodecahedron \
(J73)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"b1a28a1f-bc49-4b84-ab8e-a06364def07d"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.08331
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.055829 1.16346 -3.33067e-16 1.16346 [
[ 0 0 0 0 ]
[ 1 1.08331 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.08331 L
0 1.08331 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.46749 .64383 m .52408 .5291 L .41436 .47127 L p .764 .637 .721 r
F P
0 g
s
.5281 .40803 m .41436 .47127 L .52408 .5291 L closepath p .728 .66 .782 r
F P
0 g
s
.67213 .67031 m .64985 .54399 L .52408 .5291 L p .672 .524 .676 r
F P
0 g
s
.55779 .73224 m .67213 .67031 L p .52408 .5291 L .672 .524 .676 r
F P
0 g
s
.52408 .5291 m .46749 .64383 L .55779 .73224 L p .672 .524 .676 r
F P
0 g
s
.5281 .40803 m .52408 .5291 L .64985 .54399 L p .655 .598 .778 r
F P
0 g
s
.46737 .80799 m .55779 .73224 L .46749 .64383 L p .742 .517 .588 r
F P
0 g
s
.46749 .64383 m .3757 .71597 L .46737 .80799 L p .742 .517 .588 r
F P
0 g
s
.35636 .58787 m .3757 .71597 L .46749 .64383 L closepath p .792 .606 .65 r
F P
0 g
s
.41436 .47127 m .35636 .58787 L .46749 .64383 L p .764 .637 .721 r
F P
0 g
s
.77689 .64069 m .75263 .50996 L .64985 .54399 L p .537 .432 .683 r
F P
0 g
s
.64985 .54399 m .67213 .67031 L .77689 .64069 L p .537 .432 .683 r
F P
0 g
s
.65684 .42187 m .64985 .54399 L .75263 .50996 L closepath p .565 .519 .763 r
F P
0 g
s
.64985 .54399 m .65684 .42187 L .5281 .40803 L p .655 .598 .778 r
F P
0 g
s
.65585 .78759 m .55779 .73224 L .46737 .80799 L p .646 .367 .481 r
F P
0 g
s
.55779 .73224 m .65585 .78759 L .67213 .67031 L closepath p .612 .404 .576 r
F P
0 g
s
.35636 .58787 m .41436 .47127 L .35666 .38695 L p .862 .768 .757 r
F P
0 g
s
.41436 .47127 m .5281 .40803 L .47494 .32059 L p .756 .746 .844 r
F P
0 g
s
.47494 .32059 m .35666 .38695 L .41436 .47127 L p .756 .746 .844 r
F P
0 g
s
.3757 .71597 m .35636 .58787 L .25826 .58354 L p .868 .657 .615 r
F P
0 g
s
.25826 .58354 m .35636 .58787 L p .35666 .38695 L .862 .768 .757 r
F P
0 g
s
.76319 .76165 m .77689 .64069 L .67213 .67031 L p .488 .295 .544 r
F P
0 g
s
.67213 .67031 m .65585 .78759 L .76319 .76165 L p .488 .295 .544 r
F P
0 g
s
.5766 .27577 m .47494 .32059 L .5281 .40803 L p .604 .683 .897 r
F P
0 g
s
.69277 .34241 m .5766 .27577 L p .5281 .40803 L .604 .683 .897 r
F P
0 g
s
.5281 .40803 m .65684 .42187 L .69277 .34241 L p .604 .683 .897 r
F P
0 g
s
.46737 .80799 m .3757 .71597 L .27738 .7174 L p .82 .477 .407 r
F P
0 g
s
.25826 .58354 m .27738 .7174 L .3757 .71597 L p .868 .657 .615 r
F P
0 g
s
.79403 .43386 m .69277 .34241 L .65684 .42187 L p .448 .499 .818 r
F P
0 g
s
.65684 .42187 m .75263 .50996 L .79403 .43386 L p .448 .499 .818 r
F P
0 g
s
.43159 .87459 m .46737 .80799 L p .27738 .7174 L .82 .477 .407 r
F P
0 g
s
.46737 .80799 m .43159 .87459 L .56521 .86772 L closepath p .68 .306 .332 r
F P
0 g
s
.46737 .80799 m .56521 .86772 L .65585 .78759 L p .646 .367 .481 r
F P
0 g
s
.84903 .52338 m .79403 .43386 L .75263 .50996 L p .209 .204 .633 r
F P
0 g
s
.83641 .65658 m .84903 .52338 L p .75263 .50996 L .209 .204 .633 r
F P
0 g
s
.75263 .50996 m .77689 .64069 L .83641 .65658 L p .209 .204 .633 r
F P
0 g
s
.76319 .76165 m .65585 .78759 L .56521 .86772 L p .34 0 .179 r
F P
0 g
s
.77689 .64069 m .76319 .76165 L .83641 .65658 L closepath p .26 .102 .468 r
F P
0 g
s
.35666 .38695 m .25604 .45544 L .25826 .58354 L p .862 .768 .757 r
F P
0 g
s
.31499 .34174 m .25604 .45544 L .35666 .38695 L closepath p .883 .918 .844 r
F P
0 g
s
.35666 .38695 m .47494 .32059 L .44016 .27116 L p .77 .903 .934 r
F P
0 g
s
.44016 .27116 m .31499 .34174 L .35666 .38695 L p .77 .903 .934 r
F P
0 g
s
.5766 .27577 m .44016 .27116 L .47494 .32059 L closepath p .614 .837 .985 r
F P
0 g
s
.25826 .58354 m .20989 .6388 L .27738 .7174 L closepath p .96 .717 .524 r
F P
0 g
s
.20989 .6388 m .25826 .58354 L .25604 .45544 L p .994 .858 .591 r
F P
0 g
s
.27738 .7174 m .30825 .81745 L .43159 .87459 L p .82 .477 .407 r
F P
0 g
s
.30825 .81745 m .27738 .7174 L .20989 .6388 L p .92 .528 .15 r
F P
0 g
s
.74292 .82867 m .76319 .76165 L p .56521 .86772 L .34 0 .179 r
F P
0 g
s
.56521 .86772 m .61318 .89787 L .74292 .82867 L p .34 0 .179 r
F P
0 g
s
.61318 .89787 m .56521 .86772 L .43159 .87459 L p .434 0 0 r
F P
0 g
s
.62643 .26958 m .5766 .27577 L .69277 .34241 L p .135 .54 .921 r
F P
0 g
s
.69277 .34241 m .74871 .34043 L .62643 .26958 L p .135 .54 .921 r
F P
0 g
s
.69277 .34241 m .79403 .43386 L .74871 .34043 L closepath p .164 .408 .85 r
F P
0 g
s
.81991 .71932 m .83641 .65658 L .76319 .76165 L p 0 0 0 r
F P
0 g
s
.76319 .76165 m .74292 .82867 L .81991 .71932 L p 0 0 0 r
F P
0 g
s
.25604 .45544 m .31499 .34174 L .26728 .38565 L p .844 .961 .626 r
F P
0 g
s
.26728 .38565 m .20629 .50468 L .25604 .45544 L p .844 .961 .626 r
F P
0 g
s
.25604 .45544 m .20629 .50468 L .20989 .6388 L p .994 .858 .591 r
F P
0 g
s
.8042 .42981 m .74871 .34043 L .79403 .43386 L p 0 0 .457 r
F P
0 g
s
.79403 .43386 m .84903 .52338 L .8042 .42981 L p 0 0 .457 r
F P
0 g
s
.4722 .90579 m .43159 .87459 L .30825 .81745 L p .473 0 0 r
F P
0 g
s
.43159 .87459 m .4722 .90579 L .61318 .89787 L p .434 0 0 r
F P
0 g
s
.44016 .27116 m .5766 .27577 L .62643 .26958 L p .108 .657 .817 r
F P
0 g
s
.83285 .57965 m .84903 .52338 L .83641 .65658 L p .837 .752 .236 r
F P
0 g
s
.83641 .65658 m .81991 .71932 L .83285 .57965 L p .837 .752 .236 r
F P
0 g
s
.62643 .26958 m .48231 .26454 L .44016 .27116 L p .108 .657 .817 r
F P
0 g
s
.31499 .34174 m .44016 .27116 L .48231 .26454 L p 0 0 0 r
F P
0 g
s
.26728 .38565 m .31499 .34174 L p .48231 .26454 L 0 0 0 r
F P
0 g
s
.30825 .81745 m .34187 .84566 L .4722 .90579 L p .473 0 0 r
F P
0 g
s
.20989 .6388 m .23908 .7399 L .30825 .81745 L p .92 .528 .15 r
F P
0 g
s
.23908 .7399 m .34187 .84566 L .30825 .81745 L closepath p 0 .047 .565 r
F P
0 g
s
.20989 .6388 m .20629 .50468 L .23418 .5132 L p 0 0 .427 r
F P
0 g
s
.23908 .7399 m .20989 .6388 L p .23418 .5132 L 0 0 .427 r
F P
0 g
s
.72255 .80806 m .74292 .82867 L .61318 .89787 L p .646 .965 .907 r
F P
0 g
s
.61318 .89787 m .58448 .88189 L .72255 .80806 L p .646 .965 .907 r
F P
0 g
s
.4722 .90579 m .58448 .88189 L .61318 .89787 L closepath p .339 .806 .923 r
F P
0 g
s
.84903 .52338 m .83285 .57965 L .8042 .42981 L closepath p .967 .681 .265 r
F P
0 g
s
.59589 .31118 m .62643 .26958 L .74871 .34043 L p .814 .366 .174 r
F P
0 g
s
.71111 .4162 m .59589 .31118 L p .74871 .34043 L .814 .366 .174 r
F P
0 g
s
.74871 .34043 m .8042 .42981 L .71111 .4162 L p .814 .366 .174 r
F P
0 g
s
.74292 .82867 m .72255 .80806 L .81991 .71932 L closepath p .833 .997 .772 r
F P
0 g
s
.26728 .38565 m .23418 .5132 L .20629 .50468 L closepath p 0 0 .168 r
F P
0 g
s
.58448 .88189 m .4722 .90579 L .34187 .84566 L p .518 .706 .956 r
F P
0 g
s
.62643 .26958 m .59589 .31118 L .48231 .26454 L closepath p .578 .075 .024 r
F P
0 g
s
.34187 .84566 m .23908 .7399 L .25599 .66717 L p .26 .416 .829 r
F P
0 g
s
.23418 .5132 m .25599 .66717 L .23908 .7399 L p 0 0 .427 r
F P
0 g
s
.74006 .57397 m .83285 .57965 L .81991 .71932 L p .911 .837 .759 r
F P
0 g
s
.66795 .72239 m .74006 .57397 L p .81991 .71932 L .911 .837 .759 r
F P
0 g
s
.81991 .71932 m .72255 .80806 L .66795 .72239 L p .911 .837 .759 r
F P
0 g
s
.48231 .26454 m .37218 .33822 L .26728 .38565 L p 0 0 0 r
F P
0 g
s
.23418 .5132 m .26728 .38565 L .37218 .33822 L p .352 .132 .434 r
F P
0 g
s
.52313 .80053 m .58448 .88189 L p .34187 .84566 L .518 .706 .956 r
F P
0 g
s
.34187 .84566 m .36516 .77797 L .52313 .80053 L p .518 .706 .956 r
F P
0 g
s
.25599 .66717 m .36516 .77797 L .34187 .84566 L p .26 .416 .829 r
F P
0 g
s
.37218 .33822 m .48231 .26454 L .59589 .31118 L p .597 .252 .356 r
F P
0 g
s
.74006 .57397 m .71111 .4162 L .8042 .42981 L p .921 .677 .552 r
F P
0 g
s
.8042 .42981 m .83285 .57965 L .74006 .57397 L p .921 .677 .552 r
F P
0 g
s
.72255 .80806 m .58448 .88189 L .52313 .80053 L p .763 .808 .889 r
F P
0 g
s
.52313 .80053 m .66795 .72239 L .72255 .80806 L p .763 .808 .889 r
F P
0 g
s
.25599 .66717 m .23418 .5132 L .34136 .46994 L p .458 .365 .662 r
F P
0 g
s
.37218 .33822 m .34136 .46994 L .23418 .5132 L p .352 .132 .434 r
F P
0 g
s
.48522 .38969 m .34136 .46994 L .37218 .33822 L closepath p .565 .328 .515 r
F P
0 g
s
.59589 .31118 m .48522 .38969 L .37218 .33822 L p .597 .252 .356 r
F P
0 g
s
.36565 .63052 m .36516 .77797 L .25599 .66717 L closepath p .497 .488 .777 r
F P
0 g
s
.34136 .46994 m .36565 .63052 L .25599 .66717 L p .458 .365 .662 r
F P
0 g
s
.48522 .38969 m .59589 .31118 L .71111 .4162 L p .75 .49 .538 r
F P
0 g
s
.36516 .77797 m .36565 .63052 L .52832 .65156 L p .634 .603 .8 r
F P
0 g
s
.52832 .65156 m .52313 .80053 L .36516 .77797 L p .634 .603 .8 r
F P
0 g
s
.71111 .4162 m .74006 .57397 L .60276 .50001 L closepath p .819 .613 .625 r
F P
0 g
s
.71111 .4162 m .60276 .50001 L .48522 .38969 L p .75 .49 .538 r
F P
0 g
s
.66795 .72239 m .52313 .80053 L .52832 .65156 L closepath p .733 .686 .805 r
F P
0 g
s
.34136 .46994 m .48522 .38969 L .60276 .50001 L p .66 .507 .666 r
F P
0 g
s
.36565 .63052 m .34136 .46994 L p .60276 .50001 L .66 .507 .666 r
F P
0 g
s
.52832 .65156 m .60276 .50001 L .74006 .57397 L p .782 .656 .724 r
F P
0 g
s
.74006 .57397 m .66795 .72239 L .52832 .65156 L p .782 .656 .724 r
F P
0 g
s
.60276 .50001 m .52832 .65156 L .36565 .63052 L p .66 .507 .666 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{184.562, 199.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm8uLHFUUxiv16Hd1T3fPIzPJvDKZTDITk2jMQ43mpYmvGIghC0MWIQiJ
MESi7hQR3bgQBDcigiCID1A3LiIuFMXHQoKC5h9wo+hSyLK959xbp6u7vtu5
k+4JURyoWz1V95zvd859Vk/NsbPPnn9y+eyzF86dnTl66ezT5y+ce2bmyMVL
6lKwxvO8y+r4fsajzy310RSXW+pH3fz/NJjTSTo1KLcn9IXjdCrQhaD15oHT
AX0qtt5o5qr06X5d6RidinQhT5V8+tSkSl5IH1s/ndnaMk12SFs8Km7LYjHE
FoFYqMPzudTXzI+3X7t4WESrQlYBLkIqWcAYPkinEl1oiHYJGObE8F5teEQM
R8UwDwyLYniPNuQ0lenCuKCGwLAshndpw8OiOCWKykZZJnZeDWRot7Y+KLIz
IlsXCVNpv1SapUpexJ6+fOFVOTzOVGJ2pzbjlFTEN9+KqHpXSG29O7Thvk5D
U91oqZxnXTRAhNu1s7vF2SxwVrA5Yx7jgjMd04VpCaQCDJuAYqt2sVdSqO4/
MXuR67z++Mu69jpAFjuGaQT2SFcPyb+ppBRYxaeSucckgrqjwJIW2C3DMQIC
kQgMg1gajlKLWmoXnfJ66GSl8lTypZrEMkoCfivphdgtd8tID+Ws25JEUAER
rAURDAGpLVpqJ51C7SwrVRGpIpCaAFJoBBspHjN8JwZSNUlWKMmachTYrAVu
55O+RT2XRKpAqiFR6XUgCUoNYje9hZXpNSW0DUCgahfYQSeznGTd1iWMoPXB
Sx91NQ6KBUltSkk5xDIkork+ROe16Pae8dXa0w5JsVzeUTS+UdFY4iv3IbVR
S20TqTqQKotUFUhNU5nTc4BV4LZUq3lq/vMsUbWnjDqQmkxF9fPb77CXsPXn
x6/xLI12LXMrky+k5tys/DouQ5E3CDER8FUTrF4/wpTakq0V86DrjADptTIb
ByRr7ipdOlSzUNkZ+YY0S2fkqI3bq804kB/tSjwhhACEU8FeTOKX3FMRCsF6
QDAMCKIBE7SX9GlAUJcmKNiawNdTJ+suYl2Ue2OWlayBoAcpTp1hHujGQLfo
oqsX0KhLNzXe2H4BSJYku5XrdPBrnxxmf7NpSdy+7G8RqBVAgLGtN2HdzT1C
jSVUZfvcmQ+T4Q1ZcoCl6piDGc2ykBnkS9yplrrWyaIkJSSsrnkHwQXSLPXV
QcpJqnIAaYlL/HDUtAKFAmSgpjXTJkemSNJUsjK10+TxarFaLL7kpwJYtlLJ
pCPW3ht1ECTNNKUx5mXhD6G4R48EFl0T2w/vf26igE3iCiG5WOZbOd3neqef
pNWhOKnsHEJD7k1ixVjmDCybazSQiafhSBVQafZvNhacl8n+gRYBUE6A7PPL
QICaAGgLACoIkMukrw6lRmXnTmeif7jNAK4scGWHleEG4ALHpkRwMejxaGdw
EzEXAGZNcmjdtmTgPNoArgpNXWhyq0iD+tc8oBkWGrSTvtk0o0LjO8wNdL76
1T6eGwYAtBEAjXOZediqdU3hZuXpMUH1AzFBZaCncKUbpKQ29dE554DUJJX8
pXM+1fRJkldT1Fz74+rXdCh5VfK3kuqG0WfZ9StjQDmedWSocdlXCm5B+RlH
+aH/pPy0o3x9ZfKhY/e/ifIo+skVyYcibxD+dQTcBLyJn3DUbYDET6VE80CF
n00CM1e9+Px3fPPdt35Uv6mS/97RHJC8Q8wVoQkJxtxVIIxUFKSyI1Kzf6Si
IOUB0pAghauDFAGkSJBKAGmMSt5oTAH5Ybv8gmNGfJGPgfwEl7rzf/HpFeNN
LX0DZ6Hq5uHw+hjm8PV4GgyLeV/AJh6kxdVvifwYkB+xy2+2rRh+69BTv5gb
NHKJw56KTppIaEZsNOZr3N4MJsMKhA+PvnFwI8gLQQMQjLoQpJ9NDYGHklJ1
RCoK0tAgkQKAZB85nUhlQYptSF29xsB1fo+8nDro2S0LVHEEigWo3DNHM9fH
yAOMsiNGTTAKAGMMY4RdGKrBswRoSkUEdSHI9UFQAgRFR4KmEASAYG03wWKm
u1IbZuULjvIjIq/1E3X13NnuleYn6ZWIoQIY0FKLGEZTc3oS7qxdKgZSOUep
4XS431z5TcJdmwr319a3XMMwLKUYktkAMUQraXFzjRDUoWYcKu2rSYK0wY5U
BUho/3W9YZAFaQKQOTtIDYAENzAjZEEaqS05gRgYw7LVkcW/gUkyyzKEWcDf
+TtZojRLsldXG6usfgX0E0RSwyTm7YltVpKwg8QCUZIk1IB0jKXNKyrbHRrE
FnwhtbHI6pZknghIs2uaMm2wwybv24LNg4wj+WLXgCAEH4CYJrjdBsKJG++5
sRsF8nlHedMMd1gnC91wr3z2d3Lwg2qz5753HABFAAg1TBrI/P2l3RsMgmr5
BCTusftfBzBCRwzzstZOwYgBRpXKSM9EWQyPNvZZAt+RwLz/dqcQVABBUxLh
EwHfnGbRKC3Kh8dTt1VolwiVgNAElXxpQ1dMNrfmBcHd4rYI3K7nsnM0zaYE
kgSFQMC8V7lHBPJAYAoITFJpvr9/79rvDqPEvIS6V6RyQGoaSE2IVMRSUcc0
mCyUeiXQ7wr3eKRIhGaA0JgIFbpiIgE9wZuXvaO0QPIwpybErNNhcVoip+mX
kvkl6ewzIfLSAF70dKff0fZBiHPATw342an93JfKXOJiHriIU11LueBMFcTZ
Lu3sgLQyclESiqIY7tGGh8QQ4ReAoXmJnt++59qzwDAChua1/aOiiPqEDwzN
Pwo8JIa614Zi6PEuOmWxX1s8IhY8pNpdjT8d1JWOSaVRqsRew9apK3+Zv90l
1Q/r6scl7vZMWqLqhsc0EX1+QFucEIGCCLAFfzN3VFc6KZV8qaRSo2ol0Xn8
LvxjuvopOrH9aX3hlvg/l1U8eWv+AYpdWnA=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 183.562}, {198.938, \
0.}} -> {0.047981, -0.00019759, 0.0046824, \
0.0046824}},ExpressionUUID->"588911e1-b7b9-4c42-aebb-f1873ebab3b7"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(74\\). \\!\\(\\\"metabigyrate rhombicosidodecahedron \
(J74)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"0c0b62fd-e2af-4ba3-b2c9-32aa0effcb3f"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.07551
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.052476 1.15791 0 1.15791 [
[ 0 0 0 0 ]
[ 1 1.07551 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.07551 L
0 1.07551 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.5937 .63575 m .5629 .5111 L .43519 .50085 L p .729 .588 .698 r
F P
0 g
s
.71131 .60753 m .67966 .47995 L .5629 .5111 L p .622 .521 .719 r
F P
0 g
s
.5629 .5111 m .5937 .63575 L .71131 .60753 L p .622 .521 .719 r
F P
0 g
s
.57997 .39431 m .5629 .5111 L .67966 .47995 L closepath p .638 .593 .787 r
F P
0 g
s
.5629 .5111 m .57997 .39431 L .44886 .38299 L p .713 .663 .799 r
F P
0 g
s
.44886 .38299 m .43519 .50085 L .5629 .5111 L p .713 .663 .799 r
F P
0 g
s
.72033 .73034 m .71131 .60753 L .5937 .63575 L p .593 .42 .617 r
F P
0 g
s
.5937 .63575 m .59965 .75633 L .72033 .73034 L p .593 .42 .617 r
F P
0 g
s
.48518 .70394 m .59965 .75633 L .5937 .63575 L closepath p .677 .485 .619 r
F P
0 g
s
.48518 .70394 m .5937 .63575 L p .43519 .50085 L .729 .588 .698 r
F P
0 g
s
.38635 .62039 m .43519 .50085 L .33566 .45161 L p .823 .701 .73 r
F P
0 g
s
.44886 .38299 m .33566 .45161 L .43519 .50085 L closepath p .785 .729 .8 r
F P
0 g
s
.43519 .50085 m .38635 .62039 L .48518 .70394 L p .729 .588 .698 r
F P
0 g
s
.41921 .79196 m .48518 .70394 L .38635 .62039 L p .791 .566 .596 r
F P
0 g
s
.59965 .75633 m .48518 .70394 L .41921 .79196 L p .701 .441 .528 r
F P
0 g
s
.38635 .62039 m .31657 .70569 L .41921 .79196 L p .791 .566 .596 r
F P
0 g
s
.28459 .57511 m .31657 .70569 L .38635 .62039 L closepath p .849 .658 .644 r
F P
0 g
s
.33566 .45161 m .28459 .57511 L .38635 .62039 L p .823 .701 .73 r
F P
0 g
s
.82611 .50882 m .74698 .41477 L .67966 .47995 L p .435 .399 .72 r
F P
0 g
s
.80075 .63096 m .82611 .50882 L p .67966 .47995 L .435 .399 .72 r
F P
0 g
s
.67966 .47995 m .71131 .60753 L .80075 .63096 L p .435 .399 .72 r
F P
0 g
s
.57997 .39431 m .67966 .47995 L .74698 .41477 L p .548 .582 .841 r
F P
0 g
s
.71131 .60753 m .72033 .73034 L .80075 .63096 L closepath p .472 .33 .606 r
F P
0 g
s
.72033 .73034 m .59965 .75633 L .53671 .84783 L p .514 .215 .397 r
F P
0 g
s
.41921 .79196 m .53671 .84783 L .59965 .75633 L p .701 .441 .528 r
F P
0 g
s
.44886 .38299 m .57997 .39431 L .64282 .32484 L p .651 .751 .923 r
F P
0 g
s
.74698 .41477 m .64282 .32484 L .57997 .39431 L p .548 .582 .841 r
F P
0 g
s
.54395 .26547 m .42032 .30479 L .44886 .38299 L p .651 .751 .923 r
F P
0 g
s
.64282 .32484 m .54395 .26547 L p .44886 .38299 L .651 .751 .923 r
F P
0 g
s
.33566 .45161 m .44886 .38299 L .42032 .30479 L p .811 .836 .869 r
F P
0 g
s
.28459 .57511 m .33566 .45161 L .30095 .37641 L p .941 .865 .735 r
F P
0 g
s
.42032 .30479 m .30095 .37641 L .33566 .45161 L p .811 .836 .869 r
F P
0 g
s
.41921 .79196 m .31657 .70569 L .24706 .72481 L p .848 .475 .346 r
F P
0 g
s
.4225 .8718 m .41921 .79196 L p .24706 .72481 L .848 .475 .346 r
F P
0 g
s
.41921 .79196 m .4225 .8718 L .53671 .84783 L closepath p .718 .362 .374 r
F P
0 g
s
.31657 .70569 m .28459 .57511 L .21335 .58684 L p .936 .702 .559 r
F P
0 g
s
.21335 .58684 m .28459 .57511 L p .30095 .37641 L .941 .865 .735 r
F P
0 g
s
.21335 .58684 m .24706 .72481 L .31657 .70569 L p .936 .702 .559 r
F P
0 g
s
.82528 .70424 m .80075 .63096 L .72033 .73034 L p .273 .076 .42 r
F P
0 g
s
.72033 .73034 m .73994 .80731 L .82528 .70424 L p .273 .076 .42 r
F P
0 g
s
.73994 .80731 m .72033 .73034 L p .53671 .84783 L .514 .215 .397 r
F P
0 g
s
.53671 .84783 m .62097 .88413 L .73994 .80731 L p .514 .215 .397 r
F P
0 g
s
.62097 .88413 m .53671 .84783 L .4225 .8718 L p .534 .052 .059 r
F P
0 g
s
.67587 .29208 m .64282 .32484 L .74698 .41477 L p .239 .486 .891 r
F P
0 g
s
.74698 .41477 m .7864 .38775 L .67587 .29208 L p .239 .486 .891 r
F P
0 g
s
.74698 .41477 m .82611 .50882 L .7864 .38775 L closepath p .146 .298 .762 r
F P
0 g
s
.85285 .5774 m .82611 .50882 L .80075 .63096 L p 0 0 .417 r
F P
0 g
s
.80075 .63096 m .82528 .70424 L .85285 .5774 L p 0 0 .417 r
F P
0 g
s
.64282 .32484 m .67587 .29208 L .54395 .26547 L closepath p .353 .668 .974 r
F P
0 g
s
.42032 .30479 m .35411 .30112 L .30095 .37641 L closepath p .776 .971 .92 r
F P
0 g
s
.35411 .30112 m .42032 .30479 L .54395 .26547 L p .473 .885 .933 r
F P
0 g
s
.30095 .37641 m .2217 .45956 L .21335 .58684 L p .941 .865 .735 r
F P
0 g
s
.2217 .45956 m .30095 .37641 L .35411 .30112 L p .695 .93 .617 r
F P
0 g
s
.50401 .91069 m .4225 .8718 L .31281 .83203 L p .376 0 0 r
F P
0 g
s
.24706 .72481 m .31281 .83203 L .4225 .8718 L p .848 .475 .346 r
F P
0 g
s
.4225 .8718 m .50401 .91069 L .62097 .88413 L p .534 .052 .059 r
F P
0 g
s
.81167 .45139 m .7864 .38775 L .82611 .50882 L p 0 0 .286 r
F P
0 g
s
.82611 .50882 m .85285 .5774 L .81167 .45139 L p 0 0 .286 r
F P
0 g
s
.21335 .58684 m .20507 .65993 L .24706 .72481 L closepath p .965 .673 .258 r
F P
0 g
s
.20507 .65993 m .21335 .58684 L .2217 .45956 L p .753 .659 .104 r
F P
0 g
s
.73994 .80731 m .76465 .80366 L .82528 .70424 L closepath p 0 0 0 r
F P
0 g
s
.76465 .80366 m .73994 .80731 L .62097 .88413 L p 0 0 0 r
F P
0 g
s
.31281 .83203 m .24706 .72481 L .20507 .65993 L p .627 .207 0 r
F P
0 g
s
.62097 .88413 m .63804 .88552 L .76465 .80366 L p 0 0 0 r
F P
0 g
s
.50401 .91069 m .63804 .88552 L .62097 .88413 L closepath p 0 0 0 r
F P
0 g
s
.54395 .26547 m .48338 .25933 L .35411 .30112 L p .473 .885 .933 r
F P
0 g
s
.48338 .25933 m .54395 .26547 L .67587 .29208 L p .217 0 0 r
F P
0 g
s
.80884 .59072 m .85285 .5774 L .82528 .70424 L p .963 .938 .639 r
F P
0 g
s
.75079 .73902 m .80884 .59072 L p .82528 .70424 L .963 .938 .639 r
F P
0 g
s
.82528 .70424 m .76465 .80366 L .75079 .73902 L p .963 .938 .639 r
F P
0 g
s
.62191 .28743 m .67587 .29208 L .7864 .38775 L p .804 .315 .013 r
F P
0 g
s
.70747 .38988 m .62191 .28743 L p .7864 .38775 L .804 .315 .013 r
F P
0 g
s
.7864 .38775 m .81167 .45139 L .70747 .38988 L p .804 .315 .013 r
F P
0 g
s
.2217 .45956 m .21365 .52749 L .20507 .65993 L p .753 .659 .104 r
F P
0 g
s
.35411 .30112 m .27288 .38553 L .2217 .45956 L p .695 .93 .617 r
F P
0 g
s
.27288 .38553 m .21365 .52749 L .2217 .45956 L closepath p 0 0 .059 r
F P
0 g
s
.31281 .83203 m .39174 .87037 L .50401 .91069 L p .376 0 0 r
F P
0 g
s
.20507 .65993 m .27321 .77116 L .31281 .83203 L p .627 .207 0 r
F P
0 g
s
.27321 .77116 m .39174 .87037 L .31281 .83203 L closepath p 0 .352 .822 r
F P
0 g
s
.67587 .29208 m .62191 .28743 L .48338 .25933 L p .217 0 0 r
F P
0 g
s
.27288 .38553 m .35411 .30112 L .48338 .25933 L p .351 0 .172 r
F P
0 g
s
.63804 .88552 m .50401 .91069 L .39174 .87037 L p .571 .802 .986 r
F P
0 g
s
.85285 .5774 m .80884 .59072 L .81167 .45139 L closepath p .995 .756 .439 r
F P
0 g
s
.20507 .65993 m .21365 .52749 L .29161 .55078 L p .268 .285 .693 r
F P
0 g
s
.27321 .77116 m .20507 .65993 L p .29161 .55078 L .268 .285 .693 r
F P
0 g
s
.6164 .82526 m .75079 .73902 L .76465 .80366 L p .818 .935 .907 r
F P
0 g
s
.76465 .80366 m .63804 .88552 L .6164 .82526 L p .818 .935 .907 r
F P
0 g
s
.3537 .40066 m .27288 .38553 L p .48338 .25933 L .351 0 .172 r
F P
0 g
s
.48338 .25933 m .49108 .31774 L .3537 .40066 L p .351 0 .172 r
F P
0 g
s
.62191 .28743 m .49108 .31774 L .48338 .25933 L closepath p .579 .128 .146 r
F P
0 g
s
.6164 .82526 m .63804 .88552 L p .39174 .87037 L .571 .802 .986 r
F P
0 g
s
.21365 .52749 m .27288 .38553 L .3537 .40066 L p .342 .166 .491 r
F P
0 g
s
.39174 .87037 m .45549 .81488 L .6164 .82526 L p .571 .802 .986 r
F P
0 g
s
.39174 .87037 m .27321 .77116 L .33058 .70986 L p .449 .565 .88 r
F P
0 g
s
.33058 .70986 m .45549 .81488 L .39174 .87037 L p .449 .565 .88 r
F P
0 g
s
.70124 .53335 m .70747 .38988 L .81167 .45139 L p .903 .658 .558 r
F P
0 g
s
.81167 .45139 m .80884 .59072 L .70124 .53335 L p .903 .658 .558 r
F P
0 g
s
.3537 .40066 m .29161 .55078 L .21365 .52749 L p .342 .166 .491 r
F P
0 g
s
.29161 .55078 m .33058 .70986 L .27321 .77116 L p .268 .285 .693 r
F P
0 g
s
.49108 .31774 m .62191 .28743 L .70747 .38988 L p .74 .418 .437 r
F P
0 g
s
.63995 .68779 m .70124 .53335 L .80884 .59072 L p .861 .743 .731 r
F P
0 g
s
.80884 .59072 m .75079 .73902 L .63995 .68779 L p .861 .743 .731 r
F P
0 g
s
.75079 .73902 m .6164 .82526 L .63995 .68779 L closepath p .808 .783 .829 r
F P
0 g
s
.70747 .38988 m .57494 .42501 L .49108 .31774 L p .74 .418 .437 r
F P
0 g
s
.43326 .51199 m .3537 .40066 L .49108 .31774 L p .642 .412 .554 r
F P
0 g
s
.49108 .31774 m .57494 .42501 L .43326 .51199 L p .642 .412 .554 r
F P
0 g
s
.70747 .38988 m .70124 .53335 L .57494 .42501 L closepath p .801 .566 .581 r
F P
0 g
s
.63995 .68779 m .6164 .82526 L .45549 .81488 L p .712 .691 .828 r
F P
0 g
s
.3537 .40066 m .43326 .51199 L .29161 .55078 L closepath p .556 .391 .613 r
F P
0 g
s
.4736 .67588 m .45549 .81488 L .33058 .70986 L closepath p .608 .595 .812 r
F P
0 g
s
.45549 .81488 m .4736 .67588 L .63995 .68779 L p .712 .691 .828 r
F P
0 g
s
.33058 .70986 m .29161 .55078 L .43326 .51199 L p .591 .501 .721 r
F P
0 g
s
.43326 .51199 m .4736 .67588 L .33058 .70986 L p .591 .501 .721 r
F P
0 g
s
.43326 .51199 m .57494 .42501 L .70124 .53335 L p .735 .591 .695 r
F P
0 g
s
.4736 .67588 m .43326 .51199 L p .70124 .53335 L .735 .591 .695 r
F P
0 g
s
.70124 .53335 m .63995 .68779 L .4736 .67588 L p .735 .591 .695 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{185.938, 199.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm8uPFEUcx5vp7pmeZ89j37vszr6XfQHyFkUFgkSCQaMhkHjYoAnEGAhy
NfEfkBBDgokeTPTgUS5G4iPxpBc0Po5ePOlNT56Maz1+/dvqnm/P1OwsIuom
XT3bXfP7fOpX1dU1uz2n165dfOmVtWuXLqw1n7y6duXipQuvNk9cvioOudsc
x7kjti+bjny9Ll5ScWdd/IiT/++2ZndW7vIyt+f0gefkzpUHMuvnnGXHky/X
bzZno60gDzyrK5+RO1XDV5Vds7KT5eqndfXTHDsPqhe5+kld/SmuXgLVq1z9
mK5+gmVCUL2fqx/R1Y9x9D5QPZSlr9Pw2cuX6ezdM67cHFWqs4d1sCfkLiMP
DIJgBQ4WgGA5CimP0Y9z0AhLp0RYFXoAAHwGVCwBBzTgcQBALfB1nuxi79ex
H0uLrfpoJC2YyiKFONJB7/1Lb6hpYQwEywOzPTrso2lpVWxXhqWzIqwKjWwR
4CENeKRDv0lvCfF6QO3WqMMA1c9tCboBqHdQ2IdB2D4OW7QMWwDeqxpwKA2Q
SJEtqghQKxp1EKAa3JawB8CyBhxIAyTaUu0BtaRR+wGqzm3p6wag3kFh96WF
TbSgHwCGAaAMWrCgUXsBqsYtGLJsAQLMa8AeAKgyYLQHwJwGqIu85UYTpWis
B8CsAaA779nF16KN7iBRS5oANCRL9cY24XcbCaLQYuqNABnQpkmAajAqs373
xk3S/fmD6+u0WCsBgxltsEvuMvp+Jbjq1QxghMzIJhi0qXeiWaYFFKpmxps1
DZAFRhYU0jWR4jdddroFEn4nxF9/8R1115oFeJ/xFYD3uM0BgE5r6KrRvRLs
MN5jPCkgA1WpDuBZhmc7wGGLxSZGiizjnTAlS3VoAEADhvoAOqWhK6kt7ozX
Q1uN/PVPb93mTcboB0IFFnI7CKlKVaDhAo1xWVI7BT4aYjduKgXUHSVV+uZQ
VJsUp85YtsyLD4RGWSgAQjUgVObMOGxiJmXJmNW0TZg2TrJAaNgYq9RJYtnS
qlYFaiGrTZsunTOTAyKDnJkywIcAXzNmjWikNLXIon1SAuDSxy5V4IKmkDYu
O+xdCsClDjqoJstM2nS2NS5F4BJyXgZAXtDMXuchMmkadB4iJYCvgFQMApH8
VoqUgUiR8zAK8IENfsG+JyrAIGCDcWCQSzOgY39+cUW1t2m6dE5FFYhkQZ9M
AKXs36fkcW6m+TrZDD71fltXpWdCGTkP2u6mwj2Gk8CEDb+RaLQUXwTczOa4
iTVsOc1AHVpWXN/kqk069bVlzbdtYyhLWgffev3jxAhbUqUXozLQjwGjnh1P
Uitpsw6tjFupy4kcO10g1btQKgNGFtOQSreRGK1iE6mRZXymHzOgdOr4ydty
078V0lYqru6KVocVdkheMZtyECX9bTNlKUlL5RQR6vUfP/+EJgcxB7RaucBq
NN0qJ0tXj7boE9tAhxEgDcQm3iFKGlE9ixRYZMQS76kyfpEXexcpbowYKaJk
kNISUPI5I0jEAyIjvYssApGARfLdicwBkTIQGbYUKbBI7v6KlFjEByI+EBnu
TgR1zQIQCcGwzaTlhpZa90SkyhnJgNuV2FR18abff3svSky73qlY9s48cGnI
MisPeRJn3xO9QPuNnpBtlGCE77LNKP9z9wYfWrZ+1hLv/yvxMwA/cH/xtq1v
c+lXLfHT9xc/ZYnPpuNnAb72n8bXLfHNHvBjDzx+whKfe6DwDYAfssT3AXyQ
jkfXvW3rt/fQ+u0ajxbF6MIblGVRHhq8N1DU5pos6R9cb7/1DZ396MPv5SZG
tCjVH2+CHrqBlBYs81CWpVrF5YBSvyzVkzno3tcGvwPg0eyfZ3wR4MdUqdeY
X3/1g9o7jl74JVzyvbt43DuhhQttqlLVMjn0J45FCyGx1781Ul1c00XcikVJ
H6w3ZfPuXicy0jb0KJEdPsf4omXvEH4JJEOvkHWur974SW1qDNq55Nklb5mK
Ce2yDFxKRseQi7h6ZamPCSWlZdtPRZbLWso10+WKQM4DcnVLuTIPabc7uRUg
lwdyWSBXA3KjQK7GmdN2kRv0on8crAKvHPAKZKli29rU2abQHT4L8EWQlko3
aaFj3/76i8oPut7oP6A7gZIHlMpAqWQ5jELOTUYqWazc6F+iu4BcBsiFQC79
BhKXqyTypQVbNdFnm5imb2qqzVHzdTSSkBDqwLIxI7RqoE/39GTH7kS2HDVH
tmYmsBTZmJqC7kTUs0J0u2jFo4UFwhdAxyARF4jEHlrSp5zz36mMIKWspVLA
GSkpEd8Uif7GFT1UtscS7lvCcyAfFhp70zToD5mt8BEAz3LLQ4X0YkgnWlUR
zdugaeIQaDda8yK0D9rdXmJfOwnPlJCvtwOmy81tSJJ6tRgPHq2PCACHu8Ph
WxaK9GxkFBw8SkmBRZ5kGZ/w+rkDUXhHPia0caFEFwUxDlgy+mSZ18HgunvD
fjU9sgsi1400vXn3D7mJ0S3KUM96gpZIj55hY0/NtgNUAWBQljkOm8gNAQ7x
zOWBsBUQdlyV8dFZZW96uPswh0W2JRC2CcJWgLf59DjdYaPBWARhJ0HYEtua
D8lvBEvY5kDYKRC2wGFjXxxouSpRvBkQLwCtp8hHWVjnN/KNrX2j2LMgdpZd
6bsTx+WOFr6tIeZACB/oUbATRsONjy+LIEqGRegbISeNER/hd8A3OtE3J5xT
LJ8UlRk6qis9zZXMZEfmuq+cZ7jSiKyk7jO6NcZ3cup86pQ+dZZPFfjUGX3q
PJ/K8Knn9akXuBPP6wP/iO8ibenO2fYXplIl/Q==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 184.938}, {198.938, \
0.}} -> {0.0453153, -8.72294, 0.00466987, \
0.00466987}},ExpressionUUID->"ce75c506-d9a8-47f2-8f08-2774aa1cfdcb"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(75\\). \\!\\(\\\"trigyrate rhombicosidodecahedron (J75)\\\"\
\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"7bb58880-7cda-4864-abe1-63d91d51c64b"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.07914
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.053994 1.16126 0 1.16126 [
[ 0 0 0 0 ]
[ 1 1.07914 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.07914 L
0 1.07914 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.61773 .63014 m .56841 .5116 L .44035 .52075 L p .717 .572 .69 r
F P
0 g
s
.7277 .58294 m .67672 .46152 L .56841 .5116 L p .613 .521 .726 r
F P
0 g
s
.56841 .5116 m .61773 .63014 L .7277 .58294 L p .613 .521 .726 r
F P
0 g
s
.56466 .39239 m .56841 .5116 L .67672 .46152 L closepath p .642 .6 .791 r
F P
0 g
s
.56841 .5116 m .56466 .39239 L .43327 .40134 L p .719 .661 .791 r
F P
0 g
s
.43327 .40134 m .44035 .52075 L .56841 .5116 L p .719 .661 .791 r
F P
0 g
s
.75291 .70231 m .7277 .58294 L .61773 .63014 L p .565 .405 .624 r
F P
0 g
s
.61773 .63014 m .63943 .74765 L .75291 .70231 L p .565 .405 .624 r
F P
0 g
s
.5199 .71368 m .63943 .74765 L .61773 .63014 L closepath p .653 .464 .616 r
F P
0 g
s
.5199 .71368 m .61773 .63014 L p .44035 .52075 L .717 .572 .69 r
F P
0 g
s
.40965 .6457 m .44035 .52075 L .33179 .48574 L p .816 .675 .707 r
F P
0 g
s
.43327 .40134 m .33179 .48574 L .44035 .52075 L closepath p .791 .715 .78 r
F P
0 g
s
.44035 .52075 m .40965 .6457 L .5199 .71368 L p .717 .572 .69 r
F P
0 g
s
.4641 .80876 m .5199 .71368 L .40965 .6457 L p .765 .531 .578 r
F P
0 g
s
.63943 .74765 m .5199 .71368 L .4641 .80876 L p .664 .404 .518 r
F P
0 g
s
.40965 .6457 m .3499 .73836 L .4641 .80876 L p .765 .531 .578 r
F P
0 g
s
.29947 .6145 m .3499 .73836 L .40965 .6457 L closepath p .83 .621 .62 r
F P
0 g
s
.33179 .48574 m .29947 .6145 L .40965 .6457 L p .816 .675 .707 r
F P
0 g
s
.81809 .46296 m .72833 .38405 L .67672 .46152 L p .421 .416 .748 r
F P
0 g
s
.81524 .58988 m .81809 .46296 L p .67672 .46152 L .421 .416 .748 r
F P
0 g
s
.67672 .46152 m .7277 .58294 L .81524 .58988 L p .421 .416 .748 r
F P
0 g
s
.56466 .39239 m .67672 .46152 L .72833 .38405 L p .564 .608 .855 r
F P
0 g
s
.43327 .40134 m .56466 .39239 L .61095 .31163 L p .688 .769 .913 r
F P
0 g
s
.72833 .38405 m .61095 .31163 L .56466 .39239 L p .564 .608 .855 r
F P
0 g
s
.7277 .58294 m .75291 .70231 L .81524 .58988 L closepath p .436 .321 .624 r
F P
0 g
s
.75291 .70231 m .63943 .74765 L .58682 .84596 L p .445 .162 .388 r
F P
0 g
s
.4641 .80876 m .58682 .84596 L .63943 .74765 L p .664 .404 .518 r
F P
0 g
s
.5003 .2669 m .38799 .32633 L .43327 .40134 L p .688 .769 .913 r
F P
0 g
s
.61095 .31163 m .5003 .2669 L p .43327 .40134 L .688 .769 .913 r
F P
0 g
s
.33179 .48574 m .43327 .40134 L .38799 .32633 L p .832 .82 .838 r
F P
0 g
s
.29947 .6145 m .33179 .48574 L .28112 .41453 L p .941 .817 .694 r
F P
0 g
s
.38799 .32633 m .28112 .41453 L .33179 .48574 L p .832 .82 .838 r
F P
0 g
s
.3499 .73836 m .29947 .6145 L .22545 .63357 L p .91 .645 .525 r
F P
0 g
s
.22545 .63357 m .29947 .6145 L p .28112 .41453 L .941 .817 .694 r
F P
0 g
s
.4641 .80876 m .3499 .73836 L .27837 .76429 L p .798 .407 .313 r
F P
0 g
s
.4733 .88446 m .4641 .80876 L p .27837 .76429 L .798 .407 .313 r
F P
0 g
s
.4641 .80876 m .4733 .88446 L .58682 .84596 L closepath p .663 .302 .349 r
F P
0 g
s
.22545 .63357 m .27837 .76429 L .3499 .73836 L p .91 .645 .525 r
F P
0 g
s
.84472 .65587 m .81524 .58988 L .75291 .70231 L p .181 .031 .428 r
F P
0 g
s
.75291 .70231 m .77825 .77299 L .84472 .65587 L p .181 .031 .428 r
F P
0 g
s
.77825 .77299 m .75291 .70231 L p .58682 .84596 L .445 .162 .388 r
F P
0 g
s
.58682 .84596 m .67043 .86683 L .77825 .77299 L p .445 .162 .388 r
F P
0 g
s
.67043 .86683 m .58682 .84596 L .4733 .88446 L p .425 0 .005 r
F P
0 g
s
.63137 .27066 m .61095 .31163 L .72833 .38405 L p .285 .558 .928 r
F P
0 g
s
.72833 .38405 m .75608 .34761 L .63137 .27066 L p .285 .558 .928 r
F P
0 g
s
.72833 .38405 m .81809 .46296 L .75608 .34761 L closepath p .143 .351 .81 r
F P
0 g
s
.61095 .31163 m .63137 .27066 L .5003 .2669 L closepath p .436 .739 .991 r
F P
0 g
s
.84862 .52347 m .81809 .46296 L .81524 .58988 L p 0 0 .436 r
F P
0 g
s
.81524 .58988 m .84472 .65587 L .84862 .52347 L p 0 0 .436 r
F P
0 g
s
.38799 .32633 m .31603 .32976 L .28112 .41453 L closepath p .844 .962 .882 r
F P
0 g
s
.31603 .32976 m .38799 .32633 L .5003 .2669 L p .616 .948 .935 r
F P
0 g
s
.28112 .41453 m .21156 .50574 L .22545 .63357 L p .941 .817 .694 r
F P
0 g
s
.21156 .50574 m .28112 .41453 L .31603 .32976 L p .839 .961 .629 r
F P
0 g
s
.27837 .76429 m .22545 .63357 L .20182 .62877 L p .891 .527 .054 r
F P
0 g
s
.21156 .50574 m .20182 .62877 L .22545 .63357 L closepath p .96 .769 .322 r
F P
0 g
s
.55373 .90813 m .4733 .88446 L .35481 .85868 L p .247 0 0 r
F P
0 g
s
.27837 .76429 m .35481 .85868 L .4733 .88446 L p .798 .407 .313 r
F P
0 g
s
.4733 .88446 m .55373 .90813 L .67043 .86683 L p .425 0 .005 r
F P
0 g
s
.25811 .76805 m .35481 .85868 L .27837 .76429 L closepath p .74 .236 0 r
F P
0 g
s
.20182 .62877 m .25811 .76805 L .27837 .76429 L p .891 .527 .054 r
F P
0 g
s
.78377 .40294 m .75608 .34761 L .81809 .46296 L p .65 .26 0 r
F P
0 g
s
.81809 .46296 m .84862 .52347 L .78377 .40294 L p .65 .26 0 r
F P
0 g
s
.5003 .2669 m .4328 .26695 L .31603 .32976 L p .616 .948 .935 r
F P
0 g
s
.4328 .26695 m .5003 .2669 L .63137 .27066 L p .045 0 0 r
F P
0 g
s
.77825 .77299 m .79448 .76165 L .84472 .65587 L closepath p 0 0 0 r
F P
0 g
s
.79448 .76165 m .77825 .77299 L .67043 .86683 L p 0 0 0 r
F P
0 g
s
.67043 .86683 m .67965 .86161 L .79448 .76165 L p 0 0 0 r
F P
0 g
s
.55373 .90813 m .67965 .86161 L .67043 .86683 L closepath p .269 .762 .692 r
F P
0 g
s
.31603 .32976 m .24425 .42231 L .21156 .50574 L p .839 .961 .629 r
F P
0 g
s
.20182 .62877 m .21156 .50574 L .24425 .42231 L p 0 0 .203 r
F P
0 g
s
.35481 .85868 m .43162 .88178 L .55373 .90813 L p .247 0 0 r
F P
0 g
s
.35481 .85868 m .25811 .76805 L .33176 .78666 L p .072 .433 .873 r
F P
0 g
s
.33176 .78666 m .43162 .88178 L .35481 .85868 L p .072 .433 .873 r
F P
0 g
s
.56981 .27093 m .63137 .27066 L .75608 .34761 L p .73 .211 0 r
F P
0 g
s
.66527 .35587 m .56981 .27093 L p .75608 .34761 L .73 .211 0 r
F P
0 g
s
.75608 .34761 m .78377 .40294 L .66527 .35587 L p .73 .211 0 r
F P
0 g
s
.63137 .27066 m .56981 .27093 L .4328 .26695 L p .045 0 0 r
F P
0 g
s
.79861 .53948 m .84862 .52347 L .84472 .65587 L p .991 .884 .605 r
F P
0 g
s
.76285 .69538 m .79861 .53948 L p .84472 .65587 L .991 .884 .605 r
F P
0 g
s
.84472 .65587 m .79448 .76165 L .76285 .69538 L p .991 .884 .605 r
F P
0 g
s
.24425 .42231 m .31603 .32976 L .4328 .26695 L p .22 0 .131 r
F P
0 g
s
.67965 .86161 m .55373 .90813 L .43162 .88178 L p .636 .832 .976 r
F P
0 g
s
.20182 .62877 m .23521 .5489 L .31942 .6465 L p .235 .301 .728 r
F P
0 g
s
.25811 .76805 m .20182 .62877 L p .31942 .6465 L .235 .301 .728 r
F P
0 g
s
.24425 .42231 m .23521 .5489 L .20182 .62877 L p 0 0 .203 r
F P
0 g
s
.31942 .6465 m .33176 .78666 L .25811 .76805 L p .235 .301 .728 r
F P
0 g
s
.84862 .52347 m .79861 .53948 L .78377 .40294 L closepath p .974 .682 .404 r
F P
0 g
s
.31802 .42104 m .24425 .42231 L p .4328 .26695 L .22 0 .131 r
F P
0 g
s
.4328 .26695 m .44128 .31906 L .31802 .42104 L p .22 0 .131 r
F P
0 g
s
.56981 .27093 m .44128 .31906 L .4328 .26695 L closepath p .476 .025 .099 r
F P
0 g
s
.64105 .80074 m .76285 .69538 L .79448 .76165 L p .859 .914 .867 r
F P
0 g
s
.79448 .76165 m .67965 .86161 L .64105 .80074 L p .859 .914 .867 r
F P
0 g
s
.31802 .42104 m .23521 .5489 L .24425 .42231 L closepath p .261 .09 .45 r
F P
0 g
s
.64105 .80074 m .67965 .86161 L p .43162 .88178 L .636 .832 .976 r
F P
0 g
s
.43162 .88178 m .47897 .81364 L .64105 .80074 L p .636 .832 .976 r
F P
0 g
s
.47897 .81364 m .43162 .88178 L .33176 .78666 L closepath p .503 .645 .919 r
F P
0 g
s
.67676 .49631 m .66527 .35587 L .78377 .40294 L p .872 .601 .526 r
F P
0 g
s
.78377 .40294 m .79861 .53948 L .67676 .49631 L p .872 .601 .526 r
F P
0 g
s
.44128 .31906 m .56981 .27093 L .66527 .35587 L p .689 .36 .414 r
F P
0 g
s
.23521 .5489 m .31802 .42104 L .40729 .5155 L p .496 .37 .638 r
F P
0 g
s
.40729 .5155 m .31942 .6465 L .23521 .5489 L p .496 .37 .638 r
F P
0 g
s
.33176 .78666 m .31942 .6465 L .47121 .67085 L p .58 .577 .814 r
F P
0 g
s
.47121 .67085 m .47897 .81364 L .33176 .78666 L p .58 .577 .814 r
F P
0 g
s
.63867 .65819 m .67676 .49631 L .79861 .53948 L p .851 .707 .702 r
F P
0 g
s
.79861 .53948 m .76285 .69538 L .63867 .65819 L p .851 .707 .702 r
F P
0 g
s
.66527 .35587 m .53481 .40875 L .44128 .31906 L p .689 .36 .414 r
F P
0 g
s
.40729 .5155 m .31802 .42104 L .44128 .31906 L p .602 .378 .549 r
F P
0 g
s
.44128 .31906 m .53481 .40875 L .40729 .5155 L p .602 .378 .549 r
F P
0 g
s
.66527 .35587 m .67676 .49631 L .53481 .40875 L closepath p .771 .523 .561 r
F P
0 g
s
.76285 .69538 m .64105 .80074 L .63867 .65819 L closepath p .817 .763 .802 r
F P
0 g
s
.63867 .65819 m .64105 .80074 L .47897 .81364 L p .72 .687 .818 r
F P
0 g
s
.47897 .81364 m .47121 .67085 L .63867 .65819 L p .72 .687 .818 r
F P
0 g
s
.40729 .5155 m .47121 .67085 L .31942 .6465 L closepath p .608 .515 .723 r
F P
0 g
s
.40729 .5155 m .53481 .40875 L .67676 .49631 L p .72 .571 .685 r
F P
0 g
s
.47121 .67085 m .40729 .5155 L p .67676 .49631 L .72 .571 .685 r
F P
0 g
s
.67676 .49631 m .63867 .65819 L .47121 .67085 L p .72 .571 .685 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{185.312, 199.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm8mPG0UUh53evLTt9jZbZhLPvmaBTDYCYQkhQSEBKRcuEcooikgOLEpy
4YKQEJyQkIAL4QbiSpDgkOSKECckInFBCEXihvgLckCmXlX1m3b7V3Y5Hmc4
EKnLnq7u9331amm70z63cePK5Tc2bly9tDF9+trG21euXro+feqta2KXuyOT
ydwR20/TGXrfEm91cacl/onK/1+29OVlelmmFD+vdpylF0fm3G0dzczQu9Y7
wUSmSGWN/sy27h6mWqrR/zLPqrPP8NnyZH2QOFGGqFPpqtpvL1zVtSKYDJin
Up6rg73IwQIQLOJgWRCsAByPq7CnOGwOhC1y2NAUVp6rg53kYAUQLM/BIhAs
BI7HVFjVGaqKOoFCI0DAgLoJIOV02OfYtgSCuRxsDAQrcrCjKtgzHKySCkaD
R1ZMUhz5rgzaekjFOc5xqhRHHjPdVUCf+CSfWJMCnjz85sWP5Cbez4AoJSBy
QMU7BpJeTTRNRxYOVKp9AiAhTRNK+nUBVADAswSgpO5XqCcsUUE/KNkWDTgK
ABGVejLYhY1AC/YowBETINWCcADUmhlVBqgSQO2mUk9xI+CwJSACgJ0MEBU/
fvCxrLz/+YfqMDScVxX0EICWuIfqADXG09Ujkq4VLMlzqHTUymiEHjRBUy1t
AHyD8QHAe1TKXXmAX1H4dUv8KMBXONE5gM9y69Hlrwu+CPDjAF/i1ocAn2d8
APDLCn/AEr8T4PPc+hLAh5x814x/HOBDHnC7ATTgNlcBtMRtdgB0SUEfM0FT
bW4CvMv4OsBH3OYVM6oAUDMpFF8ORwCltjmXuWmLirffkjdLpb5uGwASrzO2
r5+wGV/uu/3JLd6oOaM2oL30UqYd84mM6DDiL1HKwxumYHLXYiKYPujE2HXa
hDWV5uTHqIBRtR498OCb12X7NFReivSc3ES9+9pX8iCEyuu20T5arAkXAWid
27eQRqlW+YyKN0I2ATLk1hlBqdZp5FoipbR2ZRjuJuFi7FLZnuZJIFJmEbSE
1PUqHotomXmzSx64eMBFrqZ6GndmvzA0Fx+4jIK8NDgvZhe/zSXuqDkltGop
lAVCDSA0BtKU3Tq1HFDLA7UaUJvgXKGLcHqqik2MTirbF9BpJafWbS8ht94y
+BWAXwX4TbEf+oyyNX5Z4FcEfmXg1wRd61osCybTpjJVV3g/Zaq6OwC6ZaAb
8jSd4yRug1oE1PIgkwssmfrc3QB+LvDb3dvPB35V4JcFfsvsN9Kf0FLHlF2X
H0/WU1dXF8jVgJwP5FYTF/dOOQ/I7epPzgFyDSDnArm1xBz57fvvZE/oD6Gd
rj5wnVKui8DVlaWfdJUbMcb1VSPhF9+pEB/K2p3EJpxEKXeVhys2kUqcSShg
oRAIBUBospeQ1yaUoVtGmy5xh+0FLnl2yQ3u4mCXKUuXIrsEpo5yVLx+DZLZ
+OL9O8aeidjANa2erl7K/vnzZpyW3inZnHQZtvHYRhuhlNSplEeq2a5jy80j
h1Tn7ByaySiV+ot7/1wH9YLYRC2VYNVDeL2PUk8KwcMnIF7rJoCSu71K40DJ
B0orQGkEKPXsrmxSSW+Z1lPn7nYsat10li0z1FMHX+IdEkplagSoBcNRW+ii
5gG1OlDLAbWl4ar5QK02gBoaX7mHUwuAWgWoFYDagmXWeqqB7wydVhGwCh+p
VQ5YlYBVcQArNMImk1bJlYu+gncqFYFSCSjNDzCyuiiFQKkAlMpAaW6Avksq
6ds2nSI5IBINW6QMRLJApAJEZoctEgCRqqUIGi15u9FC1zWSQUoeUKoDpZnh
KEVAyQFKDaA0bdldXZQWjUr4Juroo9OopDJD+HGAbw4HX6VSJmHEEopGQ8EM
XerR5s8+/YU2MRpEKT+vobVjl2Xrt0AkzyLoo8MIlWFLjpG+8Ms9ZkWMrzBe
fVqP6WJ1E2WkvG7fuqdPu/fDz7Spv+qW42GqP6UxKgu0awySRemqjrPLSBc8
6pBxWepuuHVPKkwBkYBK+QEjtMyDvqO0YpkHW5ECZyS3vSIlFvG3V6TCIqJC
31AzDg99E3IVOJQHcKhTqf+n7pFBa5uTs/X7X3/IDKA2NxV+DeBLA+CrsvQZ
H2+kgbq/T40JoDFp6v5EFsQm1nsq20ckusUwPRylCCh5QMk3K+0ZoLOQUhko
+UAJ3RybGY5SkedMHoi4ZpG9QKQ46JKayg1ScoDS7HCU8kAp1J2WUIrvpsb/
dbzVGjmgUeytsQ9ohANoZIFGOdVBhF8YDj4A+OjR4X2Ar1Ap507yYR15TGEA
lMtTspZoXzzWNUo+ZyU/CuUAaswS5YBWVQFUP8yTfLas9uZ92tT9Hq8vBz/p
IDfquDrg6ofK1gHXpTL+wKHv9/a4PnhtXANSP+d1ECB9KqU8alt6dTW1CTyZ
GQOyumW0772v/5YhPDUQDLzNYSLfqaWn7VFTU2yxib9EGdCuIgCMUhmYxqFG
HbFE5aiUucsCVJFK+f3Db33564Mu0zzGq/nd9gRyN3yR8Q7AO4yvAHwJ4MET
1t3wFSrlV75JAAgBQD1n2Pa0eDdAVfcn7RMACdkFUAWAUo9sqifpLVARQDUB
KsujUs2lzFOWgBIAzACAD9qiUcctUSFAzQKUB1D6BwhPW6IKADUHUA5Aqfms
fmxhO9dSqHlZ4u8JahTrX9z0Dh+A8IupllDY5O9NXDXzO4N5INhyIlicAu14
koP5pvUMNVzu0r/WOU0vnloK1KqeCMHL7gKfprKeeYlPU5gYosaLPPKEOlL+
nEoO/BmuekFVnacXCRznqtOq6lWuqnDVGVV1gdEFrjqrqi7yWQ5XvaKqLrPG
ebXjP/Fbs2G8ZHb8C27kqvg=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 184.312}, {198.938, \
0.}} -> {0.0464917, -9.46065, 0.00467219, \
0.00467219}},ExpressionUUID->"06f02628-60c2-4c36-9d74-330cb38ec67d"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(76\\). \\!\\(\\\"diminished rhombicosidodecahedron \
(J76)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"4eaf8745-e647-41d8-b992-ec269046a357"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.08454
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0556904 1.17149 1.11022e-16 1.17149 [
[ 0 0 0 0 ]
[ 1 1.08454 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.08454 L
0 1.08454 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.59232 .77859 m .63032 .67113 L .52727 .61207 L p .681 .455 .572 r
F P
0 g
s
.46155 .78289 m .59232 .77859 L p .52727 .61207 L .681 .455 .572 r
F P
0 g
s
.52727 .61207 m .4244 .6784 L .46155 .78289 L p .681 .455 .572 r
F P
0 g
s
.58567 .50099 m .52727 .61207 L .63032 .67113 L p .628 .495 .681 r
F P
0 g
s
.4244 .6784 m .52727 .61207 L .46016 .50592 L p .754 .594 .679 r
F P
0 g
s
.58567 .50099 m .46016 .50592 L .52727 .61207 L closepath p .696 .578 .719 r
F P
0 g
s
.35622 .57082 m .46016 .50592 L .45126 .38758 L p .805 .718 .769 r
F P
0 g
s
.46016 .50592 m .35622 .57082 L .4244 .6784 L p .754 .594 .679 r
F P
0 g
s
.46016 .50592 m .58567 .50099 L .57937 .3822 L p .694 .636 .786 r
F P
0 g
s
.57937 .3822 m .45126 .38758 L .46016 .50592 L p .694 .636 .786 r
F P
0 g
s
.57937 .3822 m .58567 .50099 L .69025 .55817 L p .555 .526 .778 r
F P
0 g
s
.63032 .67113 m .69025 .55817 L .58567 .50099 L p .628 .495 .681 r
F P
0 g
s
.34599 .7826 m .46155 .78289 L .4244 .6784 L p .794 .512 .509 r
F P
0 g
s
.4244 .6784 m .31109 .67522 L .34599 .7826 L p .794 .512 .509 r
F P
0 g
s
.35622 .57082 m .31109 .67522 L .4244 .6784 L closepath p .811 .606 .624 r
F P
0 g
s
.31109 .67522 m .35622 .57082 L .27774 .49299 L p .882 .698 .648 r
F P
0 g
s
.27774 .49299 m .35622 .57082 L p .45126 .38758 L .805 .718 .769 r
F P
0 g
s
.69898 .77097 m .73537 .66017 L .63032 .67113 L p .506 .274 .497 r
F P
0 g
s
.63032 .67113 m .59232 .77859 L .69898 .77097 L p .506 .274 .497 r
F P
0 g
s
.69025 .55817 m .63032 .67113 L .73537 .66017 L closepath p .533 .382 .622 r
F P
0 g
s
.45126 .38758 m .57937 .3822 L .68339 .3616 L p .447 .823 .991 r
F P
0 g
s
.33779 .37626 m .45126 .38758 L p .68339 .3616 L .447 .823 .991 r
F P
0 g
s
.45126 .38758 m .33779 .37626 L .27774 .49299 L p .805 .718 .769 r
F P
0 g
s
.69025 .55817 m .75411 .47406 L p .57937 .3822 L .555 .526 .778 r
F P
0 g
s
.8027 .57712 m .75411 .47406 L .69025 .55817 L p .401 .316 .645 r
F P
0 g
s
.69025 .55817 m .73537 .66017 L .8027 .57712 L p .401 .316 .645 r
F P
0 g
s
.75411 .47406 m .68339 .3616 L .57937 .3822 L p .555 .526 .778 r
F P
0 g
s
.34599 .7826 m .31109 .67522 L .22906 .59853 L p .926 .572 .339 r
F P
0 g
s
.27774 .49299 m .22906 .59853 L .31109 .67522 L p .882 .698 .648 r
F P
0 g
s
.46155 .78289 m .34599 .7826 L .45299 .84951 L closepath p .734 .345 .313 r
F P
0 g
s
.59022 .84522 m .59232 .77859 L .46155 .78289 L p .605 .225 .297 r
F P
0 g
s
.46155 .78289 m .45299 .84951 L .59022 .84522 L p .605 .225 .297 r
F P
0 g
s
.59232 .77859 m .59022 .84522 L .69898 .77097 L closepath p .449 .102 .284 r
F P
0 g
s
.21429 .47337 m .27774 .49299 L .33779 .37626 L p .916 .884 .788 r
F P
0 g
s
.27774 .49299 m .21429 .47337 L .22906 .59853 L closepath p .956 .814 .663 r
F P
0 g
s
.33779 .37626 m .27709 .35062 L .21429 .47337 L p .916 .884 .788 r
F P
0 g
s
.27709 .35062 m .33779 .37626 L p .68339 .3616 L .447 .823 .991 r
F P
0 g
s
.81141 .63619 m .8027 .57712 L .73537 .66017 L p .009 0 .239 r
F P
0 g
s
.74378 .76224 m .81141 .63619 L p .73537 .66017 L .009 0 .239 r
F P
0 g
s
.73537 .66017 m .69898 .77097 L .74378 .76224 L p .009 0 .239 r
F P
0 g
s
.72637 .33128 m .68339 .3616 L .75411 .47406 L p .225 .366 .797 r
F P
0 g
s
.75411 .47406 m .8008 .44976 L .72637 .33128 L p .225 .366 .797 r
F P
0 g
s
.75411 .47406 m .8027 .57712 L .8008 .44976 L closepath p .149 .188 .646 r
F P
0 g
s
.29941 .31834 m .27709 .35062 L p .68339 .3616 L .447 .823 .991 r
F P
0 g
s
.4076 .2924 m .29941 .31834 L p .68339 .3616 L .447 .823 .991 r
F P
0 g
s
.55911 .28569 m .4076 .2924 L p .68339 .3616 L .447 .823 .991 r
F P
0 g
s
.68271 .30155 m .55911 .28569 L p .68339 .3616 L .447 .823 .991 r
F P
0 g
s
.68339 .3616 m .72637 .33128 L .68271 .30155 L p .447 .823 .991 r
F P
0 g
s
.39571 .8478 m .45299 .84951 L .34599 .7826 L p .659 .109 0 r
F P
0 g
s
.34599 .7826 m .28438 .77745 L .39571 .8478 L p .659 .109 0 r
F P
0 g
s
.28438 .77745 m .34599 .7826 L p .22906 .59853 L .926 .572 .339 r
F P
0 g
s
.22906 .59853 m .20834 .65787 L .28438 .77745 L p .926 .572 .339 r
F P
0 g
s
.20834 .65787 m .22906 .59853 L .21429 .47337 L p .973 .776 .35 r
F P
0 g
s
.62973 .84045 m .74378 .76224 L .69898 .77097 L p 0 0 0 r
F P
0 g
s
.69898 .77097 m .59022 .84522 L .62973 .84045 L p 0 0 0 r
F P
0 g
s
.80962 .50349 m .8008 .44976 L .8027 .57712 L p 0 0 .145 r
F P
0 g
s
.8027 .57712 m .81141 .63619 L .80962 .50349 L p 0 0 .145 r
F P
0 g
s
.62973 .84045 m .59022 .84522 L .45299 .84951 L p .083 .642 .766 r
F P
0 g
s
.50627 .84196 m .62973 .84045 L p .45299 .84951 L .083 .642 .766 r
F P
0 g
s
.45299 .84951 m .39571 .8478 L .50627 .84196 L p .083 .642 .766 r
F P
0 g
s
.21429 .47337 m .27709 .35062 L .29941 .31834 L p 0 0 0 r
F P
0 g
s
.21429 .47337 m .1923 .52757 L .20834 .65787 L p .973 .776 .35 r
F P
0 g
s
.1923 .52757 m .21429 .47337 L p .29941 .31834 L 0 0 0 r
F P
0 g
s
.68271 .30155 m .72637 .33128 L .8008 .44976 L p .86 .432 0 r
F P
0 g
s
.73453 .41076 m .68271 .30155 L p .8008 .44976 L .86 .432 0 r
F P
0 g
s
.8008 .44976 m .80962 .50349 L .73453 .41076 L p .86 .432 0 r
F P
0 g
s
.28438 .77745 m .30763 .7687 L .39571 .8478 L closepath p 0 .369 .823 r
F P
0 g
s
.30763 .7687 m .28438 .77745 L .20834 .65787 L p 0 .131 .679 r
F P
0 g
s
.20834 .65787 m .22729 .64229 L .30763 .7687 L p 0 .131 .679 r
F P
0 g
s
.1923 .52757 m .22729 .64229 L .20834 .65787 L closepath p 0 0 .435 r
F P
0 g
s
.74378 .76224 m .62973 .84045 L .70005 .75563 L closepath p .778 .995 .87 r
F P
0 g
s
.77122 .62255 m .81141 .63619 L .74378 .76224 L p .934 .967 .744 r
F P
0 g
s
.74378 .76224 m .70005 .75563 L .77122 .62255 L p .934 .967 .744 r
F P
0 g
s
.81141 .63619 m .77122 .62255 L .80962 .50349 L closepath p .996 .864 .554 r
F P
0 g
s
.41877 .75958 m .50627 .84196 L .39571 .8478 L p .458 .664 .951 r
F P
0 g
s
.39571 .8478 m .30763 .7687 L .41877 .75958 L p .458 .664 .951 r
F P
0 g
s
.22729 .64229 m .1923 .52757 L .24568 .43091 L p .23 .172 .582 r
F P
0 g
s
.29941 .31834 m .24568 .43091 L .1923 .52757 L p 0 0 0 r
F P
0 g
s
.57401 .75439 m .70005 .75563 L .62973 .84045 L p .743 .871 .939 r
F P
0 g
s
.62973 .84045 m .50627 .84196 L .57401 .75439 L p .743 .871 .939 r
F P
0 g
s
.24568 .43091 m .29941 .31834 L .4076 .2924 L p .395 .125 .382 r
F P
0 g
s
.69233 .5312 m .73453 .41076 L .80962 .50349 L p .932 .729 .606 r
F P
0 g
s
.80962 .50349 m .77122 .62255 L .69233 .5312 L p .932 .729 .606 r
F P
0 g
s
.55911 .28569 m .68271 .30155 L .73453 .41076 L p .811 .472 .415 r
F P
0 g
s
.30763 .7687 m .22729 .64229 L .28386 .54691 L p .495 .502 .793 r
F P
0 g
s
.41877 .75958 m .30763 .7687 L p .28386 .54691 L .495 .502 .793 r
F P
0 g
s
.24568 .43091 m .28386 .54691 L .22729 .64229 L p .23 .172 .582 r
F P
0 g
s
.50627 .84196 m .41877 .75958 L .57401 .75439 L closepath p .661 .735 .905 r
F P
0 g
s
.3552 .40854 m .28386 .54691 L .24568 .43091 L closepath p .459 .302 .581 r
F P
0 g
s
.4076 .2924 m .3552 .40854 L .24568 .43091 L p .395 .125 .382 r
F P
0 g
s
.69233 .5312 m .77122 .62255 L .70005 .75563 L p .83 .757 .783 r
F P
0 g
s
.56587 .61318 m .69233 .5312 L p .70005 .75563 L .83 .757 .783 r
F P
0 g
s
.70005 .75563 m .57401 .75439 L .56587 .61318 L p .83 .757 .783 r
F P
0 g
s
.4076 .2924 m .55911 .28569 L .60843 .398 L p .668 .413 .526 r
F P
0 g
s
.3552 .40854 m .4076 .2924 L p .60843 .398 L .668 .413 .526 r
F P
0 g
s
.73453 .41076 m .60843 .398 L .55911 .28569 L p .811 .472 .415 r
F P
0 g
s
.73453 .41076 m .69233 .5312 L .60843 .398 L closepath p .84 .61 .59 r
F P
0 g
s
.28386 .54691 m .40662 .61903 L .41877 .75958 L p .495 .502 .793 r
F P
0 g
s
.57401 .75439 m .41877 .75958 L .40662 .61903 L p .689 .651 .807 r
F P
0 g
s
.28386 .54691 m .3552 .40854 L .48029 .47773 L p .604 .47 .672 r
F P
0 g
s
.48029 .47773 m .40662 .61903 L .28386 .54691 L p .604 .47 .672 r
F P
0 g
s
.40662 .61903 m .56587 .61318 L .57401 .75439 L p .689 .651 .807 r
F P
0 g
s
.60843 .398 m .48029 .47773 L .3552 .40854 L p .668 .413 .526 r
F P
0 g
s
.48029 .47773 m .60843 .398 L .69233 .5312 L p .766 .598 .671 r
F P
0 g
s
.69233 .5312 m .56587 .61318 L .48029 .47773 L p .766 .598 .671 r
F P
0 g
s
.56587 .61318 m .40662 .61903 L .48029 .47773 L closepath p .693 .578 .722 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{184.375, 199.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmjlsG0cUhtfcg7d46r6o23LkM05iJ3HsBHZsBHAfpJONALaAIIHtzqXL
tCpVumTpwo1KIZVKtypTpnTLzHszOxou/yUfs5aRABGws6sh+b7vvZnhkst9
uPviyc+/7L54+ni3c//Z7m9Pnj5+3vn+12eqyz/ned5btf3R8ei4pw5N87an
/tSD/+/Ofvcj7VpU94e64wHt6tQx0evuvfJ8Ouwdv9yjzctRW6Cue/rpd2kX
UEeu92jmkXm6eiG/eA6EKFKbp65vdIg7NkQIQsyDEHVqQ+q6qUN8bUMUQYgF
EKLJre472dMT74YOdsMGqwqDtbgN3GC0fa7j8S5HHXUQb1EQz2wc47oT1LxM
BeXANRB+KTW874ZXsanVfebPu6pRnwlRy0KUD1BXNOq6LVUDADqCcZQAErmg
UUEoaS6XNerTobmsZsjFAK7Rzh8HIM3gkgNIzWBNCAgA4KIGXB2awXqGDFxA
agYbGTLY0YArQzPYzJCBC+AMmhkAKINPNODy0AzOZwBc+EiAS0MB20JACADb
YgCfEmtCbxP2og2LhtYtzNFBl09QUe/dwX6ZDgNhBueTKH7j5jMLA3hm+QQw
L1QA2tTJX7URdeVB2C0ddseGLVNYPiPnes9/2DfnroOX3fhcuG5pEaA1uR2d
zgA3styIub7lqk25qJahK4lqkgISaTgifx0ecNVRATa1CK8hzlU9TucTk61n
ijKoFFilRVuREhCpcxtYESMTjXAJ9RgPcvOWO2u5lVRu2MeNC4HgGxp+wRai
AeBFC58C41BNm37OOKhN/afbUctr3VHyzWjc3N7n55DbBDCscNu/Ahu2UA1g
WAWGATBE7+3GcNudPaMMq7aGNevVyuCFKrfmePl6MSst8ySlxFoVIFe3chUw
wG2gWQaakbB8RvO81QyAJlp8TatZsDWcAXIlIJcHcuhDs0iuBOQmrVxg5eaE
cgWh3KqW27JyoVBu2sqpB2iBmPFVX4cGDQvAsMRt6Bra713rSasIWBWA1Zyz
auPJ9gGFNq1QHgjlgdA8EFoEQhEQqpil6golXMzUlbm4xXmzf8iJLQOXELhU
E/MpWRQWKQKRMLUogRUxMktClwngYhbZhnUpCV10UcI+l2HF8YFQnVqmijSC
EfPEKKj1Su3ouZMDSg2nRvFaX9Fy61auAuR8wcTRWmcnZx6iEyAJloFmTqgZ
pmoGriYdtz+eVQSsFrBVKzm31oBLldvAdaHjBYDOC8bNOwNuIS3lnK29jHZa
cS8FVQSoeTfFo+PTFOMBP/ndfR9Zs2ukRtBcWlYlgJqxWfmEQu8Vcih6X6gA
6FQiPwIHAF9Lx6NJXtUiL18dm28KMpu2LUEBOFSd8xo5GA9Xg1/rjrcyoM1j
F/Q5KWE1AayaoEZF4FcR+lWAX2BrJbWq21pVgUs5g0tkXZrApQ5cqtalDlyK
zgek2AXNIQ5QBkJFMHg1oNYAamUweA0gWRBKmpd53h4/VAS6ZVu/CSDZBJJF
W79JoJb/cGpVq1YGam2glgf1Q5JR4g1CbWrRUTvyzBgLF4BwHQx9Qage2qrO
AuFwPOENIBwB4aatcB5oTgFNH1R4DggHZyPctsIhEJ4GwvzkJWCYA4b+eIYh
MJzmNnTnQHxBUBWq34/6VlgNX3kKs+vM2IKpB+ILk/aMVtNvs/o86hpI4IED
ZwEf8Oeprem3lzevjxMzZ5Vac3l0XFoO0BacBahoTJwDXE6Zu4KPz43n4ftD
2vR/eubFFvEFC20QJQz24otmy0LqKqAG1LqfRTdxtp0MjPA0v2RtB2neOLQV
IW3VoeX04HmdbmLwFgF0HkA7/wAar9BOl8FSPMp5WYh3xzPMwFsCvCidt5XG
k64NxEP5mQsyfKUxyMBbFObn8gTDOZ8Bj9I1vzRsC/FzQvyCMHv3hw5zljJ4
vXmeuOAIiTLedJGjM54V4ueFGbu/KwnwMxnwKPuts8HPCfHml9MdIX76bPAX
h0w36XjPCpHuz9KCjKeEZ4uZ8fCXMuBR9tNCvHu3QkrBpVNsSrjA+pCjM57M
gEcZmxtArgjxbSF+Upi9wV8dUnDpGCMkynjHRY7OuAXwFWovUFeQDrg2JCf+
atymw4le9/BPE+Dw5D1tqsjU6r6j3gltSk21/AnRvfFL4O9TW6KufO95Nw6r
oAyeFuIDbvvzdG9xS4jwnZ1NwJsU8nxq+TOqztO5KVAV4ad35ukKwJAWQLXG
QSVSM1D3/koFZXBOiG9kwOuSel/YnH0htJ4KDVyoLa65OfWmO1V1nnrz6KrW
ICZ90oZJDMcw99R+afORFrEiXh1e/23A8Zep00RQHiVhudTxVzr4LZuCHhNN
8ejXjMHwBXl4Le3dRuHTihMJwhu9Wzr8t8n5nCIepkVmtds62He04+egEP7Q
EHd0iLs2XR0idEPwpk8ApwMerxAT4F4iwKlD2gt1Cbz7TiXiCVigdpW67uon
8V3wFeqo9eqvj6p09EA/9K+4bf+/svPO/Q2q9UTr\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 183.375}, {198.938, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"ebb968f4-0270-4849-bf52-128bef170583"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(77\\). \\!\\(\\\"paragyrate diminished \
rhombicosidodecahedron (J77)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"31d45b0e-6328-46c1-bf57-5c687ac31275"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.07959
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0542715 1.16008 1.11022e-16 1.16008 [
[ 0 0 0 0 ]
[ 1 1.07959 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.07959 L
0 1.07959 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.61269 .77385 m .64856 .65529 L .54181 .5904 L p .688 .495 .62 r
F P
0 g
s
.48016 .77933 m .61269 .77385 L p .54181 .5904 L .688 .495 .62 r
F P
0 g
s
.54181 .5904 m .43895 .66453 L .48016 .77933 L p .688 .495 .62 r
F P
0 g
s
.60027 .47824 m .54181 .5904 L .64856 .65529 L p .634 .525 .713 r
F P
0 g
s
.43895 .66453 m .54181 .5904 L .47115 .48449 L p .754 .619 .709 r
F P
0 g
s
.60027 .47824 m .47115 .48449 L .54181 .5904 L closepath p .698 .604 .748 r
F P
0 g
s
.36651 .5581 m .47115 .48449 L .46026 .37067 L p .808 .746 .794 r
F P
0 g
s
.47115 .48449 m .36651 .5581 L .43895 .66453 L p .754 .619 .709 r
F P
0 g
s
.47115 .48449 m .60027 .47824 L .59354 .36386 L p .693 .662 .816 r
F P
0 g
s
.59354 .36386 m .46026 .37067 L .47115 .48449 L p .693 .662 .816 r
F P
0 g
s
.36394 .79383 m .48016 .77933 L .43895 .66453 L p .791 .546 .566 r
F P
0 g
s
.43895 .66453 m .32423 .67504 L .36394 .79383 L p .791 .546 .566 r
F P
0 g
s
.36651 .5581 m .32423 .67504 L .43895 .66453 L closepath p .809 .628 .658 r
F P
0 g
s
.59354 .36386 m .60027 .47824 L .70934 .54208 L p .548 .549 .807 r
F P
0 g
s
.64856 .65529 m .70934 .54208 L .60027 .47824 L p .634 .525 .713 r
F P
0 g
s
.72316 .77908 m .75789 .65598 L .64856 .65529 L p .544 .348 .565 r
F P
0 g
s
.64856 .65529 m .61269 .77385 L .72316 .77908 L p .544 .348 .565 r
F P
0 g
s
.70934 .54208 m .64856 .65529 L .75789 .65598 L closepath p .551 .425 .662 r
F P
0 g
s
.32423 .67504 m .36651 .5581 L .28391 .49238 L p .88 .715 .673 r
F P
0 g
s
.28391 .49238 m .36651 .5581 L p .46026 .37067 L .808 .746 .794 r
F P
0 g
s
.70934 .54208 m .77761 .46849 L p .59354 .36386 L .548 .549 .807 r
F P
0 g
s
.8301 .58566 m .77761 .46849 L .70934 .54208 L p .422 .358 .681 r
F P
0 g
s
.70934 .54208 m .75789 .65598 L .8301 .58566 L p .422 .358 .681 r
F P
0 g
s
.5456 .86055 m .48016 .77933 L .36394 .79383 L p .727 .374 .381 r
F P
0 g
s
.48016 .77933 m .5456 .86055 L .61269 .77385 L closepath p .66 .375 .478 r
F P
0 g
s
.65787 .86943 m .72316 .77908 L .61269 .77385 L p .518 .202 .37 r
F P
0 g
s
.61269 .77385 m .5456 .86055 L .65787 .86943 L p .518 .202 .37 r
F P
0 g
s
.46026 .37067 m .59354 .36386 L .70398 .35338 L p .184 .714 .841 r
F P
0 g
s
.34266 .37188 m .46026 .37067 L p .70398 .35338 L .184 .714 .841 r
F P
0 g
s
.46026 .37067 m .34266 .37188 L .28391 .49238 L p .808 .746 .794 r
F P
0 g
s
.36394 .79383 m .32423 .67504 L .23798 .61263 L p .919 .602 .426 r
F P
0 g
s
.28391 .49238 m .23798 .61263 L .32423 .67504 L p .88 .715 .673 r
F P
0 g
s
.77761 .46849 m .70398 .35338 L .59354 .36386 L p .548 .549 .807 r
F P
0 g
s
.84364 .66865 m .8301 .58566 L .75789 .65598 L p .173 0 .388 r
F P
0 g
s
.77325 .79445 m .84364 .66865 L p .75789 .65598 L .173 0 .388 r
F P
0 g
s
.75789 .65598 m .72316 .77908 L .77325 .79445 L p .173 0 .388 r
F P
0 g
s
.21808 .49427 m .28391 .49238 L .34266 .37188 L p .924 .92 .792 r
F P
0 g
s
.28391 .49238 m .21808 .49427 L .23798 .61263 L closepath p .96 .831 .672 r
F P
0 g
s
.36394 .79383 m .30238 .81359 L .42655 .87845 L closepath p .797 .361 .212 r
F P
0 g
s
.36394 .79383 m .42655 .87845 L .5456 .86055 L p .727 .374 .381 r
F P
0 g
s
.30238 .81359 m .36394 .79383 L p .23798 .61263 L .919 .602 .426 r
F P
0 g
s
.75321 .34225 m .70398 .35338 L .77761 .46849 L p .161 .351 .805 r
F P
0 g
s
.77761 .46849 m .83089 .46459 L .75321 .34225 L p .161 .351 .805 r
F P
0 g
s
.77761 .46849 m .8301 .58566 L .83089 .46459 L closepath p .157 .214 .672 r
F P
0 g
s
.34266 .37188 m .27941 .36661 L .21808 .49427 L p .924 .92 .792 r
F P
0 g
s
.27941 .36661 m .34266 .37188 L p .70398 .35338 L .184 .714 .841 r
F P
0 g
s
.72316 .77908 m .65787 .86943 L .77325 .79445 L closepath p .223 0 .158 r
F P
0 g
s
.65787 .86943 m .5456 .86055 L .42655 .87845 L p .318 0 0 r
F P
0 g
s
.30334 .35575 m .27941 .36661 L p .70398 .35338 L .184 .714 .841 r
F P
0 g
s
.41952 .34313 m .30334 .35575 L p .70398 .35338 L .184 .714 .841 r
F P
0 g
s
.58192 .33471 m .41952 .34313 L p .70398 .35338 L .184 .714 .841 r
F P
0 g
s
.71149 .33467 m .58192 .33471 L p .70398 .35338 L .184 .714 .841 r
F P
0 g
s
.70398 .35338 m .75321 .34225 L .71149 .33467 L p .184 .714 .841 r
F P
0 g
s
.23798 .61263 m .21973 .69583 L .30238 .81359 L p .919 .602 .426 r
F P
0 g
s
.21973 .69583 m .23798 .61263 L .21808 .49427 L p .977 .775 .356 r
F P
0 g
s
.84498 .54389 m .83089 .46459 L .8301 .58566 L p 0 0 .219 r
F P
0 g
s
.8301 .58566 m .84364 .66865 L .84498 .54389 L p 0 0 .219 r
F P
0 g
s
.6114 .89493 m .65787 .86943 L p .42655 .87845 L .318 0 0 r
F P
0 g
s
.42655 .87845 m .45941 .90077 L .6114 .89493 L p .318 0 0 r
F P
0 g
s
.45941 .90077 m .42655 .87845 L .30238 .81359 L p .401 0 0 r
F P
0 g
s
.73311 .81574 m .77325 .79445 L .65787 .86943 L p .438 .843 .654 r
F P
0 g
s
.65787 .86943 m .6114 .89493 L .73311 .81574 L p .438 .843 .654 r
F P
0 g
s
.21808 .49427 m .27941 .36661 L .30334 .35575 L p 0 0 0 r
F P
0 g
s
.21808 .49427 m .19806 .57398 L .21973 .69583 L p .977 .775 .356 r
F P
0 g
s
.19806 .57398 m .21808 .49427 L p .30334 .35575 L 0 0 0 r
F P
0 g
s
.30238 .81359 m .32764 .83203 L .45941 .90077 L p .401 0 0 r
F P
0 g
s
.32764 .83203 m .30238 .81359 L .21973 .69583 L p 0 0 .557 r
F P
0 g
s
.71149 .33467 m .75321 .34225 L .83089 .46459 L p .911 .509 .132 r
F P
0 g
s
.76971 .46505 m .71149 .33467 L p .83089 .46459 L .911 .509 .132 r
F P
0 g
s
.83089 .46459 m .84498 .54389 L .76971 .46505 L p .911 .509 .132 r
F P
0 g
s
.21973 .69583 m .23981 .7067 L .32764 .83203 L p 0 0 .557 r
F P
0 g
s
.19806 .57398 m .23981 .7067 L .21973 .69583 L closepath p 0 0 .413 r
F P
0 g
s
.80744 .68213 m .84364 .66865 L .77325 .79445 L p .868 .972 .659 r
F P
0 g
s
.77325 .79445 m .73311 .81574 L .80744 .68213 L p .868 .972 .659 r
F P
0 g
s
.84364 .66865 m .80744 .68213 L .84498 .54389 L closepath p .983 .879 .519 r
F P
0 g
s
.23981 .7067 m .19806 .57398 L .25112 .49019 L p .236 .214 .629 r
F P
0 g
s
.30334 .35575 m .25112 .49019 L .19806 .57398 L p 0 0 0 r
F P
0 g
s
.60533 .83431 m .6114 .89493 L .45941 .90077 L p .582 .81 .986 r
F P
0 g
s
.45941 .90077 m .44404 .84074 L .60533 .83431 L p .582 .81 .986 r
F P
0 g
s
.32764 .83203 m .44404 .84074 L .45941 .90077 L closepath p .356 .64 .962 r
F P
0 g
s
.6114 .89493 m .60533 .83431 L .73311 .81574 L closepath p .744 .922 .951 r
F P
0 g
s
.72824 .60794 m .76971 .46505 L .84498 .54389 L p .939 .762 .636 r
F P
0 g
s
.84498 .54389 m .80744 .68213 L .72824 .60794 L p .939 .762 .636 r
F P
0 g
s
.32764 .83203 m .23981 .7067 L .29665 .62741 L p .465 .524 .834 r
F P
0 g
s
.44404 .84074 m .32764 .83203 L p .29665 .62741 L .465 .524 .834 r
F P
0 g
s
.25112 .49019 m .30334 .35575 L .41952 .34313 L p .456 .233 .486 r
F P
0 g
s
.72824 .60794 m .80744 .68213 L .73311 .81574 L p .838 .805 .819 r
F P
0 g
s
.59705 .70474 m .72824 .60794 L p .73311 .81574 L .838 .805 .819 r
F P
0 g
s
.73311 .81574 m .60533 .83431 L .59705 .70474 L p .838 .805 .819 r
F P
0 g
s
.25112 .49019 m .29665 .62741 L .23981 .7067 L p .236 .214 .629 r
F P
0 g
s
.58192 .33471 m .71149 .33467 L .76971 .46505 L p .815 .524 .496 r
F P
0 g
s
.36811 .48342 m .29665 .62741 L .25112 .49019 L closepath p .478 .356 .635 r
F P
0 g
s
.41952 .34313 m .36811 .48342 L .25112 .49019 L p .456 .233 .486 r
F P
0 g
s
.29665 .62741 m .42922 .71195 L .44404 .84074 L p .465 .524 .834 r
F P
0 g
s
.60533 .83431 m .44404 .84074 L .42922 .71195 L p .682 .69 .851 r
F P
0 g
s
.76971 .46505 m .72824 .60794 L .63853 .47031 L closepath p .842 .643 .634 r
F P
0 g
s
.76971 .46505 m .63853 .47031 L .58192 .33471 L p .815 .524 .496 r
F P
0 g
s
.42922 .71195 m .59705 .70474 L .60533 .83431 L p .682 .69 .851 r
F P
0 g
s
.41952 .34313 m .58192 .33471 L .63853 .47031 L p .68 .465 .588 r
F P
0 g
s
.36811 .48342 m .41952 .34313 L p .63853 .47031 L .68 .465 .588 r
F P
0 g
s
.29665 .62741 m .36811 .48342 L .50438 .56623 L p .608 .507 .714 r
F P
0 g
s
.50438 .56623 m .42922 .71195 L .29665 .62741 L p .608 .507 .714 r
F P
0 g
s
.50438 .56623 m .63853 .47031 L .72824 .60794 L p .769 .632 .709 r
F P
0 g
s
.72824 .60794 m .59705 .70474 L .50438 .56623 L p .769 .632 .709 r
F P
0 g
s
.63853 .47031 m .50438 .56623 L .36811 .48342 L p .68 .465 .588 r
F P
0 g
s
.59705 .70474 m .42922 .71195 L .50438 .56623 L closepath p .694 .612 .76 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{185.25, 199.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmjlsG0cUhtd7kFxyRUoidVDipcOyIsmKrxzOYedAbAeBESNIGhcBBCeA
HSBIYLlzqVKtS5csXbpxkdJI5VKty5Qu3W7mvZkdDZf/UkOtFLgIgZlZ7fH/
33szszsi9/bOo/u//r7z6MG9nd7Nhzt/3n9wb7d344+HYpd3xnGcF6L83XNo
OxabqnoRi484+H/zzje/ULNM3XZZ7viJmhrtKMbPdp84Hm3GB3uPqTgzXMt9
b/Z6VORfF+TVt6iZoB1zlle7VLu0a1tKfE5NhXYE8e7V5HQhxoItayiNFquP
syUNPqSmSEdqwKBtaeADg01pcIUan440gEEnh8GGNLisDWZO2wBF0Mth8J40
uERNkNcgAAbrhkFmBEvAYNYyAmVwcWQEyzkiOHeSBgVgsCYNLow0WM0RwYka
oAjOHtcAdTIyWJUG7480WLOMoAgMVv4jg+2RBus5DJZP0qAEDJakwXlqCuMY
oE5GEZgGmRFs5IigJw22RkaADFAEyKCbNqgDg60cESiDzZER2BqEwKBzXIMy
1bzSqADZdloWJeY81SwRxQf9vgWtkt2wpn3Zf06tWA0JA17llI8ru8l1oGWT
4vAygPj5cRe/fdnnIrZHhMDP4aI8SXhFtMUODBmQcpLwfp/Vp7kOBjyUDxw6
ptGkjPzx3QTy6R6DU1lPpYucs/09018sHqk++nbekizrOug6s3iaRRQhRvVg
0ld0SkKANAWQPICEnpFWSB7VbL8MslQGSDWAFAAktLIxkbif3fjqxeRCAceA
NYBZ0JhdgFmxxCwATLSMV5jn9GyxxSyBDl7QHVwDmFWAWQSY7hGYnE0PYFYB
ZllnswmyOQkwJwBmSXW9gcmFpmvHQPPlfB9GmwBokUab0XmrA6AIAJW59geA
DlnWdJoQSwRYaqA3p0DCGoCvAvgqmK9t8PHBgiXfpM7VJKCaBVRlQBWlRpuT
QuIjJYBUBkh1jRTp7msCkBCAVKl20xkZy34G9FgJ5GYBIJUAUs3ITTLrFiXc
WQ0XArgQwM3p3BR0btonBMJiFQBSAiBNDeKB3HQAUvEkkYoAqZXqOIcfSMMg
QRaIOW5WtX1kad827JM8LOWyVycJe0ZAIAEA6QAQlAf/tEHMjDx/+pI7ZBWA
eFkTORkZ/+yZdxRbJD8zN75GUlgrgMo9arwCKs5cFbB4FukRRZhSjQZRYMJx
IfOpbKCzlmlyjxhCo9DksPIH0E6PCiXMz0zYENWk8egkKkXWTt9vZP/5Jg5t
94B7kOXuHqbh2IZdYFjIMvTGj/Aw4U5GeEXg1jVH46sDXRzWPVzNJf4j+t9x
flOXCRw3K+QQQLR0jgMyh2ukkRhrg7nINC8D84EHv4xe9MswRvkYGLt7B6lB
vwioKoCqCahKgCq0pEr1UWSMUQGZFGZHiBFAnNW9FgGwYuqmIYq4C1AN1wcI
0lwpKECBPJzTOQBcBcANkNMJgF44HfRAZ9gWeNq49wxjBuNhngOYIcAsacwZ
gFkDmJMgr9MA2M8PXALAFTAkpgD6FECvAvQGQHcBupcfPdK5RsDTALiih8Q8
Y+KvxoKj0HwDjfEKgK4GEjsBOOuAswwS2+R66AtDzqNnPNkyEAOAOKUTiMAa
AKyoE9gmHN4SXuqemRQ3fh0/GyuBiK4OEhgCzlnAGYAEdjSxD/jMb9KG+TzA
N6OzZ0vlA6quMV8ElSIbl88FfPOarwD45tWK0eDTfbtkydQ2mFw1dRRQsp7l
vS3Qkx5gaqZyRteuABY0vjopln0J5CUQjNDWKXGzZmIYZ5iiBChT/sKcjuyn
uqCbCtzhzhAu/LZGKX72/HVqOKDUo3C70nlDh5ty7lFdivlxOezSs4xPuWxm
uZjxCRd2aln6oah6hp8e5PuqyJgs3GynlPlbH4quk8MPRWf+eIn82pZ+HUu/
ZcNvOJu20Y3pto3dbGNrW7qZP8brpQI7wcAWgVXLcpgoqwtZ3baYww+Ftmr4
DSeyZem2aBmdcrsIEpnHCgWmXgG5BKxQDtHwaFpGNWA1lMOFHG4oMPXyzGUQ
mK3VvKWVetPoCrBqno7VB8Bq3tJqzlizKisq/ATeOHl5qTHw0mBKec5SeRYr
y1up85GlMposs3oVKu9dzlUttp/cVuTS0kKM/7HlH1TVy5yfGGTJ/alhKRZS
zUsGN/7rzVtmlBPI+RTI1jNlfVNWi5ZIlE9Xr61+Rg2/xRACqYjqOu2q6gvl
WHGuJXdioXm3/3aetmrxk1cJoTidirwwoT6QS1E5KJwvtESNJNRJQoJlFoFY
pHMiDpBaMk2U4ldGioQiq0aW2uW0tpqGzsdS+2tNOwEUF4BimApdFNWJzjda
rGIpVszCU4o3tWJoGbCvFV0SvCZ1vtU6RUsdT6kZPUzlutT7TusVMiP1TT0q
vONLKXBbC/gWqZL5cVR3Oc733ATmiOAiH63iWj75hjz5jrYSGuos1m9QzRPo
ljzzB2o8GZU4VKWtO/LQj9Twmyk/yx3vxPvqp9g4Z/4FSLga7A==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 184.25}, {198.938, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"c3f64405-6cdc-4912-aceb-cd1a3d0f940b"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(78\\). \\!\\(\\\"metagyrate diminished \
rhombicosidodecahedron (J78)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"976e5279-fdd8-44e4-a0c7-bfe4d00fd8d9"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.06906
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0499839 1.14548 -3.33067e-16 1.14548 [
[ 0 0 0 0 ]
[ 1 1.06906 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.06906 L
0 1.06906 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.44216 .62101 m .53469 .53271 L .48652 .41803 L p .762 .654 .742 r
F P
0 g
s
.53094 .71222 m .62403 .62254 L .53469 .53271 L p .692 .535 .669 r
F P
0 g
s
.53469 .53271 m .44216 .62101 L .53094 .71222 L p .692 .535 .669 r
F P
0 g
s
.65287 .49695 m .53469 .53271 L .62403 .62254 L closepath p .642 .534 .716 r
F P
0 g
s
.53469 .53271 m .65287 .49695 L .60586 .3795 L p .66 .605 .782 r
F P
0 g
s
.60586 .3795 m .48652 .41803 L .53469 .53271 L p .66 .605 .782 r
F P
0 g
s
.40571 .7338 m .44216 .62101 L .33339 .56292 L p .807 .608 .633 r
F P
0 g
s
.44216 .62101 m .40571 .7338 L .53094 .71222 L closepath p .739 .532 .614 r
F P
0 g
s
.33339 .56292 m .44216 .62101 L p .48652 .41803 L .762 .654 .742 r
F P
0 g
s
.69716 .77689 m .72731 .65826 L .62403 .62254 L p .588 .377 .562 r
F P
0 g
s
.57166 .80928 m .69716 .77689 L p .62403 .62254 L .588 .377 .562 r
F P
0 g
s
.62403 .62254 m .53094 .71222 L .57166 .80928 L p .588 .377 .562 r
F P
0 g
s
.65287 .49695 m .62403 .62254 L .72731 .65826 L p .55 .444 .686 r
F P
0 g
s
.44216 .83328 m .57166 .80928 L .53094 .71222 L p .706 .432 .508 r
F P
0 g
s
.53094 .71222 m .40571 .7338 L .44216 .83328 L p .706 .432 .508 r
F P
0 g
s
.48652 .41803 m .60586 .3795 L .68139 .33022 L p .619 .891 .988 r
F P
0 g
s
.36039 .43505 m .48652 .41803 L p .68139 .33022 L .619 .891 .988 r
F P
0 g
s
.48652 .41803 m .36039 .43505 L .33339 .56292 L p .762 .654 .742 r
F P
0 g
s
.60586 .3795 m .65287 .49695 L .758 .52847 L p .491 .51 .804 r
F P
0 g
s
.72731 .65826 m .758 .52847 L .65287 .49695 L p .55 .444 .686 r
F P
0 g
s
.23812 .55825 m .33339 .56292 L .36039 .43505 L p .872 .767 .743 r
F P
0 g
s
.33339 .56292 m .23812 .55825 L .29325 .67648 L closepath p .879 .694 .649 r
F P
0 g
s
.33339 .56292 m .29325 .67648 L .40571 .7338 L p .807 .608 .633 r
F P
0 g
s
.44216 .83328 m .40571 .7338 L .29325 .67648 L p .832 .493 .414 r
F P
0 g
s
.36039 .43505 m .26558 .42448 L .23812 .55825 L p .872 .767 .743 r
F P
0 g
s
.26558 .42448 m .36039 .43505 L p .68139 .33022 L .619 .891 .988 r
F P
0 g
s
.78019 .42554 m .68139 .33022 L .60586 .3795 L p .491 .51 .804 r
F P
0 g
s
.758 .52847 m .78019 .42554 L p .60586 .3795 L .491 .51 .804 r
F P
0 g
s
.78025 .74553 m .80953 .62202 L .72731 .65826 L p .313 .119 .449 r
F P
0 g
s
.72731 .65826 m .69716 .77689 L .78025 .74553 L p .313 .119 .449 r
F P
0 g
s
.758 .52847 m .72731 .65826 L .80953 .62202 L closepath p .395 .293 .62 r
F P
0 g
s
.34752 .84129 m .44216 .83328 L p .29325 .67648 L .832 .493 .414 r
F P
0 g
s
.29325 .67648 m .25159 .73903 L .34752 .84129 L p .832 .493 .414 r
F P
0 g
s
.25159 .73903 m .29325 .67648 L .23812 .55825 L p .955 .695 .504 r
F P
0 g
s
.83489 .51881 m .78019 .42554 L .758 .52847 L p .178 .196 .641 r
F P
0 g
s
.758 .52847 m .80953 .62202 L .83489 .51881 L p .178 .196 .641 r
F P
0 g
s
.57166 .80928 m .44216 .83328 L .54508 .87918 L closepath p .624 .251 .316 r
F P
0 g
s
.67701 .84643 m .69716 .77689 L .57166 .80928 L p .446 .077 .243 r
F P
0 g
s
.57166 .80928 m .54508 .87918 L .67701 .84643 L p .446 .077 .243 r
F P
0 g
s
.23812 .55825 m .26558 .42448 L .23914 .38647 L p .983 .904 .587 r
F P
0 g
s
.19262 .61543 m .23812 .55825 L p .23914 .38647 L .983 .904 .587 r
F P
0 g
s
.23812 .55825 m .19262 .61543 L .25159 .73903 L p .955 .695 .504 r
F P
0 g
s
.45181 .88979 m .54508 .87918 L .44216 .83328 L p .592 .069 0 r
F P
0 g
s
.44216 .83328 m .34752 .84129 L .45181 .88979 L p .592 .069 0 r
F P
0 g
s
.69716 .77689 m .67701 .84643 L .78025 .74553 L closepath p .174 0 .148 r
F P
0 g
s
.23914 .38647 m .26558 .42448 L p .68139 .33022 L .619 .891 .988 r
F P
0 g
s
.30354 .33201 m .23914 .38647 L p .68139 .33022 L .619 .891 .988 r
F P
0 g
s
.44173 .28417 m .30354 .33201 L p .68139 .33022 L .619 .891 .988 r
F P
0 g
s
.59062 .26663 m .44173 .28417 L p .68139 .33022 L .619 .891 .988 r
F P
0 g
s
.68139 .33022 m .68052 .28617 L .59062 .26663 L p .619 .891 .988 r
F P
0 g
s
.68052 .28617 m .68139 .33022 L .78019 .42554 L p .008 .327 .813 r
F P
0 g
s
.82155 .57778 m .83489 .51881 L .80953 .62202 L p 0 0 0 r
F P
0 g
s
.78572 .7264 m .82155 .57778 L p .80953 .62202 L 0 0 0 r
F P
0 g
s
.80953 .62202 m .78025 .74553 L .78572 .7264 L p 0 0 0 r
F P
0 g
s
.78019 .42554 m .78551 .38692 L .68052 .28617 L p .008 .327 .813 r
F P
0 g
s
.78019 .42554 m .83489 .51881 L .78551 .38692 L closepath p 0 0 .559 r
F P
0 g
s
.32522 .82841 m .34752 .84129 L .25159 .73903 L p .62 .113 0 r
F P
0 g
s
.25159 .73903 m .2235 .71983 L .32522 .82841 L p .62 .113 0 r
F P
0 g
s
.19262 .61543 m .2235 .71983 L .25159 .73903 L closepath p .877 .507 .024 r
F P
0 g
s
.67582 .83374 m .67701 .84643 L .54508 .87918 L p .339 .819 .858 r
F P
0 g
s
.52902 .86176 m .67582 .83374 L p .54508 .87918 L .339 .819 .858 r
F P
0 g
s
.54508 .87918 m .45181 .88979 L .52902 .86176 L p .339 .819 .858 r
F P
0 g
s
.34752 .84129 m .32522 .82841 L .45181 .88979 L closepath p 0 .298 .67 r
F P
0 g
s
.67582 .83374 m .78572 .7264 L .78025 .74553 L p .639 .922 .644 r
F P
0 g
s
.78025 .74553 m .67701 .84643 L .67582 .83374 L p .639 .922 .644 r
F P
0 g
s
.23914 .38647 m .19123 .50861 L .19262 .61543 L p .983 .904 .587 r
F P
0 g
s
.2235 .71983 m .19262 .61543 L .19123 .50861 L p 0 0 .409 r
F P
0 g
s
.76889 .43912 m .78551 .38692 L .83489 .51881 L p .963 .653 .25 r
F P
0 g
s
.83489 .51881 m .82155 .57778 L .76889 .43912 L p .963 .653 .25 r
F P
0 g
s
.19123 .50861 m .23914 .38647 L .30354 .33201 L p 0 0 .181 r
F P
0 g
s
.59062 .26663 m .68052 .28617 L .78551 .38692 L p .833 .394 .192 r
F P
0 g
s
.64241 .36262 m .59062 .26663 L p .78551 .38692 L .833 .394 .192 r
F P
0 g
s
.78551 .38692 m .76889 .43912 L .64241 .36262 L p .833 .394 .192 r
F P
0 g
s
.39729 .79625 m .52902 .86176 L .45181 .88979 L p .431 .69 .973 r
F P
0 g
s
.45181 .88979 m .32522 .82841 L .39729 .79625 L p .431 .69 .973 r
F P
0 g
s
.32522 .82841 m .2235 .71983 L .22349 .61303 L p .364 .456 .822 r
F P
0 g
s
.19123 .50861 m .22349 .61303 L .2235 .71983 L p 0 0 .409 r
F P
0 g
s
.25504 .45916 m .22349 .61303 L .19123 .50861 L closepath p .179 .101 .524 r
F P
0 g
s
.30354 .33201 m .25504 .45916 L .19123 .50861 L p 0 0 .181 r
F P
0 g
s
.39729 .79625 m .32522 .82841 L p .22349 .61303 L .364 .456 .822 r
F P
0 g
s
.7396 .65563 m .78572 .7264 L .67582 .83374 L p .864 .876 .845 r
F P
0 g
s
.78572 .7264 m .7396 .65563 L .82155 .57778 L closepath p .954 .87 .716 r
F P
0 g
s
.30354 .33201 m .44173 .28417 L .48745 .38286 L p .531 .29 .494 r
F P
0 g
s
.25504 .45916 m .30354 .33201 L p .48745 .38286 L .531 .29 .494 r
F P
0 g
s
.67582 .83374 m .52902 .86176 L .62336 .76847 L closepath p .746 .852 .928 r
F P
0 g
s
.67582 .83374 m .62336 .76847 L .7396 .65563 L p .864 .876 .845 r
F P
0 g
s
.44173 .28417 m .59062 .26663 L .64241 .36262 L p .691 .359 .409 r
F P
0 g
s
.68272 .51226 m .76889 .43912 L .82155 .57778 L p .91 .725 .641 r
F P
0 g
s
.82155 .57778 m .7396 .65563 L .68272 .51226 L p .91 .725 .641 r
F P
0 g
s
.48922 .69813 m .62336 .76847 L .52902 .86176 L p .679 .713 .874 r
F P
0 g
s
.52902 .86176 m .39729 .79625 L .48922 .69813 L p .679 .713 .874 r
F P
0 g
s
.64241 .36262 m .48745 .38286 L .44173 .28417 L p .691 .359 .409 r
F P
0 g
s
.22349 .61303 m .33324 .65662 L .39729 .79625 L p .364 .456 .822 r
F P
0 g
s
.22349 .61303 m .25504 .45916 L .36725 .49639 L p .482 .385 .669 r
F P
0 g
s
.36725 .49639 m .33324 .65662 L .22349 .61303 L p .482 .385 .669 r
F P
0 g
s
.76889 .43912 m .68272 .51226 L .64241 .36262 L closepath p .847 .596 .558 r
F P
0 g
s
.48745 .38286 m .36725 .49639 L .25504 .45916 L p .531 .29 .494 r
F P
0 g
s
.39729 .79625 m .33324 .65662 L .48922 .69813 L closepath p .609 .595 .812 r
F P
0 g
s
.68272 .51226 m .7396 .65563 L .62336 .76847 L p .778 .677 .752 r
F P
0 g
s
.48745 .38286 m .64241 .36262 L .68272 .51226 L p .755 .544 .61 r
F P
0 g
s
.5253 .53592 m .68272 .51226 L p .62336 .76847 L .778 .677 .752 r
F P
0 g
s
.62336 .76847 m .48922 .69813 L .5253 .53592 L p .778 .677 .752 r
F P
0 g
s
.48922 .69813 m .33324 .65662 L .36725 .49639 L p .647 .546 .726 r
F P
0 g
s
.5253 .53592 m .36725 .49639 L .48745 .38286 L closepath p .668 .491 .636 r
F P
0 g
s
.68272 .51226 m .5253 .53592 L .48745 .38286 L p .755 .544 .61 r
F P
0 g
s
.36725 .49639 m .5253 .53592 L .48922 .69813 L p .647 .546 .726 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{187.062, 199.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm8lvFEcUxpvp7tlXz3jB63gBY3azE0iCEAkkBKKgSJE4BVAksBQlAm4c
OfIv+MjRR98QR5RTjlx9zJFjrpOq96rf9PR8bb+2Tcghlqp63FP9fb96r7q6
eqbnzoPnj3/59cHzJ48edG8+ffD74yePnnW//u2p2eUf8DzvjSl/dD37umde
uupNz/yZN//f7Ovmid0UbIhv846f7aZkdwS9zftrnm9f9t4/XLXF7DP/3eSW
P0nLOmjp2zq0u65z8x/sJm93jIPmRVuT+hfc/K7dUBvT8uW3L6i1PW4KHF2x
Ne26wkfflqNDe7Brbg6kgyeBRM1R233uz7vEYrdErKgUqwOxiyz2lYhVgBjq
HBK7wGLXRayhJGsAsfMs9qWIjSjJkNg5FrsqYmNKsiYQO8til0XsoJIMiZ1h
McpDzr4zoyRrAbFVFuM88Fuet0LDFckiRiR7mmXPA9lZIDutlD3FspybICZL
0nNK4BGgfJKVOVFhQpnBkTwCR/InWH5VcmbfXnGN7KxgpbX8bWBwnA1ODwV8
RW01YWua2DrA4BgbnAIGATDoAoOmrQs8Jb97te4SuLX+yqnBjh1l35NK33ng
WxLfCvmG4hsVL8V8hc1PAPNQaZ4T83ai067keKYaNj/C5seV5gu2pq5NkpEf
NzL/RVbovFrOZhXv58aL1262GDYNnfVOc+1htj8G7POpYysQe4cwm0ZA3c7o
i7rdTXTbFJNeW/M+Y08IUwCkICDVGMjfry9T8JazgcwBEF8JUhKQcjrIUWUm
ZgFIoASpgMFRyIaEYoOQQoA0nYZEsckTSCggUbFAbtSsKGM0A4AKyhjVBCjY
HRCKEAIqKoEa7qyKJY2KR5c0A5Q4w5ayoU0DtJIyeYTmlsrDIIsMckSZtCkA
UlaCNCVpGUFQRBBINVOyeN+HtzxN5wHSAiMtK2MzCZBqSqR6bPxYpKh4KdHK
iHYQoNWVaasmomWKmd1t3Z+PGDATJi1S6FqF4BpZZqYEnA/gAgA3z3CH0+Dc
vpWJl5SGXO/Fww3aNQqAW8pElwFwqIzmNsC+YDOwgw6FuQWYR5RBLgLm/G6Y
k3cmKzQb5CytO8zg2mIuBBF4DYC3leB5mXFKyjHRZdxDtMG3OwHALQtuCeB2
lLghiHNZGecB8KE7wBAw14Q5BMxjyvEcAOaKMthzzLw0xEw3PXnA3BRmr/+h
kQWdUIY4B3Cru8ClQVUEhG0hTEfC91lNZaYHotafoiwKClmHgV6/eksRTh+L
gzdgNGXo4jLLQIsAqJAG5PYZKluMbMSH5lHic7eDHwWpDZBKtqZMoWXFhK1D
DqgubfuAVJcooWVpy9bRpwgb7xKDXBu5mSTmWoSqxhwRTHTLU7J1keM6jKkd
c3FMGhnakTYmcJ4f3SATV07C11GGD2V511yTMtymlPY53SBzGYRzA8reNNUu
ZxvvCGZGmalPjDTiVlMxJLkX7O4dYwpgzKqTlWQIYgxrvZR1BRopCGMuNUHB
QDTM6/l/FSIZC29XBNpB0VWM009EQANgIe4bJnzX3KS0+8E4v0MColOyuzMG
WpNrx8ECwGhmicF+mzfiQ2BrkzwGMOLzwRqdq9FXC9HN36gy/8i+DuwXP479
IrCvxucBY+8Q9oEAxX8JEFTi87IjUATCj2FkHQYIo5zIgyn2imXqwdNjfgck
GsbaeBwCIEUA4u8K5P6z97S/pRwfiKagpNnmjIlnyiDZ4vXh6kq4wwAuBHBB
OtwSgMsBuNDW7lsHXR6XAVwA4MK9wxUkcqU9wPkALr93uLJErqCEO0I1/miz
lA40+BHM4AWiLhHylWOLIYIBiBT/xZ39W9afxGZTvfrZsEeUd2fUkY6iyK7Y
mnJRSZcf/ORNpEnZHbG+/qct3Gh8hx5t/bVFaNktR4Glb2tq2U4d16H4RiVt
6Cxl9i/YOuRZavsZyXmb/7je6bzKzlKVWJR3mLojliAby+DH8DzCxgBIQ0BC
JUgegKCZMCNIW0A8+gQr4oAMRcCALhXbMIwDhjFb064lYFoGpmhNwSd57Nut
tWhWhR0f75+PvY3NLQc5sMCPCCp7J0DdHnWnZ0Rgiv1Of3MrMRpmAFKNarze
W45h0NQ1Acw7wDywNR0xDSwb7nyIW/bd4l+zRhey1PGW8C2I70Hg28zsi4Ld
Ar5lEOxRQDBia+I7ks20CUyr0tkOsGonrY4qrerAqiFWrTSr6Lr+ga+hzvSY
Mpk1YDoipnWlqXvS6bjStAJMR0Emy6n2Qdy+1yc4AQjQVaQMCMal2yVlt91T
bSeBKVo5lIDppJjmlabuWb1TStMCMJ0Bsc4p7d2ziKeBfRvY54H9nPTZvGH9
nafhH/Zzj1auKv0C4LcQ6+52XXPPh54BViNpqzJk5aaGYQP3XOvZVIMwbkDF
o0sqT+32vbdbH6h4Hs9pCQf3QO454EDLcacSU1+KBceJm7Fg68GA1YGbe5b4
PHBrJgLmpVgFwKoKrNwz0BeAVUOW/4vAIA8MysDAPbF9ERhU5W7O761t9tyn
1MNWRWBVBFbuSfNLwKoUu3GMrGaAVQlYFYCVe0L+MrAKJWwVsZoEVhVgFQIr
92T/Z8AqJ71qitU4sKoBKx9YuV8kXOHlUaTdEe0O0G5QXYhrR3dJosth4qf2
HaSR9Bl8WLJFdf/GKy7FYeCfcbgVXERXA1JNW8sa3l3WrILTuQZ0ykCnauuQ
h+q99zwTXWWJ/q8kxkWiACQKts7zFclI0Jufs8QNIBEACV8oilaC+nWNJW4O
xja6CkTLdwloSQ68wQd+IweO2QMDHrgR4C1udFsatSRzVQnEd9zojvSiMtgo
cS9wl5t/L83z0pwiEzp281KOucfH3BMOnjJI16Ocmeo+N/rRbqgfj3jHf+Kn
UB9/4x34B3gY9Ok=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 186.062}, {198.938, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"815d80c6-381d-485f-82c4-d893ddfe6e99"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(79\\). \\!\\(\\\"bigyrate diminished rhombicosidodecahedron \
(J79)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"e5bba19d-16e6-417d-9ebf-a549f630bd46"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.12776
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0745411 1.20032 -1.11022e-16 1.20032 [
[ 0 0 0 0 ]
[ 1 1.12776 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.12776 L
0 1.12776 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.56619 .40859 m .49467 .51008 L .57031 .61538 L p .648 .57 .753 r
F P
0 g
s
.68971 .45299 m .56619 .40859 L p .57031 .61538 L .648 .57 .753 r
F P
0 g
s
.57031 .61538 m .69059 .58255 L .68971 .45299 L p .648 .57 .753 r
F P
0 g
s
.46663 .69156 m .57031 .61538 L .49467 .51008 L p .736 .592 .695 r
F P
0 g
s
.6499 .70809 m .69059 .58255 L .57031 .61538 L closepath p .623 .479 .665 r
F P
0 g
s
.57031 .61538 m .46663 .69156 L .54468 .78679 L p .678 .485 .618 r
F P
0 g
s
.54468 .78679 m .6499 .70809 L .57031 .61538 L p .678 .485 .618 r
F P
0 g
s
.45592 .35193 m .38498 .4569 L .49467 .51008 L p .734 .693 .811 r
F P
0 g
s
.49467 .51008 m .56619 .40859 L .45592 .35193 L p .734 .693 .811 r
F P
0 g
s
.39006 .58549 m .49467 .51008 L .38498 .4569 L closepath p .773 .669 .748 r
F P
0 g
s
.49467 .51008 m .39006 .58549 L .46663 .69156 L p .736 .592 .695 r
F P
0 g
s
.46663 .69156 m .39006 .58549 L p .29658 .73927 L .82 .601 .607 r
F P
0 g
s
.29658 .73927 m .41283 .78798 L .46663 .69156 L p .82 .601 .607 r
F P
0 g
s
.41283 .78798 m .54468 .78679 L .46663 .69156 L closepath p .732 .488 .559 r
F P
0 g
s
.39006 .58549 m .28429 .61061 L .29658 .73927 L p .82 .601 .607 r
F P
0 g
s
.27749 .47773 m .28429 .61061 L .39006 .58549 L p .846 .725 .73 r
F P
0 g
s
.39006 .58549 m .38498 .4569 L .27749 .47773 L p .846 .725 .73 r
F P
0 g
s
.69059 .58255 m .6499 .70809 L .74706 .73671 L p .517 .369 .619 r
F P
0 g
s
.74706 .73671 m .78908 .60596 L .69059 .58255 L p .517 .369 .619 r
F P
0 g
s
.78961 .47139 m .68971 .45299 L .69059 .58255 L p .486 .437 .728 r
F P
0 g
s
.69059 .58255 m .78908 .60596 L .78961 .47139 L p .486 .437 .728 r
F P
0 g
s
.6499 .70809 m .54468 .78679 L .57023 .87053 L p .546 .274 .455 r
F P
0 g
s
.74706 .73671 m .6499 .70809 L p .57023 .87053 L .546 .274 .455 r
F P
0 g
s
.53294 .28067 m .45592 .35193 L .56619 .40859 L p .645 .712 .896 r
F P
0 g
s
.56619 .40859 m .64573 .34129 L .53294 .28067 L p .645 .712 .896 r
F P
0 g
s
.68971 .45299 m .64573 .34129 L .56619 .40859 L closepath p .593 .609 .837 r
F P
0 g
s
.27846 .38073 m .27749 .47773 L .38498 .4569 L p .834 .849 .858 r
F P
0 g
s
.39435 .29997 m .27846 .38073 L p .38498 .4569 L .834 .849 .858 r
F P
0 g
s
.38498 .4569 m .45592 .35193 L .39435 .29997 L p .834 .849 .858 r
F P
0 g
s
.54468 .78679 m .41283 .78798 L .43236 .87282 L p .695 .36 .404 r
F P
0 g
s
.43236 .87282 m .57023 .87053 L .54468 .78679 L p .695 .36 .404 r
F P
0 g
s
.64573 .34129 m .68971 .45299 L .78961 .47139 L p .436 .514 .84 r
F P
0 g
s
.43236 .87282 m .41283 .78798 L .29658 .73927 L p .819 .442 .341 r
F P
0 g
s
.45592 .35193 m .53294 .28067 L .39435 .29997 L closepath p .702 .833 .945 r
F P
0 g
s
.29658 .73927 m .31089 .82385 L .43236 .87282 L p .819 .442 .341 r
F P
0 g
s
.31089 .82385 m .29658 .73927 L .28429 .61061 L p 0 0 .221 r
F P
0 g
s
.3224 .82823 m .31089 .82385 L p .28429 .61061 L 0 0 .221 r
F P
0 g
s
.32579 .73682 m .3224 .82823 L p .28429 .61061 L 0 0 .221 r
F P
0 g
s
.31837 .57978 m .32579 .73682 L p .28429 .61061 L 0 0 .221 r
F P
0 g
s
.30326 .43072 m .31837 .57978 L p .28429 .61061 L 0 0 .221 r
F P
0 g
s
.28786 .35771 m .27846 .38073 L .39435 .29997 L p .601 .939 .755 r
F P
0 g
s
.28786 .35771 m .30326 .43072 L p .28429 .61061 L 0 0 .221 r
F P
0 g
s
.27846 .38073 m .28786 .35771 L p .28429 .61061 L 0 0 .221 r
F P
0 g
s
.28429 .61061 m .27749 .47773 L .27846 .38073 L p 0 0 .221 r
F P
0 g
s
.78961 .47139 m .78908 .60596 L .82732 .68334 L p .001 .029 .535 r
F P
0 g
s
.74706 .73671 m .82732 .68334 L .78908 .60596 L closepath p .313 .165 .514 r
F P
0 g
s
.53294 .28067 m .64573 .34129 L .74681 .35549 L p .259 .619 .958 r
F P
0 g
s
.78961 .47139 m .74681 .35549 L .64573 .34129 L p .436 .514 .84 r
F P
0 g
s
.57023 .87053 m .70032 .84015 L .74706 .73671 L p .546 .274 .455 r
F P
0 g
s
.82732 .68334 m .74706 .73671 L .70032 .84015 L p .118 0 .214 r
F P
0 g
s
.78961 .47139 m .82919 .45455 L .74681 .35549 L closepath p .091 .276 .759 r
F P
0 g
s
.82919 .45455 m .78961 .47139 L p .82732 .68334 L .001 .029 .535 r
F P
0 g
s
.70032 .84015 m .57023 .87053 L .52709 .91075 L p .218 0 0 r
F P
0 g
s
.43236 .87282 m .52709 .91075 L .57023 .87053 L closepath p .545 .055 .044 r
F P
0 g
s
.41072 .27225 m .39435 .29997 L .53294 .28067 L p .455 .865 .958 r
F P
0 g
s
.53294 .28067 m .55753 .25208 L .41072 .27225 L p .455 .865 .958 r
F P
0 g
s
.55753 .25208 m .53294 .28067 L p .74681 .35549 L .259 .619 .958 r
F P
0 g
s
.52709 .91075 m .43236 .87282 L .31089 .82385 L p 0 .323 .66 r
F P
0 g
s
.39435 .29997 m .41072 .27225 L .28786 .35771 L p .601 .939 .755 r
F P
0 g
s
.70032 .84015 m .7814 .78965 L .82732 .68334 L p .118 0 .214 r
F P
0 g
s
.6638 .87946 m .7814 .78965 L .70032 .84015 L closepath p 0 0 0 r
F P
0 g
s
.52709 .91075 m .6638 .87946 L .70032 .84015 L p .218 0 0 r
F P
0 g
s
.74681 .35549 m .69713 .3005 L .55753 .25208 L p .259 .619 .958 r
F P
0 g
s
.69713 .3005 m .74681 .35549 L .82919 .45455 L p .582 .102 0 r
F P
0 g
s
.82732 .68334 m .85447 .5914 L .82919 .45455 L p .001 .029 .535 r
F P
0 g
s
.85447 .5914 m .82732 .68334 L .7814 .78965 L p .792 .846 .388 r
F P
0 g
s
.4636 .88499 m .52709 .91075 L p .31089 .82385 L 0 .323 .66 r
F P
0 g
s
.31089 .82385 m .3224 .82823 L .4636 .88499 L p 0 .323 .66 r
F P
0 g
s
.82919 .45455 m .78262 .40342 L .69713 .3005 L p .582 .102 0 r
F P
0 g
s
.78262 .40342 m .82919 .45455 L .85447 .5914 L p .972 .672 .285 r
F P
0 g
s
.6638 .87946 m .52709 .91075 L .4636 .88499 L p .527 .868 .992 r
F P
0 g
s
.7814 .78965 m .80734 .69933 L .85447 .5914 L p .792 .846 .388 r
F P
0 g
s
.7814 .78965 m .6638 .87946 L .60668 .85134 L p .848 .944 .883 r
F P
0 g
s
.80734 .69933 m .7814 .78965 L p .60668 .85134 L .848 .944 .883 r
F P
0 g
s
.55753 .25208 m .51112 .28467 L .41072 .27225 L closepath p .326 0 0 r
F P
0 g
s
.51112 .28467 m .55753 .25208 L .69713 .3005 L p .642 .139 .037 r
F P
0 g
s
.85447 .5914 m .80826 .54689 L .78262 .40342 L p .972 .672 .285 r
F P
0 g
s
.80734 .69933 m .80826 .54689 L .85447 .5914 L closepath p .993 .851 .593 r
F P
0 g
s
.4636 .88499 m .60668 .85134 L .6638 .87946 L p .527 .868 .992 r
F P
0 g
s
.30326 .43072 m .28786 .35771 L .41072 .27225 L p .439 .109 .307 r
F P
0 g
s
.44733 .3854 m .30326 .43072 L p .41072 .27225 L .439 .109 .307 r
F P
0 g
s
.41072 .27225 m .51112 .28467 L .44733 .3854 L p .439 .109 .307 r
F P
0 g
s
.69713 .3005 m .65835 .33632 L .51112 .28467 L p .642 .139 .037 r
F P
0 g
s
.78262 .40342 m .65835 .33632 L .69713 .3005 L closepath p .827 .388 .192 r
F P
0 g
s
.47434 .79537 m .4636 .88499 L .3224 .82823 L p .493 .618 .903 r
F P
0 g
s
.3224 .82823 m .32579 .73682 L .47434 .79537 L p .493 .618 .903 r
F P
0 g
s
.78262 .40342 m .80826 .54689 L p .59994 .44049 L .852 .602 .561 r
F P
0 g
s
.59994 .44049 m .65835 .33632 L .78262 .40342 L p .852 .602 .561 r
F P
0 g
s
.4636 .88499 m .47434 .79537 L .60668 .85134 L closepath p .637 .751 .931 r
F P
0 g
s
.80826 .54689 m .80734 .69933 L .69779 .73452 L p .89 .774 .727 r
F P
0 g
s
.60668 .85134 m .69779 .73452 L .80734 .69933 L p .848 .944 .883 r
F P
0 g
s
.59994 .44049 m .44733 .3854 L .51112 .28467 L p .705 .412 .479 r
F P
0 g
s
.51112 .28467 m .65835 .33632 L .59994 .44049 L p .705 .412 .479 r
F P
0 g
s
.80826 .54689 m .69682 .57602 L .59994 .44049 L p .852 .602 .561 r
F P
0 g
s
.69779 .73452 m .69682 .57602 L .80826 .54689 L p .89 .774 .727 r
F P
0 g
s
.69779 .73452 m .60668 .85134 L .47434 .79537 L p .739 .729 .842 r
F P
0 g
s
.46631 .53691 m .31837 .57978 L .30326 .43072 L p .582 .413 .618 r
F P
0 g
s
.30326 .43072 m .44733 .3854 L .46631 .53691 L p .582 .413 .618 r
F P
0 g
s
.47434 .79537 m .32579 .73682 L .31837 .57978 L p .628 .566 .765 r
F P
0 g
s
.56472 .6737 m .69682 .57602 L .69779 .73452 L closepath p .793 .697 .759 r
F P
0 g
s
.47434 .79537 m .56472 .6737 L .69779 .73452 L p .739 .729 .842 r
F P
0 g
s
.56472 .6737 m .47434 .79537 L p .31837 .57978 L .628 .566 .765 r
F P
0 g
s
.44733 .3854 m .59994 .44049 L .46631 .53691 L closepath p .687 .488 .612 r
F P
0 g
s
.31837 .57978 m .46631 .53691 L .56472 .6737 L p .628 .566 .765 r
F P
0 g
s
.69682 .57602 m .56472 .6737 L .46631 .53691 L p .745 .596 .691 r
F P
0 g
s
.46631 .53691 m .59994 .44049 L .69682 .57602 L p .745 .596 .691 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{177.312, 199.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmjtsHEUYxzf7uKfv7Xv6bJ9fCYEAeUFwRBIIIYFAkAgSAgkJORFSEgmB
knQpKWldukyZJlJalxYVZVqXKSlpl3l883lv7793s77kkgJLO3uemf3//t83
szPr897Yenjnl1+3Ht69vTW4dn/r9zt3bz8YXP3tvqjyjjiO81Qcfw0c+TkU
H6l4Goof0fj/yf70szwFMn83dMUP8pRVCfXCmzq14eNBznFl6clfr+ueN+Up
IyuysqPjma6qe8Ddr+nuX7FwUXZ39SfRSX36XHe6xp3KQLPEmpd196vqpDs9
6FyXhwCLMi+rfCBRY4lLWuKKPCkLNXmhSkWLbV3QnT4DnHlZuuGze49UfZOF
z+trPmXhluqvrxbd5SF+G73wnL7wEwBrAonssAS10o9zVotdZBcdIFFgiYO8
fKAvvABctIFEmSVKERfPb52Shx5lsvKxpWKdFfNQUZRK9oyWPc8R9oBYk8UC
IOaz2Gkttgk8doFsl2VFg5xbpCoGxSie0orn2N4C0FmUpatjNRee1Bd+CKwk
SohIZN3+zp8hLYfKCHXd7ugV8n2tfJYtLSbqeawnDpF0WQ7nLgCA9zTgDLDe
t0T5slTmMgDwrgacBgDbWDIMCDjlY2RtfedZ9mBSnUiWRSO5BGSLIPMHt8A7
GnAqApBzWGbK1neJfbsg328nA5Ln4jCgygCdmaj+8WT5Dq/GKC11WZr7j8SU
yLFkRbWGejrS7Xs71Prk0Y489G89gGoy6q2oth/R3gzN9kErDZIXpapqA0aL
GcfGMsrMyAFGhhkNwOjyOBwdyygyYw4wcsyoAEaP49gYy8gxowIYRWbMJTFI
Mnxy3ax362OBAQPrAFhmYA4A+xi4FgVmYsBNc7PT/jzKrDEzsGASl5gnR2b3
ptppN2mjH6XNM00/eRiYuLlkGQyBCOasTqCZteLejiK2AbclS+VqEFnICCJU
ZDn83LI8PbR5cEOHuzvPVCwI7wH8Ujo8ynVDlQHjzZHGxuL0Nmqc+kDiYxNs
ERjxgZF+shHPcjiqseGQZl6zpQqwlAWW+rOzVOLhKgIjC7MzMgdyMzeFpYV0
ltBUznNuKq/XSA7kpgos9WZnKQss1YGl7uwsBTxczddrxAe5aVlaQqvyGEu+
5d3lAUsdYKljmaWetjT6vDvuhvejlniw+sBG+9XYiA+W3BqXZoynp5JRaOvV
QFuyVFWrllA0BVNCGwx1w8fbe7GJZxv9SzBSZSMZSyMN/lsiA/DddPgS4wuW
+LIsfZ25F3u79CA1tZG8LJVsCRhZAUbybCQjjRj8/ra6a9DEHGMJLVMB56Zu
mZuALRWUJZ8tkS00YVK6ctlVy9KVclFWhoIhQyZX6M+NFK60hCO/JUgw5Ook
Do+SOCRZlAc3lZSizeQ0IKuJQ1/QjaKiC+Xfz/aUWANAPQDtTYAOAE/vCz7z
iImQviwpR+NBVCdoirgEuF1OqSeZ1CqgClwD+CAaMQ1wZ3ojnVjCtZmZWVoG
llrAkm9p6dCDhCZHgwcpmwaP70JlJAPIK4BcAymYtYcKR1+wJHuc/IUJvFXA
K4GYU5HxJp7oYQ14KAIPRUsPLkffPwQ5z9kuT8WzmOrrAJ8FgScbGd4TjQ36
Xkf9gyQA3A3ADQC38pK5RwHXjWxpr4KGvyFrAlYVDq3jmG/rziTNonhYjnqc
eImAY7Kkf/ImyR48jKgR3L+lbFgpU353d5/TjHXmEzH+EEYcy2mSIwjikGO+
+zxxzKv8JCz3Px2IgkwKZgOgAlmqKjSZrVBpb2Qi5znIUhJZVQ2mRxUZhZbI
MqNiQS6nI68BcpnJeUAuMtkN9/99YVYXmpsU+Nmk+3cV8GrMQ5twjnmB5Kl+
K4egNHjSoKedgClZENUk3grgtTkqF/Bc5hU4qtUJlAGg9DgqEZYUpztYT1Fb
5WWgvMj+K6yzFtehb0ISrqY6cbXKaTlZh3o+2nmhQqF9104W24vNfTdGEYeo
E6Wq6qRGradDBbKk7zXtUNXDorIcVR2g+gBVi8x483hHqVRv9PiAUuCAKqkD
2pigPccRFC21UQTrEygVpuQs81Q/BKXOeQrSUKL/bFfaHtBusrZrqd0AEWxM
oHRUaal9PCI2+q/0npLS1Y/3/jHr1ILliNJLFOrtJjTzOzF5OlSntiXjuBXD
izIEUZRqHObHzvsTh9DOsHYtSTsWQZSiWrpANs+JKVnK0ntOH0VWIeO7DQBz
7LuYtI7GAPQC2Hn23QSyZZbNjd1g6A26CybVYnaOilU5CX6SWMwjyV5ij1Ug
22CPosE8fydFTS8PXmaj5SRFPzRbcUyCXma8wqaKQKLCEn74x35II2PSpV8Y
1K/Q0oPfqESRJQpSYuRhyfghsS/ZTwDEsrIM9Lw2fnwgRi+2fs3OPCDmsbMO
i4lKOZKkRW9nOt/Ik0/tkSXI/Mkmro4ZoAu/ZQMLspNyflE3fceBNrhJv/Xr
fB8ZE9P0hW76kZs8bqL3qH/ippu64o143fuNODlH/gOfzm8/\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 176.312}, {198.938, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"f61bafe6-8bb2-43ef-98d9-42ac737ee8fb"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(80\\). \\!\\(\\\"parabidiminished rhombicosidodecahedron \
(J80)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"7f5324e6-c3ec-4600-b5b0-485b79f716d1"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.11927
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0709642 1.1926 0 1.1926 [
[ 0 0 0 0 ]
[ 1 1.11927 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.11927 L
0 1.11927 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.42042 .55558 m .4851 .66661 L .61078 .63995 L p .704 .585 .719 r
F P
0 g
s
.31931 .61526 m .38597 .72908 L .4851 .66661 L p .791 .611 .657 r
F P
0 g
s
.4851 .66661 m .42042 .55558 L .31931 .61526 L p .791 .611 .657 r
F P
0 g
s
.50649 .78236 m .4851 .66661 L .38597 .72908 L closepath p .747 .523 .59 r
F P
0 g
s
.4851 .66661 m .50649 .78236 L .63546 .75519 L p .675 .475 .607 r
F P
0 g
s
.63546 .75519 m .61078 .63995 L .4851 .66661 L p .675 .475 .607 r
F P
0 g
s
.61078 .63995 m .63546 .75519 L .69301 .81902 L p .318 .242 .611 r
F P
0 g
s
.62436 .512 m .61078 .63995 L p .69301 .81902 L .318 .242 .611 r
F P
0 g
s
.50635 .45961 m .42042 .55558 L p .61078 .63995 L .704 .585 .719 r
F P
0 g
s
.61078 .63995 m .62436 .512 L .50635 .45961 L p .704 .585 .719 r
F P
0 g
s
.33218 .48366 m .42042 .55558 L .50635 .45961 L p .778 .706 .784 r
F P
0 g
s
.42042 .55558 m .33218 .48366 L .31931 .61526 L closepath p .825 .694 .72 r
F P
0 g
s
.55062 .35643 m .50635 .45961 L .62436 .512 L p .647 .623 .812 r
F P
0 g
s
.62436 .512 m .67239 .41059 L .55062 .35643 L p .647 .623 .812 r
F P
0 g
s
.67239 .41059 m .62436 .512 L p .69301 .81902 L .318 .242 .611 r
F P
0 g
s
.50635 .45961 m .55062 .35643 L .42044 .38452 L closepath p .717 .706 .839 r
F P
0 g
s
.50635 .45961 m .42044 .38452 L .33218 .48366 L p .778 .706 .784 r
F P
0 g
s
.63546 .75519 m .50649 .78236 L .47448 .86486 L p .594 .271 .392 r
F P
0 g
s
.34832 .80916 m .47448 .86486 L .50649 .78236 L p .764 .454 .462 r
F P
0 g
s
.50649 .78236 m .38597 .72908 L .34832 .80916 L p .764 .454 .462 r
F P
0 g
s
.25121 .74021 m .34832 .80916 L .38597 .72908 L p .893 .622 .52 r
F P
0 g
s
.23504 .61643 m .25121 .74021 L p .38597 .72908 L .893 .622 .52 r
F P
0 g
s
.38597 .72908 m .31931 .61526 L .23504 .61643 L p .893 .622 .52 r
F P
0 g
s
.59205 .89075 m .69301 .81902 L .63546 .75519 L p .594 .271 .392 r
F P
0 g
s
.47448 .86486 m .59205 .89075 L p .63546 .75519 L .594 .271 .392 r
F P
0 g
s
.24822 .47841 m .23504 .61643 L .31931 .61526 L p .909 .772 .698 r
F P
0 g
s
.31931 .61526 m .33218 .48366 L .24822 .47841 L p .909 .772 .698 r
F P
0 g
s
.24822 .47841 m .33218 .48366 L .42044 .38452 L p .861 .878 .849 r
F P
0 g
s
.28707 .36765 m .24822 .47841 L p .42044 .38452 L .861 .878 .849 r
F P
0 g
s
.42044 .38452 m .39785 .30977 L .28707 .36765 L p .861 .878 .849 r
F P
0 g
s
.39785 .30977 m .42044 .38452 L .55062 .35643 L p .704 .798 .923 r
F P
0 g
s
.55062 .35643 m .67239 .41059 L .7417 .37228 L p .494 .65 .928 r
F P
0 g
s
.7417 .37228 m .67239 .41059 L p .69301 .81902 L .318 .242 .611 r
F P
0 g
s
.53466 .28012 m .55062 .35643 L p .7417 .37228 L .494 .65 .928 r
F P
0 g
s
.55062 .35643 m .53466 .28012 L .39785 .30977 L p .704 .798 .923 r
F P
0 g
s
.51537 .90645 m .59205 .89075 L .47448 .86486 L p .444 0 0 r
F P
0 g
s
.47448 .86486 m .39428 .87875 L .51537 .90645 L p .444 0 0 r
F P
0 g
s
.47448 .86486 m .34832 .80916 L .39428 .87875 L closepath p .738 .285 .175 r
F P
0 g
s
.29373 .80862 m .39428 .87875 L .34832 .80916 L p .775 .268 0 r
F P
0 g
s
.34832 .80916 m .25121 .74021 L .29373 .80862 L p .775 .268 0 r
F P
0 g
s
.80833 .42077 m .7417 .37228 L p .69301 .81902 L .318 .242 .611 r
F P
0 g
s
.84252 .54654 m .80833 .42077 L p .69301 .81902 L .318 .242 .611 r
F P
0 g
s
.82568 .69642 m .84252 .54654 L p .69301 .81902 L .318 .242 .611 r
F P
0 g
s
.69301 .81902 m .76615 .80072 L .82568 .69642 L p .318 .242 .611 r
F P
0 g
s
.76615 .80072 m .69301 .81902 L .59205 .89075 L p .051 0 0 r
F P
0 g
s
.23504 .61643 m .24822 .47841 L p .39896 .67367 L .133 .084 .532 r
F P
0 g
s
.25121 .74021 m .23504 .61643 L p .39896 .67367 L .133 .084 .532 r
F P
0 g
s
.24822 .47841 m .28707 .36765 L p .39896 .67367 L .133 .084 .532 r
F P
0 g
s
.34108 .32372 m .28707 .36765 L .39785 .30977 L p .533 .916 .78 r
F P
0 g
s
.39785 .30977 m .45618 .26406 L .34108 .32372 L p .533 .916 .78 r
F P
0 g
s
.53466 .28012 m .45618 .26406 L .39785 .30977 L closepath p .58 .894 .987 r
F P
0 g
s
.7417 .37228 m .65617 .28781 L .53466 .28012 L p .494 .65 .928 r
F P
0 g
s
.65617 .28781 m .7417 .37228 L .80833 .42077 L p 0 .179 .679 r
F P
0 g
s
.45618 .26406 m .53466 .28012 L .65617 .28781 L p .082 .628 .84 r
F P
0 g
s
.59205 .89075 m .66191 .8758 L .76615 .80072 L p .051 0 0 r
F P
0 g
s
.59205 .89075 m .51537 .90645 L .66191 .8758 L closepath p .151 .688 .698 r
F P
0 g
s
.29373 .80862 m .25121 .74021 L p .39896 .67367 L .133 .084 .532 r
F P
0 g
s
.28707 .36765 m .34108 .32372 L p .39896 .67367 L .133 .084 .532 r
F P
0 g
s
.65617 .28781 m .58153 .27161 L .45618 .26406 L p .082 .628 .84 r
F P
0 g
s
.80833 .42077 m .72063 .33355 L .65617 .28781 L p 0 .179 .679 r
F P
0 g
s
.72063 .33355 m .58153 .27161 L .65617 .28781 L closepath p .538 0 0 r
F P
0 g
s
.49531 .85208 m .51537 .90645 L .39428 .87875 L p .295 .617 .958 r
F P
0 g
s
.35045 .7881 m .49531 .85208 L p .39428 .87875 L .295 .617 .958 r
F P
0 g
s
.39428 .87875 m .29373 .80862 L .35045 .7881 L p .295 .617 .958 r
F P
0 g
s
.82568 .69642 m .76615 .80072 L .66191 .8758 L p .868 .976 .851 r
F P
0 g
s
.80833 .42077 m .84252 .54654 L .7746 .54404 L p .936 .605 .38 r
F P
0 g
s
.72063 .33355 m .80833 .42077 L p .7746 .54404 L .936 .605 .38 r
F P
0 g
s
.34108 .32372 m .45618 .26406 L .58153 .27161 L p .494 .086 .195 r
F P
0 g
s
.65031 .81955 m .66191 .8758 L .51537 .90645 L p .649 .868 .981 r
F P
0 g
s
.51537 .90645 m .49531 .85208 L .65031 .81955 L p .649 .868 .981 r
F P
0 g
s
.39896 .67367 m .35045 .7881 L .29373 .80862 L p .133 .084 .532 r
F P
0 g
s
.75713 .70228 m .82568 .69642 L p .66191 .8758 L .868 .976 .851 r
F P
0 g
s
.66191 .8758 m .65031 .81955 L .75713 .70228 L p .868 .976 .851 r
F P
0 g
s
.84252 .54654 m .82568 .69642 L .75713 .70228 L p .969 .835 .656 r
F P
0 g
s
.75713 .70228 m .7746 .54404 L .84252 .54654 L p .969 .835 .656 r
F P
0 g
s
.39154 .37388 m .34108 .32372 L p .58153 .27161 L .494 .086 .195 r
F P
0 g
s
.34108 .32372 m .39154 .37388 L p .39896 .67367 L .133 .084 .532 r
F P
0 g
s
.58153 .27161 m .72063 .33355 L .69496 .40526 L p .762 .375 .322 r
F P
0 g
s
.7746 .54404 m .69496 .40526 L .72063 .33355 L p .936 .605 .38 r
F P
0 g
s
.58153 .27161 m .5483 .34003 L .39154 .37388 L p .494 .086 .195 r
F P
0 g
s
.69496 .40526 m .5483 .34003 L .58153 .27161 L p .762 .375 .322 r
F P
0 g
s
.54953 .74029 m .49531 .85208 L .35045 .7881 L p .62 .634 .843 r
F P
0 g
s
.49531 .85208 m .54953 .74029 L .65031 .81955 L closepath p .713 .748 .88 r
F P
0 g
s
.35045 .7881 m .39896 .67367 L .54953 .74029 L p .62 .634 .843 r
F P
0 g
s
.65997 .61826 m .75713 .70228 L .65031 .81955 L p .797 .747 .806 r
F P
0 g
s
.65031 .81955 m .54953 .74029 L .65997 .61826 L p .797 .747 .806 r
F P
0 g
s
.75713 .70228 m .65997 .61826 L .7746 .54404 L closepath p .861 .732 .718 r
F P
0 g
s
.69496 .40526 m .7746 .54404 L .65997 .61826 L p .816 .62 .638 r
F P
0 g
s
.41539 .5098 m .39154 .37388 L .5483 .34003 L p .662 .439 .571 r
F P
0 g
s
.39154 .37388 m .41539 .5098 L .39896 .67367 L p .133 .084 .532 r
F P
0 g
s
.57729 .47511 m .5483 .34003 L .69496 .40526 L closepath p .756 .499 .544 r
F P
0 g
s
.65997 .61826 m .57729 .47511 L .69496 .40526 L p .816 .62 .638 r
F P
0 g
s
.5483 .34003 m .57729 .47511 L .41539 .5098 L p .662 .439 .571 r
F P
0 g
s
.65997 .61826 m .54953 .74029 L .39896 .67367 L p .703 .587 .723 r
F P
0 g
s
.57729 .47511 m .65997 .61826 L p .39896 .67367 L .703 .587 .723 r
F P
0 g
s
.39896 .67367 m .41539 .5098 L .57729 .47511 L p .703 .587 .723 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{178.688, 199.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2rtz1FYUB+DFK+37/fB6HzYLNuaV8A4hJMRDSICQkGGYSQo6h8kMFJlk
gI4/wS2lS5epGFqXTCpKty4pU6ZV7jn37EHe/clzFVmEIjC6Wku657vn6rHS
6t5df/bol1/Xnz1+uD6+9WT990ePHz4d3/ztiVmUPZTJZF6a6c9xhj4H5qMU
LwPzz6z8f5Zwdo9mVerUH+2CH2g2RwuqwfPGeV512676Xlf1aVUmSx+D1w/u
8z7xqbxht7yjWw6mtjRTZo5KXmRWbNhdyn9xjTUb4raGGIEQPpW8liPwyi9s
xW9oxgsWQcWCVvSooqyVf5nPbIgbao9BiJI2f45C8HZS8bpWPAIq1tSeA/Zl
G2JNQyyDEA0NMdV1Uvua1l4BtduoNtW7ZGt/rrVXQe0ulR4tumg3v8ozXhKM
Gxs8Rch9lS/YurbDsuG6pleotMtMCA6D+nHI5d7eO2vDXgFhPRCWDw3PHiST
lp2zIT4FIXIgRI9K3+7NP56+kH54/Xxjsk8G3Ey7+K/Nn3kyn6WllwFTAExT
mfwUIxO3fUHOirAlXuaMBT8BYAmAFe2aKoPZMEjn7vMNXtQN7QXhzFoq9+6Z
05a/BPgK4HOabxPwvmbcArwH+FOWvwj4GuBZngdyXuUGkH0gnwzJLaK49hDE
LmrsKoidB7FP2NgXQFaNUFaGYm4A0LKiZYAWAHo8HooyrShaBGgRoKvJ0Zoe
sz5AywA9ZtHzAG05dm9TM80CtALQleRoW1GrTkzTBbPecnKvo14TAEctcA4A
bcdd1wwntLO5pQkh70hyr8GlXUacmcxFjcq9+68B+HFyvqbp+vHQswDtOu7E
d+dkAaD1dNBS6Orjhh6Oh6LuLYC9G5M/A/h5Rz6nOdcBik7RA0C90Cn63tA5
RTuO6JJFPwboQuQh5YfRya2XuTGbJavJSc6TFy2kA/QVGAIAfWMI8BEA+gDo
UCl3rK9ebE+dCH3HrBZD6AgodVUKjgpKbTFeaiVFawBFOywmOgCop2g7QaYj
d5SObr4z7zt66N5GvNPAG+pd6lKKgCwzACOuVCk5ddjx2EBZDZNTrlnFpMaO
FLq7/jCoAaCORu2rQsC3R7PAIB6wDID5UC6726/4hMsFwc5Wjj7K0XbKsbMQ
wF+H8hOQASYZ7GzRZLqNSpiVK7oC0NZUVgS/R76hOfvpoMcAWgM5p8SvAr6s
Oecd0WFytKhoMR30OEDzoKMPgEdn7AnA+5pzJR560jHnkwDNgpxT4k8BXh4h
3otHV8BmOtRpKuXJJD1Alr3ZfsO5NNLsNl+pyURkzZEc/fsDUzjzly3DB2Y5
Hf4E4H3Al+LxrteC44DPA971UrQP33fki4AvpMOvAr5MpfyMkwp6DKA1kLPr
12xMfgXwDcB76fDLgG8BPntQvH3Rs7m1w/MMvVKcbUFHzrtQC/TGtQxUecJF
98i9UNKkmsl805iSFy0BvMultwc/GNenUl6XzLq9qW4/oGTzii4AtK+nl09U
nj4djgbmAVBSoAuAIZX8nJELdoNd91wQVdEd1wTUKNyB9j9dKIPdcTylrgnV
4ihTqS1Fo12AthQtJ0Bl16FfXToA7ShacERL8dA2QHu6E70E6DgeOtBMzQq6
+IlpjsBZr5zcG6nnChyJBloAWORSLubbbzmzIaAq0RT6BbcZlYtcjYmaTET2
HUl5aYZ+fa87ZGcm+nV3+y136bwjuhwPHQHU53Kf70fhq9E8erVTc+RzgG86
Zi8vXtGLu4pjl+cBX3fMPiaPsi/qHq85ovu84S47omWQcwnwtWgevdXPUyn3
HLNoFaAFR3SfoQSeol5wZ/Nv/jQAfE07Og/QejSKxp/wXyXyOGIPeE2QbjYq
XY4io054uI38UDABugBoyckbAsLPyjPpSPjw6CUTnibThknPNQHUmcokw02b
tNpezPeMvZqEbWj76yBsm8psMAk21VoJe0U7o6XBKiBYnUp5Qba1G0z1cVlb
K0O4roLWNrUTilGnjGcPn1kAfXsL9W5kXkczyEddBn2b3yyQ1wxkFN41kEFb
AQ8AWc2gCQB05yrUl4DqaGeZFaEnHftM0QWADwAZjbimXdTTDAYgRFY7QcZM
Xo9qmSwzIThMHwSbA+2RsF/t3WVTwWzLvHAw+izjSL8GTWo5NIlq2aPSDoNF
B+dUiB6VvEjGz96cqmivBLMVW1TyobZmK35LMxk4OLt5VTeXMcJ3aSbviWc3
L+rmt+zm9zW6Bzb3qOSHp+/s5j/p5mZLSYO35Jj37EYPaMaBZPDzBzEk+7+d
ZQ79A+ZsHKg=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 177.688}, {198.938, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"63c05b85-05fc-4f88-8234-b70fb7a0a5b7"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(81\\). \\!\\(\\\"metabidiminished rhombicosidodecahedron \
(J81)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"9fe36208-7b72-4f1d-970a-049588507f3d"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.0953
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0603534 1.18124 2.22045e-16 1.18124 [
[ 0 0 0 0 ]
[ 1 1.0953 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.0953 L
0 1.0953 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.61714 .64519 m .49544 .60839 L .41464 .70095 L p .693 .483 .599 r
F P
0 g
s
.32226 .6098 m .41464 .70095 L .49544 .60839 L p .781 .616 .676 r
F P
0 g
s
.49544 .60839 m .40557 .518 L .32226 .6098 L p .781 .616 .676 r
F P
0 g
s
.53012 .48469 m .40557 .518 L .49544 .60839 L closepath p .733 .619 .731 r
F P
0 g
s
.49544 .60839 m .61714 .64519 L .65271 .52045 L p .666 .549 .712 r
F P
0 g
s
.65271 .52045 m .53012 .48469 L .49544 .60839 L p .666 .549 .712 r
F P
0 g
s
.40557 .518 m .53012 .48469 L .50684 .36971 L p .745 .689 .797 r
F P
0 g
s
.53012 .48469 m .65271 .52045 L .71136 .4276 L p .62 .606 .815 r
F P
0 g
s
.50684 .36971 m .53012 .48469 L p .71136 .4276 L .62 .606 .815 r
F P
0 g
s
.48728 .79934 m .61517 .76347 L .61714 .64519 L p .693 .483 .599 r
F P
0 g
s
.41464 .70095 m .48728 .79934 L p .61714 .64519 L .693 .483 .599 r
F P
0 g
s
.73021 .61452 m .61714 .64519 L .61517 .76347 L p .55 .367 .585 r
F P
0 g
s
.73021 .61452 m .65271 .52045 L .61714 .64519 L closepath p .583 .464 .682 r
F P
0 g
s
.32226 .6098 m .40557 .518 L .37887 .40327 L p .858 .754 .747 r
F P
0 g
s
.50684 .36971 m .37887 .40327 L .40557 .518 L p .745 .689 .797 r
F P
0 g
s
.65271 .52045 m .73021 .61452 L .79278 .52276 L p .493 .441 .727 r
F P
0 g
s
.79278 .52276 m .71136 .4276 L .65271 .52045 L p .493 .441 .727 r
F P
0 g
s
.41464 .70095 m .32226 .6098 L .31274 .72948 L closepath p .828 .602 .597 r
F P
0 g
s
.38575 .83212 m .48728 .79934 L .41464 .70095 L p .785 .49 .489 r
F P
0 g
s
.41464 .70095 m .31274 .72948 L .38575 .83212 L p .785 .49 .489 r
F P
0 g
s
.2258 .67706 m .31274 .72948 L .32226 .6098 L p .914 .684 .577 r
F P
0 g
s
.32226 .6098 m .23794 .55403 L .2258 .67706 L p .914 .684 .577 r
F P
0 g
s
.23794 .55403 m .32226 .6098 L p .37887 .40327 L .858 .754 .747 r
F P
0 g
s
.42961 .30437 m .50684 .36971 L .61939 .33097 L p .638 .752 .931 r
F P
0 g
s
.50684 .36971 m .42961 .30437 L .37887 .40327 L closepath p .747 .771 .873 r
F P
0 g
s
.71136 .4276 m .61939 .33097 L .50684 .36971 L p .62 .606 .815 r
F P
0 g
s
.516 .8742 m .64976 .83621 L .61517 .76347 L p .596 .267 .383 r
F P
0 g
s
.61517 .76347 m .48728 .79934 L .516 .8742 L p .596 .267 .383 r
F P
0 g
s
.73109 .7352 m .61517 .76347 L .64976 .83621 L closepath p .493 .223 .433 r
F P
0 g
s
.61517 .76347 m .73109 .7352 L .73021 .61452 L p .55 .367 .585 r
F P
0 g
s
.79278 .52276 m .73021 .61452 L .73109 .7352 L p .25 .132 .518 r
F P
0 g
s
.37887 .40327 m .27379 .42146 L .23794 .55403 L p .858 .754 .747 r
F P
0 g
s
.27379 .42146 m .37887 .40327 L .42961 .30437 L p .828 .881 .882 r
F P
0 g
s
.48728 .79934 m .38575 .83212 L .516 .8742 L closepath p .696 .318 .328 r
F P
0 g
s
.73109 .7352 m .79702 .72416 L p .79278 .52276 L .25 .132 .518 r
F P
0 g
s
.79702 .72416 m .83734 .58637 L .79278 .52276 L p .25 .132 .518 r
F P
0 g
s
.71136 .4276 m .79278 .52276 L .83734 .58637 L p .697 .194 0 r
F P
0 g
s
.61939 .33097 m .71136 .4276 L p .83734 .58637 L .697 .194 0 r
F P
0 g
s
.34728 .85051 m .38575 .83212 L .31274 .72948 L p .867 .43 .157 r
F P
0 g
s
.24301 .75007 m .34728 .85051 L p .31274 .72948 L .867 .43 .157 r
F P
0 g
s
.31274 .72948 m .2258 .67706 L .24301 .75007 L p .867 .43 .157 r
F P
0 g
s
.61939 .33097 m .54456 .26223 L .42961 .30437 L p .638 .752 .931 r
F P
0 g
s
.54456 .26223 m .61939 .33097 L p .83734 .58637 L .697 .194 0 r
F P
0 g
s
.71275 .83028 m .79702 .72416 L .73109 .7352 L p .164 0 .16 r
F P
0 g
s
.73109 .7352 m .64976 .83621 L .71275 .83028 L p .164 0 .16 r
F P
0 g
s
.23794 .55403 m .19153 .55666 L .2258 .67706 L closepath p .996 .783 .496 r
F P
0 g
s
.19153 .55666 m .23794 .55403 L .27379 .42146 L p .979 .912 .657 r
F P
0 g
s
.42961 .30437 m .54456 .26223 L .51441 .24805 L p .486 .894 .927 r
F P
0 g
s
.32278 .31945 m .42961 .30437 L p .51441 .24805 L .486 .894 .927 r
F P
0 g
s
.42961 .30437 m .32278 .31945 L .27379 .42146 L p .828 .881 .882 r
F P
0 g
s
.27379 .42146 m .22917 .41662 L .19153 .55666 L p .979 .912 .657 r
F P
0 g
s
.32278 .31945 m .22917 .41662 L .27379 .42146 L closepath p .891 .986 .799 r
F P
0 g
s
.516 .8742 m .38575 .83212 L .34728 .85051 L p .557 0 0 r
F P
0 g
s
.6101 .8676 m .71275 .83028 L .64976 .83621 L p .013 0 0 r
F P
0 g
s
.48455 .89521 m .6101 .8676 L p .64976 .83621 L .013 0 0 r
F P
0 g
s
.64976 .83621 m .516 .8742 L .48455 .89521 L p .013 0 0 r
F P
0 g
s
.34728 .85051 m .48455 .89521 L .516 .8742 L p .557 0 0 r
F P
0 g
s
.20749 .62565 m .24301 .75007 L .2258 .67706 L p .729 .444 0 r
F P
0 g
s
.2258 .67706 m .19153 .55666 L .20749 .62565 L p .729 .444 0 r
F P
0 g
s
.51441 .24805 m .54456 .26223 L p .83734 .58637 L .697 .194 0 r
F P
0 g
s
.51441 .24805 m .36971 .28525 L .32278 .31945 L p .486 .894 .927 r
F P
0 g
s
.22917 .41662 m .32278 .31945 L .36971 .28525 L p 0 0 0 r
F P
0 g
s
.82386 .59105 m .83734 .58637 L .79702 .72416 L p .833 .841 .374 r
F P
0 g
s
.79702 .72416 m .78124 .73691 L .82386 .59105 L p .833 .841 .374 r
F P
0 g
s
.79702 .72416 m .71275 .83028 L .78124 .73691 L closepath p .63 .866 .505 r
F P
0 g
s
.5482 .30283 m .51441 .24805 L p .83734 .58637 L .697 .194 0 r
F P
0 g
s
.63967 .41148 m .5482 .30283 L p .83734 .58637 L .697 .194 0 r
F P
0 g
s
.74866 .52527 m .63967 .41148 L p .83734 .58637 L .697 .194 0 r
F P
0 g
s
.83734 .58637 m .82386 .59105 L .74866 .52527 L p .697 .194 0 r
F P
0 g
s
.19153 .55666 m .22917 .41662 L .27191 .38708 L p 0 0 .314 r
F P
0 g
s
.20749 .62565 m .19153 .55666 L p .27191 .38708 L 0 0 .314 r
F P
0 g
s
.36971 .28525 m .27191 .38708 L .22917 .41662 L p 0 0 0 r
F P
0 g
s
.34728 .85051 m .24301 .75007 L p .54076 .52404 L .59 .609 .839 r
F P
0 g
s
.48455 .89521 m .34728 .85051 L p .54076 .52404 L .59 .609 .839 r
F P
0 g
s
.67748 .77177 m .78124 .73691 L .71275 .83028 L p .816 .973 .898 r
F P
0 g
s
.71275 .83028 m .6101 .8676 L .67748 .77177 L p .816 .973 .898 r
F P
0 g
s
.6101 .8676 m .48455 .89521 L p .54076 .52404 L .59 .609 .839 r
F P
0 g
s
.24301 .75007 m .20749 .62565 L p .54076 .52404 L .59 .609 .839 r
F P
0 g
s
.36971 .28525 m .51441 .24805 L .5482 .30283 L p .499 .085 .186 r
F P
0 g
s
.39591 .3424 m .27191 .38708 L .36971 .28525 L closepath p .346 .017 .257 r
F P
0 g
s
.5482 .30283 m .39591 .3424 L .36971 .28525 L p .499 .085 .186 r
F P
0 g
s
.74866 .52527 m .82386 .59105 L .78124 .73691 L p .9 .809 .748 r
F P
0 g
s
.65351 .63907 m .74866 .52527 L p .78124 .73691 L .9 .809 .748 r
F P
0 g
s
.78124 .73691 m .67748 .77177 L .65351 .63907 L p .9 .809 .748 r
F P
0 g
s
.67748 .77177 m .6101 .8676 L p .54076 .52404 L .59 .609 .839 r
F P
0 g
s
.27191 .38708 m .25927 .52039 L .20749 .62565 L p 0 0 .314 r
F P
0 g
s
.20749 .62565 m .25927 .52039 L p .54076 .52404 L .59 .609 .839 r
F P
0 g
s
.27191 .38708 m .39591 .3424 L .38668 .47865 L p .482 .28 .53 r
F P
0 g
s
.38668 .47865 m .25927 .52039 L .27191 .38708 L p .482 .28 .53 r
F P
0 g
s
.5482 .30283 m .63967 .41148 L .54076 .52404 L p .685 .452 .563 r
F P
0 g
s
.39591 .3424 m .5482 .30283 L p .54076 .52404 L .685 .452 .563 r
F P
0 g
s
.54076 .52404 m .65351 .63907 L .67748 .77177 L p .59 .609 .839 r
F P
0 g
s
.25927 .52039 m .38668 .47865 L .54076 .52404 L p .59 .609 .839 r
F P
0 g
s
.54076 .52404 m .38668 .47865 L .39591 .3424 L p .685 .452 .563 r
F P
0 g
s
.63967 .41148 m .74866 .52527 L .65351 .63907 L p .801 .626 .665 r
F P
0 g
s
.65351 .63907 m .54076 .52404 L .63967 .41148 L p .801 .626 .665 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{182.562, 199.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmrlz20YUh2GSICmKskRJlCxZByVRpA7rvu/D1mUdmWg8ScaZFBpPZuwi
k4ztzqX/BZcpXbrMuEudyqXalP43mN19i2eQ/IF8MJVRimgGCwrY9337FrsA
COL86vXzn3+5ev3i2VXu6OXVb89fPHuVO/z1pdoUveM4zke1/JVz9OeS+miL
jyX1p3b+vwq9+lGvYrobv6cN3+mVqzdESm/axp2o/lj6Y466OqLLJ1TzkkOT
pmaMa9rFVL6kyhdcuaUCqxZVU5e0zf4531DgCbcnAwKjIPCCAg/Y2C0MPKfA
fb0ye+6DwBgIPKPAPQ7sFwaeUuAuB6r9TxVH19GEPiHnMXG2OeWIxthKCmEw
KBsXwE4ItsWwKID16tJsSgDEMSE2GeECRFaXtrUfXr2raFkcYI8Iu8HYOMBm
GJsQYg8Ju87YBMC2MDYtxB4Qdo2xTQCbZGxGiH1E2FXGpgA2xtguIfYhYVcY
2wyxZlbIiPtEXGZiWhNNnZwQsUeIpfJcvZnyZu+tqa1ZQ0LiLhEXmZhkYkwD
bXUFC4XdIexC+ci086MaOyzEbhN2vnweRagnZFg0PbcIO1c+w6N0jKqxI0Ls
JmFnGau61Dub2aUV4PNC/AbhZ/Qqrve0A9ioELZOsGluaxbACkLYGsGm9Mob
nPrKZ6aOonYCdlHIXiX2A2bro3/pzUs1AzS6AwjGhIIVEkzqVYTmgUwwLhQs
k2DCrKJ2JFwaiVQ1IVQtkWocqFygQgNoEqiSQLXYuMqf1af3H8zASQHVQrAq
3LFyWeUtQcp5Uo4Js6s3/qxO/UdlveN4A/oi0LtC/Vzj+gLQJ4T62cb1o0Df
JNTPkL4I9PEG9CmhfrpxfR7o00CPLrk3oB8B+rtC/RTpC0CfEOqHgb5NqH/Q
uH4I6DPCYz8ZTp/RpTmp5YC0I0gaso/v6tJsckvvfr82n/qALyvsY7oQqjki
06dZ36z15mblHtB3CfXj4fRJXRppO2ffCfT3hPqxcHqXs+/h7FuBvleoL4bT
R1if4+ybgb4vSG97Ow98yQqfvhabG7ACZxoHqgGgQl/jC3XMRjXFWUWAKidU
jcqSVCq9qAuMKo0+rwURyrQaSzx1OpVh50xZnsGwL4PPn/40fWxUhXDsecDO
2XsKj+0tjoN7aSRYmQDKRaAcqEhHLeo/Kv0HCT3dGg6nXwL6PqB3hfoh0g8L
9StA3wv0CaE+F06/CvQ9QJ/Upf3WVC0dDJbGgXQdSLuBtNl2vC9ns+iBV6Ob
kXIDKLNA2VJDmQseWDGg3ALKDqBsraEcDFZGgXIHKDNAmamhHAin3AXKVqDs
AOPXjKf+YF8E+PaB7y7wdfKAVTuur59641XNbd853PX77KKfqFc70sCRNSX9
HKAVVtPvN8QqDM4RgKcAvMvXYRbsHZsA8jEgJwPJVc0ug/sPhOM8BuQ4IHfX
JJurpzkkp4DnBvLK+2DQB6sYGwgblTezBvnMlPixQm9o2nlFOzXlPkjVnnAK
dRBeWj24IbdIKU/HnrKLQkTAUbpFSnk69j5jDCDO/h1EwMStQUG5ZEFDRnwI
M0MvwgWOCzPoxBl8FaW8IfkbQ0wIEe04l6+iRP0U72tGKITZZAMn65wby24D
vGvk+7/flrxrZD4cpy2IU6M9KJE0J6Kv2aXP9hrkTVP70KZ+e1LcHoMxn8Z8
CLMBNSDBDYhxoP1iOw3cJwARY0SiEjEDEMcAEeHmNzHCPkuZDULYHw296vb5
0hyo7r//0H2sFl+gfS42DwIPgwIrvgxY9wJAPKrpto+rFkHgfs1A+yhzCQTu
gsBm0GjrXgaIHWHethUrALFVs/n2MfgqCNyoGWgf36+BwDVh3ta9DhArQoRt
xQZALAPElzFtf1naBIGLINDMJ7PJ/tC2BQLnQaDLgfb3y20QOAsCoxxof/Hd
0SuzwTza8U7+VJ3z2qHKX16vmaxg61OaqWl/9j/gmkVd03yybz8c864h3mXf
DjnlXeaJobk5te/HXPCuDO+yrxl9y7tSfN6w7zk94V0RjvqBdpl3pkyTf6IN
/4l3um5p5dz5B7nKapM=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 181.562}, {198.938, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"5f4a5678-a9c2-4960-9bfa-a8fcac344397"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(82\\). \\!\\(\\\"gyrate bidiminished rhombicosidodecahedron \
(J82)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"0c3e11de-fdaf-4329-a61e-a496535c5cdf"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.0929
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0597571 1.17363 -1.11022e-16 1.17363 [
[ 0 0 0 0 ]
[ 1 1.0929 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.0929 L
0 1.0929 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.51646 .50323 m .61471 .58838 L .72141 .53143 L p .637 .581 .775 r
F P
0 g
s
.43118 .60144 m .52976 .68682 L .61471 .58838 L p .715 .578 .7 r
F P
0 g
s
.61471 .58838 m .51646 .50323 L .43118 .60144 L p .715 .578 .7 r
F P
0 g
s
.65575 .70703 m .61471 .58838 L .52976 .68682 L closepath p .659 .495 .652 r
F P
0 g
s
.61471 .58838 m .65575 .70703 L .76562 .65213 L p .58 .452 .67 r
F P
0 g
s
.76562 .65213 m .72141 .53143 L .61471 .58838 L p .58 .452 .67 r
F P
0 g
s
.34063 .52116 m .43118 .60144 L .51646 .50323 L p .777 .677 .754 r
F P
0 g
s
.51646 .50323 m .42843 .42065 L .34063 .52116 L p .777 .677 .754 r
F P
0 g
s
.55831 .39 m .42843 .42065 L .51646 .50323 L closepath p .723 .678 .805 r
F P
0 g
s
.55831 .39 m .51646 .50323 L p .72141 .53143 L .637 .581 .775 r
F P
0 g
s
.36517 .77854 m .49289 .7968 L .52976 .68682 L p .778 .559 .603 r
F P
0 g
s
.32828 .65432 m .36517 .77854 L p .52976 .68682 L .778 .559 .603 r
F P
0 g
s
.52976 .68682 m .43118 .60144 L .32828 .65432 L p .778 .559 .603 r
F P
0 g
s
.65575 .70703 m .52976 .68682 L .49289 .7968 L p .663 .434 .563 r
F P
0 g
s
.43118 .60144 m .34063 .52116 L .32828 .65432 L closepath p .822 .667 .69 r
F P
0 g
s
.76562 .65213 m .65575 .70703 L .62232 .81945 L p .478 .251 .491 r
F P
0 g
s
.49289 .7968 m .62232 .81945 L .65575 .70703 L p .663 .434 .563 r
F P
0 g
s
.72141 .53143 m .76562 .65213 L .8076 .7312 L p 0 0 .512 r
F P
0 g
s
.68777 .40589 m .72141 .53143 L p .8076 .7312 L 0 0 .512 r
F P
0 g
s
.72141 .53143 m .68777 .40589 L .55831 .39 L p .637 .581 .775 r
F P
0 g
s
.34063 .52116 m .42843 .42065 L .40371 .33 L p .858 .832 .82 r
F P
0 g
s
.42843 .42065 m .55831 .39 L .53982 .29785 L p .722 .759 .882 r
F P
0 g
s
.53982 .29785 m .40371 .33 L .42843 .42065 L p .722 .759 .882 r
F P
0 g
s
.53982 .29785 m .55831 .39 L .68777 .40589 L p .585 .665 .894 r
F P
0 g
s
.24089 .6401 m .32828 .65432 L .34063 .52116 L p .905 .743 .671 r
F P
0 g
s
.34063 .52116 m .25436 .50032 L .24089 .6401 L p .905 .743 .671 r
F P
0 g
s
.25436 .50032 m .34063 .52116 L p .40371 .33 L .858 .832 .82 r
F P
0 g
s
.38702 .86486 m .52069 .88223 L .49289 .7968 L p .748 .391 .376 r
F P
0 g
s
.49289 .7968 m .36517 .77854 L .38702 .86486 L p .748 .391 .376 r
F P
0 g
s
.62232 .81945 m .49289 .7968 L .52069 .88223 L closepath p .655 .339 .425 r
F P
0 g
s
.27788 .77045 m .36517 .77854 L .32828 .65432 L p .9 .621 .505 r
F P
0 g
s
.32828 .65432 m .24089 .6401 L .27788 .77045 L p .9 .621 .505 r
F P
0 g
s
.68777 .40589 m .67529 .31294 L .53982 .29785 L p .585 .665 .894 r
F P
0 g
s
.67529 .31294 m .68777 .40589 L p .8076 .7312 L 0 0 .512 r
F P
0 g
s
.71485 .83993 m .8076 .7312 L .76562 .65213 L p .478 .251 .491 r
F P
0 g
s
.62232 .81945 m .71485 .83993 L p .76562 .65213 L .478 .251 .491 r
F P
0 g
s
.61133 .9066 m .71485 .83993 L .62232 .81945 L p .474 .078 .208 r
F P
0 g
s
.62232 .81945 m .52069 .88223 L .61133 .9066 L p .474 .078 .208 r
F P
0 g
s
.36517 .77854 m .27788 .77045 L .38702 .86486 L closepath p .846 .455 .307 r
F P
0 g
s
.40371 .33 m .29221 .37754 L .25436 .50032 L p .858 .832 .82 r
F P
0 g
s
.29221 .37754 m .40371 .33 L .45997 .26424 L p .726 .981 .912 r
F P
0 g
s
.53982 .29785 m .45997 .26424 L .40371 .33 L closepath p .677 .866 .971 r
F P
0 g
s
.53982 .29785 m .67529 .31294 L .69119 .28928 L p .268 .707 .963 r
F P
0 g
s
.45997 .26424 m .53982 .29785 L p .69119 .28928 L .268 .707 .963 r
F P
0 g
s
.25436 .50032 m .20505 .55495 L .24089 .6401 L closepath p .994 .834 .577 r
F P
0 g
s
.20505 .55495 m .25436 .50032 L .29221 .37754 L p .934 .948 .616 r
F P
0 g
s
.53035 .905 m .61133 .9066 L .52069 .88223 L p .306 0 0 r
F P
0 g
s
.38399 .87752 m .53035 .905 L p .52069 .88223 L .306 0 0 r
F P
0 g
s
.52069 .88223 m .38702 .86486 L .38399 .87752 L p .306 0 0 r
F P
0 g
s
.2676 .77685 m .27788 .77045 L .24089 .6401 L p .833 .514 0 r
F P
0 g
s
.21987 .63635 m .2676 .77685 L p .24089 .6401 L .833 .514 0 r
F P
0 g
s
.24089 .6401 m .20505 .55495 L .21987 .63635 L p .833 .514 0 r
F P
0 g
s
.69119 .28928 m .67529 .31294 L p .8076 .7312 L 0 0 .512 r
F P
0 g
s
.73401 .35726 m .69119 .28928 L p .8076 .7312 L 0 0 .512 r
F P
0 g
s
.78761 .49869 m .73401 .35726 L p .8076 .7312 L 0 0 .512 r
F P
0 g
s
.82615 .6481 m .78761 .49869 L p .8076 .7312 L 0 0 .512 r
F P
0 g
s
.8076 .7312 m .83227 .73494 L .82615 .6481 L p 0 0 .512 r
F P
0 g
s
.83227 .73494 m .8076 .7312 L .71485 .83993 L p 0 0 0 r
F P
0 g
s
.71485 .83993 m .73349 .85086 L .83227 .73494 L p 0 0 0 r
F P
0 g
s
.71485 .83993 m .61133 .9066 L .73349 .85086 L closepath p 0 0 0 r
F P
0 g
s
.2676 .77685 m .38399 .87752 L .38702 .86486 L p .626 .089 0 r
F P
0 g
s
.38702 .86486 m .27788 .77045 L .2676 .77685 L p .626 .089 0 r
F P
0 g
s
.29221 .37754 m .24364 .42661 L .20505 .55495 L p .934 .948 .616 r
F P
0 g
s
.34438 .31203 m .24364 .42661 L .29221 .37754 L closepath p .604 .871 .538 r
F P
0 g
s
.45997 .26424 m .34438 .31203 L .29221 .37754 L p .726 .981 .912 r
F P
0 g
s
.69119 .28928 m .55144 .25705 L .45997 .26424 L p .268 .707 .963 r
F P
0 g
s
.34438 .31203 m .45997 .26424 L .55144 .25705 L p .154 0 0 r
F P
0 g
s
.65702 .84599 m .73349 .85086 L .61133 .9066 L p .588 .929 .955 r
F P
0 g
s
.61133 .9066 m .53035 .905 L .65702 .84599 L p .588 .929 .955 r
F P
0 g
s
.26116 .50322 m .21987 .63635 L .20505 .55495 L p 0 0 .326 r
F P
0 g
s
.20505 .55495 m .24364 .42661 L .26116 .50322 L p 0 0 .326 r
F P
0 g
s
.55144 .25705 m .69119 .28928 L .73401 .35726 L p .705 .232 .124 r
F P
0 g
s
.82615 .6481 m .83227 .73494 L .73349 .85086 L p .893 .928 .835 r
F P
0 g
s
.24364 .42661 m .34438 .31203 L .43299 .30719 L p .323 .055 .343 r
F P
0 g
s
.55144 .25705 m .43299 .30719 L .34438 .31203 L p .154 0 0 r
F P
0 g
s
.71403 .71557 m .82615 .6481 L p .73349 .85086 L .893 .928 .835 r
F P
0 g
s
.73349 .85086 m .65702 .84599 L .71403 .71557 L p .893 .928 .835 r
F P
0 g
s
.26116 .50322 m .24364 .42661 L p .43299 .30719 L .323 .055 .343 r
F P
0 g
s
.38399 .87752 m .2676 .77685 L p .67157 .56156 L .614 .58 .792 r
F P
0 g
s
.53035 .905 m .38399 .87752 L p .67157 .56156 L .614 .58 .792 r
F P
0 g
s
.2676 .77685 m .21987 .63635 L p .67157 .56156 L .614 .58 .792 r
F P
0 g
s
.58715 .32479 m .43299 .30719 L .55144 .25705 L closepath p .59 .183 .239 r
F P
0 g
s
.73401 .35726 m .58715 .32479 L .55144 .25705 L p .705 .232 .124 r
F P
0 g
s
.65702 .84599 m .53035 .905 L p .67157 .56156 L .614 .58 .792 r
F P
0 g
s
.21987 .63635 m .26116 .50322 L p .67157 .56156 L .614 .58 .792 r
F P
0 g
s
.73401 .35726 m .78761 .49869 L .67157 .56156 L p .799 .548 .56 r
F P
0 g
s
.58715 .32479 m .73401 .35726 L p .67157 .56156 L .799 .548 .56 r
F P
0 g
s
.78761 .49869 m .82615 .6481 L .71403 .71557 L p .871 .727 .701 r
F P
0 g
s
.43299 .30719 m .38334 .42903 L .26116 .50322 L p .323 .055 .343 r
F P
0 g
s
.43299 .30719 m .58715 .32479 L .54267 .44982 L p .638 .373 .501 r
F P
0 g
s
.54267 .44982 m .38334 .42903 L .43299 .30719 L p .638 .373 .501 r
F P
0 g
s
.67157 .56156 m .71403 .71557 L .65702 .84599 L p .614 .58 .792 r
F P
0 g
s
.26116 .50322 m .38334 .42903 L p .67157 .56156 L .614 .58 .792 r
F P
0 g
s
.71403 .71557 m .67157 .56156 L .78761 .49869 L p .871 .727 .701 r
F P
0 g
s
.67157 .56156 m .54267 .44982 L .58715 .32479 L p .799 .548 .56 r
F P
0 g
s
.38334 .42903 m .54267 .44982 L .67157 .56156 L p .614 .58 .792 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{182.938, 199.875},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmktzE0cQxxd5ZdmyHpYsDBhsC4Nl5BfGLyy/wDZYiW0CUVKVSg6puCiq
8CEVCvgGOXLlmGM+AsUtZ04cueaYI8dclenp2dZK+q8868XgQ1Q1M6vZ7t+/
p2cfo109OHz59Mmvhy+PHh8Wq88Pnz09evyiuPvbc9XVdc5xnLeqvCs6tF1X
m6Z6W1cftfP/5qTNL9QkKJsPueMHanp1euP1Iidal9fliu6N1d9ULrq0uc8e
NWri1JEghy7acsmcN8mcivrmOVbZUStqmyQ5xhjR7pigWgtss+OBOPaJYxI4
9oniJjvuUaPNU+KYAo5ZcVxlx6ooNhyzwDFPtd67wo73mxW1dQ44DpgUUZ/5
OMuM2AbaBYAoAMQSI+4IIi2IC5aIRUboDA6G0fY7ml21nhoVFQXV3PfnT79T
Ud9U3Rs0I0hggQU2LAXSItAVTmAdCGSAwCDVCU5RO2yeYWsAlgWwIZMU6nv/
6hUVR58D/YB9i9mrEdjdVLuc/kCBChDotxRIUq1H0AME5lhgxVLgMhDIygjc
6AJoBAWqu6nLpOM2gOUsYZeo1ieiiWzZEoaGPqTr5gHPMnYJYPOWMV4B2BnG
LlpiUbQdsAsAOxAdOx8BOwKw06eKvQWwBcspKwLsFGPnLLEo2g7YmwB7Pjp2
NgJ2DGAnGTsDsIPRsdMAe8ESew1gy8FYnQR9l7kIYNfDwfTRahZef7x+n6St
TDjslA9Li0HVNp0ECktFXctUrW+/cSAwDgRuBAvkJO5hwuqL8kQ4RFYQ4zq+
4+OZYBhPueuD1Tht7WMuATJKZWdySiKdBDx0+DTx4i08Hn6vQGcsoaXjoT0g
B7MAj84kgy+3TVVNr1drLUeuK/HPWwqMhxOIicASCeitE2HjfqwulKoKiHo0
GH8D4OlAqemuNQAbkQVG6RhEy4StA9hlgakdf//1xgvx2PBa2BuAfamxttVo
rziN0CcAPg7wmwA/KKHHCduS3mvBAij+u0BgQAQS0QW25FjLCbY3OnYHxJ32
HW0m552kSpZS94FUUsaSBgJj4QR2gUBCBLLRBapAwBWBXLDAuOVh+hUQiIHZ
CCmFxrKna1ek2F4tItrJV8OR932D8AL+/Fg0pzGAPTgd7ANLbPEzYPEt+dEX
Q/G1qW01860lZfTTU5oXgLUzgfjOEjHCCP+N1jtabKM48wjbXAwzomwZRYFq
fe0eDeeYF0e145+PH7wgvDHYcvg6zicVYbziNEKatERlJCSXEDgxtrCUwLqj
w5IC6wmGTQEYOpX96xCTrbBYFGO3xNgXHeYKLANgVxg2bTngmMD6TwLDq+d8
OJQepO4aOIFjy2x1QMwEDiMS4hFAFE4VMQsQD6MjvrFEDIdDoHSaC9lNgDiw
RIyGQ6BjshiM2LdEmHXbHEDsAUQOIMZ8CH0mIu0OjvNAu2qJML+xFgBiFyDQ
NeI6IxYB4p4lwvyYXwKIHYDIAoT5wb4MENsAga6c5uHVbZmHLUtH87CvArQ3
wyFWAWLdEmEei64BxBpApAHCPFReB4iKJcI8Rd8AiBWASAGEeRuxKfOAHNF9
1Lx0uQu0F6jupy7z1msLGM1R7b2b//ivecinzbeB+bTcthrm5t3zDjAvCz0t
5uZN+z1gXgLm/nf7+pfJVQmhYWT+OfA1Nfr2PCSkjBjxFKvLtfroh9h5YGT+
vPC9kJIi1zDibDs/ilGXkLJiZP4/8TM1fXW9VFO7WqbPGB1Ro98z7HLHmfi/
yuk3zrn/ADy3yHc=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 181.938}, {198.875, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"0b8d059e-e469-4649-8186-8160afd51c79"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(83\\). \\!\\(\\\"tridiminished rhombicosidodecahedron (J83)\
\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"64b2ea89-4d33-413d-8ea4-f023acb01511"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.16244
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0890855 1.23998 -1.11022e-16 1.23998 [
[ 0 0 0 0 ]
[ 1 1.16244 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.16244 L
0 1.16244 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.67877 .8203 m .5993 .72154 L .45996 .74566 L p .696 .443 .536 r
F P
0 g
s
.5993 .72154 m .70541 .62599 L p .3356 .68795 L .748 .672 .777 r
F P
0 g
s
.3356 .68795 m .45996 .74566 L .5993 .72154 L p .748 .672 .777 r
F P
0 g
s
.5993 .72154 m .67877 .8203 L .78873 .72215 L p .606 .432 .619 r
F P
0 g
s
.78873 .72215 m .70541 .62599 L .5993 .72154 L p .606 .432 .619 r
F P
0 g
s
.70541 .62599 m .74101 .49129 L p .3356 .68795 L .748 .672 .777 r
F P
0 g
s
.70541 .62599 m .78873 .72215 L .88317 .64573 L p .492 .411 .692 r
F P
0 g
s
.74101 .49129 m .70541 .62599 L p .88317 .64573 L .492 .411 .692 r
F P
0 g
s
.3161 .80512 m .44579 .86253 L .45996 .74566 L p .821 .56 .544 r
F P
0 g
s
.45996 .74566 m .3356 .68795 L .3161 .80512 L p .821 .56 .544 r
F P
0 g
s
.45996 .74566 m .44579 .86253 L p .67877 .8203 L .696 .443 .536 r
F P
0 g
s
.68965 .36469 m .74101 .49129 L .8515 .49727 L p .469 .518 .826 r
F P
0 g
s
.74101 .49129 m .68965 .36469 L p .3356 .68795 L .748 .672 .777 r
F P
0 g
s
.88317 .64573 m .8515 .49727 L .74101 .49129 L p .492 .411 .692 r
F P
0 g
s
.23607 .75649 m .3161 .80512 L .3356 .68795 L p .954 .709 .527 r
F P
0 g
s
.20898 .60001 m .23607 .75649 L p .3356 .68795 L .954 .709 .527 r
F P
0 g
s
.3356 .68795 m .27355 .56523 L .20898 .60001 L p .954 .709 .527 r
F P
0 g
s
.30278 .42211 m .27355 .56523 L .3356 .68795 L p .748 .672 .777 r
F P
0 g
s
.41567 .31748 m .30278 .42211 L p .3356 .68795 L .748 .672 .777 r
F P
0 g
s
.56556 .29617 m .41567 .31748 L p .3356 .68795 L .748 .672 .777 r
F P
0 g
s
.68965 .36469 m .56556 .29617 L p .3356 .68795 L .748 .672 .777 r
F P
0 g
s
.44579 .86253 m .58503 .91175 L .67877 .8203 L p .696 .443 .536 r
F P
0 g
s
.78745 .84138 m .67877 .8203 L .58503 .91175 L p .509 .187 .358 r
F P
0 g
s
.78745 .84138 m .78873 .72215 L .67877 .8203 L closepath p .509 .287 .513 r
F P
0 g
s
.78873 .72215 m .78745 .84138 L .88582 .76672 L p .322 .143 .475 r
F P
0 g
s
.88582 .76672 m .88317 .64573 L .78873 .72215 L p .322 .143 .475 r
F P
0 g
s
.68965 .36469 m .80066 .36495 L .74511 .29118 L p .39 .657 .965 r
F P
0 g
s
.56556 .29617 m .68965 .36469 L p .74511 .29118 L .39 .657 .965 r
F P
0 g
s
.8515 .49727 m .80066 .36495 L .68965 .36469 L p .469 .518 .826 r
F P
0 g
s
.44579 .86253 m .3161 .80512 L .39174 .91428 L closepath p .817 .442 .344 r
F P
0 g
s
.58503 .91175 m .44579 .86253 L .39174 .91428 L p .685 .257 .226 r
F P
0 g
s
.23865 .44905 m .20898 .60001 L .27355 .56523 L p .972 .906 .688 r
F P
0 g
s
.27355 .56523 m .30278 .42211 L .23865 .44905 L p .972 .906 .688 r
F P
0 g
s
.39174 .91428 m .53838 .96717 L .58503 .91175 L p .685 .257 .226 r
F P
0 g
s
.69284 .93783 m .58503 .91175 L .53838 .96717 L closepath p .484 .027 .09 r
F P
0 g
s
.58503 .91175 m .69284 .93783 L .78745 .84138 L p .509 .187 .358 r
F P
0 g
s
.88582 .76672 m .78745 .84138 L .69284 .93783 L p 0 0 0 r
F P
0 g
s
.69284 .93783 m .72823 .92882 L p .88582 .76672 L 0 0 0 r
F P
0 g
s
.72823 .92882 m .85516 .81642 L .88582 .76672 L p 0 0 0 r
F P
0 g
s
.8515 .49727 m .88317 .64573 L p .85516 .81642 L .983 .697 .346 r
F P
0 g
s
.80066 .36495 m .8515 .49727 L p .85516 .81642 L .983 .697 .346 r
F P
0 g
s
.41567 .31748 m .56556 .29617 L .5915 .24711 L p .589 .887 .991 r
F P
0 g
s
.74511 .29118 m .5915 .24711 L .56556 .29617 L p .39 .657 .965 r
F P
0 g
s
.39174 .91428 m .3161 .80512 L .23607 .75649 L p .835 .365 .019 r
F P
0 g
s
.30278 .42211 m .41567 .31748 L .43236 .26922 L p .753 .992 .798 r
F P
0 g
s
.23865 .44905 m .30278 .42211 L p .43236 .26922 L .753 .992 .798 r
F P
0 g
s
.88317 .64573 m .88582 .76672 L .85516 .81642 L p .983 .697 .346 r
F P
0 g
s
.5915 .24711 m .43236 .26922 L .41567 .31748 L p .589 .887 .991 r
F P
0 g
s
.74511 .29118 m .80066 .36495 L p .85516 .81642 L .983 .697 .346 r
F P
0 g
s
.23607 .75649 m .31293 .86989 L .39174 .91428 L p .835 .365 .019 r
F P
0 g
s
.53838 .96717 m .39174 .91428 L .31293 .86989 L p 0 .491 .845 r
F P
0 g
s
.56393 .96001 m .72823 .92882 L .69284 .93783 L p .165 .701 .725 r
F P
0 g
s
.69284 .93783 m .53838 .96717 L .56393 .96001 L p .165 .701 .725 r
F P
0 g
s
.20898 .60001 m .23865 .44905 L p .51965 .4621 L .402 .34 .674 r
F P
0 g
s
.23607 .75649 m .20898 .60001 L p .51965 .4621 L .402 .34 .674 r
F P
0 g
s
.41798 .89656 m .56393 .96001 L .53838 .96717 L p 0 .491 .845 r
F P
0 g
s
.31293 .86989 m .41798 .89656 L p .53838 .96717 L 0 .491 .845 r
F P
0 g
s
.31293 .86989 m .23607 .75649 L p .51965 .4621 L .402 .34 .674 r
F P
0 g
s
.54175 .26461 m .43236 .26922 L .5915 .24711 L closepath p .075 0 0 r
F P
0 g
s
.5915 .24711 m .74511 .29118 L .70444 .3118 L p .506 0 0 r
F P
0 g
s
.70444 .3118 m .54175 .26461 L .5915 .24711 L p .506 0 0 r
F P
0 g
s
.43236 .26922 m .31869 .35245 L .23865 .44905 L p .753 .992 .798 r
F P
0 g
s
.23865 .44905 m .31869 .35245 L p .51965 .4621 L .402 .34 .674 r
F P
0 g
s
.43236 .26922 m .54175 .26461 L .42605 .3521 L p .313 0 .074 r
F P
0 g
s
.42605 .3521 m .31869 .35245 L .43236 .26922 L p .313 0 .074 r
F P
0 g
s
.70444 .3118 m .74511 .29118 L p .85516 .81642 L .983 .697 .346 r
F P
0 g
s
.41798 .89656 m .31293 .86989 L p .51965 .4621 L .402 .34 .674 r
F P
0 g
s
.79764 .76262 m .85516 .81642 L .72823 .92882 L p .835 .913 .889 r
F P
0 g
s
.72823 .92882 m .66355 .88202 L .79764 .76262 L p .835 .913 .889 r
F P
0 g
s
.72823 .92882 m .56393 .96001 L .66355 .88202 L closepath p .676 .886 .975 r
F P
0 g
s
.31869 .35245 m .42605 .3521 L .51965 .4621 L p .402 .34 .674 r
F P
0 g
s
.69883 .43458 m .70444 .3118 L p .85516 .81642 L .983 .697 .346 r
F P
0 g
s
.73548 .6135 m .69883 .43458 L p .85516 .81642 L .983 .697 .346 r
F P
0 g
s
.85516 .81642 m .79764 .76262 L .73548 .6135 L p .983 .697 .346 r
F P
0 g
s
.51329 .81342 m .66355 .88202 L .56393 .96001 L p .623 .733 .925 r
F P
0 g
s
.56393 .96001 m .41798 .89656 L .51329 .81342 L p .623 .733 .925 r
F P
0 g
s
.54175 .26461 m .70444 .3118 L p .51965 .4621 L .682 .381 .458 r
F P
0 g
s
.51965 .4621 m .42605 .3521 L .54175 .26461 L p .682 .381 .458 r
F P
0 g
s
.70444 .3118 m .69883 .43458 L .51965 .4621 L p .682 .381 .458 r
F P
0 g
s
.51329 .81342 m .41798 .89656 L p .51965 .4621 L .402 .34 .674 r
F P
0 g
s
.73548 .6135 m .79764 .76262 L .66355 .88202 L p .758 .698 .795 r
F P
0 g
s
.55479 .64367 m .73548 .6135 L p .66355 .88202 L .758 .698 .795 r
F P
0 g
s
.66355 .88202 m .51329 .81342 L .55479 .64367 L p .758 .698 .795 r
F P
0 g
s
.69883 .43458 m .73548 .6135 L .55479 .64367 L p .741 .569 .661 r
F P
0 g
s
.55479 .64367 m .51965 .4621 L .69883 .43458 L p .741 .569 .661 r
F P
0 g
s
.51965 .4621 m .55479 .64367 L .51329 .81342 L p .402 .34 .674 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{172, 199.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmsluG0cQhsfcKUriooUStZAUKYoSqV2y48SOnQWWEUBA4AQBslwkI4B9
CBLYvumYV8gxj8Cjrz4GOeWYq44++hWYrqpmhcs/o2GIoQUhAqZ61NP9/dU1
w2Gzuk/PXj378aezV8+fnpVOXpz98uz505elRz+/MFXhW47jtMzxZ8mh87Y5
tabVNn/m4v+FV3FORYwi9rlUfE9Fkioi7V/JmLOHculrKuJUEW5nyJizFDXi
s/vS6JSKHFVktP9dufSYihRVxNtPnIx0a7fOX9LhhMhyVVY7HkvHEy6kuenI
ndMAESMbUQRfPBDEI4CYJhuiqimgvSMdOSwhGc+gYqZXkds1peNnPp2eU+1J
RZgm7dffcTOCNIT4qecYltSVOHFsO8KYw2DJhjtIJm0K9qHnCIvqXkjdiwFY
XWAPfI66QpZhCXfY/V7P+GyDu/cOLg4QG4K459MfhEWe1QT7kU9sHWCTALsu
2LtgwI3hEB/49AxhJwC2Ktg7PrFNgE0BbEWwt6mYoSu7/6GjvXT+pEWH8Yds
rz/bADsJsGuCPQbYLMCiYU4BbFmwRwA7A7DopnhgDwF2DmA3ATYNsCXBHgBs
HmDRw+2B3QfYRYBFH0UP7B7AFnxiMwBbFOwuwC4DbG107ArArgNsFmBXBbsD
sEWArQ6H3QbYMsBWhsM2AbYCsGsAmwPYFcE2AHYdYMvDYbcAtgawq/oFPAdg
ywLbBLA6gOXJ8rws3H7zW6vP2xl3gToQ2AICabI8mUuOLtAAAgkdQQYIzAKB
JXeBJttIt4Di8z7998Bvk+WqleFgGwC20xUMA2MgwqIQFK4tFj3Ti+7Y3RG8
DRZbA9i9EYKwcFOw+yNg84Fi1wH24EZi5wF23h17OIK3wWKrAHv0frEotnNj
xx6PEIRgsRWAvf1+sSi2s2PH3hkhCNcDWyDLs6cFAJtxf6xQRGfJ2qnpH6//
8hHbIQWmyPLUdAIIoHB4CKBwxHQE2aAEONT+2Lkr2Fy1OhwMvdW7Q21gDAwI
WwRYNCXzwB4DbCkYbBlg0Zw/WCyaOx0B7BrAol+vHthDgK0Eg60CLMoM3Bjs
AcDWABbliCwW/fDZHx92A2BR/m382D2A3QTY6bFjUVJhd3zYLYBFeePxY3cA
tkGWqzxgKFG27epjlOv+fvdWD/M/TPRbPErqNa+4YRZt/hPbHRa0IjOkVB1I
RYEUWu2y8xOUAd3yKRUHUlH3qSfK4W5e8bHvSCWBVGR0qRqQSgEptBZqf6yg
hHcdSPEXBS/Ppe196hLgg54/mxBAyfmaG7TP/0yf/4S1ORy0lFDVCSOCZcmy
14vuCEnES6r19zfvOgc3KrlB+6Jp8Whppnv5wKJN9Ixlv1Z8CtiEJlpSKgKB
hAoUfAosuQusAoGUhmhOn4wZgLU5dLTCtgywafU7B/zOAQG7ZoFWBgtAIKcC
ac/npeSOXSDLjfIahJTPKFssWh6dB94W1NuETwG7UMrLunxlFmBXFBv1ibWr
xbIobj4qF5d82R4ZoFHS2Dj8q7kjAW+iXePuXspniYtL+VymgEBFBRDRruJ/
SAWPNEw0hsXcYPal1nrb1sPh0Q3i7d6De9jhi0uuCrkKhbuFzH9iB17j7PjA
1pC4ClQBLEqW200Av7s3rdjnysD4rAxgCeBZDGDtxppPQDj+9XZZn7pJ9TEK
YDJ9kM0/diAdHxeBj9N22F0+6nxIvt1kSxP3SipqHqAyfcMlhN0VdaKIhA4o
54bgKvmqcb7o7cja0xoJdp6TJ/Lild1kYb3NIXn6B3WSZBNUJe8S50vtGNOO
CdAxRpZzTXaT2lca55iOLAI6hrTjx9LxG3C3o6ptLtAzb98QkiCSHWLOt6Bj
iCw3eiyNftDxnErFtdg9GHzh3PoHAu3wRg==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 171.}, {198.938, 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"c41b3bb6-a4e5-46f8-84cf-2497deab5f1e"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(84\\). \\!\\(\\\"snub disphenoid (J84)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"4efcd8fe-7d15-4cee-85fe-f64fb0697712"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.08323
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0563445 1.14633 0 1.14633 [
[ 0 0 0 0 ]
[ 1 1.08323 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.08323 L
0 1.08323 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.31933 .99176 m .58841 .86044 L .61875 .70938 L closepath p .066 0 0 r
F P
0 g
s
.23126 .57774 m .31933 .99176 L .61875 .70938 L closepath p .749 .586 .674 r
F P
0 g
s
.61875 .70938 m .54577 .30638 L .23126 .57774 L closepath p .736 .611 .719 r
F P
0 g
s
.61875 .70938 m .84684 .48325 L .54577 .30638 L closepath p .464 .424 .728 r
F P
0 g
s
.58841 .86044 m .84684 .48325 L .61875 .70938 L closepath p 0 0 0 r
F P
0 g
s
.54577 .30638 m .40076 .41118 L .23126 .57774 L closepath p .551 .882 .621 r
F P
0 g
s
.84684 .48325 m .40076 .41118 L .54577 .30638 L closepath p .657 .171 .087 r
F P
0 g
s
.23126 .57774 m .10136 .8024 L .31933 .99176 L closepath p .967 .709 .491 r
F P
0 g
s
.40076 .41118 m .10136 .8024 L .23126 .57774 L closepath p 0 0 0 r
F P
0 g
s
.10136 .8024 m .58841 .86044 L .31933 .99176 L closepath p .57 .771 .974 r
F P
0 g
s
.40076 .41118 m .84684 .48325 L .58841 .86044 L closepath p .773 .613 .681 r
F P
0 g
s
.58841 .86044 m .10136 .8024 L .40076 .41118 L closepath p .725 .592 .707 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{184.625, 199.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2VtTWlcYBmAiIGgaYj0fQEE5CCIIgqKiosRTHXPquc20sbYd0+khk6TT
6fRv5LI/IZe9yE0vM/1ZdK/1LV83m3c5xYvmJs6wl+71Pt9awnYflienL86/
++n0xZOz0/jBs9On50/Onsf3f3nm7PLf8Pl8r53XP3Gf+r7lfGs2r1vOl9P5
rnm7zZlq/OozeSg7vtFNQO1pvcoOXLx61I77EnmsGr2jV3X5NG+ZL9+JhL7W
jd9dxxdCJRP6ioT6ETqW0CMMd5sMdyihL0mly4mb0OeoNIKufen6jPgxhO5I
6BP4KJnJjoQ+JpViqGRCH5FQHKFtCT3EcCkyXF1CD0ilNCqZ0D1UWkDXunTd
JX4RoZqETkhoicypKvFjDFdBJdP1Aam0gtCyhI5UE5DxL7pK0nWI0v7Wmz9f
9WIQz0wKEj9A3On/++VfOuM451B0tiH1YwFDGLMP06OIKezENbyFYXOAeYF7
rrl1wiHANJlvVkroA033BEiJcUz68lgxsAkYJHAGY0cBMwJ3AUMEJgHHAVMC
dwDDBOYw1SHy285KiQY+5z5SYgljRzC2gduA/QSuAF6eS+ICtwBvEljHpINk
0jEpsYkSt0iJXbUNq10mXkc8QuKHauuXD0bHN1QTlJNdZ/xIb9unNSlwHXDA
No4HTglcAxwkcJ9AM9Ua4FB3cFU1vTa4R6B5L1cARwhsEjgtsAo42h2sAI4T
uEPgjEB9JgvZYINAc4SWASe6gyXAKQK3CEwIXAKMErhJoPkrLKrGHOuWPyYO
C4DTBG4QOCdwETBO4BqBSYF5wER3cAFwlsAageb0mFNNn+qZs52iPDDtgnrE
ZHcwC5gmsEJgxgVDck3ohMsEzgucx4jzBJbtMAOYJbBEYNYF9VRztiuGB+YE
pgHzBBavCwsELghMARYIzBNobiOSgMVrQH2yKtmuyB64KHAOIzKYJbDggnrE
cndwFrBCYIbAogvqi06VwDSBSwITgKsEpuwwjqkymCSw5IJ6xBqBcwSWBc4A
rhOYIHDZBfW9xkZ3cBoj1m13jx5YERgD3CRwmsCqC+qpbhMYs8MoYIPAKIEr
/wVOEbgqcApwl8BJO5wEbBI4QWDNBXXPHoFjBK4JnMCI14G654DAEQLN4+M4
4CGBwwRuuKC+NT/qDo4BHhM4SKB5CB7FVBl8n8BNFzTLFp1wwA5HAO8SeJvA
LRc0XeqpVWE2doSU2JYSwxj7vu0plsMhwAcEvkdgwwU9k2Yl+kkJsywyqJqg
bdJXwGHX2C/ftNTLF7YdXGFSZ7fzjb+oE1JbXWyHFAuRYk3XceMpFlHbPttF
4YpiY6TYKGbGrttBUswsZI2TYjEUY/dkAVJsT4pNkGJJFGO3zX57sUkcfXmU
mCQlekgJs5QXJfMp4W2Xh9yAu5gcJy1cljx2DRPpv9JOE9uA9a4lOa1ZDDOP
jO3wQG0DcrJq4W7CE9pXW/d6aoKEmgjdk9As3uIddMkqonnoafd1hD6UUMr2
HumQLH+aZ5L2UFVt9a5PJZQhoTIqfSGheRIqIvRIQlkSyiMky8xyR6935ND1
WLryxKcQkjVxc7fcHppF6FsJFUhoBqHvJVQkoShC5xJaIqEJhH6QUMl2WtCh
HyVUxi8+jK6fpatCfASf01MJVUnoJio9l9AKCYUR+lVCqyQUROg3CdVIqAeh
3yUkNy4BhFTrvP6Q3nVXiYvTg+n6v//D4rvxL70226I=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 183.625}, {198.938, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"6c682f38-bc6e-4258-b46f-09956c69fd84"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(85\\). \\!\\(\\\"snub square antiprism \
(J85)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"bc8638dc-d9c9-4328-acb9-d00026862e22"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .99901
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0195561 1.08426 0 1.08426 [
[ 0 0 0 0 ]
[ 1 .99901 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .99901 L
0 .99901 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.18117 .4408 m .27083 .70035 L .31053 .60393 L closepath p .959 .622 .309 r
F P
0 g
s
.27083 .70035 m .44944 .81691 L .31053 .60393 L closepath p .894 .503 .274 r
F P
0 g
s
.31053 .60393 m .42532 .3756 L .18117 .4408 L closepath p .815 .76 .801 r
F P
0 g
s
.31053 .60393 m .57038 .58931 L .42532 .3756 L closepath p .707 .62 .758 r
F P
0 g
s
.57038 .58931 m .31053 .60393 L .44944 .81691 L closepath p .699 .515 .636 r
F P
0 g
s
.71363 .7823 m .57038 .58931 L .44944 .81691 L closepath p .642 .447 .603 r
F P
0 g
s
.71363 .7823 m .76915 .51344 L .57038 .58931 L closepath p .513 .414 .679 r
F P
0 g
s
.42532 .3756 m .57038 .58931 L .76915 .51344 L p .565 .57 .817 r
F P
0 g
s
.33445 .22244 m .42532 .3756 L .61796 .28033 L closepath p .615 .746 .939 r
F P
0 g
s
.42532 .3756 m .33445 .22244 L .18117 .4408 L closepath p .81 .828 .864 r
F P
0 g
s
.76915 .51344 m .61796 .28033 L .42532 .3756 L p .565 .57 .817 r
F P
0 g
s
.44944 .81691 m .52619 .81779 L .71363 .7823 L closepath p .005 0 0 r
F P
0 g
s
.44944 .81691 m .27083 .70035 L .52619 .81779 L closepath p 0 .46 .859 r
F P
0 g
s
.76915 .51344 m .71363 .7823 L .80686 .70742 L closepath p .01 0 .421 r
F P
0 g
s
.52619 .81779 m .80686 .70742 L .71363 .7823 L closepath p .526 .917 .908 r
F P
0 g
s
.79753 .39992 m .76915 .51344 L .80686 .70742 L closepath p 0 0 .299 r
F P
0 g
s
.79753 .39992 m .61796 .28033 L .76915 .51344 L closepath p .135 .348 .809 r
F P
0 g
s
.18117 .4408 m .28237 .47132 L .27083 .70035 L closepath p .078 .156 .644 r
F P
0 g
s
.28237 .47132 m .18117 .4408 L .33445 .22244 L closepath p .175 0 .374 r
F P
0 g
s
.33445 .22244 m .61796 .28033 L .51607 .26649 L closepath p .201 0 0 r
F P
0 g
s
.61796 .28033 m .79753 .39992 L .51607 .26649 L closepath p .551 0 0 r
F P
0 g
s
.56058 .58934 m .52619 .81779 L .27083 .70035 L p .524 .563 .836 r
F P
0 g
s
.27083 .70035 m .28237 .47132 L .56058 .58934 L p .524 .563 .836 r
F P
0 g
s
.51607 .26649 m .28237 .47132 L .33445 .22244 L closepath p .428 .211 .48 r
F P
0 g
s
.80686 .70742 m .52619 .81779 L .56058 .58934 L closepath p .714 .741 .873 r
F P
0 g
s
.80686 .70742 m .56058 .58934 L .79753 .39992 L closepath p .812 .691 .731 r
F P
0 g
s
.51607 .26649 m .56058 .58934 L .28237 .47132 L closepath p .622 .507 .701 r
F P
0 g
s
.56058 .58934 m .51607 .26649 L .79753 .39992 L closepath p .773 .613 .681 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{200.188, 199.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmklvHEUYhivT07MvnpnY4zUe7x4vYzs7hBASlIBAYQcBEkhWhJQgsSjO
AQlxIUeuHHPkyDHXHBG5cOSan5C/YLq+qnnd3fPWeDptCQ6M1NU9VV3v831V
1VXV1XV7/8Hdr77Zf3Dvzn7njfv739+9d+egc+u7+0GUd0op9TQ4/uwofX0Y
XNrg6WHwCxL/P41+uqFPWV1+P4cilKdjDr/e+1EfKqf//WTSr+tTRkfkdFpe
X/1gkl5DUlknFfTVQTyprpOK+upbk3QtBOyqz6UqW/omsSpI2DP1K/8k7q7J
+KqcsshoM7eRV7L6+uqOyXFVTn4kRx85g2xZZPsynG0A1EEOHzk+MzleGQJa
RrEd2feRyXYlVhTBoTISRutjQUJj0KOHj+X8x6PfpXwzh78oVdVX7yYT7cRE
rbAH5bJWlqbwtlF+mSh7RHleQj+ibNWD2EBebq9peZvT/tSbBvRSIpAXBgWu
6tDrl5E+Aif6PlU1VK4Sos4QVJag8lFUzL+bBnqZQLMEOkegPoEWAa3AP4u6
RFA+QcnjIBkLBFCOAmJemS5EXSSoHEFNE68YtBptiTHodTeU+cegRQKtA1pC
UVrUhRH9myKoEkE18CgUiX+mt1PnCTRPoJMEWibQ0/CvAP8SotoEVSWo8Sgq
5p/pptQ5Ai0Q6Dja5xhBtYHKwysLOJsEEPOKoaaiqJhXl5NBTxNog0BnAM3B
P4vaI6giQbUIqklQc2iVPvHPPANql0BLBNok0BaBduBfFv4lRDUI6jRBLUZR
Mf9MxamdFNAJAl0C1IN/FtUjqDJB1fEATBHAShQQ88q4o7YJqkJQNeIVg65F
JyExaC8ZtEqg0wTaBdS4Kon6n+VtEV6V8CqEN0N4mzqUWZLxJIh4ccAsAfTw
wG0mA5QJYI4AdlFiGwawQQA1AigRwPxQQNcAugRQJ4AC2vQikd2R0MT99fiJ
VHJCQJ54wFBSB3YurFEWZ2nrKWhLhLYtoR+hxRxcI8gxgswR5LKrFdteL0DF
HlVDU6sE2iBQn0BXCHQjVoEafAL4LMGvunqKGN5341cIvknwGTTaDVefGIPm
3NBlfZIUJyrmKYMe9f7FY1A2aazzmz7Mv7qdNIfIcijp8wZpy8TFxNwglKiK
ffkJw6UzdwyiMW5ptPrsc30dCiw+G9PO7rimCzFoORm0CGflxUTqaZegFgiq
kgxVAUp5/QUI+bdHePNoNfXRHso+pQbKWdcEMuZGQkBdQtMoHv76d98LVmiz
hDaWjmYPuYm1/xmCbBKkYUW68kgJ2jiLCwwIQqmOzaGvHePpUTmgugQ1Sfw7
AWgBhco66zaBTrih6wRaJdAyPGWj4gSBttNDq4Cy0b+FmpxOj6oDtUBQTeLf
EGiXQMsE2kRNnnEta8SgM+mh4/CUTaLHCHQ2PbQNKHsVqaEm592oDYIqEdQU
CrXtWguL+XcC0Fn4N06gFQLtpIeeAZS9n5cIdMEN3STQIoF2ULxsfaVIoIvp
oUvwtD50qXglPWoFKLYUlyP+DYFuEWiBQNcAZUuNPoGupod2UZNs0ThLoGvp
oVvwNEegmdAbthO1TVB5guoB5duvDCGUvt5Kz9hFGcY/lyiZ9KQGnNOhWN5z
i/WImE/ELqJETkrMFurjJ8/kPLxQX1TZHse1ix0in3XKe2H54F8fsJ4ecIEA
cjr0jumj0gCK8GDJDdglAG9EQBmAIaNIGkAVgCEDchpAHYA5N2CPADIjAhoA
sCnTSnpACwA2+0wIOE8AE2imbPpuAWbB3Q8D5NBdHnu4pmA1e/t5QdEZiLZO
TnQOog23aPhLW1/sEhGbhxh7a08otgCxajIx5uYyxNgKjBWTr5hyE5NYhQRb
sRpJYh1tja3rjSSxCSvYcqiVCH9uHtb2tyGWOUbMflYblNiBS3aZ5BJuP0tu
3wPR3i6fImXg2yG396BuF7fNPhIzUKoDDMHbJO8WUEHCw+fP+771pa7AUJ3x
SCso4kGxLgzJaK1YSVnFqy7FLlFcC1XkoKL93HItVJEiePBM2dJztHEPihlT
MKJztKcqozXkpmXXM2cb6KBRVuwGN+qgP1QOynbga4HI2q9vr8PGLMTmXT2W
Z57DQTH7vfImsdGD7NzQ3rVMZM0grG7BRh/lOE3EJmFjGVVhuiqzeci+DvTt
mXSNS7b7G7THir1F3PQhO+EaTyWqRmTNPg6zactuVOiLtYhYEzaOETH7Ff42
sfHI9YZr1uLZ1AFZs21HvQMbC6iK2tA5ltgoXYfZuaXeI5YVYFmFiJVgmVSK
DLNmy596H/aUIFEiEnlIlLSEbJKzu6A+JBIFIuFHHyexwu5J+5i4VIRYjohl
YI8PMVNl6hPYU0YRZ4a8qWTg0AdG4FNijUiVdJRJNfsgmzriCxPxn9js+i+d
1Kl/AA5pvgI=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 199.188}, {198.938, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"a52264f5-b2dd-4fc6-9b10-d50be266e825"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(86\\). \\!\\(\\\"sphenocorona (J86)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"35918b69-6883-4a84-9aaa-d108ddd8abb2"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .95942
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.00215334 1.03504 5.55112e-17 1.03504 [
[ 0 0 0 0 ]
[ 1 .95942 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .95942 L
0 .95942 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.75562 .59615 m .68696 .26996 L .48503 .45122 L closepath p .562 .521 .768 r
F P
0 g
s
.48503 .45122 m .21255 .5748 L .47536 .76939 L closepath p .791 .61 .657 r
F P
0 g
s
.48503 .45122 m .33869 .26704 L .21255 .5748 L closepath p .84 .793 .806 r
F P
0 g
s
.48503 .45122 m .47536 .76939 L .75562 .59615 L closepath p .639 .482 .655 r
F P
0 g
s
.68696 .26996 m .33869 .26704 L .48503 .45122 L closepath p .689 .758 .904 r
F P
0 g
s
.47536 .76939 m .60787 .76587 L .75562 .59615 L closepath p .109 0 0 r
F P
0 g
s
.31206 .54304 m .60787 .76587 L .47536 .76939 L p .14 .49 .903 r
F P
0 g
s
.47536 .76939 m .21255 .5748 L .31206 .54304 L p .14 .49 .903 r
F P
0 g
s
.85457 .48051 m .68696 .26996 L .75562 .59615 L closepath p .148 .225 .687 r
F P
0 g
s
.75562 .59615 m .60787 .76587 L .85457 .48051 L closepath p .541 .819 .469 r
F P
0 g
s
.33869 .26704 m .31206 .54304 L .21255 .5748 L closepath p 0 0 .286 r
F P
0 g
s
.68696 .26996 m .56085 .24124 L .33869 .26704 L closepath p .189 .711 .869 r
F P
0 g
s
.85457 .48051 m .56085 .24124 L .68696 .26996 L closepath p .767 .257 0 r
F P
0 g
s
.31206 .54304 m .33869 .26704 L .56085 .24124 L closepath p .342 .124 .432 r
F P
0 g
s
.56085 .24124 m .85457 .48051 L .60787 .76587 L p .725 .643 .767 r
F P
0 g
s
.60787 .76587 m .31206 .54304 L .56085 .24124 L p .725 .643 .767 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{208.438, 199.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmutSE0kcxcckA7kCizdEDOEWRAxIuN8SoxIwwoq3laVEjailW7Xlluu3
fZ19DT9afvUpfI3Y3f9OO0xON91m3fKDVE13bPr8zpmenjDT7U793asXf9bf
vT6s5zbf1v969frw71z1zVvWFD3hed4ndnzMefxzg32UxacG+2G//Fl9j+oN
r+J8pH+nhpe8SvAGv3G37w8vyj823v/7QVwNn5f3qeeB6pkRPX3Vs3lwRazx
ocIK9mmXZPeV7HTIgB3sX1TyNibkBwM3EduEuKUQFwDC52WENyW4UMTaJGGV
V6JhDAjjwDulvK8HELITQwhMHsCSANbFS5GsQrANXomGiwCR0iFkm/zxymHY
OIBl1Kh0A0QpjECn1APyZABsnWA3AiPleTUxG9Cw91pi1wLYiO4anrKErRLs
Osg4CrBn1Oj9B7A+3TwLYVf02BGA7bfELhP2mqhiAaxADwPygCV5yUgeAuSs
Gtc04C0Sj24WP8SjgcgB6BCImwT4hePxgwA/AvCJb8NnAX7MEj9P+KuO6fNq
xNGQzB0PRZknQOY4wM8Svtwyo2via7EW+l49D6wmLa2Kblb9wKoArDr1ViVg
FQVW54DVtLoq6Fxm3Az6gEERnEsHsLrSvtWspdU0Wa0DqxiwOgus5i2tptys
zgCrRUurAlmtASsfWKFnoGU1GRwN0LkggzVwLjFgddnN6hSwKllaTZLVquWw
IauypdUlN6uTwKqirpAPDCbIYAUYdACDXmBwA5xLpH2rX4BV1dLqoptVD7Da
srQaJ6tlYNUJrLqBVU1doSgwyLdvsC3fNQLnIg7+J1LmX2oD/6soY0fw7uQu
QN7F5LwbOQPId9WY06A3h5w9BAv2ImDHATsN2A9CU4ebOGJTAPsQYEcIuwCw
CUvsHsAOu2GTALuvBtgRlgCwg0DG5n0xSNh5gE0CbBxgnwBs1g3bCbB1gL1A
2Lk2sIcAO+CG7QDY598Hi9LKQZgF2BTAhhd1dNisGzZmiZUTrAiwaYCNWmJz
btiIJXaIsDMAm2k0nxcUVhz8Tn8BUMP/CyrtiJJfdVe0qWJHUBrK6HGUr6Ov
CzJGiGmA6OJlROed1wuFt2hCt+O4XphUwmgj98/n0ER5CmDy2WgKwOIK1glg
jwFsQg/zFSzFYWJUDIgCQEQVogfk2QewS2YYexZv5ewBzmSAI37Tp87hIegu
Xz5EJToNAJ97QFhoHT8mFOJ+gLgDEFOtk+MIQuTZBcLpwK2gDb2jFxaNjttA
KF/YZ4HwPPDeAgi5vDBnDF0FQrnwsWAMvQGEch1o0TJ0BSDkStWSMXQZCOW6
2YoxdAkI5XreqtFxVS9c1zmGEMsAIVdCS8bQS0Aol2TLxtBzQChXiSuWoYsA
IdevrxlDzwBhcD1dG7oAhHKLYMMy9GU9omoMPQmEctdj0xh6HAjl3stNy9Bj
AFEmRM0YehQIaaGXNtS0oXNAKDewdixDZwGC5gV70zWFNghvG0P3A6Hcwrtj
dDwHhLSVxV5wW4Xo++o0QNCcZH+wTKFPAiHNRPYCbArdC4Ryz/M3o2MXEG6R
cM/y2qYBgiaz3FPWhTYI942h40BIc997ZBm6AyBuEeLAGNoHQrkt/TgUGm+I
36bOTy2Cep7aNa+D7mledvMmmtHeM17x52VJ/zH+i8GPVHknvgDyJ98t\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 207.438}, {198.938, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"63a25e11-6ef5-4e8e-98f2-340e5a74c4d5"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(87\\). \\!\\(\\\"augmented sphenocorona \
(J87)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"ed5e3db2-6b98-4fdd-b368-b00ee170fc39"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.11707
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0701188 1.18818 -2.22045e-16 1.18818 [
[ 0 0 0 0 ]
[ 1 1.11707 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.11707 L
0 1.11707 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.83947 .56197 m .55196 .49899 L .592 .82939 L closepath p .554 .403 .631 r
F P
0 g
s
.63728 .23627 m .55196 .49899 L .83947 .56197 L closepath p .498 .512 .802 r
F P
0 g
s
.27945 .63824 m .592 .82939 L .55196 .49899 L closepath p .789 .572 .607 r
F P
0 g
s
.55196 .49899 m .63728 .23627 L .33824 .36749 L p .862 .908 .863 r
F P
0 g
s
.33824 .36749 m .27945 .63824 L .55196 .49899 L p .862 .908 .863 r
F P
0 g
s
.592 .82939 m .27945 .63824 L .35717 .95812 L closepath p .816 .517 .484 r
F P
0 g
s
.75675 .84621 m .592 .82939 L .35717 .95812 L closepath p .184 0 0 r
F P
0 g
s
.83947 .56197 m .592 .82939 L .75675 .84621 L closepath p .219 0 .298 r
F P
0 g
s
.04789 .6854 m .35717 .95812 L .27945 .63824 L closepath p .884 .559 .428 r
F P
0 g
s
.33824 .36749 m .04789 .6854 L .27945 .63824 L closepath p .898 .941 .829 r
F P
0 g
s
.63728 .23627 m .83947 .56197 L .75525 .42274 L closepath p 0 0 .385 r
F P
0 g
s
.75525 .42274 m .83947 .56197 L .75675 .84621 L closepath p .994 .836 .475 r
F P
0 g
s
.75525 .42274 m .33824 .36749 L .63728 .23627 L closepath p .613 .223 .281 r
F P
0 g
s
.43408 .70114 m .35717 .95812 L .04789 .6854 L closepath p .531 .625 .89 r
F P
0 g
s
.75675 .84621 m .35717 .95812 L .43408 .70114 L closepath p .692 .796 .929 r
F P
0 g
s
.43408 .70114 m .04789 .6854 L .33824 .36749 L closepath p .568 .34 .529 r
F P
0 g
s
.43408 .70114 m .33824 .36749 L .75525 .42274 L closepath p .65 .387 .509 r
F P
0 g
s
.75675 .84621 m .43408 .70114 L .75525 .42274 L closepath p .848 .733 .736 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{269.312, 300.812},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt2+lvHHcdx/GJvRvf97m+jzi213Z8rO/bXt/37diO7dhJaaKqapVGIKgq
AQFBBQhEK1WFggAVoUo87NP+CTzkKQ95yL9gdn7f8Rd7/Z5JfqCChBJpx5vZ
7/fz+s3szB4zs6tnz5+88fbZ86ePzurmn529++Tpo/fq5t55lpiVestxbuUk
bu11jnv/wnEuJ+Zfrjvx/vP6/uv7/+f3v3D/pLjb/7nM+JPOcFIvPhuauvD2
DOdMHv/c/ZPqzg25DzupF7rrJB4+laI/aEg6FJ1I0e+0KNO/6DfK5UDRsRT9
WpMKoOiBFH2qRUX+RZ9oUSkUHUnRxzqmcv+iX2pSFRQdStEvtKgWig6k6GfK
1fsX/USTmqDovhR9qEUtULQvRT/Soqh/0Q90TB1QtCdF39ekbijalaLvalHM
v+gD5fqhaEeK3tekIf+ib2vRKBRtS9G3tGgCirak6LmOacq/6JkmzULRphS9
q0ULULQhRW8rt+Rf9JYmrUHRuhQ91aJNKFqToje1aNu/6LGOaQ+KVqXoXJMO
oWhFih5q0QP/omPlTqFoWYqONOncv8jsfmH3kTMoWrpS5D30+fkL9+akuNM0
d9YRNC5K44EOIcstT/dbi1657Jwh89DHWy/MLXG/UKlV6F2QXtkdw9d6vX4n
ovgcBMxLwN6VhfSaEwvpTq8veK2OhnYJL2wXwkIQ1qQjG4SwOQnbgbAwhHXo
yHogbFbCtiHsNoT1alibf9gWhKVB2Igu5h0Im5GwTQjLgLBpHVm1f9gGhGVC
2KKOjN7m4nZhmzqyfAiblrB1CMuGsH0dGX1y8MLWICwHwk51ZCkQNiVhqxCW
C2HfcKdmL/VGsQKNedD4ppnKvL999ZXZN72IZYgogIg3kiISNydF3npMzhLk
FELOYzNNu5pzOaSLi7++b4Y2KZGLEFkEkY9waO40lWIXILYEYs8gNtVMQxrr
RU9I8jwkl0LyQ0gOBSbPQXIZJJ+4U/O0pJm88LW8yxUx7h9aDqEPYLhpSes3
cUusc3d6fQsfEWoWqAhQR0Cl21EzQFUAdQhUBlCpQA0LFQeqEqgDoDLtqGmg
qv1evJKoLKBCQA0JNQVUDVB7QGUDFQZqUKhJoGqB2tHNOs8OmACgHoAtWBai
bgM1INQ4UA1+71VJVL4dNQZUI1AbQBUAlQZUvx21DlQhUOlA9Qk1ClQTUKtA
FdlRI0DdBWpZt7tSADIA6BVgGIBmAJZgWSypIaBagVoAqgyoTKBiQg0CFQVq
HqhyoLKA6hFqAKg2oOaAithR/UC1AzULVAVQ2UB1C9UH1D2g4kBV2lG9QHUC
NaWbeA0AOQB0CRADoAuASVgWonKB6vSnuoEaB6rWjuoBqgeoMaDqgMoD6p5Q
3UDFgBoFqt6O6gKq1+/rYhLVAFQ+UB1CdQLVD9QQUI1AFQDVLtQ9oAaAGtBN
/K4d0AHAIAD9sCxEFQLVJlQ7UMNA9QLVbEe1ATUCVAyoFqCKgIoKFQVqFKge
oFqBKgaqVahWoMaA6gYq+p9T40B1AtVmR7UANQFUh27i9+yeoWYAJgFoh2Wx
pO4CNQ1UFKhOO6oJqDhQrUB12e1Nd4CaAaoFqG47qhGoWaCageqxoxqAmgeq
CaiYHVUP1AJQjbqJ99u9itcBsAhAAyyLJVUL1DJQdUANfD1ULVCDdm/pNUCt
AFUD1JAdVQ3UGlBVQA3bUVVArQNVCdSIHVUJ1AZQEd3Ex+0+31UAsAlAOSyL
JRUBahuoUqAm7KhyoHaAKgFq6hW/zHgf+8uA2gWqGKhpO6oUqH2gCoGKfz1U
vm53c6/4JdP7DlgCwH0A8mBZLKlioA6AygVq3o4qAuoIqGygFuyoQqAeAJUF
1OIrHubwDggUAHUMVCZQS3ZUPlCnQKUDtWxH5QH1EKjbuomvveIxL+/oUC4A
ZwCEYVksqRygzoEKAbVuR2W7f3LdR2gfSgFg499fbS8++7t7czLcaYU7S77C
hK+i5pb4f+LN5CZEhz9jNzeAS6hBITl+HLoGOe6JfSsjH4wRNcw5ZLNp7drF
FkDsjjvN9QujQ9q9N19JLsNOzVSW/su//MP89VnDAclFkHySlOzdTBFtKQHx
5oXdrL5jE5p6NTSxjSSmvvttQGwpjPoQgDQFVgCgMyPeOYQyAA4AyFCAXkUD
gHIA9gHI1jVP73MBQASAPQDydAlmAaDzVN7JowoAdgEoUIA+4AQAlQBsA1Cs
AH0uDACqANgCoFQB+owbAFTr1k+x5frUjkIsnff0zhDWwrjXAKjScdO3pwCg
DoBVAGoUoC+dAUA9ACsA1ClA39XpNLd3argBgGUAGvQ5oAMbAUAjAIsA3NUl
oONBAcAdABYAaFGADqMFAE26cVJsVGM7IJauZfAuMGiGcc8A0KFrng7QBgAt
AMQB6NIloOPaAUArANMA9ChApwPoIhbvco8oAJMA9Clwxw5oA2ACgAEF6DxQ
ANAOwDgAQ/oky5k6vmJJLkOQ4yneAZKbUaM61uqXR3XC+IYhdEJDK18e2gWh
QxA6paGRl4d2Q+gghMZ1TcoVBDeuJfMu++qBvH7Im9dBFgfmxSCvD/IWNa8w
MK8X8nohb1nzki+fcRy9cK5Pt5gYRKzpKsvxjxiA8XRB2KaOJ/mCqythgxDW
CWHbGpZ8TdqVsCEI64CwPQ0zl+2Ze5MSMQwR7RBxXyPCyREjENEGEYe6slOS
I0YhIgoRxxrhXXU6Bo0t0HiS3Diu2wWVH2m5d1XzJDhN0LjvTs2G7V2PPgWN
jdC4o43e7wOmobHBb6szs7zfVsShsR4aV1X0figyA421fvudmeX9yGYWGmv8
XlCM6P1iaE6fBCqPa7n3G6sFcCqhcVIH6P1gbBEaI9A4puJjaVyCxnJoHFbx
iTQuQ2MZNPar+JY0rkBjCTTGtPEdaVyFxmK/zzxm1nvSuKZPApW3q/NNKd8A
J9/v06GZ9R1p3ITGPL+Pw0b8QBq3oDHX74O6afyeNG5DY7bfVwgz64fSuAON
WdBYpeKPpXEXGjOhMaLiT6VxDxozoLFExZ9L474+e+lQXqjlH0n5AThhaMzT
AX4ijYfQGILGLBV/JY1H0JgCjRkq/lYa5eeQ4auN5uaYt7FL5fdSLK8QoWvF
jvvz0cu6P0rdia6uRPGX/zok5t6+kJJTLfmzzHCn/+vfyL6+/9+/79z6J+DH
Kmk=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 268.312}, {299.812, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"adef18ef-6253-4a3f-87ec-1f78de5e1aa4"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(88\\). \\!\\(\\\"sphenomegacorona (J88)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"d8af81f7-09d9-4866-9fc1-3cc3fcc98a84"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.22393
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.116063 1.30176 -1.11022e-16 1.30176 [
[ 0 0 0 0 ]
[ 1 1.22393 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.22393 L
0 1.22393 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.77748 .75801 m .53542 .51578 L .44441 .84526 L closepath p .712 .563 .684 r
F P
0 g
s
.86701 .42581 m .64374 .25354 L .53542 .51578 L closepath p .719 .743 .871 r
F P
0 g
s
.86701 .42581 m .53542 .51578 L .77748 .75801 L closepath p .693 .563 .704 r
F P
0 g
s
.44441 .84526 m .53542 .51578 L .24574 .59123 L closepath p .83 .689 .708 r
F P
0 g
s
.33438 .31494 m .24574 .59123 L .53542 .51578 L p .823 .869 .879 r
F P
0 g
s
.53542 .51578 m .64374 .25354 L .33438 .31494 L p .823 .869 .879 r
F P
0 g
s
.77748 .75801 m .44441 .84526 L .66738 .93006 L closepath p .522 .136 .25 r
F P
0 g
s
.66738 .93006 m .81312 .57468 L .77748 .75801 L closepath p .876 .919 .523 r
F P
0 g
s
.81312 .57468 m .86701 .42581 L .77748 .75801 L closepath p .78 .786 .287 r
F P
0 g
s
.81312 .57468 m .64374 .25354 L .86701 .42581 L closepath p .915 .564 .357 r
F P
0 g
s
.44441 .84526 m .24574 .59123 L .28278 .92834 L closepath p .929 .653 .495 r
F P
0 g
s
.44441 .84526 m .28278 .92834 L .66738 .93006 L closepath p .505 0 0 r
F P
0 g
s
.24574 .59123 m .33438 .31494 L .08926 .6276 L closepath p .918 .975 .769 r
F P
0 g
s
.24574 .59123 m .08926 .6276 L .28278 .92834 L closepath p .965 .68 .443 r
F P
0 g
s
.64374 .25354 m .81312 .57468 L .50689 .6656 L p .808 .56 .563 r
F P
0 g
s
.50689 .6656 m .33438 .31494 L .64374 .25354 L p .808 .56 .563 r
F P
0 g
s
.28278 .92834 m .50689 .6656 L .66738 .93006 L closepath p .712 .724 .859 r
F P
0 g
s
.66738 .93006 m .50689 .6656 L .81312 .57468 L closepath p .86 .767 .759 r
F P
0 g
s
.08926 .6276 m .50689 .6656 L .28278 .92834 L closepath p .685 .68 .839 r
F P
0 g
s
.08926 .6276 m .33438 .31494 L .50689 .6656 L closepath p .717 .528 .633 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{257.312, 314.875},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm7lzE1ccx4UOH/g2xvJt2cbyiWUbH7LlAxtfGGxjc8NwJzNQMMkQijRp
QpOZTJoMRZo0mZSUtCkpU6alTMm/QLT73j6k9ectv0W5ZsAzu5JX730+39/b
XR177Nx7+vDzx/eePnpwL7X55N6XDx89+Cq18cWT/KLYkUjkiDPNpyLO87eR
iDdz/6LOTP/z6fmn5x/p81+ch4SzX9xQC342C2Jvf//+eX7u7DJvnt9w953r
qtFPplElNLqmGv3oPJQ5S2p9jfJTJOr8d0W1/MHgjrstE4UtDfayavydadyG
WGeulum/yIHq+K3JkxJ23FcdvzHGNHSMOXO3Gt38a9N8FJrHwbOrOj4xASeg
YwI67qiOj40xa+voBtTNH5rmS9C8DDzbquN9E/AMdCyHjmdVx1vGuC3suKU6
XjMd96BjhalMN3c3EbfNZWheCZ71go76pXxHtzMhjgJiTSEuFSBePvvV3WSv
2hBuaN3xovsQNx11Z+pbDfoVRTnw6fNTfpt25u+virCnFXYfsDEhtsZUGgCL
C2G1kHFRYS8ANiHE1gF2QWH3AFteAjansLuArRBi682IBsAqhbAGyJhV2B3A
HhViGwE7q7DnAVsdBuuWrmHnAFYjhDVBximF3QZsXQnYU6Vjj5vSNewswBqE
sGbIOK6wW4BtBOwVITajsJuAbRKmTQJ2LByW0ibNiGrYBsCahRlbIeOIwq4D
NinMSNhhhV0DbKswbZspXcPOAKxNmLEdMg6Uju0AbFphVwHbUQK2X2FXANsp
xHaaEdWw0wDrFsK6IGNv6dhuwPYo7DJge0rAphR2CbC9pWMXAXsi9IrSI7oA
sP4wMB5RwqZL2EY1NgfYgTA7qlt6n4LNA2xICGvzw+YANhwGxhs8YUeE2BaT
8YSCZQE2CjD62p30w2YBNhbmk7Lw7WIGYBlhsuN+2DTAJoTJPhhGyY4VrNdX
v287jx52CrCnhBmPmYz6A+EUwKaEGRv9sEmAzQiTNUDBIbGUsd6OnQBsVpj2
3S8J/Xk9DrA5YcZayKixGcDmhBkDsGOAXRCmrQbsoB27KEwbgD0J2CVh2io7
dhSwp4Vp1YGMuMFqtCaPAHlFGLgSAg/ZsavCwAHYYcCeEaYt53HQ5CEgrwsD
B5MHgbwhzJxgsv4+PwDkLSE5/h+R00DeFpKjTNa/wPqBfO5vIZ8A8o6VzIe0
ow7T9+Vn6EPw8SJ8xDl4byX3AXlPMCS2wHod9gL2QunYHsAeANb9rRuzla5h
KYBdBNiBgUXfvn71Sq89bxvw3n5Gw0F3nbm7ouIONPrWUrjevroBexmw2yZr
hQTbBdgrgN002KqAIVCfbPkfQ4eh1wC6aoagJjDraDjsssnaIMF2APYGYOdN
2mPuEKhX/3zzzLrNakE7CG6CYNbkToYTtIHgFggmTQVtgQOjV2MrYG8DNmNy
dwpzBwjugGDY5E6FE7SA4C4IBkwFfa4gbgRaEuBIguM+OPqMI+06yvwOby/S
h1+bnYdyZwENSbcZkiHhkIwVYPVLL1784Uz5cvPzamfRJVC1m+Cj8sEZOzw4
nq3O2OjbQtIUlgltawFbm7HRN/djprZJ11ZeZPOtGP0LCzVpo6FfxHWmqGm5
phU0E868yllEh3qqTDXZgjdpnwYHMHP4jcRT5kxl7aCsMMqcoLJJu2bTaOpB
EzMDuCTXtIPmwGjoTKP734pvh8pP+TFz5jGydIDlljN3M66VDrvvztWyPMwF
rgqx+gxRJ2DvFmBf/vbabX6mdOwdd54wWG9yuoVM3WUb2YLU+ck5r52fFw/Q
MqhidlU3qG6CKg6qJZvK/XydsgtugCABgkUQxP2CFAiug6AMBAvCwdKqHlBd
BVUFqHKBgzVtF1wBQSUI5gMHSwt6QXAJBFUgmJMI+kBwAIJqEGRBkJAI9kFQ
C4LZwArU8eeiH5ye4AII6kAwIxH0g2AXBPUgmA4cogDBDggaQTAlEaRBcA4E
TSCYBEFZwS7nfTDr1T0AqrOgOi5Uvatl1i7YAkESBBMSwSAINkDQAoJx4WDp
9TIEqnVQtYIqU7pqDVTtoDoJqnK7ahhUq6DqEKrKzBrK2gUrIOgCwYiwFr0x
jIBqGVQpUA2HU42CahFUPf+eqhdUg0KVXlcnQZUDVZ9QRZu4Ot9adBLEU82B
qh9UaWFVAaosqAZA1S+sSp3pLjoR5almQDUoVCVApS/KGwfVFKiGQdUnrOof
UlFV+nLICVBNgmoUVD3CqrRqElTjoBoDlf+Aka2qRbsqA6qMUBUHlboUpuhM
tac6CaoJUHUJq9KqKVCNgOoUqPyH9GxVLZeu6hCq9OXD06AaAtU0qNpLVw2C
akaoioFKX7g9A6o0qLKgahWq1FVzRZeteKoToJoHVUvpqj5Q5UDlPxhuU6lL
DIuu7PFUvaBaAFVzONUcqFKgWhSqoqBas6u6QbUMqiahSt/8MA+qTlCtgMp/
ZuQ9qhyo2kG1CqpGoWrDrmoD1Rqo3NNIlqOp+paWBcC3An4d8PXvxy8CPgn4
DcDXBeC37fhmwG8BvtadHzpMr67HL7ru0yM3AfkskGsCgmv8MuAbAX8O8NUc
/Lyd3ADkHSAfDQiu8acBXwf4XSv+UHB9O9cKkGuBvAfkSt8+5QTetWNrALsP
2HIOrMmrQK4C8oGVXBx4z449CthLgE0AVt1WVHQhu4etAOzlcNg1wJYB9ipg
310/sB8Odg1gUQPT90muAywOsOsS2AbAogC7ibCId3ec5iQKOe7kjOjt9/Td
9GVw+tz19XGWqTv41G0wnzlL9B2n7sfK/+ie3U/PPz3/2J5HjvwFQay+9g==
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 256.312}, {313.875, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"ce9dc97a-c713-480d-ae65-d8a27f2f0119"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(89\\). \\!\\(\\\"hebesphenomegacorona (J89)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"b0f27f41-b565-4b91-8bbe-272461f7df1d"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.18657
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0998302 1.24565 -2.22045e-16 1.24565 [
[ 0 0 0 0 ]
[ 1 1.18657 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.18657 L
0 1.18657 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.89448 .58017 m .63011 .42709 L .61343 .75419 L closepath p .602 .464 .665 r
F P
0 g
s
.61343 .75419 m .63011 .42709 L .31013 .38521 L p .766 .604 .678 r
F P
0 g
s
.7598 .27761 m .63011 .42709 L .89448 .58017 L closepath p .432 .503 .832 r
F P
0 g
s
.31013 .38521 m .63011 .42709 L .7598 .27761 L p .616 .793 .966 r
F P
0 g
s
.82741 .90124 m .61343 .75419 L .47736 1.0059 L closepath p .583 .302 .457 r
F P
0 g
s
.89448 .58017 m .61343 .75419 L .82741 .90124 L closepath p .529 .331 .556 r
F P
0 g
s
.47736 1.0059 m .61343 .75419 L .2864 .72417 L closepath p .762 .514 .558 r
F P
0 g
s
.31013 .38521 m .2864 .72417 L .61343 .75419 L p .766 .604 .678 r
F P
0 g
s
.2864 .72417 m .31013 .38521 L .12998 .49122 L closepath p .944 .766 .631 r
F P
0 g
s
.31013 .38521 m .40491 .22402 L .12998 .49122 L closepath p .769 .993 .787 r
F P
0 g
s
.7598 .27761 m .40491 .22402 L .31013 .38521 L p .616 .793 .966 r
F P
0 g
s
.47736 1.0059 m .2864 .72417 L .21988 .85489 L closepath p .882 .486 .274 r
F P
0 g
s
.2864 .72417 m .12998 .49122 L .21988 .85489 L closepath p .973 .663 .339 r
F P
0 g
s
.81104 .5842 m .7598 .27761 L .89448 .58017 L closepath p .963 .641 .254 r
F P
0 g
s
.81104 .5842 m .89448 .58017 L .82741 .90124 L closepath p .99 .854 .494 r
F P
0 g
s
.47736 1.0059 m .21988 .85489 L .6021 .91692 L closepath p .402 .701 .982 r
F P
0 g
s
.82741 .90124 m .47736 1.0059 L .6021 .91692 L closepath p .482 .893 .921 r
F P
0 g
s
.7598 .27761 m .81104 .5842 L .42895 .54039 L p .773 .504 .528 r
F P
0 g
s
.42895 .54039 m .40491 .22402 L .7598 .27761 L p .773 .504 .528 r
F P
0 g
s
.6021 .91692 m .81104 .5842 L .82741 .90124 L closepath p .918 .839 .75 r
F P
0 g
s
.12998 .49122 m .40491 .22402 L .42895 .54039 L closepath p .534 .324 .542 r
F P
0 g
s
.12998 .49122 m .42895 .54039 L .21988 .85489 L closepath p .521 .41 .668 r
F P
0 g
s
.21988 .85489 m .42895 .54039 L .6021 .91692 L closepath p .629 .55 .747 r
F P
0 g
s
.6021 .91692 m .42895 .54039 L .81104 .5842 L closepath p .778 .616 .679 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{261.312, 310.062},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnMlz29YZwGku2ihR+0qt1Ert+75SuyNbXmLVsuO4spvWTpvW47jNNG4P
HXemB596yyHHHHPstcf+Cb3m2GOOvSrA+8BPJPWDAgqSlxlzBg8g5n2/3/ce
QBAEgXft6MWTz744evH08VH79vOjZ0+ePv6yfesPz61VoSuBwJWINU23B+zl
40AgXZhXgV04bz4sf1h+z5af2LOIvT9/Iyt+Y2Yhe83x61uvzZ4eOv7Pq1eF
9uI/pdKvzSyslZyKJXa9AnvptdT7zMwiWfXS0AqF/l0q/yrHbE2BoCllnVXd
ngK1GvhXCXwMgSEIbNb0vpLARxAYhsCEGp9J4BEERiAwqcbPJfCXEFgIgcNq
lMYFHkJgEQROqfGBBH4KgcUQuKDGAwl8AIElEJjSwH0J/AQCoxC4q6nuSuB9
CCyFwH01piTwHgSWQeCBXZpVKxJ4CIExCLxrSlnnvAJLgrgLiHI3RNBetSyB
v4DACi+BBxBYCYGHGuikegcCq7wEfgyB1V4Cb0Ng7c/07/+/WzPHh0VB3AJE
XX6IG/bMpNXoGhjWQCd4QWL3QU+UQ9A7iOuAaHJFnEpkXijXgBLPm7IHlGZX
SiSLkm7WnKA+AlTL+VBXAdUKqHvcNoeyC5Q2VwonNCuoHUC1nw+1DagOV1Qo
E2V9+9ll9mFnSrBbgE34x24CttMjNgTYScFuALbbR7YOdh2wPT6ynRBsCrC9
/rFrgO3zj10FbNIjNgzYccGuALbfP3YZsAOAve8ROybYJcAO+scuAnbIIzYC
2FHBLgB22D92HrAjHrEFgB0RrDmQma/PcYB94jFHBzYDOV4AdhqwEx6x1PRh
wU4BdspHjzrYScBOe8QWAnZIsBOAnfGPHQfsrMe+JeygYMcAO+cfOwrYeY/Y
IsAOCHYEsAv+scOAXfSPHQLskkdsMWD7BTsI2GXAPvCYrYMdAOyKRyxlmxRs
P2BX/WOTgF3ziC0BbJ9g+wC77nGTnYHtBeyGf2wPYDd9dIKkaZ0TnsZu+cd2
AXbbIzYKWGm9dWJ8GrvjH5sA7K5HbClgpVOtHx3Wy/x2ItinHnPMhDm/xF59
/n16MldzaK8lPOXalYkPZeKtY35aQEeyPAUJEJSqgL40L0BQpYIxj4IyEHS6
CxpUQKfUFyBoVQH9envoUZA4/fFJCzpVQD+3vbbgDEFSBXQJhgQxEHS4C0ZU
UHM5gikV0JVKEpSDoF0EXSCYVwFdYL4AwaoK6PI+7UXURWcItuzSXCCmYyRl
2+YO2zGlk+O339uTlbdVFturPs5P0O2WrbPuu9f/tufWkcUSFNmLeyCoAEGr
u2DTlGEVOJIadWxclCOS5Ug3Jq69tehR1OIu2sjpLWuyNoddZm+ihLZuMj9p
D0hTIA2DNKnSQZBWgrTZv3RMu7fTv3QNpBGQzmtL4/6lqyAtBOmaSqtBWgXS
uEh7QbriUbqr3Rv12NIzpMsgLQbpTW1pyO23VNRe1eyuWgJVCagO7TJmryo5
Pv7hZU5bmvITREFw35QO9oeXRlLlruoD1QKoSkF1zy6DsoOcFsTdBfMgiIHg
bkZbfvyvHN7eXdUcqCpAdWDKsKoc3Rm2JNhmwFYJtjumjGTZPDTwspS0Kza7
K6dBWQ3K2zmbz5qs7ym7zP4kVOSnnwJ9zeXo+0E/Cfpat+NXjj7kXz8B+jrQ
3wB9BPTl/vX1oN/3qI+BvsVdPw76BtBfB31BfvoB0I+Cvgn0e6AvfO/1I6Bv
Bv1V0Bf51w+DvsXtbCVHXwz6MtA7p/eDoB8CfSvody5HPwj6NtBvg77Ev34A
9O1vV98B+k3QR/PTD4E+CfoE6DdAXwr6UtC3uev7QN8F+vW3q0+Bviw//TDo
e0DfA/pV0Mf867tB3/t29X2gXwZ9OeijoG9313eBPgn6JdBX5KcfAX0C9AOg
X3y7+gXQV/rXd4B+CPRzoK/yr28H/bBHfTXoi0HvXOUdBX2bR/0s6Gv861tB
Pwr6mcvRt4B+DPTToK+9HP046CdBX5effgz0cdBP+NAXgT7hrm8C/RTox0Ff
/+b0Y6Bv8K9vBP0M6Ef968dBXw/6WdCPgL4R9IWg78xPPwf6IdA3+dfXgX7+
zelrQb8A+kHQx/PTT4C+BvSLoB+4HH016JdA3w/6ZtAXgL7LXV8F+hXQ94G+
5b3ST4K+AvRroO8Bfat/fTnoU6DvBn3b5ejXQd/lUR8Bfbe7Pgb6DdB3gr4D
9GF3/RToy0C/CfoO0Cf860tBv/Xm9FHQ74C+DfSd754+BHrnxq5p0BeDfhf0
raDv8q8vAv1HoG8Gffd7ry8E/TXQN4G+Jz/9DOgjoL8O+kbQ94I+CPre/PT7
oG+4HH0Y9DdAXw/6Pv/6EOhvgb4W9Mn89LOgD75pfSRTbybrfeAAlNWg7Ddl
JFNpJpvRn6nJviU0YD/metpQBYaBcxvugqHyfAbzJKG5f+AQoBUAHfQIDbv1
xTmh5hEic4MI7TUxgA6ZMpwFDaT/bMp6gOrRv47tyXpnleY+vT1wlIFj+EzH
svZusU02N+jRiUYpkEdy9vnACXZVsTFNeBWwUcCOumNT0COVKqCfhcUgGHMX
rGve9YqlCx2uWBPrPPayqbC4wuiCXSHAxnNh2wpr0w1F170LADaRC9uFfuzU
HOmvlIgX7FXNMakw+kcyDLDJXNiewoYURv+su8JyjrzOFr4OTR9VAd01EnT7
UBVJcga7r9lO6+aRu6EimTAz2fubOUkvtxeDxy//92NI9g2DuqmoBc1LboIL
Z6FMumlKTCnOI6i3lbKiFLlVUSHWPKKARhsQlgYYwB3oqJRdmvvuutXnPMV+
oL6Uc6CyA61K9mR97aXpmUM0nKSXU/2ELg/oymgSJ30SzE5BHmXOGuQinfEM
0Ds0GXkQXIbVCMpnPU3vULo8VC+jfTiPXJ5mtmp12cGyhiNJJzMMgXFN5qYE
PlLPoCYTV7psFRmX5eSTlsOsV6aMhCFjwzidlmbWK1P6TYadycm4A+g1GvhQ
Ap8qvR2qV2oyMrRL4LdavVmTqVSmDGMT+AKSaQD6yX7/VAJ/r/Q6pZdpCr+T
Ss+0UjUwS5TpDC3zXKtXQPUirf6lVH8BuUc1mUJN5k9S/Y9KLwF6WOlfS/Wv
tHqBMkPKdIbf+TOkEAS6efc3iflawXKWYSoGzBEqoAMC/UUr/UNWmIPrOzR4
0ofld385cOUn6Vz1Dg==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 260.312}, {309.062, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"2f96ef94-292e-458f-8fd5-0321e5bb1fd3"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(90\\). \\!\\(\\\"disphenocingulum (J90)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"cf599076-762d-4c88-9e00-701c45062354"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.0335
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.0347733 1.11141 0 1.11141 [
[ 0 0 0 0 ]
[ 1 1.0335 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.0335 L
0 1.0335 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.71 .46218 m .4872 .59932 L .6837 .72577 L closepath p .597 .431 .627 r
F P
0 g
s
.48116 .85581 m .6837 .72577 L .4872 .59932 L p .68 .364 .434 r
F P
0 g
s
.4872 .59932 m .28429 .7118 L .48116 .85581 L p .68 .364 .434 r
F P
0 g
s
.28429 .7118 m .4872 .59932 L .46235 .35702 L p .864 .768 .754 r
F P
0 g
s
.71 .46218 m .46235 .35702 L .4872 .59932 L closepath p .704 .655 .799 r
F P
0 g
s
.71 .46218 m .6837 .72577 L .8473 .54197 L closepath p .363 .228 .561 r
F P
0 g
s
.69091 .28458 m .46235 .35702 L .71 .46218 L closepath p .596 .69 .908 r
F P
0 g
s
.69091 .28458 m .71 .46218 L .8473 .54197 L closepath p .119 .292 .764 r
F P
0 g
s
.46235 .35702 m .40648 .21318 L .24542 .45816 L closepath p .866 .901 .855 r
F P
0 g
s
.46235 .35702 m .24542 .45816 L .28429 .7118 L p .864 .768 .754 r
F P
0 g
s
.69091 .28458 m .40648 .21318 L .46235 .35702 L closepath p .593 .764 .961 r
F P
0 g
s
.6837 .72577 m .48116 .85581 L .7719 .82109 L closepath p .461 .054 .18 r
F P
0 g
s
.6837 .72577 m .7719 .82109 L .8473 .54197 L closepath p .22 .04 .411 r
F P
0 g
s
.28429 .7118 m .23128 .7251 L .48116 .85581 L closepath p .622 .056 0 r
F P
0 g
s
.24542 .45816 m .23128 .7251 L .28429 .7118 L closepath p .97 .763 .331 r
F P
0 g
s
.24542 .45816 m .34405 .45072 L .23128 .7251 L closepath p .03 0 .389 r
F P
0 g
s
.40648 .21318 m .34405 .45072 L .24542 .45816 L closepath p .018 0 .232 r
F P
0 g
s
.69091 .28458 m .8473 .54197 L .81316 .56672 L p .831 .399 0 r
F P
0 g
s
.81316 .56672 m .63516 .27315 L .69091 .28458 L p .831 .399 0 r
F P
0 g
s
.69091 .28458 m .63516 .27315 L .40648 .21318 L closepath p .193 0 0 r
F P
0 g
s
.81316 .56672 m .8473 .54197 L .7719 .82109 L closepath p .853 .823 .345 r
F P
0 g
s
.48116 .85581 m .23128 .7251 L .51813 .74302 L closepath p .443 .697 .973 r
F P
0 g
s
.7719 .82109 m .48116 .85581 L .51813 .74302 L closepath p .543 .801 .993 r
F P
0 g
s
.63516 .27315 m .34405 .45072 L .40648 .21318 L closepath p .515 .249 .45 r
F P
0 g
s
.51813 .74302 m .81316 .56672 L .7719 .82109 L closepath p .77 .779 .86 r
F P
0 g
s
.51813 .74302 m .23128 .7251 L .34405 .45072 L closepath p .574 .515 .751 r
F P
0 g
s
.51813 .74302 m .34405 .45072 L .63516 .27315 L p .687 .559 .703 r
F P
0 g
s
.63516 .27315 m .81316 .56672 L .51813 .74302 L p .687 .559 .703 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{280, 289.375},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztm9lTFFcUxltmAQbZVxEFRAwg+4DDFkDZ3I0r0agRXILGLdFslaVSSSqV
qqRSefAhD3nIQx7z6L/gYx7zmn+F9F3mcxi+7pybZiytkqq+3dP3nO93v9N3
mp6Z7hMrj9du3lt5fPv6StvShysP125ff9S2+OBDf1dsm+dta/KX9jZPba97
XrbRfztUY1+83n69/Qpvf6BWMTW3/8jZ4ek969+OP1KLF1evfjf9D9WqSO1I
qj7d9ZvpeoCuMnT9mt9Via4nput+DtDzxvXbrBZBv5igeySoCUE/BQe1IOgH
E3RXr+I5QTqwDXHfmbj39SqRF2dE9yL469zgTaLdiPvCxN0JEe1D8Kcm+PYm
O+NekW43Hp0BJD52S0wj8aFJXBMmjiHRVNN7jyTGSOIUEtfcEmeReMMk3nJJ
tEfmzx+f6vXfq+YQXDNSN4lUnEhNq1bP4ZiSsr2+mFr8Ovmt5lxxk52CbILI
JiF70cjeILIJIjup2xiMK+kkAZSqVuOXDeC6EDCBcaeCZO0+++eddwOMAbCd
AFIEcM4AVgkgSQAZUqJyIeqsQa0QVDFBjcJLVXQA8zICQK0QcMYArgkdpEmx
6oQH3qLeJagSghqCl0ahl9PBAOZlEIBmIeAtA7gqdDBAiuWIukJQpQTVBy+7
hYBTboBe4qVViDppUJeFqP3wsscN8A4BpAigG4BOIeCEG6CLFMsRdYmgyghq
H7x0CwHHgwHMSycAvULAMQO4KHSwlxTLEfU2QW0nqD3wMigEHA0GMC/tAAy7
AZaFDtpIsdJC1BGDukBQ5QS1G14yQsBhN8Au4sURdV6IaoGXSSFgyQDOEUAF
ATQD8CYBlBHAohtgBynWtNCLRZ0lqEqCaoSXQ0LAggGcEQIaAJgvDKCeFGtB
iJo3qNMEVUVQtfByWHjg5wzgLSGgBoBjQgeOgGpSrONC1CGDOkVQ1QRVCS+n
hMU6aAAnCaCGAMoBOCN0EAJgDspJsRiKeZk1qBNCL2XwckHoxQKOE0AtAaSI
l2UhasYNVQIvl4TFmjaAY0JAMQBXhA4s4CgB1BFAkhSLoZiXN91QcXhZEXqx
gCNCQAyAG0LAlAEcJoB6AigixWIoVqxJV5SnvkaS2bDaS0S7QbV61x3hQCeM
2GKQmB7ZPaHYeLCY/genPl56D4Q2rdgCEVOvxtUVkv5EvJp3jKSjHTMA/a9S
6ei3ZFbsybfP1Fo82lwxjHZVCzbqNg5ZK31fOMyMszIbM1M+EKzckFcKf/En
qWr/u9asPAVCMVejwah6gopHQI24oRIEdffFoaSu0sGoOoIqjjAtCoRiroYN
ak6IKo2AGnJDpSJMixBU/tlMQcoiuBp0Q22PMC0KhGKuBoJRNQRVEQHV74aq
jDAtQlDVBFUVwVWfG6o6Aqr3pUBVEVRtBNR+N1RdhGkRgqokqPoIrnrcUA0u
Zwt9TeroRQrI/cnnn78vqXUYqoKgmoSoJLwUKVReAbvdoDuE0yJh26y/7KJ8
hkz6coJsFvqM5ZVUeWWOQ6YMw+8U4u3P0YG8Q8IKS3iqisVuKGZtV9DB1F4Y
YL8bYDcB3AbA73j27J/s8fLnqRNvO+G1Ep75uGtmosJll6AaOiLbCPImLMYV
Km9Oxgm0Nzr0OqAJAmUTMwRaRqB7CDT3Oxdb2ELhOwj+KjyXRIemCHQvgV4G
NCU8un1u0E4CvUQKvQX4UoJ/g+CX4bn8xUHPA1pZGGgXgZ4lha4Q4vuD8SUE
303wp+G5ujDQHgI9CWhtdGgxgfYS6HFSaIaPEfxAdPxReG4oDLSPQJcAbXKD
HhRC+wl0kRS6UXicHfEDBD8Hz81Cz4PB0CSBDhHoLKAtLw46QwpdIPwwwU/B
c2t0aIJA0wQ6AWg7gbLL7yE36AiBjpFCbwE+TvAHCH4UnjuEhd4CaBrQzsJA
MwQ6RArN8KzQw8H4GMGPEfwAPHcVBjpOoL2A9kSHFhHoJIH2kEL32KvpHDw+
Qo9GR3bBZ6/QZ9oNOkWgnYD2/x9oIhdqF88/724G7SUF3ULkLEG2w9tQyJE7
kCsezxP3Ly426+6GbnpLdXeREgkIs5wwTwjNGPmosPQjzowmMDIhY8+E6i4Q
3QZSHTEh982hfkHfLF+LYU9snWg1RKe0aHyDqL89lqOn444QlUriPIpeOUY1
I1Q5SlRSUJkNKViuVGnQlCkhBmf50OzNAYcwtMT6o6fr6vtyemGSxCDnQvXm
oVcLPfapPwa9hVC9Rei1Q499q15EnIcrH4byAJSTWnnj80GeCt34Hvf05NYq
uTfz+Cpq8aeU36qvP/ypTEdgc49hBHM6z6j8+Ne6Wsyr+VCBExA4SAX8NmZ6
w1ROQWWaqBRDZZpUwd5JcxoSU0Qipdr48zMClTgLiQkiUYFRZIIlzkMiQyRq
IDGiJOxodeIyEkdJYj0SBwnbSlyERJpINEGiL1gi96mC7FQaIGItKGd3sNjl
jbM7T6IN49mHWtibx64isY8kdiCxIz/xGhJ7SOIbSGzLT1xFYhdJ7IHbncSt
lbgBiX1Eoh/sJrDtbX+3kNhBEoeRWJ+fuLbxvJSXOIrEmvzEO0hsJYljSMz9
YjB7DWHd3iUTpYWITaJ0ZcFi9zCenURiFuMpCZZ4/jjvDiIxB4k4ajFjEj9A
YiNJXESi9/znFJVnsx8hu45kL6lW/yu1t8N+hPAaEj6jWn13nb3H/BOEV5Hw
DMLtczqfIbychA8i3D71+DnCy0h4F8Lt06NfkiNeQhJbVauvDszzpt5X4BQH
nZY0xzx2bR5gfn41kBdehfCPTfg3CI+R8BKEf2XC9bPUMROe7fredOmVnqo/
mx16gr1ET8a/3n51t71t/wIVekGG\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 279.}, {288.375, 0.}} -> \
{0., 0., 0., 0.}},ExpressionUUID->"7a921431-7c9c-431d-acb7-3432541f34c4"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(91\\). \\!\\(\\\"bilunabirotunda (J91)\\\"\\)\"\>"}]], \
"Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"1c396a8a-5a0f-47c3-b9cf-1625388a15e8"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .97761
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.00851806 1.07316 3.33067e-16 1.07316 [
[ 0 0 0 0 ]
[ 1 .97761 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .97761 L
0 .97761 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.24834 .62678 m .37079 .81376 L .57277 .73206 L p .8 .676 .727 r
F P
0 g
s
.39002 .43017 m .24834 .62678 L p .57277 .73206 L .8 .676 .727 r
F P
0 g
s
.57277 .73206 m .58629 .50481 L .39002 .43017 L p .8 .676 .727 r
F P
0 g
s
.71554 .65114 m .58629 .50481 L .57277 .73206 L closepath p .456 .379 .681 r
F P
0 g
s
.71554 .65114 m .57277 .73206 L .37079 .81376 L p .494 .904 .831 r
F P
0 g
s
.58629 .50481 m .60488 .32158 L .39002 .43017 L closepath p .729 .735 .856 r
F P
0 g
s
.58629 .50481 m .71554 .65114 L .74462 .46656 L p .294 .336 .735 r
F P
0 g
s
.74462 .46656 m .60488 .32158 L .58629 .50481 L p .294 .336 .735 r
F P
0 g
s
.36487 .79134 m .37079 .81376 L .24834 .62678 L closepath p 0 0 .468 r
F P
0 g
s
.37079 .81376 m .36487 .79134 L p .71554 .65114 L .494 .904 .831 r
F P
0 g
s
.39002 .43017 m .24381 .43933 L .24834 .62678 L closepath p .91 .876 .791 r
F P
0 g
s
.24381 .43933 m .39002 .43017 L .60488 .32158 L p .671 .957 .946 r
F P
0 g
s
.36487 .79134 m .59765 .681 L .71554 .65114 L p .494 .904 .831 r
F P
0 g
s
.74462 .46656 m .71554 .65114 L .59765 .681 L closepath p .933 .935 .778 r
F P
0 g
s
.24834 .62678 m .24381 .43933 L .36904 .60355 L p .107 .215 .695 r
F P
0 g
s
.36904 .60355 m .36487 .79134 L .24834 .62678 L p .107 .215 .695 r
F P
0 g
s
.38308 .32015 m .24381 .43933 L p .60488 .32158 L .671 .957 .946 r
F P
0 g
s
.60488 .32158 m .62406 .24492 L .38308 .32015 L p .671 .957 .946 r
F P
0 g
s
.60488 .32158 m .74462 .46656 L .62406 .24492 L closepath p 0 .227 .744 r
F P
0 g
s
.59765 .681 m .36904 .60355 L p .62406 .24492 L .814 .691 .729 r
F P
0 g
s
.59765 .681 m .36487 .79134 L .36904 .60355 L closepath p .727 .764 .882 r
F P
0 g
s
.62406 .24492 m .74462 .46656 L .59765 .681 L p .814 .691 .729 r
F P
0 g
s
.24381 .43933 m .38308 .32015 L .36904 .60355 L closepath p .361 .304 .657 r
F P
0 g
s
.36904 .60355 m .38308 .32015 L .62406 .24492 L p .814 .691 .729 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{287.875, 281.375},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmulvFGUcx4d2t+32oOf2oNdyBAyKCkYChhCNgZ4Uet8t24O2iEEpJESM
Ro2GhGgM0ajREI3BGPGIhre85E/gX+Al/wLuPL/ZX2d3P88yQ9ukL7rJzs7O
fH+fzzPP3LN7Jnl1efHd5NWV+WSi40ryveWV+dXE6ctXUpMKdzjOjvbUuynh
uONPHSc9MK+EO/C+bI9vj2+Phx7/1/0odPepd2TC3zqh4Omj+w8cM/rUezkr
ErqnoSIILUvodw3F7KG7GqqA0JKEfnE/Iu6cKnvojpLiELogoR811GgPfa+h
FggtSuhbDSUgtCCh2xraaw99pUt3AELzErqlpBftoZsaegVCcxL6XENH7KFP
NXQUQkkJfaQNP24P3VDSSQidl9B1Db1lD13T0CkIzUroioY67aHLGuqF0IyE
LmnorD0kO43Mmuj+0/10+iE+LfGL5iOica8kT4XscNGMirRoAMqmpGw5q12p
d2p/docyLVVoisk8KYglQBSGQ5hdpUAOE7mF1PwJKVwAd0jEPCCKATEIiHFB
zAGiJBwiCYgYIIYAMSaIWe3EMigcthfOgJsQI4AYFcQ0IMrDIaYAUQGIUUCM
CGISEDvDISYAUQmIMUAMC2JM10NNuMJRcBNiHBBDghgBRC0gJgAxKIhhQNSF
QwwBIg6ISUAMCGIQEPXhEP26HpqgcAoK+6XwHLhDIs4CYhcgpgEheqcPEM3h
EGcA0QKIGUDIEjg92ont4Qq7wU2IWUDIojtdgEiEQ3QGRCQBIb3ndABidzjE
aUDsAcQcIHoFcQoQezcHMQ+IHh/CbA37oHABCrtz3Y2H77uf6H4mIqIID0P9
uAiUro2nRDMo6cWibeMCoDq5Z1Lv1AWYO8xcU23rxxYCthWwS4DtsGMjgKWj
zCZhTSeYbbLLDosCjA6m/nX+5MlDs0LzYIsAS4f5RW2jZX9wMcUAo9POArSx
O/dAk6+NhJXdPqJYD52HTA1u3BByCZAbrEe7aAY5QJfEAE8XF8msnk69U/um
O8R9LqiKLoVIVRhOVQoqunALulRddlUZqOgy83zApcqjKgcVXRTPgiqyZVUV
oKp+xgVWWhUNp9oJqqpnXEemVUXhVJWgopunDVBVgYpu9aYCqvIcLYKqJkFV
HE5VDSq6B94AVQ2o6I59AlQl4VS1oKLnC+Ogim1ZVR2oSkE1FlDVY1fFQUUP
h0ZBVRpOVQ8qepQ1AqqyLatqABU94xsGVXk4VSOo6InkEKgqwqmaQBUJuFSb
pAq6VL121S5Q0ePkQVDttKs6Aqro4fcGqJq92xCfyrxT37HTKsPhW7xbJj/e
cbDhVVuF3JrV+25XDATEwrOZNLbNHZp7rX6AVYeDtbtDM6kPYDXPAfOmPXj4
2H3Lt57NYqeGZlIHCGrXLyhSwdsgqFu/IKaCNzdHUK6CEwEFfeEElSo4BoL4
+gU1Knh9cwRxFRwGQb1d0AmCNhA0quAQCBrsgi4QtIKgWQUHN0fQpoL9IGi0
C7pB0AKC3SrYE1Dgf3yPp6JMwT4VtD+HwBxtqd0HFNts6/lCOVIbWC+0dhdg
Dyq2wbbXmhNWasaNx4+0yZ7lDFiawHJILbW2s5I5nxvJsI9tuoPa/aoSq4BY
ru0ucolZ/e39wNcHjW8E1WuqKrfdfxhVCahGfCrv97NcwVEVlNhusY2gFATe
785nVUBLcFwFUXh+mO78MhdvGN4fGs5BB9UD/oTiUzPcCz13pnxLDSqh1X5B
gWx8udiTiq3Wls1K4drvkdb2eL8apwu9f8YMaGEcCt+Awvkghceg0PvP0qAW
1tlWfYHsGLnd5CGGFFGbd/OsVfdydmENFB5Rd50Wyp9l5IfrAul6y76XVXhJ
Cke0sAoKX9bCOCytH+HNcpxVsyFVAuylTJgZuyyIUW0FFR6EwvelcO3/Bjuh
8AUoXPUVZjW6AhD7AXFNEOPqpsJ9WlgPXedHZLWiHGB7MmFm7LogJgBRBogE
ID4QxKQuCBW26uZqesCMfegrzHKXAqIZ3B8LYgoQMUA0AeITQUwDogQQDZmr
0sz8LBwiDlvDF4KYAUQxIGoz90Uz86YgZgFRBIhq2J1vhUNUZh7GzMwvBXEe
EFFAVGQizNjXgkgCIgKIMkDcDoeIZR7IzcxvBDEHiEJArN3JrZ0LvhPEPCAK
ABGBVvzgRxT5EAZjzs9mmXJPRD9Jpfy/L+qXp6tSjcgtu+Mv87d5Va4fqrVp
P0tSzlaR7Katnbx/ldwFPMCnQ3ftoQo48v0m8SWIx5T5h4SW9cBUDKR72aEo
hP6S0IqGCiD0j4Qu+tqUnvWfzDJfEtvj2+P5x50d/wN9elrr\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 286.875}, {280.375, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"a687d64c-7fda-412c-92eb-eb861c31f48f"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(92\\). \\!\\(\\\"triangular hebesphenorotunda \
(J92)\\\"\\)\"\>"}]], "Message",
GeneratedCell->False,
CellAutoOverwrite->
False,ExpressionUUID->"a6661b0e-d3b7-4148-9b7c-824b94516f84"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.27887
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics3D
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
-0.139769 1.3461 -1.11022e-16 1.3461 [
[ 0 0 0 0 ]
[ 1 1.27887 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.27887 L
0 1.27887 L
closepath
clip
newpath
.5 Mabswid
[ ] 0 setdash
.3607 .54838 m .544 .66219 L .59606 .43619 L closepath p .77 .721 .806 r
F P
0 g
s
.544 .66219 m .3607 .54838 L .39705 .81003 L closepath p .851 .67 .658 r
F P
0 g
s
.544 .66219 m .39705 .81003 L .65571 .85557 L closepath p .732 .475 .539 r
F P
0 g
s
.544 .66219 m .65571 .85557 L p .7549 .47498 L .398 .349 .687 r
F P
0 g
s
.7549 .47498 m .59606 .43619 L .544 .66219 L p .398 .349 .687 r
F P
0 g
s
.55972 .27029 m .59606 .43619 L .7549 .47498 L closepath p .287 .467 .863 r
F P
0 g
s
.3607 .54838 m .59606 .43619 L .55972 .27029 L p .787 .825 .882 r
F P
0 g
s
.65571 .85557 m .79523 .75446 L .7549 .47498 L p .398 .349 .687 r
F P
0 g
s
.65571 .85557 m .39705 .81003 L .3829 .9584 L p .708 .342 .352 r
F P
0 g
s
.3829 .9584 m .66434 1.00664 L .65571 .85557 L p .708 .342 .352 r
F P
0 g
s
.65571 .85557 m .66434 1.00664 L .79523 .75446 L closepath p .152 0 .325 r
F P
0 g
s
.3829 .9584 m .39705 .81003 L .3607 .54838 L p .946 .699 .234 r
F P
0 g
s
.32279 .82203 m .3829 .9584 L p .3607 .54838 L .946 .699 .234 r
F P
0 g
s
.27992 .51112 m .32279 .82203 L p .3607 .54838 L .946 .699 .234 r
F P
0 g
s
.3607 .54838 m .30422 .39007 L .27992 .51112 L p .946 .699 .234 r
F P
0 g
s
.55972 .27029 m .30422 .39007 L .3607 .54838 L p .787 .825 .882 r
F P
0 g
s
.7549 .47498 m .79523 .75446 L .77361 .60223 L closepath p 0 0 .104 r
F P
0 g
s
.55972 .27029 m .42722 .23954 L .30422 .39007 L closepath p .739 .951 .946 r
F P
0 g
s
.7549 .47498 m .77361 .60223 L p .42722 .23954 L .86 .415 .132 r
F P
0 g
s
.42722 .23954 m .55972 .27029 L .7549 .47498 L p .86 .415 .132 r
F P
0 g
s
.3829 .9584 m .54068 1.04787 L .66434 1.00664 L closepath p .539 0 0 r
F P
0 g
s
.79523 .75446 m .66434 1.00664 L .54068 1.04787 L p .952 .942 .734 r
F P
0 g
s
.77361 .60223 m .79523 .75446 L p .54068 1.04787 L .952 .942 .734 r
F P
0 g
s
.42722 .23954 m .27992 .51112 L .30422 .39007 L closepath p 0 0 0 r
F P
0 g
s
.3829 .9584 m .32279 .82203 L .54068 1.04787 L closepath p 0 .315 .805 r
F P
0 g
s
.54068 1.04787 m .60636 .78253 L .77361 .60223 L p .952 .942 .734 r
F P
0 g
s
.60636 .78253 m .56013 .45635 L .77361 .60223 L closepath p .887 .692 .634 r
F P
0 g
s
.77361 .60223 m .56013 .45635 L .42722 .23954 L p .86 .415 .132 r
F P
0 g
s
.27992 .51112 m .42722 .23954 L .56013 .45635 L closepath p .558 .38 .595 r
F P
0 g
s
.60636 .78253 m .32279 .82203 L .27992 .51112 L p .586 .484 .705 r
F P
0 g
s
.27992 .51112 m .56013 .45635 L .60636 .78253 L p .586 .484 .705 r
F P
0 g
s
.32279 .82203 m .60636 .78253 L .54068 1.04787 L closepath p .595 .57 .796 r
F P
0 g
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
GeneratedCell->False,
CellAutoOverwrite->False,
ImageSize->{251.688, 321.875},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzt29ly01YYB3BhS7ZjO3HiLE6czdmchT2EhCRsoc0GJIGw75gQSFIKFOh0
YzotHabT6fSOSy77CNz2EfIKvewjcMNF6rPw5SD/FT5ZtMMFmbEUW+f/0ycd
WZZsaa7wZGX5y8KT1aVCbvpR4eHK6tLj3NSDR8WXwtssy3pjWdsmcpb4f6P4
VA/ebBT/ihM/jT7e0RdiFBb99YfxgiVf2fh7LSceli2e/aamrxnTf7/1Uva0
I1rJRs9Vo1UxCokXQqKRi4tQ859V8xVqHgbN42LoiJeequZ3qWYbNK8i/Vuj
udQd0DxNzZ+o5neoeRQ0r6fmD1XzZSomBpo3iqHE7qvmt6l5BWjeJIfqNf1n
3VPBJTGSM44zg6onrVsUTIBgFgTX3MEkM7iqggUKVjGDKyp4U4wcr2AzCN5V
wRsUrGYG76jgdTGKeAVbQHDZCMo5ppnB2yp4jYJ1zOCSCl6lUlGwFQRvqeAV
CjYwgwUVvCxGUTElwwzeVMFLFGwEwTYQvOEONjGD11XwIgWzINgOgtdU8IIY
xcSUZmbwqgqep2ArM3hFBc+JUYVXMAeCl42gnGM7M3hJBc9SMAeCHSB4UQXP
UKkdzOAFFVykYBczeF4FT4tR3CvYCYLnVPAUBXuYwbOcYBcInlHBBQr2Mueo
g/NilBBT+pjBRRWco2A/s9TTKnhSjJJiygAzeMoIyjnuYAYXOMFuEJxXwRMU
3MUMzhlB2R27QbAHBE+6g3uYwRNGUG7kg8zgcU4wD4KzKnicgkPM4Awn2AuC
00ZQ7jqGmcEpd3CEGZw0gnJPfgAE+0DwcxWcpTmOMoOfGUE5xzEQ7AfBY0ZQ
frAeZAYn3MFxEbTVO7O0+VGjuUPrUv4X2njxwyvd/J9Xf4oxJI4oYobmOEhE
1EUUH1ZI7V1KncOG49DbU/6XhI4Yvr/TD7nZfmLTAdiDBmvTvl2yGcCGxTCk
9sil2LgbyxHWAjAH1Ih2BpqdJraF2A7ARqhGFpYhLA+wGKgRffCYrJxSS+x2
wFZQjRILqbfGJiFfSBGxBxAJUBk6tBlzs3Fih5ksOkbT7BSxEWLHAZukBWZh
6vRWtlHPioOjgK0C1aIzA3MGcsokwFJU4/sIPalISAZhNaAydO7pk01TjU20
4Yz7I+pAZQ0cbMoLC6n3UenCjRrbHqOyBlBZXXA2A9ja4GwjLfoHwLKgxurg
bDPVWE09POaPaAWVVXIwtLm0Uj1lE+2gngRYUwcUO8NczBxg48HZDlrgD4B1
gRqjwdluqjFKnTLqj8iDymwOhno4T/WUTfTJoW3W46ZmmYvWr49VXJT8XPJJ
DdCCFSdow+wwrrODHJ8F7KSgzzmygqgjtothuIzggNGDr1//taEPBXwqZucJ
5e3D2qSOM1dBn7GJa6Z4lC2G7775hv2xvYANB2fzgLXFUHbiiDeG1mI3wJxy
sS6ARcrFOgEWA2tvvz+2A7AV/zt7gtnXOcDGg7PtgE1QRw17Y54f/C4sWS7W
ArDKcrFmgKXA2hvyx2YBWx2cbQJsTXC2EbBpb/YkcxPKALaWOmq/N4ZqrAdY
XblYHcAawALv+yjYWsBmgrNpwDYGZ2sA2xScrQZslvpfb5lzTKwKYC2gxkF/
bCVgW4OzScC2BWcTgG0PzsYBmwvOVgC24z9k5Walt9F5JhYFWBeoca8/NgLY
7uCsA9ie4KwN2HxwNgzYXjEc8ueEvBy8HXmzjsnKR/F58ZTDc0+HqGlXhYIY
8CYWvKqRWysKDnkHj4mh/o7aV1B+wyt/CLI3Xr5Yd63MPu9jT4QNEZYIju0k
rIaJDXtjecIaAYa2mRFvrE0M9UUJgbEMVdYLMPRm02e7pwCWImwns7ItsBhh
Q8zKRk3MNjGixsugpHQMBNEebqx0gYpBGUYEmrcmTgNiglnFuEGE/JSvg4sU
RHNEHxgHjaCeZC2uy53QEea83yHsTUIxh5mF6J83z2DlUDmK866iFwttSojS
P+Oe3YIaK4cKm5T4FXlx3bW1jAAWHUMcUew5JjscnA0DFr3LEat/oT/PZPcF
Z23ADgK2E7AT3qwD2L2ARYem+nKIC0x2N7PaLdgIYHcxq9VXfVxksujDwycb
BewOwKKzCX1xyyUmO8Csdgs2Bth+ZrWT3mwFYPv8sZeZLDp4QCeAU95sHLA9
zGo1e4XJdjOrnfZmE4Dt8sdeZbKdgEXn7DPebBKwOWa1mr3GZNExKap21put
BGxbcLYKsK2ARV+z6MsIrzPZZma1W7ApwGaZ1eqrJW+Ikf7NvhRr8ocVCEOV
odMa9C2YvgB0iTC09hqYmL4MdZm5Zdb7YzdvSkHbYx3AmgGmr7HdvN0GVVbr
D1sjDO0u0OkqwvRlw/cIQ3vKan/YfdAV6MMtBdgsYPU10Q+oRvTZU8msUWNf
EYYqSzIr05d5PyYMHRqgryG2wL4mDB0VxQEmv7qXL+lL678hAh0GxgBRT4S+
keA70IdhgEUBliZM30DxPdWDDqIjgEgRoW8XeUoEqsIBRJKIm4r4kQh0PhMG
RJwIfSvQT0SoMt4KMB2ltL7n6Zl7nUqmNGhTUN/X9YsYhVXlorltNqfG+n61
59RYQWp26vFANfmVFuOReuGjuCPy08g1srb9C0oQwaY=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 250.688}, {320.875, \
0.}} -> {0., 0., 0., \
0.}},ExpressionUUID->"32791f67-a8db-45c3-8876-5f274e127de4"]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["Nets", "Section",ExpressionUUID->"ea39771c-d69a-4677-8918-9823ec6cb371"],
Cell[CellGroupData[{
Cell["Example", "Subsection",ExpressionUUID->"2f3ea52e-fdf4-406c-9447-b6ec9e68afab"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", "=", "18"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"GraphicsArray", "[",
RowBox[{
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"#", ",",
RowBox[{"AspectRatio", "\[Rule]", "Automatic"}]}], "]"}], "&"}], "/@",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"ClosedLine", "@@@",
RowBox[{"Net", "[",
RowBox[{"JohnsonSolid", "[", "n", "]"}], "]"}]}], ",",
RowBox[{"ColoredNet", "[",
RowBox[{"JohnsonSolid", "[", "n", "]"}], "]"}]}], "}"}]}], "]"}],
"]"}]}], "\[IndentingNewLine]", "]"}]], "Input",ExpressionUUID->"c3398159-\
48ae-4388-abc2-35e1f5cfeead"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .44429
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0238095 0.47619 0.0105784 0.47619 [
[ 0 0 0 0 ]
[ 1 .44429 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .44429 L
0 .44429 L
closepath
clip
newpath
% Start of sub-graphic
p
0.0238095 0.0105784 0.477324 0.433713 MathSubStart
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.103175 0.15873 0.376508 0.15873 [
[ 0 0 0 0 ]
[ 1 .93301 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .93301 L
0 .93301 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.5 .29714 m
.34127 .29714 L
.2619 .15968 L
.34127 .02221 L
.5 .02221 L
.57937 .15968 L
.5 .29714 L
s
.02381 .45587 m
.02381 .29714 L
.18254 .29714 L
.18254 .45587 L
.02381 .45587 L
s
.18254 .45587 m
.18254 .29714 L
.34127 .29714 L
.34127 .45587 L
.18254 .45587 L
s
.34127 .45587 m
.34127 .29714 L
.5 .29714 L
.5 .45587 L
.34127 .45587 L
s
.5 .45587 m
.5 .29714 L
.65873 .29714 L
.65873 .45587 L
.5 .45587 L
s
.65873 .45587 m
.65873 .29714 L
.81746 .29714 L
.81746 .45587 L
.65873 .45587 L
s
.81746 .45587 m
.81746 .29714 L
.97619 .29714 L
.97619 .45587 L
.81746 .45587 L
s
.34127 .6146 m
.5 .6146 L
.42063 .75207 L
.34127 .6146 L
s
.5 .6146 m
.34127 .6146 L
.34127 .45587 L
.5 .45587 L
.5 .6146 L
s
.5 .6146 m
.5 .45587 L
.63746 .53524 L
.5 .6146 L
s
.42063 .75207 m
.5 .6146 L
.63746 .69397 L
.5581 .83143 L
.42063 .75207 L
s
.42063 .75207 m
.5581 .83143 L
.42063 .9108 L
.42063 .75207 L
s
.34127 .6146 m
.42063 .75207 L
.28317 .83143 L
.20381 .69397 L
.34127 .6146 L
s
.34127 .6146 m
.20381 .69397 L
.20381 .53524 L
.34127 .6146 L
s
MathSubEnd
P
% End of sub-graphic
% Start of sub-graphic
p
0.522676 0.0105784 0.97619 0.433713 MathSubStart
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.103175 0.15873 0.376508 0.15873 [
[ 0 0 0 0 ]
[ 1 .93301 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .93301 L
0 .93301 L
closepath
clip
newpath
1 0 0 r
.34127 .6146 m
.5 .6146 L
.42063 .75207 L
F
.5 .6146 m
.5 .45587 L
.63746 .53524 L
F
.42063 .75207 m
.5581 .83143 L
.42063 .9108 L
F
.34127 .6146 m
.20381 .69397 L
.20381 .53524 L
F
1 1 0 r
.02381 .45587 m
.02381 .29714 L
.18254 .29714 L
.18254 .45587 L
F
.18254 .45587 m
.18254 .29714 L
.34127 .29714 L
.34127 .45587 L
F
.34127 .45587 m
.34127 .29714 L
.5 .29714 L
.5 .45587 L
F
.5 .45587 m
.5 .29714 L
.65873 .29714 L
.65873 .45587 L
F
.65873 .45587 m
.65873 .29714 L
.81746 .29714 L
.81746 .45587 L
F
.81746 .45587 m
.81746 .29714 L
.97619 .29714 L
.97619 .45587 L
F
.5 .6146 m
.34127 .6146 L
.34127 .45587 L
.5 .45587 L
F
.42063 .75207 m
.5 .6146 L
.63746 .69397 L
.5581 .83143 L
F
.34127 .6146 m
.42063 .75207 L
.28317 .83143 L
.20381 .69397 L
F
0 1 0 r
.5 .29714 m
.34127 .29714 L
.2619 .15968 L
.34127 .02221 L
.5 .02221 L
.57937 .15968 L
F
0 g
.5 Mabswid
[ ] 0 setdash
.5 .29714 m
.34127 .29714 L
.2619 .15968 L
.34127 .02221 L
.5 .02221 L
.57937 .15968 L
.5 .29714 L
s
.02381 .45587 m
.02381 .29714 L
.18254 .29714 L
.18254 .45587 L
.02381 .45587 L
s
.18254 .45587 m
.18254 .29714 L
.34127 .29714 L
.34127 .45587 L
.18254 .45587 L
s
.34127 .45587 m
.34127 .29714 L
.5 .29714 L
.5 .45587 L
.34127 .45587 L
s
.5 .45587 m
.5 .29714 L
.65873 .29714 L
.65873 .45587 L
.5 .45587 L
s
.65873 .45587 m
.65873 .29714 L
.81746 .29714 L
.81746 .45587 L
.65873 .45587 L
s
.81746 .45587 m
.81746 .29714 L
.97619 .29714 L
.97619 .45587 L
.81746 .45587 L
s
.34127 .6146 m
.5 .6146 L
.42063 .75207 L
.34127 .6146 L
s
.5 .6146 m
.34127 .6146 L
.34127 .45587 L
.5 .45587 L
.5 .6146 L
s
.5 .6146 m
.5 .45587 L
.63746 .53524 L
.5 .6146 L
s
.42063 .75207 m
.5 .6146 L
.63746 .69397 L
.5581 .83143 L
.42063 .75207 L
s
.42063 .75207 m
.5581 .83143 L
.42063 .9108 L
.42063 .75207 L
s
.34127 .6146 m
.42063 .75207 L
.28317 .83143 L
.20381 .69397 L
.34127 .6146 L
s
.34127 .6146 m
.20381 .69397 L
.20381 .53524 L
.34127 .6146 L
s
MathSubEnd
P
% End of sub-graphic
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 127.938},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnPtvG0UUhTdZ2/EzjuM4Ce+EUsr7Kd6kTds0oUIgXqUqVNAQUhJKSJsG
EFKlCgkhIeBvDtmZ3bm79jfj2Yjlp7Vke3x35pwzd2fu3J3s5oPNw53tvc3D
3a3NpY2Dzds7u1t3l9b3D45N4UQQTCwFQXB/KYjKR8fF+EO9lqOP+McJy69G
X/MR5K9RaRChX04dCkKhO/41C7ZftE3pUuqO3z31qWym3oaGfQUg5sD2E8D2
AXY9H+whwA4A9pKGfRkg5sF2Nx/sSwCxCLY7ALsAsGv5YG8D7AMAe1HDvggQ
D4JtvxjYHwH2IYC9oGFfAIiHwfYDwD4CsOc17PMA8SjYbhUD+z3APgawqxr2
OYBYAttuMbA7ALsMsOc07LMA8TjYbgLsKYA9q2GfAYgnwLZdDOy3AHsaYFc0
7NMA8STYvgHYMwD7bqGwBTmhoFNW0AAraDoUBFtQqCkoMBYUxn1h9wDWsegU
tJYVtPIWlH74JksHxcDmzMEKyhgLym+b0de9qG5flaI6rdQhj0S99z/U60mv
ooLS11OfWdss2P67elpLo3RP6Z7SPaV7SveU7indU7qndE/pntI9pXtK95Tu
Kd1Tuqd0T+me0j2le0r35HMPb0Pb7xepJLYgfv1s7VhF1TkKkh3xZPvbAzx5
TUaGw/EMyXsy+l4bR5O1hWC74z5bhjLUnxnvns9HXzH99CWtmJ7mpKoZqn1P
qpqhOpePqm6o9jyp6oZqJR9V01Dd8qRqGqp38lG1wbbjSdqGofJmPvqO6akv
acf0NKZaNhAznqTTpsUVVTqStmPppw39Gyn60Rgyncf/SstVDTQcYabznAwl
7C0UlrwUF51190C8llWXiU5tT4kjg3QZKCl2NTzlUr1rIs4Z4xqenWhAW0d3
JBb6dmLKtLgO0iVS+gqeMi3O2mVKHJ3ylFk1Lb4CmRJlpzxlVk2LVbtMicFV
T5mhaXEDZEqErnrKDE2LC3aZMm1oNLsSg/RtTqPTJrSKdKYNJLE9KiIqz7E5
fZtUNvpX0hMhKvdH9URf63Ypag0IDbsqbQNhx9x90DcHN+ywKnAuRqabAKbi
+EJUem+MMrEF4qGszao2sR2pH0EfbI4etJzDaMYxjLZAUEuGUTA6rrtyNtXR
+K3qX7JLbBhKmpBdsElA3ASRDZmQVpFhRmRoZF60y6yDrWYbMx71KOTVQVwN
OtFx1zMcjjAo0ZquB2lxl8DpjtZNENwCwXXjdYdMOdUkiWwSON1rX9tTZtPI
dKx9NLk6NnEe9cZkHEZcBzrRcNczHJmMg2MAZcOUg3RNC1eON+Mpdtp4nCUG
8asPSmiW9ow6S37cB2FTIKxnhKXzY4U8AF5Kg+g+uc8USgQ78BTSh9P5etpX
WQISRyGJ6n2qbRl6klkFmQOQ+Vo+mbQk0J2RBcmkO6hJJs1/knnFUybNdZIZ
n/RTnjInPet9DjLn1Wd1eGar34snkVZN23TlCArqX7V6jeUsgJz4UpvutNdy
RhLWBaiaict8/qwK4r2G0wBLCSHRf1EgfWgj/RJI54LENA9UcXSkZzAkFsdz
JumyslF0vA70syYQaxQzCpRtzi7pDBDoDJNHo1z60e51Jg+KpXWNNN0/Xgp7
IPFtu0TZ4qrAUQo+lIV+DXIpMQjT9QJ7QHIkFU8BvSRmtPZIokf50A2Q3jKe
roFgSfRyyqT8hgRLAt2Co5kLk1iwJLx1EIwJtMFzPOokQki6ZO2UGmX2CmKZ
NSOzCTJlu6Nul0nPOMlUIn/J4KAVP7N3EMuUi7Z2+mj8lg2PKsh0PIpFSyQJ
pksPaquv66sZ6UfxdXtqX3ZoS4Trr2rZ+lEvr+1iCRxD4fY7jZHQJOxdUCS7
5drniSddz3KRFtkyTz1+ZY4Ss2yUx3/SWbF1cch2z9aNIVIHrGyc3Acw2QhZ
s0PIxsZvACHbFOt2CJqzBFaHzjlgJWT8DmASiS7bISRe/wEQEn3ft0PQukVg
tNWegeWL1z9jnWmoRNWH2DyZSX9lWyaNP0o1Ugz/qFJ06BN7L/+WHhnbx7q6
+nHCf2sQTPwLQMzgaw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {126.938, 0.}} -> \
{0., 0., 0., 0.}, {{7.4375, 137.}, {123.875, 3.}} -> {-1., -2., 0., 0.}, \
{{149.938, 279.5}, {123.875, 3.}} -> {-7., -2., 0., \
0.}},ExpressionUUID->"36da51f7-dab5-4779-b311-1bb1f359d849"],
Cell[BoxData[
TagBox[
RowBox[{"\[SkeletonIndicator]", "GraphicsArray", "\[SkeletonIndicator]"}],
False,
Editable->False]], "Output",ExpressionUUID->"7d6c283d-4e7c-43ee-a80d-\
9e61adc55bfc"]
}, Open ]],
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{"Graphics", "[",
RowBox[{
RowBox[{"ColoredNet", "[",
RowBox[{"18", ",",
RowBox[{"Labeled", "\[Rule]", "True"}]}], "]"}], ",",
RowBox[{"AspectRatio", "\[Rule]", "Automatic"}]}], "]"}], "]"}]], "Input",\
ExpressionUUID->"7ba334e3-c09d-4d4f-9b54-f02c50e1a087"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", "=", "69"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"GraphicsArray", "[",
RowBox[{
RowBox[{
RowBox[{"Graphics", "[",
RowBox[{"#", ",",
RowBox[{"AspectRatio", "\[Rule]", "Automatic"}]}], "]"}], "&"}], "/@",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"ClosedLine", "@@@",
RowBox[{"Net", "[",
RowBox[{"JohnsonSolid", "[", "n", "]"}], "]"}]}], ",",
RowBox[{"ColoredNet", "[",
RowBox[{"JohnsonSolid", "[", "n", "]"}], "]"}]}], "}"}]}], "]"}],
"]"}]}], "\[IndentingNewLine]", "]"}]], "Input",ExpressionUUID->"46ee4317-\
d061-479c-abf7-0e9530317f86"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .26171
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0238095 0.47619 0.00623125 0.47619 [
[ 0 0 0 0 ]
[ 1 .26171 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .26171 L
0 .26171 L
closepath
clip
newpath
% Start of sub-graphic
p
0.0238095 0.00623125 0.477324 0.255481 MathSubStart
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.266022 0.053291 0.249457 0.053291 [
[ 0 0 0 0 ]
[ 1 .5496 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .5496 L
0 .5496 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.23938 .33146 m
.19626 .30014 L
.1798 .24946 L
.19626 .19877 L
.23938 .16745 L
.29267 .16745 L
.33578 .19877 L
.35225 .24946 L
.33578 .30014 L
.29267 .33146 L
.23938 .33146 L
s
.34135 .35314 m
.29267 .33146 L
.33578 .30014 L
.34135 .35314 L
s
.23938 .49548 m
.19626 .46415 L
.1798 .41347 L
.19626 .36279 L
.23938 .33146 L
.29267 .33146 L
.33578 .36279 L
.35225 .41347 L
.33578 .46415 L
.29267 .49548 L
.23938 .49548 L
s
.38791 .45307 m
.33578 .46415 L
.35225 .41347 L
.38791 .45307 L
s
.19069 .35314 m
.19626 .30014 L
.23938 .33146 L
.19069 .35314 L
s
.02381 .30014 m
.04028 .24946 L
.08339 .21813 L
.13668 .21813 L
.1798 .24946 L
.19626 .30014 L
.1798 .35082 L
.13668 .38215 L
.08339 .38215 L
.04028 .35082 L
.02381 .30014 L
s
.11004 .4283 m
.08339 .38215 L
.13668 .38215 L
.11004 .4283 L
s
.14414 .20985 m
.19626 .19877 L
.1798 .24946 L
.14414 .20985 L
s
.14297 .03476 m
.19626 .03476 L
.23938 .06608 L
.25584 .11677 L
.23938 .16745 L
.19626 .19877 L
.14297 .19877 L
.09986 .16745 L
.08339 .11677 L
.09986 .06608 L
.14297 .03476 L
s
.04773 .15637 m
.08339 .11677 L
.09986 .16745 L
.04773 .15637 L
s
.26602 .1213 m
.29267 .16745 L
.23938 .16745 L
.26602 .1213 L
s
.76062 .05412 m
.80374 .08544 L
.8202 .13613 L
.80374 .18681 L
.76062 .21813 L
.70733 .21813 L
.66422 .18681 L
.64775 .13613 L
.66422 .08544 L
.70733 .05412 L
.76062 .05412 L
s
.24495 .01309 m
.23938 .06608 L
.19626 .03476 L
.24495 .01309 L
s
.38791 .20985 m
.35225 .24946 L
.33578 .19877 L
.38791 .20985 L
s
.49177 .35082 m
.44865 .38215 L
.39536 .38215 L
.35225 .35082 L
.33578 .30014 L
.35225 .24946 L
.39536 .21813 L
.44865 .21813 L
.49177 .24946 L
.50823 .30014 L
.49177 .35082 L
s
.49734 .19646 m
.49177 .24946 L
.44865 .21813 L
.49734 .19646 L
s
.66422 .35082 m
.64775 .30014 L
.66422 .24946 L
.70733 .21813 L
.76062 .21813 L
.80374 .24946 L
.8202 .30014 L
.80374 .35082 L
.76062 .38215 L
.70733 .38215 L
.66422 .35082 L
s
.73398 .4283 m
.70733 .38215 L
.76062 .38215 L
.73398 .4283 L
s
.56782 .48351 m
.55135 .43283 L
.56782 .38215 L
.61093 .35082 L
.66422 .35082 L
.70733 .38215 L
.7238 .43283 L
.70733 .48351 L
.66422 .51484 L
.61093 .51484 L
.56782 .48351 L
s
.7129 .53651 m
.66422 .51484 L
.70733 .48351 L
.7129 .53651 L
s
.61209 .33974 m
.64775 .30014 L
.66422 .35082 L
.61209 .33974 L
s
.50823 .19877 m
.55135 .16745 L
.60464 .16745 L
.64775 .19877 L
.66422 .24946 L
.64775 .30014 L
.60464 .33146 L
.55135 .33146 L
.50823 .30014 L
.49177 .24946 L
.50823 .19877 L
s
.50266 .35314 m
.50823 .30014 L
.55135 .33146 L
.50266 .35314 L
s
.65865 .19646 m
.70733 .21813 L
.66422 .24946 L
.65865 .19646 L
s
.57799 .1213 m
.60464 .16745 L
.55135 .16745 L
.57799 .1213 L
s
.80931 .19646 m
.80374 .24946 L
.76062 .21813 L
.80931 .19646 L
s
.97619 .24946 m
.95972 .30014 L
.91661 .33146 L
.86332 .33146 L
.8202 .30014 L
.80374 .24946 L
.8202 .19877 L
.86332 .16745 L
.91661 .16745 L
.95972 .19877 L
.97619 .24946 L
s
.88996 .1213 m
.91661 .16745 L
.86332 .16745 L
.88996 .1213 L
s
.85586 .33974 m
.80374 .35082 L
.8202 .30014 L
.85586 .33974 L
s
.96529 .35314 m
.91661 .33146 L
.95972 .30014 L
.96529 .35314 L
s
.80931 .40382 m
.86231 .40939 L
.87339 .46152 L
.82724 .48816 L
.78763 .45251 L
.80931 .40382 L
s
.86231 .40939 m
.80931 .40382 L
.81488 .35082 L
.86788 .35639 L
.86231 .40939 L
s
.86231 .40939 m
.86788 .35639 L
.91099 .38772 L
.86231 .40939 L
s
.87339 .46152 m
.86231 .40939 L
.91443 .39831 L
.92551 .45044 L
.87339 .46152 L
s
.87339 .46152 m
.92551 .45044 L
.90905 .50112 L
.87339 .46152 L
s
.82724 .48816 m
.87339 .46152 L
.90003 .50767 L
.85388 .53432 L
.82724 .48816 L
s
.82724 .48816 m
.85388 .53432 L
.80059 .53432 L
.82724 .48816 L
s
.78763 .45251 m
.82724 .48816 L
.79158 .52777 L
.75197 .49211 L
.78763 .45251 L
s
.73895 .43083 m
.78763 .45251 L
.74452 .48383 L
.73895 .43083 L
s
.80931 .40382 m
.78763 .45251 L
.73895 .43083 L
.76062 .38215 L
.80931 .40382 L
s
.80931 .40382 m
.76062 .38215 L
.80374 .35082 L
.80931 .40382 L
s
.34135 .14577 m
.33027 .09365 L
.37642 .067 L
.41603 .10266 L
.39435 .15135 L
.34135 .14577 L
s
.33027 .09365 m
.34135 .14577 L
.28922 .15685 L
.27814 .10473 L
.33027 .09365 L
s
.33027 .09365 m
.27814 .10473 L
.29461 .05405 L
.33027 .09365 L
s
.37642 .067 m
.33027 .09365 L
.30363 .0475 L
.34978 .02085 L
.37642 .067 L
s
.37642 .067 m
.34978 .02085 L
.40307 .02085 L
.37642 .067 L
s
.41603 .10266 m
.37642 .067 L
.41208 .0274 L
.45168 .06306 L
.41603 .10266 L
s
.41603 .10266 m
.45168 .06306 L
.46815 .11374 L
.41603 .10266 L
s
.39435 .15135 m
.41603 .10266 L
.46471 .12434 L
.44303 .17302 L
.39435 .15135 L
s
.38878 .20434 m
.39435 .15135 L
.43746 .18267 L
.38878 .20434 L
s
.34135 .14577 m
.39435 .15135 L
.38878 .20434 L
.33578 .19877 L
.34135 .14577 L
s
.34135 .14577 m
.33578 .19877 L
.29267 .16745 L
.34135 .14577 L
s
MathSubEnd
P
% End of sub-graphic
% Start of sub-graphic
p
0.522676 0.00623125 0.97619 0.255481 MathSubStart
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.266022 0.053291 0.249457 0.053291 [
[ 0 0 0 0 ]
[ 1 .5496 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .5496 L
0 .5496 L
closepath
clip
newpath
1 0 0 r
.34135 .35314 m
.29267 .33146 L
.33578 .30014 L
F
.38791 .45307 m
.33578 .46415 L
.35225 .41347 L
F
.19069 .35314 m
.19626 .30014 L
.23938 .33146 L
F
.11004 .4283 m
.08339 .38215 L
.13668 .38215 L
F
.14414 .20985 m
.19626 .19877 L
.1798 .24946 L
F
.04773 .15637 m
.08339 .11677 L
.09986 .16745 L
F
.26602 .1213 m
.29267 .16745 L
.23938 .16745 L
F
.24495 .01309 m
.23938 .06608 L
.19626 .03476 L
F
.38791 .20985 m
.35225 .24946 L
.33578 .19877 L
F
.49734 .19646 m
.49177 .24946 L
.44865 .21813 L
F
.73398 .4283 m
.70733 .38215 L
.76062 .38215 L
F
.7129 .53651 m
.66422 .51484 L
.70733 .48351 L
F
.61209 .33974 m
.64775 .30014 L
.66422 .35082 L
F
.50266 .35314 m
.50823 .30014 L
.55135 .33146 L
F
.65865 .19646 m
.70733 .21813 L
.66422 .24946 L
F
.57799 .1213 m
.60464 .16745 L
.55135 .16745 L
F
.80931 .19646 m
.80374 .24946 L
.76062 .21813 L
F
.88996 .1213 m
.91661 .16745 L
.86332 .16745 L
F
.85586 .33974 m
.80374 .35082 L
.8202 .30014 L
F
.96529 .35314 m
.91661 .33146 L
.95972 .30014 L
F
.86231 .40939 m
.86788 .35639 L
.91099 .38772 L
F
.87339 .46152 m
.92551 .45044 L
.90905 .50112 L
F
.82724 .48816 m
.85388 .53432 L
.80059 .53432 L
F
.73895 .43083 m
.78763 .45251 L
.74452 .48383 L
F
.80931 .40382 m
.76062 .38215 L
.80374 .35082 L
F
.33027 .09365 m
.27814 .10473 L
.29461 .05405 L
F
.37642 .067 m
.34978 .02085 L
.40307 .02085 L
F
.41603 .10266 m
.45168 .06306 L
.46815 .11374 L
F
.38878 .20434 m
.39435 .15135 L
.43746 .18267 L
F
.34135 .14577 m
.33578 .19877 L
.29267 .16745 L
F
1 1 0 r
.86231 .40939 m
.80931 .40382 L
.81488 .35082 L
.86788 .35639 L
F
.87339 .46152 m
.86231 .40939 L
.91443 .39831 L
.92551 .45044 L
F
.82724 .48816 m
.87339 .46152 L
.90003 .50767 L
.85388 .53432 L
F
.78763 .45251 m
.82724 .48816 L
.79158 .52777 L
.75197 .49211 L
F
.80931 .40382 m
.78763 .45251 L
.73895 .43083 L
.76062 .38215 L
F
.33027 .09365 m
.34135 .14577 L
.28922 .15685 L
.27814 .10473 L
F
.37642 .067 m
.33027 .09365 L
.30363 .0475 L
.34978 .02085 L
F
.41603 .10266 m
.37642 .067 L
.41208 .0274 L
.45168 .06306 L
F
.39435 .15135 m
.41603 .10266 L
.46471 .12434 L
.44303 .17302 L
F
.34135 .14577 m
.39435 .15135 L
.38878 .20434 L
.33578 .19877 L
F
0 0 1 r
.80931 .40382 m
.86231 .40939 L
.87339 .46152 L
.82724 .48816 L
.78763 .45251 L
F
.34135 .14577 m
.33027 .09365 L
.37642 .067 L
.41603 .10266 L
.39435 .15135 L
F
1 .5 0 r
.23938 .33146 m
.19626 .30014 L
.1798 .24946 L
.19626 .19877 L
.23938 .16745 L
.29267 .16745 L
.33578 .19877 L
.35225 .24946 L
.33578 .30014 L
.29267 .33146 L
F
.23938 .49548 m
.19626 .46415 L
.1798 .41347 L
.19626 .36279 L
.23938 .33146 L
.29267 .33146 L
.33578 .36279 L
.35225 .41347 L
.33578 .46415 L
.29267 .49548 L
F
.02381 .30014 m
.04028 .24946 L
.08339 .21813 L
.13668 .21813 L
.1798 .24946 L
.19626 .30014 L
.1798 .35082 L
.13668 .38215 L
.08339 .38215 L
.04028 .35082 L
F
.14297 .03476 m
.19626 .03476 L
.23938 .06608 L
.25584 .11677 L
.23938 .16745 L
.19626 .19877 L
.14297 .19877 L
.09986 .16745 L
.08339 .11677 L
.09986 .06608 L
F
.76062 .05412 m
.80374 .08544 L
.8202 .13613 L
.80374 .18681 L
.76062 .21813 L
.70733 .21813 L
.66422 .18681 L
.64775 .13613 L
.66422 .08544 L
.70733 .05412 L
F
.49177 .35082 m
.44865 .38215 L
.39536 .38215 L
.35225 .35082 L
.33578 .30014 L
.35225 .24946 L
.39536 .21813 L
.44865 .21813 L
.49177 .24946 L
.50823 .30014 L
F
.66422 .35082 m
.64775 .30014 L
.66422 .24946 L
.70733 .21813 L
.76062 .21813 L
.80374 .24946 L
.8202 .30014 L
.80374 .35082 L
.76062 .38215 L
.70733 .38215 L
F
.56782 .48351 m
.55135 .43283 L
.56782 .38215 L
.61093 .35082 L
.66422 .35082 L
.70733 .38215 L
.7238 .43283 L
.70733 .48351 L
.66422 .51484 L
.61093 .51484 L
F
.50823 .19877 m
.55135 .16745 L
.60464 .16745 L
.64775 .19877 L
.66422 .24946 L
.64775 .30014 L
.60464 .33146 L
.55135 .33146 L
.50823 .30014 L
.49177 .24946 L
F
.97619 .24946 m
.95972 .30014 L
.91661 .33146 L
.86332 .33146 L
.8202 .30014 L
.80374 .24946 L
.8202 .19877 L
.86332 .16745 L
.91661 .16745 L
.95972 .19877 L
F
0 g
.5 Mabswid
[ ] 0 setdash
.23938 .33146 m
.19626 .30014 L
.1798 .24946 L
.19626 .19877 L
.23938 .16745 L
.29267 .16745 L
.33578 .19877 L
.35225 .24946 L
.33578 .30014 L
.29267 .33146 L
.23938 .33146 L
s
.34135 .35314 m
.29267 .33146 L
.33578 .30014 L
.34135 .35314 L
s
.23938 .49548 m
.19626 .46415 L
.1798 .41347 L
.19626 .36279 L
.23938 .33146 L
.29267 .33146 L
.33578 .36279 L
.35225 .41347 L
.33578 .46415 L
.29267 .49548 L
.23938 .49548 L
s
.38791 .45307 m
.33578 .46415 L
.35225 .41347 L
.38791 .45307 L
s
.19069 .35314 m
.19626 .30014 L
.23938 .33146 L
.19069 .35314 L
s
.02381 .30014 m
.04028 .24946 L
.08339 .21813 L
.13668 .21813 L
.1798 .24946 L
.19626 .30014 L
.1798 .35082 L
.13668 .38215 L
.08339 .38215 L
.04028 .35082 L
.02381 .30014 L
s
.11004 .4283 m
.08339 .38215 L
.13668 .38215 L
.11004 .4283 L
s
.14414 .20985 m
.19626 .19877 L
.1798 .24946 L
.14414 .20985 L
s
.14297 .03476 m
.19626 .03476 L
.23938 .06608 L
.25584 .11677 L
.23938 .16745 L
.19626 .19877 L
.14297 .19877 L
.09986 .16745 L
.08339 .11677 L
.09986 .06608 L
.14297 .03476 L
s
.04773 .15637 m
.08339 .11677 L
.09986 .16745 L
.04773 .15637 L
s
.26602 .1213 m
.29267 .16745 L
.23938 .16745 L
.26602 .1213 L
s
.76062 .05412 m
.80374 .08544 L
.8202 .13613 L
.80374 .18681 L
.76062 .21813 L
.70733 .21813 L
.66422 .18681 L
.64775 .13613 L
.66422 .08544 L
.70733 .05412 L
.76062 .05412 L
s
.24495 .01309 m
.23938 .06608 L
.19626 .03476 L
.24495 .01309 L
s
.38791 .20985 m
.35225 .24946 L
.33578 .19877 L
.38791 .20985 L
s
.49177 .35082 m
.44865 .38215 L
.39536 .38215 L
.35225 .35082 L
.33578 .30014 L
.35225 .24946 L
.39536 .21813 L
.44865 .21813 L
.49177 .24946 L
.50823 .30014 L
.49177 .35082 L
s
.49734 .19646 m
.49177 .24946 L
.44865 .21813 L
.49734 .19646 L
s
.66422 .35082 m
.64775 .30014 L
.66422 .24946 L
.70733 .21813 L
.76062 .21813 L
.80374 .24946 L
.8202 .30014 L
.80374 .35082 L
.76062 .38215 L
.70733 .38215 L
.66422 .35082 L
s
.73398 .4283 m
.70733 .38215 L
.76062 .38215 L
.73398 .4283 L
s
.56782 .48351 m
.55135 .43283 L
.56782 .38215 L
.61093 .35082 L
.66422 .35082 L
.70733 .38215 L
.7238 .43283 L
.70733 .48351 L
.66422 .51484 L
.61093 .51484 L
.56782 .48351 L
s
.7129 .53651 m
.66422 .51484 L
.70733 .48351 L
.7129 .53651 L
s
.61209 .33974 m
.64775 .30014 L
.66422 .35082 L
.61209 .33974 L
s
.50823 .19877 m
.55135 .16745 L
.60464 .16745 L
.64775 .19877 L
.66422 .24946 L
.64775 .30014 L
.60464 .33146 L
.55135 .33146 L
.50823 .30014 L
.49177 .24946 L
.50823 .19877 L
s
.50266 .35314 m
.50823 .30014 L
.55135 .33146 L
.50266 .35314 L
s
.65865 .19646 m
.70733 .21813 L
.66422 .24946 L
.65865 .19646 L
s
.57799 .1213 m
.60464 .16745 L
.55135 .16745 L
.57799 .1213 L
s
.80931 .19646 m
.80374 .24946 L
.76062 .21813 L
.80931 .19646 L
s
.97619 .24946 m
.95972 .30014 L
.91661 .33146 L
.86332 .33146 L
.8202 .30014 L
.80374 .24946 L
.8202 .19877 L
.86332 .16745 L
.91661 .16745 L
.95972 .19877 L
.97619 .24946 L
s
.88996 .1213 m
.91661 .16745 L
.86332 .16745 L
.88996 .1213 L
s
.85586 .33974 m
.80374 .35082 L
.8202 .30014 L
.85586 .33974 L
s
.96529 .35314 m
.91661 .33146 L
.95972 .30014 L
.96529 .35314 L
s
.80931 .40382 m
.86231 .40939 L
.87339 .46152 L
.82724 .48816 L
.78763 .45251 L
.80931 .40382 L
s
.86231 .40939 m
.80931 .40382 L
.81488 .35082 L
.86788 .35639 L
.86231 .40939 L
s
.86231 .40939 m
.86788 .35639 L
.91099 .38772 L
.86231 .40939 L
s
.87339 .46152 m
.86231 .40939 L
.91443 .39831 L
.92551 .45044 L
.87339 .46152 L
s
.87339 .46152 m
.92551 .45044 L
.90905 .50112 L
.87339 .46152 L
s
.82724 .48816 m
.87339 .46152 L
.90003 .50767 L
.85388 .53432 L
.82724 .48816 L
s
.82724 .48816 m
.85388 .53432 L
.80059 .53432 L
.82724 .48816 L
s
.78763 .45251 m
.82724 .48816 L
.79158 .52777 L
.75197 .49211 L
.78763 .45251 L
s
.73895 .43083 m
.78763 .45251 L
.74452 .48383 L
.73895 .43083 L
s
.80931 .40382 m
.78763 .45251 L
.73895 .43083 L
.76062 .38215 L
.80931 .40382 L
s
.80931 .40382 m
.76062 .38215 L
.80374 .35082 L
.80931 .40382 L
s
.34135 .14577 m
.33027 .09365 L
.37642 .067 L
.41603 .10266 L
.39435 .15135 L
.34135 .14577 L
s
.33027 .09365 m
.34135 .14577 L
.28922 .15685 L
.27814 .10473 L
.33027 .09365 L
s
.33027 .09365 m
.27814 .10473 L
.29461 .05405 L
.33027 .09365 L
s
.37642 .067 m
.33027 .09365 L
.30363 .0475 L
.34978 .02085 L
.37642 .067 L
s
.37642 .067 m
.34978 .02085 L
.40307 .02085 L
.37642 .067 L
s
.41603 .10266 m
.37642 .067 L
.41208 .0274 L
.45168 .06306 L
.41603 .10266 L
s
.41603 .10266 m
.45168 .06306 L
.46815 .11374 L
.41603 .10266 L
s
.39435 .15135 m
.41603 .10266 L
.46471 .12434 L
.44303 .17302 L
.39435 .15135 L
s
.38878 .20434 m
.39435 .15135 L
.43746 .18267 L
.38878 .20434 L
s
.34135 .14577 m
.39435 .15135 L
.38878 .20434 L
.33578 .19877 L
.34135 .14577 L
s
.34135 .14577 m
.33578 .19877 L
.29267 .16745 L
.34135 .14577 L
s
MathSubEnd
P
% End of sub-graphic
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{402.125, 105.25},
ImageMargins->{{43, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnVuPHEcVx9vTPbednb17d71e25vEiWPi+IJN3pCFuCTiIj6DFSHFD9yC
UeCJF4SEQBAB70gI8cC3QMr3Gtynqs/pqv5VT7V3bb94pe3pqXv9z6nqc+ua
Hz159tlPfvrk2dNPn5x9/PmTX3z29NNfnX3v558/TyovFcWlvxVF8fSsqO9X
z2/9Rf7+Xl/8lwH3H9Ufo7qZr+SubvEfLuuRZhWlS3FVi/9pyaKsh7BqMnyb
D+qP0uqVNsrn37br66JO+re2I808L90pt1knfeGavafjmUCzy9Rop3Kt9Lv/
+6d2PobOl8EUV4b2rL5K2V+71t6pP5Z19hRGtaFQVJAbpcm4RlDuS+mjzp/A
WBc61qoeqst1RNHZjbWGa9hN6JlLeBu6XKwfrnybKew0/Yj+RQqIv/jSkvg7
97+QazgZ4pO5Tn8K049rKEWjVn7pMt+CwS0hjag0y0wbKWTEx38GKJZyHQcT
8+uuIVRDV/lPAtHw+8rd+Unf0AHt6t2wCVbtNG2Dyv9RqbUrk6rag1wl5jOT
axXPf+QXZIeYP3Pzug7974dpwpFzSNvozsuSwyY/qK+yA/wYaLcXsvHKOqza
Y67v5zIVJvMGTFM6lh3yI9fCNRjdZSVHepph2ia0chvSaIv4ASBwUF+FVrZU
3c6gRJ6HDCufmzDj29D8hgGs5R66xk9hhEeQ5tbhuI2CoiFjLlO43FJ0t/Xu
+zDIQxjkxF+jBRBwg9RY6IK9rQBuKagvNNdJzNjN5zSEol0EmeU9nfa+3n0y
CIAp8bt2Om2tiVYpt4y628JKh1Tf7SlID1x7VwGQK5A2livvauPwDuHt7Bvv
QtHLkPYdgO4YoBu3y/n/EezwY8kLd9NxzzbzLvR/AP3fHYYnPfNLxdEeiCZN
uAkyH96E1ojVv50JZgVgVgrmSMGcAZgtWSIkRNTH2zAWWhMfnh9Ykio3e+Ak
NiY56KIhbsndKpEuJG8cQNzkkez71jBYT2AKBDXpLZImSVsAMIlyZ5lE/BZM
4gQmUQKIleojy5A7m92zA9lZJsnuDIMsEhgFlEpXN4nUZYr5Lhq3EeA21qXt
M5qszfpaRfz5SsBLalGRAuIWrVxDTfel4CZJ0xRQEb85YSY0CgyEjAbs5Fre
veZQniRTg9juCDAiz2OYwqnpZO0xSZkNgGsjhEv+RyriuTGtbExrifPBy4Wr
UpDIOvAqQTJhhp6hLwLNyJYOCW9gwYnSaJHuZdYl6Kjc15NwhsaMYHPzkNFy
nQO0pDvvWnuatoCxEPALqOuYsTgOpygDuwZpr4IstAZIdaZyD9pQOGw9WTrq
/KugzAZQJuaSqFxMGSfWdTQWWyn+GR3lo3WHqELUi6gi7VFdosoM6jqqdDRB
h8Q0WC+tR5N8n2dSZNpPEbbH9VBkDnWdwao4lA/ev40sJHARxxKdaKXs9vSa
u2L6rAf3XF6bRuEKMk+A3NHzYTpoqXT4IXe1zHqG6lcNKe+0d11RepEtXPCq
1coeWwKtnJdHpbttiPx/y4aelOCKgHZCk1l9Vw1aSgnb58WR7QDgIB3ayOZy
A/dR/SkGtEj+rjSD1twupBHH0NokoSHD3yLfvgYUrVIUNYeY2T4ioV6IJ54m
QXqeJOZ6o8gMCEtyxQzaI1eQU7ecJTKpXZJY6HALDMB6XxqhiQAdxyKt2tdF
e7EXl0rTfoq77bJa+cng6vcreOKYoCFIU5QW9k4m7V4SL8izlJRlEUhbXrgs
OiLuKf4goudu80R0KkftifozjhftcyCPlN7OLmQSq8dxkiR1tH140LMWfgXE
mWYSewrtkVnGrWmHmoAhQm1toUCSubTAB+JRkO8URSBsnHTzJ30IUuO+DKtu
S0yTS6NA76pq/p3DbNwmVF1QPgVwcQHS+iEzi3CRDMGDluEllW8kn9Ojk/Bx
smpHx6AVkht4kGsNp/buA1aBn9anUQhClblGymiJ+TnvQtfkwRxDubWOoO6w
tZzTKZyrP2OfIl9nbkgA7YU7kEZxFUkROqMctUeU3gFKL4HSI6A0RVbQBrcD
/W6u84v0kJnKLaGcU0ucETFyS+/oHRGSVm0FreRKMuQsSkaDScuiw8tetw0E
2tZnF5GFFqBJsdva8o5JPAAoOY5KrbsLuU6dyA6gIrMHKW1moaZ1QyYtq3Gk
d7QbUl1aIwsgAUWyzAB4UwNpFewBjGb9PlQCEcdTXfeocmF4Gfa7A4UHga+/
WSQhLRTSIElgcOU6UmVuk0SUORDFgmuQFCudz6qILJLtBjr00Plo2f3IyOl7
yG3SMZ5z3Uvwp8jfE+XTMkTek78F3nEXz/pTEnb1LlUPwF3U2bLXTjzX+nls
KV5ua29P+biLgqpOsrlUffVIWHYhROMUbxxCmhiMNhU1MiyRub1UlJZ6l1FX
vkmQUeMzLWImPAx3BqcLKuuVuilE9qKkDUlA3FQ4c+q2AL2pyJDGRLOzB91C
7yZ6dwJpyXJRy/cUgAngdgy4WeCJxfVONO1El7ulbUAaKVNuN3YAbBUFazIE
j2kyUwBlmsqNWpEdektYIxMKeYKbthQBIGmbkMvTJoEkouIgTiEJ2XJPelvu
d7gSeOT6XIR0z+WtXB2H+C2tuKTqMjFoV7PNnwQXAsWEnq3e3NPelpPh3VY3
yj0DYixNcAGgTgAo2kiTaoi0fNrbx+b6uhExth0xyJVhYjkJ7Y4YHB4ZqRkR
ASxtN1Uu6kvMEyaAx6+LRBCz8d9qEpiWtpMqx8CR3LbXhcZm1klOCImGV55Q
SbhdAyZtyXBtfE45+SBMbkA14CLz4n5PeQaQzEwmoF/Xu0NIOwrT2H4azP6y
Dvy63h2uT4uG7rYaVKRoVyPS5JajRxaVO4HJHoGucApphxdT7g08g+AhKwqJ
G/TUyy1HZjMqR/BcgemcQNrxxZTTsWy/gecNPOeFh2xm54GCypF/rqe9YOhX
Xx4UVE7HsvMGnjfwnBeebRjmeR7iVI5ilqgcwXPt5T3EqZyOZXcNPEk51tJu
QNppaoq50muUtp9Nxfoz1nAKHXpGuRuZ5ZJTjFwNB5B2vb/cqulEykkSteJB
Sa78pC+AapDCi9X4ddNrPXkJ3ZI0vatKcTIz7IQgeEN+0VGKsVp0lIDH8DTV
pPPZdJTLLMztFcEtSDuFtIixixQJ3A6cfAu23/xByqUBTsaJZZgbYW1p9lav
xXsElgxQ1et/6W3byNOxgGTBTcFEFPVBJKC6kZmz6Mdz2k6LCZIdLNBPm1wD
KFGJIug2jBztYaftU0kToM54TSSC9uIfOBm6gOBHZmgK3qCXR08y26MDBoZF
YIZ1c0OB6AnS0kEUWqLgHOCOAzoEA2iPTOIz5ohk+GVG17kHoazjCPPWWGAc
+XIkNzI85pKR2GehLWes1Su63ibrvT/iwqW3O5PxzVG5OJbQcV3B7xrv5OBr
pwNsQtpJqlw5eK2U0McgfM1Rswz3uAhpS3MjHczOpdaN9+AY2gyroXCUkFzk
oC29o9dhaCMcKXhCyGRocFTN4gxK6E2+0TZ0BNvGKHxiV7TDy+h767rRSyJE
+cZ8rjVi4Q5JECkhBo/7Vl/2ALwiqlYFGYUXP2R7Edtt/ZpVK1jfPD0WqFxo
EIqbfn0VP8MYck3N6Uaxi0Qnu4mUmq+061Uzmz6HTr9wQjxKwknfyzu0rZDw
tR+2EfQ5VqKQoOcVt4A/nc9muopGFPBcrO62Zhe0tRepB+3pUSRYOsZMZdig
T3kReKLEZP4lZyaBQeQhG0NuMCu5sihEwJE5qXikX24McaJgRKJJMqQxrRFq
uT0otwSaubr95xhFGrc7tmNNGACJmFTDIidMSzQvovmjk0pdYch3lOsoKtVJ
JplAJ4N2pZUDyLU+TBOk6KfEyUdnLj8Z6hKlkcyQjP/J3ppoy1s/lkySKAlp
UVDce24cPdGK2tuHcvTqAIXGZFJS5S3/OjCRhIJXc2OYclXBpHc+YyykB+S+
K3APIJ4DKWgZ5r4iQe0RaQ+AtLNMvS3a+JJ6mxPTnaQvuhIBSoQUnao+MgOf
erJVrnkFar1uLcQQlSh4Yb0H7onWuAw1ZJ+UXHoDimKYSV84aUGWMTHiePLV
0Clt9MRJvPmZ+3Kf6X5BlLf/pzObiNXJA0rHt1FwrlNvqwb7JnkMJKE3Xkwl
9LxLYBIaRByqSye85T6ZTMEjJY3oYfbMh0APet8w9/3Fm1BubWCmB751OFAm
Wcxq6d92zz3ajHbmQWSJTBpTJQHu+UobuYtOVEluk7kvCCcx71pxPZZjRRq3
bPnWUSivDoOYOJ/8ofQeSwQxEU8UCul3luL84LHagzPxNoUyvdOLs1mX5qq2
yaEBU8/Rq7g9/zqqAyXrANIkiPQ+FnmVks6NiXJxlOs27PMdU5E8xqrrPlp1
H4tNn/W4VgIrvXX/GsAkqYUgpC2h72yYi4F1FPJjBCad7EmwumcQHlxFSo25
x2hZR1HUzWeSM3PBjISKVWt0XRAFElrKbmvtvOl0URBS0C5BCKHm9T2dTxox
e0AdYs5chm09oOKhphBrMzAdURqfGOZrEK50JN4kjeudJIa8C5wlgYykqvOi
+DiJGC/7syRs4bw77z6+duCC8sqFydM9Xz2AoYm2qds43c4L5IcwdpLdSUqi
XaGPCOYJo9ZoE6UNk5AlKZ2kJTKqnwDKzZBNRi8B6gVATZvo0TCoSbGnILs+
qO09xyL0ltGuPVG60FmzOY7v1hCzsTW1tLAfbambj46qjYT+K8PANJ4byq2m
FlE0S/IV4MeZEAprSdJQppxoza0QKflEB+XKuPAujJk8YvIQJ2kyd3eIToyn
fbRSVo1yiQ8jy4hNlkRJMnXRgdwOKP69HeHDclVwfMFxC07zwMo0bg1CrWMx
L93MuuUThix6/AiAFk0qQ791HpzcOm1jhOdxy5GP8aJeA+F9GD85It4fBKs6
7RqYmnviN3NKGddSOTpAn465eP/FoF61Vkuw/dHTp1Ko6YekaIf2eD/QKZq3
jeSpfu9d2lzHLiB7IhFrf1dy69HaW513AMSk4657Ykb7yRFBNyoSTxjcHVBX
f6jTsaieaC+g4+pcZf5xFvIm08b6MeBib5ffVTQswMIPIniaFKE3y4Eg8xXx
HJ2Zrfl/AwbWo94GaXSwTu75xAQSsSL9qg25kdYeLuZXZWDP9CwT2B/bacmw
HQ+e/ACUuIIewdBdwEKHZSwC0A5CIIQk44f1rThuHsEEd1j3dT3Ud4vUzLpa
sNOi3O/rUfB3hq5kM4uE1TkjkfzRtSTTBlZSP5/IJi+frXlrb36CX8DAkxbJ
jIVh9vckTJL7V5hsbowpMe2YGFRzbe17p8RvMqdDmzrpyhQ5kHuK/JcARU5E
cGsswWRL2ug0d6K5N9xIf1t/JMNjXQf9kWfkEDCBQ37I045IwQlMgyGuvDOw
6YAcUzZJH8bze+0wI1JEhk37a0J2lXb/JXd1XfLGuR70R4OCCZC/h7wPfip/
qD/K1BAX3SEC8WSG/5GGUru2b6idVt8n3LLOo+V+OlF6sZ9Q/a92I2kb9d17
rvifYAJfeaTbad90xeXLgB+OLS79H2hMvcc=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 401.125}, {104.25, \
0.}} -> {0., 0., 0., 0.}, {{10.875, 191.5}, {101.75, 2.4375}} -> {-6., -4., \
0., 0.}, {{209.562, 390.188}, {101.75, 2.4375}} -> {-26., -4., 0., \
0.}},ExpressionUUID->"607bdb2e-ddfd-41cd-9915-abbab6e846d2"],
Cell[BoxData[
TagBox[
RowBox[{"\[SkeletonIndicator]", "GraphicsArray", "\[SkeletonIndicator]"}],
False,
Editable->False]], "Output",ExpressionUUID->"7dbe5677-75fe-420a-9c76-\
bd1007d06de5"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["All", "Subsection",ExpressionUUID->"e62e91be-fdd5-4809-8e6e-8fc0eafd3fac"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"JohnsonSolid", "::", "ID"}], "=", "\"\<`1`. `2`\>\""}],
";"}], "\n",
RowBox[{
RowBox[{"On", "[",
RowBox[{"JohnsonSolid", "::", "ID"}], "]"}], ";"}], "\n",
RowBox[{
RowBox[{"Off", "[",
RowBox[{"General", "::", "stop"}], "]"}], ";"}], "\n",
RowBox[{"Do", "[", "\n", "\t",
RowBox[{
RowBox[{
RowBox[{"Message", "[",
RowBox[{
RowBox[{"JohnsonSolid", "::", "ID"}], ",", "i", ",",
RowBox[{"JohnsonSolidName", "[", "i", "]"}]}], "]"}], ";", "\n", "\t",
RowBox[{"WriteLiveForm", "[",
RowBox[{
RowBox[{"\"\\"", "<>",
RowBox[{"If", "[",
RowBox[{
RowBox[{"i", "<", "10"}], ",", "\"\<0\>\"", ",", "\"\<\>\""}], "]"}],
"<>",
RowBox[{"ToString", "[", "i", "]"}], "<>", "\"\<.m\>\""}], ",", "\n",
"\t",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"JohnsonSolidNet", "[", "i", "]"}], ",",
RowBox[{"AspectRatio", "->", "Automatic"}]}], "]"}]}], "]"}]}], ",",
"\n", "\t",
RowBox[{"{",
RowBox[{"i", ",", "92"}], "}"}]}], "]"}]}], "Input",ExpressionUUID->\
"428c7156-5de3-4819-becc-2606b9bd9781"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(1\\). \\!\\(\\\"square pyramid (J1)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"f0dfa9f0-039b-4f60-9ebf-7113407f4321"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.5 0.348596 0.5 0.348596 [
[ 0 0 0 0 ]
[ 1 1 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1 L
0 1 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.3257 .6743 m
.3257 .3257 L
.6743 .3257 L
.6743 .6743 L
.3257 .6743 L
s
.3257 .3257 m
.3257 .6743 L
.02381 .5 L
.3257 .3257 L
s
.6743 .3257 m
.3257 .3257 L
.5 .02381 L
.6743 .3257 L
s
.6743 .6743 m
.6743 .3257 L
.97619 .5 L
.6743 .6743 L
s
.3257 .6743 m
.6743 .6743 L
.5 .97619 L
.3257 .6743 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy1m4d/VEUUhR8kqEhTEBBQEkCa0pv0Jr1LEUUEQggkdELovTeFPxnZd4Y7
j/gte3dk+P3Cbs4993u7Sfa9OW9mdnb0dXed6+jr6exo39zbcbG7p/Ny+6YL
ve+klgFFMaC99tVe1J6/LYr3/5X/JtX+C998gudvyoeWt8Z/993rhqXX/Uq1
l/emYemf8mFQFWiWAP4bjtkC2qsk+ysoDQLtZZL9JZQ+B+1Fkv0FlAaD9lz2
51AaAtqzJPszKA0D7WmS/SmURoD2JMn+BEpfg/ZY9sdQGgXaoyT7IyiNBu1h
kv0hlMaC9kD2B1AaB9r9JPt9KE0A7V6S/R6UvgftbpL9LpTaQLsj+x0oTQLt
dpL9NpSmgHYryX4LSlNBu5lkvwml6aDdkP0GlGaCdj3Jfh1KP4F2Lcl+DUqz
QbuaZL8KpbmgXZH9CpTmg9aXZO+D0kLQLifZL0NpMWi9SfZeKP0M2iXZL0Fp
GWgXk+wXobQCtAtJ9gtQWgXa+ST7eSitAe2c7OegtA60s0n2s1D6BbQzSfYz
UNoI2ukk+2kobQatR/YeKG0FrTvJ3g2l7aCdSrKfgtJO0E7KfhJKu0HrSrJ3
QelX0E4k2U9AaR9onUn2TigdAO247MehdBC0jiR7B5T+AO1Ykv0YlP4E7WiS
/SiU/gLtiOxH6pII0az9cO3hVK0ShEO1h4E1oWiRU03hN9RqkNrjuy+90fDT
5ODd+ZHaIT05aEdthddKv76B1vG7EAdM+MyJaLWO34TYZ8IXTsRn1rFfiL1g
8sLIp497sceOQ5GZYIOtIyB2mUC5mBBDrEOntGKHCRR+CTHMOnTOxTO1F0a+
bcJuteOMdMK+so6A2GzCN07ESOvYIsQmMHlh5NMVvNhgx6FkTbDR1hEQ602g
+EyIsdahUUqx1gTKyIQYZx0aRuFYzQsj32phV9lxJjph31lHQKwwod2JmGgd
K4VYZsJkJ6LdOpYLsRRMXhj5FDKKJXYcis0Em2IdAbHIBIrShJhqHUpGxQIT
KC8TYrp1KLphPvTCyDdP2Ll2nFlO2I/WERCzTZjjRMzq16GcX2E2Rszp97r1
svA9NoaRTz+zYoYdhyI0weZbR0BMM4FyMiEWWof+4oofTKDsTIjF1qG/e7wn
5YWRT5853UirfI4bw5ZaR0C0mbDSiVhuHTpj6d5i5ZzWGLHSOnTe1GkRz7GN
YeTTObsYb8ehOE2wNdYREN+aQJmZEOusQ1c8vHZ6YeQbI2y81NLVn2Dxch4Q
o0zY4kRssg4NGzS7UBnNNEZssQ6NmDQgwtFVYxj5NForhttxKHUTbLt1BMRQ
EyhaE2KndWisW3xpAuVnQuy2Do24cSbMCyOfRvuaj6skiMawvdYREDGEUB4n
RAw6mg4UqRToDkDdt1R2DK78iPuZ9jhh5AvYGEK8sBh0hgoRQ8guJyIGneFC
jDBhhxOxzTr0wcIJQLorRjDyBWwMIV5YDDqaNdQ5pBToHiAhNlqHpgZ1JqsE
DucptRJqdIrvZ1rvhJEvYGMI8cJi0BkvxAQT1joRq61Dl1Sc+KMb3QQjX8DG
EOKFxaDTJkQMIXRbnxAx6IQFHpNNoHmHuoOpskNDMg3u+pmWOGHkC9gYQryw
GHSmCRFDyCInIgadGULMNGGBEzHPOjSkx0lAmosjGPkCNoYQLywGHc0cVkII
TSUSIgYdHbTybult1g1zZYciIf5gZzhh5AvYGEK8sBh09OdSCSHTnIgYdPRH
W/m00Mek7s2AskO3FPCDSfP/BCNfwMYQ4oW1WYdON5UQ0uZExKCjk17lbEun
2bo3k8qONULQiX28E0a+gI0hxAuLQUeXq8p1ki6QhIjX4g1CxKv1GCcijggU
anBgQGuOCEa+gI0hxAuLQUfDnco4iwZYdW8jlx26GY1DuuFOGPkCNoYQLywG
HQ1UKyFkqBMRg46Gy5VxOg3Q605DlB2azMBIQMsICUa+gN1vx/HCBlmHgo7m
bUqBFk0SosU6NLuo2aNSoFWdQrRWNfNryivMYH1oKd5Pev1HDtNl5UOL+cpn
h1Uq5+G6asKRiuB4a6E/73xh/dKHWnjtx6D06WZS884C553BbnI6Pe/cft51
CXnXVDS5wCPvapO8K2WaXLaTdw1R3vVPedduNbmQLO+qtrwr8vKuJmxyaWPe
dZZ514jmXd/a5GLbvCt/865azrviusnl33nXouddR593D0CTGxLuQenT7Y64
D6VPt7Mj766UJrfI5N2vk3evUZMbn/Luwsq7gyzv7rcmt+Ll3ReYd09j3v2Y
jg2haTtNP7J1tfxm0v9/Xgz4F+n1YKk=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {287., 0.}} -> \
{-1., -1., 0., 0.}},ExpressionUUID->"e17423c3-2c2c-4585-a267-cc604306568e"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(2\\). \\!\\(\\\"pentagonal pyramid (J2)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"13b5239c-51a2-4cd9-a708-f664de26386a"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.05146
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.449727 0.338732 0.525731 0.338732 [
[ 0 0 0 0 ]
[ 1 1.05146 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.05146 L
0 1.05146 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.16158 .52573 m
.36069 .25169 L
.68284 .35636 L
.68284 .6951 L
.36069 .79977 L
.16158 .52573 L
s
.36069 .25169 m
.16158 .52573 L
.02381 .21628 L
.36069 .25169 L
s
.68284 .35636 m
.36069 .25169 L
.61241 .02503 L
.68284 .35636 L
s
.68284 .6951 m
.68284 .35636 L
.97619 .52573 L
.68284 .6951 L
s
.36069 .79977 m
.68284 .6951 L
.61241 1.02643 L
.36069 .79977 L
s
.16158 .52573 m
.36069 .79977 L
.02381 .83518 L
.16158 .52573 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{273.875, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJytnIlfVUUUx5+iiIIhqODOC0XDLUTcMTQUcE8rSsuUzILKNJf20nbby/ay
tMX6M407M5z7iO+Z7mn085HLm/O73ze8e+/MOWfOvANDF4dPnxm6OHJqqNx/
fujc8MipC+W+s+dHm6omlUqTGkb/l8ul7PfbpdLYD/evMfsRXtyB3//KDpMz
/ohvuOUOVbfH3rCUm/50hyliCuZg/eNfJ2avJkPb017+O5iqdPlvYJqiy2+C
aaouvwGmal3+K5hqoO20l1/PDu4zrtVFP4MpIv8JTHW6/EcwzdTlP4CpHtqe
8vLvwTRLl38HpgZd/i2YGnX5N2CarcuvZQd3cZpBdMqLvgJTRP4lmObp8i/A
NF+Xfw6mBbr8MzAtgrYnvfxTMC3W5Z+AaYku/xhMLbr8anZwF2cpiIa86EMw
ReQfgGmZLn8fTG26/D0wLdfl74LpHmg76eXvgKldl78NppW6/HJ2cJ/2Gl30
Fpgi8jfBdC+0nfDyN8DUoctfB9M6Xf4amDp1+atgWq/LXwHTBmh7wstfBtNG
XX4pO7iLs0UXXQRTRH4BTNug7biXnwdTty5/EUzbdfk5MN2ny8+CqUeXvwCm
ndD2uJefAdP9utz5CtWZ5UT2m7tMu/9DTr7PjKzpIbBGYNPA5DyB2qxpAKx9
Nliz9IyuHr3BYx5GLlFZYPTg7bHBVgpsBVj32mBdAqPZcZ8Omw4m90m5C0B+
0H4bbEB6Ri7sQWg75mEzwHQ4+zktazpkO/FhaHOv6K8JHHJgH4Q258m7JroD
IrAj0FYjMLrRA4x85QegrU5gu8B61AarFxgNPQFGbjld49kCo1EyAjsAbc0C
o/HfCFsgMJp7HvWwu8BED9kSgdHkGIHR498qMJrHA4wCHRrllguMPBQjrF1g
5EwFGI0ldI+vEdgqsD6iw2iaWScwckwDjMI3emC6BEY+dATWC22bBdaqwyhS
pKevW2AtNtgOrc01Ueg0aIP1CoyivACjCJfGhX6BUfwagdHcv09gc3QYmchr
PCgwuv4RGI1YRwRGD6CfykpzwUQj1qDAaKCPwDZD2zGB0VQfYE1g2gRtxwVG
LmUERmPpkMAoDxdgdNd0QdtpgXnamDHGoTF5RDjGE591P/NkZXYc/e+9D8zG
UOD4nPs5tbJtjBZ8D0TRhPA8tLn8qIsWvLuAaR8Klwk2RWAHddhaaKNgp1pg
3r3DsWc1tFGgRe72Hh1LkxaFe9OljwG2EESU7yBYrcD6dRjlWihunSmw3TqM
plOKmWkE87EoRioUChF2lvQxAqPUFaUBGgXmZzCc9yjLRikIGuS361jK9VEi
ZK70McAoT0meBMGaBbZNh90NbZegbb7A/PSDLgi1vQRtdKttTMcukj4GWBlE
dHkoz7VEYF06jO5HyrGVBdapw+hTofweXX8/AOPVpOGLsEuljxEYjdeUsmwT
mI8VsNM0T1K6dIXAVukwciEoVUvjox/m8Ckln4mwK6WPERiNGpR9Xi0wP7jh
sES+OWW+1wpsWTqMvAZ/n2C0RAHcZWhbJ32MwGiSuQJt6wXWosMoHKe1iA0C
8wMHTjeUdSAY+ccLdCy58rS8sln6GGA0v1K+jJZ2tgpsXjqMgij/RKFrQU4Y
rVZtlz5GYJQnppWyHoH5mBJHCMpq0irdToE1pMMooeDvW3QZKSSihcdd0scI
jMoirkJbn8Dq0mEDAvM3WBjvJ5Rz0Iou5dKmVVJy0+gR15D3yduHEyl4oPfe
LydW207cKyfW2LpKOehxiEKfWb+8vU9cJ1283QKbmQ7rFVi9Dit6w9OqWMCm
PJ47pI+N6bD7BOadhKQhrVtgTTqs6GBLuauATZkatkgf56fDNgnMO9FJ0ykl
niLYopN/l/TRx2FJbkmnwMo6rKjD1CGwVh1W1JWjVFDApjiea6SPbemwVQLz
N12Ss94usHYdVjSMoAc1YFOCnuXSx9U6rGg4tkxgPlOXFCi2CqxDhxUNYenc
gC2DqWjA3SJ9XK/DiqYCFgtsgw4rmqRYKDAfWiSlT+hTvgPYedLHrR6WkoZq
Eli3DiuaIJsjML8MlZS601e3khKNDdJHvyKYlAKtF1ivDiuanKWpKmBTUsl1
0sc+HVY0yT1DYAM6rGj6vUZgPtZIWhggVy6CLbqMMVX66KsekhZYqgR2SIfp
Sz/jQ5Ax1GGPsi1JTYhm/s8amWvylWuFl+iG5cRB24n54iKFPJFe0EplvuxJ
4USAFV1DzRdk6R40ru4eFZhej1V43TlfxCaf2rgini+vk+caYEXX6vOFfxrm
IzBKgO0VGP0txvqGvFiCngVj5UVexkHjpLEmpEdgNEcbYXnpC3kKERjV0eRF
OTS5Gyt88nIhmoWNtUcdAqMZzlgVlZdY0ewRgVG9Vl78RQN+gBWtJGsTGA3W
xrK0vGCOhk5j9V1eykejnbEuMC8y3KrDilYsNgmMhgEjLC/M7AGrscozLxml
RJux/rRWYHRLG2F5mS3dOAFWtGY3LwCmG8dYTexe0ZWJVDe7v9CVRdPfGjnR
Pc+uOJtm/EgvqPzLjcSubJyG20ihNcE6pWc0Rxir49sFRoOnsW6/RWA0qhh3
FMwVWA9Y+3UYXS93i9Vq9yGN3eNgE7xy169BOI0mqMrdIa7kzLmmzrGPyI07
WyheIqcgyCnw69Hlxj0/xh1Fxv1KlEmgySLIKSVCnnTYPOXSMe7iRETGPWGU
IKNHJMgp50fxUpAbd8sZ9+IZd/qp1RQsvwwmqpQP8ivZoSInO1500ouMuymN
ezVpuYfSP0FOS03k9Aa5cRercY8srRpS4i/IP8oOFWscKKI10hZdbtyHbNzl
THuoKSwLctqhTZmkIDfu/zbuLr8GJkopBPnX2aFivRJFtMeeAtsgN+7gN34/
gPHbB+i7DSiKCHL65gTyxoPc+L0M18FEbmOQ/5IdKooyUHQDTOS8BPlNMNH2
gCA3frOG8Xs7jN8K4r9ihOvth/0vt0IPKyW5dcL3mfwNb/aMN7kXd+A7VEqT
/gEwKMCd\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 272.875}, {287., 0.}} -> \
{-1., -1., 0., 0.}},ExpressionUUID->"ca4701d3-edde-4e08-9990-f5447499c68b"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(3\\). \\!\\(\\\"triangular cupola (J3)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"158fc44d-4fbc-4a41-8e88-95dd42ee4a67"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.68301
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.5 0.348596 0.341964 0.348596 [
[ 0 0 0 0 ]
[ 1 1.68301 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.68301 L
0 1.68301 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.1514 .34196 m
.3257 .04007 L
.6743 .04007 L
.8486 .34196 L
.6743 .64386 L
.3257 .64386 L
.1514 .34196 L
s
.3257 .99245 m
.6743 .99245 L
.5 1.29435 L
.3257 .99245 L
s
.6743 .99245 m
.3257 .99245 L
.3257 .64386 L
.6743 .64386 L
.6743 .99245 L
s
.6743 .99245 m
.6743 .64386 L
.97619 .81815 L
.6743 .99245 L
s
.5 1.29435 m
.6743 .99245 L
.97619 1.16675 L
.80189 1.46864 L
.5 1.29435 L
s
.5 1.29435 m
.80189 1.46864 L
.5 1.64294 L
.5 1.29435 L
s
.3257 .99245 m
.5 1.29435 L
.19811 1.46864 L
.02381 1.16675 L
.3257 .99245 L
s
.3257 .99245 m
.02381 1.16675 L
.02381 .81815 L
.3257 .99245 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{171.062, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy1nGdvG0cQhilRvfcukeq9W9WWrDiJnQSOYTgFQRAEUZwEcpBiKPpX/pGK
7m41Q1LPLG/PuA826Zl33llembZ3/vry5ur3vy9v3r29LL+4vnx/9e7tf+Xn
/17fiYoNhULhQ6HQUC4Xou+3d/90f30o3N7eRsrAj6Po40nEcVwhKBQT1rtv
0Z9jkB0m8ENQnYLsIBP8AFRPQPYogT8C1TnI9jPB90F1AbK9TPA9UD0D2W4C
3wXVZyDbyQTfAdVzkG1ngm+D6guQbSXwLVB9BbLNTPBNUL0E2UYm+AaoXoFs
PRN8HVSvQbaWwNdA9QZkq5ngq6D6FmQrmeAroPoeZMsJfBlUP4BsKRN8CVQ/
gmwxE3wRVD+BbCGBL4DqZ5DNZ4LPg+oXkM1lgs+B6leQzWaCz4LqN5CVE3gZ
VH+ArJQJXgLVFchmMsFnQPUnyKYT+DSo/gLZVCb4FKj+AdlkJvgkqN6DbCKB
T4DqGmTjmeDjoLoB2VgmeL5rDzyQ+Z7VfK/IwNsj33s13zgTGPTyjcD5Zo98
M19gGs63Jsi3ngksrvKt9PKtUgNL5nzr93x7j3z7psAmLt+OMt9uOLA1z3dO
kO+MI3Dgku/0Jx5FnUWaowpBDTaZTTXdy6LP6M9BPYvmKpmzvP9daYdgjdHf
jZFoL8ywSQx3wgxbxHArzLANZOthFO3iO9CwUwxXwwy7QbYURtEjvgMN+8Rw
IcxwQAznwgyHQFYKoxgW34GGo2I4HWY4LoaTYYbUfoyFUUyJ70DDGTEcCTMs
i+FQmCEVzv1hFPPiO9BwUQx7wwypjOwKo1gR34GGa2LYEWa4IYZtYYZUADWH
UWyLb2eocZ5qDqLYEYumCoqHCY7qL/NXxXwtlXyc/ugQEClVolX0VpqkApkc
rItFu02rB5eaAKJdFYtOm7Yl5Z1g3jGxg27bQauA0tJSt+hxoImamlhysCAW
fTZtJ8gorpnxL3YwYDvoElBaWpp2eBxoMVBO6aAkFsM2rZYKNGgi2mmxGLVp
B0BGWdPMrrGDcdvBoIDS0tKI0eNguGYV9R2MicWUTTsKspGUDkZqzhU60FWk
pR2qubKQdkJAVOoR7SDIPA5o6Nqf0lW/LG7edqDXbVraXrFYtGn1LutNSdst
Fss27ayAqJEg2i6QeRzQwLIjpasOWdya7UDjclraNrHYsGmXBERtIdG2gszj
gCaKzSldNcvitm0HmsnT0hbFYtem1bqjaNI2Vcnu8fs26eZDs+j7KYsPbKK4
PCuKbfzt0IbHh+88Eh3VWVz8C5KfLMqT6uVFn3WWR8VdI8hoDES4PduVdgd0
+smBnn4PrXYrdF/QLE3nMTtpbjcqoWi8qBXclk1LxV1aBzqS8dzF2nFSWKYZ
bQ/IVm0HGqApnZADTSceWk0nlGepydGZjSfaU3E3bN1SZn3gSYO184z6t5eO
bTxJW8sOKvOod6Iyz1N2aLlE+7LkQMtTD+1IDah+itG5jqe4o1NGfQQ1Z2Vx
4ClPtaymLUfq5fRGm7BptUCjlVEwIJmn36i9t6AUoUNUr42hmEDXBPV8Guc9
7Ze2jXTnEa3OiAZtWi3QKBDRJanjn36bVgs02vkpgYxGRz22AyrVyBWFs31Z
nMeBFmg0F6MQcCAWXTatZugT0FJrcywWHZW0XKDRNhbFucdi0WaSRt+fgi11
uWfWEXTMseYCQJQDnsriKilqQJ+AjFpmwjWG0VJ7TFujjpaKNaKlEE24ok1L
q6BumnCOlgaBtAqiJZwb6NL9SXAqiQjXHEbbl/IgOFoqhImWKkTCtYTRUvKg
1Tra9pS0NA8gXKtNS6ug6ptwjpZ6eloF0RKuzaalVaQ9WG4EH7aKtO5x5GKf
ivq4DpvWvszr4xxt2gsnbaTrtGntyFSf1qVZunvsOPpRtMlqeVvpU8C77QsK
GzU/PP6kx3MCKWgVrsqhmBj//ljkMaQYHT9eQxOVRivT99pkZ57DSmeNqhy3
pUPbCaeyVv++XSCtFmaUQ3Xfjgo9VzpTUtUykmIMuaJJkMcBTXjIle7g0QNT
bgOKZg+7YkjRVKc+VK97aLXxoEBCrmj72PVCaUca5EpbMZqyuGcmqGjURo/u
Rd23oyGIh1YHenSZ6r4dNbyu46TKWZ+ooLNBrqjr9zigZptc6aiBen33cAs1
Ejp5I/e6b0c7HB7akhhSK0SuSiYOKXREZj4/ZG7Eel7CIDKS6SiN+lHPaxv+
ldlk1TLPmxt6ysqg1X27QFq9wGiOoqebgobnxRFKdeRAL1N7Mxwd1G47Vmvp
qqYywvNyikY6msbpvh3VSp6XWChWkwPdUqBC1/Pai46faAZHQ1VKgNO2A90R
oVit+3YeWooJOh2izKL7dlR4V714w7UUjfg2PfjZSsoHm2Q0sdMHsWrKwoQD
R9DEo7nePV76nbX0ihE0guj8eOCaopdtkCbcVRukF++6DaL71gPXEfqWDdJw
smODNKjt2SC68j1wTVsHNkiTy5EN0kRyYoN05+SxDaKQ7YFrJji3QbpHcWGD
NDY/s0F2j4lwDcef2yCd6L+wQRogv7RBNIzwwHVi/tIGaYR7VQniafZrExJ9
f1OhjZ18Y7t1quD/OaTQ8D+iG5+K\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 170.062}, {287., 0.}} -> \
{-1., 0., 0., 0.}},ExpressionUUID->"be4e0b5b-0a80-4c25-a6e2-f453af4c85d6"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(4\\). \\!\\(\\\"square cupola (J4)\\\"\\)\"\>"}]], "Message",\
ExpressionUUID->"a8ab9044-a776-4fc4-9613-6245e0f41397"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .5541
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.712335 0.175904 0.277049 0.175904 [
[ 0 0 0 0 ]
[ 1 .5541 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .5541 L
0 .5541 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.3241 .48938 m
.14819 .48938 L
.02381 .365 L
.02381 .1891 L
.14819 .06471 L
.3241 .06471 L
.44848 .1891 L
.44848 .365 L
.3241 .48938 L
s
.62438 .365 m
.62438 .1891 L
.80029 .1891 L
.80029 .365 L
.62438 .365 L
s
.62438 .1891 m
.62438 .365 L
.44848 .365 L
.44848 .1891 L
.62438 .1891 L
s
.62438 .1891 m
.44848 .1891 L
.53643 .03676 L
.62438 .1891 L
s
.80029 .1891 m
.62438 .1891 L
.62438 .01319 L
.80029 .01319 L
.80029 .1891 L
s
.80029 .1891 m
.80029 .01319 L
.95262 .10114 L
.80029 .1891 L
s
.80029 .365 m
.80029 .1891 L
.97619 .1891 L
.97619 .365 L
.80029 .365 L
s
.80029 .365 m
.97619 .365 L
.88824 .51734 L
.80029 .365 L
s
.62438 .365 m
.80029 .365 L
.80029 .5409 L
.62438 .5409 L
.62438 .365 L
s
.62438 .365 m
.62438 .5409 L
.47205 .45295 L
.62438 .365 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 159.562},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnOtvVEUYxqfdLZY7SKkUKHsK5VIKWmmtN0KIMWgIGEKMMcYYK2qK8UJq
43+iojFqNMZAjNH4B9ae8w7v6R5+p/scdvfb9MNu+8zlfeb+zswzvbmyvvrJ
Fyvrd++sZG+srdxbvXvn6+zaV2ubUGskhJEshPBLFvLfNzZ/jR/Fz0z+Ef/o
8ft/+ddSnvblLUBobXhmm389V3y2HYvWXuyVYmwr9ihlWO6VrBsbzT9Hc2ip
WcK2J7zULOEOT7hgCX+ASM+ImY0DdrH/bHc6x5jZ/UqkvKaPiJnt9szm+89s
r2c2Z0m/L764L6jF3Q/YGcvkOwhqATYhmjrg/Idk4Gk3MGsGvoVIY4AdEg1M
uIGTZuB8/rVUDtnBmZp0U9kWU5VIC4AtAfZUXWUJRKh3ThulOQi6BNgiYDR6
D4qUprxuIpFzYj08D9jOPogccyLHjMhZiLQsZrYbsANi2mknMmVEzkCklwB7
dsBEOoBNGqXTEPQKYBcA2wsYzVxEKfO6iURmIdJlwOYB2ydiROSkE7EJLZyC
SFcAo3FGpVeJzDoRmwTibNYd6SpgNM6oZ1BzERHqpVawMANBr4lZ0PBVKZ31
uolEMoj0OmDUq2iy3yMSOedErFlxaF0DjHoVraA0zGsbqSBiTR1OQKQ3AaMm
PNwHEZpAIqVpCLoOGDXmJGC7REqnvG6sqcNxiHQDMKpDctlUIjNOxGo4Lkjd
kd4CjGqOlnxaJmsXgIKIFScchUi3ACPCU30Qqa9hzPY2YESdMPJliNJxrxvL
BSv6bcAoHvU08vOIyFEnYrlg13sHMBor1INUIkeciDUXGngXMJpHqMV3iESo
AiIlMvUeYDTZd/qgdNjrJp4o0CT+PmDk2dPER9sTInLIidjSgiX9ADByDcjV
aItEDjoRWwqwpB8CRs5SP0T2OxFz+NHj+Agw8kLIcaBdMBEhjy9Sosr/GDBa
fWmlVSnt8bqxHStW/qeA0VJH3t2oSGSXE7EdBVbWKmA0nZvny0cttKscd+O2
w8KW/wwwmjmbGqc8Ig3yPj8HjOYGa892F40aBmNefAvFXvYlYDQCG9htuV07
c8BOdQ8w6lTVjWhZ3e1qUxQmX7BI5KCscREWKtX0WIR4EEw9ch3YVfIrAm3X
j33im/zzfg6N94hUwejciYZg7RlwMpVMJVPJVDKVTCVTyVQylUwlU8lUMpVM
JVPJVDKVTCVTydTGk51PFsrN4hw0tAyxQJloJKWcu7q97Q7oCy5kyEq0zZlx
N3bBM6u9quplSj0Rn/fMlAvLvKQXIV5sOPX4nyRX9eYfOy6n5Fa18sXHeS92
vdCgiV313mfO7dbLYbiDkTrMGlm+8aIsBkhDvQGsSp56j1O6tqHLSyuMfCda
isBU3WNDIup9MelJVUp0YUvaMBsZ8l16KQdTpcw0VZE2zIaKrC447URIoTEA
IqreopRTqqJ7ul3tABaVf6oChZQEQ6Kk6nRKgRwJp+qX3m6MJEY2qcjKpVJ8
S8KpARBRtVykO1Epkf9DurmoilR1bqV4sCMSIceIrNk8J2sAMydCw3IARFRV
ZFZXSwIl8huol0bttaoY7Xjd0DAfABFVQ3vCiZA6p1aJU8FoTosaWlVfTPGG
RKkDQaS9Lt9hkDtERMjNohUwPhmgjklq9JIIvRsaABFVn18OaXo8QETIUyd/
KQqd1bcL5PqQh0aU1Ocn8YGJ+q6j9GCGRER96VI63kSdiJCDTuSi4lp9+1Nu
OtXZtiGRft5F0XxDlKhBaHSZxyC/GSvFXUMior6iW3Qiqt9CWxZaneLjNfVd
4bITUZ1LmkfIqYr6/PJ556sQSXWtGxr90UulGqCtG/nz8ZHiT25A3Tg1NPCz
G1C3iBSP9q/xucKvbkB9qdnQwG8QpJ5JTMTq2YJZQHjkR4Tfnb+aabWl8szM
Fwh/eGbq07JtMvvTM1NfHtFOMBbzAQSpL0OibPWh82mY8C9PqD5ziAn/9oSq
4j0m/Kf4kmTKMcW/+VerR6Tifyss5iG2YFqEHv98Ioz8DySsAhs=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {158.562, 0.}} -> \
{-4., -1., 0., 0.}},ExpressionUUID->"8d2bd850-b48f-4168-b822-5e52837ca476"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(5\\). \\!\\(\\\"pentagonal cupola (J5)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"2305f3f4-f258-44ac-a31a-24d292e5480d"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .54572
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.545598 0.145845 0.269692 0.145845 [
[ 0 0 0 0 ]
[ 1 .54572 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .54572 L
0 .54572 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.38695 .46061 m
.24824 .50567 L
.10954 .46061 L
.02381 .34261 L
.02381 .19677 L
.10954 .07878 L
.24824 .03371 L
.38695 .07878 L
.47268 .19677 L
.47268 .34261 L
.38695 .46061 L
s
.61852 .34261 m
.61852 .19677 L
.75723 .1517 L
.84295 .26969 L
.75723 .38768 L
.61852 .34261 L
s
.61852 .19677 m
.61852 .34261 L
.47268 .34261 L
.47268 .19677 L
.61852 .19677 L
s
.61852 .19677 m
.47268 .19677 L
.5456 .07046 L
.61852 .19677 L
s
.75723 .1517 m
.61852 .19677 L
.57345 .05806 L
.71216 .01299 L
.75723 .1517 L
s
.75723 .1517 m
.71216 .01299 L
.85482 .04332 L
.75723 .1517 L
s
.84295 .26969 m
.75723 .1517 L
.87522 .06597 L
.96095 .18397 L
.84295 .26969 L
s
.84295 .26969 m
.96095 .18397 L
.97619 .32901 L
.84295 .26969 L
s
.75723 .38768 m
.84295 .26969 L
.96095 .35542 L
.87522 .47341 L
.75723 .38768 L
s
.75723 .38768 m
.87522 .47341 L
.74198 .53273 L
.75723 .38768 L
s
.61852 .34261 m
.75723 .38768 L
.71216 .52639 L
.57345 .48132 L
.61852 .34261 L
s
.61852 .34261 m
.57345 .48132 L
.47586 .37294 L
.61852 .34261 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 157.125},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzFnPtvFUUUx5c+oKWU2he1FNkLUgq0IIiAvARBwAdE0fiKr1QkggZBwBhj
/FP8SzQajUaDv/r/IDtn+M69289cZrm7lYR7556dme93z8ycOXNmppeW7167
emP57vUry60Lt5dvXbt+5U7r/M3bD0T9a7JsTSvLsh9bWZG+/yDpP9y/bcWH
//GI9L3ia7Aoe9kEfxVf/YWgzwlc8r7/l7mcFy3nH8o5iDkf/BsoRC9b9t+U
fRiyD4nHWcv+i7JvgOyjyv6CZf9J2ccg+4TIHLPs51T+KxWchILTynfICp7p
fGmXuqbUJqhis7APWBWnlH1EqU+VmoUqtorFklVxQtnHlfpQqaegiu3FZ18h
2mNVHFX2GaXeUaoFVTwNsl1W2eFObJd6QykquB1ku62yg50FXepVpRagILH1
r7lfBXcrda6ki86COcgWrbK9quIZpc5EXwTasCTzrblHlR1S6lT0lTplW0C2
Vu83bwALqva4UicTec/FANpkWYDaIYAXlTqQUEUMfnO07GC7TDR2WGKbwC8o
tS+RBqn5SZANSs1k/7x9zZXpklKLoL6hRH3MxIgkvFirjVLp0aUE+F5pDoBs
XZwmDZjXQbbgdUC9gaqn5p0GWX/x2SczjVYCTe1lkM3HABKakvQ7lVgfzZ1b
/1/qNM1SfRtBZpzR6L0FMpp4iCb1TOom4yBzXlKfpmImTEb0bZDRrBh1rhJ0
/USMMPlHOLOgAX4XZDQH0/AjXRN1cuOIOo2EuWrUc5CRj0q9lLrJqH/RkkVy
nYQMo6dLnt/7ICPDSHRTNW02gg0oqdBkOCV+ADIarGRRSbtEd6QLXcKaXT26
1BmGu9ClljSe2E8+Ahk10GgiXdKu0Q19t/jO2GfwTGnN8wnIqHv3wrTsihQK
JftpmsQpfjma/fFsEbU/+co7IN+majRJ69HpKUGbYTW7E54aK7S1V6LZ6yPn
LJkzn7vi5MivuAoyyjfpdUCDdClGPLqCnKqLUKq2eKoh4lYvzvefg4wabbqL
rhaBTuZXy+hyIMJ1kNEQnGG0JWlgf5O4rIEQZXgWShoqumVfgozM4yy/9E7h
UjehFbiRwBe8ATJaSUS4hLANrUKpUTwXcvlvgmw9yOaYSy4uVIi4jDXGZYu4
UMNSGxkJzP41yGh1Xl7mFZ10VkRoGBARY4Cd4A7IqN1zIDItIjRlUOs0RGRC
RMhNISLGAF3Db0BGzrgLETlDNSZ4cj+pQQwXe9+3ICOnahvoIUSkWzE9OML+
7WnZ8Z37ZOs4rwqGBETOUDlUl6VArhhvFCruFy493csVeWgaXt8D0wW9pTW7
e+j/l2N/xa89yk/NZE2Ma+kfis+l+5EZlnylxwEoyUhvBE9+JI2ChuBdtwpd
rfR0uHdQMgq0/mgInoxCrncms9QQKC1iG4Inl4oMJs0ONcAfBJmbLoINXx1Q
imU0BP8cyGjtSS5tDfCHQObWME7ltEqqAfQwyMhRWkV4Ui+5TEO9wx8BmfO6
nMqp69UA+jzIyIisIvyw3pmi9zWAHgUZ1dcQ/DGQ0b4CGdga4I+DLIRV8iZB
2Tctu8M1QZ4oyQqouJvQE9RJqa9JgNK7NNlcprsV0S0nILdjXe+Q1C0HSjSK
74yXajUwoHFJy1j3i1arDXFw9YVVSnQ3qwZ4soy00g32gubCGojQvLBBoK5f
uIcUT20InuJSIT5OfkINRMgnIKiwi0AhqxqIkG80obcfUop8hxrgyR2Ndj1H
hMIVDRHZ1AnqHhLG2t7haVVApij4UPEzSrWvjuYEOqIUxT1qgKcFKU1MzngN
qIvWD5qDjFbBNbwzxQBCJHO6dwAKrFCQcKIZqBCjfBTA3kKUGnkbq8a2VXw6
R5X2c9yvaCgRZ4yk6GXxy20YDMSMR/f4adh686DxaC0YD/e6NM+vE2hKsLj4
NVINfkrwFEZZL/gWPKU+5GOaqdF5F1xwKqcd9lHBp24OePjUvYlwmJ78uXDC
nBbfXfYmUvdognGk95sSfOoW0YZq8IN6e2rdcDieIkBddqhS9+yC70Z9e07w
qVuGHj51+5LmZTo2uVVEUvdRN1YjQkscWsaGk92pm8ve8qZudJOdpJ4xLyJk
obvscqfu/pOic5DtEhHyDDxo6nmH+IHhThkdDqd3Hq8GT72crILNcys26mgq
8LN46pEX6iYUgXMKKC2H6cSNh089DESKojN+AZ5GMDkgk9WIkL5oAiCPgyjR
dqA/KJV6rIzy0YwVdBMWhHSK3fuqqUfuKF93eBrBZNMqEqH9Fyob9pXJEyCb
5g8hph7ppP5AjUTGIoRRcijhD232cgqWOjoRoQmKBrw/7trLOWIa3OXxU1Ai
G0SvWJES3figyYgOFWZ+3nItRkt9f8w69RB7DjJ67QgXsk40BPxZ9dSbALQH
QFMSNRp1fOqDFS8nkL2gSTqiKFIKKc+zSr2oQr4qGZkIqxCqoiHhb56k3vKh
mYUWfhGfgUYPtbm/ypN6bYqWx8TKNMRbUjSYqO0rUiPvIH6xr8vFkOjc4q+Y
pV7hSzk3H/KlX/2gAEZuBdyXe/KaUuQ9pt60ojUADSaqz2ZiG+nuyTmlyKOP
3+thzbhXjbqKHjysZk4pRcH2+LWHbruq/MzWmW3rl3An/ViXYhT3IlplB6co
668HLwooXDa3PySwwjxUQmu/dL1PNYdr42eUKXqrgEaSK2EGxdb8/RK41Hml
qGtS7HuuVMIi+k4QFtgXlSITS9WG01D+avsRVREQ31SKAg1U7YyqtSFq3aNf
85tLvadUnlhtmIVs5Wr72y5POJD7sVJkYajaSZWw0ZudliBszHymFBl5qnZc
bP2fojirKkJQ9otOxSRYjjFVa5t8bZ3pllLkMVBl4ZyQbeFmP3dqNKGKsGdj
W/HZr6qCZhoyaeFssR1YyH6XgKa56NaUY3HaqvhTVaTexw2BPfsTEdnfqsIa
7GHuyO7+w9IvWdZ/JOCw/EMzkGX/CueVNkGpgH/kfjziT8Rka/4Da2pzcw==
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {156.125, 0.}} -> \
{-3., -1., 0., 0.}},ExpressionUUID->"b47dc561-7dfb-40c5-b9b0-862d712224f7"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(6\\). \\!\\(\\\"pentagonal rotunda (J6)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"42b05cd9-bc33-48e8-9c4c-cee4943abbf0"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.61749
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.466249 0.193445 0.336193 0.193445 [
[ 0 0 0 0 ]
[ 1 1.61749 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.61749 L
0 1.61749 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.15325 .33619 m
.21303 .15222 L
.36953 .03851 L
.56297 .03851 L
.71947 .15222 L
.77925 .33619 L
.71947 .52017 L
.56297 .63387 L
.36953 .63387 L
.21303 .52017 L
.15325 .33619 L
s
.46625 .93155 m
.64297 1.01024 L
.62275 1.20262 L
.43353 1.24284 L
.33681 1.07531 L
.46625 .93155 L
s
.46625 .93155 m
.30975 .81785 L
.36953 .63387 L
.56297 .63387 L
.62275 .81785 L
.46625 .93155 L
s
.46625 .93155 m
.62275 .81785 L
.64297 1.01024 L
.46625 .93155 L
s
.62275 .81785 m
.56297 .63387 L
.75219 .67409 L
.62275 .81785 L
s
.64297 1.01024 m
.70275 .82626 L
.89619 .82626 L
.95597 1.01024 L
.79947 1.12394 L
.64297 1.01024 L
s
.64297 1.01024 m
.79947 1.12394 L
.62275 1.20262 L
.64297 1.01024 L
s
.79947 1.12394 m
.95597 1.01024 L
.97619 1.20262 L
.79947 1.12394 L
s
.62275 1.20262 m
.81619 1.20262 L
.87597 1.3866 L
.71947 1.5003 L
.56297 1.3866 L
.62275 1.20262 L
s
.62275 1.20262 m
.56297 1.3866 L
.43353 1.24284 L
.62275 1.20262 L
s
.56297 1.3866 m
.71947 1.5003 L
.54275 1.57898 L
.56297 1.3866 L
s
.43353 1.24284 m
.49331 1.42682 L
.33681 1.54052 L
.18031 1.42682 L
.24009 1.24284 L
.43353 1.24284 L
s
.43353 1.24284 m
.24009 1.24284 L
.33681 1.07531 L
.43353 1.24284 L
s
.24009 1.24284 m
.18031 1.42682 L
.05087 1.28306 L
.24009 1.24284 L
s
.33681 1.07531 m
.18031 1.18902 L
.02381 1.07531 L
.08359 .89133 L
.27703 .89133 L
.33681 1.07531 L
s
.33681 1.07531 m
.27703 .89133 L
.46625 .93155 L
.33681 1.07531 L
s
.27703 .89133 m
.08359 .89133 L
.18031 .72381 L
.27703 .89133 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{178, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzNnPtvVUUQxw9tbysPgfIuUO7FSnm2YAvlbSsoKEiMMYYYY6QhRIgxGuQv
4x+sPTvDzu3pZ7eztPd4+YG7nX18Z3dn57XnnGer716/+mv13ZuXq73Hb1f/
ef3m5b+9R3+/XSeN7qqq6n1V7er1qrq8tv6n/vd+bf3femXpz0r9c64e45kQ
lsPPaE1Z03/VDNCeSPP79c9IXXM+lrTqHvS6CLTH0vwuVF0G2iNpfjvCXY0l
rboFvb4A2kNpvhT734glrboBvW4CbUWaX4eq20CTNa4WIpytolYRu8tAkzXu
W4KHsaRV89DrmySf1RxUPQaarLFsUIB7GktadQl6PQOarHF1Ifb/MZa06jz0
+gloC9J8Fqp+BpqscXUOqp4D7VobzT+Hql+AdrWN5nTsfwXafBvNP4Oq34A2
10bzs1D1O9CutNG8B1WrQLs8hM27UPUSaJfaaH4Gql4B7WIbzaeh6g+gXWij
+WmoegO08200PwVVfwJtdgibD9VCDpWIDdXhK2zehar/TYsNlX4fKkM5VC5E
YfOh8sWGykv9GIc8RBfPY0kDh8I4IxOxFMY+FOY+BdqSNL8S4b6LJQ3fCqO9
TNxYGIEuQNX9JK1ajHB3Y2lFqgpj7kz0XpgHoEj9KtC+luZ3ItxcLGkqozDz
kcmh0IpnsjErUEVKUoSr+qr+Ccmf7/sIjbZdoHX6JuvFHKv/Dx0flHXcHTve
L+u4P3a8Vbaah2LHxbKOx2PH+bKOwXMLG6+26ktoRJqOXL5LZUOQC3u5bIiT
QNOJkBIgRXsCaHNlQxwH2nzZEMeApnbGe6iPAO1a2RCHgabZqi5U0erTsIeA
tpAedgpoZKkm08M2/ej1X+SWhj0ItMX+Ycf6q+qyl+EDQJPUrQYtnQ0jf2A8
LaEbaZ8CTQ09ndZRoB11Qu0D2tJgoPYCTcwyKpAO0EisycDuBtqtNNQ40EjU
CeoToKlvRHI60R4UNacjQQ4NrcgdgaIzQuvthaJ9lpscPC8kRXQcCWoMaPfS
UHQ26GguAm0EaOp8kJGhYdNQrF1W0sPvd85uUZepoRbFqUPTRktPW2Su9YP0
YCQye2LHTd45KR46S8RPUzzqBQwLPlMXD5cB7IucWThEAkCMdIEm9hD9AKKR
oJDVIpb2AI08YdkaVMC0SiRw5FCQPdkBlki4AkuNGInUXCE8yQMpEzoo5McT
S6Reqe+BMpYOxnU4G0s0ezIkGXjy5sg+UTtK+bbIEq0cOQx0kMmyU6QjRwN1
HXlcgaWwNVOxRKerEJ7EkXLW2znwA2LpSFyHw7FEG0wniSI2UZ/CxWxdQ/Mj
5nYKtFHVA1onNUnS/STFA+NrTdMVoWPYi72xRAtJ7h5ZBnFPcH6U+LYUD6kL
ksQWmQurGbyqibg2nVgi1TwgRiwtNaYwfbXSpOIQiQw1+RiiGdG5pKx8MNTj
AXX0A374aZGHABVI3oh3B0AFyjzt+rfiOI7cNoqvRfDRNtEDTUmoQKIoYkCM
UEAZ1FVShwyIETqIuyMjYgn5xFCwKU4bqqMLQCOX1eKKycGCJy1eAD8wWHAK
aYKiCiQ5UJtCUoq5xSlEb5mu08hMHouT3jMwXDLj5ts1R6l2BjTpbo5sNEt0
dzZRBkWuUjcCmN3LQJF7fwVoSbsXSCM7CUWKfTZC0fXi+PYB7ILYkh+68eTS
0N0tncKmJ0EyVpVDeQXEkSkZL0OmNfZmQLztlCVypK8lm2+97eRfeDMlhSyR
U0lmM/iGjkxJITxlX2kzaTxvpkRZopnS8wW0z0n5cmRKOlvB+40oDe/NjmzJ
xiazRotDbpM3GaIc0JZfjytIZs1cnny6ox8gNLq+sdRoTkN40xgK5RHzKgFv
vlQ+ZaFQpPbsERGZdD8mLSQN701iKBsm9aK4Jkh447yJCXKxvBkLZSLtRfJZ
Ij1J2sg2wpOvQCG3B8EIlGh0q0egZfmKvkNDoeZ2mDN/2JOvwOPT3TjER9qk
KW1NW05KSTQPSjxp0e2w1gyka5Yok6AsWdadGhEoSQO5EoGR0dTICk9H7Xhk
iRwpL/yJOMpoLFGSQRmxA0ihL4GSf0ne29G4DhOxRPkMZYQO1mRkjkBJGZCj
a1O07CihKSPe+9XtsGQTsxLl+JUlkww62sQIqXfyZ80kHt3IEjOSfOogdPTe
1BMjtjXmcdCqKyPehzq8zylQRiTYvECajiWaorJ0KvJtSpq2ywtvdn8mlsgM
K3zuiSevx0HpOEtKWBhCEie2DJ8Uo6yHF97W0l5RpY1W+C5U0SbQYaNLMdOh
FimTcVB4r2fBDkKl7lsoUVD0MSiBdDuW1EWg8IqUcwi0wpPF6asA92DBHnZS
k+smaRlXBPykAEBhAj0+cKYMYDICkGLJAJClTkZxAYAOTQaALHDSxQoAlPCl
AH+6FKBiO5EZO6i/cOlLN82ZjjNxNl6JIp8s/Ty28FMkUbSrGYCpCJCUqKSX
mhk2qIMxrxzVSposKl1Ny/xk2MA3qdLmllUJmcgA2EmgSEcANiVQqGkGw1wX
kmTBYItKTiK5NSf7gNyCwpCk4TOQ5CrQHpMQ0WGiiCUDT9JMEpA0ug0aiTGp
JMFAP41MEgkHwZMHlYEnr5dEhuApW0cuTAbem2cjePJuaDXJZMrxw8UiLUHi
Q7MvhCdR8UovzZ5EeUDw3scOyQMU8UbH2nt4CJ5yERl4mqn38JBfT7QMPImZ
9/DQTEke6J5ADjf6VF7pJXg6DRl4OuNe6U3HdG540nBkhtIPibDlo3tjmSrq
dK/EJp4tyKCRe+EV0OY+bDGx7UBZItruq3WLyAR7ZZxmQNcNCpVOOpZD1X81
onA1dd4n1Pwom2kZS3taV9ArtnQcvHfP6llN60o6xDaZLmrkczSaotyNd1jv
dbFCdSO2iWjyCfPGlW9PhqDgy3uF673WVSh6iNNzxlM0ElqZTl+uz64ak+8N
NfKlklVCl5rkiYb1eo4KRRk7cirJA6DbWP2gjUmmXe6RY+G9XdVhaRFIigjK
e4eqX8GhpH8XaOSv0J2ovsdtOdDpWCKr673N1GGL8mtEa6S99WVtb16Qhs3d
NOpb2GYL7O6CuKabQX0Lm/RF8sFAGrb/syP09AZJIxlGu7XTF5jtwxp2M0Ia
ym7Z9H1hUtjk29FgJnn6QusSNCI5orSd3Wzpe6Q3I8EkhY6fKQZ9VVOYYVkg
G2MrtizN7jQaVRXf0duNj75rSd8yJUQzU/pRkRephQuNHqUb2dJ8m25ktxJP
co2q+D2QF3FiP6Q7aFXxp2erXf8BYyDxTg==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 177.}, {287., 0.}} -> \
{-2., -1., 0., 0.}},ExpressionUUID->"eb3847dd-059c-44a7-9663-260b546e2703"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(7\\). \\!\\(\\\"elongated triangular pyramid \
(J7)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"3c42dadf-e46c-4454-af7b-\
ad8b6deefb73"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .91068
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.5 0.31746 0.204969 0.31746 [
[ 0 0 0 0 ]
[ 1 .91068 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .91068 L
0 .91068 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.34127 .29661 m
.5 .02168 L
.65873 .29661 L
.34127 .29661 L
s
.02381 .61407 m
.02381 .29661 L
.34127 .29661 L
.34127 .61407 L
.02381 .61407 L
s
.18254 .889 m
.02381 .61407 L
.34127 .61407 L
.18254 .889 L
s
.34127 .61407 m
.34127 .29661 L
.65873 .29661 L
.65873 .61407 L
.34127 .61407 L
s
.5 .889 m
.34127 .61407 L
.65873 .61407 L
.5 .889 L
s
.65873 .61407 m
.65873 .29661 L
.97619 .29661 L
.97619 .61407 L
.65873 .61407 L
s
.81746 .889 m
.65873 .61407 L
.97619 .61407 L
.81746 .889 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 262.25},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnGdXE0EYhZfDAUVQUFHElmBBERXEXrGCvdePoRcRBOyKFRDrT0bCjByM
z8jLO6vuh/EcSXLv472ZkGy2zHgpM9zV3pcZ7m7NpJsHMwNd3a1D6ab+wSkp
Py+K8tJTfwvTUfb+ZBT9/DH9pyr7wz5Q3v8+fZM/OZM59ejbnNa3HCv7lL7P
aX2dvimYHTiD2OAv0JkP2mcV/hmsAtA+qfBPYC0AbcLgE2AVgfZRhX8Eqxi0
cRU+DtZi0MZU+BhYpaCNGnwUrKWgfVDhH8BaDtp7Ff4erBWgvTP4O7AqQHur
wt+CVQnaGxX+Bqw1oL1W4a/BWgfaiMFHwEqB9kqFvwKrCrSXKvwlWBtBe2Hw
F2BtBu25Cn8O1hbQnqnwZ2DVgPZUhT8Fqxa0JwZ/AtYO0B6r8Mdg1YH2SIU/
AmsXaMMqfBis3aANGXwIrL2gDarwQbD2g/ZQhT8E6yBoAwYfAOswaP0qvB+s
o6A9UOEPwGoErU+F94F1ArT7Br8P1inQelV4L1hnQOtR4T1gNYPWbfBusM6B
1qXCu8C6AFqnCu8E6xJoHSq8A6wroLUbvB2sa6C1qfA2sG6A1qrCW8G6BVqL
wVvAugNaRoUX2odRVJ79sWCWmvMP7oJ2T8gVhNgQG2JDbIgNsSE2xIbYEBti
Q2yIDbEhNsSG2BAbYkNsiA2xITbEhtgQG2JDbIgNsb/GZu/8i2vVNL33do42
dftbbFaj2MK/GrsQrJt2OLO0mag7f/Byn072kX2taVbyddBoojbNiCCO8hYm
on4RWFdBo4nkNNuEOMorSkQ9zRm/DBq9w2kmD3GUZ4YdlYBF84nok+DDFbvr
LzpfrLljiaM8W09T6s878V81mtNFHOWVJKJ+CVhnQaOnSfPliHPn/e96Wh/R
BBpxNBdRmmeGHZWBRTMi4+ZK3fWnQaN1HhRLHOXZesJPgkYLQWhWKnGUV5aI
+mVgHQeN1rXQjF/iKM8MG59tI2grY+aWueuPgUbrbiiWOMqz9eVg0ZzuVTFz
y931R0CjdUEUSxzl2Xp6qxwCjRYO0bx64iivPBH19E49ABqtg6I1C8RRnhk2
vlNp5cT6mLmV7vp9oKWEscRRnq2nDwqtSknHzFW46/eARuvIKJY4yrP19Dlt
AI3WpdHKIOIozww7Wg0WrU/aFDNX6a6vB43WzVEscZRn62kzQWu/qmPmVrvr
d4JG6/ooljjKs/VrwaJ1dVtj5ta467eDRusOKZY4yrP1tI3eBhqtY5RqlGeG
jdto6Qh8uHXueunvT/oLoTxbnwJL+u714da766WfXemHkfJsPX1DSbdcPlzK
XS/dbks3xJRn6+kLUvqt5cOZYUcbwJJ+Z/twVe566R6LdBeE8mw9vTAp0KT7
f1Jug7teurdKsdK9X1tP70rpvroPZ4aNHx7pkYoPtykR9bRBlB6l+nCb3fXS
Y3TpQTfl2Xr62pCeofDhqt310vMz0hMulGfraVdAenbKhzPDxj0W6bk5H25r
IuppL1R6XtaHq3HXS89KS08zU56tp/1yn3P8Us4MG/fL53dFQsfVJqKeDguk
V6N8uO2JqKejEumVSB9uh7teeh1WemGV8mw9HRRJr0L7cGbYeFAkvQbvw9Ul
op6OyaTzL3y4+kTUN9iXZ5Zl/OjnfJv5e+Zk62/nXLNW7kwhl7Yntgg66KT5
SqTZgUw/iOH/vYzyfgBFymsI\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {261.25, 0.}} -> \
{-1., 0., 0., 0.}},ExpressionUUID->"088bd620-9770-4ab1-b5bf-79ec3b687696"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(8\\). \\!\\(\\\"elongated square pyramid \
(J8)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"5f29a087-2143-481d-9f39-\
046689f11aa1"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .71651
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.380952 0.238095 0.136107 0.238095 [
[ 0 0 0 0 ]
[ 1 .71651 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .71651 L
0 .71651 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.2619 .25515 m
.2619 .01706 L
.5 .01706 L
.5 .25515 L
.2619 .25515 L
s
.02381 .49325 m
.02381 .25515 L
.2619 .25515 L
.2619 .49325 L
.02381 .49325 L
s
.14286 .69945 m
.02381 .49325 L
.2619 .49325 L
.14286 .69945 L
s
.2619 .49325 m
.2619 .25515 L
.5 .25515 L
.5 .49325 L
.2619 .49325 L
s
.38095 .69945 m
.2619 .49325 L
.5 .49325 L
.38095 .69945 L
s
.5 .49325 m
.5 .25515 L
.7381 .25515 L
.7381 .49325 L
.5 .49325 L
s
.61905 .69945 m
.5 .49325 L
.7381 .49325 L
.61905 .69945 L
s
.7381 .49325 m
.7381 .25515 L
.97619 .25515 L
.97619 .49325 L
.7381 .49325 L
s
.85714 .69945 m
.7381 .49325 L
.97619 .49325 L
.85714 .69945 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 206.312},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztmt9KAlEYxI+I5Z+0MjUtyzW1lIiIiIiI6KK6iB5CItCLKMrniJ6sV7I9
7iKbjWCJ+/nFdLHuzvw4M55aO+7ufbvXeXxq97oPbef2tf3S6T68OTfPr64U
jRgTcYwxn46x+313198Mfqp24x/8Yv/OvlzbcT4Cgon2hwO7R1dAeydOnDhx
4sSJEydOnDjxIL7oHxqTtZt4QJ1gkGm0BUYxilGMYhSjGMUoRjGKUYxiFKMY
xShGMYpRjGIUoxjFKEYxilH/M8ruSN2BjAPrckRzX38MMalmjxZDj0oA62Kw
jQW14VCXU3nfc/zfYRJY50CLCnEJVTVTwDoDWkyIS6qquQSsU6Chz6EwuJSq
mmlgnQANfSiFwXnTaDLAOh77rsLn0qpqLgPraCwePpdRVXMFWIdAQ28nPM6s
AusAaFLciqqaWWDtA21NiFtVVRPhLaDlhbisqpo5YO0BbV2I86YRvqsG0EpC
XE5VzQKwakDbFOLyqmqiP+Uq0LaEuIKqmkVgVeZI86YRnnFSM4e4oqqaG8CS
OqsRV1JVc7w1H/+ZNlTVLANLajWEOG8a4dkltbZEXFlVzW1gSX3vQdyWqpoV
YM3Td/dtVTUdYMleL0KrJrgEkLr6hjhHVc0dYEldGUZcVVVNtKCSumuBOG8a
TR1YUveAEFdTVROt+6TuTyKurqrmLrCk7p0jrqGqprfYn8UzG9hrejvNkUbW
+utTKVZrzXRYtIaf5skgfxIGB9XJ903kC7a3yvg=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {205.312, 0.}} -> \
{-1., 0., 0., 0.}},ExpressionUUID->"defce678-2e7a-4bca-b31d-c70bc207f1af"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(9\\). \\!\\(\\\"elongated pentagonal pyramid \
(J9)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"c41565fb-2ad5-4093-984a-\
27dd3c039918"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .68097
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.5 0.190476 0.178242 0.190476 [
[ 0 0 0 0 ]
[ 1 .68097 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .68097 L
0 .68097 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.40476 .30933 m
.3459 .12817 L
.5 .01621 L
.6541 .12817 L
.59524 .30933 L
.40476 .30933 L
s
.02381 .4998 m
.02381 .30933 L
.21429 .30933 L
.21429 .4998 L
.02381 .4998 L
s
.11905 .66476 m
.02381 .4998 L
.21429 .4998 L
.11905 .66476 L
s
.21429 .4998 m
.21429 .30933 L
.40476 .30933 L
.40476 .4998 L
.21429 .4998 L
s
.30952 .66476 m
.21429 .4998 L
.40476 .4998 L
.30952 .66476 L
s
.40476 .4998 m
.40476 .30933 L
.59524 .30933 L
.59524 .4998 L
.40476 .4998 L
s
.5 .66476 m
.40476 .4998 L
.59524 .4998 L
.5 .66476 L
s
.59524 .4998 m
.59524 .30933 L
.78571 .30933 L
.78571 .4998 L
.59524 .4998 L
s
.69048 .66476 m
.59524 .4998 L
.78571 .4998 L
.69048 .66476 L
s
.78571 .4998 m
.78571 .30933 L
.97619 .30933 L
.97619 .4998 L
.78571 .4998 L
s
.88095 .66476 m
.78571 .4998 L
.97619 .4998 L
.88095 .66476 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 196.062},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztXGlPU0EUfUiQTVAQEJClgDsuQTSGGGOIUUIMIcb4A2pZWqAspaLiioq7
+Kf8X9jpnUyAHnSGmXdDmtsPfbfnnLmnt6+dN+/NvE4k8+npbDKfSSUTY7nk
cjqTWk08WMoVoMqKKKpIRFH0JxGpeLsQ6qfio0896RcO8ZbaVKo8vwn4VdxU
bZvE+qGctij4WdxU7pQUXpViP0j+XW2OKKbaRJr6BlrVAuwryb+Y9g0m0tRn
0Oo4wDZJvgmoJoB9IvlHY9dqIk19AK1OAWyD5BuA6gDYe5K/M3bdJtLUW9Cq
F2BvSP7atB8wkaZegVZnAbZO8nVAnQfYS5K/MHaDJtLUc9DqCsDWSL4GqGsA
e0byvLEbNpGmVkGrmwDLkXzFtB8xkaaWQavbAFsi+RKg7gBskeRZYzdqIk0t
gFb3ADZP8nlA3QfYHMkzxm7cRJpKg1YPATZL8hnTftJEmpoGrR4BbIrkU4B6
DLAUyVOAegKwpxxyx/cer9zxc49XPgOoSYBNc8hnATUBsBkOueMPLV55BlDj
AEtzyOcANQawDIfcsWeNV+54VIhXngXUKMAWOOSLgLoLsCyH3HEYEK/ccQgT
r3wFUCMAW+aQ5wB1C2ArHHLHMWu88jyghgFGaenETwVRs3qq2YFaJLkRWHdU
7MVe7MVe7MVe7MVe7MVe7MVe7MVe7MVe7MVe7MVe7MVe7MVe7MX+//YqOEzz
WzWAGtqDFbYlaRW2N62tTr2qPhT2aBkpLRbEa1uv/4Mb8mq3+z3o70YdoNDS
R7Su9qqljiNfbVmWUw+oQYBVAeyypY4jX11ZlnMMUBcBhvrfS5Y6jnz1/uUg
Hep4fXSO5TQACi0PRx30BUsdRz7aLVEjoNDiePQbO2ep48jXUJbloFs8BvaV
78bOWOo48jX6l7N/2nA6x3JOAKoPYKjsfksdXz6vcpDONl9oX10Out+pF2BI
l7DUceSjj6dw5lVKdQPsJMB6LHUc+Zr8y0G6lsA6x3KQ/DTAWgHWZanjyNfs
Xw7StQXWOZaDdjq6KxHd2NhpqePIR7sFVm+bot3jrYfO1+Jfjs8nHHrP6nLQ
dzj074QjX6t/OT69U+heUZeDdlzoYwxHvjb/cnyO7KFHFLoc1JtwjLtCj/do
t8CeI/TomSNfu385Pucsoc+VdDmo/w995smRr8O/HJ/z/dDXGXQ5qF/nuBoT
+ipQZ1mWg47OHFcyQ19Bpd0CD1Ohr0dz5OvyL8dnFiD07IMuBw02OOZoQs8N
dZdlOb2A4pjfDD2v2lOW5SSKm7Dz/gddS6D/k2vvME1RtisibFdT9LNboUGq
7SoX25UvB/wTtKjiL4uXLEI=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {195.062, 0.}} -> \
{-2., 0., 0., 0.}},ExpressionUUID->"ba89db81-cf06-45cc-a323-20d18d2c8603"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(10\\). \\!\\(\\\"gyroelongated square pyramid \
(J10)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"e7339f1c-e4d2-442d-b0b8-\
c8109f423d5f"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .60712
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.12963 0.21164 0.348286 0.21164 [
[ 0 0 0 0 ]
[ 1 .60712 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .60712 L
0 .60712 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.02381 .40938 m
.12963 .2261 L
.23545 .40938 L
.02381 .40938 L
s
.23545 .40938 m
.12963 .2261 L
.34127 .2261 L
.23545 .40938 L
s
.23545 .40938 m
.34127 .2261 L
.44709 .40938 L
.23545 .40938 L
s
.44709 .40938 m
.34127 .2261 L
.55291 .2261 L
.44709 .40938 L
s
.44709 .40938 m
.55291 .2261 L
.65873 .40938 L
.44709 .40938 L
s
.65873 .40938 m
.55291 .2261 L
.76455 .2261 L
.65873 .40938 L
s
.65873 .40938 m
.76455 .2261 L
.87037 .40938 L
.65873 .40938 L
s
.87037 .40938 m
.76455 .2261 L
.97619 .2261 L
.87037 .40938 L
s
.02381 .40938 m
.23545 .40938 L
.12963 .59267 L
.02381 .40938 L
s
.23545 .40938 m
.44709 .40938 L
.34127 .59267 L
.23545 .40938 L
s
.44709 .40938 m
.65873 .40938 L
.55291 .59267 L
.44709 .40938 L
s
.65873 .40938 m
.87037 .40938 L
.76455 .59267 L
.65873 .40938 L
s
.55291 .2261 m
.34127 .2261 L
.34127 .01446 L
.55291 .01446 L
.55291 .2261 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 174.812},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnNtOFEEQhmezQQ4qIiAggjMrchIEBBRE0UQSvfIhVmICF0aD3BtfyJfz
AXB7ukJ2J/9qV2qtrk6Gi92Zqpq/P2bnUN1dMx/bl2efv7Qvz0/bxYeL9rez
89PvxfuvFx1Ts5FljSLLsl9F5pavOov0Uf613Aet/GP5k/s6dtv+7DJkzatr
sc7aS2D7UYfX4XV4HV6H1+F1eB1eh9fhVsOX3ddv5xnpMlRijwI1Q+Nu+KYe
V1wuTa9KOFtVIjTOrQ2rN7VUfg11u643O/yL70C0XS8K/ZaPgKsJbPuBcXsK
eqPJo7eAawjYdgPjninojSWPXgDXMLDtBMZtK+jd5KEjiREBukSP0HPgGgW2
rcC4pwp6tzz6w77/Va9tMzBuQ0HvdvLoi31dvbYngXHrCnrjyaMvANcdYFsL
jFtV0wtGRxITAnS5XvYAuO4C20pgHErNB603wUNHEpMCdIkeoc8D1xSwVbsE
/eKWFPT8rsjuA9c9YEPJMYpD6dyg9SZ56EhiRoAu0SP0OeCaBTaUpqG4XEFv
ioeOJNC2oegSPUJHsuggQrkOikN350HrTfPQkQS6OoWiS/QIHZ0a6FqPbOhO
HLqtRM+f9vDst7SHkd4MD93S8U/o08CVA1usqwnSm+WhW7rWEzrKGyzdOZHe
HA/dUl5D6CjR1Mj+JHr+1DWfmyO9eR66pZ4ToYf2B+P2Q9EdViQRa5SA0JFL
YyxForeQPPo4cGmMG0r0FpNHRz+Ixhi5RM9nmDTM3uuyNIOB9HIeuqX5JUJH
x5LGLJxEr0gefQy4NGacJXqt5NHRxed5+alXfeHzdHjRqRZmuHBJzcmyelPl
daYsDlrpMlTalhQCoTilPerWlPZoV1O6h2xvO/QbWj/hV5PCtH7TWksK03ri
tc7DjJXaEqb1zoPvgZrvnm0khWl9iGGTh4n2emjzEj3CtD5M5k8/82OoW0lh
Wp8H2OZhonmw0OYleoRpfUJoh4cZa8qNMK1Pavok0PyM9y4PM1ZNAWFar9rY
42HGKiQhTOvlO/s8zFgFIoRpvXrOj66Yr098wcOMVSlBmKE1trHSkQMeZqzi
DcK0Xid+mBSm9Wcd/Ihx8NMksTrFRzzMWNUJhGn9iahXSWHmwGWpwuC1x0Qp
gKXnJo95mLEqBwjT+rO/b5LCtP78+tukMLXfqfDOLwz6rREn/1V20G/uoJ1Q
rjDem5c1/gCr3YQJ\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {173.812, 0.}} -> \
{0., -1., 0., 0.}},ExpressionUUID->"3c882bc4-c67c-4693-a01b-e6ab8dfa09b1"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(11\\). \\!\\(\\\"gyroelongated pentagonal pyramid (J11)\\\"\
\\)\"\>"}]], "Message",ExpressionUUID->"c0aa533b-ace3-404f-a7e2-87cd76b04a10"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .59471
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.11039 0.17316 0.3806 0.17316 [
[ 0 0 0 0 ]
[ 1 .59471 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .59471 L
0 .59471 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.02381 .43059 m
.11039 .28063 L
.19697 .43059 L
.02381 .43059 L
s
.19697 .43059 m
.11039 .28063 L
.28355 .28063 L
.19697 .43059 L
s
.19697 .43059 m
.28355 .28063 L
.37013 .43059 L
.19697 .43059 L
s
.37013 .43059 m
.28355 .28063 L
.45671 .28063 L
.37013 .43059 L
s
.37013 .43059 m
.45671 .28063 L
.54329 .43059 L
.37013 .43059 L
s
.54329 .43059 m
.45671 .28063 L
.62987 .28063 L
.54329 .43059 L
s
.54329 .43059 m
.62987 .28063 L
.71645 .43059 L
.54329 .43059 L
s
.71645 .43059 m
.62987 .28063 L
.80303 .28063 L
.71645 .43059 L
s
.71645 .43059 m
.80303 .28063 L
.88961 .43059 L
.71645 .43059 L
s
.88961 .43059 m
.80303 .28063 L
.97619 .28063 L
.88961 .43059 L
s
.02381 .43059 m
.19697 .43059 L
.11039 .58055 L
.02381 .43059 L
s
.19697 .43059 m
.37013 .43059 L
.28355 .58055 L
.19697 .43059 L
s
.37013 .43059 m
.54329 .43059 L
.45671 .58055 L
.37013 .43059 L
s
.54329 .43059 m
.71645 .43059 L
.62987 .58055 L
.54329 .43059 L
s
.71645 .43059 m
.88961 .43059 L
.80303 .58055 L
.71645 .43059 L
s
.62987 .28063 m
.45671 .28063 L
.4032 .11594 L
.54329 .01416 L
.68338 .11594 L
.62987 .28063 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 171.25},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzlXHlT00AcLXaQQ0CQQw6BFgRF5BJU8MYDvPgC3hW5nMEDCoKCCDjq6Kij
jo76FfyE/lVJfusOZd6GpNn+2m5n2mb73tvf5qXJZq90JBKdHJuORKdGI6Hh
mciTyanR2dDQ45kNKJgTCOSEAoHAn1DASsc2kuIjtvGKha0PC9k+/dvaBK28
6wT8sje5Ilrs/9v+vkaSn/YmGCcJAmyF5D+szQ6LyZMpQX0HuQoAtkTybzJ/
sUwJ6ivItRtgiyT/AqgygC2Q/LMsrlKmBPUJ5NoLsDmSfwRUDcCiJP8gi6uX
KUG9B7kaAfaU5O9k/maZEtRbkKsFYI9I/gZQBwA2TfLXsrh2mRLUOsjVAbCH
JF+V+XtkSlCvQK5egE2QfAVQRwE2TvJlWdyATAlqCeQ6CbBRkr8A1GmA3Sf5
oixuUKYEtQByXQDYXZLPy/zDMiWoOZDrCsBukTwKqGsAu0nyWUCNAOxGQnK0
M9e9yR323aMcHcir3uQOx92jfB5Ql73JhwF2OyH5M0ANeZNfAtidhOToyrno
Te5woXmULwLqfFLlgwC7R/LngDqXVPlZgEVIjqrKM0mVO1TEqJo/lVS5w01k
GVAnkiofANgDkr8EVH+q5Oi+fgxgYxxy1CbpA9g4h3wVUEcANsEhXwNUN8Am
OeSoEdoJsCmSN1qbvxaTvwnYou1yiaFy3Op2UvEN8ZS97XKJdSams995aVG8
3StS9FY7EuQO+8oXv5viHNkHKNRjbtOsO8gQryBrLNYBKhdgqDPsR9fKEK8w
ayzWAioPYGgExI9uP0O8XWqL+QBrVp7r2+t0x3OrExbRmJnuopCuiSFekdpi
IcDCyqO0vU53PLc6YbGaoSikCzHEKyaLaCy4GGCoGelH18AQryRrLFYBCk0v
1GvWoVZVcuJBi6UAQ00ENHWCdLrjudUJi5UMRSEduh/rjleqtrgHYOjmUu5S
pzueW52wWMFQFNKhm5XueGVqiwhDNS86A5BOdzy3OmERHRFUBfkpXnc8tzq6
QOB1wnGEOc6UcrVFjuuE43oXFlEFzFHbcdTaFWqLHPcsjnuvsJiqlgdHC6pS
bZGv/ZhYPLc6YRFRHL0Ajt5MVdZYLAFUCGDp1MN3q6P7J3TPMa7CMT5UrbbI
MTrGMconLBYxFMUxtori1agtcoxUc4y4C4voXOeYb+CYN6nNGouoJuKY++OY
w6zLGouoxjpEP30cFrPVyZmnd+KoZQQrzC3T+/bWz6oGhDWmRfF2XWovcQlt
Arbsj5+lK26Xx6Tu17Dfqfs1NhefPpcMamEbU2mFjbRjSsOgyUg7pjS+m9V2
MrG7RIfMmA6usGPKqEuLkXZMGfZrVdvRPSaMdOis8BOPKm9jhtYd7GTiZAg1
pIyZvhJ2TJlTbVPbycRZcOpzGbNuwcEOxxIJ3RbbyY4pC2cc7GTiUicadzBm
/R0NhxizYtLBTiaucaUxN3ip6W4e6o7n0U4mLrKmkU5jVv53G2nHlKdresiO
Kc9DOdjJxCfY6AlxY5457DXSjinP9fYZaSednn8/TrvE8Y8A/exFoeaN7n95
EAfQ/uLhL/wCOf8AdfPujw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {170.25, 0.}} -> \
{0., -2., 0., 0.}},ExpressionUUID->"61cb19c3-0498-483d-ad13-266805a91178"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(12\\). \\!\\(\\\"triangular dipyramid (J12)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"caca4cda-afb6-4f69-a726-a6e82e435358"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.1547
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.18254 0.549857 0.852279 0.549857 [
[ 0 0 0 0 ]
[ 1 1.1547 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.1547 L
0 1.1547 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.02381 1.12721 m
.02381 .57735 L
.5 .85228 L
.02381 1.12721 L
s
.02381 .57735 m
.5 .30242 L
.5 .85228 L
.02381 .57735 L
s
.02381 .57735 m
.02381 .02749 L
.5 .30242 L
.02381 .57735 L
s
.5 .85228 m
.97619 .57735 L
.97619 1.12721 L
.5 .85228 L
s
.5 .85228 m
.5 .30242 L
.97619 .57735 L
.5 .85228 L
s
.97619 .57735 m
.5 .30242 L
.97619 .02749 L
.97619 .57735 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{249.375, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy9nOmLXVUWxV9SVc7tPE/1TIzzPCcOVU5JHKJxnq0qYzRRY2JMGpoWaWia
RhFBuhFBRJQgiCIiIiIiSDdNIyIiIiIi0jTS+B/4KW3dmLWqnr973ln3gx+S
2nX23b91q967956zzq63ambLurUbZrasXzPTX7F5ZtO69Wse7y/fuPnnoZEF
vV7vp15vQb/fm423//ztL//91Nu+fftssvbL2OyXhbPFPyraZU6qN7oD3Iw0
Ij/ouN7IzvHmyLG5ZWMa/uVf8/1/C7l5qiPzDlkoye8VjcJxo+2IURV+O/Bz
ViPo8K8rjytgd9X5fKVo9wyxuwq/ULRnhthThZ8p+l2GoMM/qTyugN1b5/Nv
RftmiH1V+E9F+2eI/VX4cVu2HnYgjH0ogYMy2EEq/EDRIRniEBW+p+iwDEGH
v1N5XAF7uM7nbUVHZogjVfimoqMzxNEqfL0tWw/rw9g2CRyTwY5R4auKFmeI
xSp8uS1bD1si2IuKjssQx8PY84KdkMFOUOHfFZ2UIU5S4XNt2XrYKTD2jARO
zWCnqvBpRadniNNV+Ne2bD3sTMH+rOisDHE2jD0p2DkZ7BwVPqHovAxxngr/
0Jath10g2FZFSzPEMhjbJNiFGexCFW5sy9bDLhbsYUWXZIgJGHtAsMkMNqnC
+xVdliEuU+FMW7YedoVg9yi6MkMsh7HbBVuRwVao8La2bD3sKsFuUnR1hrgG
xq4T7NoMdu38wia6LkNY+6q2bD1s9fyXvIluyBA3Ft/jN2Uwv0p0zYWwWwTz
DeXWDHGbCs9XdHuGuAPG6GkSYu/U+fjpdleGuFuFfmDfkyHuhTFPbaYy2JQK
aaoVwmYE8zzyvgyxRoXjiu7PEGth7AgYC7F++Bym6MEMsU6FXqetzxAPqXA/
RQ9niEdgjJbhIXaDzsf2waMZYqMK7YNsyhCPwdgIjIXYzTof+1zNd49nnObw
ZmhLh5+LjLZmbHMG2/HDs/NGvyyaERbwj+pcyZezfxdiH1Fhq6nWZDd0vaJ2
g+wuXa8yuq5JgMbWZVIPzr/yBrL2A0PsWhXS3cEX+QMZ1nf4fSBLUmsyAXri
kJS9xFBgWoVk9dlfpIXCsOd6U0iWoD3H8KHsGcfBkCWpuzMBmgGRlJ95ocAd
KiTD0H7lnRnW80yaHfghH04SPQM+CrIkdUsmcDOMkZS9zlDgRhX2IWv/M1wa
eN2zCLJ9ZcO1kNdmx0KWpML12ioYIynPeUOBa1RIc3C7qOG61+vwEyF7vLLh
2txewcmQJanQPyBng6TsxYYCdl9Og+wpyoaOjB2iMyBLUqFrNCkBMlLt3obY
CRgjAa95JzMBu4HnQvZsZUOH0AbD+ZAlqdDFXCoBMmbtBofYC9qk6LguvrDP
7CLILiv+2qocdHqhSCq06M8qvsH8LgqxZ7ZdSnQddNmn8JV3OWQvVZZuC1U7
OnQjIqlwy+hkCdAN1HfJEEu7YCSwXAJ0d6/ax6NH18q2inqB4yRAj1w/V0Ps
sSqkCYJnAeEeKe3KksAqCdDspWpfmaZm17dV1AuMS4CmlJ43htijVEgTYM9y
xzMstRyQwM0SoNl5VZ8DLT3ITT88EzhUArRk8rooxB6sQlrgeRV3aIalFhgS
uEsCtPosCBygwinIkjt/QCZgq5YsAa/7Q+w+KiQDY1rZ/TLs3jBGAvdJgNyV
gsBeKiTriGz5vTKBPSRAlpd9rRC7mwofgqxduD0y7K4wRgLkKFJtQWpM50gm
qZ3QEDuiQrJ07dtS7Tzs6LzUzjLy9O0xk2HdDp2NybPfxIfO7UNtCsi2f0zZ
uYc3J7cVDvdeQrm3tvU0aRtgbC6KnX3aJNhYOL6qB5f2UbwTRP5/4X1kD582
jtxK0qVXtymkra/1ypIVP+x2UHGN0j0olLKHTwLemezc50sbmW6V6dL72xTS
Viw9SkIBet6Q6+/96M49woSdUrZz3/A0ZN0KRKZ8AXugCqk1gKZKoQDNp8j1
d39E555jwrqtqUsfclNIDSG3KkumfAF7hAqpW4qWAqEArRfI9XfnTuceZsLe
oGw/w/ZVSA1K1ytLpnwBu0iFqyFLS91QgNbD5Pq7f2xJJmAPn7BXK0v+fwFr
D58a5lYqS6Z8AXuiCqnbjaycUID8HnL93R9HrdIFAXv4hL1cWTLlC9jTVHgF
ZMl2DwXOkADBJpUlS3OYsTowNgFjl0iAmuUKAvbwCXuRsmTKF7DnqvBiyJLt
Hgq4wZBg9v/Jsh+2cTAwRgjLUyt3QWBZ8cz8ayNTvoD1C0XN7GS7hwJ+gxHM
/j+9i4ZtjA2M0SXiy+vSTMAePmF9WyBTvoD1jYj+uIJs91DAN1CC2f+nu+Sw
LeCBMXL9/SAhU74g4EcXYcl2DwX8yCWY/X96rhawniCQh2//n2YBw1ocBsbI
9fdEiUz5goCnZoQl2z0U8JSSYOPK0ryxgPUEeByy9v9pljushWdgjFx/LwTC
FncvPQhLtnso4CUTwez/07qogPUCjzx8+/9dmuIHxsj190I3bJn30pqwZLuH
AlMSIJj9/+kMawODPHz7/12a7AfGyPW3kUOmfEHA1hFhyXYPBWx5Ecz+f+cG
ffLw7f93adofGCOLncZCKZukBLMxTU5oAWtLt+z/d2743+His//f6U8AfmXl
L4RDu/wVQGOW//Zt//4dd2r2h/cBvRb1WG/A2Jzu3NDvG03YvE9N+eQO0xVY
wHpPwHvDIcLbgTY3Ozfge6IRNtvTbZXcxS4t9p7Ote5BFxDTKrQ51rlhnvwn
8sKHTRFoTdNqrBdgbkVwb1jnpnebK2GDO3WPkEFCLnbV5NUGSYhwa4y7+jo3
qdNaPlxHUF+T23lDmBdTbpUm47qAcKsWLUDD1aMby9wqHyKoz2518RyrFvf+
UwkymgsItw7SAiZ0M66EMS90QpgtHS8JyCyuMpvolho6VxOCecocIqjb1xPl
iQxmi9FTSjJ3q8xPagwJnVQ3WW9RFCKojfr3goXWsb3bP7Zl62F+cvhjU0IE
bR38SbBwm8D+618UhVsZ9lqfasvWw7xN5I/dCRG0lfWsYOG2lf3Sv7Vl62He
HPQHJoUIMjFfECzcrLT7+ZKicBvV/uYrbdl6WF+wbYpCxDiMvSZYP4PZrXyj
LVsP84LhLUUhws0T7ygK+xjIJHy38rhh7SjN+byvKETYSfRH7XXpGh4Y+0iw
sMPGDuE/2rL1MPuC/1IUIrwg/0RRly7fgbFPK48rYO3tfa6ocx/vl4rCnl23
FH6tKOzpo7FvKo8rYO0TfadoKIJ9t/8oyntsf+DhX/XT/k9Rod30x3b5+g+3
7S34P+tTY6s=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 248.375}, {287., 0.}} -> \
{0., -1., 0., 0.}},ExpressionUUID->"1586102d-d2d7-4302-8184-ed94bb61a8cb"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(13\\). \\!\\(\\\"pentagonal dipyramid (J13)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"cc5d35f4-a172-4d0f-a3ff-913cbe3f9531"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .57735
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.34127 0.274929 0.426139 0.274929 [
[ 0 0 0 0 ]
[ 1 .57735 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .57735 L
0 .57735 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.2619 .5636 m
.2619 .28868 L
.5 .42614 L
.2619 .5636 L
s
.2619 .28868 m
.5 .15121 L
.5 .42614 L
.2619 .28868 L
s
.2619 .28868 m
.2619 .01375 L
.5 .15121 L
.2619 .28868 L
s
.5 .42614 m
.7381 .28868 L
.7381 .5636 L
.5 .42614 L
s
.5 .42614 m
.5 .15121 L
.7381 .28868 L
.5 .42614 L
s
.7381 .28868 m
.5 .15121 L
.7381 .01375 L
.7381 .28868 L
s
.2619 .28868 m
.2619 .5636 L
.02381 .42614 L
.2619 .28868 L
s
.7381 .5636 m
.7381 .28868 L
.97619 .42614 L
.7381 .5636 L
s
.2619 .01375 m
.2619 .28868 L
.02381 .15121 L
.2619 .01375 L
s
.7381 .28868 m
.7381 .01375 L
.97619 .15121 L
.7381 .28868 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 166.25},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzFXA1PVFcQfbAgn1oF+RLBBYsfqHyIiCAKiECVGGOapmlM02yIqaQxtmLT
NI1pmsa/0r9J2TeTue9tz7uct7NJE4XHzDkzd5fZd++cN/qi9vHtm3e1j4cH
tereh9rPbw8Pjqq77z+cmCptSdJWTZLkn2pSvz4+udQvxyd/jqfqX+qW06+f
179V6tzPdrUvrq/q39rTsJX6pSY4TlLbX1HvMwmxl37rNJ/+DaykkvN9Konf
lTQ7tpYOAGo37x8kTsNum+EMgHeY9zcS91TCPgEgRES2Iwd3S9Jv2np6AKjL
vL+QOA372Ax9AN5j3nckbkPCPgIgRES2Qwd3XdI/tPWcA6B+8/5I4jTsqhnO
A/g58x6QuDUJu2KGAQA/b94fSNwDCXsfgBAR2V47uMuS/p6tZwiABs37HYnT
sHfNMALgQ+b9hsQtSdhFAEJEZHvl4C5I+nlbzyUAGjXvSxKnYe+Y4TKAXzLv
Pombk7C3AQgRkW3Pwb0l6WdtPVcAaMK8OyROw94wwxSAXzHvFom7KWGvmeEq
gE+Z9xGJuy5hZwAIEZFt1cH9UtJftfVcKwKl3hUSp2HDy7wB4OGtXCJx0xK2
CkCIiGzzDq7UXTLZUGp50E3z3iFxGvZynog+LKEQCdyEhB0HIERENlSVLFfu
aMmYrWcBgObynxICp2FHzHAXwBfy7y2BG5WwYSO5B+BhsxonccMS9iIAISKy
oW2G5Q5K+gFbzwoALZt3iMRp2HBEQXegcKu4UAaXJF8AECIi21kHV86MEiJz
TMyD1szbR+I0bIA/BvB183aRuH4J2wtAiIhsqJdjudKNJN22ni0A2jBv6E7T
n+JgjR3eCdSrpQ1UJepNud0SLLQ0m0WvsLCNjjN6M7/fBhBqm8TGN9fFMfI2
XUZochAoNFLx1jvOlQ9ZpvF5WPQJI9rxOFfuBfSdpht4z5BcvfugFgi1XsiG
0iMbG0+XFJomBAqNWbyVj3Nlh6L3P3Sf7SO5uieyOzjaDs6SXN3VxwAInQOR
DaVHNjaeLik0YQgUTo5xaSDOlZMffa5Eh5QBkqtnTfZkPAy8F0munpY9PQBK
j2wl+wK220HlOEJytQNi+zV0+B8judrDzTQY8vDphhLIe8dJrixEe2HQKRM2
lB7Z2Hi6JFZFQOU4SXJVWWB1kGngrZJc1UY8ig9Kj2wlVSBW2yoUSni9i1Xn
UDnOkFxV7BbNMArgww0lkPdeJ7myBarymQchCRbZUHpkY+PpkljNGJXjLMlV
Hfm+GQYBPHSgc8B7m+RKUyx6fObICM4GhI4R58pRVZ8ooDb1dBtKj2xsPF0S
+ywGleMiydXnM0FC7Qfw3oYSyHuXSK70tpnmEzXUocuN6yJx7qakQr1vF2lD
6ZGNjadLemJrRKBO86JyfEBytyXVUzN0AniloQTy3jWSuyOpds0gfXVHDp4v
gHyodYopjz7kAX0eUr9uB3GLxRWKrgnTp/qpgFAoo6Te5wIPswVxGYWaN9gs
egWFjCZnEFohnZScS/AIJiVnFTyCic4vhMdWHtEjzpWCgb/0VksdbLwNWRI7
5+ARTDRVuBl4RI84V0ovc4PziB5xrpQeLItWSx1sPB1wYOcmPIKJpgpbtkf0
iHOl9DIHEY/oEedK6cGyaLXUwcaTAYxMVXpEjzhXU4WjtUf0iHOl9DINg0f0
iHOl9GBZtFrqYOPNypJCVVYBiBU94lxNFVpgj+gR50rpwbJotdTBxhONI1OV
HtEjztVUoSo9okecK+MnmXfeI3rEuTpWi8qi1VIHG29SlhSq0iN6xLmaKtxL
PKJHnCulRw95eAQTHfxAZdFqqYONJ6MZmar0iB5xrqYKe75H9IhzpfTooRGP
YKKDJKgsWi11sPFkxDdTlR7RI87VVOzAiUcwKTmE0rxg0tRYilM8AQ0cNZkS
11BS7v85ilIhcU0NoICKbZJbcvCkh8SVHDJpbHCLcNmBEtiGnm4rbmFZbmZ7
RaCGZxkETppeelBkhMRlh0LQdkHYUOvGcjU9u71OkDjdSsOxFf1jgfCMcIrE
ySulBztmSFx2iAMdwwgbOpazXE3PHltvkTg9ooZ2cBbAw7P3eRJXlbCo80Rv
ArKhXzLL1fRsM7VM4rRxYtvBVRKnrZ+n8UX32pJNLtvib5A4bedZkWKbxKkg
Eep7EsDDpNUeiZNPCdQZkRKFbM8cXE3PSmcvSJzKZKz494rEqdDnkTm/dnA1
PSvofkviVLxlJenXJE7lZ9TioHYL2b53cDU9OytRI3HZuYjMeS4PD2fBNyRO
H4qwj3oOSZw+1kFdCmqQkO0nB1fThztnvFV/T+KkG6EfQB6ROH3YuA1AqD1B
tl8dXE3Pzif8TuJKzSJ8olDl5w7+5KH/mTH42650nmAfsD4Dm8LTH0757w+S
tn8BMSMzMA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {165.25, 0.}} -> \
{-1., -1., 0., 0.}},ExpressionUUID->"6748094f-410f-434a-b68a-9197633be0c9"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(14\\). \\!\\(\\\"elongated triangular dipyramid \
(J14)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"a6a9077b-6894-4b54-82d0-\
006b66e26173"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.01962
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.214286 0.190476 0.41457 0.190476 [
[ 0 0 0 0 ]
[ 1 1.01962 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.01962 L
0 1.01962 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.11905 .22409 m
.40476 .31933 L
.30952 .60505 L
.02381 .50981 L
.11905 .22409 L
s
.40476 .31933 m
.11905 .22409 L
.34438 .02428 L
.40476 .31933 L
s
.02381 .50981 m
.30952 .60505 L
.08419 .80486 L
.02381 .50981 L
s
.40476 .31933 m
.69048 .41457 L
.59524 .70028 L
.30952 .60505 L
.40476 .31933 L
s
.69048 .41457 m
.40476 .31933 L
.6301 .11951 L
.69048 .41457 L
s
.30952 .60505 m
.59524 .70028 L
.3699 .9001 L
.30952 .60505 L
s
.69048 .41457 m
.97619 .50981 L
.88095 .79552 L
.59524 .70028 L
.69048 .41457 L
s
.97619 .50981 m
.69048 .41457 L
.91581 .21475 L
.97619 .50981 L
s
.59524 .70028 m
.88095 .79552 L
.65562 .99534 L
.59524 .70028 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{282.438, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy1nWlXVEcQhkcFERQUBFHQSHDfcF9BwQ3QuMZEoyYaYkz0Q05yjL8se34d
cbqbqhGeaqrPdM5RB7pr6q2p2131ds2t692F929e/7Tw/u2rhbG5dwu/vHn7
6tex2Z/ffRhat6bRWDPy4e/YWKP582KjsfTP4oc/i6PNf5ojdX5+2XxZ29T/
bxx4EV7WJcTF8JqmvgkvHUtTS9Np9uuP3xj+roWxv6L4c5haZ4s/g6kOW/wp
THXa4l/B1Hpb/AlMbYCxP6P4l+LjjbbQFzCVEX8EU5ts8c9hqtcWfwhTm2Hs
jyj+AKa22OL3YarfFr8HUwO2+F2Y2mqL34GpIRj7PYrflmu53Ra6BVMZ8XmY
2mGLz8HUiC0+C1M7Yey3KH4TpnbZ4jdg6hNb/DpM7bbFr8HUGIzNy1V5E984
IwN7QXyZS8JreuM0iJOK6KYVsTBpuQLv2Adj5D2Kma+j2sswtR/GyMsUW5Pa
KZg6AGN0NSgGJ7WTMHUIxmZgjGJ1UnsJpg7D2BVZAhSak7KLMHUExsjz3TD2
fVR7AaaOwhh5vsdWex6mjsEYeZ5ySVJ7Vjx1EoTIRZRpkrIzMEVqyUWUkZLa
0zB1CsbIRZS5XkW1pIKg1EWUeZIy+phnnQAZtSdg6pzTHZT4ktrjTu/Rpxq0
1U44rzV9qm0w9l1US8ucViZ9qmFb7RG5rrTDCZTyeFJGUYjUKuiorYwiJaUV
As2oPQhTlPMInmjAQlRL6YLiOsETXUhqKblRFiI5ohVJLaViypkkR/QjqSWe
QBme5D6FsTlZJ3HRNfaAEPG1cXkjfYJl7wivCWAcxIk/krU2v1nBkhJa0BLe
QAyYrp+X7BCHGmoBXc6Nmr+RI2lpepkREa5kA62hDnEGKaOtR3vpqqXZb0iX
GEJxgU4OFILovUTqMob0iCFEkyjGEXOjmElH+2QIrbo+MYS453bZbJT6pmSW
eN2gDdovoJSUKaURPDHBQkMGxRCidpSyKQeT54iSJkNo420XQ4iS0JndyzuJ
zmYMGRVDyOXEjbxMlQhwxpBPxBA6XBClJOpJXJIoc+SSGIrGxRDiDVTbobVE
XJnKSBlD9okhlCrCpwqbkVYB+YZMz8CHkBzSHWXSPudyPClm0lpK8BSIj8mn
p41Mi4soNDHzQkNOiCHkJdr3FB8ojlC8GbANOS2GUIWMIiFFTNrmFIGTIZSa
zosh9EYqJdDJgbY5HUgyhlwSQ+iaUqmEMihlWipZZgy5LIbQJlsve4AoDTEO
usAJnqauCjzFOuJMZAiFO1qH/bYhN8QQSkPEIokgHhB/mWSC4ecEnhYhEWk6
0hD5zxhCS+UzMSTSs86PZhfD+7j4TecpIpQZ8HsCHh2+4shCJxQ6jtHxIoP7
UHAjcPOn8Bt9hUA5hWyIORMDQ/gqqsP6QGQ8OTcD8JjWcPM3OkbSCqGVVIon
TqWzIREpIgsJlMI1geqxaQZmQ0wI25MiRiGUHowoR1CspXi5uQy0V0ApVVNk
oRyRQCmLE6gegogn0XqgDFkIqgceIqTkL6oTFoIOCyidFUgLkZIESmchAtWD
DFEt0kLcsK8MNH9oIVJCx7hCUC010VYIyyzsTjqWJCiyjKD0CEKVIjrPVAA9
KKAUr4nh0Kmvtwz0iIBS4qDTjn3mxW8qCPS4gFIgpzOO/U2TG/SUgBK5o/MM
HawKQc8KKDEHOrtQZE6gVAwg0IsCSjGHKCIV5zaVgU4JKPkmZNawO6fbh5oW
KNqJVBjMgNLBhUCvCyhtCjprEIcoBJ0VUFqfdK6gA04h6C0BpZMknSaIokWD
8QoR6F0BjRVmPjkQAS0EeiBA8ZOsOCXQ6aQQI9zYFT4BMfSkjAI6KXsiW6eW
Mh0Lr0E3ebanTHc5jU8AtKHo9jwCWC8AtN0yAA7vhL/dAkBEvRCgnJQnAMqJ
XhdtEQDKot02gNdFWwWAyHYhQDmxTgBUefG6aEQAiERnALwu2iUARJgLAcrJ
cQzkmES8LtorAESJMwBeFx0QAKK/hQDlVDcBECXzumhCAIjWZgC8LjopAERh
u8oAyulqAiAC6XXRBQEgapoB8LpoUgBMGuoHKCefCYCIk9dF1wSAssp6G8Dr
opsCQLupEKCcQCaArjZcdEcA6HaEDIDXRfcFgOhuIYDJEAP1TCtGeYzXCTTW
2aJsORNr/kYNCjV0i/HUReAFyLi1UwCoM6ACwAYBuP3/AGwUAGLaXoAuG0Bv
cCGmXQFA67jEtAsBKDAojaRyhBdggw2wTQCoslMBYIcAUGWuAsBOASAi7AXo
tgF2CwAR4UIASrPKU4kIVwBQnkr31nkBemwA5an0NVcFgMMCQF8WVgDQW0yI
p3oBUuWB6KbWd+mLrAoAWsv1fp9YCKBE2FtIp7FNNoASYW9ZrhBAiXA7xYkE
QERR7/1o58TRawPMCEA7TCsDoCVdKt9WAAipPrA8ak4lZX22snmx1ssQkzIq
K0QSIrXPpdcg5CWJGfVGZ53eH+3liZttDG/fnYJ6uWMG1NuVp3cSePlkBtTb
s6f3FHg5ZrppgWpzRPLotKXlSy/vzIDm+/20kOlloBkobzfggIB6WWm/Dert
FRwSUC9TzYB6Own13mwve02glGC8HYd6+4KX0Q7YoN5+RL19wctyM6DebsUx
AfUy3wxovpdxj0B5OXC6D5js9nY67hdQLy/OgHr7IA8JqJcrZ0C9XZJHBdTL
nwdtUG8PpRaXvZw6A+rtsNSCs5dnJ1CqjXo7Mc8IqJd7D9mg+T5NvaPby8Iz
UN4uTr1728vMM6DeHk+9PcPL1rfZoN4O0GkB9TL4BEpXw9sfqvVzL6vPgHq7
RwPhNZn+sA1Q1EcaAMwvSBmgvI90rTiQHlCTgWqzo1SLvPRwmdRvSpmHVkE7
XaZqCD1YJmNI7VZTrUrbT6NBQ2q3mmr1mjpsd9iG1G411So3+TBjSO1WU62G
k+nJEGIs7bSaaoWcOP2IDVq71VQr6US5M4YQs2mn1VQr7nTrScaQ2q2mWpkn
LaO2IbVbTXeLIXSBkyEEWrvVNGSDEORtYoSG1G41zfeT7rQNqdNqqrd1U59P
Br5Oq6ne9UK8JQNfu9VUDzCUFGLGwm1Zu9VUG1vpJpeMIbVbTbWxlczMGFK7
1fScGGKzGjSkdqup3rlOESVjSJ1WUz0kUYhP8HStareaXhFDzC9p2ZA6raba
V0scLANfu9VU+2pJ80eG1G811Uf3jLcCVW0rpUJ9QhsW+Hb6SMn7e1oAlk21
01FKx6sol54rtvr1pnVBy3efrdbbGkrbc7+tNt/8OWNtMVbmbe+kUHrQVutt
4KRUET9VelLf6hmDMsukuOiorczbekkJPqPWrJg6CMwxW623fZLI+YSt1tsg
SVQ7spz07Etgn2YLJNHlE7Yyb5Oj/axIVOttY6Qj0ClbrfeLGfLyaVuttxWR
1kR0TOMHmPI2G07IBT1vK/M2EdIuy6j1tglSgLlgq803AlIQvGgr87b6UciO
Lmr8CFPeZj6qqE3aar3telQxnLLVehvyKLdeblXrb7mj7H+lVZWrqU4r09EL
8cHLZqcb0ZDWNxJ7c7C8SC/Sg7ZXpxLXbXEqut6wxYn337TFiTPM2uLmY2Ia
6aHpq+f4eVucsvgtW3xILuwdW4iSYkacamnxBp/0AHzIjcvG7tnilP3u2+KU
1R7Y4pStHtrilIXifwaQ/jOD1bPLI1u8Wy7OY1vIbgdBcbu5A8Upjsfv0Rp/
wxTF56e2OMXdZ7Y4xdPnreIcJ1+0iqyIfy/j7D/i629bBpaBJdnwS4X/HaSx
5j/CE+zq\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 281.438}, {287., 0.}} -> \
{-1., -2., 0., 0.}},ExpressionUUID->"de27daa0-8c63-486f-89eb-bfb7751646d5"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(15\\). \\!\\(\\\"elongated square dipyramid \
(J15)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"4e9a2eb5-f37d-48f6-a496-\
c731ba3fc198"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .86124
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.17033 0.14652 0.320731 0.14652 [
[ 0 0 0 0 ]
[ 1 .86124 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .86124 L
0 .86124 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.09707 .17421 m
.31685 .24747 L
.24359 .46725 L
.02381 .39399 L
.09707 .17421 L
s
.31685 .24747 m
.09707 .17421 L
.2704 .02051 L
.31685 .24747 L
s
.02381 .39399 m
.24359 .46725 L
.07025 .62096 L
.02381 .39399 L
s
.31685 .24747 m
.53663 .32073 L
.46337 .54051 L
.24359 .46725 L
.31685 .24747 L
s
.53663 .32073 m
.31685 .24747 L
.49019 .09377 L
.53663 .32073 L
s
.24359 .46725 m
.46337 .54051 L
.29003 .69422 L
.24359 .46725 L
s
.53663 .32073 m
.75641 .39399 L
.68315 .61377 L
.46337 .54051 L
.53663 .32073 L
s
.75641 .39399 m
.53663 .32073 L
.70997 .16703 L
.75641 .39399 L
s
.46337 .54051 m
.68315 .61377 L
.50981 .76748 L
.46337 .54051 L
s
.75641 .39399 m
.97619 .46725 L
.90293 .68703 L
.68315 .61377 L
.75641 .39399 L
s
.97619 .46725 m
.75641 .39399 L
.92975 .24029 L
.97619 .46725 L
s
.68315 .61377 m
.90293 .68703 L
.7296 .84074 L
.68315 .61377 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 248},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy9ndlyVDcQhg/GxsYYAzGbCTBjCIvZN5tAIDZLAUkgIcsLuKhUwUUqKcJr
ZH+tkO1pckc4klAPw9c9LR8FLmY8Up/uX9I53b96esSDtWePv/5m7dmTR2v9
u0/Xvnv85NH3/TvfPn3ZtHFD02zoN03zb79p/37x8s/0Ev4ttC/pwzr/vt++
jbU6/4kNn4S3jS9eGWmk6+PwNp67Unfq/WjowvbTGLT9GcXvQddGXfwudI3r
4nega0IXv51nYUoXugVdm6Htjyh+E7qmdfEb0LVFF1+FrhldfAW6turiH0LX
Nmh7HsWvQ9d2XfyD9i3M9pwudBW6DPEr0LVTF38funZD2+9R/DJ07dHFl6Fr
ry6+BF3z0HY5z9tv8cKLuWE/iA+jaOTCCyB+ANouhdc3nvik5TxccRDaLkIb
eYafo9pz0NWDNhoEeZCk9ix09aGNRkWeJqk9A10L0EajIo+U1J6GrsPQFuRU
z5WUncxCR0HoFLSRX/spKjsBXaT2JLSR/0tqF6HrGLSRefKTSe1x6KI2Mk/+
NKn1IiM58rtJrXceSY78849R7RHoolUnOfLjSe170KXet6q/T8oOZSF6Ug5B
m6GMHkB6run53wVtP0S1JE5eqAdtFF2SWhInn0m+laJQUkvil6CNHD9Fq6SW
xCmCUUiyo9pX0QBdSAF4Pl/ogdSIgXfbt9BDNICGXhAbB228EZwaDva0iF0C
6ecRwz7oGs9jpxuXbtIetHlDrwFkMgOhwEwPYZdgbQCZzkDId5GTIWdEg6Dw
noDQgzCbgVAkeQfaiBAQH9lUBmRHBkLhKwQElUzQHBIzeaib35nNU4ChMKeG
zQCT2EEyT8/63myeosgstHn5RCEQcVM96CVyQkYJHF1rADmYgZBrplF1oUIJ
CPnEQxkI3TdELruQp890IEcyEPKYRJ670C0DyPEMhBwVPXjkH8iP7NCB0JhP
ZSB0YfCE4WEkh03+lNydYf5sNk8PKEUEAkIPPCURPtWBXMhA6LmgGKkSyDBf
tOjJPMXI5Wye1p64gpcRFgK5koHEKDgx2BtFGs6rkI8hr2QYv5aND094a5RI
H9E1m6xGu3h7rLavYcCUlSIOQuaJwBpGb+Ux0/hoLDTRCqkdZZeILiXB6Cai
m81LdKOXQN93G3G9miMyQI8zsXAv+TXA0aQJIaYNcJj6cON597bk9AohvV1q
nMCR56fF3JrBvQ26bICjmRMKTfyLgrw3mUJ+fUcZOCHYxECICpGcTbATJCID
tJh7MiS6gyimE530km4DHM2XTcSJw3qzjkTEC8EJOSdHSqP3ZlppYAkc3cC0
rAsZnLrzHmrzZpfpLt2ug6OZExJPYSk8Z2Oa7/NS90JIQucp1E5CWxc6n8DR
VNJinszgSBk5TfL8XrJvgKOZkw0AXUGxkKKsdwOwrQycbArogSfuQAG9176q
m4IEiVwlLeZShkS7VeJaRJm8GwUDHM2XbB7iXcWbByKY3s1DIaDhDcUbBJk2
Mt49RcJC7pZWbiVjiWBCZ/uJeL93szGrY6D5CG3j2sC9m41Co8zoG39Kne7W
hIGeS7JHuMpT6rSrMIB4J8NOqds7iArmZbdAyS7vbiHeDUhcvAsiiXSiOt6d
gQHEOyOORPpQG+0CKgApT6kTwUlAiLZ5l6Y8uU7kzwDinRHh9PQwejn9THcg
5cl1vVQBY7l3acqT68TVDSDeGbGT6zYvr2DeTql7OXhcONytexdEUurkKbx8
2wDinZHy5Dpx6wpAypPrxKMTEFpJ79KUp9mJGhhAvDPiS7MTU57ublxYcRyx
ixUnu3T7emd/tX0NIyXKO2gg+AlSq5oa86gd6GrC6Buu3/UMKCsgFmtMVpjy
0ETFut4lFC20vYtuFO8RIb1UqOtdyU1ZC3kMw7xQXbrHvOY3Zy0USwzzQnXp
6zPv5M9kLRRJDfOS+qZp845+e9ZC1GZKNy8VIBT5vObnshaieMm8mu0OTfTt
vnfyd2UtRP4N88KlidR7Rz+ftfTLzEumnKi81/z+rIU2xYb5fflCIvDeye9l
LZSMmNTNHzBxe0d/OGuh3FAyTxxScFNixTv6o1kLfXltmBeKTukNr/nFrIW2
wob5QMzDE0s5Ue/kS8U60VrD/LGM2/vdSDmZjZEWdzuL5oV1KKxhXnYDXfbf
NnE1zMu01aSrbvMybbTdWC9hdZsP3CzQW/phmcpRx2W+cLmXs5B3BCQ3oRug
GhKhfKv/j1GlhmQi26Wfi6lZZl4ksustGhEgVJ5TRF0ZiLdAZCoDoQ1aIRDK
3BI7pOdnSwZCc+hdmkkdiLcERDK3dIV3Rgwg3nIP4ZiUy64AxFvaMZeBUNrP
uzRTOhC7jGN3Nk8JYe88JPOUVfWWbAhfpi8NKgDxlmcIc+45jeq/G0Yg3lKM
XgZCHLpoC8xAvGUXUuRBbLoQCHEr2uioX56EJuLV3qWZ1oF4CytspuqdEQOI
t4jiRAbirQsoBOItmBD26v0ai9q26EB67ataHGGzV+88JPP0DHgLIWweWwGI
twBC6j8aqSIowTCjYygqpg48sYLRLmXVQokpi1sIpGOpdTlNTt+GkkesXW8t
4CjrWwiudr210GnKCReCq1NvXU6sZ3VIteuthWzTPsEAR0GN2rrUWwsBJ6Zc
CK52vXU5Kd+mg6tTby1EnWhbIaTa9dZC3umWKARXu966nNCn0lQiXLXrrXsZ
HIWQQnC1662F+FPMKwRXp966fAtg/Haidr21bAuKfkbC4rXrrWWr4K1qTuAo
LNWuty7fPhi/dKpTby1bCm9FiwGpdr21bDMo8I8EV7/eumi7MTeIpWqpdSjs
UBPuya5Qvy4V1XT6lp16HzQ/1NWlynqJp1Go/DW4KIJIv7gefb/p56OMvs/t
dLwBxLt/oAepPB1vALH3CrR9sfcKdMUu3bx3X+A9gcxOwhtAin5zqZ5ZZqfe
k/mH0NWF5dP3zcLyiUru1oF4GT2NjzianYQ3gHh5vPdMNTsJbwDxcnbvKWzC
2fUzsdIJN6NH5T01pTwJbwDxcnFarvIkvAHE5t20FbB5N4Wvvbr5Io6tniFn
J9wN811YNAGxE+4JyBfQVZsxn85A6E6b14F42XEf2uyTWWipDSBeTuw9Fc9O
vb8GxM9/vWfnSQHJ/kFDLnJbfpBesvFlblCJrPvwWAES1a6ToHqJYpRLxzmO
Xlsv7Tuoq+1y9F1PV9vlILu+rpYeee+pswu6WnJpxOCkhi8SrHR+KcSJolNn
DWVFx74h90K1XRjSUV1tF74Tzaeje0ezFy9pOK6r7XJw2qKutssxaCd0tbRn
sE+dPa0rk1+JeE+dTcp+gS7vMWP0/J/R1VJE9p46e1ZX2yW+nhtU2y1anh9U
te54GOej+bV9C8tJuQQ5MHZpQHxIyHskbFLxHLooQi3r4hR5LuviFFEi6HR6
/2iXfkUXpz38VV1cfPx1XYh8tyFOPjn+xin9Twyvd9H+cEUXJx+6qouTb7yh
i5PPu6mL66nj5i/okmMU7+hC5IUMcfIud3Vx8hr3BsXZG8T/VaT5e+jqtuv+
QFcY2wOWbT8l2fBhnf/hSbPhP3NXu2Y=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {247., 0.}} -> \
{-1., -2., 0., 0.}},ExpressionUUID->"1905f991-9011-4900-bd6b-e0fd1362fa1f"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(16\\). \\!\\(\\\"elongated pentagonal dipyramid \
(J16)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"6318a97e-a105-47ed-b227-\
025547ddd3c1"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .76226
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.142857 0.119048 0.262082 0.119048 [
[ 0 0 0 0 ]
[ 1 .76226 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .76226 L
0 .76226 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.08333 .14303 m
.2619 .20256 L
.20238 .38113 L
.02381 .32161 L
.08333 .14303 L
s
.2619 .20256 m
.08333 .14303 L
.22417 .01815 L
.2619 .20256 L
s
.02381 .32161 m
.20238 .38113 L
.06155 .50602 L
.02381 .32161 L
s
.2619 .20256 m
.44048 .26208 L
.38095 .44065 L
.20238 .38113 L
.2619 .20256 L
s
.44048 .26208 m
.2619 .20256 L
.40274 .07767 L
.44048 .26208 L
s
.20238 .38113 m
.38095 .44065 L
.24012 .56554 L
.20238 .38113 L
s
.44048 .26208 m
.61905 .32161 L
.55952 .50018 L
.38095 .44065 L
.44048 .26208 L
s
.61905 .32161 m
.44048 .26208 L
.58131 .1372 L
.61905 .32161 L
s
.38095 .44065 m
.55952 .50018 L
.41869 .62506 L
.38095 .44065 L
s
.61905 .32161 m
.79762 .38113 L
.7381 .5597 L
.55952 .50018 L
.61905 .32161 L
s
.79762 .38113 m
.61905 .32161 L
.75988 .19672 L
.79762 .38113 L
s
.55952 .50018 m
.7381 .5597 L
.59726 .68459 L
.55952 .50018 L
s
.79762 .38113 m
.97619 .44065 L
.91667 .61923 L
.7381 .5597 L
.79762 .38113 L
s
.97619 .44065 m
.79762 .38113 L
.93845 .25624 L
.97619 .44065 L
s
.7381 .5597 m
.91667 .61923 L
.77583 .74411 L
.7381 .5597 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 219.5},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzFnflyVUUQh282EggEwxJFthsJSyBsAiKggKD4lw+RoqyCPywtBJcncn0i
4/IokTunmXsSvm56MgtVhJvMzO3+nZme7i/DOZev1p8/+fqb9edPH68Pv3y2
/t2Tp4+/Hz769tnLpqmJwWBiOBgMNoaD0febL7+VvzZf/tlcHv01akn7/t7o
ZXJk57+u4W54mRLLm+FVuj4NL9Ovul51S+8nW98Yviah7e9u+B3omtKH34au
aX34Leia0Yd/DF279OE3oWsO2ja64TfiHM/rg65DlzH8GnTt1Yd/CF379OFX
oWs/tP3VDb8CXe/owy9D16I+/BJ0HdCHX4Sug9C2Flflz+6NF2LDuzD8POwL
eeN5GE4mVnn/iJVVeMd70HbOuc9+68zS8CPQdhbaaD+KWRr+PrSdgTbat2KW
hh+DthVoo/0tZk9D13FoOwVtlAfELKk4AW0fQBvli187s6TiJLQNY8BSohBj
y3EQmSW1hrGhc85obik7iVm6OJpbigTKYmKWLo4i4Si0Ubb7pTNLF0dxS9uB
sqKYpYujzUs5gbKnmKWLo1RDCYuyrJili6M8uARtdjb+uXNAOeoCtB2Kb/Rm
bXEQ5jH0rDk1JuT0vo/tSXX0E00VLWJOAfih00Cqp+O1Ux6nIM0pGYaQ2SiE
9jttwpwiYwjZE4UsQ+8CtOWUJRFCm2MhCqH0Rdkup5AZQhajELpSKhI5pe+F
LuRQFEJBuAfa0ouluD8MXeM8QeLmotmc8mq4PxrdU0qada69tyAbQk5EIZQf
KLhySrgIOaSFVGiibUn7PqfoP9eFnI5CaE0pE+ZggiHkXBRCW4tqQw5YiBC1
ioemLuvNbOndDO8bYBn34ofh/HJ03l3xa0WZ6nw6nzzSFYTfssM10y+h6aQi
rmgePooXW4Fe3uT3bRHNQ13XDWhrSzkijq6ZJq0t+SSKa0tDhjha1raEJOIo
Wmjm2lLTgzRxLUjKkESL2YKuRBLtKZqltsSVKK4thRniaDHbktlnnThyRTPX
ltYSxbUlOEMcLWt9qhNBFII0W1VJL6BbyDkH0lTl0N+2yQuvhntapTJEeJ4n
VLRQAqOpqEKJq0bwJeqrR4u0LSm37NcFq4tbhSDpYilTi2DKnd4IKEOVVDKI
KhMFVybNSS23GzK9gdCWOUUw0aI3EMpwKAURvXchTXBpSiXptCaGTG8glCFX
Cg7KUyJ4d0YglKFZ2nS0ORMF1yNc2qZkzxDsDYmC1NtjIpprTBbeQKjHvwUE
12di2q6GSO/iF+NkOnQWfZRVvKtuEzP9IwS19YWEHu8a2sRM10xzY8xD+Ilu
vcpmZopqiv69hrh49XQ/VhlqJrSnkm/I3GUuUkFWDumNMrOIo404F81SOmrL
xYbM+eiAqlFbGjZkjh0Qi9ajYZ3QUObYAc1DPQYepskcO6ADtTLkS2RCMSwy
afhSdED5qwz50vRQiBkyj0QHVBcK8u6ktk0NcceiWe8/8JRhW0LFPbrMk6aD
ekRLlcmQOZ6HnN9xyxCtyCQhK9GBF8HKcqwh7Ww0SlFTlV4NVYGjghG63d/m
U7oHfbfuai26SmdRQmHDFZ0cT0ZjVeDTUKMcH89EQfVYU1RRUvDeXzCWWY81
DZneOw1aUKch03vPQWnqJEyb02V6z4lbUKch0z4dbsGaIo6O+PTI2Np2MDqo
x5qGTCJjyk7tWBNlUgBTSJRmTYLCWV2m9/y3BXUaMr2nvi2oU2SSe+/dDMvR
QT3qNGSGmFNPeOuwpluc91y3NHdS8d2ly/Se7O4QRKfHy4ruvQe3O4RTngfa
U96TU7rltQy6GuIyb40tQ7Kzuj7vye5bYFoW7D3jbUu3hmD7tLct3c7pMqmN
ap73LtsynCuCqYJ5WcJ7520Z9jUEe8+CvXdGlKHg3bpg76nwMEY4XWIZCjZk
qodqjuCox8OGYFrMnHt6y5CxHGXRSfFMXGDvA/P1yNiQ6T0zbsvIhmDv6bH3
LuAy3DyvC6aK7/0gCYrNMgS9RTCfKBOMeO8WTudnEbTtisMrHbcmPRSWRNJ7
e0LC/qWD5fQHxdKpuS9kW5f3A1SqUrPoe+CM27aEvE8XV/qpsnQaNsSVfqos
nYENcaWfKkvn3QVdXOmnytLZVsQ91JbBwVb1ONYQV+apsnRm3a9LKvNUWTqV
GpJKP1WWTqCGuNJPlaVzZ5dVB59DV+mnytIZ0xBX+qmydJ40xJV+qiydHRf7
4so/VWZz4hbn5T8rQMVC8fvF6CUkoTKfFWAj4IGeU1LbEvdEywtnWNVDO0NI
W4w7qAtpi2yGkLZ4Zghpi2JdbZfPSXqb2GUIaYFYhvsWOHVYd98WnQwhbTFJ
hPwIXW2RaEkX0hZ/DCFtUWeLkJpYc6TvqNLHHYmPn2JDNq6Er77Z4kBC0SUf
ClqON47qZnPo4ZhuNocFjutmcyr7Cd1sTp3uqpd8zG65qjvUzabX0FO6sfSK
aBjLqW8rutmcatUVk8Hv0JVTe87oZnMqyVndbE5dONc3m5flV/umdpzHuzQ7
+CMGn52pL/aG7zADi4kN6KLMekkfThnzsj6cMuEVfThluKv6cMpc3S/V8h8A
vDkjXdOHU6a5rg8f55Kb+iDKEcZw2vvdEcngH+iiPX1LH0579bY+nPbgnf5w
3lt3+0Ne2zP3ut5/4+Td7zVscyZjww87/F80BhP/A9daOzY=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {218.5, 0.}} -> \
{-1., -2., 0., 0.}},ExpressionUUID->"00f449c6-53ff-470f-b089-37fe65f3649b"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(17\\). \\!\\(\\\"gyroelongated square dipyramid \
(J17)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"c8c7df4b-2c73-4067-ae96-\
eca7e9de32df"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .57735
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.12963 0.21164 0.319223 0.21164 [
[ 0 0 0 0 ]
[ 1 .57735 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .57735 L
0 .57735 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.02381 .38032 m
.12963 .19703 L
.23545 .38032 L
.02381 .38032 L
s
.23545 .38032 m
.12963 .19703 L
.34127 .19703 L
.23545 .38032 L
s
.23545 .38032 m
.34127 .19703 L
.44709 .38032 L
.23545 .38032 L
s
.44709 .38032 m
.34127 .19703 L
.55291 .19703 L
.44709 .38032 L
s
.44709 .38032 m
.55291 .19703 L
.65873 .38032 L
.44709 .38032 L
s
.65873 .38032 m
.55291 .19703 L
.76455 .19703 L
.65873 .38032 L
s
.65873 .38032 m
.76455 .19703 L
.87037 .38032 L
.65873 .38032 L
s
.87037 .38032 m
.76455 .19703 L
.97619 .19703 L
.87037 .38032 L
s
.02381 .38032 m
.23545 .38032 L
.12963 .5636 L
.02381 .38032 L
s
.23545 .38032 m
.44709 .38032 L
.34127 .5636 L
.23545 .38032 L
s
.44709 .38032 m
.65873 .38032 L
.55291 .5636 L
.44709 .38032 L
s
.65873 .38032 m
.87037 .38032 L
.76455 .5636 L
.65873 .38032 L
s
.34127 .19703 m
.12963 .19703 L
.23545 .01375 L
.34127 .19703 L
s
.55291 .19703 m
.34127 .19703 L
.44709 .01375 L
.55291 .19703 L
s
.76455 .19703 m
.55291 .19703 L
.65873 .01375 L
.76455 .19703 L
s
.97619 .19703 m
.76455 .19703 L
.87037 .01375 L
.97619 .19703 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 166.25},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzVnelOFEEQx4cQ5FYEBOSQQW45BORGQCTRTz7EhpjAB6NBnskX9AGQnS4T
dvPvpma7dqo6EWatLqp/M0xPdx09fKvdXX//Ubu7uarlX29rv65vrn7nX37e
Pog6O7KsI8+y7E+e1T/fP3ykb/cP/+7n6t/qkqc/XxaHTvrhoiU7BrIjpt5C
W81+bmwqjsdAdsTUW2yr2Yvi0NVwIv9VDgNtBy3+HF2kT+D6dQLZLlPvg7C9
uaQwz0FTF5DtMPW2he3lSWGegaZuINti6r0Xtjfrx+yJ6B7pxdgjzFPQ1Atk
m0y9DWF7bxzmR9DUD2TrTL01YXszSWGegKZBIHvH1FsVtjedFCZabLwAshWm
3rKwvSk/5lBE90gvxh5houXcSyBbYuotCtub9GMOR3SP9GLsEeYhaBoBsgWm
3rywvdcO8wA0vQKyt0y9OWF7E37MsYjukV6MPcLcB03jQJYz9WaF7Y37MSci
ukd6MfYIc89726KVytN6M8L2xvyYkxHdI70Ye4SJXKdpIJuKkMXYc8MKeoLS
VyTG3qgfU+s+DGAiD096tMbYG/Fjaj0jA5jIr5aeSWLsDfsxtebvACZy67VW
Q8ieW9xBt156zRhjb8iPqbVSD2Ci6IO0PxNvD2JqeZEBTBTz0fLJkb3nSWGi
WI5WvAjZG0wKEzVpxTKRvQGHie4b6YhvjL1+P6ZWnD2AiUaXVtYC2etLChPN
EFoZNWSvNylMNI+6SIhsJhfFqtxohwuopkBhceTmqlEstLvyrorl3t96S88j
QZNuTAEB0nvmulpoDb+V06ywq/moW0/0lkWOnqVMf2DAJ4yO3GZLFQGBSSth
9Bw0WSpwCCy8uOgGl7az3mHQKDPoPKAIraWqg4B7ljA6indbqk4IhBi46H4T
raHH2CN0lNuxVGwRCJOhdJOlyoZAvDRhdJRRs1QBEYj5c9GRidEI9Bh7hI4S
hJYKOgIJIS66wZQbyndaKvxA9iipidQtVVkEsttcdIP1A+j+kq6oaFOFBhfd
0ukQOhr9lm6OQPkOF93S0CV0NINV8YATqJRDk7Sl6SdQi8hFt7Q4IHRU+mBp
qRWop+WiW1oIE7qWuyBQE54wekyhi/K+BtRkKXAR2DnCRbcUViJ0dPZVBN8E
dj8ljI5+IVUEmgV28A2AJktpgMAeSS66pSQNoaN7qYpUlsA+34TR+0BTFWlb
gb3qCaOjh4/bFVP5+xPQQ6epuqE4CrwhosKuiudMUWGz9EjQ1HdMNU3gtR1t
Ps3iq5or+riram/Zxn7od2h9wC8nhWl90lpJCtP6wmu1HKbW0pYwrTsPzgM1
756tJYVpPcSwnhSm9TDZRjlMre1thGk9XrpZDlNr6yVhWo/5u5nJfEJoqxym
VsqNMK0nNbfLYWq9AIAwrWe3d8phatUPEKb14hLn7pkv39kth6lVZUGY3BI0
rdG/Vw6zimck0iNM67WI++UwtQo6CNN6KbCL4LGLrbXWoIflMLUqGwiTu2FA
yz86KoepVWxBmNY3vRwnhWl999NJUphoDrZUCOFeDmx+j+RpOUytAgfCtL7P
9ywpTOt71c+Twqz6/Qnub1CIvyHisq1mpd/SQReh+M8Tf7gk6/gH+MdlCQ==
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {165.25, 0.}} -> \
{0., -1., 0., 0.}},ExpressionUUID->"683a19e5-f243-47bd-9d98-a4ab6d1e5377"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(18\\). \\!\\(\\\"elongated triangular cupola (J18)\\\"\\)\"\
\>"}]], "Message",ExpressionUUID->"0ce440a0-fc99-4386-baf5-063c418fafc8"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .93301
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.103175 0.15873 0.376508 0.15873 [
[ 0 0 0 0 ]
[ 1 .93301 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .93301 L
0 .93301 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.5 .29714 m
.34127 .29714 L
.2619 .15968 L
.34127 .02221 L
.5 .02221 L
.57937 .15968 L
.5 .29714 L
s
.02381 .45587 m
.02381 .29714 L
.18254 .29714 L
.18254 .45587 L
.02381 .45587 L
s
.18254 .45587 m
.18254 .29714 L
.34127 .29714 L
.34127 .45587 L
.18254 .45587 L
s
.34127 .45587 m
.34127 .29714 L
.5 .29714 L
.5 .45587 L
.34127 .45587 L
s
.5 .45587 m
.5 .29714 L
.65873 .29714 L
.65873 .45587 L
.5 .45587 L
s
.65873 .45587 m
.65873 .29714 L
.81746 .29714 L
.81746 .45587 L
.65873 .45587 L
s
.81746 .45587 m
.81746 .29714 L
.97619 .29714 L
.97619 .45587 L
.81746 .45587 L
s
.34127 .6146 m
.5 .6146 L
.42063 .75207 L
.34127 .6146 L
s
.5 .6146 m
.34127 .6146 L
.34127 .45587 L
.5 .45587 L
.5 .6146 L
s
.5 .6146 m
.5 .45587 L
.63746 .53524 L
.5 .6146 L
s
.42063 .75207 m
.5 .6146 L
.63746 .69397 L
.5581 .83143 L
.42063 .75207 L
s
.42063 .75207 m
.5581 .83143 L
.42063 .9108 L
.42063 .75207 L
s
.34127 .6146 m
.42063 .75207 L
.28317 .83143 L
.20381 .69397 L
.34127 .6146 L
s
.34127 .6146 m
.20381 .69397 L
.20381 .53524 L
.34127 .6146 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 268.688},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnPlzVEUQxzcX4QgEQ7iPbABFMIB4iwd4gRfe9wUpyjIBYzBESBAIgRAD
MWBZVlmWVZZl6d8Z845M7/HpyfQj+W2qyO6j59vf7n3vTR+zO+9E73Df1wO9
w/2ne8vHh3rP9fWfPl8+Njg0J2pqKJUaynN/beVScjxbKs2/zM79m+1OXhJJ
8ePe5O1gwvlLhaDUlFtJoaWHQHYng5+Cof0gmykEPwlDB0H2sw5/GGTTGfwr
GDqkw7+EoUdBdrsQ/AsYehxktwrBP4ehJ0E2pcOfAtlPGfwzGHraBj8MsskM
/ikMPaPDP4Gh50B2sxD8Yxg6ArIJHX4UZDcy+Ecw9IIN/iLIrmfwD2HoJRv8
ZZCNZ/APYOgYyK4Vgr8PQ6+CbCyDvwdDr9ngr4PsagZ/F4besMHfBNmVDP4O
DL0FssuF4G/DEFH8WAhOhunkXsrgJ2CIrrQHTvfRaAanc0xTZqQQnC44BZOL
heBL67vxRBqvqhG+tHfkIswmOlv5XDVObWPgMIYlY4wk+HGQFQvYBH8FZHn2
MCYbYyoz5lVj1jbWBDTrn7fBPQUKVUvP2uCe4spY6RnrSGOVSjXwEza4p2Re
2nLf2HsY4SdhyNM3nYKhxWviliVvyUGpM3lprZDWKFCfuS8Qdy+6LdGl6FJ0
KboUXYouRZeiS9Gl6FJ0KboUXYouRZeiS9Gl6FJ0KboUXYouRZeiS9Elr0vJ
QdWXPfqPCpvnZcl78jezkEZLlSzXnP8mK/TXi43Ja2Mium1TbHaKUzbFZU5x
0qa43ClO2BRXgmzcRrHK2TYqrnaKYzbFdqd4xaZ4H8gu2Sg6nG2jYqdTHLEp
bnCKF2yKm0B23kax2dk2Km51it/bFLc7xUGbYpdTHLApdoPsjI1ip7OdKx52
gvsDKXY5jf4KivrQt8vyqVK+s5V8HBh3BpKWQVZFrwVQUiQDO5zGdzqthNcd
gbTbnMY5nZYS5VbL7V4j85hqdf6EGqibiES7woE2B9JudBo/6LSrQLYh0ADh
PKbanD+hBurCKtGucaDOQNq6ME+0ax2oI5BWNC7rtETWHmiAcB5T65w/oQbq
kjbRrneg1YG0dUUE0W4EGRUwxkKHTG1y/oQaqCvBiHaLAy0PpK0rCYl2G8ha
Ag0QzmNK8nOogSancUunlezdpNI2V8nm8dM6aXe9WnK8n8UzOlGaH5ucbnp0
R4enOfpQIrq7gHPpJ8g+shvsqXYveV/APcqujSDbG4i7rZuSBE2XnwzI5ffQ
SoKmebHHOy+mdFrKritARkUa4W7qpiRBtwUaWOk0PLSSoClAUzEoAfqGTkvZ
NdQA4a7ppiRBr9NmAXVpqYaHVhL0+kBayXVXdVpJ0NQ9dWmncqGUTueMarTt
gbhR3ZRcf8oKZECSkodWEjSdBJpokiku6rSUXUMNEG5YNyUJmu5qOssSoj20
EohokhOttHpDOi2F1wdARjUR4QZ1UxKhaR2PpteDTqOKlhN0TyDpPqcxoJIm
x/QbdQot9GvzyvY8HaGdv0R2wDlXSVEDoh/b05IT4b7RaR8BGQUUwuW0tFuD
vCBawvXptOQFdQGEy2lpKwp5QbSEy1dUaEMMwanfJdyZJaWl3T4EpzqFcGd1
WroUrYG4nPZIoBdES7hvM9qjgXCKluTtItASLg9YtFuM4NTikLeLQEu4fGmN
NoFncF4kpI1KefinXXU1ltP3x+6dgrzIV9poK2Aa31ORUVECfk171qiljXyh
m/Yv9nhOq2TfAzop7aHc6xSbA28GSu9DuoE9zgAtjcoqLHV9+SolbRXd7RSp
15Nyiro+D62swVNNKcXfbhjNyzvaB1sGGRmQbo4W0z0GpKOmdEbNJK1652uq
9PgC+SqGsru0Cx5a2k8sK2RU4shXdFS5X9BpqZ4lA9IkUqPm2U8v/SitBUuT
SC2yh7bDqygLolRcevbnt3s/Jp2stboB2qNONx2ZkstNd9GobkAaR7oTpPck
RzyPFpAJTS2trCfRXPU8gkDCT5c289TQ5XlUgQR5WpmgGEMxveppBZxNqLWV
NpaSQtUzDepWHSlaSv9akxo9DzAgHkkEY5niCIAkrI/rIDqpHniX45zQQbJ8
MamDJLZO6aAtIPPAZaZN6yBZdZrRQRLq7uogCkgeuMTdX3WQRK3fdNAakHng
8tXg7zpIsvAfOkhCx586iBoVD7zFcf6lgyQK/F0J4mWTf1RIcvxvxWhq5D/d
bD6U/mcRngZXavgfIcwvPg==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {267.688, 0.}} -> \
{0., -2., 0., 0.}},ExpressionUUID->"19621b25-e5e3-4468-8f49-8a6a183acf73"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(19\\). \\!\\(\\\"elongated square cupola \
(J19)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"e361f971-bfde-4305-b234-\
4ec5fb369271"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .80178
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0833333 0.119048 0.36602 0.119048 [
[ 0 0 0 0 ]
[ 1 .80178 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .80178 L
0 .80178 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.5 .3065 m
.38095 .3065 L
.29677 .22232 L
.29677 .10327 L
.38095 .01909 L
.5 .01909 L
.58418 .10327 L
.58418 .22232 L
.5 .3065 L
s
.02381 .42554 m
.02381 .3065 L
.14286 .3065 L
.14286 .42554 L
.02381 .42554 L
s
.14286 .42554 m
.14286 .3065 L
.2619 .3065 L
.2619 .42554 L
.14286 .42554 L
s
.2619 .42554 m
.2619 .3065 L
.38095 .3065 L
.38095 .42554 L
.2619 .42554 L
s
.38095 .42554 m
.38095 .3065 L
.5 .3065 L
.5 .42554 L
.38095 .42554 L
s
.5 .42554 m
.5 .3065 L
.61905 .3065 L
.61905 .42554 L
.5 .42554 L
s
.61905 .42554 m
.61905 .3065 L
.7381 .3065 L
.7381 .42554 L
.61905 .42554 L
s
.7381 .42554 m
.7381 .3065 L
.85714 .3065 L
.85714 .42554 L
.7381 .42554 L
s
.85714 .42554 m
.85714 .3065 L
.97619 .3065 L
.97619 .42554 L
.85714 .42554 L
s
.38095 .54459 m
.5 .54459 L
.5 .66364 L
.38095 .66364 L
.38095 .54459 L
s
.5 .54459 m
.38095 .54459 L
.38095 .42554 L
.5 .42554 L
.5 .54459 L
s
.5 .54459 m
.5 .42554 L
.6031 .48507 L
.5 .54459 L
s
.5 .66364 m
.5 .54459 L
.61905 .54459 L
.61905 .66364 L
.5 .66364 L
s
.5 .66364 m
.61905 .66364 L
.55952 .76674 L
.5 .66364 L
s
.38095 .66364 m
.5 .66364 L
.5 .78269 L
.38095 .78269 L
.38095 .66364 L
s
.38095 .66364 m
.38095 .78269 L
.27785 .72316 L
.38095 .66364 L
s
.38095 .54459 m
.38095 .66364 L
.2619 .66364 L
.2619 .54459 L
.38095 .54459 L
s
.38095 .54459 m
.2619 .54459 L
.32143 .44149 L
.38095 .54459 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 230.875},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnAlPFEEQhQcXFO8LD1DiEmKMMcYYY4wxxhijxHiAFyiisiIKKh6I9wHe
J8Zf6d9ApqutLPjN0g07MdFKdGfyqvq96t2Znu6qHk6URgb6h0ojg32lYttw
6d7AYN+D4pG7w5NQoSZJaopJkvwsJun5xOSp/5iY/DfRkn6kSNz5UHpoTXl+
CHDbHQqe2bkmLYCNi/stMLUC9k3cb4JpM2BfxX0QTFsA+yLuA2DaCthncb8B
pm2AfRL362DaDthHce8H0w7APoj7NTDtBOy9uPeBaRdg78T9Kph2A/ZW3Etg
2gPYG3HvBdNewF6L+xUw7QNsTNwvg2k/YKPifglMBwB7Je49YDoI2Etxvwim
Q4C9EPduMB0G7Lm4XwBTG2DPxP08mI4C9lTcu8B0DLAn4t4JphOAPRb3c2Bq
B+yRuZu7uZu7uZv7bN0jn02RT77I52rkUztyThA544icz0TOliLnYpEzvch5
ZOQsNXIOHDnDjpy/R64OItcekSubyHVT5Koscs0XuaKMXK/OTw/pSdKQfiwo
Q6c1KAK26S9hFEudhW6hW+gWuoVuoVvoFrqFbqFb6Ba6hW6hW+gWuoVuoVvo
FrqFbqFb6P9r6OnJlFrHUCZx7W8sPab/x2dqUTcF8y1/V2aym03F5qWf81LI
F4yohLkskKxWyT7NnWy+kvky3LRarDsuDySrB+zt3GkXaoyerLvCLxPa8cVK
6kutVOIuZDUMEFiqAqP5CCxXAV/oppp+HWCLAgVWAlZhW95cpFZpX7wAbWdY
kHVtBAg0qMCTfATWqkCF/RtERjcNCawH7IFI0c4SuoqofyTVqH3JSaBJBYZF
4GzWDUTDVeiX5QRG8hFYB5iXOgMmGurofiGpNdqXx/kIrFYBv9vnNDjRYFAb
KLBSBZ7nI7ACMC91KqvDASMxSS3Tvvj9Qh1ZPxnNAQIElqjAWD4Ci1TA7xqi
TWhyffMjlvae1Cvpu+qR0nDi6U+CqVGumXJsIoO5TsP9WBW+gvL5DUS0U2/D
VKys27XTvxJH5XcLHQeqZnUCgvR8PLitM34Xd7dh8EYK3CkDqjiVv220Rmu0
Rmu0Rmu0Rmu0RvuP0pbPo90LAm7OLUsFbVSMI5b3EiqsoJwGEUiqWl6bcE6Z
a+uZKPrVKSBZ4o7N4Oe/mD4ly86D/bG42QCud4WP3oCpDnOvRpqdoOUfphH8
7wnpZSWlZNQsSXuUNDTDTqkDSjHcF4FuFaCkDQlQdoWyMD4dSKnynKS6tC8N
gQJ041Bw5blTJ7A2H4EzKkApYhKgxCBdKj6hSdm6UCkaIuhSfyhSHdoXuhOr
INCuAhsDBSgJRSOAT/ufUoGmfAQo+0vZaJKikZBqEj7RfFb7kpNApwrQaEMC
REZfYPlrrk6AhgASoIoV3S8+VU5vulI2ugpSF7UvoQJ0FdHw6Gtul1Qgqoga
LnBFBZYECogfPwF91bOkpKHFxmnDgzv6ZD69ERta1KpAe01jDCWjX8B3+LqS
hRZ4fHZ3QBuGFjt8Q3m9NSgR7lu4N1wLMzj98YeZnHWWf+UpqfkFnHBC/Q==
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {229.875, 0.}} -> \
{0., -3., 0., 0.}},ExpressionUUID->"039ad5be-a7ab-49af-ba90-6c87d3e2d5dc"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(20\\). \\!\\(\\\"elongated pentagonal cupola (J20)\\\"\\)\"\
\>"}]], "Message",ExpressionUUID->"e1068517-3af6-4cf9-890e-bc32a7855fb8"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .75301
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0714286 0.0952381 0.358661 0.0952381 [
[ 0 0 0 0 ]
[ 1 .75301 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .75301 L
0 .75301 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.5 .31104 m
.40476 .31104 L
.32771 .25506 L
.29828 .16449 L
.32771 .07391 L
.40476 .01793 L
.5 .01793 L
.57705 .07391 L
.60648 .16449 L
.57705 .25506 L
.5 .31104 L
s
.02381 .40628 m
.02381 .31104 L
.11905 .31104 L
.11905 .40628 L
.02381 .40628 L
s
.11905 .40628 m
.11905 .31104 L
.21429 .31104 L
.21429 .40628 L
.11905 .40628 L
s
.21429 .40628 m
.21429 .31104 L
.30952 .31104 L
.30952 .40628 L
.21429 .40628 L
s
.30952 .40628 m
.30952 .31104 L
.40476 .31104 L
.40476 .40628 L
.30952 .40628 L
s
.40476 .40628 m
.40476 .31104 L
.5 .31104 L
.5 .40628 L
.40476 .40628 L
s
.5 .40628 m
.5 .31104 L
.59524 .31104 L
.59524 .40628 L
.5 .40628 L
s
.59524 .40628 m
.59524 .31104 L
.69048 .31104 L
.69048 .40628 L
.59524 .40628 L
s
.69048 .40628 m
.69048 .31104 L
.78571 .31104 L
.78571 .40628 L
.69048 .40628 L
s
.78571 .40628 m
.78571 .31104 L
.88095 .31104 L
.88095 .40628 L
.78571 .40628 L
s
.88095 .40628 m
.88095 .31104 L
.97619 .31104 L
.97619 .40628 L
.88095 .40628 L
s
.40476 .50152 m
.5 .50152 L
.52943 .59209 L
.45238 .64807 L
.37533 .59209 L
.40476 .50152 L
s
.5 .50152 m
.40476 .50152 L
.40476 .40628 L
.5 .40628 L
.5 .50152 L
s
.5 .50152 m
.5 .40628 L
.58248 .4539 L
.5 .50152 L
s
.52943 .59209 m
.5 .50152 L
.59058 .47209 L
.62001 .56266 L
.52943 .59209 L
s
.52943 .59209 m
.62001 .56266 L
.60021 .65582 L
.52943 .59209 L
s
.45238 .64807 m
.52943 .59209 L
.58541 .66914 L
.50836 .72512 L
.45238 .64807 L
s
.45238 .64807 m
.50836 .72512 L
.41364 .73508 L
.45238 .64807 L
s
.37533 .59209 m
.45238 .64807 L
.3964 .72512 L
.31935 .66914 L
.37533 .59209 L
s
.37533 .59209 m
.31935 .66914 L
.28062 .58214 L
.37533 .59209 L
s
.40476 .50152 m
.37533 .59209 L
.28475 .56266 L
.31419 .47209 L
.40476 .50152 L
s
.40476 .50152 m
.31419 .47209 L
.38496 .40836 L
.40476 .50152 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 216.812},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnPlvHDUUxyfZ3ezm2KTZbNpASrIpUApCqEIIVQhVCFUFIUDl6AEF2m0a
SGjTTZPQhvu+r9/4B/in+G9CxvY+7/Gx8SQw7A+WmrX7ju/z83g8z8+eeam5
vbqy3txeW242nttsbqyuLW81zrY290iFoSQZaiRJ8lcjSeu7e1Xzs7v3b3cp
/Ukp2epbabGQ4vyuCZuqKBhkJZocBdovWvw2sBaA9rMWb6XFcMo5JjXDugVa
DwDtBy1+U/RPSM2wboDWI0D7Vou/D6xHgfaNFl8VcyelZljvgdbjQPtSi78L
rCeA9oUWvy7mTknNsJZB6ymgfarFm6J/WmqGdRW0ngHaR1r8CrCeBdqHWvwd
YJ0B2s6+xN8G1lmg3c1D/C1gPQ+0O3mIXwbWC0D7IA/xN4H1ItC28xB/A1gv
A20rD/FLwDoHtM08xC8C61Wg3c5D/AKwXgfaRh7i54FFEK19iQ+UqwM1CAbq
9hioiWOgptSBetgM1GN4oAIUFVyp0O+M1ExUlzEIbALrNNA+1uLXxNzTUvtM
s66D1imgGfEV0X9Saia2zhiKrwLrJNC+0uJrYu4xqZnVRMbFx01gnQDad1p8
Xcwdl9qPmtUCrWNAM+Ibot+QmlnTZVwCbgHrXqD9qsXLaZFWklr6U+mg9ijM
HYB2z/+kS7SR6GJ0MboYXYwuRheji9HF6GJ0MboYXYwuRheji9HF6GJ0MboY
XYwuRheti2mlK0duk/8lJ1yxTUvL9M9k3Xv2GVTpRil10dryJt9/o9tQm+1G
66YNixc/aTw6fzUcSCMDRTFgzoOtgVDhAAZGgGa2c2gfqXgAU2XxxRigfS3q
+VADo2Lga22ADqWVPYOCdnrGBdRsr62AUCUjaBVoZh9wWeyNZwSdFE0Ddc3l
TgbQQwL6iQalDdKJjKA1oJlTdVddjvXfpIQ8I801eFdAaCocry54OxqPjvEd
CserCZ7Zb6aN7ulwvL7LQ7v4M90052WZApqBpZMK9UDYqrTxcw2mzmAomdlA
CHsTVkT3TgdY74SonjaB2HbWKAs2zTieQ3ZFUbTXg0zZGXBENGjC85iybax6
TZWEWxKNUZDznNEZS3+Loug0VRBuQTQm3KYuuUZeQTrGaYqui+33cHs1sVfw
2lNTWh0YnnNWs4KtwYWp4iuFeMSNSMfIlOKCq40eRRKnByfJeY61UaBINA8s
Hd0jcaKRqX8Blmieg4bUivlssHSYksTpvAqZzx+WxO8LNG+OiNKBTRKnFzHI
fP6wJL4YaF6/KJK8FijeCDSfPyyJLwWaX9ewdFqWxP8jWDpfRl55YEn8/kDz
elGbvJIWBddcT2BzonGrY4wWXM8Zeg2pLhr0gDUtuyhCMyD0INCmRYOCHANr
g0F6hhPspGhU3LAqrnaGIseBNioaY+6r3vTafghoNtKbdMOqs9kVaa2zz8hA
QTSm/8EAhYhVuerO699zhFOVKmKiwGi9YxjTcFBOPuwdoR6II9AU3SelLlq7
nAUMc5fQ/TvbDdX+U//XI7GMvHZJHeIxR+I2Hl2SWs9IUCXdg57pmVbclPqh
h/cImCe8jObtYmheanqF0rfypYHtsUbidE/T4BvjFtDS2BMSkDjNQzQ+J7gF
NHtkbIFdMdo0yZRnyFOWyvMeEInTnE5NgxSKNHE8WzOon2n8UXNJjqZEmvw9
rzzR4LOZJZvcOBxonnYNMponUwRLcpRvpqeV570r6sA56QebvHDmG3polJf2
mCdP5z13Ak2L1AyimWZQqoA6rceUKhcDTdFYyWie1kNEK3p6y5McoetE3hGt
R1eVnvQVdcYiQNBywm67ZDSwIIpObsBFMNkMndrsexIsebqenNnpRAPfVXND
L4x54eqyKDYA1jmwOjPplPk+CmB0r1LqwpOgnw+EpfxN5z4CTUmqpMyqnc48
OyeH+RKHztgGmTZ6KLVOT1IKQcz3E+hLDDPcYHroUoja+W6c6psa41G0Y3Pr
nm9OOPZ2CI/iEM8bd1XPbeeMtnpo5pU7+9kN386ZM4zt3EOlDefRjKA0ej1v
APp2UOma051mXgGkNwZDd4ApViPd77Upe+AgdA+blmd9G/4tT2eQobpH3pxJ
2OhWc86odIebExL0JRsKGNQtpZbkv2nFuy5FlSf4QwupnTe1Ev5TE5TcPj/a
kwz9DTTUyXw=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {215.812, 0.}} -> \
{0., -3., 0., 0.}},ExpressionUUID->"a0540f70-0586-4aee-8ff5-f75273a9bbdb"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(21\\). \\!\\(\\\"elongated pentagonal rotunds \
(J21)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"55a3deb3-7a36-4a3f-b885-\
b7e7f82a9f31"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .89634
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0714286 0.0952381 0.362073 0.0952381 [
[ 0 0 0 0 ]
[ 1 .89634 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .89634 L
0 .89634 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.5 .31445 m
.40476 .31445 L
.32771 .25847 L
.29828 .1679 L
.32771 .07732 L
.40476 .02134 L
.5 .02134 L
.57705 .07732 L
.60648 .1679 L
.57705 .25847 L
.5 .31445 L
s
.45238 .55625 m
.53939 .59499 L
.52943 .6897 L
.43627 .7095 L
.38865 .62702 L
.45238 .55625 L
s
.45238 .55625 m
.37533 .50027 L
.40476 .40969 L
.5 .40969 L
.52943 .50027 L
.45238 .55625 L
s
.45238 .55625 m
.52943 .50027 L
.53939 .59499 L
.45238 .55625 L
s
.52943 .50027 m
.5 .40969 L
.59316 .42949 L
.52943 .50027 L
s
.53939 .59499 m
.56882 .50441 L
.66405 .50441 L
.69348 .59499 L
.61643 .65096 L
.53939 .59499 L
s
.53939 .59499 m
.61643 .65096 L
.52943 .6897 L
.53939 .59499 L
s
.61643 .65096 m
.69348 .59499 L
.70344 .6897 L
.61643 .65096 L
s
.52943 .6897 m
.62467 .6897 L
.6541 .78028 L
.57705 .83626 L
.5 .78028 L
.52943 .6897 L
s
.52943 .6897 m
.5 .78028 L
.43627 .7095 L
.52943 .6897 L
s
.5 .78028 m
.57705 .83626 L
.49004 .87499 L
.5 .78028 L
s
.43627 .7095 m
.4657 .80008 L
.38865 .85606 L
.3116 .80008 L
.34104 .7095 L
.43627 .7095 L
s
.43627 .7095 m
.34104 .7095 L
.38865 .62702 L
.43627 .7095 L
s
.34104 .7095 m
.3116 .80008 L
.24788 .7293 L
.34104 .7095 L
s
.38865 .62702 m
.3116 .683 L
.23456 .62702 L
.26399 .53645 L
.35922 .53645 L
.38865 .62702 L
s
.38865 .62702 m
.35922 .53645 L
.45238 .55625 L
.38865 .62702 L
s
.35922 .53645 m
.26399 .53645 L
.3116 .45397 L
.35922 .53645 L
s
.02381 .40969 m
.02381 .31445 L
.11905 .31445 L
.11905 .40969 L
.02381 .40969 L
s
.11905 .40969 m
.11905 .31445 L
.21429 .31445 L
.21429 .40969 L
.11905 .40969 L
s
.21429 .40969 m
.21429 .31445 L
.30952 .31445 L
.30952 .40969 L
.21429 .40969 L
s
.30952 .40969 m
.30952 .31445 L
.40476 .31445 L
.40476 .40969 L
.30952 .40969 L
s
.40476 .40969 m
.40476 .31445 L
.5 .31445 L
.5 .40969 L
.40476 .40969 L
s
.5 .40969 m
.5 .31445 L
.59524 .31445 L
.59524 .40969 L
.5 .40969 L
s
.59524 .40969 m
.59524 .31445 L
.69048 .31445 L
.69048 .40969 L
.59524 .40969 L
s
.69048 .40969 m
.69048 .31445 L
.78571 .31445 L
.78571 .40969 L
.69048 .40969 L
s
.78571 .40969 m
.78571 .31445 L
.88095 .31445 L
.88095 .40969 L
.78571 .40969 L
s
.88095 .40969 m
.88095 .31445 L
.97619 .31445 L
.97619 .40969 L
.88095 .40969 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 258.125},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnI9vVEUQxx9tjxawlt/+ALkrCIg/iDGGGGOIUQRBQUUp9QeWWsAWxJa2
CCiCaFBU1PgX176d6ezd62cf+9q7y0t8JPT2Znb3O7s7uzM7b+6dHJ+fvHh1
fH5qYrxxbHZ8ZnJqYq5xdHp2kdS7JknWNBb/9zSStLyQJEt/3L/h9I9+WWF5
Lv3Ylfb5jxBm3UfvgoEsftsJtIdS/RqwdgHtT6k+nX70pJzdVlLWt9DqWaA9
kOpXgbUPaL9J9W+A9RzQfpXql026F62krClodRBov0j1SWC9DLSfpfolg3vV
Ssq6CK0OAe2uVL8ArNeAdkeqTwDrdaD9KNXHTbrDVlLWeWj1JtC+l+pjwHoL
aLek+pfAOgK0myuqfg5YR4F2oxvVvwDWu0D7rhvVPwfWCaBd70b1z4D1PtDm
u1H9U2CdAtpcN6qPAutDoM12o/pZYJ0G2rVuVB8B1idAm+lG9TPAoi6mV1S9
VEMtlRKUanuU6uAo1ZFaKmNTKjNcKgfFOVfO9TtiJfXqCjqB48A6DLQfpPpX
BveGldSPLej2XrT2h6x0T1hfQ6tXgKbVCzr6UwZ30Er3hXUFWj0PNK1e8Gpz
1eD2Wel3YU1Dq91A0+oz1r5hJb0WFrxFzgHraaD9JdXX6tck2Zr+6W+iZho8
BbQnI2llalurhlgSMashVkOshlgOMashVkOshlgOMashVkOshlgOMashVkOs
hlgOMashVkOshlgOMashVkP8Xw0xLbTEyOcjO66l3zTMT8H5IHBfSrofbkhR
/YH0r0P8qVjDQUO8LQ3pscMOoG0yxBvhhvS8Ylv61z3ouF6s4Xag6ZNXSqF7
JoSdoc2Hu6AsvC1Au16si81A02eTM8CqA20T0G6Eu2gAbQhoN6ULeu69NbLb
x4F2K9wtTecw0AaBpg8+RzOsxG3YuG4fA5o+IJW0iFozy7onqekp33qg3X50
96Qge4C2DmiaQUgZJr1AIy0gqAGg3Vk9FGWnkmW5K1CUxFMDGmnL3si2eoBS
Ok4/0EiDCKoPaPdWD0X5uj1A00fmHwOLtIgUd79OGWns/XZ139fSfWIpw5SQ
tCESzT3JdxZHM5k/gkqkMv3W8ICVHhTrguTJqkc6gW4sO9Oi5HFg0hPtIALY
w1NJ80Wey1gxCdbb3AxbifY/HSHkkki+cfIBsMjs0ajI9rdBJMr9IlOwweZh
h5VoQxOtDfCkh09EwtPhS86YpDklJ4FFThaJRPVoQTokknNU3NJssRLpUkF4
SsmjyaedRDQSicwWOZqSGJe8l37UUw4B0NKQpVkJaIbFV56lee9pLZGsHZNh
QS9BdJrSNiHhyMKThyy5k5guSRetARNurc1NzUrkKnZIEKcUNX+6sydAW42O
3jYI5K+ggrDERBnIKSKXXdJsk+PAIqviLhqORNfTDoHK+Lx9Tz8TvvR0ctgE
5Uhiplk/yGGViyHm7NaBRjrv98ZQZ8HJBVln4IOdBd8INLctHUm86mVuHyWy
yp05OQYsuibTpX6jDXqgY7hkm7y1zh7MSXtAyfhtN1B/9FI+8dliUGTcnYFy
pJ4YKMotj40VuJ3d10GAeusIXGm0WLfkEWZtBy184qHegS7oik6enqzaMt3e
a8OhA3akGC55NbsBdwmSzu82iEFuA60IWXNywqieikQ/H90fOSoSyW/KnVai
1XwkfPzJTV4hXaZXJMYyfaPJoZ3hg+u0HRX3bWD5AAedoN7AkeGnaM6ZJqhM
BOUAVKeDcMhakBlQgBjlTgKgdNATVA58+BSrNcObGDS5gzZOf/khQ6+Qx6yS
D7dk90kIiq4tpMg58GEPkfcOnQJ0+nh3gnYMeV0q0Alr6IMtBEo0OkskosIn
L2m/ihF771+NaFn4dH7p2qEixUZCCD5sk0AkR8oR5JRNoHfeaJVjQTdbL71W
ylma2EAmwdPuIE9uyOah30o5ShsbPiaR6GTPekTWnz8/g0EVFem0VfLHEJmY
WHjfy6ZWQRg+9iEI0ch61IHmhuNI26xEbUUWkSzj9JOti4X3d1R/UtFsKnze
E0KCpMmlu7sfTN1KNKsqBj1ejbWcwTi8A93TOr8MTw+NaRFIsylM6745d6qX
LGcTMr0shrb0DuvsJSuNFOvC3fnqppgsD/0sl8L/jlYLDY7in5eLAbip7gup
TQ4AvSCHBrzeAGilKRQobxSSHzVHGOE+myKKbLQFIOEsgZy+x9KPRsiU0laS
30tL7K7QgtOk5wA4bc5f8J4VyH3aug0uc9C014EmvzYXtyd6cZPAQuUAHDe5
wyu87AZHQcscDO/lhyd1GQa57eSsXGrCiNYMNkR07OZAUqCTlpe0hpSbDFEO
PF1eYheG4MkM58DTgw0yBwRPTnr42X8rTcwQPg4jlekQPN2QaIfSBMY+vM+B
p9sQ+SwET6ExusDQxVasKj68j9Veco+IlgNP2RSx2ksjpRnJgacrWKz6EDxt
RoqRTaweXkwen34UVVJIuuHFamzggUoOGqVHxSqoQ3Om5gXgiseDmV2xKuij
hz4IqHpBt75Y1couYLogpAMKRbmDsWoUWBCSSk+bEZ2hWK0hhIVlcT51nM6y
OOF+H32Y5rhpowZP+hGM42QuuvJGHrnOZXSBZCRHkxxt7ZbeRxXU9QgauUHy
kiB821Ts8zC/E3wgTF84d84IfrnJPgQj5RmadjsGLFprgoq95etb6s6b3H7V
gwlHmUCT5vHHXq9ik6dIixQq9i5KDpKPVXtN1wT+C0bwK0weptwc+HzQLPxL
kYOk7ilSrFn49E6u4HN26rb5HWWTRvBrSRcWH7HV9PfLUIlWizrzsVbNQL9i
vfv1oGuv1zzNvJY3IPMq0E3dD1JfTZx943LakKJOPvKomdL0njBC9DFDTTx+
CJX8qP8IV/Jxt4d5lRa//d3Ed4R/ww2U5b604V3ayZr/AFTSylg=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {257.125, 0.}} -> \
{0., -3., 0., 0.}},ExpressionUUID->"b9eb1662-ac0a-4c16-984f-ae29e16ebcd4"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(22\\). \\!\\(\\\"gyroelongated triangular cupola \
(J22)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"bd11414b-2843-4073-84ec-\
eeca4dcb47fe"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .84063
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0970696 0.14652 0.358389 0.14652 [
[ 0 0 0 0 ]
[ 1 .84063 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .84063 L
0 .84063 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.39011 .2738 m
.24359 .2738 L
.17033 .14691 L
.24359 .02002 L
.39011 .02002 L
.46337 .14691 L
.39011 .2738 L
s
.02381 .40069 m
.09707 .2738 L
.17033 .40069 L
.02381 .40069 L
s
.17033 .40069 m
.09707 .2738 L
.24359 .2738 L
.17033 .40069 L
s
.17033 .40069 m
.24359 .2738 L
.31685 .40069 L
.17033 .40069 L
s
.31685 .40069 m
.24359 .2738 L
.39011 .2738 L
.31685 .40069 L
s
.31685 .40069 m
.39011 .2738 L
.46337 .40069 L
.31685 .40069 L
s
.46337 .40069 m
.39011 .2738 L
.53663 .2738 L
.46337 .40069 L
s
.17033 .54721 m
.31685 .54721 L
.24359 .6741 L
.17033 .54721 L
s
.31685 .54721 m
.17033 .54721 L
.17033 .40069 L
.31685 .40069 L
.31685 .54721 L
s
.31685 .54721 m
.31685 .40069 L
.44374 .47395 L
.31685 .54721 L
s
.24359 .6741 m
.31685 .54721 L
.44374 .62047 L
.37048 .74736 L
.24359 .6741 L
s
.24359 .6741 m
.37048 .74736 L
.24359 .82062 L
.24359 .6741 L
s
.17033 .54721 m
.24359 .6741 L
.1167 .74736 L
.04344 .62047 L
.17033 .54721 L
s
.17033 .54721 m
.04344 .62047 L
.04344 .47395 L
.17033 .54721 L
s
.46337 .40069 m
.53663 .2738 L
.60989 .40069 L
.46337 .40069 L
s
.53663 .2738 m
.60989 .40069 L
.68315 .2738 L
.53663 .2738 L
s
.60989 .40069 m
.68315 .2738 L
.75641 .40069 L
.60989 .40069 L
s
.68315 .2738 m
.75641 .40069 L
.82967 .2738 L
.68315 .2738 L
s
.75641 .40069 m
.82967 .2738 L
.90293 .40069 L
.75641 .40069 L
s
.82967 .2738 m
.90293 .40069 L
.97619 .2738 L
.82967 .2738 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 242.062},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnPlvVFUUx6cLLXsrLa1tgU7B0mLFfd93Ygwx/gkNMYEfjAb5Z9ygLV0o
XdUKKJuAxsQYE2OM/h3+Ada++y73vJl+zuu7b+bNm2AT6AznfM/33Dnv3bPc
N+X46JmTH3w4eubUidHisdOjH588deKT4tsfnV4TNTUUCg3FQqHwT7EQvF9d
e2t/rK79WR0IfgSS9O/fCl5GAs7liKDQZL0YaGEIZIsh/E1QHQHZQir4G6Aa
Adl8CH8dVEdBNpcK/hqoHgHZxVTwV0H1GMhmU8FfAdUTILsQwl8G1VMgm0kF
fwlUz4BsOhX8RVA9B7KpVPAXQEWyyRD+PKjo85xPBad10pWeSAV/FlR0U4+n
gtMVpO0+lgr+NKgos50L4XSzHgPZ2VTwJ0H1Dsi+TAWnbfwuyL5IBX8cVMdB
9nkIpxT0Hsg+SwV/FFTvg+zTVPBs1+4ZyGyvarZ3pOf28NyrnvBs80y2OdIz
YWdbbDwrnyfcswxn20Jk2/549mKecM/GMNumNtuG3HM6yHZU6Qte/g00rRFB
GZYGKZINV2BLsi3hknpLVeZ1KKFsuAJbWlJL5UsKZc1R2tXqrKonjFqJ6q7Z
YErd4Qw4B+Ej2NvvflA1gWygyriDOfkl3NbNUJSFohtUW0DWX2VcMSe/hNuW
bygI15JvKLpA1Qqy/VXGHcjJL+G2h6HYq0apVEbVvRLcvpz8Em7HZijKQtGp
qkplPVXG9ebkl3A78w2FvqTcQtEBql0go0pTCY76mVr41XG5hYJwu/MNxR5Q
tYGM0mslOCritfBLuPASFO4DFcno7qkERzmqFn4J15ZvKAhHd2gNQ9H+P/vY
hGvPNxT1tGlsKPJKVfWUSsPw5FbA8i2ctFnrakl5tV02FKS6l5tswnXkG4p6
GtFsKOjq1GIwrqfBvXMzFGWhoBumFodo9XTIFxZde65XquoH2b1ypEu4rnxD
UU8PBGwoaO/U4jFMPT0m6t4MRVkotoLqUHgrlchWDbq+HgWHfQhmwrKnxOY1
++fp5rWvWqsqlVXyZQS7JJOfzfc1wlqN3xYsi0jwGvy9vZEFX6JbG5mVyhqD
n42B6KafYbMzvO5n2OIMr/oZ0sa54kexzfn2NNzhDC/5Ge5yhit+hm3O8Gs/
Qzr+WPKj2ON8exp2OsMFP8MuZzjnZ0jz8gU/ih7n29OwzxlO+xnud4aTfobU
gIz7URSdb2u40wmoMBLFgLMYi1Csz2DUfqmfyvBNRPk4v1EIiJQmghJ6LQ9S
608O9jmLKZ1WsmTSb+r1OosZnZb6ftoJ6o4xDmZ1B60OlJSWDppiHEgmpnNQ
crDXWczrtJKn6aSZaDucxaJOS2dBlGfVfGwcLOsOdjtQUtp19YFo2x2IToKJ
ls5CYxzQ4w7CkStJPN/qDuTyJKXd7iwu67RyM9G8qnYfxuI7nbbbgahZIVpq
WmMc0MEdTaDq93PN4q7pDiT9JKVtchY3dFpJljQZwUzg8D/opAfWmwXvj7D4
tk5kakqTszXv7uhwU9eOBqIfN1ic+QThR3bK4dLl3S2WMcujitQIMvqiLuFu
6q6kpaHLTw7k8sfQSoulT7/alHBdp6XalPSkQQrQVd2BtKWkJVo6FL2iO5CG
mRI09ToyUMTQSgNP5YRopZxc0mmJjCoA3bCypBXdgayCnmYSrQQwpkpJzOiO
oc6Mupkl3UHSVK3KosMWkUlRo0N/opWdvKDTSlGje4KCIGltTqeVzUtbhGhp
VLigO6DkRNML3UUH3eJiHEhWo5xHtA84i+koLRc1+tUb+irDkLOYVEmD9/QL
SbRZHwRZdAw0mocSko24xUUpykD0m1WU6h4G2dlMaamnJ1rCEe25TGmpLyda
qj9EOxbSUszo+hMtuR/XaQlOxZpWa2npm0xES0010U5kSkt7hmgpmRHt+Uxp
qY4TLfXvRGsTFmU1usGIltxP6bQhnE+N6HTMUtFBQZlnlWK6ahRUUkycjIh+
+3VGNzRpnmYPI6OwWjI6ixmOCStdNfr1VVtpqfIPurU2g1aO5ahkzuq0h5wh
nZXJsdxhnZZ6RepnyIF0QDTcXNQd9DtDyo00PVHrZB1QXyiTOOV0mYqoIZzT
aeXcgAqbHMtRD29p6UtOSb8OJx0+sczrDmTCoyog8wgtxNLS/CDHVpRXk34z
1nbu1PInHcVk7KKUuag7iB/FZOyihVhautZy6Ee7Vq4G9TtLOq3MR3Rz0sWj
u986oEcHtPPipzk6WFzWHUjGoKsh0xwtxNLSlpVBhpzKgyjqFr4KacMEwwWA
kk9/DH4lSrnuDIyya9EtsayWfRNSkY0qi54203/nItn3sg6iQMbAJeF+r4Mk
fV7TQfLk5oYOom0VA5eD8Fs6SLLZHR0kzzl+0kGSVX7WQbT3Y+CSUn7RQZIg
ftVBchzymw6iKSAGLqfuv+sg2aV/REF8ePCnCgne/xXRGid/626tyvwj5X/t
WGj4D6a94iE=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {241.062, 0.}} -> \
{0., -2., 0., 0.}},ExpressionUUID->"7e7d6e83-8a61-4872-8f4a-a259b563397a"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(23\\). \\!\\(\\\"gyroelongated square cupola (J23)\\\"\\)\"\
\>"}]], "Message",ExpressionUUID->"a6ff1261-ae99-4198-9237-7ee4258560e9"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .73885
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0798319 0.112045 0.352781 0.112045 [
[ 0 0 0 0 ]
[ 1 .73885 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .73885 L
0 .73885 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.30392 .28809 m
.19188 .28809 L
.11265 .20886 L
.11265 .09682 L
.19188 .01759 L
.30392 .01759 L
.38315 .09682 L
.38315 .20886 L
.30392 .28809 L
s
.02381 .38513 m
.07983 .28809 L
.13585 .38513 L
.02381 .38513 L
s
.13585 .38513 m
.07983 .28809 L
.19188 .28809 L
.13585 .38513 L
s
.13585 .38513 m
.19188 .28809 L
.2479 .38513 L
.13585 .38513 L
s
.2479 .38513 m
.19188 .28809 L
.30392 .28809 L
.2479 .38513 L
s
.2479 .38513 m
.30392 .28809 L
.35994 .38513 L
.2479 .38513 L
s
.35994 .38513 m
.30392 .28809 L
.41597 .28809 L
.35994 .38513 L
s
.35994 .38513 m
.41597 .28809 L
.47199 .38513 L
.35994 .38513 L
s
.47199 .38513 m
.41597 .28809 L
.52801 .28809 L
.47199 .38513 L
s
.2479 .49717 m
.35994 .49717 L
.35994 .60922 L
.2479 .60922 L
.2479 .49717 L
s
.35994 .49717 m
.2479 .49717 L
.2479 .38513 L
.35994 .38513 L
.35994 .49717 L
s
.35994 .49717 m
.35994 .38513 L
.45698 .44115 L
.35994 .49717 L
s
.35994 .60922 m
.35994 .49717 L
.47199 .49717 L
.47199 .60922 L
.35994 .60922 L
s
.35994 .60922 m
.47199 .60922 L
.41597 .70625 L
.35994 .60922 L
s
.2479 .60922 m
.35994 .60922 L
.35994 .72126 L
.2479 .72126 L
.2479 .60922 L
s
.2479 .60922 m
.2479 .72126 L
.15087 .66524 L
.2479 .60922 L
s
.2479 .49717 m
.2479 .60922 L
.13585 .60922 L
.13585 .49717 L
.2479 .49717 L
s
.2479 .49717 m
.13585 .49717 L
.19188 .40014 L
.2479 .49717 L
s
.47199 .38513 m
.52801 .28809 L
.58403 .38513 L
.47199 .38513 L
s
.52801 .28809 m
.58403 .38513 L
.64006 .28809 L
.52801 .28809 L
s
.58403 .38513 m
.64006 .28809 L
.69608 .38513 L
.58403 .38513 L
s
.64006 .28809 m
.69608 .38513 L
.7521 .28809 L
.64006 .28809 L
s
.69608 .38513 m
.7521 .28809 L
.80812 .38513 L
.69608 .38513 L
s
.7521 .28809 m
.80812 .38513 L
.86415 .28809 L
.7521 .28809 L
s
.80812 .38513 m
.86415 .28809 L
.92017 .38513 L
.80812 .38513 L
s
.86415 .28809 m
.92017 .38513 L
.97619 .28809 L
.86415 .28809 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 212.75},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnPluFEcQxsfe9c1pAzZBCWsgkHCE20DAHOESQjzECkWCP6JEwLNw5iAc
OQCFOwcQzkR5Ad7HcXe1it3ht3Y3npZmUSMxu1P1zfdN10zPdFfX+lj9zIkv
v6qfOXm8Xjt8qv7NiZPHT9cOfX1q0lTpyLKOWpZlr2uZ+T4x+dVt7L9Rs3E7
Ad/HzMdyw/OfGLbaj8qEEk/ujYLtH4FvAddysL0S+GZwfQy2lwLfBK5VYHsh
8I3g+hRszwW+AVxrwPZM4OvBtQ5sTwX+GbiI4m+BExO154nA14KLgvtY4NQs
utKPBL4aXNvA9pfAKcY7wPanwD8B106w/SFwuuDjYPtd4CvBtQdsDwVOd98+
sD0Q+Apw7QfbfYFTVzgItnsCXwauw2C7K3Dql0fAdkfgNXAdBdvtBE/wBE/w
BH/v4Z3Gc1S/uRdL4Hso8C0X+A4NfEMHvv8DRxeBY5fAkVHguCtwVBc4Zgwc
kQaOdwNH04Fj9cCZQOA8I3AWEzhHCpyBjYFrKdj+Ffiw280y2+F7G6y5Az4s
ua1bTn1RzjX5+Ra8TDaz19P2p77QfnQ1uvSwJe+Nr7nprq8sAFcFbNSnEo5x
fXabQhsvtEPg6gLbwoTzxvXbbQptvNAOgqsHbHQJEo5xA3abQhsvtPPB1Qe2
hPPHzbLbbB64BsA2N+G8cbPtNoU2Xmhbu5LtXW1z7DaFNl5o54CrTJ2rfXEp
tPFCSzd0mQYy7YiToYEbgzW7yjT8bkecXIIU2nihpWdFmVId7YiT5EEKbbzQ
9oOrTGnldsTJgyOFNl5oafCw2G7LtKxXrE9Wcd3qYHPT86uIBl6WxVxjG277
U+/R62DLGUZkh2qVhKTaSGL+P5zuCL7oD6Y7rNnWabb2DF0NFFX10MyFyKpK
dmfmZN1K9puQ5etJTGtpukpkdCPdnDltn56jI5MSGb4yvg0fUNJf5VAq06FH
Hb0+SGC2CvwcR4AmxtdEiiqUaLBBz2uSmqdtiSQwqAJXRIBKsmiQT7ccCSxQ
gctxBPLFPGbvO5GiajQKDMmT1LC2xQlQdRyNzbs9BUZU4Ns4AotU4HsRoHJA
6sl0j5EAjbYjSQ1pW34UAaqEpL5a9RSYrwJX4wjMVYHrIkCFmJQroqcXCdCD
3klRUSpN8Ds9pWZpW36JI9CvAjdEgMpQpyqPWwr4XiW9VRwpPU4cPRUay4iq
2kTfgrlLT/d2IXwV5XMV5VSruzhne9Psaj4klsqVj1PF9hIFEUGmo0KPY63T
FYfbkuG6MZxvMHjcU762s4k20SbaRJtoE22iTbSJNtF60zaOTA+YDzuKzSqC
lIOyj8KI5XebU8xJrAYRnBPYPgW1nK1OR7FHQT7pB3Nm9OseF5hxJWud+Hlr
upCfmpi9C+LbBa5imD/XM6VMzFTJa1rUuSjO7UraOo8aTDqmpJSlaJkvz9lo
0n5JBOgnk5GkNmtbqICeBChJQskUl2rbqAL0aygSoI5DrXfJwvUqQCnLAgQo
PeUrRUk3uhNdLm+ttoU6SgECa1TgA08BegZRB/1BBNapwEgcAUp3UnaUpCiD
RInryyK1QdviK0BPQhJ1mdVNKkA9tACBLSpAPZQEKBx0j7llDfq1dtAymL/U
Nm2LrwAtPNHTy6Whd6gAVa8VILBTBXyXxAZcUOgF9ZN8GYfDfBde8u00tG5x
b7eeawFke5XMdxGCHmGuwV8omW+63qUz7RjRL4HrjrB/9KMyDciumY8aj/ur
FxNieKfvWcf/RuXdsg==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {211.75, 0.}} -> \
{0., -3., 0., 0.}},ExpressionUUID->"94b034e5-2ed2-48a6-b831-d952ee0bac90"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(24\\). \\!\\(\\\"gyroelongated pentagonal cupola \
(J24)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"1c736a6c-780e-413f-afd0-\
390a146a4ede"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .70439
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.069161 0.0907029 0.348294 0.0907029 [
[ 0 0 0 0 ]
[ 1 .70439 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .70439 L
0 .70439 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.34127 .29593 m
.25057 .29593 L
.17719 .24261 L
.14916 .15635 L
.17719 .07009 L
.25057 .01677 L
.34127 .01677 L
.41465 .07009 L
.44268 .15635 L
.41465 .24261 L
.34127 .29593 L
s
.02381 .37448 m
.06916 .29593 L
.11451 .37448 L
.02381 .37448 L
s
.11451 .37448 m
.06916 .29593 L
.15986 .29593 L
.11451 .37448 L
s
.11451 .37448 m
.15986 .29593 L
.20522 .37448 L
.11451 .37448 L
s
.20522 .37448 m
.15986 .29593 L
.25057 .29593 L
.20522 .37448 L
s
.20522 .37448 m
.25057 .29593 L
.29592 .37448 L
.20522 .37448 L
s
.29592 .37448 m
.25057 .29593 L
.34127 .29593 L
.29592 .37448 L
s
.29592 .37448 m
.34127 .29593 L
.38662 .37448 L
.29592 .37448 L
s
.38662 .37448 m
.34127 .29593 L
.43197 .29593 L
.38662 .37448 L
s
.38662 .37448 m
.43197 .29593 L
.47732 .37448 L
.38662 .37448 L
s
.47732 .37448 m
.43197 .29593 L
.52268 .29593 L
.47732 .37448 L
s
.20522 .46518 m
.29592 .46518 L
.32395 .55144 L
.25057 .60476 L
.17719 .55144 L
.20522 .46518 L
s
.29592 .46518 m
.20522 .46518 L
.20522 .37448 L
.29592 .37448 L
.29592 .46518 L
s
.29592 .46518 m
.29592 .37448 L
.37447 .41983 L
.29592 .46518 L
s
.32395 .55144 m
.29592 .46518 L
.38218 .43715 L
.41021 .52342 L
.32395 .55144 L
s
.32395 .55144 m
.41021 .52342 L
.39135 .61214 L
.32395 .55144 L
s
.25057 .60476 m
.32395 .55144 L
.37726 .62482 L
.30388 .67814 L
.25057 .60476 L
s
.25057 .60476 m
.30388 .67814 L
.21367 .68762 L
.25057 .60476 L
s
.17719 .55144 m
.25057 .60476 L
.19725 .67814 L
.12387 .62482 L
.17719 .55144 L
s
.17719 .55144 m
.12387 .62482 L
.08698 .54196 L
.17719 .55144 L
s
.20522 .46518 m
.17719 .55144 L
.09092 .52342 L
.11895 .43715 L
.20522 .46518 L
s
.20522 .46518 m
.11895 .43715 L
.18636 .37646 L
.20522 .46518 L
s
.47732 .37448 m
.52268 .29593 L
.56803 .37448 L
.47732 .37448 L
s
.52268 .29593 m
.56803 .37448 L
.61338 .29593 L
.52268 .29593 L
s
.56803 .37448 m
.61338 .29593 L
.65873 .37448 L
.56803 .37448 L
s
.61338 .29593 m
.65873 .37448 L
.70408 .29593 L
.61338 .29593 L
s
.65873 .37448 m
.70408 .29593 L
.74943 .37448 L
.65873 .37448 L
s
.70408 .29593 m
.74943 .37448 L
.79478 .29593 L
.70408 .29593 L
s
.74943 .37448 m
.79478 .29593 L
.84014 .37448 L
.74943 .37448 L
s
.79478 .29593 m
.84014 .37448 L
.88549 .29593 L
.79478 .29593 L
s
.84014 .37448 m
.88549 .29593 L
.93084 .37448 L
.84014 .37448 L
s
.88549 .29593 m
.93084 .37448 L
.97619 .29593 L
.88549 .29593 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 202.812},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnPlzFEUUxzfZ7G429wkBgWyIBAFRIYonIoLEC6//IEVZBT9YWsjf431g
QBHwvigtSy2r/NVf/VNipvvtm9nNp9ueuDs1GVIFO533Xn/f6+v1mz7m7PKl
86++tnzpwrnlxtLF5TfOXzj3ZuPM6xfXSOWeUqmnUSqV/myUovTqWlJ+Vtf+
rc5FPxHlv9NL0WN3lPcHSzhjHmVBM6KlO4D2rRV/Cli7gfaNFT8VPXojzpym
hPUk5JoH2pdW/CSw9gHtCyt+QtUd0JSwHodch4B23YofB9ZhoH1uxR8D1r1A
u2bFH1HrFjUlrIch1wNAu2rFHwLWg0C7YsWPqbpHNSUsUkK1cNmK3w+sE0D7
2IovAosa96MNiR8F1imgfZiF+BFg0QD6IAvx+4C1BLT3NyROXfzpdOLPAO29
DYnfA6xn04k/B7R3NyROvuL5dOJngfaOFb8bWC90VfxFoL1txcmLvtRV8ZeB
9pYVPwisVzomntKY7tZMymbqbp9J2YE7MDw84h0Y2h7H0V0vltKldte/kziF
jplMZSR+GmiZTPIkTrFtMp4x0dZJTUkglTLu8kRwKWPBlJGmJ2ZNGf0e1/yH
NXXDsiiCPAA0EX8CWPuBdtOKx3W/T1NfWRY19RzQRPy05p/VlLwrpXy1otG3
A2jfWfGp6BElSpXopz9BbcuwvcO0bRnoIFrVFnGylWWe2ztM25aBDipi7bYp
4oR5VFpYzWzTGfOmcmTLNFSZjO1xYJWBthnlenNuX6hcvVhNNZZz+zrQVFTE
CtBGN6FcX87tC5UbKFZTjeTcvg40FbFqQBvehHLVnNsXKjdYrKYayrl9HWgq
chx1p/jmkuvPuX2hcrYbeloxH2b+H7mBnNsXKjdcrKYqygjyNBX5+Dz56a35
qxndFqapihLteZqKBmGe3im23rWacoVpqqKsTHiaiqKkPK1/ba0LNstRmKYq
yiq6p6koOLTbZfnYv8nTXpKtF3wvaNtmMs/NuMM4ddsU0cRvhmIa25bOHr41
hw5oJrJwfUm46P/vNu8iKHOjcBf7zUIdbVXUZLvRwG+ZUvxq8eiEDzk3opGC
PlXwi1VA55nI64QqoLeEW1YVnX+h8CdUVU3LIgro1BrVfKiCuir40SqgQ3c1
T6egUysUuMpJlkOqbyAl6JDmFCg6xZkWdERB5aYCHTsaTAlKAZPcbLgLWMM8
ngh5XM0VPDr2NBKON6F4cl9iAYRGw/HGFE9OTNGtjbFwPIrCBflOV/WEIQ+r
pXIii66j0NEcZ383YN9bsL3Rw8hMBUJQVBoP/hsJ2HZHFv01HqilXxFraqF1
hSp23aNK84wE6quqvqrmJXco92no6F1saOwASBU5wdhgihmuuZUOaMa6V2lZ
ubEqcn4eVcOasdqmqqUfK6/X1QhJRQ3X4CirrQlFLZ5N00Z0AoA+c+uYcvWq
meg3EcsEI5o5y9xhm3FnnAUWNRdNgAT7aeawJB6qSmD3BEIQjdRfzRyWxOkM
LVWCwNL1RLKMYEn9lcxhSZzkqBIEdlegtaHqVzKHJXEaNlQJAktNQdaGjsZP
MoclcZpBqBIEdmegtQRL6i8nYMuuSdFpo5lyVhJdv+yaEJzBGM0tUtaG8mnS
IsQxzUExiZR1XoUoGCXYthmdW2ZBhSheoLC5rjloWUxgTXtUFNYZ+5CCOESj
7bykgjaWCUnqEamiEBSOkdI4bqLq9XRjE6INQndoe8Uyz15Xt/AomNSq3K82
0o2LFTcErRjZSqi00JrPSTc8OQhrDYeJ8RX8MhhBVeFRRHbRkCHP3wfqaRnY
MxuQOA0tMr0K6un9PKX6+NVsh6bq65sjSlOY7pn/3ecsW2nkNgfYAtoh9lhA
BsfvXpOacqwzkPPwaCPjqA6IBhaodVRnYgbFnmQ19RMyl+Ro/Y125T0m0cQQ
L9jEaw7klEg9uWQJmylaoVmGOh2ViuTIJHIiHpNoJosji4qmKHShBV+iedRT
Sa3b57VB8keh685iRgNYAa7PPGm0lT3met7CqesQPLlPmgA86yFUQTQ6nHNN
8ooqKaDa3gM2Ug+g/iqv33s9NTurdpFyKsnNJOg6FxvjkUHUCC14reVseMHI
OFmNnNeMsT3UN3cpV6ygOJA6sHu8YeEWVM9OrjbCm9FMsq5MK/S0U0fukS7L
CiztK0yzmTRzkY//2iIf1BJAPOiakOONBNlMoQ8/jHm6dOh8KfDxle9RDyhF
HvFCvWxQ0RbbkAeUAgeaWgWeNgt9u0pUaGrBnyz8ES0OdSByD84rGwblZwtL
X04K3Rak+Jbyiir/LjQpoLeNdbvAxzx1TIp8d4plo7rtKwhOKNqjkW1z+rgC
uUlTh8aYP2xG+vCYaXHznvyXRyj662/LN59MMOP5H0swIim+AFfq+ReX/5IA
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {201.812, 0.}} -> \
{0., -3., 0., 0.}},ExpressionUUID->"94066e91-346d-4cc7-a0cd-b3c74f422cde"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(25\\). \\!\\(\\\"gyroelongated pentagonal rotunda (J25)\\\"\
\\)\"\>"}]], "Message",ExpressionUUID->"5d10842a-0501-4fb5-9099-05fd3f4d25bd"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .84089
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.069161 0.0907029 0.351544 0.0907029 [
[ 0 0 0 0 ]
[ 1 .84089 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .84089 L
0 .84089 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.34127 .29918 m
.25057 .29918 L
.17719 .24586 L
.14916 .1596 L
.17719 .07334 L
.25057 .02002 L
.34127 .02002 L
.41465 .07334 L
.44268 .1596 L
.41465 .24586 L
.34127 .29918 L
s
.02381 .37773 m
.06916 .29918 L
.11451 .37773 L
.02381 .37773 L
s
.11451 .37773 m
.06916 .29918 L
.15986 .29918 L
.11451 .37773 L
s
.11451 .37773 m
.15986 .29918 L
.20522 .37773 L
.11451 .37773 L
s
.20522 .37773 m
.15986 .29918 L
.25057 .29918 L
.20522 .37773 L
s
.20522 .37773 m
.25057 .29918 L
.29592 .37773 L
.20522 .37773 L
s
.29592 .37773 m
.25057 .29918 L
.34127 .29918 L
.29592 .37773 L
s
.29592 .37773 m
.34127 .29918 L
.38662 .37773 L
.29592 .37773 L
s
.38662 .37773 m
.34127 .29918 L
.43197 .29918 L
.38662 .37773 L
s
.38662 .37773 m
.43197 .29918 L
.47732 .37773 L
.38662 .37773 L
s
.47732 .37773 m
.43197 .29918 L
.52268 .29918 L
.47732 .37773 L
s
.25057 .5173 m
.33343 .5542 L
.32395 .6444 L
.23523 .66326 L
.18987 .58471 L
.25057 .5173 L
s
.25057 .5173 m
.17719 .46399 L
.20522 .37773 L
.29592 .37773 L
.32395 .46399 L
.25057 .5173 L
s
.25057 .5173 m
.32395 .46399 L
.33343 .5542 L
.25057 .5173 L
s
.32395 .46399 m
.29592 .37773 L
.38464 .39659 L
.32395 .46399 L
s
.33343 .5542 m
.36146 .46793 L
.45216 .46793 L
.48019 .5542 L
.40681 .60751 L
.33343 .5542 L
s
.33343 .5542 m
.40681 .60751 L
.32395 .6444 L
.33343 .5542 L
s
.40681 .60751 m
.48019 .5542 L
.48967 .6444 L
.40681 .60751 L
s
.32395 .6444 m
.41465 .6444 L
.44268 .73067 L
.3693 .78398 L
.29592 .73067 L
.32395 .6444 L
s
.32395 .6444 m
.29592 .73067 L
.23523 .66326 L
.32395 .6444 L
s
.29592 .73067 m
.3693 .78398 L
.28644 .82087 L
.29592 .73067 L
s
.23523 .66326 m
.26326 .74952 L
.18987 .80284 L
.11649 .74952 L
.14452 .66326 L
.23523 .66326 L
s
.23523 .66326 m
.14452 .66326 L
.18987 .58471 L
.23523 .66326 L
s
.14452 .66326 m
.11649 .74952 L
.0558 .68212 L
.14452 .66326 L
s
.18987 .58471 m
.11649 .63802 L
.04311 .58471 L
.07114 .49845 L
.16185 .49845 L
.18987 .58471 L
s
.18987 .58471 m
.16185 .49845 L
.25057 .5173 L
.18987 .58471 L
s
.16185 .49845 m
.07114 .49845 L
.11649 .4199 L
.16185 .49845 L
s
.47732 .37773 m
.52268 .29918 L
.56803 .37773 L
.47732 .37773 L
s
.52268 .29918 m
.56803 .37773 L
.61338 .29918 L
.52268 .29918 L
s
.56803 .37773 m
.61338 .29918 L
.65873 .37773 L
.56803 .37773 L
s
.61338 .29918 m
.65873 .37773 L
.70408 .29918 L
.61338 .29918 L
s
.65873 .37773 m
.70408 .29918 L
.74943 .37773 L
.65873 .37773 L
s
.70408 .29918 m
.74943 .37773 L
.79478 .29918 L
.70408 .29918 L
s
.74943 .37773 m
.79478 .29918 L
.84014 .37773 L
.74943 .37773 L
s
.79478 .29918 m
.84014 .37773 L
.88549 .29918 L
.79478 .29918 L
s
.84014 .37773 m
.88549 .29918 L
.93084 .37773 L
.84014 .37773 L
s
.88549 .29918 m
.93084 .37773 L
.97619 .29918 L
.88549 .29918 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 242.125},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnftvVUUQxy+0pVAefQBtoba9lJf4QFERUBRErcaoMf4HDTGBH4wG+UcU
xWcEX2g0PkARAR/4iInxv/EfqD2zw+y9p5893e29PTlcSOSe09nZ/c7uzM7O
Ps763MzJYy+9PHPy+NGZ+lMnZl49dvzoa/XpV07MkbqW1WrL6rVa7b96LXuf
nXvVn9m5/2a3ZD8ZZfHv09ljPCvzF0d4Uh5diiKstTGgXXHsj2eP5VnKpL1p
0hHItQVolxz7Y5C01cpUpkNGuB3Yf3BMj0LSLsuoTAeNsBvYzzumhyHpHqB9
59gfgqQ9hqNM+43wILB/7Zj2QdI+y6hMe41wENi/dEwPQNIjllGZ7gemw0D7
3LHfB0mk7XNlsO+BpCeA9lkZ7PdC0jTQPi2DnSz1aaB9UgY79bJngPZxGex3
Q9KzQPuoDPa7IOl5oJ0tg/1OSHoBaGfKYL8Dkl4E2ocVZK9UQ1bKxCrV+Srl
lirlsCs1lFVqkF9MPCPR1hF7+8IlUXBG0auy5wI+efvKJVHAuB9oyk5JvvRv
HNMBI5CcyhQMkSWjxtFRwTZVnJzuBcd+CJJ2Gs5Fx3TYCDuAXZmCExXJ+JNj
8hOdOrArU3DyJBmvOiYy801AU/b12SN7qfXKTwM1l2GkzbTREjCI1uOqONSc
JM+RNtNGS8CgKq4or4qO1t0IP1tuLQedVpuSrmfbWHLacIVk2QhNpt17AJK6
gDZYcb6hisvXCt/KW6q6UfhUVf2Q1AO0qvORyVVJvlb4VnWWqohvRcXlS1TV
OkjqBdraivN1Sj2Ir6+zVEV8KysuX6KqKGkV0FZXnG9NxeVrhc/RsIpVEjOW
r6/i8rVuhh2jqk7uaaoqYq+Sn77ZxqUwX8eoqvOjQvTxVZpT3GxzKOJb11mq
6uQVDFUVDWNVWv+6tS54XaW3VHUD1ENVRZGT2/esxv5NlfaSnOpx5M9tM8nz
xttQlOf6smvZTCtjt1irKPGNUGTXf4Oj0gFjUEf2T8zkT5ftAGSjEwc9lvHX
tIx9lvFyWsZ+y6jHsulgCh0/l2YS0vm0jLTp+m1aERuApoe76RjOONDIU59P
K4Kc6YVwEROh1s/RvndF0Nn0SaDR9EhVSWf9qd5ULM1qLqYVWwcaTVR/dMXm
2BucajM7wVOkfqn1YilU0YNGrs14KCDDmAIaDa9aPBkLDdSkpq1AI4d9uXWo
bUCjKF0/SKFeROy0kEZQ3UC7mgZFBrk9skV+dlC3RbY3GemOAjP6zRVPDpAM
k2iu+HmRwrW0kslOd0K3+t0VuzmymaWN/KdE8vZHWhEk7TaQTIulATB2m2eK
m1JYx7I3PXZOZ/aCe7f+OKO8kZGRJdFRrw/S4Kk1yZBJJFr6oaZ934lE0pKL
JJE2WdsQ6BIJssZAqTXbIMgwJNF5UrJNin2og5JvpA7/nhOJojKikUiD1l6k
wiUShOKeWENPFEmaXD7RXGc1JXgatqj/0Nj0bgNURG8XPxTcbxIJqTGWSprs
t9vcYYQHa4Nw1GGozwm8jLA91jb+jULB5UCjGPmdNEHWWCu5mvKoT22+RAIN
WMs4iSyxDTJQuxZPI4sWVyikfTsNKFcneTZYwJLhkjK6zPwGFgdOo1bsFHWF
gTsfNi+kofD3dBou7S6sMk3n/JY82wBKPmWtVbYvDZRqQOZO4+GA1dSHuDuB
7600KHL3Gwygp51QNGiOGEBXDBRpI3aOLeG/2OUuSH0zDYCCo4nmGsjb6TYV
W2xj8lQoiiGo01N06bQ2r+9uZXIiIE2U6/NLtqabbDYN1lcsOAVnpACCIgdc
IBJ1XvIJNPbRgg6JHlzmzdFOLSQSDxIkrncFvs+SuS4IGTU0hDeJFuZTCciz
+Y5JHw7GbiISXyNozgeQP4s9BUB8p6JNX54Ev9qEW9v8xlD9xuQ/oHR22YhE
TRq7EFIAHh6pe9F4rz9JnNhjP8Sn4oRDNO5L5CnIQ/k29j2Nqq5irDcmv5pB
UEQjL1P0NR9F7m84MWIn1q2IRp9TEoaKNGzt4duIfCPRgrsQDZMJBI1dIWtF
kIFmRUsiWaOKFLsuSfDUJ+qh8rpsKGiYfaBIm43JOyDy4LHw5Mao6yp87Jo6
0chp0SZHnwkyaG1Dga+KNN5sovIWe8qWpiu9BjpcWJ7Cu4CPe334aPzCYvjK
jJlAFHCqGDndBuHJfIPry7llcDLz1x187OZfNHz21zZDJj+nyHStCbkN34oy
d5EQ6lRaEeIOZL2R3LnKQ3e+0CAknlXMhqJYWs07lwbQb9UksyFvqwB0hQ4F
jn0GQJom36nXhNDdFTQwdFsTkUdqB0DI/9M+l5YtseCEuYeIiY7e1DKVrHAS
uQBg3ABitz1Iq9QbFWDUAIq3hKh3kIvT+3R8T6BxLye3PEnuAgC/7kOSjQEA
9ScaqhoBcklhqHmzt9jVH70MKehNEkJq6lAUHigk9ZHwpIIhyfUXQFKNqKFI
79TByEfRqKXXX5H6aEwgeBqtKEajSF3hY7f4yEyo9onw5NpoMYDgYzfLaQZ3
1sGTMySXQ/C01kOBC51bUXgaGykCJPMheKIVwJOnJv0RPNWUFEILRmdah3cD
D/d/updWIWm4pTEsvAg7z6cWoNEQSu0WcV5LnrQWrodOaDAlayAoPx30x3DU
QmJ9HmmZakDrPAo1UaBRWhajni6iT1kldNCcZMVFFwq0giG6bvCkLjI2PwOi
5taQyC/m+cVK6ixkX6OWQ28PJisIWgbVwK8t51IVgJxO7B4KOcAhA9Xrkrcb
YdLeYj+opsFdiyWboF4cnG8HD17orX/kLYJHBSKGZb+EoZcB+lu2Rwrl8QdZ
qL21sNgJGgFQK3cbqJ60jp1iUmH+0BGNOwoQO+OOCHXlqQerdxu2X8yiQM6v
aurRabp0kxRAhfkK68lmujQz4sMM3whSmJ4C9ndk+gUhik/EMoWkB23dzZTs
uGm89SarnzjshXamjP5k0zWXkU7IBw8ANZ4upUuDfa3/CjMtt8r/XcCU/fVP
Q7ok/xvOoEnyxyL/JwK1Zf8DJ5SxtA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {241.125, 0.}} -> \
{0., -3., 0., 0.}},ExpressionUUID->"bac6eb15-9905-423a-8aeb-20bc9003b871"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(26\\). \\!\\(\\\"gyrobifastigium (J26)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"b018143c-2d8c-4424-8dfa-b893446998fa"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .9602
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.165279 0.282939 0.409364 0.282939 [
[ 0 0 0 0 ]
[ 1 .9602 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .9602 L
0 .9602 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.02381 .55083 m
.02381 .26789 L
.30675 .26789 L
.30675 .55083 L
.02381 .55083 L
s
.44822 .79587 m
.30675 .55083 L
.58969 .55083 L
.44822 .79587 L
s
.30675 .55083 m
.30675 .26789 L
.58969 .26789 L
.58969 .55083 L
.30675 .55083 L
s
.30675 .26789 m
.44822 .02286 L
.58969 .26789 L
.30675 .26789 L
s
.73116 .79587 m
.97619 .6544 L
.97619 .93734 L
.73116 .79587 L
s
.73116 .79587 m
.58969 .55083 L
.83472 .40936 L
.97619 .6544 L
.73116 .79587 L
s
.58969 .55083 m
.58969 .26789 L
.83472 .40936 L
.58969 .55083 L
s
.83472 .40936 m
.58969 .26789 L
.73116 .02286 L
.97619 .16433 L
.83472 .40936 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 276.5},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy9nAlvVUUUx29pS9mhtcpSyntA2SkFZJWl7CKrihpcoSIKKoKA+wIfRj+R
0RijMRpjNMZojNEYjZV3Zzjntfxmeh9nRhLavnPO/f/nLm/mzFnu8ZHrF85f
Grl+8dxI/cGrI1cuXDx3rX7o8tVbova2omir3/rfWy8af48Wxe0f5b/FjR/+
Q4K/b5a/2kcF/9anE42fkxqi4xMYFR0i86M86v6+Me6IxvhPAMokkB1uDaJd
RusP/LD81dlsJADHAGCyABxyZh+EWHCgY2VTBeyAHWy6gO1zYO+DUSfIDoFs
FsiG7bCzZYwe7D0w6gLZAZD1CNiuMNgUkO0HWa+A7XBg74LRVJDtA9lckG1z
sO+AajrI9oBsvowxAVifgG1xYG+D0UyQ7QbZIgHbZAerC9hGB/YWGM0G2U6Q
LQXZUBh2Dsh2gGxAxujB3gSjbpA9ALIVAjbowN4Ao3tAtg1kqwVsjR1sLchW
OtjroLoXZFtAtk7GGAG7D2SbQbZewJY7sGtgRN/ITSC7X8AGwmDzQgdWGK1f
Sa+Caj7INoJsq4zRg70ORn2hK0XPYwlWC4MtBNkQyHYKWL8DuwJG/SBbB7Jh
AesLgy0C2SDI9oLM3cbiMqhqIKPvwn4ZYwSsDrI1IDsoYO7RL14Do8UgWw2y
wwLW68AugRFNjitBdhRk3WHYAZCtANkxGaMHexWMloFsOchOCtjsMBgdSASP
CJhbtIpXKp4SnfpjAjY9DEaXnW7PEyBzPk7xMqjo0aBH6LSM0YNdBCN6aOnh
fhpknWFY+mLVWoO9ACqaBmi6INjJYViaqmhKi8C+BCqaTmnaJdiuMCxN+bQ0
PAUy/yS8CCpalmj5otF62POgokWUFluCnRqGpYWeHIII7AugouWdnBaCnRaG
JYeJHCu6ZX6COQcqcu/IDaTRJoCl0c5wsM+DitxkcqdptB52BFTkypPLT7Az
w7C08aANSgT2LKhoc0SbKIKdZYelW+bX1jOg2gMy2ozSaBPA0mjdrS2eAxVt
22l7T6P1sM+CikILFIIg2O4wLIU/KExCF6HHwT4DKgrRUCiHRpsAlkbr5g5k
pKAXBcfo2ASwNFrvW5PqiD/tJplTFHzR3BRfPAmq8XHIBgQ9JS1C0Cj8zqN0
VD4erWA0TnUSZIHgLw1z7t0g8zU+nQp+rKyMQZeO8uOgnWcn6BCCR0E7306g
EeyH8xDQfEeh9AV2Kg2gZyLQoPpDoO2zE8wUApo1F9oJyA+hVSoB1Rw5F1pd
++0EGvEnryABgWYBdoF2kZ2A9gfk6yagmivnsh20NTuBpiNoy1K3E2iKgnZw
CQho30475sV2Ks2QZCKoCwEFPpbYCZYIAQWVltoJqoYNE1Atk3OhiOCAnUBT
OnRWCQhWCQGF85bZCSjYR9+X5XaqtXIumQg037QAtCvsBJqDonBVAgIKuPWC
bKWdSlNgmQg2CwFFdFbZCTRBRmUMq+0EtKBSTCIBlebnpoF2jZ1Ac3bktycg
2C0EFANYaydwviDvAofs8Htl/EX7bdzy1zo79j7BXp/oOtBAE1yEYZBROdag
nWqXnAY9LwkIdggBPfEJHkhy6Cm2mODLtU3OZUYegi1CQBvJBBPcJiGg1SAB
ASWVekCWYOHZIOdCCZsEBENCQH5GgrWZspuU2Evg0qjXR3nOBARaCVUDbQK3
chXIMlHpfoKKAhK4+9l3REuFgEodEhAsARndoQTbx7qcC9UuJCDQaAHVBSTY
zNNGKxOVRnFoJk4Q+cgeh9JIGmW7ExBQVDBT0E4jnJS0TkCgMdph0CaIa5Kb
kIlKy9UpYp4g3pw9+k9eYSaqaXIuR0CbIFUyRQgo2ZOAQDNjdESCbBJtaDIl
4bTR5VQqgo5mmcBTQeJdpUHHwhecwb0b5FJEKfrmdPBHDQ0lu70RDYauO1UY
+Hz5/5jaj0C0WqtAUL7sIVM1Rabaj0yVKpnqaixVQC0WFyWoWcpUYXUGVHtA
1mI9mAU2Ur12FlQJau0ssJHKwEx1jJmqLjPViGaqaM1Uf2upFm6xCDlBbXOm
SuxMdeOZqtwz1eRn6iDI1O+QqTvD0ktSXtvSf+0Kg1Xtd9HmmWJs4sUP1NKY
49xrds380C3tRKdk6B2g7QwTVG1+0k4q8tk9gaVVS98/QD5LhKBqY5l2qVEG
1hNY2uBou9wiVdVGPu0KJG/BE1jaDrWHkfwGT2BpktSMKS31EYIayGi2oE7R
CJWlKVUz41RpESGo2kKruX1auz2BpeF3uxDQchshqNqerKUcVLnjCSzN1OTo
RKgs7eAb5Vzo/kUIqjavaxVSLUxgabUfFAKaDyIEVV8MQF/ICJXl1QZaQEfz
dAICTdnRquIJLK+N0HdQ0FTvCSwvuaCMWotUVV/TUZdzoUnfE1heKtIvBDQT
JyDQNBdNlJ7A8sKWeUKwIQ8BTTMRKssLcjQLRfOYJ7C8zqdbCGiaiRBUffmQ
pobou+8JLK9KoucuE5U2udAs4Aksr6bSzA21VSQg0MzNcJig1Vd9aQqFfEIP
emOcqgEWa0ujh3VCqDt65+iJ9Cg3QaV7pIPhAz8Ro8gYPwUVzSXe/DPBjBh9
LkY0r3qjL8SIlg9v9CWoKI/uzb8SzIjR12K0NWz0DagiM9u3ghkx+k6MyG/1
Rt+LEXnP3ugHUEVWwR8FM2L0kxhFFuyfxYgKcbzRL6CKeEy/CmbE6Dcxijh3
v4sROTre6A9Q1cLmfwpmxOgvMYpsBP4GVWRj8o9gRoz+FaPIdq380CaWkZ1j
+YGmaHKRm4/RHteJLHVij+zByw+6xkQiD+UHiq1QnUTzMbpETmSpJR2RGE75
gcZJ7kfzMdpiOZGl1uGQG9Bsqc4Y3ctmS/cs3JGo72oyKZ3I9vFS2o03Ayd4
N2nR9h/yBryU\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {275.5, 0.}} -> \
{0., -1., 0., 0.}},ExpressionUUID->"dd238743-5566-4a85-b404-d02cc48b0392"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(27\\). \\!\\(\\\"triangular orthobicupola \
(J27)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"9ada0d3a-34ad-43ea-993c-\
e43c1eb5e9bd"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .47663
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.416925 0.16615 0.238314 0.16615 [
[ 0 0 0 0 ]
[ 1 .47663 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .47663 L
0 .47663 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.33385 .15524 m
.33385 .32139 L
.18996 .23831 L
.33385 .15524 L
s
.33385 .32139 m
.33385 .15524 L
.5 .15524 L
.5 .32139 L
.33385 .32139 L
s
.33385 .32139 m
.5 .32139 L
.41692 .46528 L
.33385 .32139 L
s
.18996 .23831 m
.33385 .32139 L
.25077 .46528 L
.10688 .3822 L
.18996 .23831 L
s
.18996 .23831 m
.10688 .3822 L
.02381 .23831 L
.18996 .23831 L
s
.33385 .15524 m
.18996 .23831 L
.10688 .09442 L
.25077 .01135 L
.33385 .15524 L
s
.33385 .15524 m
.25077 .01135 L
.41692 .01135 L
.33385 .15524 L
s
.66615 .32139 m
.66615 .15524 L
.81004 .23831 L
.66615 .32139 L
s
.66615 .15524 m
.66615 .32139 L
.5 .32139 L
.5 .15524 L
.66615 .15524 L
s
.66615 .15524 m
.5 .15524 L
.58308 .01135 L
.66615 .15524 L
s
.81004 .23831 m
.66615 .15524 L
.74923 .01135 L
.89312 .09442 L
.81004 .23831 L
s
.81004 .23831 m
.89312 .09442 L
.97619 .23831 L
.81004 .23831 L
s
.66615 .32139 m
.81004 .23831 L
.89312 .3822 L
.74923 .46528 L
.66615 .32139 L
s
.66615 .32139 m
.74923 .46528 L
.58308 .46528 L
.66615 .32139 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 137.25},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzNnOtuFEcQhcesDcbcbw7G4F3b4DtgB5t7wi2xyY88A7JQJPgRJSK8RJ7a
8Uy3q5b11z1nMusVErCroqvPmb5UV1XX7O/7Xz/98ef+188f93t7X/b//vT5
4z+93b++HIo6Y0Ux1iuK4t9eUX4/OPwa/zk4/HMwX/5TSvj7XvmxVbZ/WAk6
UbVqU2yU/54qRe9D819NUHTKr9b6PmiTrOqxGD+SHUSyu6H7X0DjFMjW6tGq
zw2xv3cB/q093cSQQTvWc4R6bYJJaL6ShJr4RnYESdROG8KbAPkKGp0F2XJy
2uoHknQJ4+dA6SfjeB4aLYlrqiPqThlahH9hgkvQ/K4IT2uFdC8Y2ssA/8wE
V0YAf8nQngf4p9DoKsgWRCJnRF3CeBIoPTaON0ZA5JqhRfhtE9yE5j0RntY7
6U4b2k6AfwSNZkDWBRlt0ClRlzB+DJS2jONtaDQnjsg5UfeWoUX4hyYg3nfE
cSDbQrp3DG0zwD8QB5DGhsbhgqhLGKG/vhN5ERrNiiNyUdSdN7QIv2aCe6n5
E8aBrC3pLhraeoBfMQGdkLRpCZ6sLekuGdpqgKfTbRVkP4jTQJaQdAkjHHBh
GiqOBDAtjsg1UdenP8L7DJH7SEacaF4Xde8bWjjg0KoTEQKgcSBQ0iWM6FD3
jCOZcxpodeJI1+1zhCfTQURo6dGI0HIkXcKYS1PaBhltSxob2qqkSxhzfZMk
NCdDRZTIeJHuAEb12W1GiUw3TRyZc9LNUJoXKdGxRqNERx3pBgyOdOIE0san
JUhHP40WuQOkSxgUfsymadIIkoNEI0hOE+kSRoYmuRL0pORQ0mjSjiddwqBw
5laaJj0pOeA0mrTlSJcwMjQp+KIuKEwhmrSISFfFmPn+aFIOJJh59DPVCSGa
9Nikqy6s75AmbbVwjmNaRDUWRJP6I13V6EWa5GiTsaAUFBkk6o90CYNOqOk0
zdzhRfHkSqb942Z0KCai451orEE7giev5sbo4C+DLDjoGCRV87lfinbgf8lp
zHTmvraQ+07kuVVXPPj6mNd9YDTUTTrA5ehvX6aDwJHQugjZjNr/06Vg7Wqa
pseup1uQG7de1LAtrDJsvmyd0QGoUvJEv5qLyFDyfAKdIiqlSeuFTCQFcGFj
41ZasM7II1cpefKfjlZKgWYo9awzCqlUSuetF/Kd0jElWlAKDdqQI13CoKDu
YprmbXtmNdwnmd9lNKREiZsZ60zNzpDsivVCkTfRDCc5WmC/GlBTaCTz+w3a
cd1mlK5bZ2p2M2mzq17IVPZSmyReRAgHZxtyaq6L8iIZmpftmWlLq+RuWi/q
HV3wr+NVCsxz8lpHpeTXNer16VSa0jnrjPaKSsnNC/nJGUrkmPkpRgtTpTRn
vdCJSgHU2TQlP+tpxlVKfnyR35GhRGHcuLgcVXKkSxgUboTHic4+O7wUqKvU
/LaDfFRy1s8gofKz/KtWWuQdtYFohHzfSKP6qIp9aPBU5CXrZbKvW1Q89sS0
tlTcu6knDoEirmWaEwr8KbXYaFUIGNvNaHrJUBtyfoObzh5hXotWiFsfOgJV
Sl3rhYYiWD20lbRd3EaTP6NS8pv/dJpaNt+U12pzzJIuYcSaCfqvfDnSyfkA
W80ouVs/HE+JQoxIiULJZLFS0odWKbk/T7fJm80oqbfljXxyASPSJMeK/KNR
xDAhnMNYlcyBr4zhRHq0SjOUyLGdzS7W5vEwXWSGOBw3aLIMakA27ExCQ5rJ
Iqkh5mDoSItVT5R1zpdLDSdTRQd/hhItR3eahpPPSztwclkVHePqJSPJSJcw
Yg2ZmjXwWrM25CasF/LxMpQoP7JunanXiPladEptBppoIPMlWcO4jaD0XIZQ
+pT6pvvyO+UigUn5nbITsQCQAJNlWZ0sbiWiED8DReukcuE/lCK6LwtePM6c
WjKlLivSjfC0ltXyKAG++qSnX07D05mx0wL+CbSLNZJkXJqWPZHx2Mi0p9HI
0KHjSi0LUEN6tSwgJGjw5GhT6jRCmnTSqrUgFBYlzxUBIxbK0v1Wm1KnE6JJ
HkybUic1D6liLDajmUwqk9+Ifl69LmFEmuSitil16omjqS6shWY01YrErjia
akVipEkxSJtSJ/WaQzV682ma6Wxk/amkJofSJxotohgAtit7OiFqAxOTpKS+
xZIM2AVK3TQlqmiiqJBMP20H0qXtEClVH31vr9U7l2oCjXQfGVqcJA+1yV1X
YzwaB9LdNLRoDCgyp+BFfbEmmfoSMCIlj/Qp5lCTfGqCcMPQoiPkL0vRBZT6
PgtNCOmuGlr08T1aV4ugaJ7VqoDlAbRjL0bVr3xa5fT0pOtTHRMI6rVUusyp
fhxIlzAiJU8MNCtuqh8R0u0NLP6aN0fVN1EInnSPvTnqtaKU6Rw2vCeR4x2Q
m0saLPUtEoInXU+rx/tEOhFoG9HUqGlK0iWMSMnfLFcLj8iLTdYCkmXtf7P8
qQnI6JL/r1aEkq5fWj0L8M9NQGZHfXMjWZxJG7lCexHgX4rrXX3pgYgkrzgH
ZJGS//LEKIh4cVP85YlXJlBvlSnUIHjS9fT96wD/xgRqAVAbeC8beBvg35mA
BjX3RgT5P1Sp4Dnu8JMy4YdrEp1SPi+dieY+4g/Y7BpuviqnBuNY3cxe6P49
aJBRqGZmsxT9FhQrcc1PARVj/wFwSqQZ\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {136.25, 0.}} -> \
{-2., -1., 0., 0.}},ExpressionUUID->"f74a3d79-6a48-49f4-a628-b664515d6301"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(28\\). \\!\\(\\\"square orthobicupola (J28)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"617494cf-be75-4f4c-a5a0-8e7f5798185e"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .5
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.420635 0.15873 0.25 0.15873 [
[ 0 0 0 0 ]
[ 1 .5 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .5 L
0 .5 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.34127 .17063 m
.34127 .32937 L
.18254 .32937 L
.18254 .17063 L
.34127 .17063 L
s
.34127 .32937 m
.34127 .17063 L
.5 .17063 L
.5 .32937 L
.34127 .32937 L
s
.34127 .32937 m
.5 .32937 L
.42063 .46683 L
.34127 .32937 L
s
.18254 .32937 m
.34127 .32937 L
.34127 .4881 L
.18254 .4881 L
.18254 .32937 L
s
.18254 .32937 m
.18254 .4881 L
.04508 .40873 L
.18254 .32937 L
s
.18254 .17063 m
.18254 .32937 L
.02381 .32937 L
.02381 .17063 L
.18254 .17063 L
s
.18254 .17063 m
.02381 .17063 L
.10317 .03317 L
.18254 .17063 L
s
.34127 .17063 m
.18254 .17063 L
.18254 .0119 L
.34127 .0119 L
.34127 .17063 L
s
.34127 .17063 m
.34127 .0119 L
.47873 .09127 L
.34127 .17063 L
s
.65873 .32937 m
.65873 .17063 L
.81746 .17063 L
.81746 .32937 L
.65873 .32937 L
s
.65873 .17063 m
.65873 .32937 L
.5 .32937 L
.5 .17063 L
.65873 .17063 L
s
.65873 .17063 m
.5 .17063 L
.57937 .03317 L
.65873 .17063 L
s
.81746 .17063 m
.65873 .17063 L
.65873 .0119 L
.81746 .0119 L
.81746 .17063 L
s
.81746 .17063 m
.81746 .0119 L
.95492 .09127 L
.81746 .17063 L
s
.81746 .32937 m
.81746 .17063 L
.97619 .17063 L
.97619 .32937 L
.81746 .32937 L
s
.81746 .32937 m
.97619 .32937 L
.89683 .46683 L
.81746 .32937 L
s
.65873 .32937 m
.81746 .32937 L
.81746 .4881 L
.65873 .4881 L
.65873 .32937 L
s
.65873 .32937 m
.65873 .4881 L
.52127 .40873 L
.65873 .32937 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 144},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnNtSFDEQhgd2EUUFBRTPu4gIKori8Qn0yvOh9JKyrNILS0t9EN9YmUmb
DOuX2Z6dDlfhYnfIJP//J5NMOkn3Pt399fnT191fXz7uDp/82P3++cvHn8PH
337sJfWmimJqWBTF72FRXv/Zu5SP6m+1/JB/xlzfK79ul2Xf+6t7tVtF74+H
3fvvRvXZ92nC+06fdWcc+Ew97V/J4m3L/HfG0exPmy4/p8uk161LbLej6vuC
L1uXuNmO6hCkPetQ9rqjvwS3lpSws74uj0xQDCQd8WAPTFA2naSLI5nKXrms
BDsKaTvGeOvdZR7zde4iLqCIpAvVF49r7eOY96Dbpmhrruh5yNSDtBNKghOe
YCsZ8moa6YuQdu0AONyQL87BrRlIW1BSLfn22kyGnEj6KU9wNRmyG5vFWcg0
C2nzSoIVSLt8AByuHsUZuHW4A9UZ316ryZAbpB+BtONKgnOeYJAM2T0JfCBz
HQguQBq97aw5luPVoYn3mJLqom8vqoQNskg/rWwRIiWCgSeg7mmD7OYE92pS
DCYtAQ1YsmSsORbi1aG3NPVhorrs24sqYYMs0omAJngtwZonoOnfBnk+Lv0k
pNHrL/qAo61ug+waAE1Yai8twRDSDoJDqkOw1IY0hxLVJd9eNLJskJfi0omU
bJjoVFObL1MgOxTskTQnaAnCVE/vfxvklbh0ai/az2g2sMg8t0EW041eYdRe
WoK4gXsQHFgdoqeFiGbRkQ4Z50Ht6qx5qTe6vWKHLItIskOovfpKgpMjBCmQ
h3Hp1F60cxDd6qC3dGIOqQ6ZtUSvpQqbTjRf2iCvxaUPIG1aSRC29GgRb4Ms
m4W05qH20hLMjbRNCuQNJ52WC669eLfyJuQnk4va3ALXUHbYwF83RZPjAFoI
XKk++/tAI3gzHo820iYC2jIR1vN4tDk5EdAtl4ue92jlQ/P3Rx9NBUW7vm0x
brtMZIRv+kwE4B9+y0I7asLqJg1synfXwc56nsXy43AtdQSExBMZ5etS9lCW
lCVlSVlSlpQlZUlZUpaUJWVJWVKWlCVlSVlSlpQlZUlZUpaUJWVJWVKW1Cip
vNh32FNFolWnQ0Xv3/3qiyI9CH2jK4DIc0drDaeqtRNUUDBRSfeU3CFjlSnq
LBKFWO9QVui3fCaNm1NZq+jxamcU6RXXPVjc3/C/s0o6jV6zAnInwLXDzLlu
eKtWQCJsA27FkbmzXonpTIDrMGrdNx5ioAcdmKKJxNCFtPFA5PIyhLTgI2uN
7JxQap2M/EC1BANICzES1sjOYwlrpaUiRy+tu541h1QnPGpt3CcRkGve+WTI
bgzV3KHJM5kIaCaKOqkmQRbpzY7WRECOpuSQGryVrZEl5kLrmayl0uJZc0j0
y4pvL4rWIgKyIqLu8kmQ6zFHUW9lLUE0SCEJcj36JRqtSAS0bqDBmQ5ZpAd3
aLJAtAQUBrKYDNnNHegEraUiK1UbX5SGo+YOTUYSEZC3ZDRILQmySD/uCciP
VktAJkGQbo0s4VILnoAcrYmArHLqiqH/WyOLdKoVmXNaKjKOafhZc0j0b2gv
LcFRSKNojjB1WSOL9GVPQKaploDWUsF0s0aWmDuaGrQTPAU9EL02Ir4Lh6vH
BPYPtQ313OY4+C7IIj08arLvtAT0+hsmQ5boR2oR7VKDhhXNnBROYs0h1Wm/
EiMCsmbC5p01sjOsJ1j/0huZFh1h/9caWQI3Qy8lS6MLwbVkyCKd+qZ2q4km
eNo5oG12aw63Tp5gJ05LELbpE0nX7HOSbci7lTumaG7x2XIHudkGL2HvG+NJ
RK9mB3482AMTFJGkOa0gS3l/2kMTFHmYNCq1QdTPO5SVwK4wnrQFX7QuIVTb
vqA2vvdV6xJC5X41UxVB+EafVcCrMd2LZXrbeFcgqh++3C7vfPBXbhS6rGN+
7LSY+gsgpnZB\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {143., 0.}} -> \
{-2., -1., 0., 0.}},ExpressionUUID->"e72c775f-608b-40b5-b965-f9553e5f3dcd"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(29\\). \\!\\(\\\"square gyrobicupola (J29)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"d698537b-ac3b-43ac-a1df-839510400ef6"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .53001
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.414253 0.156177 0.246885 0.156177 [
[ 0 0 0 0 ]
[ 1 .53001 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .53001 L
0 .53001 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.33616 .1688 m
.33616 .32497 L
.17999 .32497 L
.17999 .1688 L
.33616 .1688 L
s
.33616 .32497 m
.33616 .1688 L
.49234 .1688 L
.49234 .32497 L
.33616 .32497 L
s
.33616 .32497 m
.49234 .32497 L
.41425 .46023 L
.33616 .32497 L
s
.17999 .32497 m
.33616 .32497 L
.33616 .48115 L
.17999 .48115 L
.17999 .32497 L
s
.17999 .32497 m
.17999 .48115 L
.04473 .40306 L
.17999 .32497 L
s
.17999 .1688 m
.17999 .32497 L
.02381 .32497 L
.02381 .1688 L
.17999 .1688 L
s
.17999 .1688 m
.02381 .1688 L
.1019 .03354 L
.17999 .1688 L
s
.33616 .1688 m
.17999 .1688 L
.17999 .01262 L
.33616 .01262 L
.33616 .1688 L
s
.33616 .1688 m
.33616 .01262 L
.47142 .09071 L
.33616 .1688 L
s
.70568 .38214 m
.62759 .24689 L
.76285 .1688 L
.84094 .30405 L
.70568 .38214 L
s
.62759 .24689 m
.70568 .38214 L
.57043 .46023 L
.49234 .32497 L
.62759 .24689 L
s
.62759 .24689 m
.49234 .32497 L
.49234 .1688 L
.62759 .24689 L
s
.76285 .1688 m
.62759 .24689 L
.54951 .11163 L
.68476 .03354 L
.76285 .1688 L
s
.76285 .1688 m
.68476 .03354 L
.84094 .03354 L
.76285 .1688 L
s
.84094 .30405 m
.76285 .1688 L
.8981 .09071 L
.97619 .22596 L
.84094 .30405 L
s
.84094 .30405 m
.97619 .22596 L
.97619 .38214 L
.84094 .30405 L
s
.70568 .38214 m
.84094 .30405 L
.91903 .4393 L
.78377 .51739 L
.70568 .38214 L
s
.70568 .38214 m
.78377 .51739 L
.62759 .51739 L
.70568 .38214 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 152.625},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzFnF1zFUUQhhfywYcgIAQQhE34RkISUEQtlKKswvKC8sIL1LsUZRVcWFrI
f9Cf4A9RkdLyr2F2Z9LvyebpPb11zhxykWx6dmbf6Znpebt7dh9tvnj6w4+b
L5492Vz+8vnmz0+fPfll+eFPz7dEc3uqas9yVVW/L1fN9euty/yr/VlpfuV/
4PqD5s96c/9/I4Jq7rU1sPXf++3veZPlJ/w7rsbCqGy7ZvXPuGo7ZXub33sb
0athFeet4sthFRdB9kdq4hwUHQ82u8/wPG6uWqWvTd7sAWv2G7vauiU13N5W
3YBqq+mG9zpFTeUTwSe/BbKvQbYXZNdAdnNySIdMBY/samHY48+2f3jqRsfk
bXv4V3a1H+67ArI8Jc5A0RzIjgYhHTUgD6H0AMgugWy9DLh3QPbAAB8aBu5d
KKI5cCQI7rgBuW9XVPcCyDbKQFoyIPeCrfSAOw1F+0D2dhDcKZDdNcC0hJZB
dqsMuNMG5I5dLcF9NchuJ0jUP1o/h4OQzhiQW3ZF3T4/O0hdE/zazCNosyOj
vSztvNVJKKJNhBY8wTxn+rphVwSdZBkSjT1piWASpNqAXLWrGu4jC/phGUgr
ILvoQe/IyHDdSTBpSybLczAI84Lpa8WuCCbNuUKQLhqQ83Z1Ge6j5XdyZ102
fMdARuvWHVZ3fhGzoOV3wlrpcMZzZVCTqdcyvg6ltBxooIllJi6H9II6RhSN
OqHZoKvV4DPEJogAZMCkYdID7YSuPXfnCll2Utkxa4UUdaYMdO2OtV1teOBc
zku2Mtk25Ki0oMkr7GcYPq0Zz5LlQZDpLwSd6kY7QXaWSBnJkknHJqLMuZ8l
k7dAnSBwcilpihWCLitBhpyguwyhbYUMZhpt7PNZkM0HoctKkDUn6LQ4D1or
tGtl6NRnop/kmro+cuA+6gRxCtoUXa4w/e7IhpCFp04Q4P3WCnHWDJ0Yew0y
2qT74zhk6wk6bUmL1gqpcakMdM3c20HotBUuWCtkgNNyxoWzkquPyFKBw1Fo
yClQSsDJmpGscBcUWL0LpTSBCOSctUK7RaJyuMqTkzK/A66DVKP6CZSSimmt
KyJOm8N0kEobFGEinTJSZxtI9BInX9fB0qjvBL6N73NXk4s0g6weBcUzLLIl
cucJzNb1AxfHwmhfrE9rcP+x8PPbwi/gvo0OuuavY0bTdpeWz29NCe1NG/Zc
MmejTXSKaNjJXjrJJdr2uypr1Ei26si0ULENIndm1dRE64C0PzWQnnEgznfd
SskE+pR46jCVnCMn+SrIyIkhvRYCTI8nvnjZOkYWmAAfLgNYuyL5LYq2Ef+h
iXCoDEylL8mHotgl0WTSayHAxFgIkkJDNE18P2jqgMWlCaZCQ7QQSa+FYMpb
oRlJvgcZOAJ8sAzg/ujSKSt1d9XZwKRIHhEMRUtI1wT4QBnAin0QPaRZ+oYB
S3PUsuIhlMAjmPvLwKR5SCxAC5GsLwHeVwawIqm0+ZKVeMOAFaumYJkCA5RD
WrfSQsNPSVCKaYg3EAu7aaXVznxRIZUqN0RYaV7Q0Z7k6zGbL6Tu2lOUmC/5
3deslKbQYhms3WVTbau7BUKO6hUrpSEoBFOctaNSWuLK3bqRwekj1EPJWaYz
ODMEp4RxR32EtbabidwUQrgMMlr2NN4yFMRyCwEWx4+605RZmSFgsX2aeARY
mzC5MYVgaiOl2UfDr+MWxHcLwZRuaAhJm+K25LwUgknEj7J+pFfS5gyhi1pT
EMPNQ7t+VyGY/cPqRlPaGpQmLgRTrsggn7StQYarEMzosYZoGnCG0OU70UNJ
w8pRkntYCKZmHyVG3TyUm48sBFOzjx7aTa5YwdYPUa1CIClI4cPdleegI46F
kMqzowxnOznnvNJCkJQQHeRstrIZjrFmP7VCflyirbuShBSgmBpmzo8Sum4a
iGvWswNbsZuppCfZdbmoZMWmhbQVkeW+ZI8nkqopM277+bUpcf1Fl16Sx0Fn
o/OjlMetxr8cFj30RHaOmKWWeQ/C9Xwr2XOlV7vQmlLKAcsfJOYoU0h55gxI
5sc9+zYI0lmrQSyRZjgFuzM4vfEQOd3ZQLrWo1+CK++GdKS8XQ9I2Rn/aPUu
Q0CHWqJJdaKJJBOzoNmR0VMksUA/aGHpWD7lNkTfKGea0StE578owpOB9v9o
fEMuBtlksmMUx89dkIX1X1yafhfkQZJ5O2ylPcCJ1EXfvaKAFwGhjS16MJja
U7fp4ELumGKI0bOy1J0aZNF4lM400xgrJ9sTWK3tJopuuPyvIyN3jXwB10t1
T/ARKpq8uTva6aJvSVN3aLnSRKDuyId1z/q5QdLcCcpORbtDuzO1R3aw39cl
biTTTGrM3VEAk3Yf1xPqyMj2+5FGtoREq5ey2jobVs6Ead+n0FQUO9Ulaui4
xbS5t7DnRpAq6EscO3qKiygp7av9JyF7oo10XnASwPQoMsdrBrgKJnyqkUgm
2Tc3qtCREWEkorWa+9iZiNt/e3CKZ9BeFsVJI+PuCbjmG+USec4vfdKwRAFH
HQIyk3Kck3Fk20D6zcAVyCQuE42DkS5J53Qggqxr1A3IL6+KqxFXiHaCJi5N
cCV/adFGmX/auMKHId2wacA+uK/7uWeZyNCT/nMnxMYmgU6qIJtdgyzaCT9V
O0Jf6AHRE6K09dEWqQQtTUXqDuk/QyfLQMRokmOuxFH607dRxyW/UKwUYBQ6
OWYEhNrTsU1qhcaE9J+hqzHSEkEnDdOa8N9nG6+KqJOSXzKmWRoltdQdejxx
DTERWjvRcwG5E8P5OD2UduQaZLJ7ZLui59fzq8WyCDTAUei06IiIEOBoJ2gS
5Td1aYCjzjc9nmw45YP6X952WT53orbGZgFdIUoiff0OSp46w6M1dB8xF+JT
tDrcz0h0ZAq1Z9M5SQRtkk4olEGrzfdh0P5H4pf0AGbrFI5WqIIYKU0cheQz
SY7EifsHtQHXF4wlk0vaFZI6VR0WgI+C3BVrIDJJ+DSc+eOZkfTG+BGJHtki
WfdTSQPTQs1/3wcfRbtFfih9XiD6kYLvQEaUQ1HOFDIdiW5M+1HK06UJOCx3
+q3XIm3vI/nD5I27KfvHnk46MrID+QFtnGKtKSFNUGOKdeaPY76Cm2qQKTyz
PqyishD5A4B/w03RtwIHNqHUQv4S20u4iTYmhfM/GlZRu83HqeJfcJMbHGkr
fpoq/gk3pSM1bJPvjau2y0p+lq7bD+HebAT3k6C9Z8xXhqs9/wNfMh/F\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {151.625, 0.}} -> \
{-2., -1., 0., 0.}},ExpressionUUID->"009c2f17-e1dd-4e6d-a1ca-7488bb3cff3d"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(30\\). \\!\\(\\\"pentagonal orthobicupola \
(J30)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"6f83b5b2-3ad9-462c-babb-\
5ef6271897c6"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .5224
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.431035 0.137931 0.261202 0.137931 [
[ 0 0 0 0 ]
[ 1 .5224 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .5224 L
0 .5224 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.36207 .19224 m
.36207 .33017 L
.23089 .37279 L
.14982 .2612 L
.23089 .14961 L
.36207 .19224 L
s
.36207 .33017 m
.36207 .19224 L
.5 .19224 L
.5 .33017 L
.36207 .33017 L
s
.36207 .33017 m
.5 .33017 L
.43103 .44962 L
.36207 .33017 L
s
.23089 .37279 m
.36207 .33017 L
.40469 .46135 L
.27351 .50397 L
.23089 .37279 L
s
.23089 .37279 m
.27351 .50397 L
.1386 .47529 L
.23089 .37279 L
s
.14982 .2612 m
.23089 .37279 L
.1193 .45386 L
.03823 .34228 L
.14982 .2612 L
s
.14982 .2612 m
.03823 .34228 L
.02381 .2051 L
.14982 .2612 L
s
.23089 .14961 m
.14982 .2612 L
.03823 .18013 L
.1193 .06854 L
.23089 .14961 L
s
.23089 .14961 m
.1193 .06854 L
.24531 .01244 L
.23089 .14961 L
s
.36207 .19224 m
.23089 .14961 L
.27351 .01843 L
.40469 .06106 L
.36207 .19224 L
s
.36207 .19224 m
.40469 .06106 L
.49699 .16356 L
.36207 .19224 L
s
.63793 .33017 m
.63793 .19224 L
.76911 .14961 L
.85018 .2612 L
.76911 .37279 L
.63793 .33017 L
s
.63793 .19224 m
.63793 .33017 L
.5 .33017 L
.5 .19224 L
.63793 .19224 L
s
.63793 .19224 m
.5 .19224 L
.56897 .07278 L
.63793 .19224 L
s
.76911 .14961 m
.63793 .19224 L
.59531 .06106 L
.72649 .01843 L
.76911 .14961 L
s
.76911 .14961 m
.72649 .01843 L
.8614 .04711 L
.76911 .14961 L
s
.85018 .2612 m
.76911 .14961 L
.8807 .06854 L
.96177 .18013 L
.85018 .2612 L
s
.85018 .2612 m
.96177 .18013 L
.97619 .3173 L
.85018 .2612 L
s
.76911 .37279 m
.85018 .2612 L
.96177 .34228 L
.8807 .45386 L
.76911 .37279 L
s
.76911 .37279 m
.8807 .45386 L
.75469 .50997 L
.76911 .37279 L
s
.63793 .33017 m
.76911 .37279 L
.72649 .50397 L
.59531 .46135 L
.63793 .33017 L
s
.63793 .33017 m
.59531 .46135 L
.50301 .35884 L
.63793 .33017 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 150.438},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy9nEtzFDcQxwevFxtiY+MnNoZZMMRgXiFAeCZFQgjhQKVSVA6pnFxUKnCg
kgIuOfEt8tmST+N4JG33rvxruZcd8ME72yup/y2pH5J69Gzn3cvfX++8e/Vi
p/fkzc5fL1+9eNv74c83e6TOoao61Kuq6p9e1Tzv7j2mf+HvTPMvfTng+XHz
MdHU/S8SHgmh6uxGUqhQHZYf3jdPk83Ts1jgYfPR2e1XqTq7AmXvWzejNU2H
dv6WatXkICtp/mkkfiOcDzuab75NSMtv5WkSygVatyF9H1k9EFbTVvGMdlgY
vJYnqjstUj2MrO4Jq6NOVkeEwR/y9BmUmxFWDyKr28Xi1IEzUmNHno5BuXlh
dSeyuiVSUXGSal4Y/CZPC1BuUVjdjKxuCKt5J6tFYfCLPC1DudXmf5gW1yKr
68KKkBGrFWHwkzydgHIbItWlyOqqFF+C4qRf61LjqTxtQLlahLgYWV0WwqqT
1Slh8EieaijXA9pWZLotTNecTHvC6mt5OmvJl9EuRKYXhOlJKDQBtHPCSpXn
c6tHMlrq3vNSkQoR0y2g3XCWoxHfjkA2RXoal7aBUA+nuX12ZCA6cDetXzMa
zaopaWVzAEjmkuqR+mZykNY8X4aiZFmpy8gwTAHEhP5ManwQQb/I6ZGk4DYu
jSEKWZKpAq84Ejgfgi2YUGvGDWyPJPBwf1I4QXOKfISGQ9Q1dWRRWxVx0rKA
F6E8eZzcOjV180lEHdF8I1dDOIl22hZV9W5UAalPzxXaIGBeQScF5RFbPNIr
ittWRhSUgJNzI8dINBJ60RLaIU90XejBZoC2nBrPjCNJTkHyGaeUhJ4kP+6s
S6Js2JLPNv/DjBlBXppcNdBo6ntHmgJhNaNztpQUPVBjxxNE7/T+FEKTWFSX
5InBCsYsC9JvUWjXINP6imYQGWavvLNAmxCwZOHWI+J1+Ilc2zG/vKQ41Jmk
7F55iQd5eBJlzZZ8BWizfslpFIgNaYA35KbZRHVJlCQ5hcMh3AyTJRfCUmNS
MQpayYN4hzl21HDf93FSx0b+CINmYA7NEpWsBAW13rHxilqxq1m1pdyQ7vHK
Ru6QtCZOC7+Vn87kaT4rjpmSPNSjNdA0giS+FNgQjbaivGOVB2hNH1CYEnUQ
VZGK6/KBBCMjTjtPUS8/PKxuym1CuTgpcG7oZsLoItD8mx9RhBC+BdJ5kysC
p+LqNokVjWUbQZFytZco2H9bUrEMnLSLdGDhQOBsjm1dRPXbzppK5oFaITtH
nnYR0BmgK96bWbDxXioKSr6InEEcwELnBg5XbGik8KF4x5o65Pco/ljhbtqS
xq9BpTjLUYevAi18Owc/0FKDwsN8Elf99jqiAA4YUV9Rbam4Wpce/EoOjRbw
J7h/e9I4VSI4czZ6mjjTwoBCiRpotO7KQ8aq314gUYhHWBJ0ihypuB44kX6d
ll8JcF6j6rcSSGT4CEEsh8XNoQkkchOBfdB9WunlKlD1Wwkkr4bN2oBJPj0/
I8OyLIDtvZBhwAvSHnlbQpAAkz2n4iekR2gSzQtg0o4wYXTTw5xY5lTkfqBh
OCkMyAvMFnspNyhVvxVTiQlB5Bs/JizzXUuz5ul06E3ywD1pWS0MBbVXpFzq
QxpqOl3YlGbNjaAAjnyHuVtqBok5gkoBkzJREKCushrOkuhafaNnXwPJDpUd
CRmhTMI5J61R3RBw/dyQKPLRKJKW5tG+oxGiviQG5PWJRnWJRwGmbtIRA9Ju
Lziqq2NIDjxBosDdVJYWwREPcj4xIBxYWZOhq4FGpscLmOoSD7JNg4D3ryLU
6lF0RpbQi5nq6p4LGXsDafozwydyTF+MAZzqelctQyIM/5Sdk5kbc21D1+1K
ss4FwLpBYS+ChmnXx4BOdYnHiEJMixCkG2RsvhxDCKpLPCgiS0KYKtwRw2ke
VLQNXd0DxbwFwDNSkSw9RZyUHuOFTnWJx4hCHBMhuvJEA0epNV7oVDc/HnUD
nh8G7DBXt8aATnWJBynxtC1EGKRAsuOWjysE8aAtwYIQYeCynUYyol+NAZ3q
alRCnqUAeHUYcPYrTafbY0Cnup6diQOEWBMhKl1VVIY6tI1f8wRo3VlAHRbA
k9aEvzMGzDupYwdo/W4pRI8IUjcEquEF270x8N3NaE3rPRuXmV4UcD0YA4jm
ko/IPh/qqg0gvpPAAqpSvt/9MdDdzdClv0CgrYUpG2LQbNNVjT/pLd3MDAMZ
mAJqygagAKdt20I8gjh25iviVytPv7aNWp2ROkEKBgqAqTi557b9aOTBS1A6
8iqIQDEcbRm0HcUQD9UD2p8qCLEoFSkAbhu6BsDlwDsBpglhH5V/3NjdfJUG
84UOEEJ3KWmx1/aKSRd7+k4WoSoAprU5zf+216nlBHOKZwpC0CCRHWpbCNM0
BiHMDRoWQrf1yMW1vU+jW0y6tUV+vQCYaHQe3/bumJlt2RHH5RdCN5soYmsb
eraZ2tG5XtDbYVoNtLb3fIkH4Sv0K8U/tF/f9hY78ViwYaqhp2OYtg8sNJMs
QfKmVH4KcMRjrgSzKhzFPW9I5aM4o+3KqBhe9jE1nIQMK72uVSN8o1ef6PWq
mQGsZhJTdqRrntGtCS4zJ75jzUg6Sh48DHeMcy0MKGyks+UlAUw8pqQ975nf
URtwOd1A96gJZgggwwKAQrqj0oo3ySDB9GZFrAqDPPBtpnQPasxKv1KwOCvt
0Rq2kBXhzTbR9BhdKxDMcqaE9ro3KaaQeGCmVQUS5ceR19Y7Dmiol6U9WnEU
sni8eVLq2ilNy3xd1ZzXmhVEI1vIk/JmomnwRNk5tE1kvrRO8U4geZPoUk6a
N/9Psxdz49NAp0jRfnfVMpMUyhTy/7yJlx31D/tyXmgFYL+JChbcdJSFnEtT
HdBVVoZhoqUbTSH15xSBpiRWOv6jXCYjdYjsFTk9mif09jSNekoSpi2mHFXz
KWB5r5dWlOQnaYIYr+lTyFBIBdcALapK3pzV1/ZbNWDNTJ663UWhZYJN3vI8
o7JfxeL+p6bJ7tPhokpBNoaiufQGAXWdJl6RFo96vwENNNkpmn4qlu7PUFhb
eBGldH2D/R47lyeTQJar/DYJWQEKX5NQ1C91AaR9CwGXJwFI0LJQ5GNroKV3
nWgO6wYFaY73zgGanqRF3rfZVMRy7lt6I41MDBlMgknuqzRyFGORCtAIk4vx
vmRbeEtSt/bMK7U+cAzJE9EsItNCwmq6TkFECjJIH8cR1pu3Qt1NM4CE9drb
9JYv9Yh5l4djnLxjbB79Ony7EYF4zXPh1fXspCP7lZbo3mE28zvcPPbJq2AL
UhIPmiIUS9h9f7C85JpomWzPoX3ykpQkSrqUgVYDen5I+DwqZsnrXe/ZpoIN
v+aLEbp0y4a3Y70pl59OaNdaikQpXCLjPSfw+Mpdw/RRb1BgZ/v5fZKTAyJR
kuQUmOihIPE1Qx6HbESjTaRRw2zN9rGTqNzvV5JOm6EsDjKDpOsJ7WvbuA2y
RtRG4dIvXbTStPAKSjcV0PmEfRMUC3hK0BXE6hUa8GYIe1S0ac+8IOADI5ZT
Bezpzl/aHPQGs56xar6VtnW8ItP+a7ovkJSaVNPcX8loMZ/BdfGPiXTwgkna
G7N3qQCLuetDJk7XqXFfBY8MKcTSK0pvyZN3oq1nNXBrzXxhM5DuyxNtoRBT
Xc2lu03pfJJ8jr5B/q089ZzduyJMY7/iuNRA07O6J/JEoQAxXRKmcZM6Wj8T
tx6LPJMnmnDE6rjUiFkacSTNF26XpPhzefIuQTUjLGZwRY6Blbl0Dlr5qzx5
b2DWIDqm6MWPrtWEHjDqjdcUy5orzMAqppHGNOhJqwnvPd5kV/V0KiYzx8vR
g1RmQBlI5dvJzWSngdT0eOdz1/KdelSvd65TOepATRH4JrL6UVhVw+n6od7A
xfFwR70ZjzyMRVVB3stPnHuw9+27WOdfqfN4gJBVSD+FLwdcu18d+h8zpgjQ
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {149.438, 0.}} -> \
{-3., -1., 0., 0.}},ExpressionUUID->"05a79d5c-c819-4975-bf3a-ab157af61b20"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(31\\). \\!\\(\\\"pentagonal gyrobicupola \
(J31)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"cdfc148c-6952-41cc-bb28-\
90e0e72a0da5"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .52899
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.431576 0.138114 0.261689 0.138114 [
[ 0 0 0 0 ]
[ 1 .52899 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .52899 L
0 .52899 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.36252 .19263 m
.36252 .33075 L
.23116 .37343 L
.14998 .26169 L
.23116 .14995 L
.36252 .19263 L
s
.36252 .33075 m
.36252 .19263 L
.50063 .19263 L
.50063 .33075 L
.36252 .33075 L
s
.36252 .33075 m
.50063 .33075 L
.43158 .45036 L
.36252 .33075 L
s
.23116 .37343 m
.36252 .33075 L
.4052 .4621 L
.27384 .50478 L
.23116 .37343 L
s
.23116 .37343 m
.27384 .50478 L
.13875 .47606 L
.23116 .37343 L
s
.14998 .26169 m
.23116 .37343 L
.11943 .45461 L
.03825 .34287 L
.14998 .26169 L
s
.14998 .26169 m
.03825 .34287 L
.02381 .20551 L
.14998 .26169 L
s
.23116 .14995 m
.14998 .26169 L
.03825 .18051 L
.11943 .06877 L
.23116 .14995 L
s
.23116 .14995 m
.11943 .06877 L
.2456 .0126 L
.23116 .14995 L
s
.36252 .19263 m
.23116 .14995 L
.27384 .0186 L
.4052 .06128 L
.36252 .19263 L
s
.36252 .19263 m
.4052 .06128 L
.49761 .16392 L
.36252 .19263 L
s
.6893 .3813 m
.62024 .26169 L
.71266 .15905 L
.83883 .21523 L
.8244 .35258 L
.6893 .3813 L
s
.62024 .26169 m
.6893 .3813 L
.56969 .45036 L
.50063 .33075 L
.62024 .26169 L
s
.62024 .26169 m
.50063 .33075 L
.50063 .19263 L
.62024 .26169 L
s
.71266 .15905 m
.62024 .26169 L
.5176 .16927 L
.61002 .06663 L
.71266 .15905 L
s
.71266 .15905 m
.61002 .06663 L
.74138 .02395 L
.71266 .15905 L
s
.83883 .21523 m
.71266 .15905 L
.76884 .03288 L
.89501 .08905 L
.83883 .21523 L
s
.83883 .21523 m
.89501 .08905 L
.97619 .20079 L
.83883 .21523 L
s
.8244 .35258 m
.83883 .21523 L
.97619 .22966 L
.96175 .36702 L
.8244 .35258 L
s
.8244 .35258 m
.96175 .36702 L
.88057 .47876 L
.8244 .35258 L
s
.6893 .3813 m
.8244 .35258 L
.85311 .48768 L
.71802 .5164 L
.6893 .3813 L
s
.6893 .3813 m
.71802 .5164 L
.58666 .47372 L
.6893 .3813 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 152.312},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy1nVlvHVUMx6fZ1yZpm6TpNrcpSdt0oXu6ooqlFdBKwAPiAQmFCtRKbCp9
4InPwSdCQkLiFT5N6PhM7Xvn/nyuJ7nloZk4M/bfPj62j8+Z4enOq+ff/bjz
6sWznc7jlzu/PH/x7NfOo59fviaNHiiKA52iKP7oFNX17uvL+h/573T1T/3L
gOuPqh8j1bP/JcIHSihGdxNJHij+Tb88rH6M7r75czG6q2Jf/zauf/0n3f6e
spvwbm/Q5Lfflc+nic995TMV5vOGxW96NQL3fZwE3FUBM3DTGNAmle1LvSIg
tYBtvWk2qMGMPvGDXk3CfRMK/f0k6qYSDgZFzauA7/WK7DBRW+MNrfa7h+n6
uspdDNpwqfpX2H2jcueDmEf0iQdJ/FUVfygofllZfKVACDqJH1dp95L4y8rs
SFD8UX3ii9bPTqn4O0n8RSWswu00WU+o0Cd6tRLUfkalbSfxW0pYC4ovVegj
vaJnSfycPnEjiT+n4o8Hxa8rCwtpJ4LGX1Rp15L4DWVxEm6nsLOpLO7ps2VQ
/CF99koSf0YJnaD4s0DbVi7rQRsu6xOXE5D1LBBicVafuN34a+FwIYusqg0v
dAFpMCPz+rYZ66ZV17fk53gPOceatD2u2p5Pj57OMD3VCi/zuBEERp5P951U
BZJUf5xHvAkVdUe67wrQKD5QECB+HUW6kdQp4SaqXNZq0WTz83A/Oe1loFF+
PxZUxiLauq/MpGrcVgWy80WgTQPtKNDIvTYUXfIrnANUmKy0VIbGdAtoVKtR
fqXxOAe0lB4wS8wBTQJsfygijaguJgRUXlHWH4JGIkpGs4Ue5D4UHg4q89zY
N8fU4irGJir+ljLsowpsunx7aYcHqtJnw9r+FPGsTljiZwk+efw7LtS4qWh2
kY+laIdBbxloB+Oa0QSjSofELL5dzWgCzsc1ozlNiZki1wKLuQC3UsROWQQL
dwn64n5NfN7UWQAaZQCS5jgCDQ5lspShMFHR1GrmIE8jCigUeEiG4wBD0EgQ
YLPD04OCFWEm3WbjelD5k5wWfbf0WHSV2IOjFnmTX3eE9KBknOY4TvXTQLOu
DulBbQKykBW4NNIEnaqrFBExMNrSsz1gMsUZoDW9YkjQN4A2klWCAJNixNnM
Q9ApNyXOKMBWzXnA5BLUHKMCq7lk8axOySdNM5xtzTKm+umgp9BFAZWetTUo
ZbKWmC8oMxJFCZ0arwTEho9MS/kwDR+O4qXqXyHRePopppeW1nS9YS4H0q+Z
MWvQqld+oyLTTyfENBSayXBJBdSE4MrMEBIVWZQ6aE1wRbkMAeYloE2pAFqc
lUCj9CsdzlZhPXktOi/BtF4uTaRT+lcCJzsO/cGE3N9fPOBkpXFfUCyUCAS9
rBBotK8DzXYwKOuRjAxgMq3EMrEOudOyAraFOvULLXNRnUIpJoUVjC4E0/ZB
yGcWFSY5G3UEpxVw6UnD9ItZmBzhuAKmYCRqj3kOTfzmFDAFPOKS5KYf8uC7
cFOpMKkenVK7kpWos2f+TyVzBiY5AmXDMyrA3dEVwFRfURA9rOahyUS2TiUk
TjAKf2cVcNG7Wy4wSUVqoa0oTPJwCt4pwqQBcWOzWGSrIlFhTC2pNeVHmdtP
bHg7DRJ5Vcr7fTGcgqhbIgiJBq0EWpoMXd0xYktxKt3HTSCCS82ljkql0EEB
NuU9dA263QfuVZ62lUz8bIFHKopzTliI6Vp+UzAtgUYBkQCP9QIOzBLbY6Xa
QYLDjDlOfVOfI1qMpQlAcZfQ04YD0ahKl8ktJOrACb7pinSU9aj/G/UiAQVu
Squklg03mZjSxCV9ohEyxSFnzA2RozmBJfn94DcuNBhUKsiAi8dv+TCtZKJJ
Q8noahAwRQ3aXCQZZBQZA7F6x1fHIgRNPYpM14LqWOVDGZ84k6GkvpApUDcL
CaaMxKgOtZtvo9BtA8o9oxHgLOMk9p/3oZuVyEtpPUjLDVLCTrJYw4SSOfET
hxnviv0E3axkB6aoyqeFBwEmu9JmC5WcURkTvjpmL/JXmpw3g0KtVnWDfEAd
t/PI6og13cxCySKqjh0NotGhqEicW6rTEOoG4FtBJVI06WsrRVm2RL+aNRn5
23ZQD9uJa+RcCifEtKUmto7oklc4kyaqhKT5UW/qNU+PeVwmfdRSeo15kyEq
wPbWiMud/cM8RcatftwN8j7pMbjXDhxNAwN3P8jMnniwf/HNVUDRAogNXMMs
UQYZXKnVwCvHqNWjZ9qibpCBe0xNsZ+ptpblQjOBwkwGJi0vohHNDfdumUtq
twRsAuivUZhU2kf5tQRMoqgqiCbUI2oA6g4MATB1+UlUtIyxJhEVrVG1p3zA
VvaRgChMKtmHAJiGmkTRCiRabFsPk3ZeowbIADYBtNqLLpRsi4TmRFTZDEzq
XpI3R5en1raiLsYQAEcPkkYBkwyK8MSPokQGutmGekfRVox1RWgnYQgwiUZV
QLTZZX2PMqh2S8BmEWqVRmFStdAJ8msJmJpdZJtol9eaKLSj26opmXsBr5dG
XXu/qc4HO2g3KKp0Bq61a2lg/K2KviU3bZu1xEctFKqfWyEVEm09Rnc1suCK
QRt7tJ+2T8mFw3ZT1SWjkQDa/ozuTnWDEzvQg43tYtzLK5xnCRyNfGZ8iG2p
kCIbgm8RXP7YgjWUEyRemRI08vUMtOiJCnuBr1m2VkAo+lN3hcC1BBw9s2JH
a6yCj8Kk4ZWTBFMVicJ55lgCgbODGs3TOYWTmynnEkwBN+5FAdtMolNBGSXI
JWZViWaRtl8lTqgStn0pqKb1iqFHj7TZybsmzAo6VYtUiBD0FYVOjirrBbE/
bUnVSkSPD9opx6ZHVkpQHUohj6bfkiphy+uO0uZ8mAPOjvZVDVTdE0iy9KwC
sq6Nv2zBZbGdx22WL5UFaW1DkZzAjSs461pSxVmfv6JNsybbCtJ5NiMtIONI
HQeiMFcPPTUCmtCqn4qY05f/UhW4qJDsWD2F8nkfnT2YhqZpQc+ytMCnINPF
v7c33TzpWt1R+tj9lxX6oLkv6zvW9k8CQx3p7nI11yFeqK+P7JD97BsEJKDt
C/T+a45eLUqh17ExZYIFX7PcxwJoYZjTi0IC6SUyyfOGoybN0TIDm/JkTk3/
JVuS2YecrLrJt1KuqQ/sUzGU3yb0R3OwN1P9QirbNmB0u9nRnBJZ/QIIZY7o
5wxoDyY31BRsaBbZ5lbU8o7epNwhX2/bhKepE33tnSwV/UgBoYpaPk1ttrz/
lhn6Bs35/ZgkenSFYNrR6yiCnCFIs/q1MvL66LeeaHyjvhHdN7VVrPu5J5wV
8WLgiG8IWwbQ9KMeQtQP3NMpFK9cBDQAe1Sf1k3RT45R8Ro1BCVOwkJR1P0C
14DibdfxSdK3fk+XSgXbeiMl3HI5YBRSzP00S+MlZ1LCfaM4gLl+PZzEk/tF
D4IO2xT24TcajKhRCAF596pvlOjuCFWAkdedPZgl0CjKRLFEJ03GPLRAss4W
gXPXsAEDRI1iU8U9ebpHU1Dsqd99ICDk2uS87ov26Ckc+akJY5uC7gGQgCGi
Vc6abwgDQg9G1W+as1I7VxT5X2XYW5zIKN3JwKAgSjBop5E+hdBc61Y/HW2p
LCRt3e98Nmj1h4SoqxZdCkQG1oPpnmzboxf7pQm+QRf9vhypSGf46FmCTqND
JkslDLbUqfIkf6NjWvTsEGDSVi/Vhda2o1N69AS5jvtaL1Ye/uZNg2bNNxpg
eiIKjtJP/f042tmgQqWj4OhkrvveYmBYM+Do2EDp2UZIdMqZCgsCN15D7I67
hb7Hd05ldODZNf3re3pFSH25vRGw/valuI4gouFfUVEf6hWNhP/eQy+t1lRO
pEj6cXtDQvpEr2g17L/dno7tiVZuu11In+lVNDDX36O9rQKolLdPdXypVwTE
jsbUn+O9r2ypjLXt0q/1ikrlUs1bf274obKlpGAfo/9Wr2jltaZs02HQ5BNC
cGedkJ7rlfv5pnELSulD8IK26H0rRsLqT8qMdFlQZvXHzp9WP+TBV/ogeeaM
Plh/HP5Pvd1dBsrtj9Ptf+ntRW//X256kih/602fJ4LcOeB/PVAc+B8p2Lpi
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {151.312, 0.}} -> \
{-3., -1., 0., 0.}},ExpressionUUID->"4b205a2d-1344-4de9-ba48-01277fa7de13"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(32\\). \\!\\(\\\"pentagonal orthocupolarontunda \
(J32)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"a38625cd-38bd-4fd6-b8c1-\
01903021594c"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .81105
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.387289 0.123114 0.241351 0.123114 [
[ 0 0 0 0 ]
[ 1 .81105 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .81105 L
0 .81105 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.20864 .34095 m
.13628 .24135 L
.20864 .14175 L
.32573 .17979 L
.32573 .30291 L
.20864 .34095 L
s
.13628 .24135 m
.20864 .34095 L
.10904 .41332 L
.03668 .31372 L
.13628 .24135 L
s
.13628 .24135 m
.03668 .31372 L
.02381 .19128 L
.13628 .24135 L
s
.20864 .14175 m
.13628 .24135 L
.03668 .16899 L
.10904 .06939 L
.20864 .14175 L
s
.20864 .14175 m
.10904 .06939 L
.22151 .01931 L
.20864 .14175 L
s
.32573 .17979 m
.20864 .14175 L
.24669 .02466 L
.36378 .06271 L
.32573 .17979 L
s
.32573 .17979 m
.36378 .06271 L
.44616 .1542 L
.32573 .17979 L
s
.32573 .30291 m
.32573 .17979 L
.44885 .17979 L
.44885 .30291 L
.32573 .30291 L
s
.32573 .30291 m
.44885 .30291 L
.38729 .40953 L
.32573 .30291 L
s
.20864 .34095 m
.32573 .30291 L
.36378 .42 L
.24669 .45804 L
.20864 .34095 L
s
.20864 .34095 m
.24669 .45804 L
.12626 .43244 L
.20864 .34095 L
s
.58214 .45094 m
.68174 .37858 L
.78134 .45094 L
.7433 .56803 L
.62018 .56803 L
.58214 .45094 L
s
.58214 .45094 m
.46967 .50102 L
.38729 .40953 L
.44885 .30291 L
.56927 .32851 L
.58214 .45094 L
s
.58214 .45094 m
.56927 .32851 L
.68174 .37858 L
.58214 .45094 L
s
.56927 .32851 m
.44885 .30291 L
.53123 .21142 L
.56927 .32851 L
s
.68174 .37858 m
.59936 .28709 L
.66092 .18047 L
.78134 .20607 L
.79421 .32851 L
.68174 .37858 L
s
.68174 .37858 m
.79421 .32851 L
.78134 .45094 L
.68174 .37858 L
s
.79421 .32851 m
.78134 .20607 L
.89381 .25614 L
.79421 .32851 L
s
.78134 .45094 m
.8429 .34432 L
.96332 .36992 L
.97619 .49236 L
.86372 .54244 L
.78134 .45094 L
s
.78134 .45094 m
.86372 .54244 L
.7433 .56803 L
.78134 .45094 L
s
.86372 .54244 m
.97619 .49236 L
.96332 .6148 L
.86372 .54244 L
s
.7433 .56803 m
.86372 .59363 L
.87659 .71607 L
.76412 .76614 L
.68174 .67465 L
.7433 .56803 L
s
.7433 .56803 m
.68174 .67465 L
.62018 .56803 L
.7433 .56803 L
s
.68174 .67465 m
.76412 .76614 L
.6437 .79174 L
.68174 .67465 L
s
.62018 .56803 m
.63305 .69047 L
.52058 .74055 L
.4382 .64906 L
.49976 .54244 L
.62018 .56803 L
s
.62018 .56803 m
.49976 .54244 L
.58214 .45094 L
.62018 .56803 L
s
.49976 .54244 m
.4382 .64906 L
.37665 .54244 L
.49976 .54244 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 233.562},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzFndtv3UcRxze2EydxEseOc7fj4zh2Lk3aJiVO00ZRqaB9ACR4gIfyUKKq
UitRWtJwv7Rcyv1+KfDScmm53ypxaWkrJCQkJCQkJCQe4ZW/4uDf7mTm5Hc+
s57jY0Eeknh3fzPf2Z2dmZ3Z389vunLtoQcfuXLt4QeudO69euWxhx5+4PHO
PY9eXW0a3ZTSpk5K6T+d1Py/u/pf+Sv/WWj+kh8G+P/l5p+Rhs6/S8MlbUij
3dKUH0j/Kj/cof25e/VvhbD601jzd276Zxl+uw7f7A1vteWf/lGePq/kxsNP
X3/i74XEbQpgW5DEuJL4WyFxVklMBElsVxJ/LSRuURI7gyR2Kom/FBJnlMSk
J3erbUpJ/LmQuElJTAVJzCiJPxUSJ5XEniCJ/Urij4XEsjbsheEj0HZYn3il
kDimKA4ESRxREi8VEkeVxKEgiQV94veFREcbDgdJLELbbwuxeSU2GyR2tNXW
bNnf9RBrdUUxFrJjvW3N/wVmnsfVvdzbe53DoUrfUqXvN+U/cwBmVGflQIXA
Me/JVtsL5QGa4C3QtndAlrSNf+2zJJM2I4Rak78EQ8me/qqMp6XO1i/PpMOD
JCKIvyzjadfsgLapOLet0PaLMv4gdO2Ctsn4/JE7+LnPbVLnz+FBEpG/+FkZ
T4ZrGtp2xLnR9P+0jN8PXTMBwMmZPPJiPykP7IOufTp5xIBkocWtMKDZbKuT
x4rc6Y/LA+SgSPHHVT6arN3Q9qPCgNZgVokZWcJN2vLDQpZ88zy0jVUZEJXn
fQYdaBupTgxJ/1xhQMKZyzayhJsU5AeFLMU9SzIVPXriUaZt9P3yDC3y8ar0
pLPf84mdaP7OTW3H33W08ruFGOn3SWjLP81DB7mTZwtt2qZEOytanmIiRt7x
mcKADA0x2KazQ2s0q73P+mRPQJtF4aSrmVWOD0QJyAIT2t06HbTS00pWrAS5
ESK7V9ESkF1KVtxcPqVk9TwFww8qRvLL25TYC77ox6FtTjG6B8JMViJZWija
TAtKttDo7cz0Xi6Nu1Rm2t+Z8lKPntDykJ0jSWncHTqp9xcGU4pnaLKtIOG6
4PcVRmSxad/RLiCWF6FtXJm+tTDdotKRepDNIrUm9rdD205l/+Ye9q0IIKMx
zd9oDLZ338AYmp/MfW2HXnJftEEJ0gVoO6CQ7vEhWSRgBwWKfm4aAsicAnmt
DyS3jXpmh/z36SCkFWhbVG6XCyQ68WzVGaFeMhFRSOehzQlHLvn4TJttv5HT
PxNERetOh/M2UvmTB1304e7QQeQByNfdPARwsnHL0GYb4IIP3Q6BbtZvndDb
4UVjqmjOCbqt+nkfujkay6nQEfiWIOA9Mmu9i5840UFeLO+p3HTOx7xHB1Gi
irTn1iD6aaHQUt087RShklec0Hm81RfBTr7J0unJUaCzQfTR7C2dMMi57VCQ
N/uSHCBJmn9obaKSkPGkmaGgnnyihXenfUmyzx8FSW4LoibjStoYRb1bAZXV
Qdd3WEUjr0Ew6XBG8xH183sUwXEfZjugSgMApmCfeNBZjFzuXgW85AMuyT42
Ba8JAqfoloxrFLjVTI76wPerdKR70R1I/pbaKCFDAcUhRdXxoVOIO4wQ5Hlp
TaJC2F6b94WY0UG01FFPRM/SPiCbT8EFHWgqQtCxkGYzGhaQOH6ifm0elIqv
KBYtMGlzVBziQdCj4tieXfSF2K2DiGw0ooyeVWh1aN+RlxAhootO7KOHEjor
0mrT3iFxzJkt+0JYYBS13ASdLBvtO7JY54JiV4Qg/R9GHIrPIrWk5ieKsMiy
HffFiaZMopkKCpyJHvElceyMeMoXwlIKZK+j2R6KvCnmJAQU2tCerQjhxtZh
cWr3CNYngu3YMz5wsiV0cPUTgaFzL7EmjaGNUkFvmQrSiUj+tplkSi6QipMB
8hMdCJh22EDQs7BHgjNHxt62W+lFCepVgZNdZ9IIAwV/tFscNM36UNLEihy0
80kzu5JwpUwAuRuKWWi3nOsBnueN1s7uXBEJWk8rIJB/JNdOgC3BdZ7nt+so
myUGLAk+781chkkBGsGkoI3WsAKYjNE+BWx2j+bVqhJEmcw+hWWZfCl6hEuS
04rQolqylVakoGiJprkdrjSbptTBULNpvScVnEWDBM4KF+nGhBEFtHbJ8s4y
NFprnlA07fDDc4pWvaAYyq5qXvKB0JrZBVhK5tCJrFjNvpoFTc+yomrNpcwW
KSPNlt00bhvl5Ni7WrmCpsZmlxyYqBppJsHNPzmxA4VsVOM2x08Kbp6SrK3A
dW+pjJLzS6CL3e5aRQgyDXPaSwfeCrg2qwYSLWTiIxothak3BSsHtZdMZZYt
cy7HC9x4iyps6y6CTjHHveTzSADzum5uzb1qPgFz1xXjJmdIOl4uwGOJw5BF
HkpU67UItyKUe8lOkOZZSCFvPPh34/ow074v4vECulaYHK67Vc1R0oYgGS0e
mfVltC1Iq0aiHq2IStDqpQ1KG1gpmNSDNqBFMsVq4q4/XAFOM15bUzLwJKhp
Jk1l/VIF2SELiMrU4INWkyOmFEnRGwikD6RmlFGxEgtRMacQTUtYqFWsl3+d
OCAEWRC6PDnMBGTBxlTBcyeFSGSqzVFM+MJGX5JxGQSepZWgdKAVd9KN1WyK
mgkQHa8Lc9SQaeVHujyMxPSsW07BMLPrKJj/rgFGpdEKOBlD0mUyBASThK2V
QqNvsFTEp22Rd7nrCmkT0gpHrR9lC2hRiB6hJ8wUHFcmgEJ5gk7jNnoqLHS0
Nw8IM9GjQLVsMjy6kjoTWQrzSO3dd0FbbZSZi7pkGkcaUJkKultkc+1eOVvn
ukcnwK3euBELLRVFuiI2GQ8i4YbDgQkYE6pkvCjrbr7FvYO/8UJbajJavSZl
bwNpRKRiCJ1Hom20oSjuFWHnBBjNvhvHh1d1bVFpDS0k3wAB22lVTzA6epFg
pEwkmDlIclRkHmnXU+Qqgs27XWtbv4hyeoKRQzuowm6AYG7CfJ2rEy3d0b6n
cRSWUtAt4pBXoZjZikS0ilTOs8NpB3q3y4TQzvbrXFi/oljC3gcihXCLeSR0
zxsVA8OlqI3iFjsPkMWJ1v38d637clA0A4KZQm0KMOw2ITl6CgQ363SS1m0Z
GOkxRUCnKLvmTSaODipku63csZnxker3KqtbKLUcFs0u4SNLRVt7ZGCkpxWp
WyHNTfNBpHZ/HZM4za4huydozioaClPtnUwyse0Ko3n2vjoSuQ9BsKIIyBnb
y0Rkjk6r2Cs6rsLqTmVF3sE+PEMu6ZSyopfGiGnZZOkuZZpuLJfl0bR37aXj
1hP0SlaF8+tVIFIAK47Zy2z2rR+68C1kPwRdZr3Lxu7bECvcXEH/Yeg6omzK
ArKTWKn00UwIw49Al10jdt8CDKwHjSNHI0A+Cl2WJ45+R4lMEI3zL4ykJ6DL
vidEXpz2FQGhcWTcBMiT0GWvQ7l2IwCExtHNiQoQuy5IMSLNEq09jSMgZebS
x6DLCm/Rtxk2AMjHPVZuAZOWi4BEU9oC5BNeV26KFhtpN9A4cwfiWz4Jg8yw
UqgZvWVEi2lf4Gq5CNHTp/I/fW44et2aYLgXLNy3KWVhPgVddJyPXmKiQKWj
QGhDC5DvQFf03V8aZ9+k8E1h+nZQemJK4+yA7Zu99C3oorWnQIfG2UsPpIzC
9GnoohDXfTHNPVSQZgjTb0IX5TkoL0RnKSvd0+QL029AF+UlovkLyxDRPAjT
r0MXZQ+IqVu7zU1+Vjx9DbooB0CHTDqIWTnZ7U3pq9BFJ3k6EdA4S9lSrzD9
CnTRYZGYtsc1Ztm9iij83tn8s9z0RF8Sz+DHvCfGe8iSceyLBBNXhigl0aqQ
B6Zc0DwCXXS7NdvKHLDTniRIdovEvQI2HKTtKjOZfoK0S5+wiLAC5F3QRfoy
qWRdD0zxypi3s8kAVSDRHphRBjT5BGlcn7ALCBUgj0IXqZldsSHFdG8S5Cdo
V5D5FUiPeexJl7KkrciMPvaZf6K9Tk54QCCZ34mmyWLVCtl3QxetECU+F6At
zzEZS3LmW30MpMJLKhBxzgY2s7fwtML0KnRFrFCzfvMwzq7ykYb5R0QEQgpJ
F2oJyJQCIbNC0aMAeRy6SHPaq5sc12QfWbMsxoDsKRhrxxwe+1llT7rkfi4o
pWvQ5X7Xrz+3RZbTPoBIKkZnF8HyHujyP93HuS//3j8onXuYqgAiB3VqAwDR
ulGCXqC9F7ro3EJnAkrVuSaIzKV7k3KbDy56U3EYcG0X0cy/3Fl8Hwyn/UmQ
aBnIaJEnMGtQARLNAlEAELEazU+kh7Jc74euaIbM/aJ7ANKSzz56F5BmJPol
UWH/AeiKXkX7P7Oncb59QvYfhK7ohazoXUjaU8Ke6iyDVRI2gH28ikJqGd28
wrJd8mlY+eW8tVnRpjw2GCva69ENKKyorhRlFdX2/z0rKlKRWkRfJyctFlZP
QJd7C2Y4Vk9CF92KqN1RoVkQ8lS1ITT0jXVaRyFLNZhIIWMNslRRiRYoiKx8
a4YqJbRTByT7VJCsXYulGrcQo5oFGa6iB6GytlD+NHSRFR5Uw4T8Z6DL7tXQ
lEZdijD4LHTZG8HR341D2llhYHcVoh/uIz0VBp+Dro5KQAfdaJFYGHweuuzd
PYqOoxGlfEvuC9Blb73SiWBABl+ELjvdULYp6umFwZegy46dFI/Xi7Bisb4M
g6yiQwdy96PnvR+WotqAvfhIOQfaB/Yrj0rAj3WO+mcrSPvt6o186IdqNlZ3
oYwZJTXsVqd8h5PqTyM6iHKtdNax9G8xAVJL66tU0xGWdo5VJuVLLFQQjBKz
VyGLhU2vwiBK3NibCPL5j1dgEGVTrVJwwX+Qqnd21+Oi/6D7O1Vyk3yu4WUY
RLl2u1F62X/Q/RVV+cG7/AdLirJPDe4u//+D90Ruep0/yFKP9/qDrJb0xjLo
JRhkv3vhLf4g+50Kb/MH2W9IeHsZ9CLO9upP7+jpz90PloY8ZJ2/LjBt+i9p
Z+uK\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {232.562, 0.}} -> \
{-3., -1., 0., 0.}},ExpressionUUID->"3b34f80e-37ea-4227-90b8-eba8d0b845f2"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(33\\). \\!\\(\\\"pentagonal gyrocupolarotunda \
(J33)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"165cd2ae-6343-4f2f-8dff-\
85a90eb198ec"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .59046
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.361034 0.114221 0.315157 0.114221 [
[ 0 0 0 0 ]
[ 1 .59046 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .59046 L
0 .59046 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.19529 .40756 m
.12816 .31516 L
.19529 .22275 L
.30392 .25805 L
.30392 .37227 L
.19529 .40756 L
s
.12816 .31516 m
.19529 .40756 L
.10289 .4747 L
.03575 .38229 L
.12816 .31516 L
s
.12816 .31516 m
.03575 .38229 L
.02381 .2687 L
.12816 .31516 L
s
.19529 .22275 m
.12816 .31516 L
.03575 .24802 L
.10289 .15561 L
.19529 .22275 L
s
.19529 .22275 m
.10289 .15561 L
.20723 .10916 L
.19529 .22275 L
s
.30392 .25805 m
.19529 .22275 L
.23059 .11412 L
.33922 .14942 L
.30392 .25805 L
s
.30392 .25805 m
.33922 .14942 L
.41565 .2343 L
.30392 .25805 L
s
.30392 .37227 m
.30392 .25805 L
.41814 .25805 L
.41814 .37227 L
.30392 .37227 L
s
.30392 .37227 m
.41814 .37227 L
.36103 .47119 L
.30392 .37227 L
s
.19529 .40756 m
.30392 .37227 L
.33922 .4809 L
.23059 .51619 L
.19529 .40756 L
s
.19529 .40756 m
.23059 .51619 L
.11886 .49245 L
.19529 .40756 L
s
.59391 .31516 m
.64037 .21081 L
.75396 .22275 L
.77771 .33448 L
.67879 .39159 L
.59391 .31516 L
s
.59391 .31516 m
.52677 .40756 L
.41814 .37227 L
.41814 .25805 L
.52677 .22275 L
.59391 .31516 L
s
.59391 .31516 m
.52677 .22275 L
.64037 .21081 L
.59391 .31516 L
s
.52677 .22275 m
.41814 .25805 L
.44189 .14632 L
.52677 .22275 L
s
.64037 .21081 m
.53174 .17551 L
.53174 .06129 L
.64037 .026 L
.70751 .1184 L
.64037 .21081 L
s
.64037 .21081 m
.70751 .1184 L
.75396 .22275 L
.64037 .21081 L
s
.70751 .1184 m
.64037 .026 L
.75396 .01406 L
.70751 .1184 L
s
.75396 .22275 m
.75396 .10853 L
.8626 .07323 L
.92973 .16564 L
.8626 .25805 L
.75396 .22275 L
s
.75396 .22275 m
.8626 .25805 L
.77771 .33448 L
.75396 .22275 L
s
.8626 .25805 m
.92973 .16564 L
.97619 .26999 L
.8626 .25805 L
s
.77771 .33448 m
.88634 .29918 L
.95348 .39159 L
.88634 .48399 L
.77771 .4487 L
.77771 .33448 L
s
.77771 .33448 m
.77771 .4487 L
.67879 .39159 L
.77771 .33448 L
s
.77771 .4487 m
.88634 .48399 L
.80146 .56042 L
.77771 .4487 L
s
.67879 .39159 m
.74593 .48399 L
.67879 .5764 L
.57016 .5411 L
.57016 .42688 L
.67879 .39159 L
s
.67879 .39159 m
.57016 .42688 L
.59391 .31516 L
.67879 .39159 L
s
.57016 .42688 m
.57016 .5411 L
.47125 .48399 L
.57016 .42688 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 170},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzFnVuLHMcVx1u7s6uVV6vVarUraVfSjNaSJV8kWVYudhxCDLHlawj4xQ7J
gzAB+8E4OP4wSYhNQiBgYzAEDIGQQN7yng80VleVzunp+f1rTmdkrAfNTl3P
v+pcq073vHX/k/d/8+H9Tz547/7k3sf3f/v+B+/9bvLKRx8/KFo91jTHJk3T
fDFp2r+nD/4s/6V/V9r/ypcBf/+v/Vhvx7mXC/7bfmy2BWupYHVqUzz49nJu
9C9rtA2NXsmNvm4/NtqaA93o7+1HqlmBRhehrND5lXVch0aHuuOX1vExaHQB
yl7NHT+3jqeg0Xnd8W/WcQcanYOy13LHv1rHPWi0rzv+2ToSnrNQ9nru+Kl1
pKWvdPyjdZxAozNQ9kbu+Pv2Y6WtuQqNaMG6HXtVNARx6Jvf6hDXoIxY5sig
39CDPQFlJ6EsLXsqelCRh0uVzXU99nUo24SySzY26YRrwyYgqTu0CU5A7VU9
wQ0ooyHO2wS0dpUJnoSy41C2bxOchtrH9QRPQRlptCR7iVlICo+GTUDbeMYQ
kEa6oid4GspGULZtE5A9qEzwDJSRtdiyCS5D7WT5CR6zCY6gdpwn+FH7kTbq
V9DoZlmeTpniysf1HM/bHD1hXzMK34bet3plTVUeZsvykjbftwlWoRFte/r2
C6i4DWWkfUidXsrU3LV1IJFhah7S/9YSJJFSzgazuWMkbajpSZ2kotehNrpn
FZJu2QSke4kkZ/R7UDuAh8kAZN8sC92K6kh75/L9M0nV2gxVDxeM9pBMR1ZM
WWUm0shs04LtGGkvQW1Uv5DlqpB53SYlm0NknrUeP4HaqCInxiY7mX3PLL9p
NXeDZJ4zMl+E2qhBIzKpb/bcs7pNZJKzTdvlXstl60thQNTEk19RIdg9PjLY
RLCT2ffuGzFK1P2hMmKnPEeHEHIFiPQxlOW+c3qI4iKSIuIPwkHSm+fIZijh
yEqNtc9RqBVxXdS9JW66CWV7HbJ7u39QIS37ZnMLTbEliTNFf9HIYCCyi0Dp
dEY0awi5jkSa1CLFqtHojfRX3/K337Lvj8cbRNIeLEfD3isJHbEkUUrmh7y2
reB45IZl24H6gnhktwyuN3vx6lGgleZaUTY3GvnTbANBHzdChkKlFSfLTPqR
djB6YkKgybstPE7ahTTE6TJ4gMeJUUhqaZoktamI4jIahVShcJ0LZNI0ad4O
w831pS0mM0Ykkl98yoBOlgAadXl3NHISnK34GhD7ksySOj5ta0DHoCQshG3g
GpD/lQhJu9+XvEbwOLkHJI0kyX4ERPtB6pDgkN8nYyZ212iF+0Kp1Jvk6UCZ
x0dk+nIZK1raa20qK8PXd1OBJiaWjE2+bCoi4d7/dkGn4RODn7C/iK2JXWmn
d2yUCwaL+mYGn1MkxLukTLNEoUiQ3XKvgTaPxJNMEEmFoyTBv8AoKagkdVlQ
0ryHhqiOjRiOKKWV9PiaDLfARhErLWYWf4xN6PR4xVASd5Lg0IKSBPjlijxj
6CmARwBxDIs3rWwjjUEASZknCCfJqrRgKMTVKhxX+oqR3vhpuNKUxMzEXmQB
kzzIu/GR1Z4ygijMJXWUy1BartpgxHkkN0ScjNXlLf5pq101Ciic1W4aDpuG
SEVjqCX+obgh7c7xtohio0OrjcYmJxcQPLdyDbuG5MOR77NnqxAR+vYbOePp
G1VoPxe3iyCOjEJiHZIOQuIeJckY7R3jnFbccdJNWYOgqBHYDZuANLQ4Z3Rs
0UQSwrZuo9CakrYaiG3TJqCFSpOOerpzOu2Ggdp9mi0j9VRf2Aq66BWXXyqT
7KYJ1pTC9luuaF4OQdysjkKwM7uELxZ3bQLqsW0QiQv9bjEacdDpRp0XSGcX
iOlDGkK/5iFXInmJ62pn6+qJrKI8tpEiTByQfdfwrfmBTSA9hrR3MraWWo9k
hyjwkDbq5RSItNXE/5dtgoynW7lGG9QkqycsF+koOlX1oJXMDhmWzGMd34y8
wwTw6lR4DiTgRFxCvK6YsxBCNpoiD+LbaDuag1SMvOLYUHqtgKAq4ladUbK4
XdQpI3HdMhBSOzado3Q/gyAXjLaaQESvPkgnkjLdNxDE610QHSel/Wz4VIAW
ihaUsEUvtCisIyU3bv8fuQ2Yw1H+yYwaWrBlwJCNpYCb9O8zXQizVe7C+nkJ
mV/iCSI9en9KpJOOvalJd4Kj9ye0+QQier1NIPxk/FlN+oY1WrO/HjXB0TQT
UmOFdOn+OOkBdUKrRCCiOR0EgqLHOxrEpoGgIJ5EjSYlENEkIDqiJn31nAax
ZSD8IOS7Ip3mvatJ354lPbDpdABOIKKXPJSrIW9xU9EVDcfd9WY2WCXFRMtH
SKK3dISElJUHSzqPCdEl8zhSwkLTE5xaGiSlGBAlftdNC3tZQ3CvPMoLGsLc
ecsdaOpq3Wkm9rqkaT5vQ/SYilaLyKUcBqKVdvWEUU0avUL1BaOapiIyb1d7
0H6lzR8pm3lxwZIGVkSS2ev7LLQj4fJDAXkPUeFbqScpEUsywoqS/JpgOuEU
uZZ03+i12dLaQxrs/ijNQ6ipqJ9VuID06EXM/6vHW+KkWV1zSwNyxQT71TLV
LkMmwX7K1pXCyfOaTIr5SSUOs/Rz2pich7573GLTxw3aesrU+2EuFssayb+n
qJPk0gac0xBIky8PZm4DaE8905jEl7ZiX+Nw550CxmHRRvyxjAmUERgKgPc0
mGg+xTKRoHxkjMz6ihKigcCo7FEfLJBRdO7wVJDo8ytnNRw/i6MzyWVA0O6Q
WOpT/8UCsKuB6RSWxUIaPbuifaJjB3+WlELhCjD5/NiKcgCWOTMlsSfr5oY5
qmbPaDjyuZle2TIn2uSWkItNe0cQyZTvdCHGk8OTBXmiLYoSTsbBk5YJ1kJy
506x5R3IqrLZtBXpG9kXgkWetZ/J6dNfYtfOPSiJbe+SMLUj+j1KoCsWUjBk
CMjmEBwKGbY7cKLOxaqyDHTF4vkCpP7lg/e0UGkZqZbCuVPDgPmVvHM67Ynn
BkR34lwB0JNXaRErYKL5BTqFolUSFJB6j2jiI50I0Mh05lKSyaIZIb7mu7Zy
NJWn75DDLkGM1Hh0SFFyrmgCMnjO/X2+bcT2u4QR68oU1I7anNO1NM1AbMPy
yVps5HS5WiTVRhqln202FzPRNBWWi+bKpW/0UCWpn3q+L22jixs7LEK9VFQD
ORbXbJa+iWzEBJ53S7LpT+vnSVmnDbQ8RHjfUWnJFU+sklGn/a9nhrnHS7UV
6sl5lcnLRwyB3C0Sz3rmF7nWxO0Vn4awj5lmfREy15RGlYfpqE6sVkYEFf+T
VvcSU0rBVgbF3jZt/h0YerrIx5MSNxCXx+20P1Q24ZUgoezvWdNUkr486CcF
Vwng5BMxYg/IkIwr7Yl7krClIoqQoi8VqATZpKTqFxQUv9Rgkc3266Fm9hpM
OiryBKty5EO6KPpcIW3epIKS/N/blfZk2T1wozUeCPSMDRZ9q8o4uDTUt36V
Q7vqR3rEZJVzSXJzoq+kIT8uClu+rUNmK+n0tTmtRptbTsvJjYy+KYg0HOnE
qAT4u4qICWjT/KZcJmVzFOD8QcJAFmkcBEbjRR9SJBCeg1G5uyGItDvLgCUO
oLJkDmRmEbEi6fD0jU71yoUbuUpue0maaJYot0olgs+z2yoEVtqTKenIuVzh
UoxOW0lCRR7NWEJkc3LDoNJoxN3yxTDSzz3QUEnpE1TS0wR1VP7vaUmSvmXw
6iOQDt5DoGVa0YIUVBAX9znWvAJ5C0ouN0lwKpOpNCUzhV7KFc2cGEMZsYC/
5YzcLgr36icSJMYlM4hkk3SMTAsnLShPdaOk15/aK6STm0AeHTGRvmUH/yxA
cP0BnpIips0cNE9FztekWOjsSD5KkIr0JQzGSWR8/cDPtzp6SExif2CjlJxS
ukYi9I7KnWgiOEoIzVFIOrKp6DrE7xmeg9rooV/02bbyEuHES2tKzjxR9we2
NkQIsTdpRpqjvC452YyRUr1+vviiERK9liPLQyDKi6Fv2YqQl+85nD81QkjL
RwkhfVjesX3XCJEpBqnoZaiNnoSRRqd1zXouv4o4bRI5V+6pvWZrE72kly8l
SKNkX7H5sa1IM3tskfr93JrTQkcnpbIy/UuG722bKvoYDnleem2aP0BV9PSF
2JH2OfNDfpn/oAQlmQSAMtD8ySYgpqEJIm+EmpraaT6zCSgKIRMt7/tRweZf
WIi5w6RYyEpka9L8pf1wEx1Ql34qXJ5i8d+NINNLqp9cxTKY/3oFeTtkFmnJ
y0Mq/hsadLxNdpL8iu/lwfyXPKQ3IWKzH+Y//DdEBrz24fn86T9cIpPj05a8
kJt/bc11ov9sWZnnH9aR2P2d3Oif1oh8xHdzo39bI1rTX+ZG/zHCf50LUu2A
H5Rpjn0Dv6SbIA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {169., 0.}} -> \
{-3., -2., 0., 0.}},ExpressionUUID->"621db71f-ec35-4212-96b8-21d2922e7dc7"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(34\\). \\!\\(\\\"pentagonal orthobirotunda \
(J34)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"1611607b-4379-4cfc-a340-\
faac148d0d0a"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .5756
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.269223 0.0979586 0.256461 0.0979586 [
[ 0 0 0 0 ]
[ 1 .5756 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .5756 L
0 .5756 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.35255 .25646 m
.29497 .33571 L
.20181 .30544 L
.20181 .20748 L
.29497 .17721 L
.35255 .25646 L
s
.35255 .25646 m
.42535 .19091 L
.51018 .23989 L
.48982 .33571 L
.39239 .34595 L
.35255 .25646 L
s
.35255 .25646 m
.39239 .34595 L
.29497 .33571 L
.35255 .25646 L
s
.39239 .34595 m
.48982 .33571 L
.44997 .4252 L
.39239 .34595 L
s
.29497 .33571 m
.37981 .38469 L
.35944 .48051 L
.26202 .49075 L
.22218 .40126 L
.29497 .33571 L
s
.29497 .33571 m
.22218 .40126 L
.20181 .30544 L
.29497 .33571 L
s
.22218 .40126 m
.26202 .49075 L
.1646 .48051 L
.22218 .40126 L
s
.20181 .30544 m
.18144 .40126 L
.08402 .4115 L
.04418 .32201 L
.11697 .25646 L
.20181 .30544 L
s
.20181 .30544 m
.11697 .25646 L
.20181 .20748 L
.20181 .30544 L
s
.11697 .25646 m
.04418 .32201 L
.02381 .22619 L
.11697 .25646 L
s
.20181 .20748 m
.10439 .21772 L
.06454 .12823 L
.13734 .06268 L
.22218 .11166 L
.20181 .20748 L
s
.20181 .20748 m
.22218 .11166 L
.29497 .17721 L
.20181 .20748 L
s
.22218 .11166 m
.13734 .06268 L
.22218 .0137 L
.22218 .11166 L
s
.29497 .17721 m
.25513 .08772 L
.32793 .02217 L
.41276 .07115 L
.39239 .16697 L
.29497 .17721 L
s
.29497 .17721 m
.39239 .16697 L
.35255 .25646 L
.29497 .17721 L
s
.39239 .16697 m
.41276 .07115 L
.48556 .1367 L
.39239 .16697 L
s
.64745 .31914 m
.70503 .23989 L
.79819 .27016 L
.79819 .36812 L
.70503 .39839 L
.64745 .31914 L
s
.64745 .31914 m
.57465 .38469 L
.48982 .33571 L
.51018 .23989 L
.60761 .22965 L
.64745 .31914 L
s
.64745 .31914 m
.60761 .22965 L
.70503 .23989 L
.64745 .31914 L
s
.60761 .22965 m
.51018 .23989 L
.55003 .1504 L
.60761 .22965 L
s
.70503 .23989 m
.62019 .19091 L
.64056 .0951 L
.73798 .08486 L
.77782 .17435 L
.70503 .23989 L
s
.70503 .23989 m
.77782 .17435 L
.79819 .27016 L
.70503 .23989 L
s
.77782 .17435 m
.73798 .08486 L
.8354 .0951 L
.77782 .17435 L
s
.79819 .27016 m
.81856 .17435 L
.91598 .16411 L
.95582 .2536 L
.88303 .31914 L
.79819 .27016 L
s
.79819 .27016 m
.88303 .31914 L
.79819 .36812 L
.79819 .27016 L
s
.88303 .31914 m
.95582 .2536 L
.97619 .34941 L
.88303 .31914 L
s
.79819 .36812 m
.89561 .35788 L
.93546 .44737 L
.86266 .51292 L
.77782 .46394 L
.79819 .36812 L
s
.79819 .36812 m
.77782 .46394 L
.70503 .39839 L
.79819 .36812 L
s
.77782 .46394 m
.86266 .51292 L
.77782 .5619 L
.77782 .46394 L
s
.70503 .39839 m
.74487 .48788 L
.67207 .55343 L
.58724 .50445 L
.60761 .40863 L
.70503 .39839 L
s
.70503 .39839 m
.60761 .40863 L
.64745 .31914 L
.70503 .39839 L
s
.60761 .40863 m
.58724 .50445 L
.51444 .4389 L
.60761 .40863 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 165.75},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy1nVuPFUUQx5s9y15Y2IW9cWcW5KYIIheRi8QnSExMfPALbIgJPBgN8o0M
YozGaAyREAnfBL/Jkaluq87O+VWfGhZ42HOomemuf3V1VXV1TZ8vNx/d/+bb
zUcP7m1u3H24+f39B/d+2Ljz3cPXpMGOlHZspJQeb6T2+/D11/JH/h1v/5T/
TPh+u/2Yap/9NxNuKSENhpkkD6RX+T835WPnUDsr/9oHjrZfBu3Xl5l0XRub
FsJg9LF0SP5Od5uS+1/kBq4pYQYaOAg06uh5buwTuETNHvDuE0ZKY1eUMA+3
7wfavD7xLDdxSQkLcPs60HYD7Wlu7KI2tgduWgPaoj5RmvgIbqLGVoG2Txv7
Kzd2Xgl74fYVr1l54s/cxDklLFd7JDX4PTfxAVyixojHQ9pBaeysEkicS0A7
qk/8lps43X7IPTS8i0DbANovubFT8sHzh8aIxvKEPlEaPQk30ZzaBzRSz1Pa
wc+5g/fgJptd1CzNjtMdWmt+nuQvJ+B2m3s0TLuAdgaE+/r7T/nzeBA90che
nAHaFNB+zN03CmevfqOu5oB2FmgDoH3V/l1oSXdzp8fgpmXtnmQ4C7T3gUb6
daf9O9+SdnoMy9XbmbmjcNOaMkdyiDJH3d/S7kmdFvTq1czcEbiJnAx1FR1C
cmTi8MRVU2+revViZvMw3GRGMMocqTLddxVoxAG50guZ4UNwyUwuKTXNva4p
0fumbAgns0n2PDvULHxpLJumMaMSMXBDxxB+7Mkg4LTLuJOExUoP+jBH9ufi
9pkjuUr3buB0Cmjk+ijcIeYoVslSxzigq//JMY7kaMmaXAAamWLynJcyAyTe
bEPGVJE4JY9NAdP5IKf07OXcP8k6G2VecdB8JnZJOOeARtEWDUphl0JJ8iFk
isj/UOhCfVBYS6xTQHmlH+vkm8nXUEREekd9RKOp4k5JScgliscSM0GyJnnR
fKaW3xHDxCbJ32VdwFLLNCdoquclMg5c1K+TrhPDooBCIm0mhmmyX/MZJidF
mInhBmhLyjAZOjLnJJ7CMGkaOS5ycLQwIDu7RxkmP0wMkwJ+2o9hmgbEMHna
XcowRcw0xsQBBarX+4EQyclkirI+q6w3cJUMAKlnhXWKg/wQYsyvk35MK89d
e9a61uiUIgN1w+c54p2TMjyW3JCbTjJGknJ0YZ3TmhgKu05ZFKSrDEmUJiWU
FfVM0VDmmkOepv0y03492I/nFeVZpoEsUMkbE5MUA+Vnx0ZhXRsnbc7M4no0
GkFIs4ueW4+mNyg06kqjFfeiwiEZrL8BnLmhM7vcGIasE7FuiRh30V8YppQp
OWmZmUJKW3cDqIFoWoJcRPfZlHgtQkvvNR9TAzTz4yRcslkEjHw7OWsnj9gT
G2U6yKTvVmwULEXDW8Lm50jjKzPy6j0BzivA6M7EnD5B3RMsS/6Q9yBjQlru
5zlwoOn2GWU9uoeSR463BEjEpLG79InoXsA7gj9Q+DSutICNLqBokpM+kXga
FQ/1RqIgPV7xRXGksN0Zw4Fn0kk3XNam1EUH4O/WJwjCW4BPM1JEMu3NV3LC
1KnNYdIdcv4W89OgkEkk90FOdNkHKyMhwVwTZDPqUEkriGa7wKRbZB6jGYkC
m2a2MCxB1ZR23wkwSB6kozQIhokQUy5wSZ8gH0lmgKRAId8+Xwq2ibWrQCFH
So0SQyQI2yMn0ZEDiQqMVK6nSMQuCGZjM6pbUb20mgISGQnAeFna+i0QBtCq
q4C1Wg+awFGINlso2CWDTOpsi1caxShYf1cgM2IBlLsFS8pB99GK1DYmCTZ5
OFv/UmxKSk79ToI9cimlkgqwIgsaVNKa3FQlAeBuycrgLmydVaRyFD4RXj/H
hIKXJgZeyBCFP1OBf6JyzfxKvWjAnVsBA9FTSKTPlniTaewaaNK1naWFUfip
hOrkR6cUdL1UwXXEa6VbkjctHhd93JYkNbtMXJE4B4xbDEy9xEHCq/W3h8Ky
1OYhyHpQYrmrPF73tFbrAlTzsvL2sNmWga0CaRK42OQJyipGayZs0ZdlOjbi
1PgeH9FebY+sYDQx78LyUxqe6neD+naUaAesYCJfZVtnI3M1JV7YUT0C9Rct
fVjQzrshlbY8ZTiR/1VtgnLXpLIk+ijDi9pbVz8SDGqqs5474ARLNL1GYKIV
HTb0XQ9ns31sylTwUBhAgTTdF9WsaA3IumIbqEyj+zcLPkQSo+VCCNhpFiON
WwM0cmli0Kc9RBRfF0QUqlAHlvAg0WZ7zS6CYG0AjbIRVm1HHoEUqQKLOrAU
FF2NuNjhkE06QaQgrLsRWWwtha0UdFbwUm8WUtDazA+MJuON5hGaAoVUhWRG
brUCmmDRHIxWdpHMSS0IPvFHEC2yIZ/j75b46XVyiO7S1F8hTdaOaB0NwZ5W
rigcpVYqsN23ZNw1vL8ungyRaNEMhPkGik5o+CqwqdN6TXU0KRKFHRXtnHJF
GXNfk/ESdVqvzCYFjNoAUnyaIASbxpM8KNmtigD8LN9YWBE1zHRftP6JpCZ9
uGtwcrd5PMK5XxH3YLsQyZeRApES2J5ONNNZgUid2ttNjdd9QM+jpUI02hYw
0GwhTa5AjMRObRzgbpNF32CrVQ5QgFzPZVKEvwVlPPC1/CXlk0hjGhfe2Eyn
xWA0xejv9heMvFwx7zrwTDvpCC3ZqESHRGjBTKJMIkKwidpdQKb/NVtI0e0p
l3/sQ5kTEiVRRtnsXKIEgpXh0CyjoaTAMrq+to0NS55V1CUKwuqk/ETIZBDZ
fOwcbVl7IO2htUC9DqbAItNDKutnUIaOjlKOj969TVwuTNa989qmXCQAsz42
x8aYHndmHwWzZMJrqQLXBZIbsMS4XPTDxAo8ZkNm6KyipSGUqzUoFLC49exW
NSMX/ddJ0UN0p8AoGxkA5xNt68Z9tXhkryuUoSD9jAZTtiNwWCVBU+gNJUGu
iQZpTnET47bHR2Yu+uYE3RcNq8lYHlOBUctFYH3zdmSBOy/Sz3v+zBKsbmFK
YEHjrtCtenDa5gsCJEWLVslbypNEQfbOxGMbr74KTwZrb5iRK8siw/iEFCda
d28WiXylH71MdnTRV7xpmWYadaUfbFK2emaUWiY49RpAt2oQly9soYWTkfK9
bYGOZkZJJ2gCmJ64OyAdmp8O5vp1t9IiGxXknnTH3yfwVhZRGVgg4kdXQRmY
+XarKY5sH7bprFkoYp2GlGjRYzloxskoinbTWriAJalvBMGSbTmssIklcgNW
zkbTl/oggYq4KW52a5S3h50G4ZgiIVtAXNtbvzSfCbv7FpOQiFNaJBQBkF1t
gEY2Ipr7ju6ckb8nlxpNk9k6kYaKtOKQLxQKMmnESP7iP9zqQdIUMx0dXSbj
RlbDSiZIWhQyvgXs0Y3M6JtXpLckQZrFVuNF8q0IgOIQ99WegLZSMtTfedtK
i6YbLT1IxoGG7+CbgOVVDCW0CEz0HCTiydJi5JorACmYpplPlb8ELLpDSMC6
vKRU8vCEuAHaAR+T+8aLdEAHpdC0IJ12dVASNMQLOdDCOpl4QT/jWUe/sG6y
MyLW/bA3OSNBLm2/D8eyOuSTCA6FBWRK6XXtoRPMtmDIlPcEY8kYql0ltSID
5OZUZ63l0FkAtIIffYFbDNQGt0eSpxFyXxkQEl09zB2SpaoAuBXkxd1cG+fA
2KbZkdlmmx5dBa9tn/eumNrum/aLwIlGbtQbmQnKVhUQN+ESRXMU0ZCyWo6V
nAZ5WQLhnsjZoZU3c2/ApWiBlZxTJlJ3CwUDVip6oFuF4WhplNifXlGB5bh6
snkdLpFuEptnlU1yL8RmNI3nq2I59Gdy2Emz2k7nI59A7j2agq0wfA0uRc+y
I0dP3o9YJ2WLBhPLPuvR4hh3OzjwbHT9WWGdTtQmk0Pdk/uPZs5IOcia2JZ/
URM6zZMMPXX6IdAoBHCL697QxRXWr8AlCpdIS+nAMnrWL5uMv1202o/dBmh0
Mic5lcj2m8dmcduX4VK0oIROVYtGDfUzRkpQdwkuRX0VnQsbLSm3nV7yaft9
5qJFIfWT790DeWN73GWxSAIgq078kfJGPWjmNF4/X1INpEzRpTqZ4aj/JK9e
r3cvmS6ZpLLwJqnawRYU+5DriZ4vaVXpluYs+01i3QMFE597zQY8H7FEcPzc
WD6yPFDB8IV31fVyNJi2Ie8nZ/MR79Lp13DTdhKTZujIrDa5+8fyEfcxFNlZ
ObNfhFqO7+e3iAMhGFl34qX8uMoTZYk6cPd4JrwIkn9IwTXP7raZu02U3Wj+
AYiRY8on+99+ZwikX+ESuS53c5e2NLJNy7+v4ZosCtNsMzlrWP6Vj45hIYdm
+405+k5/wE00/d3jRjCoz7+C4k5colmJRA748m+x9KqZsELccnj9UyWQBkR/
pKY09jdcovnjvngjjJRTzZ8pgeYKbVlbSrvUqDxXQvTnhayCqByV/A/c5J5X
0qHRQrE0+0L7SZO3oy0vUQ6LfQk3OceKyWPl9NNXcMvr75+NXJU2b4/evrWX
ckn+M+Gnp9KO/wDFxUvv\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {164.75, 0.}} -> \
{-2., -2., 0., 0.}},ExpressionUUID->"6756bd2f-8adb-471c-a30d-0d51a8d02b65"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(35\\). \\!\\(\\\"elongated triangular orthobicupola (J35)\\\
\"\\)\"\>"}]], "Message",ExpressionUUID->"ee831ab8-864c-4093-902b-\
bd9ed5fa6bb4"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.12201
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.103175 0.15873 0.561004 0.15873 [
[ 0 0 0 0 ]
[ 1 1.12201 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.12201 L
0 1.12201 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.34127 .7991 m
.5 .7991 L
.42063 .93656 L
.34127 .7991 L
s
.5 .7991 m
.34127 .7991 L
.34127 .64037 L
.5 .64037 L
.5 .7991 L
s
.5 .7991 m
.5 .64037 L
.63746 .71973 L
.5 .7991 L
s
.42063 .93656 m
.5 .7991 L
.63746 .87846 L
.5581 1.01593 L
.42063 .93656 L
s
.42063 .93656 m
.5581 1.01593 L
.42063 1.09529 L
.42063 .93656 L
s
.34127 .7991 m
.42063 .93656 L
.28317 1.01593 L
.20381 .87846 L
.34127 .7991 L
s
.34127 .7991 m
.20381 .87846 L
.20381 .71973 L
.34127 .7991 L
s
.5 .32291 m
.34127 .32291 L
.42063 .18544 L
.5 .32291 L
s
.34127 .32291 m
.5 .32291 L
.5 .48164 L
.34127 .48164 L
.34127 .32291 L
s
.34127 .32291 m
.34127 .48164 L
.20381 .40227 L
.34127 .32291 L
s
.42063 .18544 m
.34127 .32291 L
.20381 .24354 L
.28317 .10608 L
.42063 .18544 L
s
.42063 .18544 m
.28317 .10608 L
.42063 .02671 L
.42063 .18544 L
s
.5 .32291 m
.42063 .18544 L
.5581 .10608 L
.63746 .24354 L
.5 .32291 L
s
.5 .32291 m
.63746 .24354 L
.63746 .40227 L
.5 .32291 L
s
.02381 .64037 m
.02381 .48164 L
.18254 .48164 L
.18254 .64037 L
.02381 .64037 L
s
.18254 .64037 m
.18254 .48164 L
.34127 .48164 L
.34127 .64037 L
.18254 .64037 L
s
.34127 .64037 m
.34127 .48164 L
.5 .48164 L
.5 .64037 L
.34127 .64037 L
s
.5 .64037 m
.5 .48164 L
.65873 .48164 L
.65873 .64037 L
.5 .64037 L
s
.65873 .64037 m
.65873 .48164 L
.81746 .48164 L
.81746 .64037 L
.65873 .64037 L
s
.81746 .64037 m
.81746 .48164 L
.97619 .48164 L
.97619 .64037 L
.81746 .64037 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{256.625, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnPlvXEUMxzdJ0/u+D9pNoQehwE8cve8T2kIpp0KPbZo26X1RSksLQkJI
CAlB+VP5PWTfM/bL5mNnRmR/QHpRlSbjr7/2bt6Mx7P2nGk9Gh253Xo0Ntwa
OPGgdW90bPjhwPG7DyaG+noajYl/jZ6BgUb75/GJn+Vb8dXT/ia/zMDPN9r/
9bb5/yoHRnWg0TdeDhUKjZflL9eL//rH1SH5ahjFiFLMKgb6quDGnyVoWEGz
fdAVEAXwy8o5zwddVNACH3QBRAF8SDkX+6CvFLTUB30JogD+uXKu8EGfKmiV
DzoPogB+TjnX+qCPFLTeB50FUQA/rZwbfdAHCmr6oFMgCuAnlXOzp1hI71fg
ExPgX5DMYjKwUXU7pty98pcToNMLY68kjpHuHd9Un7pHZOtV2u/THgfRbFWk
v/Zalc4F6e2S9hiI5qkiPZirVUqz+ZZPS3CaHjQWmDoKokXqI5GtUOkSkN70
aZeoIi0Vy1S6zKc9AqLloaIZXQnSGz4twWltpbHA1GEQ2TNBZAtVSs/TWEl7
CETrVHEhSOerdANIR33aDao4H6RzVUqro9AeBNEmGJuTOEa6131TTfWRyPpV
Ssus0B4A0auqSAuRLWJbQHrNp92iigVFZUWXr0K2zSfdD6LtQDXxMy3M22Fs
pMTvA9Fg+3uxO9sB0qu+IsEDir0gejNxbNin6LTYjolv+RR7Eiy2Kd4G3BWf
ovSC97jkjVDtTnwL+xJxrZJ2V8KL9GgJd9mnJS9oNhFOaHcmekG0hLvk05IX
tKQQTmjfT/SCaAl30aclLyhNIZzQvpcIpw0H4cosp/Fu4osjWsJ97dOSF4sS
cUL7Tvu/YtGlqeiSFRoXKu9jMfAGwGlf9bpqdGzRxSl6PGnlJu4Sx6uNOLxL
zVOgoY2XhS3KwYdK2j0Keg1AtE3crBqUhgvtPgVRCCfapmrQbl9oD4CIdjm0
ayZcYOqg+pNqwLZlNEuE9rCCKOVZA2OWBtGDLbRHFURbVKK1LS89kEJLSRtt
rdcl4gJTJ9Qfejpoh2z5ynKf9pSCaIoQbZyvCO2HCqKEgZ4YSyJW+7RnQEQP
ExkgXGDqrPpDSUQTxiyxoD+30H6sIJpbRGuHAPTXENpPFESbBlpjbLdPb5bQ
Fsdizrq7NZDR6xDKz9RuR5gok44pp0EDPlVxsrfDW0SrL4HsbWN7gevng1cc
RShK/oTSzggpBm2FsV7VoKMmobVTRYpBRDtLNWjdrU4/9+ElWnt4ad0V2tMg
SjVAOAo+YspOPWk5IAN2WBbQ2sEnxSCiXaAatJxXw4sbg4jWDsZoORdaOrxL
NUA4WuLF1BH1h2IQGViqGgHtIQVRDCJaO4Ojo6bq9smNQUS7UjUoSggtHW+k
GiAcZVpiaq/6QzGIDKxRjYB2t4IoBhGtHe1RQBLanQqiGES0toekVF5oKbVM
NVDiphw7VdPAXi8sEV+x9vdVKCw3o6BFFEEEtCytmUj2olSkZIziSUBhCVem
oqVUFGoCRTqTo617QLFfbWcqWrpDYSBQpOP01LVQKPIXUVE8por0+WigSJ9x
pUY2ocgPiaKYH6JF8b9sI4Qif4MjivkbLlE8ByJa2gIK2/tnKk6zNUYd+zSd
zm4EVLwHf9u7kfymkOGZxs2qXapdql2qXapdql2qXapdql2qXapdql2qXapd
ql2qXapdql2qXapdql36H7pUPXX+wuWcUvXxfDoNruz4fjq1yWNWu/E0T9Gq
M57kKdKf6Zs8ijlqO1PRKice5inS5z738iismixTcbEq3slTpE/YbuZRWMFe
pqI1PI3lKdJnmdfyKKxOMlPR6jav5inSp8atPAorI8hUtD7ES3mKTRibUq2d
WhHQVI1qUUFaLVvSqyr50qvZiJSqAibRe2tjajmBtVVe8Wnjurak55JoZyuI
6tqS5gnRplazZc5lMhXXtSWtMkQb17UlrXpEG9e1Ea2VKd/2aVOr2dxI0TEW
mIrr2pJiGNHGdW1Ea22VD3zauK6NaK36+ZFPm1rN5u5DOsYCU3FdGxnoV41v
fdq4ro1ordD6O582rmvr3LTKV4F/5pM6tWxOZ+Vzn8iK2LbrTy98eLP9vajL
/mEa5zLqsgP3Uhv4qYOHcE99U3ErPxmwP39AG7fy07bAAtATnzZu5W/CmEWF
xz5tagM/GSDcQ99U3MpPRZ0WKQLauJWfaC2c3Pdp49YYKp215fuuT5vawE8G
CHfLNxW38lNNsT1jAW3cyk+lmLbO3vBp41Z+orV1dtSnTW3gp3lAuBHflMUc
muRkoKkaAW3cyk87M7saYLhKm97KT6TWYdnySSd+HgRdmphUcnixwlxIqC+W
Fo9Bda5K0QFKJSPckE9LLcFUJks4oe1S63CXGp271JbdpSbyLrW8d6lBv0vX
CXTp8oMuXdXQpYslZvDqixm4iGMGrgNxKYqhQJGaL9yW/2KMLg4IbleJOijp
r0bBQOip4Sru9rfTJ4ptEmkPgCju9rfTJ0oNrvm0TVWkhMA2/7RrENqDIErt
8acx0g2uMIq7/S3PCGjpbqe4299On+i0L7gyKu72t5yCdsVCS40+qT3+NEa6
cvBGt4HF3f52+kT7tOCSsTiliW82E1q6aS3u9rfTJ0p9ggvcUnv8aYx0xdQx
EMXd/nb6ROdnwSV6NrUpU7KsiGao0B4HUdztb3OVgrkcapY9Yen9/hsD/KRb
G5Na/jepix2hRvLmk6BDPE3lkTz+pud69QyBQHTqFMDt5OixD7LV7YkPorw2
gK9Szmc+yM5ZnvsgWlgCuK05P/og+7z1Jx9ES30Atyjwsw+yCPSLD6JZFsBt
8v7qg2xP8JsPog3PJDgn5r8zRObVHxVpAX/pOyA3uha/zMAdyo2efwAR/xa6
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 255.625}, {287., 0.}} -> \
{0., -3., 0., 0.}},ExpressionUUID->"fb06747c-fcd5-420e-bb9d-3a27deb15f6c"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(36\\). \\!\\(\\\"elongated triangular gyrobicupola \
(J36)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"f42b8586-da52-4ce3-88d1-\
36a6cb7e919c"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.12201
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.103175 0.15873 0.561004 0.15873 [
[ 0 0 0 0 ]
[ 1 1.12201 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.12201 L
0 1.12201 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.34127 .7991 m
.5 .7991 L
.42063 .93656 L
.34127 .7991 L
s
.5 .7991 m
.34127 .7991 L
.34127 .64037 L
.5 .64037 L
.5 .7991 L
s
.5 .7991 m
.5 .64037 L
.63746 .71973 L
.5 .7991 L
s
.42063 .93656 m
.5 .7991 L
.63746 .87846 L
.5581 1.01593 L
.42063 .93656 L
s
.42063 .93656 m
.5581 1.01593 L
.42063 1.09529 L
.42063 .93656 L
s
.34127 .7991 m
.42063 .93656 L
.28317 1.01593 L
.20381 .87846 L
.34127 .7991 L
s
.34127 .7991 m
.20381 .87846 L
.20381 .71973 L
.34127 .7991 L
s
.65873 .32291 m
.5 .32291 L
.57937 .18544 L
.65873 .32291 L
s
.5 .32291 m
.65873 .32291 L
.65873 .48164 L
.5 .48164 L
.5 .32291 L
s
.5 .32291 m
.5 .48164 L
.36254 .40227 L
.5 .32291 L
s
.57937 .18544 m
.5 .32291 L
.36254 .24354 L
.4419 .10608 L
.57937 .18544 L
s
.57937 .18544 m
.4419 .10608 L
.57937 .02671 L
.57937 .18544 L
s
.65873 .32291 m
.57937 .18544 L
.71683 .10608 L
.79619 .24354 L
.65873 .32291 L
s
.65873 .32291 m
.79619 .24354 L
.79619 .40227 L
.65873 .32291 L
s
.02381 .64037 m
.02381 .48164 L
.18254 .48164 L
.18254 .64037 L
.02381 .64037 L
s
.18254 .64037 m
.18254 .48164 L
.34127 .48164 L
.34127 .64037 L
.18254 .64037 L
s
.34127 .64037 m
.34127 .48164 L
.5 .48164 L
.5 .64037 L
.34127 .64037 L
s
.5 .64037 m
.5 .48164 L
.65873 .48164 L
.65873 .64037 L
.5 .64037 L
s
.65873 .64037 m
.65873 .48164 L
.81746 .48164 L
.81746 .64037 L
.65873 .64037 L
s
.81746 .64037 m
.81746 .48164 L
.97619 .48164 L
.97619 .64037 L
.81746 .64037 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{256.625, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnMlvVEcQh8c2Zl/DDiFjdrMkh4R93+GSY5RDAO/GKza2AYMxIBSEkqAk
hH81d+J5r1L1GL4q91O4RHoWwuOuX31VHk93dfd0z/c9M0MD4z0zw309HTen
eiaHhvumO25MTC00tbXUagv/ai0dHbXG4w8Lj+W/7Kul8Z/88Bkev298a23w
R/OGd9pQa/uQN2UOtZH8hz+zb+0fNCH5qhnid0UsyRraiuLacC56q6Klvug3
MAXyX5S5whe9UdEqX/RaRWt80c9gCuSvlLneF71U0Re+6AWYAvm8Mjf7ojkV
bfVFT1S03RfNgimQP1Lml75oRkVf+aJpMAXyB8rc7YsmVbQHRHW13irIF172
/4qk73aA7y71bepoN/MfJsCnNXwa6PlrhbbrfgDqsDuhbYcm0u4HuA+mpepI
2G1qXQ7Wazl2HEwr1JFeaVvUSl3+qo9dpY7UKag3BQHGwLRWAxBso1rXgfWK
j6UBhgaIDRpggx9g1IO5w9Q6tW4C62Ufu0kd6TdY63lwgBEwbdUABFut1m1g
vZRjh8Fk3WE1WFeqlV7zF30sdWiqbMs1wC4/wBCYvlJHwi7zPJraLvgBOjQA
wdrVSiOwYO+Baa860vDTptZ9YD3vY/erY4YojOPyldkO+NBBMHUCauExDcwH
oe1crh8A0+HG/9lM7AhYz/qOR6EtQPSD6etE7Bkf0SxvVELCCqLPRXzy3H4D
0tOLUXhKSwkJqjfxKWiDNnq2T+XYHjBRFoSl8Cd9LMmpQ1G2gu1OxNKsnXQn
ymFpVKFsBduViKXZB+mOl8PSIEvZCvZuIpbmHIQ9lmPvJGKplJHuu3JYWiFR
toK93fiWjbvUCaiKH1GPY4XnsdUbJ2lq1akeTXNzSYpenjR40ywm1/FoIwn3
aHiqNTTj2qceNIP/Nsf2qYjq4kZo260e1H8FO6AiquI0QaurB3U0wVKBptkH
TZxpGhSEGtJ8yHELtO1UD+p8gh1R0Q4Q0RTT1j/USwQ7piIXQb+Bu44QLK3W
6I9HvwvpglATmg850iTZFir06hesLehpNUOT6XihIthpFdFoQy9JW0fQa0ew
D8FELyYKQLoglG2xrARRB7TZioLW04KdVRH1LcLGq3/BPlURzUVoG8Ym/NR/
Bfss+8bj7oHAVveRtrHWVCayhUTaNpCgnje+HfUG0eKvQPEOcrwg9bngN+4M
bPRqFKRtDlINokpm21nUOQX7WEVUgwi7RD1orCp2P/fFS1h78dIYK9gZMKUG
IB1VNwk1pfnQcEABbJcswNqOJ9UgwtouGc0hiuXFrUGEXaMeNJwLlnbtUgOQ
joZ4CTWq+VANogDr1SPADquIapA7AXR3m4rTJ7cGEdY236hKCJZ2OFIDkI4W
cBKqX/OhGkQBbHcvwPaqiGoQYberBxUkwXariGoQYW0OSUt5wXaBKTVArvtk
d6S4DGz1yhLxsrG/rYCwtRkVLUIEFdBWafVE2A+5YzeYqJ4ECFtwlXS0JRWV
msCRtuXoPYYAMaixSzracofKQOBIO+qpY6Egyg+i4jiujrSoDhzpba7UyiaI
8iVRHMuXaHH8L9MIQZSf4Ihj+QmXOD4BEw1tAcLm/iUdF5kao89z9en0Rdlz
8Lc9G/ik7E9M9nPrllQpVSlVKVUpVSlVKVUpVSlVKVUpVSlVKVUpVSlVKVUp
VSlVKVUpVSlVKf0PUyruOv/oMj859TG/mAef7Hi2mNvHbXZ242k5RzudMVvO
kf5MD8shlmnsko52cmK6nCO97zNZDmGnyUo62uWi++Uc6R220XIIO7BX0tHu
PA2Xc6T3MgfLIeycZElHO7fZX86R3jXuKYewYwQlHe0CYlc5xzq03c4Rx5RJ
JwJcWOZxp4BIO8uW9FvlvPTTbASlUwEf4b2xkRzd10Hm0etj43NtSa9Lwi5V
EZ1rS+onhE09zVayL1Oo+Fxb0ihD2PhcW9KoR9j4XBth7ZjyuI9NPc3mVoqm
tiBUfK4tqYYRNj7XRli7WTnlY+NzbYS1088zPjb1NJs7D2lqC0LF59ooQLt6
PPax8bk2wtpB6yc+Nj7X1jxpla9MP+dDnbNszQefpXneB9khtoP66Lkvrzf+
P9JoerFIcnT45EBTerWPZuiESr3DvzdR99QPFd/hpwD25w+w8R1+mhZYAZr1
sfEd/jq0WVV45GNT7/BTANJN+6Hi2/x0qNMqRYCN7/AT1srJAx8bX42ho7M2
fE/42NQ7/BSAdGN+qPg2f/w5EQE2vs1PRzFtnB3xsfEdfsLaODvkY1Pv8FM/
IN2AH8pqDnVyClBXjwAb3+anmdke9egrYtNv8xPUblj2+NCFx4fAlzomnUu8
WyBnltT7qoc0uSKiSZQKI91PPjb1ji/pBHs8MYvUq8O3fWzq/WnSCfZEYhap
17Jl3XsyUZ56ifyuj029SU86wZ5KzCL1gn6Xj039lALSCfZ0YhaEJV23j039
BAjSCfZMYhapHywhA9ZZV57+0Re9Poo+zoM+iEMQ5xKS97LoWwSRNQWO58Hk
XvnP2g6DR78Pi+7401+NioHgL4Apvu1vu09U26TSXgRTfNvfdp9oaTDoY+vq
SAsCm/zTrEGwl8CUesef2sj3nh8qvu1v64wAexlM8W1/232i3b4hHxvf9rc1
Bc2KBXsFTKl3/KmNfGXj7SqY4tv+tvtE87QRHxsvaWz5QtM1wV4DU3zb33af
aOkz6mNT7/hTG/lKqOtgim/72+4T7Z+N+Vjr2rRSslUR9VDB3gBTfNvf+ioV
c9nUzD9iMf2+/65AP1lEJl35t09dayo1sm6+BT7EqStH1vH0kXq2NzXti2jX
KZDbztEjX2Sj26wvonVtIN+szDlfZPss876IBpZAbmPOS19k77e+8kU01Ady
qwKvfZFVoDe+iHpZILfO+6svsjnBW19EE56P5Lww/4Ml0q/eFayZ/L2fwF+5
KfvhM3xkcq3lH6a9CsY=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 255.625}, {287., 0.}} -> \
{0., -3., 0., 0.}},ExpressionUUID->"f8112d1f-088b-413e-ac4d-10ab541a6158"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(37\\). \\!\\(\\\"elongated square gyrobicupola (J37)\\\"\\)\
\"\>"}]], "Message",ExpressionUUID->"8beb10ee-c7a5-4fe4-8737-cbc5646e2a79"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .88726
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0833333 0.119048 0.449468 0.119048 [
[ 0 0 0 0 ]
[ 1 .88726 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .88726 L
0 .88726 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.38095 .62804 m
.5 .62804 L
.5 .74709 L
.38095 .74709 L
.38095 .62804 L
s
.5 .62804 m
.38095 .62804 L
.38095 .50899 L
.5 .50899 L
.5 .62804 L
s
.5 .62804 m
.5 .50899 L
.6031 .56852 L
.5 .62804 L
s
.5 .74709 m
.5 .62804 L
.61905 .62804 L
.61905 .74709 L
.5 .74709 L
s
.5 .74709 m
.61905 .74709 L
.55952 .85018 L
.5 .74709 L
s
.38095 .74709 m
.5 .74709 L
.5 .86613 L
.38095 .86613 L
.38095 .74709 L
s
.38095 .74709 m
.38095 .86613 L
.27785 .80661 L
.38095 .74709 L
s
.38095 .62804 m
.38095 .74709 L
.2619 .74709 L
.2619 .62804 L
.38095 .62804 L
s
.38095 .62804 m
.2619 .62804 L
.32143 .52494 L
.38095 .62804 L
s
.02381 .50899 m
.02381 .38994 L
.14286 .38994 L
.14286 .50899 L
.02381 .50899 L
s
.14286 .50899 m
.14286 .38994 L
.2619 .38994 L
.2619 .50899 L
.14286 .50899 L
s
.2619 .50899 m
.2619 .38994 L
.38095 .38994 L
.38095 .50899 L
.2619 .50899 L
s
.38095 .50899 m
.38095 .38994 L
.5 .38994 L
.5 .50899 L
.38095 .50899 L
s
.5 .50899 m
.5 .38994 L
.61905 .38994 L
.61905 .50899 L
.5 .50899 L
s
.61905 .50899 m
.61905 .38994 L
.7381 .38994 L
.7381 .50899 L
.61905 .50899 L
s
.7381 .50899 m
.7381 .38994 L
.85714 .38994 L
.85714 .50899 L
.7381 .50899 L
s
.85714 .50899 m
.85714 .38994 L
.97619 .38994 L
.97619 .50899 L
.85714 .50899 L
s
.32143 .08065 m
.42453 .02113 L
.48405 .12422 L
.38095 .18375 L
.32143 .08065 L
s
.42453 .02113 m
.54357 .02199 L
.48405 .12422 L
.42453 .02113 L
s
.48405 .12422 m
.58715 .0647 L
.64667 .1678 L
.54357 .22732 L
.48405 .12422 L
s
.64667 .1678 m
.64667 .28685 L
.54357 .22732 L
.64667 .1678 L
s
.38095 .18375 m
.48405 .12422 L
.54357 .22732 L
.44048 .28685 L
.38095 .18375 L
s
.54357 .22732 m
.6031 .33042 L
.5 .38994 L
.44048 .28685 L
.54357 .22732 L
s
.38095 .38994 m
.5 .38994 L
.44048 .28685 L
.38095 .38994 L
s
.27785 .24327 m
.38095 .18375 L
.27785 .12422 L
.27785 .24327 L
s
.38095 .18375 m
.44048 .28685 L
.33738 .34637 L
.27785 .24327 L
.38095 .18375 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 255.5},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnPtzFEUQxy+5JDyMIBAiz8qFRP1P9AdFQRAQkOTIG/O8hIBSImokvrD8
j+PtTtN92fvM3CzslVXWUEXubh7fb8/sTPf0TO9cbe4sL6w1d1bmmo1PWs3N
5ZW57cbHG612Un2gVhto1Gq1g0Yt+35Qq73+k/+bzP7Ijzf8/jT7mM4w91zC
bvYxmJPUD1xSXqHWyP/WD5S9/etnV+AxZA1C2mVI+8VBbCvtcLmKW1rxKBS6
CGnS0E3IOgZp5yHtVwexrtyj5SquasWTUOh9SHvpKj7SiqfKVVyBrNOQdhbS
9h3EknJToUDFBa14DgqdgbTfXMX5yF6lvvjdQTxU7kuRFd/TGk8cxKwmTEBx
eoAntUZhDu26HzNQJxb7BKTRXNtxVN+oKFNQ6F1fmncmCux9yIoleEcJaMZu
+wmmfWCFtONKQLmtjo6JaAFBkJooSUVtIdij2hYaDFuO4EEkwRFfmlejCMFM
ZGcRwbASjEHupp+AWkBDckgJSP9tOILZyBYQQR3SSlJRWwh2UNtClmvdETQj
28IE7V9kTgPYTviRzjSX4X7nkLQ6WHOFHnohhzWt4xObsuoy57wtHzoE1f5P
PS4oX6jUZAGnNPcjyP22A6KblKZQQ/EKxuDDXvDD1OPOPkUYDzIKH0Dao05K
32gk5XNJc2nSlKSySUwm44LmkskgqhU/1YiC0aqNliikmIl02U9KchPseFC4
kqTHFOw45J7RXHq6RLXkpzKjTq2yNRXNkJJUtkAhc0NtoWlOpIt+UlvSjUDu
qOaOR1It+Kmoi0iV2zKHxmxJ0tMKNgS5NHppIT6tKIGuHNNCpKJsdtKC/Yrm
FpRpoGnjvjqmcyagmrNorIMDrSs+C6VF+MNpl1UgegjzftLz1ESfLb2ohWko
B1hMC5PpOqe5NFoCsFax8HxoCNO6qyQfQdBIpBWEjV1a7wdIz2pFMpZEZTOS
LGKAyvQ6dQxRmXIj7RmgOhXsDqIyTUlqLkBFy55YUipXkv5EsIuI1Dw38nsC
VOEuIirTmWR+AlRmQkhGr9PiNToBKusOmn9Ff0Az2v8ulCOiRYGfsmsJT35X
gM28W6qYq9+6z5gFYK2byVeb1NyCxszTevbXULGbvR7cBKQNAkb7Oy0HAqwe
22Q+Bdkm7/DpJMpzaOiGnQjzdWgnM/CoyErFOhH2mGkXtCRp2HUgs0M6VUiv
RZKGnQibHRVQmbGh9bzpQNohFarrkVSxToQpNepyIf0ykjTsRIR9uZJUYdeB
zCVpVSG9EUka60SYK1kBqQ0LUqTW5TQ9hOpmJJVN5gnItQUEeQNC9ZWXik3j
FSjvxm6Xtl3sxdBlCUk/59O43oF3CwqZF0h+QmDhRWBej4+w5cTmNmQ58zZS
7JbXnwG0O5BlnlrxaWaC0sbhrh/MHDLn9vGzJgkF9GvIMq8qdkubbOZjPwHZ
4Vgqmj5ysnQXsszr8h4wRLQlQGC+Flnp2O1NObq6B1nmYZH2plZRCwJnY6bJ
yBIRAbWg5ScgoxB7NkZUcrJEZ2NmVb3HhxGdFSAwo0CG3kuQ15AuoiM3MwC0
2qG22EJeBudM/sEKgBYgBEoL+UPwXZqekKlnTOt1Ho1HrJMIzLTedw5sBwqR
sTDN9qxcRdJYArENWbQkN0303FVsQSFyIGzx+qJcRdMcEmyzFdky0wh75SrS
+A/EzNASzmbwfrmKNjMlfmMDCpGnbXPvT1dxHQq5JSDPrle9qnXNmr/d9xHF
GDMLhe4rTcyJ/yiNZBlOoifRk+hJ9CR6Ej2JnkRPoifRk+hJ9CR6Ej2JnkRP
oifRk+hJ9CR6Ej2J/laiZ18OHRiseYG7Dh5e9arBJxx/9ap2OM0C4v4oV9HC
6uU1XjpOpiAtArMDoZdvD0YRSPIaefHQPuswOrUkWAvNqgDMop9+clVdvAI/
0tiG2yszP7qqFNBBgRp0FkgEdkr5Q38I6Dz3e0dFITUUskGRF0RlwSB9IrBD
5KeOgOKVjkAaxVYQgUWCSoAQBVZ53zaOIKCowe3+UNmrLUJAEWyxEYtEYGHB
rf4QWLyCRGFQQCEFcpCNIwI6xBcqCpP0BupGUNlrLE/6Q2DxxBIVQiGtpAzo
jSkisECMZ/0hoNgfoaLwY4oyIUVJVBZT+rw/BBZD8sIRUKw2Ra3Q+1REYIHI
Et3if2GLLeAklLfok73qQGm2C/znkOWCW7qicAnZguT3K8GzUBiJobkKhYox
NNZsfjtEomo+AyiLCiOAmq5XI+rmmRJX82n2sZQlrHckVLhEX02wCTbBJtgE
m2ATbIJNsAn2fwrbuY62OyRrvW/4DAC7K5YCHpT3XUi5GGxJC3l9614QdrVk
zGZJJlng7rM5BfNvTnU5N/QyglwERxefVYM8q5L690/5wdBLF3IH3wMFpc2o
NwS9r6CxG+C0dUBbDPJ+110loE2bCghoJzuWivZZaD9Gdh5va1voOg4ioIlD
wnXunXpfMa+A4IYS0BYxEdDGIA0V2dCk3bo+UV3TttBMJALSQTSX5K1au4eQ
bgepgOC6EtCdIERAu1ykYuRcgXZ/aTe6Aqqb2pZYgtgr92Qn+5YSkDIgAgKj
Vskpzx0lIBVQAQG92Rx7WySdXdF8kV35e9qWPhHYvcWxZ5w0dkj/yqHejBLQ
C9MVEDSVIPZccFQ6hUysHKvSBag0Igi+qCgyWDk3mFdZKwBbVLDYQx96xNLg
ZQWLPbOQ7WN312jUhrnUyO9erfcolK87p7Kcf1xCnlvBRfy1gX8BWSpeiA==
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {254.5, 0.}} -> \
{0., -3., 0., 0.}},ExpressionUUID->"c5f712cb-fa51-4040-845f-caf1b01ff1b1"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(38\\). \\!\\(\\\"elongated pentagonal orthobicupola (J38)\\\
\"\\)\"\>"}]], "Message",ExpressionUUID->"7d8db4f1-24be-4ad5-a028-\
187f27f37b5c"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .79048
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0714286 0.0952381 0.395239 0.0952381 [
[ 0 0 0 0 ]
[ 1 .79048 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .79048 L
0 .79048 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.40476 .5381 m
.5 .5381 L
.52943 .62867 L
.45238 .68465 L
.37533 .62867 L
.40476 .5381 L
s
.5 .5381 m
.40476 .5381 L
.40476 .44286 L
.5 .44286 L
.5 .5381 L
s
.5 .5381 m
.5 .44286 L
.58248 .49048 L
.5 .5381 L
s
.52943 .62867 m
.5 .5381 L
.59058 .50867 L
.62001 .59924 L
.52943 .62867 L
s
.52943 .62867 m
.62001 .59924 L
.60021 .6924 L
.52943 .62867 L
s
.45238 .68465 m
.52943 .62867 L
.58541 .70572 L
.50836 .7617 L
.45238 .68465 L
s
.45238 .68465 m
.50836 .7617 L
.41364 .77166 L
.45238 .68465 L
s
.37533 .62867 m
.45238 .68465 L
.3964 .7617 L
.31935 .70572 L
.37533 .62867 L
s
.37533 .62867 m
.31935 .70572 L
.28062 .61872 L
.37533 .62867 L
s
.40476 .5381 m
.37533 .62867 L
.28475 .59924 L
.31419 .50867 L
.40476 .5381 L
s
.40476 .5381 m
.31419 .50867 L
.38496 .44494 L
.40476 .5381 L
s
.5 .25238 m
.40476 .25238 L
.37533 .1618 L
.45238 .10583 L
.52943 .1618 L
.5 .25238 L
s
.40476 .25238 m
.5 .25238 L
.5 .34762 L
.40476 .34762 L
.40476 .25238 L
s
.40476 .25238 m
.40476 .34762 L
.32228 .3 L
.40476 .25238 L
s
.37533 .1618 m
.40476 .25238 L
.31419 .28181 L
.28475 .19123 L
.37533 .1618 L
s
.37533 .1618 m
.28475 .19123 L
.30456 .09808 L
.37533 .1618 L
s
.45238 .10583 m
.37533 .1618 L
.31935 .08476 L
.3964 .02878 L
.45238 .10583 L
s
.45238 .10583 m
.3964 .02878 L
.49112 .01882 L
.45238 .10583 L
s
.52943 .1618 m
.45238 .10583 L
.50836 .02878 L
.58541 .08476 L
.52943 .1618 L
s
.52943 .1618 m
.58541 .08476 L
.62415 .17176 L
.52943 .1618 L
s
.5 .25238 m
.52943 .1618 L
.62001 .19123 L
.59058 .28181 L
.5 .25238 L
s
.5 .25238 m
.59058 .28181 L
.5198 .34554 L
.5 .25238 L
s
.02381 .44286 m
.02381 .34762 L
.11905 .34762 L
.11905 .44286 L
.02381 .44286 L
s
.11905 .44286 m
.11905 .34762 L
.21429 .34762 L
.21429 .44286 L
.11905 .44286 L
s
.21429 .44286 m
.21429 .34762 L
.30952 .34762 L
.30952 .44286 L
.21429 .44286 L
s
.30952 .44286 m
.30952 .34762 L
.40476 .34762 L
.40476 .44286 L
.30952 .44286 L
s
.40476 .44286 m
.40476 .34762 L
.5 .34762 L
.5 .44286 L
.40476 .44286 L
s
.5 .44286 m
.5 .34762 L
.59524 .34762 L
.59524 .44286 L
.5 .44286 L
s
.59524 .44286 m
.59524 .34762 L
.69048 .34762 L
.69048 .44286 L
.59524 .44286 L
s
.69048 .44286 m
.69048 .34762 L
.78571 .34762 L
.78571 .44286 L
.69048 .44286 L
s
.78571 .44286 m
.78571 .34762 L
.88095 .34762 L
.88095 .44286 L
.78571 .44286 L
s
.88095 .44286 m
.88095 .34762 L
.97619 .34762 L
.97619 .44286 L
.88095 .44286 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 227.625},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnGtzVEUQhg/ZXAkQCAliuCSIiuj/0E9WeQcVJCGCCeQKCFHU4KUUr1XK
V7/6y/whmJlpujezz8zOCQS2ypOq7J6d6Xnf7jlzZnoufd6cu7VwZXnu1uL8
3MwbN+bWFhbnb868vnpjK6m1p6r2zFRV9e9M5a4fbl3Kh/875T7kR43r++5r
wOE8CAmb7mvEJfT7hNZDpdj69WcQuq1C+0DoryC05r4GXc4kCLXcZ59L+j2I
r0ZCzrSjUDBWy8n9Fi5W/NdAu7iKPJfSISH/a7hYUjUHAGAC0vqyxv4cYK+D
0CCkjRcSUNkfA9Wico88BsGQogjsAgjthbSDhQRU9vtA9RlkUbsb8598Ow+A
/Hch84qaNgZCVJD0368oAvtpYWXsz2hNd2czZM5DFomPZuCp+X4TMufUnCMg
FG5W/zbQR6K+kKDMQtkaePT43w15nyjVFAgNM96UFhKUi1D2GKQNRWmu8k6A
3EbIvABZJB53KQ52GuTuhMyPIetkIewMyN1Ow5IWLYA9lYalSiBY/zD5mxKD
OQIxnW4UmW5gweCOJiB451SOunVGTtQidQa32lgig2hUjaslVbNdqTrMJTZv
XStlDpW4GdA+KFSJ0o77T+6GStpwFzVyIzk9eXFbfph48GlcvZFWoz+jhnU+
NpZS3xX3NV0oBzKU1H+SE0BdMsmtp9UYzKgxqfbaIEkuIbkAQvk+ZCU6eRrU
aGBPD5bb09bSGoyoOaFBPcqsDoEwpZE/QJ5NRodYZafMmOplVU9VsL8eVaxZ
9eiORnLkalPNkkphFlC9B1kH1BaqouchjRpUTVKrSrvZJ7anFdznlTTBQQWj
B38a0qhrpMacISUdbY5yWq+I6jCkLaepxkVn6hjOZPKoTxKadyErfuodxFlI
oy5xqQusr4rX3NVgqoPJQPi6bkEn8SqoF3cmlW8XiSZ/PU16QEnpFr4CaX1a
wrdDP7mnUVJI34GsfQoxDLlnIG1QS/h+xLeEpTTBiIpTd0IEVuJuGta0oM7h
5aylG2nYlgrR0/kSpB3UEp/nYBPDJyEeVkRxId52X37MpA7zRUg7ohCrbRCR
EDkypwvllnYVlqqQxF/YHVhy40lueVdhqYsgcZoQ7BIsNb+VerDThXKZgZDE
aTqyS7BUCRlnhGBpdkNyAkt+HYkff3qwVAkZL5RgaepGcgJLExgSL03rDViq
R5KTKVW8OKEQJ10S1WimoA0SkZMTK6VODjliGQI/kPlxi5wSAjOHhhw2GQ7P
Q9YY2eJ+0dKIZ/YGmRdB3nWGz5yJvu1gSSrzamh1OkNlBcmWPKmpSdMqWZv5
ELIGtODAdguSVHYHaE6UobJ7Pqhg5Coa1Xi2RhJU2ohtJYfmwXGrrB61Rd+O
ZZn0IyhIVpcS2Bq8EFzWBFptIAhyLgVsdnvFlRocycki7CXISsN2LPSQqLjj
F1VNsiWBR4/tFyHvguLRtDSBR9X9Zciz3QuqngQeTU5kVjMLWWROApl6ka9C
nu0DpfF4Ak8z1q9D5ryCkk050L1a8l5IugIAxJwDpc5I4K8qX11QmgJ/GzIX
FJR60uRYFqVRfyVbj9eUgLQoJaCBVnZklyCLFhpKqSjth0C1rLbUI+C78lO4
WFXQWt5E55NzP3yvcy55Xx1HAfxw3cqKR2lCOqg8EzoWsedAniEZSWm9VHag
MbFH1GxMbExsTOwNNRsTGxMbE3tDzcbExsTGxN5QszGxMbExsTfUbExsTGxM
7A01GxMbE/9XJrqLbWvk8fbF1ndmd6G/Xc79S8Di9ShXJEqA5M9vA0ig4TUo
VrpVQpWS2ThYLBQvpepXW4SAYgNpu6qUwDbzJfiQIgKp3ksJhpVAdp2uprTY
IYHtW7YHHZIWueiRSH6fgt4LYhRyOFIT1E7ZSwwfBRrurQlKW+GydX0ZsnIx
iwR/SHUW0DkQCgcoivboDiue7P/PpiqqDM9OkW8EqUsgNFaON6547ecJsM6L
8GhrX5Ap8O5QObKFT8jWP0UFxhEFqdts0UObQYwiFykQIPnwRGkC64/k+Jz4
9EgKzB5vO2GVOd/jf8XHV1LY1jcNK3YmEJCORfVrQYs2ISrrZ4e0BHWrGSor
aHeLqAjW1KQTGZljX776+7VgktT23ltagtqBUJ2HLDuaZpU1JdrT6G4n0qgP
zBDZwTTTekqqLnrwrHTNk46TylHBqU3PQ7Fcgpg/QEr1nylI4jSQ7uRAa0Fa
BvZxTvUS1ROArXlYmLSoeWL6GZ/vfgKwJF7z7PwzPun/BGBJfLqQvmZwxkwh
/dOHJfHeCNN5nFglsioDS+I7Cdhqpfp6AjuqJdpjZ1qpcYai0Sa0BPlAotk5
FaJgVYqTsyBNckwE1vxCGssJ1sIw6SCmwHoXO+mLUPjhiJagA6Ry199yXz5g
dTSrRT4uk44GtxOQhzWi9ZisUSK1eEmajwgpRQl6+0ZTbSIOdq0qObxPzlKG
xYt7n+isKkqtNvPQxYfHnSpxDHR7Hh1eX0nDT0ZQmrH1F1rnEOWpDFVIho7E
zVc9pVf0Ohp6LjNdNh31p+UYGtBjOUefCZcvpbfQj2N6FaYtRYEF3d4IEKXR
c06Nj+T6Us9xt9ceRGnUO1ELDXLcDCmKJRNCSFrbvNKWaUjd0peMZehJW7o7
RF/63jOa6opK5MtTNBM1T1K99F1vNEpkVKJKtRWvUb2i0JnSd9llZjdET1QU
VEVy1oVlFKG5ZjLWwnrB5MoErY7TknyGnuwLs7zy1yKVLtKLGrSmQKN9TOXo
p5P0rG5mGaP0FV6l70rLrDTRPSFLKM1aQLcIxi5gVcWvB6N6WK9HdVJ1TOZG
abJCHpY5O4a+GcVLvoksSttoxwObk2BxLblf7S/Owxe4VVXmDXDtK/a0Dh6v
Sjgwegpp9UJgaeE+XppJwdISjtyNS6p+3Nk4sHzwbXvgH3aXHTe5tAcWZAtI
nWQ8cjRsrN8MUrTXNV6Ol3mzJm3NJTZTyD+hgf9ekLdowtyrSpNv6vIlJQKP
tljJN6DHmLSmskJF28W5DUByd6mJyFarBStSuyT9qYbNHZcQv9IQRSKgxkFl
hSofolhKYH7HLwF2VXipjqkDnMjIywuS16Jiqe6P9r3k1MM6iJM23kSvzB+h
4B0Q8s3CLxc8aBfq2ErxIn8HkdsK/E9I8BI7fP11tec/9fjkDg==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {226.625, 0.}} -> \
{0., -4., 0., 0.}},ExpressionUUID->"0a8e67f7-201d-4609-a41d-87d687de4257"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(39\\). \\!\\(\\\"elongated pentagonal gyrobicupola \
(J39)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"2da2aa59-41ad-49eb-abd2-\
c9a1e2791e60"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .79048
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0714286 0.0952381 0.395239 0.0952381 [
[ 0 0 0 0 ]
[ 1 .79048 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .79048 L
0 .79048 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.40476 .5381 m
.5 .5381 L
.52943 .62867 L
.45238 .68465 L
.37533 .62867 L
.40476 .5381 L
s
.5 .5381 m
.40476 .5381 L
.40476 .44286 L
.5 .44286 L
.5 .5381 L
s
.5 .5381 m
.5 .44286 L
.58248 .49048 L
.5 .5381 L
s
.52943 .62867 m
.5 .5381 L
.59058 .50867 L
.62001 .59924 L
.52943 .62867 L
s
.52943 .62867 m
.62001 .59924 L
.60021 .6924 L
.52943 .62867 L
s
.45238 .68465 m
.52943 .62867 L
.58541 .70572 L
.50836 .7617 L
.45238 .68465 L
s
.45238 .68465 m
.50836 .7617 L
.41364 .77166 L
.45238 .68465 L
s
.37533 .62867 m
.45238 .68465 L
.3964 .7617 L
.31935 .70572 L
.37533 .62867 L
s
.37533 .62867 m
.31935 .70572 L
.28062 .61872 L
.37533 .62867 L
s
.40476 .5381 m
.37533 .62867 L
.28475 .59924 L
.31419 .50867 L
.40476 .5381 L
s
.40476 .5381 m
.31419 .50867 L
.38496 .44494 L
.40476 .5381 L
s
.59524 .25238 m
.5 .25238 L
.47057 .1618 L
.54762 .10583 L
.62467 .1618 L
.59524 .25238 L
s
.5 .25238 m
.59524 .25238 L
.59524 .34762 L
.5 .34762 L
.5 .25238 L
s
.5 .25238 m
.5 .34762 L
.41752 .3 L
.5 .25238 L
s
.47057 .1618 m
.5 .25238 L
.40942 .28181 L
.37999 .19123 L
.47057 .1618 L
s
.47057 .1618 m
.37999 .19123 L
.39979 .09808 L
.47057 .1618 L
s
.54762 .10583 m
.47057 .1618 L
.41459 .08476 L
.49164 .02878 L
.54762 .10583 L
s
.54762 .10583 m
.49164 .02878 L
.58636 .01882 L
.54762 .10583 L
s
.62467 .1618 m
.54762 .10583 L
.6036 .02878 L
.68065 .08476 L
.62467 .1618 L
s
.62467 .1618 m
.68065 .08476 L
.71938 .17176 L
.62467 .1618 L
s
.59524 .25238 m
.62467 .1618 L
.71525 .19123 L
.68581 .28181 L
.59524 .25238 L
s
.59524 .25238 m
.68581 .28181 L
.61504 .34554 L
.59524 .25238 L
s
.02381 .44286 m
.02381 .34762 L
.11905 .34762 L
.11905 .44286 L
.02381 .44286 L
s
.11905 .44286 m
.11905 .34762 L
.21429 .34762 L
.21429 .44286 L
.11905 .44286 L
s
.21429 .44286 m
.21429 .34762 L
.30952 .34762 L
.30952 .44286 L
.21429 .44286 L
s
.30952 .44286 m
.30952 .34762 L
.40476 .34762 L
.40476 .44286 L
.30952 .44286 L
s
.40476 .44286 m
.40476 .34762 L
.5 .34762 L
.5 .44286 L
.40476 .44286 L
s
.5 .44286 m
.5 .34762 L
.59524 .34762 L
.59524 .44286 L
.5 .44286 L
s
.59524 .44286 m
.59524 .34762 L
.69048 .34762 L
.69048 .44286 L
.59524 .44286 L
s
.69048 .44286 m
.69048 .34762 L
.78571 .34762 L
.78571 .44286 L
.69048 .44286 L
s
.78571 .44286 m
.78571 .34762 L
.88095 .34762 L
.88095 .44286 L
.78571 .44286 L
s
.88095 .44286 m
.88095 .34762 L
.97619 .34762 L
.97619 .44286 L
.88095 .44286 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 227.625},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnFl3VEUQx4dMVhIIZBEEJIOoiH4PffIc1gACxoCssgaEsKO4cBB80Ed9
1E/mB8HcrqJqpufXTQ8EzpzjzTmZudNd/f9X9Vq93S8Wr589dXHx+rmTi63P
lxavnD138lrrs8tLK0HNNY3Gmlaj0fi31aien6886kf421F96I8env+uvoYq
nJsS8Gf1NVYFDIaA5nOjWPn1nQj9bkITIHRDhJ5WX8NVzCwINavPgSroqoj/
GglVpm2GhLFaldwVeXgSvobaxU1kU0qHhPxleXhsag4BwAyEDWSNvSiwv4DQ
MIRNFRJQ2vNC9ZNxj70GwYihKOyPILQWwjYUElDaM0L1CKKo3k2GTy7O9SB/
WiK/N9MmQYgSkv7rDEVhHxZmxrqM1lQ6JyXyAUSR+HgGnqrvCYm8Z+a8A0JS
WIMdoC9EQyJFuQtpe8Cj5r8gcbeNagsIjTLeFkukKLcg7VYIG4nCqsx7D+SO
SeQyRJF43KVUsHMgd1Qib0LU9kLYFsh9mYYlLZoAuyMNS5lAsKExhUKJwSoC
NZ0Kikx3MDG4qwoo3pLJUc/JyIlcpM7gcBtLZBANI3G2pHL2pVRd5hJbsK6Z
Micu5S4O7kqIaFtGvqTeVr8OSYKrhZpSDlGDprQk16NK5DKRSqFjCzXKx1Xq
x+J+p/o1n6YfMjCyjzpecglIbrQ3RUZUHSr5WVPSh0xyEMkhOJimTHT5NMTR
ME9DZ0aDK0nxLg0IeSOEkW9AXs6BtAbjrEGw1/M56eqs641tgtkIhZzvcQgj
ZyujQaAKQZRR70IYFSllxf40qefmmD291xlWULJKcBmiNhoYNf85CKNeiqrd
vjQpifusZac9rQLVtOpMncOuTBz1S3vTNHHLryB2QxjVzZfBhqz4tHoK89vp
3iBCAYcgyeIXkY1PQL2BSK4R6sXKB7WfPSJ1CaImjZQGqY8hrGkpQj0M030a
zDKkEwZBA8guCBu2FKFxh95lb5pgzMQpO4jAUyykYV0L6pE+gjDvio6lYT1H
qcl8CGEbLMURgZX1g85O94UIjaIEOm0p5ttAAybNuD6AsE0Gsb9dr04h8mh2
Fsrt6QvY9wvlMjWUxMm3719YmiWQXKbLp6F4FWBJfO7NwNJ8heQyjgNlwirA
kjgtNqwC7LZCOXXZyE2nTFgFWBKn+dwqwJaGZeYqqwAbLy2kxCm/e4QNENur
IMrR+XTC4LCRnxMrZX4ODT9KcA2iwigaxi2a7xLYgKlEg2WGyt2nyBcjb8qn
9+5I0JTvUJrPPaeBTrAklTs25LMo1XWIGrWEZEue1NUk/ytDOmQJfdGC5k5O
5SVA06LDaSov82EDI22daiqbI0oVtsIGTR9f0XhJNawqzYwRRC3jSBt2hENW
l/L5wryuf/ryPk1OCYLai4Ld6cy4UvsjOfWbb0NUGrZoteW4xC2bmmRLAo+a
7VcSd9PwaGaawKPsXpC4W4ZH2ZPAo8WLryXuDkSROQlk6kUWJe6uaZrG4zk8
rdPoXtF9AyWbcqBrLeUpCXoIAMScA6XOSOF9w7BXUJoF63bhIwOlNarkWBaF
UX+lu6i+D0xalBLQQHtWCGhPm5aLSqko7JxQ5Xfl0wRcKhfk4YmB9uRNdLcc
3eN/yrHkfflKm0zKGs+qr2ZWPApT0mHjmbGhiT0H8gzJSArrp7RDtYl9omZt
Ym1ibWJ/qFmbWJtYm9gfatYm1ibWJvaHmrWJtYm1if2hZm1ibWJtYn+oWZtY
m/i/MrF66FgjvxAlWPnO7C4MtstV/8/k+dsoViVKgPQvbAPIZUi9a9eZrHSr
hDKFNg4eC9W5QvFSqkGzRQnOpoRekcA3838WgjMgRPleSjBqBHLXUXfqQItX
JPB9yx+E4FRKi8TGFe0NTRjoQxH7BoTGegRdb6D3RexkypweQGkrXPasdUu4
Myp3kZHg/Ri9gi6CkBygKNqjmzY8uYym2+yQUWV4fpB8WaQWQGiyHG/K8OQI
hR5ToDwvwqOtfUU+nhQvQvYbFPdE6hgIxWfqU8Xsl4geiNhREKK7AMnGE4Up
bLjVGGLi0yMpMG/efjTrRhtYV2fb6D6+ksL2vslPb1G3I+eh9FgR9L0haIOB
EZX3syOWgrrVDJUn9NIiKoJ1NelExrU0acj+QUuYJPW996aloHqgVIchyo+m
eWZtUe1pdPcTadQHZoj8YJprvUWzLmp4nppOEy2lOWaNowGnNgMPXZlRxEMQ
5QdIKf8zCUmcBlKSu/oSfQrCMrDzheKlR3JXAZbCrqRhSYvSE9MKe7BQnM53
E/3bhyXx0rPz+oKQA4XidNKf6N8+LInPFdLrcaX9heKtQvq3D0vipfdp9OjV
vkLxNwRLd5XIqgwsiZferNJDdOFuUTPV1xPYZkuhxXPAAmicodtofpyafCDV
7JAJ0XVNuifn9zTJMVFY9wtpLCfY9ZaCDmIqbHCxk74I3UAcsxR0gFRLPdx/
C3dWx7Na5K9m0tHgdgLysMYsH5M5SqR+ZZLmI0q6F6KCfeOpOhHfd2009AYK
OUsZliAefKLdpijV2kyjiw+PV6rE16Db4+jw+qU0/GwEZRErf1I7RyjOZChD
MnQk7r7qDnuid9RQu8x02XTUn5ZjaECP5Sp6wuuR3m+CbLUnmbYUXSxo7wCj
KOpcqJ1T5SO5gVQ7zjgKdC6feieqoSLH1ZBusaga5LSR1j6v9GUaUrf0zWMZ
etKWSofoS1+GRlNdVYl8ebrNRNWTVC99ARyNEhmVKFN9xWvcnujqTOkL7jKz
G6InKrpURXLehWUUoblm8q6F94LJlQlaHacl+Qw92SezPG6K1FeWLtKrGrSm
QKN9TFXRzyXpWd3MMkbyzVcFYTQ4ZVaaqEzIEgrzGpAhoNyOwRoNfmcY5cPV
3qi2m47J2ChMV8hlmbNr6GsZHlUtwltuxwObk2BxLlW/9EWnRy1hC2CT1ad9
xZ7WweNViQqMWiGtXigsLdzHSzMpWFrC0dJYMPXjzqYCy1++lRc54haKdJdd
hVzaAyvyCaOaZTxyNHysfyBStNc1VY5HY6Ei09ZcYjOF/BMa+B+K/GkzIvf+
0uT7ukJKeUMqbrGSb0DNmLSmtEpF28W5DUByd6mK6FbreTON6iXpTzns7rjc
Teza43+e6CCJgCoHpVWqi8b9OgTud8i7jdXl4jymDnAmIy8XFLve/pHq/mjf
S089lL4LMZgYlPlNEtK7R0O1CMsFf7QLdW2lBJG/ROSGAf8jAUHiFd+J3Vjz
H7Tj+vc=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {226.625, 0.}} -> \
{0., -4., 0., 0.}},ExpressionUUID->"b7df22d8-63da-4692-98d1-a12ea3ad8085"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(40\\). \\!\\(\\\"elongated pentagonal orthocupolarotunda \
(J40)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"8603dc25-6deb-4c7c-a243-\
d2aef7a6f28d"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .93381
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0714286 0.0952381 0.535155 0.0952381 [
[ 0 0 0 0 ]
[ 1 .93381 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .93381 L
0 .93381 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.40476 .67801 m
.5 .67801 L
.52943 .76859 L
.45238 .82457 L
.37533 .76859 L
.40476 .67801 L
s
.5 .67801 m
.40476 .67801 L
.40476 .58277 L
.5 .58277 L
.5 .67801 L
s
.5 .67801 m
.5 .58277 L
.58248 .63039 L
.5 .67801 L
s
.52943 .76859 m
.5 .67801 L
.59058 .64858 L
.62001 .73916 L
.52943 .76859 L
s
.52943 .76859 m
.62001 .73916 L
.60021 .83232 L
.52943 .76859 L
s
.45238 .82457 m
.52943 .76859 L
.58541 .84564 L
.50836 .90162 L
.45238 .82457 L
s
.45238 .82457 m
.50836 .90162 L
.41364 .91157 L
.45238 .82457 L
s
.37533 .76859 m
.45238 .82457 L
.3964 .90162 L
.31935 .84564 L
.37533 .76859 L
s
.37533 .76859 m
.31935 .84564 L
.28062 .75863 L
.37533 .76859 L
s
.40476 .67801 m
.37533 .76859 L
.28475 .73916 L
.31419 .64858 L
.40476 .67801 L
s
.40476 .67801 m
.31419 .64858 L
.38496 .58486 L
.40476 .67801 L
s
.54762 .34098 m
.46061 .30224 L
.47057 .20753 L
.56373 .18773 L
.61135 .2702 L
.54762 .34098 L
s
.54762 .34098 m
.62467 .39696 L
.59524 .48754 L
.5 .48754 L
.47057 .39696 L
.54762 .34098 L
s
.54762 .34098 m
.47057 .39696 L
.46061 .30224 L
.54762 .34098 L
s
.47057 .39696 m
.5 .48754 L
.40684 .46774 L
.47057 .39696 L
s
.46061 .30224 m
.43118 .39282 L
.33595 .39282 L
.30652 .30224 L
.38357 .24626 L
.46061 .30224 L
s
.46061 .30224 m
.38357 .24626 L
.47057 .20753 L
.46061 .30224 L
s
.38357 .24626 m
.30652 .30224 L
.29656 .20753 L
.38357 .24626 L
s
.47057 .20753 m
.37533 .20753 L
.3459 .11695 L
.42295 .06097 L
.5 .11695 L
.47057 .20753 L
s
.47057 .20753 m
.5 .11695 L
.56373 .18773 L
.47057 .20753 L
s
.5 .11695 m
.42295 .06097 L
.50996 .02223 L
.5 .11695 L
s
.56373 .18773 m
.5343 .09715 L
.61135 .04117 L
.6884 .09715 L
.65896 .18773 L
.56373 .18773 L
s
.56373 .18773 m
.65896 .18773 L
.61135 .2702 L
.56373 .18773 L
s
.65896 .18773 m
.6884 .09715 L
.75212 .16792 L
.65896 .18773 L
s
.61135 .2702 m
.6884 .21422 L
.76544 .2702 L
.73601 .36078 L
.64078 .36078 L
.61135 .2702 L
s
.61135 .2702 m
.64078 .36078 L
.54762 .34098 L
.61135 .2702 L
s
.64078 .36078 m
.73601 .36078 L
.6884 .44326 L
.64078 .36078 L
s
.02381 .58277 m
.02381 .48754 L
.11905 .48754 L
.11905 .58277 L
.02381 .58277 L
s
.11905 .58277 m
.11905 .48754 L
.21429 .48754 L
.21429 .58277 L
.11905 .58277 L
s
.21429 .58277 m
.21429 .48754 L
.30952 .48754 L
.30952 .58277 L
.21429 .58277 L
s
.30952 .58277 m
.30952 .48754 L
.40476 .48754 L
.40476 .58277 L
.30952 .58277 L
s
.40476 .58277 m
.40476 .48754 L
.5 .48754 L
.5 .58277 L
.40476 .58277 L
s
.5 .58277 m
.5 .48754 L
.59524 .48754 L
.59524 .58277 L
.5 .58277 L
s
.59524 .58277 m
.59524 .48754 L
.69048 .48754 L
.69048 .58277 L
.59524 .58277 L
s
.69048 .58277 m
.69048 .48754 L
.78571 .48754 L
.78571 .58277 L
.69048 .58277 L
s
.78571 .58277 m
.78571 .48754 L
.88095 .48754 L
.88095 .58277 L
.78571 .58277 L
s
.88095 .58277 m
.88095 .48754 L
.97619 .48754 L
.97619 .58277 L
.88095 .58277 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 268.875},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnW2XVMURxy/7hAsIrIJRVHZWIpH4LdSIIqggCQuosEEMSBAWCBJjgobE
cPJ4cvI2b/M5N3u7i6qZnl/11JVdzr64ew7MnX6of3Xf6urq6uqeEyt3rly+
vnLn6qWVwdFbKzevXL10e/D2jVvrSdPbmmbbYP3frkHTPq81zaP/0t9S+598
+YHP/24/plqa/8gJ/9KEZnotJ6UKzd/zl/QxvfYou5leU3bWv/0tF/qrEpnz
Cz3UQk/5hf6scPNQ6IDm3sjFHyjNXVD8hfT/7HDaoyY2X+aH75TAbiDwPKRR
N1zLxO4rsb1Q6DnN3a5PUvEbbdczUHE/pFHvXMnEvlbqVPFZzX1an6TiPeXi
OahInO2BtMuZ2Ffpg/ue+FoIpn2WidyFLHozLtfWQelJyN7RBHtHxAU1/EeQ
tpLJ3oYseoMkg5T2AqRdzFCryre9XyKxS3Nf1ichcTPY4J3BtEVI+yRD3YAs
6u8dXgcmvg/pk5C9rgn2hokEKaJXIe1cJvtryKK3vj2Y9hNIO5uhrkEWvXXS
t5R2BNKWM9RV7SKThA0gewWyFiFtKthZR5Q56aLPNcHePxGjl5x7fmZEO60/
C+uXoUYpFo0jUpky670z+eEzr5orpyQo1NTTGeCS130BFUTiPwNpH20O1Cyk
nZoA5XZbRwD3vYwLCqEdgjQS5JOT0Fh4qAcJksT9w0mQk0WLRj/BE5sfZPjI
sFpzxI3glyCN5p/3u8GThFAawZMVeqIbPLWUeoTgn4a04xn+c8iKig8ZVpsE
T+JD8IuQRjbKe08Onmz+Yxn+V8EOJOmlwUjwZDa92w2epJfgX4a0ZyHtnW7w
WXxY+1GL90Ha0W6Q2TIeU++EllYSqaQ0K2rg7GUM6sTETuqA490wypffOADz
CnCyG0Bq/ZTH94yS/UUmexUKUcV9SvZFyE0Uz3ejmORwqU262K2i9T2JfGXF
9QVkUWvS4E5iQDq2snqMAmxXABrIGwAwpV1EyoZW9b/MAJHVTCuy6RsxStol
24PNz9uPJEJJmA56wjSJxNAIbT/X/72ulJtR19hLQKriqyjJy18q+6o+0TRD
7SCgp5TK2WFIGKSpOUv6RMYGtY6m1izFrK6XfTbmFNyWmzQgaIySgRE1WDIv
oqBg4JjspSeyBA4GWbImmhepAr9DC5lzjkbwIqSRxUAvlZpzymfJvEPmLCMv
UpQlkz3zSlXgd2uhnfpE5tUg2FKyn0mkP/BZSvApaVafyLkYZYlElIb2+z5L
Ji1D+qn9RpqYrB9anU4pUXOdVXjYp51BPuNXII2WUjTj0jTw3oTO6OBv9llj
GqSKj/nskGhE/dO0MKG6hRIVbs5ASRvEdbf2jwPIzaMJhC1vgifNEXV/5yUy
T57m96uAmyqrO8QPF0AymMg/8paPRsov6js/XKS1PU2+tDd9ePJLRf3p1FKC
f8OHT3NxwO++AVCku6K++MPK3OvdQGlmjXrlSZC7v2CbSOvO+jySWZVVIJch
K+qAoHKkUKgcCUSVpWaS15+UKJkB5IJ7i5EbUAdtGjWSZrlJUFMqD9a+sGCF
WrC2NuwyJy1O1jQx8rMJAOOKlIznqE+7gvaaNidNVCmT5uqOUGchy/ZozMCn
CAHS7dTXb0egCpVKk9vjQZXzXi6Z+yuVpPmDVj0V3HOQ5ehDm66jm+Ebg1ss
Ocj6D+jAoz5uTSPvVXAaf/QCKuDnIetQBTyZoKk46UcyUDcQ3OyEZtTHQtJO
LoF3fFwy8WmqSGuYGW+IVUA/hiySRgLN65Uxu3ZureGl7iaxEV2nTGkf0dAn
hfuuz9wA0twlerFsmVNGSKNvEiPRBUxic9YbShXmPoGsxSBztMDZpb1UDKsD
QOCYzwNN2mTaRJc9icPkoj3++KDRxQ5JLFnt0g+fQhaNPmKJFkAkPBXnBsGT
S5ZMweiiiF7XJrEUXTIRS6SORW4uQBaNL3c3vVhDkSFFOwYnfHgaWjSdR9dT
pGA2jaVmeD0VHVjiF7wIWfSKS+RWO9HCj6R4EvxLbY45i2mJS2QrTuC/QFaU
LGmcDzeV7Pfa9J9CIRIlGnCyKZyCsGOuio6U/5Q+4m4JN+6zSJO9hAeQRcOt
9LR5XFeg/ghZUf8CKRt63xJj9x1kRf0LJDJUVyIHv4Us37002UiqQN2HrKj3
gYZtZc/vD5AV9Qd0hPo9ZJEQ09pkQbqMBseyTz7qbihN/ZasbBd/A8WjroUK
2d9BcRLIAaRRcI90wteQRcJHZOXcyG8hK7rGFxL3IItmKbJmc4S9nJGod+cE
EnQOgrqODFgh8RvIIsuLLL7VTCIdm3BX0JWKqRPdiBIy6KRiGghzOukH7J5b
ueIDRSS9Vqn4UCtG44Ok4px8bQNUGlnKMjoRIQcjpW2lurN9E7cIm30T+yb2
TdwabPZN7JvYN3FrsNk3sW9i38StwWbfxL6JfRO3Bpt9E/sm9k3cGmz2Teyb
2Ddxa7C5UU1sH0a2AcorhdY/cdM0g40FVcslbteKXCkRISR/KXRA7mCj48C0
50Fp1Cm0XfowQ9HhbDf8MABloT0CQOfbaZs+CmCR399nALppIHrEjQAsgizH
SuDVFTRcogB22jSHMODFJLWzvbRHZjGI3+ZidNXMfEeiFpKdN/DxBqAdHYnS
Lm/ep5bD6qNZOzuSX1CehegKFMp74GPDlejZGc+8ZY3BVs4tFkTPLly4l0td
gEJ74vTsXoi8K4+xgs4NGG7/FWlCmUJFF+KULZg4B1FgQHAZX+e9Zou0vZ+L
Ufx5uQ9fHTxFmpBNBwlSTrmx7hGz4W0nOO4OERtTts34OWaPtukmu3CA1M6d
TIROm8xoRTvzQFDFEfppbzqrQFlFe1sERWSNTYoTuu2Dpu638HQXdFpzp7UG
yYFALUPWHuXROuuAcE+z+9Ro18eB7ICIcX1Auq4YeFabglBu+Rj7FaMZDVhP
FlXCoQBloUgnJVPFg17/VypScZpIqdzqBH4CaRWydNCcilMaQW0AWUq76ZMl
LijKp0KW7hSh4hR1RPBPniwVp/gsgpfgs9PB4hQ5RvBPniwVXwzCy93NHwWL
D4LwT54sFacYS4K/nsmeChbfJLIUx0qtqpCl4hSJS/B5+Zyjy6c9XU/Entca
8npOawLNMxTvbFefkA0knJ3RQnR0gyK2F7QGGSZC1uxCmsuJ7G6tQUHWQjaZ
2K4tQlHz81qDopzlraczChas6XJBh0HmtAaF+A4DkIU1r/3o9iiB2lFyWo8I
6EnISu3b6cnEa0Vak8o5xlIFJRVPNtERZZSktjLoytt6WlbK22eH8yiu90uf
/P6ClGY0cuXZunUOeVqGOqQCR8XNVrXrzsr33zjjsqKyKT6b3DE0oZflWnii
1xHeDse+qE952TK2MCZxHlaARRYpFxrnJHxUzj0PWTEU6AAGaSf/egQWQzqI
IGyQ0UZc27rS3DR7K5DEdgWSOKQ3Qj1UO0tCEfPCBtnsVJzEkNilctE72iss
kWyZZ8uOAdKdZNHLrSurGIInqOhxXLtzrcKIe98SWTam7dzLVcnNTmkVeGpf
hmLBc6+ODbwiYYN8BzSrl1At/KILz+xW3BUESYsiH3KUtYpHKXr99MCDShJQ
AYicR255JFOf3t5qN6iDymP0YLR4rs8JB8UUN1B6xBzR+2qY3mibl6rEqMvF
13peK5aFmobt0EWtIfyQv7v0PrTEaBTSSBOy5KAv9YNH1uwL8clf0IRy4dWS
IN8prfaEGG2VZLUa+v0F0qzDOztDlyjxrUPuhCLbT7Sn9UycHhmaQpm24JxN
E7JDzJWejwoP/TRKtg1Yv5HdQOSFKG2lRi+sJ7I2TctOJ20G17b3ohcbCvkv
FI/kkrgmY8uM7XySH38UKLoBTOYR1RUo+1mjxwEgTSa75TeEA+ptqrZPCBbl
h4MJyh+T8tQf7W9JdMNqsBGpsYn5f+aKdL42CUhyC/xnuNBYG1KR/+Yid5Xw
/3JCKrEBv8bXbPs/F8A98Q==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {267.875, 0.}} -> \
{0., -5., 0., 0.}},ExpressionUUID->"a3dee612-2823-4a88-9c34-61c932a8cf0a"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(41\\). \\!\\(\\\"elongated pentagonal gyrocupolarotunda \
(J41)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"a1b499e9-d8ef-42ba-83cd-\
35323ce81223"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .93381
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0714286 0.0952381 0.535155 0.0952381 [
[ 0 0 0 0 ]
[ 1 .93381 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .93381 L
0 .93381 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.40476 .67801 m
.5 .67801 L
.52943 .76859 L
.45238 .82457 L
.37533 .76859 L
.40476 .67801 L
s
.5 .67801 m
.40476 .67801 L
.40476 .58277 L
.5 .58277 L
.5 .67801 L
s
.5 .67801 m
.5 .58277 L
.58248 .63039 L
.5 .67801 L
s
.52943 .76859 m
.5 .67801 L
.59058 .64858 L
.62001 .73916 L
.52943 .76859 L
s
.52943 .76859 m
.62001 .73916 L
.60021 .83232 L
.52943 .76859 L
s
.45238 .82457 m
.52943 .76859 L
.58541 .84564 L
.50836 .90162 L
.45238 .82457 L
s
.45238 .82457 m
.50836 .90162 L
.41364 .91157 L
.45238 .82457 L
s
.37533 .76859 m
.45238 .82457 L
.3964 .90162 L
.31935 .84564 L
.37533 .76859 L
s
.37533 .76859 m
.31935 .84564 L
.28062 .75863 L
.37533 .76859 L
s
.40476 .67801 m
.37533 .76859 L
.28475 .73916 L
.31419 .64858 L
.40476 .67801 L
s
.40476 .67801 m
.31419 .64858 L
.38496 .58486 L
.40476 .67801 L
s
.45238 .34098 m
.36538 .30224 L
.37533 .20753 L
.46849 .18773 L
.51611 .2702 L
.45238 .34098 L
s
.45238 .34098 m
.52943 .39696 L
.5 .48754 L
.40476 .48754 L
.37533 .39696 L
.45238 .34098 L
s
.45238 .34098 m
.37533 .39696 L
.36538 .30224 L
.45238 .34098 L
s
.37533 .39696 m
.40476 .48754 L
.3116 .46774 L
.37533 .39696 L
s
.36538 .30224 m
.33595 .39282 L
.24071 .39282 L
.21128 .30224 L
.28833 .24626 L
.36538 .30224 L
s
.36538 .30224 m
.28833 .24626 L
.37533 .20753 L
.36538 .30224 L
s
.28833 .24626 m
.21128 .30224 L
.20132 .20753 L
.28833 .24626 L
s
.37533 .20753 m
.28009 .20753 L
.25066 .11695 L
.32771 .06097 L
.40476 .11695 L
.37533 .20753 L
s
.37533 .20753 m
.40476 .11695 L
.46849 .18773 L
.37533 .20753 L
s
.40476 .11695 m
.32771 .06097 L
.41472 .02223 L
.40476 .11695 L
s
.46849 .18773 m
.43906 .09715 L
.51611 .04117 L
.59316 .09715 L
.56373 .18773 L
.46849 .18773 L
s
.46849 .18773 m
.56373 .18773 L
.51611 .2702 L
.46849 .18773 L
s
.56373 .18773 m
.59316 .09715 L
.65688 .16792 L
.56373 .18773 L
s
.51611 .2702 m
.59316 .21422 L
.67021 .2702 L
.64078 .36078 L
.54554 .36078 L
.51611 .2702 L
s
.51611 .2702 m
.54554 .36078 L
.45238 .34098 L
.51611 .2702 L
s
.54554 .36078 m
.64078 .36078 L
.59316 .44326 L
.54554 .36078 L
s
.02381 .58277 m
.02381 .48754 L
.11905 .48754 L
.11905 .58277 L
.02381 .58277 L
s
.11905 .58277 m
.11905 .48754 L
.21429 .48754 L
.21429 .58277 L
.11905 .58277 L
s
.21429 .58277 m
.21429 .48754 L
.30952 .48754 L
.30952 .58277 L
.21429 .58277 L
s
.30952 .58277 m
.30952 .48754 L
.40476 .48754 L
.40476 .58277 L
.30952 .58277 L
s
.40476 .58277 m
.40476 .48754 L
.5 .48754 L
.5 .58277 L
.40476 .58277 L
s
.5 .58277 m
.5 .48754 L
.59524 .48754 L
.59524 .58277 L
.5 .58277 L
s
.59524 .58277 m
.59524 .48754 L
.69048 .48754 L
.69048 .58277 L
.59524 .58277 L
s
.69048 .58277 m
.69048 .48754 L
.78571 .48754 L
.78571 .58277 L
.69048 .58277 L
s
.78571 .58277 m
.78571 .48754 L
.88095 .48754 L
.88095 .58277 L
.78571 .58277 L
s
.88095 .58277 m
.88095 .48754 L
.97619 .48754 L
.97619 .58277 L
.88095 .58277 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 268.875},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnVl3XMURx681WryBF2QwBnvGZklIPkECSSCQEJI4CYEAMRhZliUk2ULW
EpskgJ3lZE9e8prXLN9S0e0uVc30/LqnLh756OH6HFtX1dX1r+5bXV1d3bd9
eX57eXFtfntlYb73+ub87eWVha3ed9c3d0mdQ1V1qLf793ivqp93qmrvn/Dn
Yv2P/PIFn+/UPyZqmf+LhG0lVJ2dSAoVqv/GXzbqH52dveKqs6Pq7P72n8i0
rkKm80xrynQ4z7SqcEeA6ZyW/iWyL6vM48D+ZPh3qp+218Tqz/FhSQU8CgLO
Ao264Q9R2A0VdhKYHtfSGX2SivPartNQ8QzQqHd+F4XNqXSq+JiWPqJPUvGq
avE4VCTNTgDtfhT2QfjBfU96nXLS7kUhV1T5qSa6WreEJxH2c2CfVibSghr+
BNA+jQDvQRG9QbJBoj0JtF9HqHdUb3u/JOK4lp7XJxHxM2eDjzlpXaB9EqHe
UuzHgOlorttCjWf0SYT9FNhnlYmEkSN6Dmi/iAA/UWH0AmactC8BbTsC/BiK
zgGNvCzRXgDaVoS6rG25oE9jEPtDKOoBbcLZWV9OaLX7kM76AbBf0rYQAL3u
+DYmB/zU7rM05w2Vl761KmNSkY/93mZ8+F6unVk7fR5oNA+tR4DXoegrQCMX
ROY/CbSP9weKvPnaiG5zvJVngUaWPRJqyFAI7RmgkXHfGoXGZkR9SZBk7jej
kDegyGtk1G+XgEY9s9oMngyP4C8CjWailWbwZIxEI3iKR5cj/PehiAyUTIZ6
hPwrTfkfNYMn8yF72Cd4snKC7wKNopWlCJ+dNRzWS/AXgEYR42IzeLJemtII
nqLfG83gyXoJ/jzQKJJbiPDe6CCaD3s/ajEtKK43g4wmM+TeCS00MHA2bNZJ
xqBODD0QOkCGzWVg8rz8usueBr4wvKZr0q1mALaAJLGTqvdmM7EWqD8FLQh9
djf+9iOoTaoEib2a9Gmziie0DWTylBNoCBAGd2gS+VhafH8WAbzrgxltAQ3k
MQB0tAXkbGaB9vkIgGCKtIQmdyLCvlb/sCX9+ZxRko73+kT0Dcn65+7fr6rk
ajArRmOVkj33Wbz8CbzP6RPNK9QOAjqiUrb7IWFUhuZc1CeKo7KeCOdm9s9b
eTUsp2I5BxoB5B8eAZo3QrkdVfo6FM1o9z2hTxR5dIFGY8tSe/ZUgD+qTOZW
SSzNJhQi0Eul5qzlVbLEkGXMyAZIJQqaplSKJaQK8I8q0zF9IrunmJtaSgEz
hYereZUCfCBN6RO5FFKJTJRUopBxJa+SWUuff6oqTq1SgEdriwkVahnSgg6z
2hk0odCClNZONMXSNLA0ojMapJrzqrGMNCCpf1vMq0OmQV6J+GghRHUTJyra
vAicNojNIZGxUTImvpuheJXs/Hpeg/wEMprvedBgR6zO8r8FcPNm5XR4mgaU
8US52rk8Grlkb+acEoyUaP0wD0/ul9418aWZtPo3gr+ahw++LvEf+wRF7ou8
Rjb/HpSjRGWhe2lypY0A4iNDbv6CLY6zsU9ocTCzNytAvgRF5J+7Tr68T6HO
wVHGKg2MfpJIfpSmXdIwg1yBO6hp3iz2KKgJtYfw5M1YE9+1fN8ZAEUFFK3Q
bDkKYNiRdoHVm8cWtG9AESXld2R+oGmb3BF1xHwe0tyHLWcoJ0BhPM2cLqjE
tSZ8tDYqQH0TitIhWFu2LS1pEvGuCa7nQeOQGHKKNmcTBs2n48FNlh6OibSb
x/0WFD3LuCcVl8YfhYm0QF7I48ZBxdNBEB/YyT9S8mWM4BYnVINpFlpRUHJC
cF+GoksF3CA+vAcCotTLjTwQjTSak2JfDvmq6dwA2yc1vMuTCe0jGoXkXEW5
V6CIBiiB0moluNnwHrNHwhLa4oMr4l20HNZeojm/oXJdoNGopEXNce2lZCgV
dPg2FNHoJh28S53QkSEzu/zgoN4Fjvcs31JeJfI29Ipp0UP9QI5GtnZehSIa
/ATvXQh59wHGoJJ3mUQq0c7Bcl4l8kIET+smCppouhP416Aou/XicMNdoJF5
k7teGYdKVf8aikYzZV1X88j0itN4pvZOlFKhuKcA/536x9N1ieXPaVlLYsk1
yKGYm1DkFUvWNAaxNEZkv3Y1Kar71nvyil63iI225UpUkLkSTbL9cSD5kxKk
ZGEv4yMoopmdkg0ERa9DDr0tQZE3u0CGQgNUoBahyJtdIFOnuut5KG/GoSHU
DWcnUDaA/EJh028BirxpDoIiX74Roa5DkTfhcEq6jAaH7KjOQzUyXFoIpBNb
LVb2i68Buzd3URA7B+zelAFFAVsPLla+GfkQiihi6wLtr1HEVSiiOJTiWhHx
ARR5l/oi4n0oogiGQtm/RRFXoIgyTBT7iYjw8USYLxpWDJ0YLJ7GGYV2f48V
wzgLy2Yyf4qApOKyIpJfK1Rc04rV6MXVPyLD9M4e52z9z0wf1RE50WqFaAep
7lTbxAOiZtvEtoltEw+Gmm0T2ya2TTwYarZNbJvYNvFgqNk2sW1i28SDoWbb
xLaJbRMPhpptE9smtk08GGqOq4n1w8A2wK2kwu5P3C+NYEOnqWVb4mZSKhwe
QfInHJ2Q7aT0QEH9G+12ej+Kpk3ZP0WoFSe7F8rO9wjAco7pCwLYUW+5sY1O
G3g/byMAO0b2+whAZwxouHgB7KTMbyMAbfcflnYkVhLMk7a67CDi/chGG/ul
j4VJqB3Dls+8aQv/aEOhtMUo153Rtv2xhuJPqc4ilDbr49GPoeFK8uz7zl9G
rmu5jvLJs9sVPolcc8CUuQKD5J1Web+KXLSpnrnuItt/CU0k5/faXZLtRLFc
cUAb73SOgYTZcdt7kY224NPTC8XBk9BEbNiWDyXpnnpOmA1v+2rjTp+wIWdb
DX/DnJNtvumwyia3Iyc/6DbFSa1oHztkL7az89+d3HRWgLKK9rYIisSamnTQ
bCsPGrp/UitmQTtaajdokB0I1HtQdEJ1tM46J9rT7D4x2PV+IPsyxLQ+J12X
DDyrTUd3NvMYZxSjGjxYESKqgEOnmUXiu1AUKl7I9X+hIrHTREp8GyP0cdAK
Yt9xshONoMYglmi382JJCzrgUxBLl5ISOx04IviHL5bY6WgWwcu5ybed7HRo
jOAfvlhi7zrh5UjsW072nhP+4YsldjpeSfBy2pnuuiX2fRJLR1ipVQWxxE6H
cAlezqq/Wf/o5Hw9CTurNeT1vK0EmmfoqLNde0IxkGj2rjLRgUw6rH1Ka1Bg
ImItLqS5PHsGPJDo0LOIDSF2NhahA/NHtEbhwH+4LtnOaWa1oC9CprUGne7t
B6AI64j2Y7ZHCbSjNWg9IqBvQlFo37GcTdAltSGaomCpgBLYQ0z0gipKVlsY
dOknX7Uq6Y3F/WV0pPfjvPgziSgtqPbuSZihMuWhDinAEbvFqnbVWfr+q8y4
LLhsOprtvUEt5avhSV5DePtC9il9isuWoYUxmXO/A0yKyLnQOCfjI77st/yF
QIFO5JN3IguNfGyG9P2NqEFBG2lt60pL05wsQJLaBUjSkN4I9VDpMxI6LC9q
UMxO7GSGpC7xeS9kL6hEtmWZLbsvjj5sJXgawIVVDMETlPebXLtvraAIrSmp
286qMLtwj5ZYlGYvfD5F8NS+CMWGRz7Rm4wXNSh3QLN6ClXDd7PwxVv6vZC0
KMpDDqpWyCh5r7ru5aCCBRQAPB8l1zpSqE9vb6MZlP2vE96voyVzfUU0SKa4
nsoj5Uje3X55g22+WBRGXS651ve1YspUVRyHdrWG6EP57jT7UAujUUgjTcRS
gp5uWs4O7v5s/5wS0oVXLYJyp7TaE2G0VRLdqus/WyDP2r+z03drEt80lJ1Q
ZPuJ9rRO++UV7i+mLbjMpgnFIZZK/03ksv/MKsYG7N+yt3QkNBFKW6ne2+lJ
rE3TstNJm8Gl7T3vjYYiflXxyC5Jawq2LNj+YxSb7uBHfX0AFB5RXYGy/zjt
QQDIk8lu+bpoQL1N1WZFYMLff5jgdlIt5/5of0tON2w4GxEaG5SXLy/vAlMw
kJAW+Gc/01AbAsu/IssdFfzvSAgcY/hP+KpD/wd0XzP7\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {267.875, 0.}} -> \
{0., -5., 0., 0.}},ExpressionUUID->"9b201da7-0d0d-4761-98f1-fe5486ff3d16"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(42\\). \\!\\(\\\"elongated pentagonal orthobirotunda \
(J42)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"6c832bd4-f597-42ea-b6fc-\
d0b17148dfcf"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.07714
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0714286 0.0952381 0.538568 0.0952381 [
[ 0 0 0 0 ]
[ 1 1.07714 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.07714 L
0 1.07714 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.45238 .73274 m
.53939 .77148 L
.52943 .8662 L
.43627 .886 L
.38865 .80352 L
.45238 .73274 L
s
.45238 .73274 m
.37533 .67676 L
.40476 .58619 L
.5 .58619 L
.52943 .67676 L
.45238 .73274 L
s
.45238 .73274 m
.52943 .67676 L
.53939 .77148 L
.45238 .73274 L
s
.52943 .67676 m
.5 .58619 L
.59316 .60599 L
.52943 .67676 L
s
.53939 .77148 m
.56882 .6809 L
.66405 .6809 L
.69348 .77148 L
.61643 .82746 L
.53939 .77148 L
s
.53939 .77148 m
.61643 .82746 L
.52943 .8662 L
.53939 .77148 L
s
.61643 .82746 m
.69348 .77148 L
.70344 .8662 L
.61643 .82746 L
s
.52943 .8662 m
.62467 .8662 L
.6541 .95677 L
.57705 1.01275 L
.5 .95677 L
.52943 .8662 L
s
.52943 .8662 m
.5 .95677 L
.43627 .886 L
.52943 .8662 L
s
.5 .95677 m
.57705 1.01275 L
.49004 1.05149 L
.5 .95677 L
s
.43627 .886 m
.4657 .97657 L
.38865 1.03255 L
.3116 .97657 L
.34104 .886 L
.43627 .886 L
s
.43627 .886 m
.34104 .886 L
.38865 .80352 L
.43627 .886 L
s
.34104 .886 m
.3116 .97657 L
.24788 .9058 L
.34104 .886 L
s
.38865 .80352 m
.3116 .8595 L
.23456 .80352 L
.26399 .71294 L
.35922 .71294 L
.38865 .80352 L
s
.38865 .80352 m
.35922 .71294 L
.45238 .73274 L
.38865 .80352 L
s
.35922 .71294 m
.26399 .71294 L
.3116 .63046 L
.35922 .71294 L
s
.45238 .34439 m
.36538 .30566 L
.37533 .21094 L
.46849 .19114 L
.51611 .27362 L
.45238 .34439 L
s
.45238 .34439 m
.52943 .40037 L
.5 .49095 L
.40476 .49095 L
.37533 .40037 L
.45238 .34439 L
s
.45238 .34439 m
.37533 .40037 L
.36538 .30566 L
.45238 .34439 L
s
.37533 .40037 m
.40476 .49095 L
.3116 .47115 L
.37533 .40037 L
s
.36538 .30566 m
.33595 .39623 L
.24071 .39623 L
.21128 .30566 L
.28833 .24968 L
.36538 .30566 L
s
.36538 .30566 m
.28833 .24968 L
.37533 .21094 L
.36538 .30566 L
s
.28833 .24968 m
.21128 .30566 L
.20132 .21094 L
.28833 .24968 L
s
.37533 .21094 m
.28009 .21094 L
.25066 .12036 L
.32771 .06438 L
.40476 .12036 L
.37533 .21094 L
s
.37533 .21094 m
.40476 .12036 L
.46849 .19114 L
.37533 .21094 L
s
.40476 .12036 m
.32771 .06438 L
.41472 .02565 L
.40476 .12036 L
s
.46849 .19114 m
.43906 .10056 L
.51611 .04458 L
.59316 .10056 L
.56373 .19114 L
.46849 .19114 L
s
.46849 .19114 m
.56373 .19114 L
.51611 .27362 L
.46849 .19114 L
s
.56373 .19114 m
.59316 .10056 L
.65688 .17134 L
.56373 .19114 L
s
.51611 .27362 m
.59316 .21764 L
.67021 .27362 L
.64078 .36419 L
.54554 .36419 L
.51611 .27362 L
s
.51611 .27362 m
.54554 .36419 L
.45238 .34439 L
.51611 .27362 L
s
.54554 .36419 m
.64078 .36419 L
.59316 .44667 L
.54554 .36419 L
s
.02381 .58619 m
.02381 .49095 L
.11905 .49095 L
.11905 .58619 L
.02381 .58619 L
s
.11905 .58619 m
.11905 .49095 L
.21429 .49095 L
.21429 .58619 L
.11905 .58619 L
s
.21429 .58619 m
.21429 .49095 L
.30952 .49095 L
.30952 .58619 L
.21429 .58619 L
s
.30952 .58619 m
.30952 .49095 L
.40476 .49095 L
.40476 .58619 L
.30952 .58619 L
s
.40476 .58619 m
.40476 .49095 L
.5 .49095 L
.5 .58619 L
.40476 .58619 L
s
.5 .58619 m
.5 .49095 L
.59524 .49095 L
.59524 .58619 L
.5 .58619 L
s
.59524 .58619 m
.59524 .49095 L
.69048 .49095 L
.69048 .58619 L
.59524 .58619 L
s
.69048 .58619 m
.69048 .49095 L
.78571 .49095 L
.78571 .58619 L
.69048 .58619 L
s
.78571 .58619 m
.78571 .49095 L
.88095 .49095 L
.88095 .58619 L
.78571 .58619 L
s
.88095 .58619 m
.88095 .49095 L
.97619 .49095 L
.97619 .58619 L
.88095 .58619 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{267.312, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnfl3FMcRxwfJQoAwt40NBgmMrz8g8ZHDR3zGB5fBHEKnOWRZNgHFsV8c
h+C8/BFJ/tYomu5S1Wj0qd6a7CpPPyzvoZ3t7qlvdXd1dVUftZ/Or967vTK/
urQ4P/XBg/n795YWH069/+2D9aTRXVW1a2L9/9RUVT+vVdXGn/Rvf/1Hvgzg
eaX+GKnp/zsnLGtCNbqWk9IL1b/ylyXNT9nrf5W19W//zIXuaqExv9BtLTTu
F1qoP1LOHij0jOY+ysXnlOYEFD+e/o410zaqWP01P8wogSeBwFPFev2YSUxr
oYNQ6Bik7dY3hMQNTTgMxY9C2l5I+yETu6bE6MXDxQp/n0lc1XYm9g9B2gEl
KySupA9ue+LLCFDuH/Orl7UQ9QfxRZWkOq1mgEuQZb1F/UsAT+sbQvYiFKIe
3A9pE0rsJOT+IQOc10LED42NfZD2HKTdzwCfQZZ1GQHs0dwpfRJin2gC9TUN
fNIYZyFtJQN8DFnU60R2N6Sdg7SvM9TvIcv6nwBIdF+EtOUM8KESo/5/on+A
DyCLJIH0PzXWC8qwNNF7mmCSMAIvUmOdk1o21UhVbbD+LrzRFota4dBYOydt
RQrqq/zwO++1VAUaQc9DGlX1bgZ4B7Kop2hIkPiTNNzZHigSsts9mq3VK9SA
ZyCNhOzLXlBbRIZkgNBIChd7obEYUVtOQRqxtpCJRCR8rcPgnNwe+KgaIngS
g/lu8ARFLJ2GNJpz5zL8e5BF/UciQ/CnII3m69lu8CRmJA8EfwDSZrrBk/iQ
zqM5hUy2Wxn+fcii/iPbg+Bp9iRre7obfBYfHv/U4Ecg7WY3yCwyWxQcoaUK
piSpVnSyP8gY1IiJndQAs90w2p1fOQB7FODLbgDm6xDZUSW7lMl+CIVOQNpR
Jfss1CC12TfdKCahOF0nPez2Yhq+CZFE/jikPcgAH0HWM5A2oQCk5J6CtIfd
ANIklXqBBvIAAEa0BlHfWpw217JvdXj61s5Yc7SLOLK/qD/MAzpZP1H/9iLR
GKH15/r/l5RytXk9h4YAObTfMXn5l8qe0SeaZqgeBDSuVL5uQsI0OqLqLT2R
XeMqJpyqWV0v+2zYGsCz+kTTLmkhkmujN6ZPooV+WWyqo/oUdeAJnuwlGt93
fJb2Kd8H9YkanGYlshiIpb1KucDIfi1kKyVk1dBMSoyMFqks+oyk4qPap+mJ
7JtJSKPGp7FlbV1gxKa9hgqoKl5tIYuO+mJEidJCypzPzRFtDHrRh+cxelzZ
KEAeLhCgNiA3kFp/xFPTt3xeSAJMxEi/R7ipNilEgX8VXnxSC5G6IgnP/tU4
NZ5CU6/d8JkgF4uGHumP9opKDZ/qc1ZrVkAm5WdqIopH6yRf+KCmtqjzSW/T
+iKBXvVBqXtNEWwTKKmt6Drr88rcy91AbcZ07UkU6S3OTMduJY/erAHSmWeF
X9JDHcFJHdFsT24AKRQqRwIhLL2GJKpeK7qkJ6gZaU3nGiPXbUeLiVRJv098
qBGVDKtfWMRCNVjbGGcJgMyS6Lrh9R4AW70DMpNJExfQXocsWxRPcjrqDc6B
QpkNTV4iaX5q6xsRKNvLouUbmt4KUG9AFm1a7NOmpGma5q4BgJq9QA1Ibhxp
oZu9QLfoYttLJOGnebSA+yvIymLGujiRT8VJOZGNNkBwW02qNjvsNJGS8Tn9
v+Em8qkfOgL9GrJI8mhCyG25ZVUhcUidvE1smBs1xgylBBpipNVu9c8QjfDW
GsGYNzgKLP0GsqJbu1R70t/j2l40eLaJubINv09Zag0pWhCd6Z8bsq5NoaWn
tMI3l6F+C8VJ0Kk9bSYiR5ZmIlqZnOmfkajpTyxRudn+WSK7zI5idGTkTciK
+hvm35O9RdJCZsVc/4xEt+FoXNO0Nz8Ilqqm10CNQROBIL8FWSTgbemsVQG5
N9FFkYUG/Ik6x3x8cuRocBTILkJWlCyJ9WL/ZMn6k923hVZW3bYvQXFqW+pu
IZt7OOSkk7hSmpxHyQMp7oYTk1QZIT8LWTRL0NkggiosxM9AVtSfJkEhB1mO
Jt0KFh8A1HSwEcjFp+mfGv9ehroJWdS1BEUDmBSsQN2ArKj/e1CajCR22SdP
0jQJabTxLntw16E46YKOZK9B8ajbTHOjNMIXkEXdRJtQjzKJq5BFbm6BxJVA
W9TfaOb9WybxebDeZE8IicuQRTZigUQ6/Zw0cMcXUyMmcaWma5+SqL89zi/e
1BdJdgsvzumLpFgKL97WF6vNvgEZMD/nAsmO+U+dM95ICJgh5G9QuZ307tiw
ijuEzWEVh1UcVnFnsDms4rCKwyruDDaHVRxWcVjFncHmsIrDKg6ruDPYHFZx
WMVhFXcGm8MqDqtoVWyuHS8HcdIa9U/5na8gn9ar7aDQD/6LtDi+V19c7fbi
AX3x2/ziEhQqX6Jc8V+kLQfamljuRoJ2VmSj6h5kuVdLW2kr3UjQFtE3Pono
7W3pB4pkQ/X2LxhvTrvfP1na8JP4Ne0AOeuf2NGTkEY7Rw98ssTtFKTRXq1c
Pb2QPnh7lgSDyNOu82qT/Oas6KHBaEQLgToPWdHDgLTzTwpd7qtSBCHauyMp
icZ8+G57oOiIxZ8y1KeQRe0dvYBD/fy9D0VS1DXYzZ/zwydBUj75LWd3fvQp
Rw++2EWJv2RiFNqJDiiM64tG4iefBIlCJBRO3YCpLulUmBy2p5vjNFjtMOcZ
bkBqJbI1rnXDda8Ou3H+qGvIAJHrQnQ3P3oXjoyFAbBEERVIV9vJYjJ3SIuQ
zuvISPRWyTFljmSTmKPWvJoZoSga7gneTtHatokREmU6bxK9Xl5gKYViea7O
IVBrEeokmi3I/rvSgAqM8aQcTDpJ5/1fuVmTo0LunYCACdGROYpIRCMtwdvh
oFacBfdGdsCE/bwbI/u1lTJA/Eo62QEDYOiQtky1+fTTAHigYF2u55eSjhUa
heywy92AMvktdyCPbC+q25IpqXSyswBOkeeibqndI3ICR5EdeqkbLo0pOyI/
sW24pP7ToBu1SbILLkVJjHrIh7S+bYug7lw6aH6xGyipd1tGMQU3ACiaXZ7W
drVYIAWotyFrCtJo/jihUBQb4EI3ALJQLHaGeQeXBkS21fF0WV2g3gISUa+a
bxZWrivRETIavNG9YeS6Ehe6MUImAnVHNBJVgaU3ISvqoxNLNiKjrsT5Xozw
xEE3S9z7ea770BM8pEjLFxQLuHTzzwbnC5BL3mPUH2iCtvQA6TTX2na9AAGI
iLk3PbQiWwVmAwF9W1+c0qc8kJqY1KTk7USNeQH3p+5yTCFip3VP2zXfBZpM
NIvQUjLBaQSV7ESS7bzq2Ih27UYjDKgk0idt0JoR8pOFEXKrW+ZCP4w0LHiE
t7jltLrRT8BgC9dgF20JQxihVTELcxGN0E6MtIJWNAx8ZORjLU5jlyZ5Ys61
DM3Edy/GCyPuorU7N5AKdSP7pSSLPUXKSxiJLtT3w5JVzAxYoics2S8pmHDR
REO1Ig/lCQU9qfSoqwWedqzcX4VopblBbltTAbVwFgnc3qPak3CdkPq29GWC
PKetQApQwOl2q3ufLOG8omTPdyORNtxPeRpM+KErsORgH1F+okF4F7oBWJTf
6FqzXJenm7Xur8m4q3lkvQoA3aelaEy2XEiSMxCAivdeyQeYy7TTrslpTwho
NMmLaVFmrEuHR+9TCsBnCkAdTs1F8x+po9kM8JECkCIxm4n4LpB9V8mSlUbR
sqnLSIsLwDvKWaTLKocRmkJnGgDhztviEZGuKaCRrexf+2VTlAbUpA9JNjK1
0akCJE1IZCdKoB9anI5esaYBFr1FX/ghgegl8ejGIx27EHgyw6kBJ4Pw0eiD
hYD/UfiokV6Ap93OaDyB6K96FOBpIzr6QzBuFORWGq2CSCw4cj2i4SZ2CxM0
AGm1QCDpcENUYnO5UAgWQaOjHdRu7gqVGwBWjlKQq0IyQAC2FGWLO9MDItua
ZUgGBIp8HBIjWv9wOuSMVmc2p2Trl2WFQvMQ3Q2SNF0JzAVmx0forc0K5tlF
ZekVKERSRmkWMFyiIl3SBPupBPd34MxvbOUKMYrbEV2NLUdslog/VzTBOp0c
MlJqNMcKWQqcQvMfQVnkf5pFJaYPBXwhgze6smmbifLbbNc1wazVaJxU6g0h
G/U3CMqWg2y1Us4E22+E2gocmb7ZEuOBLAd7oy4uGXVt27ImKwd7Z4Nt5zrA
qU5ynHdOE+zAivtLoilXTta2Y4utOb3lHg9KxOTE6aImWH+Qc2arZ3KoMwf2
4l4g58tGhBy7vwPtTJrOftdDDmHehULu5lHzTOPPUMjWfh7lQo+hkO3lPi4V
Wv/290Z+yv6H/4JkpS8D+NXiatd/AXAUBF0=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 266.312}, {287., 0.}} -> \
{0., -5., 0., 0.}},ExpressionUUID->"2b5c5cb2-c791-4622-a352-70ae8e219895"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(43\\). \\!\\(\\\"elongated pentagonal gyrobirotunda (J43)\\\
\"\\)\"\>"}]], "Message",ExpressionUUID->"21cb342a-4910-47be-bbc1-\
67b393ddae3c"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.07714
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0714286 0.0952381 0.538568 0.0952381 [
[ 0 0 0 0 ]
[ 1 1.07714 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.07714 L
0 1.07714 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.45238 .73274 m
.53939 .77148 L
.52943 .8662 L
.43627 .886 L
.38865 .80352 L
.45238 .73274 L
s
.45238 .73274 m
.37533 .67676 L
.40476 .58619 L
.5 .58619 L
.52943 .67676 L
.45238 .73274 L
s
.45238 .73274 m
.52943 .67676 L
.53939 .77148 L
.45238 .73274 L
s
.52943 .67676 m
.5 .58619 L
.59316 .60599 L
.52943 .67676 L
s
.53939 .77148 m
.56882 .6809 L
.66405 .6809 L
.69348 .77148 L
.61643 .82746 L
.53939 .77148 L
s
.53939 .77148 m
.61643 .82746 L
.52943 .8662 L
.53939 .77148 L
s
.61643 .82746 m
.69348 .77148 L
.70344 .8662 L
.61643 .82746 L
s
.52943 .8662 m
.62467 .8662 L
.6541 .95677 L
.57705 1.01275 L
.5 .95677 L
.52943 .8662 L
s
.52943 .8662 m
.5 .95677 L
.43627 .886 L
.52943 .8662 L
s
.5 .95677 m
.57705 1.01275 L
.49004 1.05149 L
.5 .95677 L
s
.43627 .886 m
.4657 .97657 L
.38865 1.03255 L
.3116 .97657 L
.34104 .886 L
.43627 .886 L
s
.43627 .886 m
.34104 .886 L
.38865 .80352 L
.43627 .886 L
s
.34104 .886 m
.3116 .97657 L
.24788 .9058 L
.34104 .886 L
s
.38865 .80352 m
.3116 .8595 L
.23456 .80352 L
.26399 .71294 L
.35922 .71294 L
.38865 .80352 L
s
.38865 .80352 m
.35922 .71294 L
.45238 .73274 L
.38865 .80352 L
s
.35922 .71294 m
.26399 .71294 L
.3116 .63046 L
.35922 .71294 L
s
.54762 .34439 m
.46061 .30566 L
.47057 .21094 L
.56373 .19114 L
.61135 .27362 L
.54762 .34439 L
s
.54762 .34439 m
.62467 .40037 L
.59524 .49095 L
.5 .49095 L
.47057 .40037 L
.54762 .34439 L
s
.54762 .34439 m
.47057 .40037 L
.46061 .30566 L
.54762 .34439 L
s
.47057 .40037 m
.5 .49095 L
.40684 .47115 L
.47057 .40037 L
s
.46061 .30566 m
.43118 .39623 L
.33595 .39623 L
.30652 .30566 L
.38357 .24968 L
.46061 .30566 L
s
.46061 .30566 m
.38357 .24968 L
.47057 .21094 L
.46061 .30566 L
s
.38357 .24968 m
.30652 .30566 L
.29656 .21094 L
.38357 .24968 L
s
.47057 .21094 m
.37533 .21094 L
.3459 .12036 L
.42295 .06438 L
.5 .12036 L
.47057 .21094 L
s
.47057 .21094 m
.5 .12036 L
.56373 .19114 L
.47057 .21094 L
s
.5 .12036 m
.42295 .06438 L
.50996 .02565 L
.5 .12036 L
s
.56373 .19114 m
.5343 .10056 L
.61135 .04458 L
.6884 .10056 L
.65896 .19114 L
.56373 .19114 L
s
.56373 .19114 m
.65896 .19114 L
.61135 .27362 L
.56373 .19114 L
s
.65896 .19114 m
.6884 .10056 L
.75212 .17134 L
.65896 .19114 L
s
.61135 .27362 m
.6884 .21764 L
.76544 .27362 L
.73601 .36419 L
.64078 .36419 L
.61135 .27362 L
s
.61135 .27362 m
.64078 .36419 L
.54762 .34439 L
.61135 .27362 L
s
.64078 .36419 m
.73601 .36419 L
.6884 .44667 L
.64078 .36419 L
s
.02381 .58619 m
.02381 .49095 L
.11905 .49095 L
.11905 .58619 L
.02381 .58619 L
s
.11905 .58619 m
.11905 .49095 L
.21429 .49095 L
.21429 .58619 L
.11905 .58619 L
s
.21429 .58619 m
.21429 .49095 L
.30952 .49095 L
.30952 .58619 L
.21429 .58619 L
s
.30952 .58619 m
.30952 .49095 L
.40476 .49095 L
.40476 .58619 L
.30952 .58619 L
s
.40476 .58619 m
.40476 .49095 L
.5 .49095 L
.5 .58619 L
.40476 .58619 L
s
.5 .58619 m
.5 .49095 L
.59524 .49095 L
.59524 .58619 L
.5 .58619 L
s
.59524 .58619 m
.59524 .49095 L
.69048 .49095 L
.69048 .58619 L
.59524 .58619 L
s
.69048 .58619 m
.69048 .49095 L
.78571 .49095 L
.78571 .58619 L
.69048 .58619 L
s
.78571 .58619 m
.78571 .49095 L
.88095 .49095 L
.88095 .58619 L
.78571 .58619 L
s
.88095 .58619 m
.88095 .49095 L
.97619 .49095 L
.97619 .58619 L
.88095 .58619 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{267.312, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnft3VEUSxy8JIfJQnou7UUhQV9c/YlVCAkHUBASUFQwRFVjkIWRVXJd1
cY9/9mZzuytVMzef6qkmk3Pyw3AOmZnuvvWt7q6urupH3Y9XVu98c39l9e6t
lZlzj1ce3bl768nM2YeP15PGdzXNrv3r/2dmmvb7WtNs/En/DrR/5McQvv/e
foy19H/LCf/VhGZ8LSelB5rn+cdzzU/Z63+VtfVf/8mFftVCE36hZ1po0i/0
z/Yj5eyFQq9q7u1c/KnSPADFj6e/E71pG1Vsvs1fflQCL7sE+tPG9YmvM4l/
aMJBKH5Mc1+C3JVM4okWOgyFjkIatc7NTOx7JUYPHoG0/fqEkHio7XwMih/S
4ocg90Ym8SB9cNsTX9R2hxVIiN6HQtYf1HavQBrV6W8Z4J4So94iYgf0iT9C
7rVM9u+QRT1IMrgf0v6koAJw13vQFe19kPY6pF3NALeVGPU5EXtJn5jRb0Ls
WyhufU3ESGO8AWmfZoBvIIt6ncjugbS3IO1ShrqlfFP/kzokgLch7WIG+Aqy
rP+HALACWSQJY8EG7DZWO+KlsZaVb5OJOrK7+xTK+nepxJfwRFdAGmdWyZRZ
VS3lLze8x1yJJemkGfTjDHAdsqjPSC0R1G5I+2h7oEgEL/hQf+6kNU4DzkAa
ycWHmYjbQ5tFhmSA0KgBzg9CYzEiUgRJrC34kG9CGgkZaYSTkEb9IPCRAbbm
CB5JCMHTVHeuDp6giCWCJxPyrA9/CtJIQAme9CtZF/N18CRmJA8ETwbYXIZf
hqyo9JJ6J3gyK8748NOQRuJD8FOQRmbxbB18Fh8e/1RjsoJP5wduQhZJbDbs
Nik4QksVTEmzPsYJSDvIGNSISYJTA8zXYXQ7v3EA9iqAaP2o7WLWJZHdrWQX
fbKvQdpRJcvG3/qvy3UUUzedbJOu1T2Y2j71Eok8ObIC4NqXNLoSACm5gk8V
BUiTVGozGshDABjTGpCnSBrgiwxwC7Je7aS1Ipt+/QEKE162jZpP2g/z1l/3
ZJT0Yy+JDiuJ4jtKu+lf23EFqJN2gwG0MRPtNA2nTJpqXD1BU1dKuuSD7lbQ
k/qNbBuqH83ueb5klX3RZ2OP8mqOGE29xAbJ9qRSmdBvookWPa5ToWPKCE29
pGnJwqMWpDH+kc/SPmXkoDJHDU4sEevWDtReF3xGXu5/MH0jcaPZlLqQjDdb
8ikwYu1g0kJjmBihxi8vcy34jBxW+B4l0DS8CjcNaWRS00g/ohwWuDmq3JBC
9+H77Y8NoK4Sbn/N++BHhCANd2oNsnHHCzSmlLECE7Z6Sg1LIkKW/linVaRT
aXyJvbcEWTQy9ih/5BFkn2uSqq/NQM122meCVidJJ5A+6TrAOvW9obUoIJdX
SEnzEB6tnbzng5IGfkUZIVBafSTQv/qgNmWQnJPiGwJo1E6kcm8qw3+pA6XJ
7LgS89eRNzk4ld1qpgnN+jSN5GHNmqQSPOrjUzkareRCkEAISxeRRDNolZeQ
qaFoned9Rm7bjtafSYWS+h0ENaaSYfULCGBFDdY2xpmZuYHRSvUbBLB59iDJ
jS6WfpDpXIIsWyhP8pcyyV8eKpRNY+SQkZqdflEoU67kQ9K0Rd0q89SnkOVo
qL3amjSP05Q2HFyzf6kZyWogs6Qe12ZJGgJkORVwL0NWFjbWyIl8Kk4qimxy
UsCzLwZu60xNvyNP0ymN4hfETeRTP1QCXYEsEj6aFnJbbjL4E4fUydvEBkGZ
E2ZrSTTOaPXpTB1LNFWbc+su9E94uQWWrkIWCa/rCwf0+KS2F1HZJuZIPZnN
bwuanUFFc9Pc1rnZq8gkWqkh0+qfbDl9BoVoMY3MGBIAWwIniSVPem7rjERd
AOopmrfnt86SLS1RP5N3VmDkc8gismQUugPBnVrJdzu7dUai3gONa5r4ztWx
RDLS8R4qka9BFu2AdIdJqwrIzSEOycxZ6IGfanP2aQ3IoaO+KJD9F2RFydKQ
P19HlhqBhFR25n7pZDVOI5CqKpBN50NjzjoJDaXJIu7P6SPujleSfwpZNPDI
VXT3DDppskD/E2RF/Wqaz0mLyrGlH4PFhwD1Q7ARZiCN/CNq/LzZk0/0BuR0
CFCrkBX1gw9Kk5HEXvTJ0xRHFmhXwbZkZW/uCRQnIa0k+xiKR91ncr2lEb6H
LOommvPknPkjyCJVXSDxELLIECyQeBCsN5lCdzIJOkFNZkWBxHftR9LAlQ+m
RkziSk1HpkE+1pzH44ROqPEHf9YHSbEUHvy3Ptj0+wZkJ+fT3Xne/V+bM9mT
EDBDiCaV20nPToyquEPYHFVxVMVRFXcGm6Mqjqo4quLOYHNUxVEVR1XcGWyO
qjiq4qiKO4PNURVHVRxVcWewOariqIpWxd6143tBnLRG/Sw/Q1FG3KAU6cGn
/oN0JMeuX67WPWgXQ/MuCMYroZ0DO/h233/QvZnZSbtXR4J2Vr7LJO5Alnvt
tJN2v44EbRE98EnQiUfa65J+oIOtVG//8nF/2qOtk6UNv7yDh6e9o7eYaOfo
sU+WuJ2BNNqrzbujclCft2dJMIg87Tqv9pLvz6JzjNT70dAFAkXXmNzziZ00
2vknhZ733PG6Je3dkZRE40H8sD1QdMQin4+QIwyD25uElA4kUT//5EORFNUG
wskHb+SIyWBSPvlNZ3d+8SlHQ0HZhYl8mkkO3fQXKt+8NRLPfBL+HeKyeLQN
mOqSToXJtfUP4UH3ZnTi7BQ3ILUS2Rqf1+G6EcLcaIDUNWSA5OObcgBt8HRH
jJCxMASWFiCLdLWdIiZzJxqUq5KR6O2ScshBYo5a82pm5JwHQIxU3TDcJkZI
lOm8iXvtPM5SOnubzmyXIwNSJ0WjAl3pgQqM8aQcOmfcAyKzbdysyVEh905A
wISoZG4estxzx3Y4qBN/wb3+ETBhL9cxckBbqXS5nIYV2QFDYOiQtkzTf/pp
CDzMQZbr+aWkY4VGKcSAjAJl8pvuQpZiBQwB1W3JlFQ62VkAPwNZUbfU7ks6
QaUKMTCjuDSm7FbM/m3DJfWfBt24TZI1uLOQFfWQLfxD1yJoO7cQpjMKSurd
llFMwQ0BimaX49quFiGoAHUasmYgjeaPKYWiGAFLdQBkoZzor0H6dmlIZDsd
Xwia+gGQiHrVfNmxcV2JSkiyl6YRcnNa2ZVYqmOETATqjmiEqgJL70NW1Ecn
lmxERl2JxUGM8MRBwULd+3mu+zAQPKRI6+ORCO57kGWDsxtbtv1F3mPUH+gF
7egB0mmute16AQIQEXNveijfxi+AntYHZ/RbHki9mNSk5O1EjXkB96fucmwh
YsdCbZXNd4EmE83uXZZMcBpBtTGl5N7PvAKSAU66Ixq7pQvaMkJ+sjBCbnXH
XNgKIz0WPMIvKBStbkSDCU9DmgVssFv7hCGM0KqY3bcn6Y4y0glb0WPgIyMX
tDiN3WisPtcyNBPfvQsujLiL1u7cEA1CaIFL7FI6KS9hJLpQvxWWrGJmwBI9
YWlRi5tw0URDtXLjBaSk15QedbXA044VSQvB01anVcKmgsJVTNreo9qTcE1J
fTv6MkG+pa1AClDAKRY2Daek0hPOu0p2sY5E2nA/4Wkw4YfisrvxZd0AvbS3
/1UdgEUAjq41y9tnKEq/+84ZdzWPrFcB+AKyKKiCLRdGg6pUAzS890o+wM1M
O+2anPSEgEaTPJgWZSZqOpwavQDwiQJQh1Nz0fxH6mg5A5xXgPJLaIjvAtk5
JUtWWpfvxuky0uICMKucRbqscRihKfTLHoBw523yiEjXFNDIVqaezGhsitKA
mvYhyUb2A2wxJE1IZCdKkGlanI7GEqMBFr1FL/C0pUF+DsFHNx7p2IXAkxlO
DTgdhI9GIby+dfiokV6Ap93OaIi+6Bs/CvC0EU3iE40iGQ2fKeHlyfWIBnnc
I0zQAKTVAoGkww1Ric3lQiFYBI2OdlC7uStUbiBYOUpBrgrJAAHYUpQt7lwf
EtnOLEMy4MTwX3PEiNY/nA45pdVZzinZ+mVZeSdId4MkTVcCs8Ts+AiDtVnB
PLOwrO9CITcAGFljiUp+10N2cTovUXDfFmd+YydXiFHYxehqbDmUm7zF8oom
WKeTQ0ZKjeZYIUth1qIvFbDQVzSLSkATChEWfWmCG3kwgUpMjmuaYNZqNFgq
9YaQjfobBGXLQbZaKWeCr2uCrcCR6ZstMR7IcrA36uKSUde1LVuycrB3Odh2
rgOc6iTHeW9qgh1YKb9vVE7W0gtfopEGrfnlxKm9wNH6g5wzWz2TQ535JZPc
C+R82YiQY/fd12C2D5KmS1VLSXII8zYUcjePes80/gaFbO3n11zoORSyvdzn
pUKNvE9Y8lP27/4DkpV+DOHdxs2u/wPyqSFA\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 266.312}, {287., 0.}} -> \
{0., -5., 0., 0.}},ExpressionUUID->"2764993d-8096-44a4-a539-538781b1d8c2"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(44\\). \\!\\(\\\"gyroelongated triangular bicupola \
(J44)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"51ea91bc-746b-49f1-9074-\
d6934b992386"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.01509
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0970696 0.14652 0.528693 0.14652 [
[ 0 0 0 0 ]
[ 1 1.01509 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.01509 L
0 1.01509 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.46337 .71751 m
.60989 .71751 L
.53663 .8444 L
.46337 .71751 L
s
.60989 .71751 m
.46337 .71751 L
.46337 .57099 L
.60989 .57099 L
.60989 .71751 L
s
.60989 .71751 m
.60989 .57099 L
.73678 .64425 L
.60989 .71751 L
s
.53663 .8444 m
.60989 .71751 L
.73678 .79077 L
.66352 .91766 L
.53663 .8444 L
s
.53663 .8444 m
.66352 .91766 L
.53663 .99092 L
.53663 .8444 L
s
.46337 .71751 m
.53663 .8444 L
.40974 .91766 L
.33648 .79077 L
.46337 .71751 L
s
.46337 .71751 m
.33648 .79077 L
.33648 .64425 L
.46337 .71751 L
s
.68315 .29758 m
.53663 .29758 L
.60989 .17069 L
.68315 .29758 L
s
.53663 .29758 m
.68315 .29758 L
.68315 .4441 L
.53663 .4441 L
.53663 .29758 L
s
.53663 .29758 m
.53663 .4441 L
.40974 .37084 L
.53663 .29758 L
s
.60989 .17069 m
.53663 .29758 L
.40974 .22432 L
.483 .09743 L
.60989 .17069 L
s
.60989 .17069 m
.483 .09743 L
.60989 .02417 L
.60989 .17069 L
s
.68315 .29758 m
.60989 .17069 L
.73678 .09743 L
.81004 .22432 L
.68315 .29758 L
s
.68315 .29758 m
.81004 .22432 L
.81004 .37084 L
.68315 .29758 L
s
.02381 .57099 m
.09707 .4441 L
.17033 .57099 L
.02381 .57099 L
s
.17033 .57099 m
.09707 .4441 L
.24359 .4441 L
.17033 .57099 L
s
.17033 .57099 m
.24359 .4441 L
.31685 .57099 L
.17033 .57099 L
s
.31685 .57099 m
.24359 .4441 L
.39011 .4441 L
.31685 .57099 L
s
.31685 .57099 m
.39011 .4441 L
.46337 .57099 L
.31685 .57099 L
s
.46337 .57099 m
.39011 .4441 L
.53663 .4441 L
.46337 .57099 L
s
.46337 .57099 m
.53663 .4441 L
.60989 .57099 L
.46337 .57099 L
s
.60989 .57099 m
.53663 .4441 L
.68315 .4441 L
.60989 .57099 L
s
.60989 .57099 m
.68315 .4441 L
.75641 .57099 L
.60989 .57099 L
s
.75641 .57099 m
.68315 .4441 L
.82967 .4441 L
.75641 .57099 L
s
.75641 .57099 m
.82967 .4441 L
.90293 .57099 L
.75641 .57099 L
s
.90293 .57099 m
.82967 .4441 L
.97619 .4441 L
.90293 .57099 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{283.688, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnfeTVEUQxxdOohEVlKC7KqhQph/MOWLAgDlznAjeCacIKGJCFBELA5jL
0rIsLUvLv1B/wds3Q/fy9tN9Pex5vh+4Ki5Mf/vbs/PedJj3ZnhgZMfoxvGR
HWMbRjp3bxvZOjq2YXtn9avbJpqGZrRaM5ZO/Ot0Wt3fD7daR75VX8u63/If
U/D7X90fM7v8r6SGP6WhNXQ4NVUKrfH0xx/Vj1mHpUP5q6UUvwvFCVXDUC+4
tSWBfhPQbBv0K4gc+C/COc8G/SygE23QTwI62Qb9CCIH/oNwnmaDvhfQ6Tbo
OxA58G+Ec6EN+kpAZ9mgQwJabIMOgsiBfy6cy2zQpwI61wYdAJED/0Q4z7NB
+wV0PoA6Ir2vBz5x2x8B5bnbsXpGE+3e9MfHoDMT2s4JtpHu3bapIekekS0V
6Sybdh+IZoviUpAuFulckK5OtB+BiOb72cE20r3LNjVf+khki0R6kk27F0Qn
i+IikJ4p0lNBeqdNe6oongnS00W6wKb90FKstREFtZHuHcnUB+5HJzL9fOTb
HFq9UDSiejXoIt+eaPeAiBwd3QnUVmhqifSRyPQ2Jbd6W6J9H0TniOJ8kM4V
aRukt9q0bVGkqa1ugXxxpt0NIvLK5JKojXRvSabeA9Fy6SORqb9cUUZ7oShW
FD3BI39VsotB8+ZE+i6IVgLVxO8UAwqZV3W/V+nfJSC9KSm+A6JLoc2heBtE
lwVpb7Qp6vBu+L0ccDck4VuBXhwDReoFJ9FEdX0S7gp+/iFoo6GeAlrCXZdo
3wzCaTZRbzPtThDRjUG0ZP5am5bgc4K9zbRvBGkpCSHaawanJdzVifb1IJwq
J+ptpt0BIrpkREvmr7JpCU41GfU2027v/qicLk1Fk6zS6B3HmZaTpIRjpWi0
jq4Gcqfo9iTPTTnSRdV39ja5w2+K+SjpCtGgIv/KRPuWgCgongFt54sG1fmZ
lsILBXMyQPmFY+pd6Q8pUs6pdR1Nvky7W0BUoFIFrhUXzZJMu0dAlPQR7RJo
cwxQLUBpK6XBZ0nnTrEN7BVQlHahaNCySqbdJyC6ZFSK0r3jGNgPIip0yNQC
6RwZzQZ0tYJmI9Xop7ifOdMeEBBdlDa0UbHhGPhMDJAiGfAL7Ez7BYiosKBZ
O0cM0N2fDRwUUJSWvIhj4EsxQJnKBdDmL8lk2q+rH+zsLwI1s5bLfLp4WAtM
F9Z0WoaPzDzfdn9cajnS3s6TsRSV+tbVnH7r8FLa6oVE8siZ9BCIbPr6QB92
fHPvbW2GP6I9QTSce00nId3MRKsFuTMJ1XnQUgHRknnHeajTI+dBBuaJhkNL
zjpq4EQx4DhrDTeU6xGtLjiRe+8LjnaaN3mq6UTfD9wPRwZOEw2H9n0B0UUh
Wl2YpOvSm0QFbiYyoKuKdOv2JX80CYiW1m6pYswG3hYDNHnJgCZRDu0uAZGr
IVpdeKdglGl3CohcJNFq0kpeMtNSLRs1kAJh3zpXb91pJu/EV9kd6qHQYpAK
DKLo2J9Uy0ICEdmTSZGqP8oBHAqt8AoVtYaj3NVRpCotOo8yRfkEzIq7RZFm
pKOoFRQ9L3EUqTKKeulMUe7es2J5uMmKgwTCTFEeorNiefKQFcuTmaxINQO5
O4dCq4JCxUg6ioopn+/zcCttjSpjH5oEVM3lvzWO4OSup/hWVwfBUVsa276Y
OPETq466qUFx1KXZje3S4jxkvTfIEbXljmzFNOsth4+Q7z1y7jRNKGoSjqJ9
k/gIN/f4UNSGgpYryetSrki4dsP5CDfv+FDUhiJaYVHlQzjKhpvER7iUMGGt
S88cKLRT6jQIbqrtRvkKh4LK7KipJvHZj22wbqEnOvQshTLxQXBTbTfKVzgU
FHTLTDWDj3CpKsP1PHqUTe6VcBSRmsRn444PhQ4FPaGkJQSaSIQjN9wkPsKl
devw26vR58KD4KbabpSvcCiiLwFHu/R/8dmzYKARHsR8k4axcCiafpMP8jlS
2//mqprkcvNQ0FO/6QtgzQjEC8qGgtbJo6aaxEe45HvQ1HQku01K2guHoukl
1SClYXKveMNMR2HcpAK/cCiavvwyyDJSikh4A07HIlqTFgPzUNDcaUPbVC+t
NmmJeOHxoagNBc3F6XgM06THSYvKhoL2uUVNNYmPcCkVQ4+aXho+1kez0/eY
OOUN6Anr+0S68MgD8W7bIA/dlzS2S9Vj/n+6LSmw4m7mpN/3fvTmyTT4+rw8
mRrcpdW7LaNlivru8qYyRXo5ekMZhW4CKFTUN4xHyhT1zeHhMkUqIZ4ro9C9
IIWK+n7vM2WKtAr1ZBnFGWK7UFG3BD1epqhv1z5apkiV0NoyCt3OX6i4TBQf
LFOkfGVNGUVbbGfFYWmIvnLbEY37eihiez3MT1Xx3d/LF9/rERrjYQD5OzzM
96NrbY4Bf6+H/173wzatv9cjNE+INrrXIzSDyYC/1yPkUYjW3+FR6OvIgL/X
I+SFiTa61yMUH8iAv9eDaE8SjXU2rb/Xg2h1h+B6m9bf4WFG9lqbYyD6JlIo
+yAD/l4Pop0lGhttWn+vB9HqxsOXbFp/r0c9Qc1fFX7MJjX2dxjHm2y2iXRj
x0r5bYsNb3e/V7sVxyfpXMFuRad7FDCo+KNt9IQbtU1pnkGXnwzo5XdozxaQ
XZlaYWeTTUsPHqKrAIRzppvGHPJDZED9kEOrMYccdBvaND6M2LTRVzfIgB6a
NWwbUG9PYZBWNqlLTjjRmEOelFIjdekObfSJHxnQQ8GcOKv5AWVhVAlQm5Mf
aF5DboHIdE47tDQv6TLSlFNX5+RjOqE7Qdq2aDh5pGa95EUo9aOtemttAxSv
aLcCzQM9FOwoAxzozJS01qZHgh1VDPQFlFWgSykl7QPqq9fopBoiWyUavRQ1
UPTYGzqu5x6bNnq6Dx0ulGnXB3tLtGT+Xps2enIS9TbTjgR7Gz05KZfYLwRp
o8dHrflPaTcEaSlLJtr7bdro+WR0yTLti8HeRs8ne8CmHeSQtuxZNgZ7OwW0
pYfePZSEmwKWuxRX2BQvBT6k1Yu1k1BUTY7iKIjMw75MR/ywTXaxM6x01eiA
r0eSwhiI/HO+dMmrkPYCUaS1fA35VI/kXOFlEEXP5aE2yhocU23pI7kzLfCp
S48l2s0g0pVG8umaGtLKZc7NtoBIi34KbJrSUsbp0NKCIRmgNtJ9IpkaB5F/
zpcWE4W0Wp5R+aJFEOWZOdl+BUTRF3OjbY4p/whk/XzUpacS7asg0rU7ytz1
atBa4NM2rdbM/hlxVINn2q0gouImWoqRbq7/XgORLrLRZNFSrJBWV1loaqtb
oLzh2US7LfePQkEH1M518Ot6KfsqD3JqbeliLao9n/7YDjrE0xGe4aRI/92B
PuUZsUFU3TpwXcF80QapI91kg8gHOXBddhizQbr4sdkG6Vr6uA0iR+DA1b9s
tUG6ZrXNBtGcduDqKl63QXog+U4bpCsTu2wQTSwHrvP1nV4QV/7v2ZDWkfPS
k7Qyssc2m0XVH1Pw/7+0ZvwLwPEktg==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 282.688}, {287., 0.}} -> \
{0., -3., 0., 0.}},ExpressionUUID->"e2c10d44-fa9e-4dd3-a2d1-0c10e2b217f4"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(45\\). \\!\\(\\\"gyroelongated square bicupola (J45)\\\"\\)\
\"\>"}]], "Message",ExpressionUUID->"6c050ca1-8f7b-484b-ba3d-692036e24577"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .80777
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0798319 0.112045 0.420056 0.112045 [
[ 0 0 0 0 ]
[ 1 .80777 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .80777 L
0 .80777 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.47199 .56445 m
.58403 .56445 L
.58403 .67649 L
.47199 .67649 L
.47199 .56445 L
s
.58403 .56445 m
.47199 .56445 L
.47199 .4524 L
.58403 .4524 L
.58403 .56445 L
s
.58403 .56445 m
.58403 .4524 L
.68107 .50842 L
.58403 .56445 L
s
.58403 .67649 m
.58403 .56445 L
.69608 .56445 L
.69608 .67649 L
.58403 .67649 L
s
.58403 .67649 m
.69608 .67649 L
.64006 .77352 L
.58403 .67649 L
s
.47199 .67649 m
.58403 .67649 L
.58403 .78854 L
.47199 .78854 L
.47199 .67649 L
s
.47199 .67649 m
.47199 .78854 L
.37496 .73251 L
.47199 .67649 L
s
.47199 .56445 m
.47199 .67649 L
.35994 .67649 L
.35994 .56445 L
.47199 .56445 L
s
.47199 .56445 m
.35994 .56445 L
.41597 .46741 L
.47199 .56445 L
s
.64006 .24332 m
.52801 .24332 L
.52801 .13128 L
.64006 .13128 L
.64006 .24332 L
s
.52801 .24332 m
.64006 .24332 L
.64006 .35537 L
.52801 .35537 L
.52801 .24332 L
s
.52801 .24332 m
.52801 .35537 L
.43098 .29934 L
.52801 .24332 L
s
.52801 .13128 m
.52801 .24332 L
.41597 .24332 L
.41597 .13128 L
.52801 .13128 L
s
.52801 .13128 m
.41597 .13128 L
.47199 .03424 L
.52801 .13128 L
s
.64006 .13128 m
.52801 .13128 L
.52801 .01923 L
.64006 .01923 L
.64006 .13128 L
s
.64006 .13128 m
.64006 .01923 L
.73709 .07525 L
.64006 .13128 L
s
.64006 .24332 m
.64006 .13128 L
.7521 .13128 L
.7521 .24332 L
.64006 .24332 L
s
.64006 .24332 m
.7521 .24332 L
.69608 .34036 L
.64006 .24332 L
s
.02381 .4524 m
.07983 .35537 L
.13585 .4524 L
.02381 .4524 L
s
.13585 .4524 m
.07983 .35537 L
.19188 .35537 L
.13585 .4524 L
s
.13585 .4524 m
.19188 .35537 L
.2479 .4524 L
.13585 .4524 L
s
.2479 .4524 m
.19188 .35537 L
.30392 .35537 L
.2479 .4524 L
s
.2479 .4524 m
.30392 .35537 L
.35994 .4524 L
.2479 .4524 L
s
.35994 .4524 m
.30392 .35537 L
.41597 .35537 L
.35994 .4524 L
s
.35994 .4524 m
.41597 .35537 L
.47199 .4524 L
.35994 .4524 L
s
.47199 .4524 m
.41597 .35537 L
.52801 .35537 L
.47199 .4524 L
s
.47199 .4524 m
.52801 .35537 L
.58403 .4524 L
.47199 .4524 L
s
.58403 .4524 m
.52801 .35537 L
.64006 .35537 L
.58403 .4524 L
s
.58403 .4524 m
.64006 .35537 L
.69608 .4524 L
.58403 .4524 L
s
.69608 .4524 m
.64006 .35537 L
.7521 .35537 L
.69608 .4524 L
s
.69608 .4524 m
.7521 .35537 L
.80812 .4524 L
.69608 .4524 L
s
.80812 .4524 m
.7521 .35537 L
.86415 .35537 L
.80812 .4524 L
s
.80812 .4524 m
.86415 .35537 L
.92017 .4524 L
.80812 .4524 L
s
.92017 .4524 m
.86415 .35537 L
.97619 .35537 L
.92017 .4524 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 232.625},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztXQl3EzcQ3sQOFMJ9BNr0CP0xQA96P3q3cQMlIQkJjsMdEu5e9O7rX+y/
cCPNdGTvfruezUoven3ivXjt0ej7VmOtNBpZw4VOb/7ycqe3MNeZOdftrM4v
zK3NnF3pbotaY1k2NpNl2T8zmXnf337LL/bfGfPCH2q8/9tcXjc4VwYEWasv
wNufXrGvbZEx8+VRNSYGZf/VzC6NqjYsGzev40b0Tb2Kbak4SxWfAaWDSrA9
AvZVc7AXgOxzgn2aKzIGO6SE3Sf36AFsUsA+papP7AV/pdqGHxTQj6nqY6DU
ArL9SoLDQPZRGKoj0hYmeASUJoBsn5LgmBB8EIbghBC8RwQPgdJeIEP9FxFM
AdmFMFSnpC1M8EBpGESKCE4LwdtEsAWUJoFsT50W5GSBqE5KW94lgk2ghJ5p
1NsQwXEheD8MwTEgY6r7oAgNC20lVeE5901wSAguEsEGUDoKZGj0Kh11czKm
ugeKjgPZuJKqMGv4JijMcXeBku3fJVPVa0C/Yj72AV/wHe4AJXr820OgJXgF
x6YhHupHjHwbFL2Yk7lmt/MmsTc5R0q3ANS0KOUBsiEXU1HXvmMf9qa5dIzg
/IBA0bu0srMJNsEm2ASbYBNsgk2wCTbBqmEHPdM/zcX6rlmLNKlS9mo94D/s
pWJNYjkQwDlS+02UStetoyB+ESVNIMLc2TTQY8M8F7DyEFBhdZNfmphPb1DZ
T6DID/IPcqcoJlMVCUchnzep8DsBLY+t1gZ9KqAoXlEafM/J0PL9LSJ4Aoq0
VGgViqIeHBN7JG1BsSAPBA+E4ISSAD04qPUcodwUAhQn9UCAAlVaKhSIQz3x
HaK6J21BDwoiQEMEen44QnlXCF4KQ7AhBKeVBChyjCLMHFzfBEUnw1BtSVu0
BGgkRKQcY30oBGgwKI3bKfoYb3U8FgL0hHogyG+NmU/arTG0Q4QGlw+J6pm0
JRDB90JwQEkwyeZB8wdHhn8UUO2GWJ7cgPE233Ogrt14qYD9We5RC1YRCv9V
wLSbEN9Sxd+lojYgzxWt76cL0XKNv8ylNULplCC1nGmgW9DEofUtQ/4ufRGF
Ocv0AORN7pYM3TrNPjz+Fr7imO6+fL6p3OiY/h+UvVzedOTzoccbPVZJrw+d
KHIykmnDmRZ5Y2g2Q25h0sOrI3Is4SoTLTFib2JMeuRZQtMihw717qTXhwMq
mxatntBaL/YmxqRHiydoWrQITXpYDz31bNojpUXDMhT7Snp9aD9aRkMIFDWI
vYkx6VFQoaIoyTQyFB1j06KicvUk05sbmjGmhyt2PTR4smmR1dPU5kMPWh05
FDE5PLHrUdeEpo3J/Y5dDy2v2LSoQ6PFW+xNjEmPejc0bUyhjtj1UCiLTYv2
/1CgLPYmxqRHcxUchlF4N6bwc+x6NHAk04YzLZrh6Fc5cWzrhSibKm96/keM
Rn13N3ML+81892j+zO+B7v7dD8uob9L8ZCW2mJ5keAg/bwJz3f5bH1UDf++9
UdWGZS5ZQZcqot8Ra0/Lu3N+q83B3CHEawR2Axhb+wMl9BgsNod1hzsZjL60
ZjkH3JHUBaraA0pNEgG4pAZXwhCgtTEn0VgDRU1SArjDzoEIXFIDzubRBUpN
EgG4pAazYQiQ6/slUV1XGkb7azWX1IAJVoFSk0QALqnBF2EIpoSAjz6vAKUm
iQCQwx2IyiU16BDBNaDUJBHAUSGYC0NwWAj4XPVy2V0oRi9EgAZ6ploqsyia
QRVUB6Qt82EI9gvBVSJYBEo7yjRgQZf8gaLhhOGvgqIamQEm5HZXvOC1BI+G
Sp6Sh5Xq5hegKYq7AXDNYX4BBl5X17WF5NzQPG9PcX0yIFD0Ka3sYoJNsAk2
wSbYBJtgE2yCTbBq2EHP1B2kzHaWX4CBKffkTvIL8Fk9d5y6fn4BhtgUpSb5
BdgwGwLWMAtARaI7P8h35E595Bf4jApvCaiP/AIMekNAfecX4Gx866AoENWa
tMV3fgEOtV0XAt/5BThYuCIEvvMLMAEKT/nOL8CxvCVpiza/QE2CRSHwnV/g
ayJYFgJtfoGaBCjc6Tu/wCxRrUpbfOcX4MhqVwi0+QVqEvSEwHd+Ad7WyG+D
mU+1tsH0VDelLb7zC3AY+rYQaPML1CRwyT20W2JVCQz4GPwGqNYk5wBv7t2X
e/UAtiVg2k0INIRxg11SDm24nsOZlBldFcDlGjbPT2uEkt0zP2NKKH0rKezw
/ynIxv4FKKcexQ==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {231.625, 0.}} -> \
{0., -3., 0., 0.}},ExpressionUUID->"2b22c3f8-61f6-4275-b477-63bd4b9cd68d"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(46\\). \\!\\(\\\"gyroelongated pentagonal bicupola \
(J46)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"87f83890-af2a-4681-a9f7-\
01f88b5a20f1"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .74008
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.069161 0.0907029 0.38313 0.0907029 [
[ 0 0 0 0 ]
[ 1 .74008 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .74008 L
0 .74008 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.47732 .50002 m
.56803 .50002 L
.59606 .58628 L
.52268 .63959 L
.4493 .58628 L
.47732 .50002 L
s
.56803 .50002 m
.47732 .50002 L
.47732 .40931 L
.56803 .40931 L
.56803 .50002 L
s
.56803 .50002 m
.56803 .40931 L
.64658 .45467 L
.56803 .50002 L
s
.59606 .58628 m
.56803 .50002 L
.65429 .47199 L
.68232 .55825 L
.59606 .58628 L
s
.59606 .58628 m
.68232 .55825 L
.66346 .64697 L
.59606 .58628 L
s
.52268 .63959 m
.59606 .58628 L
.64937 .65966 L
.57599 .71297 L
.52268 .63959 L
s
.52268 .63959 m
.57599 .71297 L
.48578 .72246 L
.52268 .63959 L
s
.4493 .58628 m
.52268 .63959 L
.46936 .71297 L
.39598 .65966 L
.4493 .58628 L
s
.4493 .58628 m
.39598 .65966 L
.35909 .5768 L
.4493 .58628 L
s
.47732 .50002 m
.4493 .58628 L
.36303 .55825 L
.39106 .47199 L
.47732 .50002 L
s
.47732 .50002 m
.39106 .47199 L
.45847 .4113 L
.47732 .50002 L
s
.61338 .24006 m
.52268 .24006 L
.49465 .1538 L
.56803 .10048 L
.64141 .1538 L
.61338 .24006 L
s
.52268 .24006 m
.61338 .24006 L
.61338 .33076 L
.52268 .33076 L
.52268 .24006 L
s
.52268 .24006 m
.52268 .33076 L
.44412 .28541 L
.52268 .24006 L
s
.49465 .1538 m
.52268 .24006 L
.43641 .26809 L
.40838 .18182 L
.49465 .1538 L
s
.49465 .1538 m
.40838 .18182 L
.42724 .0931 L
.49465 .1538 L
s
.56803 .10048 m
.49465 .1538 L
.44133 .08042 L
.51471 .0271 L
.56803 .10048 L
s
.56803 .10048 m
.51471 .0271 L
.60492 .01762 L
.56803 .10048 L
s
.64141 .1538 m
.56803 .10048 L
.62134 .0271 L
.69472 .08042 L
.64141 .1538 L
s
.64141 .1538 m
.69472 .08042 L
.73161 .16328 L
.64141 .1538 L
s
.61338 .24006 m
.64141 .1538 L
.72767 .18182 L
.69964 .26809 L
.61338 .24006 L
s
.61338 .24006 m
.69964 .26809 L
.63224 .32878 L
.61338 .24006 L
s
.02381 .40931 m
.06916 .33076 L
.11451 .40931 L
.02381 .40931 L
s
.11451 .40931 m
.06916 .33076 L
.15986 .33076 L
.11451 .40931 L
s
.11451 .40931 m
.15986 .33076 L
.20522 .40931 L
.11451 .40931 L
s
.20522 .40931 m
.15986 .33076 L
.25057 .33076 L
.20522 .40931 L
s
.20522 .40931 m
.25057 .33076 L
.29592 .40931 L
.20522 .40931 L
s
.29592 .40931 m
.25057 .33076 L
.34127 .33076 L
.29592 .40931 L
s
.29592 .40931 m
.34127 .33076 L
.38662 .40931 L
.29592 .40931 L
s
.38662 .40931 m
.34127 .33076 L
.43197 .33076 L
.38662 .40931 L
s
.38662 .40931 m
.43197 .33076 L
.47732 .40931 L
.38662 .40931 L
s
.47732 .40931 m
.43197 .33076 L
.52268 .33076 L
.47732 .40931 L
s
.47732 .40931 m
.52268 .33076 L
.56803 .40931 L
.47732 .40931 L
s
.56803 .40931 m
.52268 .33076 L
.61338 .33076 L
.56803 .40931 L
s
.56803 .40931 m
.61338 .33076 L
.65873 .40931 L
.56803 .40931 L
s
.65873 .40931 m
.61338 .33076 L
.70408 .33076 L
.65873 .40931 L
s
.65873 .40931 m
.70408 .33076 L
.74943 .40931 L
.65873 .40931 L
s
.74943 .40931 m
.70408 .33076 L
.79478 .33076 L
.74943 .40931 L
s
.74943 .40931 m
.79478 .33076 L
.84014 .40931 L
.74943 .40931 L
s
.84014 .40931 m
.79478 .33076 L
.88549 .33076 L
.84014 .40931 L
s
.84014 .40931 m
.88549 .33076 L
.93084 .40931 L
.84014 .40931 L
s
.93084 .40931 m
.88549 .33076 L
.97619 .33076 L
.93084 .40931 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 213.125},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnFlzlUUQhg85WQkhAQKySYKKhf4QvQLZCpU9ApKwJ0QRF0BZtFC0UKu8
9dYf5O+JfNOd7nPmPDPOISR+JlBF8mWm5317tp6e9cDU/PTFa1PzM+enJt+f
m7o5PXP+1uR7N+aeBzXXNRrrJhuNxt+Tjep74fmn/gj/9lY/9I8uvv+qfvVV
OHMS8Gf1a6gK6A0BzQWjeP7XTRH6w4Q2gNCsCP1q0FtBqFn97KmCror4s0io
ytr2VMJI7op8/GKYsVD113gSrLc1zDBmBPRnSEZFswXCegrTfipUTyGqH8I2
FVJR2otC9aNlc2gJBAOGorBPQGg9hI0WElDaT4TqB+PeCEIS1hdXbGgtGy2l
Qn1fqOFIBnQM5M9K5GOIIvENGfjNIH9GIh9adqiFD4ef7S18UTQkUpQHkJb6
7RDjvQaiJyXuW6PaAUKDjLfdEinKfUi7E8IGorCq8HaB3EcSeQ+iSDzuShXs
6yD3oUTehSgS7wPYPSB3PA1L4mQjJ9KwVAgEG3poqJQYrCLQrFNFSdbZzE5A
nKN9aXJxUaWKNAjv0dKlrtSKHGWBbHNcEKmyJPN1rJWqI4vEFnLU9Czk67WF
406hShS2K1Nau0GequJoWo1mBj5Qe/2GL+rWXVL2ZijJCsVWo/prW6HckbQa
fRk1tll+hyElmfLB7sj7M+QEv8EUIleG3AQl/yKlawCT6l+MFNciRJCTQcMi
+QCH08yxeKUCwW42RWiopzrJkMbiFSm5JTSiEtUIhB1K03vV+Rc1cyrKLqlG
jIDAdlostRcqEaW6DVGjBuZ+5gTIkW2gGv8gTTVmBAQ2abFksqkdZ6hEnMfC
fZqf0i57ME0TO4wVxH4Ioxb5b7BB13err76UuTggEJ9DVCjrJpiGd0B4ONXS
MgQjRkCV+TaE9banGKy+aKDMkK43CDLTRDpgKULa0CIOpglcnAwGEbhKH6dh
PetkBt+CsI2WQt3Hz0Cox4Ro5kKwmyzFUYZthEpJNFlCHDfEQy2ISeP4BoTR
AsSBdK5JvB6wVPUkPlkol2moywRLVUY+MsllDBppQbAkl7HyywRLmSMPneQU
lgZ10oJgSS7jKywTLGWO5gwkp7DkL5MWBEtyh1ccljJHECSnsPEMOAVRGnZk
xWHDqtOelEHXhF9BVHBZwogb+SC0jtVMDTpH0wRJJ4fcCpppNg2ABtAMs3s/
vlxDbqvPP92zIBdAqb6GqCFL6Kv5tObsVO6SkBNzLE3Vbwl7DYwcLafyciC5
DJWXvC9JkAfqVGPtKZjqmyjK3BlaU0jyRQCbjTlqZsdbSL2wvGAKsLdaCl0x
e2QB1E4IguYsCvbAwGj+RGA0zdBV3O8gqhSWupf6y/dNR8qIgHWs6tHM84TE
3TM8siYJPCrrjpV1KpsEHk3CT0kc7QFQdhLI1LBOS5zvUaTxeNpLdkK3LB4b
KOUpB0rd66xE+rYSbW3mQGnF45xEPjHQdMdmULJdUxL5E0SVrmOWbkzqBtlT
038pBLR6fV4IfOeWLGgpAYVdEIJnRkBapAm4Vi7Jx29ablE/ICemh0Wn5ffv
1a9mKq0PrrolPW7p+8y0s40id+Zlh1HhvWwO8So6zFxVF7H4coTRuPEyORas
666FLMqIyz1ra43ixv8TXdqLTPs2OTNkyFazHFn3Oukn43+tVFoJOXLo6qRf
pqpIdfI/yAVfLXLk9dVJP3GY11xV0YymTvplqoqiaNpA08XVIkerYHXST2bV
a66qaEpfJ/0yVUUGgVYcaL1ktcjRYkid9JPmlanFeqi5EnK0zlUn/aSO1lxV
1b0HZaqKbHed7PSr8WvRa11zVVV3by9TVdQJ6zSneDXXWpRbc1VV95WJTFWR
91On9a9X64KL+q25qqr7Knqmqsg5lO2yeuwX1WkvScoF/f14m6kS/z/uMI6v
mSwOWL22XKeX0z9RAhqTBLi3Va76L4dK9bpmx8GENBC3NzmnizdJS09q0I6x
H2GUI+F4A5ZMRimBnyacF4L4mJ4JvSABzQ30gQQ6fEjlXkrlt6SUgI6HDigN
VSIdoh0y0BsiRudwB7sEJVdWn4Ggs85DXcL7JTgFTd8TLAf1VwMuixidzx/u
EpScJD1clLzZ1NlZCdnvWSoeXSzZWI7nF7/0sYp5EBotx/Mbd3oG6layeIrw
yENX5LlUdiLjSbB+3VHfGJkFITqzk2z2AeyaiIXnVIJMfHgrBUHuqvf7Cy2w
HUay0Xk2IcXih4X9bHij/YCxHty7AamjK2XJC1f9Fuunu8n+TaWpXL38xVeC
9XPemUOWROqH2N04Eqmf23MqsnxKdR2i/K6dF9YOLeTIxoQ4v3ZH/eFcmshv
37nWO7Toot7nqenodIbD7+NFbSkceky+FKSI1yAqJHw9Vf5n0wlJnIZUOo6Z
gS29gENUCnu1EKL0/s+ZFYclcXpShQpBYa8UakawRH96xWFJnF4roUJQ2MuF
2hIs0Z9Kwy7ltmKXsBOFhaCwM4WFQLBEfzINu5R7q13C7i0sBIWdLiwEgiX6
Ey2wIab0gnHQMYwNWj1XDIIs95sQtsVSRIOA5vW6xdPqEF3z9ttXNE/TvM6a
EK32E6zfH6PtE4WdNyEa2PdBmN+Zo+UsLYTbWW666+8eFG2+KWyYCQyYULLM
iMBdmMyFpEsQFQhGFtqck6jq6V2K0MrIwcj0iTHL336jonaZgaCVIymOvtYw
i6OLVxnTlVuulEY4QHEmQwWSoSNx9+8m7YueIaPul6EicVr7oPvf9LgazYwz
Qw2J+7yIBnTpWUXX7TK86XOQ7WHxa0/dXJ4j/4LEqecnH3rq1ICSd6mBz5ap
X+SeTyTzqeTkY5I4NQGqntGMGlR1GTVInPpc/LRW+QXCDDmJ+7OO6UfFmJwG
GvXGaaaTvHuNvSxvY6u/Si8kZlQiKn9G0u9yk+dUel1R6Wl2S0sM3T6sV7pU
3qUaMVVFT7OG3EN95+SD1kOooGj2kKZsVy2z9EKFMVFI7wNfGwFnN3alG4vj
ZUHez0oCWYXrMLM+6lJmqIwutuKBSsknHghMlwhnLWEBROsLv7RMu9uEaMSn
wVfBaA05fhslZZyoG+vSdPqdpwqMTJdPbPSKLS3u0+4eGWGybwpLGxG09EvW
m4ZU3Yq4Y+qLUNHY7ivwuhpN20WJFX0a/GmsVWTa6cp5AzRHI0oxgLhnl3tM
ufTBR93xumsFldveIffD14f1dfX7IESNm0xD6WUNpYq3h0XzMipy5imtGAN5
fiN5e58IyEnq2Ot9qLxU2ukX2LP704+iZI2EztQndcOcXvNOHloJsznZMcX3
GkLCMDmW6pJ32UMqeXdeRF/wcf/Gun8A2bOeoA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {212.125, 0.}} -> \
{0., -4., 0., 0.}},ExpressionUUID->"bb56f36e-53b9-41ad-98b9-cf16c8701789"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(47\\). \\!\\(\\\"gyroelongated pentagonal cupolarotunda \
(J47)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"68527330-a106-4733-bce1-\
cd346c85f0c3"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .87658
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.069161 0.0907029 0.516384 0.0907029 [
[ 0 0 0 0 ]
[ 1 .87658 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .87658 L
0 .87658 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.47732 .63327 m
.56803 .63327 L
.59606 .71953 L
.52268 .77285 L
.4493 .71953 L
.47732 .63327 L
s
.56803 .63327 m
.47732 .63327 L
.47732 .54257 L
.56803 .54257 L
.56803 .63327 L
s
.56803 .63327 m
.56803 .54257 L
.64658 .58792 L
.56803 .63327 L
s
.59606 .71953 m
.56803 .63327 L
.65429 .60524 L
.68232 .69151 L
.59606 .71953 L
s
.59606 .71953 m
.68232 .69151 L
.66346 .78023 L
.59606 .71953 L
s
.52268 .77285 m
.59606 .71953 L
.64937 .79291 L
.57599 .84623 L
.52268 .77285 L
s
.52268 .77285 m
.57599 .84623 L
.48578 .85571 L
.52268 .77285 L
s
.4493 .71953 m
.52268 .77285 L
.46936 .84623 L
.39598 .79291 L
.4493 .71953 L
s
.4493 .71953 m
.39598 .79291 L
.35909 .71005 L
.4493 .71953 L
s
.47732 .63327 m
.4493 .71953 L
.36303 .69151 L
.39106 .60524 L
.47732 .63327 L
s
.47732 .63327 m
.39106 .60524 L
.45847 .54455 L
.47732 .63327 L
s
.56803 .32444 m
.48517 .28755 L
.49465 .19734 L
.58337 .17848 L
.62872 .25703 L
.56803 .32444 L
s
.56803 .32444 m
.64141 .37775 L
.61338 .46402 L
.52268 .46402 L
.49465 .37775 L
.56803 .32444 L
s
.56803 .32444 m
.49465 .37775 L
.48517 .28755 L
.56803 .32444 L
s
.49465 .37775 m
.52268 .46402 L
.43395 .44516 L
.49465 .37775 L
s
.48517 .28755 m
.45714 .37381 L
.36643 .37381 L
.33841 .28755 L
.41179 .23423 L
.48517 .28755 L
s
.48517 .28755 m
.41179 .23423 L
.49465 .19734 L
.48517 .28755 L
s
.41179 .23423 m
.33841 .28755 L
.32892 .19734 L
.41179 .23423 L
s
.49465 .19734 m
.40394 .19734 L
.37592 .11108 L
.4493 .05776 L
.52268 .11108 L
.49465 .19734 L
s
.49465 .19734 m
.52268 .11108 L
.58337 .17848 L
.49465 .19734 L
s
.52268 .11108 m
.4493 .05776 L
.53216 .02087 L
.52268 .11108 L
s
.58337 .17848 m
.55534 .09222 L
.62872 .0389 L
.7021 .09222 L
.67407 .17848 L
.58337 .17848 L
s
.58337 .17848 m
.67407 .17848 L
.62872 .25703 L
.58337 .17848 L
s
.67407 .17848 m
.7021 .09222 L
.76279 .15962 L
.67407 .17848 L
s
.62872 .25703 m
.7021 .20372 L
.77548 .25703 L
.74745 .3433 L
.65675 .3433 L
.62872 .25703 L
s
.62872 .25703 m
.65675 .3433 L
.56803 .32444 L
.62872 .25703 L
s
.65675 .3433 m
.74745 .3433 L
.7021 .42185 L
.65675 .3433 L
s
.02381 .54257 m
.06916 .46402 L
.11451 .54257 L
.02381 .54257 L
s
.11451 .54257 m
.06916 .46402 L
.15986 .46402 L
.11451 .54257 L
s
.11451 .54257 m
.15986 .46402 L
.20522 .54257 L
.11451 .54257 L
s
.20522 .54257 m
.15986 .46402 L
.25057 .46402 L
.20522 .54257 L
s
.20522 .54257 m
.25057 .46402 L
.29592 .54257 L
.20522 .54257 L
s
.29592 .54257 m
.25057 .46402 L
.34127 .46402 L
.29592 .54257 L
s
.29592 .54257 m
.34127 .46402 L
.38662 .54257 L
.29592 .54257 L
s
.38662 .54257 m
.34127 .46402 L
.43197 .46402 L
.38662 .54257 L
s
.38662 .54257 m
.43197 .46402 L
.47732 .54257 L
.38662 .54257 L
s
.47732 .54257 m
.43197 .46402 L
.52268 .46402 L
.47732 .54257 L
s
.47732 .54257 m
.52268 .46402 L
.56803 .54257 L
.47732 .54257 L
s
.56803 .54257 m
.52268 .46402 L
.61338 .46402 L
.56803 .54257 L
s
.56803 .54257 m
.61338 .46402 L
.65873 .54257 L
.56803 .54257 L
s
.65873 .54257 m
.61338 .46402 L
.70408 .46402 L
.65873 .54257 L
s
.65873 .54257 m
.70408 .46402 L
.74943 .54257 L
.65873 .54257 L
s
.74943 .54257 m
.70408 .46402 L
.79478 .46402 L
.74943 .54257 L
s
.74943 .54257 m
.79478 .46402 L
.84014 .54257 L
.74943 .54257 L
s
.84014 .54257 m
.79478 .46402 L
.88549 .46402 L
.84014 .54257 L
s
.84014 .54257 m
.88549 .46402 L
.93084 .54257 L
.84014 .54257 L
s
.93084 .54257 m
.88549 .46402 L
.97619 .46402 L
.93084 .54257 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 252.438},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnQl3VTUQxy9taWlL2VqwsvgKiKBfQlFZFVfUo4JQNllkBwUXFgFF3I/H
45f1nNqbmU7ey/slze0rz8tTz7G9TCbznySTZGZubnpg+trpk+enr505Pj21
58r0pdNnjl+d2n3xyiypf0lRLJkqiuLvqaJ8npl91B/uv83lD/3HAp//Kn/1
lTK/F8KfRij6Z4TkKhTfyT/+sHJXPPvT1Jn91wNh+q385UqWxpl+MUnL4kw/
GdMIME0azllhf2Tsy4H9KfdzaTNtronFGXl4aALGogJaadQNp0TYA1NvJTCt
Naghe9KK94ywBipOAG0YaMdF2F0TRhXHgTYKtGMi7LY1aS0wrTaolfakFW+5
X9z3pNeqmPiAdkSEfG14S5N9RwNBXfCJiP0KioYyxa4AGnXaYYH6EoqGW/sz
KF1upU/bkwq7YQTSguYGjfkGoH0kAF/EOiE6+Wj+bgLahwJw3YTlmvsyq7HZ
nlTYNWCnoaCFiIZ7K9DeF6irUPSU6UPCiLYNaO8JwGUTthGYBoA2CLTtQDso
AJegaJOBLgLABRO2xRF4UaAhDrul5NNuOQ/sWw0o2MtonLdp/zXrMvusOn8G
NZ4z8XFduW3vysM5qLYDaKQumSBtRW89HigygzfjUKE1xAaYoMiFeEOEREel
fRwJbTPQaDYemA+NR5n6kiCJ7/U4JK0NNPLUbwRPPfOawNOkehZoZA0E3wAa
7QsV4QmKVCJ42vf2x+HJQMlkaEAInnbKfQJ/AYq2AI3Mh+BpsyXvYG81eDKf
vkx48mr2xOHJesl8cuHJx9wt8BehaApoZD4ET64U+ae74vANoEmQwssPtZhc
3VerQYrJtK2vhOYa6EjaLHItngHaSsagTnTquA7YG8cg5cJgoogADBvAgWoA
rvV9Mb0HTOw7IvYyMJGHN25in4ZSJ/GDuERSxUlslKRD1Sr6vieTp2BZAa5A
0XqgucntzIAWuUQwRQDUXUMGQAvxIgD0WRdR8JqIPCmOmDRh1LeJ6NjJdDbj
EDfGjHI+EcF0cRK3m+zAySbjpQXfDa0jvcdQ1o8+ZnCFtMlRqwhU9mxeOA/G
1RgwNZ6xJ4p+qO2UUMp1Hd6OqzRo/eGzADRbclXy+ROfllL4I8Duo+4JUyQ3
1KfNk3w5cjHeiKs0Yor4jAS1lHYegiKVSPUDcZXGTJFReyLfq5GpUr9J8U1M
wHsmby3k/JCHk2uitHbsj6u02hRpWjaKuRVqgXrRNkTy9sX1Gje9KO9EHiiZ
BylCu8neuCJrVDitUNSmfNValoqEBjSiNPJkSRQpSN0sz3FXXCtvy359qqZB
6ybWAD51iY9CES0kNEOJbyt0wIxam89ZJsBzE7fE92wArvONsgk74xqMmJrp
bG8Yppc9TSnBl+JQ1KtkkjmJwvJfBP9iHJ72UJp38VxiR/C0vNEKQnyu893Q
PF8N1O/9foEg9ya0JZFYdYApRUP+G605W1VfWh0rqpGbK6E1nRYZ4iODUJWm
UUTLikASabmnDqWE1U5GLmA5KGnUSNpZ5oMKwgVqARlbhRbMzM0zB9CA0tyc
7MvzAARdFA3zc9POincMirZZg3z0QaHmokIN2tM64KM9pwG0V3KgfPxHCTHa
XBJQx6EoNKBywLwbTtEhbd6LADpmLaUOJEVoHXp1PtC2ddlv1WT+5DwlcE9A
kZgZr8b+TACtGbShLyK49+aL1uQEOfc0f3ctDNft1G4cKgKdhKIG0GhLkOnT
5l46DWmQH5MaDio4itFn/UFTi1az3Z0rEs/7gAOwNDY9EsqdgiIyXvIwgowA
qTlga353VKKl1p8xGTWVgqk0CdX2dK6NjzRojXB6uTymxvKfAlM0756xc/rs
fe5BsD2dK5Kb5SaTSaQXOlHJOwJkdZTpSyhyGopILLmBpNx6U456JJH56UQR
n4puQGlu1Lp/IYrwZrPFFKoIfgaKyLJl0cxKHeQejnutSYMNprprBB1LoXFI
iP0ZinLF0nR/vZpY6oREwvinoKgcUwrcK4r90f1qcwZJYbKbRNLdnbKNGOMi
iP8BimiHIPujBYn6Tc8qPYQiWmjo1Altl+Ti6gms7zPZHxNUbmRN5p94I/Ud
FFF/Uw6BXoAkoB5AEW2YBLVSu4wsVl/33YdqZE0UUofedSlWX2beA3aatFNA
oyMKKvZbYM+NWinMPti5WD1BfxeKaKTp7Zue4r8DRblRqoq4DUW5saaKuJXZ
dfRiVc5AFt9AUW5AqCLcwfZKkeS5pk50Fk8bJZ22kMOGMs9cRbJTck604iOr
SItNouKvVrFoDS2ojpzKE+fOcQ7JD0/N8Gg6oVG8s9gYRJMFv80Ey14L2Tul
hU18HBjUxMHuNVFobd5RF1u5WkeV9qS1XS5bVyNd4m+5cBPIPYtQJz7aRuqk
Xyd84pL9P1RPAJ8OFfkHFF3UnY9Mrk76dcIn4XKtVFpsvtwcT93boUNFMQ9F
xrnHQv8tvl5pB/FJfN/TTaQMSZ30qzhUucfvKHStEx9l9OqkXyd8Qss+rFj3
5lASsE76dW6GPTNUvTzTdKiIvU7r9H9tX4rz9cxQ9b5XiGt8nWKK/1oMRXxi
cj0zVL2cwdChyj2OUvc8WS/nBWVI/x+qJ6AdOlTxD5Pq8f6mTu+SZOizPqYq
2Z/AF4olbbzbrWyldeNtsTZx0PrVvfWXIxFtR07KCnSKazIYovL37P835fkO
D2BcEJvcDXm4nWCJi2yl+ZOmn0tVOpLSnwCiUx7+IyK5FQ8PqQxUFEp+p9wi
IgdY0GfIF++/9FWhdC9j6ogsCfUnTuXqG7yBMXVPBAmlmE9PudyM6dBucyTZ
n8RXeTeAaSRf3gqTp+ed6ErH0Xx55LvKwXO1XmhOnmT/BZHKuw5MY/ny/NF+
vW6VrocMXd3YgPuvXeQoN17cQucDSRj51yqWLpyh84Ek1n9romfD6IIfOnQT
tXAnTE9iufuQHE94+iomInpI14k90SS2ba0rmj8oI9n+PpIh06toPVWm9+LS
hVcDVmdFEsV/FeEv1KBAaDoO5dXzPUpQJLbf6pIzmAAdaa0YBfX3i3goWtoU
ii5rW9HaMU1QbV+o+U/EHD/NgqNxIH+TCDnNtFXPGYLjpOgggeZcjgFrjBNM
J5ZUBN0h6FTaVJLofOOReSoukJYQS2fUyCiIT8XSPZWkBYklvk+6LpYaRyd7
iU/F0sWnpAWJJb7DXRdLjaNz2sSnYs9makFiie9Q18VS46Yy+VQsfVhFWpBY
4vu462KpcfRhBfGpWPq0jbQgscT3UZNYV5IrzF+/rcNzzkTQmXr6ACf6Hbm2
9YKVUzKHJK6yGhQNalsvGxO9byGx/ooBygao2GvGRJ7Yc0AbthqUKNRO+CKJ
TWK980RvaVWsc/qHjCnaZwTgvRdyKpoByBEcmymaP11/IeArCr34g1yIxCRY
ZQ3aYeqRC5EQQWmd8Crq5jL6LiKxVqXSiWJ1Q1RmPNQhCbhogtb17pQ9ha5w
EZlvCShiz73AMeQr4SnqTewtxO4jH/qaJ/z2VoHJnBO4xE5zf53pEon86b1q
wqEgdprqtA5HMgRUvaIGPh6meZG6U5liIAUnp5LYyQRoeFKfLNLQJdQg9uhd
O039kv+HGRLgxD5hQNRDEwlw2lnU/abQhsJjutAo97Y1umaE9qKESgQ1af0R
3MCWAU9Br8JT/ErphA1aQh1OCyGpQbSKaoRQJXz8thBW96g8UO6DOorChZwL
SkqoRJqFOqORCe83vhYAbm74MXIxt19mtP2IVJA8W9sy63fd3Nv0TzbLA5Wi
fz6GhGkS0P+xmwwRrlS1oCzsRmOiHZ82XxVG+eEw5RBbnGgaa9rZ/4kjYWob
A5Lngxn93prS9uESF1u2aYlTsfR2YYLVpO2FNlZ9z3DTWjDO8miH92l2zTrT
G6DUlklCadtV8fTWKuUYUHxGroeshfjObXlCPGlKW6e+ybplvTWaEEqeiH8p
Ji8c8Fv83KuXcy/gUii6OSD3cmXy66murAtyz0H0Urr45WrA1/x+9r7iUm8T
UOqOZ32PHN56ERMVetAln77Ypjs6aBF1feiUkTehbRfTzMwZyHBJup1iKubu
VpFraNwc/10IjmWBf66yWPIPvMXPSw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {251.438, 0.}} -> \
{0., -5., 0., 0.}},ExpressionUUID->"252242c9-6b8e-4136-baf9-7ebd8dcd14f6"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(48\\). \\!\\(\\\"gyroelongated pentagonal birotunda (J48)\\\
\"\\)\"\>"}]], "Message",ExpressionUUID->"d0f536fb-5616-4470-bfae-\
0ba6e2cb7b12"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.01308
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.069161 0.0907029 0.519634 0.0907029 [
[ 0 0 0 0 ]
[ 1 1.01308 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.01308 L
0 1.01308 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.52268 .6854 m
.60554 .72229 L
.59606 .81249 L
.50734 .83135 L
.46198 .7528 L
.52268 .6854 L
s
.52268 .6854 m
.4493 .63208 L
.47732 .54582 L
.56803 .54582 L
.59606 .63208 L
.52268 .6854 L
s
.52268 .6854 m
.59606 .63208 L
.60554 .72229 L
.52268 .6854 L
s
.59606 .63208 m
.56803 .54582 L
.65675 .56468 L
.59606 .63208 L
s
.60554 .72229 m
.63357 .63602 L
.72427 .63602 L
.7523 .72229 L
.67892 .7756 L
.60554 .72229 L
s
.60554 .72229 m
.67892 .7756 L
.59606 .81249 L
.60554 .72229 L
s
.67892 .7756 m
.7523 .72229 L
.76178 .81249 L
.67892 .7756 L
s
.59606 .81249 m
.68676 .81249 L
.71479 .89876 L
.64141 .95207 L
.56803 .89876 L
.59606 .81249 L
s
.59606 .81249 m
.56803 .89876 L
.50734 .83135 L
.59606 .81249 L
s
.56803 .89876 m
.64141 .95207 L
.55855 .98896 L
.56803 .89876 L
s
.50734 .83135 m
.53536 .91762 L
.46198 .97093 L
.3886 .91762 L
.41663 .83135 L
.50734 .83135 L
s
.50734 .83135 m
.41663 .83135 L
.46198 .7528 L
.50734 .83135 L
s
.41663 .83135 m
.3886 .91762 L
.32791 .85021 L
.41663 .83135 L
s
.46198 .7528 m
.3886 .80611 L
.31522 .7528 L
.34325 .66654 L
.43395 .66654 L
.46198 .7528 L
s
.46198 .7528 m
.43395 .66654 L
.52268 .6854 L
.46198 .7528 L
s
.43395 .66654 m
.34325 .66654 L
.3886 .58799 L
.43395 .66654 L
s
.56803 .32769 m
.48517 .2908 L
.49465 .20059 L
.58337 .18173 L
.62872 .26028 L
.56803 .32769 L
s
.56803 .32769 m
.64141 .381 L
.61338 .46727 L
.52268 .46727 L
.49465 .381 L
.56803 .32769 L
s
.56803 .32769 m
.49465 .381 L
.48517 .2908 L
.56803 .32769 L
s
.49465 .381 m
.52268 .46727 L
.43395 .44841 L
.49465 .381 L
s
.48517 .2908 m
.45714 .37706 L
.36643 .37706 L
.33841 .2908 L
.41179 .23748 L
.48517 .2908 L
s
.48517 .2908 m
.41179 .23748 L
.49465 .20059 L
.48517 .2908 L
s
.41179 .23748 m
.33841 .2908 L
.32892 .20059 L
.41179 .23748 L
s
.49465 .20059 m
.40394 .20059 L
.37592 .11433 L
.4493 .06101 L
.52268 .11433 L
.49465 .20059 L
s
.49465 .20059 m
.52268 .11433 L
.58337 .18173 L
.49465 .20059 L
s
.52268 .11433 m
.4493 .06101 L
.53216 .02412 L
.52268 .11433 L
s
.58337 .18173 m
.55534 .09547 L
.62872 .04216 L
.7021 .09547 L
.67407 .18173 L
.58337 .18173 L
s
.58337 .18173 m
.67407 .18173 L
.62872 .26028 L
.58337 .18173 L
s
.67407 .18173 m
.7021 .09547 L
.76279 .16287 L
.67407 .18173 L
s
.62872 .26028 m
.7021 .20697 L
.77548 .26028 L
.74745 .34655 L
.65675 .34655 L
.62872 .26028 L
s
.62872 .26028 m
.65675 .34655 L
.56803 .32769 L
.62872 .26028 L
s
.65675 .34655 m
.74745 .34655 L
.7021 .4251 L
.65675 .34655 L
s
.02381 .54582 m
.06916 .46727 L
.11451 .54582 L
.02381 .54582 L
s
.11451 .54582 m
.06916 .46727 L
.15986 .46727 L
.11451 .54582 L
s
.11451 .54582 m
.15986 .46727 L
.20522 .54582 L
.11451 .54582 L
s
.20522 .54582 m
.15986 .46727 L
.25057 .46727 L
.20522 .54582 L
s
.20522 .54582 m
.25057 .46727 L
.29592 .54582 L
.20522 .54582 L
s
.29592 .54582 m
.25057 .46727 L
.34127 .46727 L
.29592 .54582 L
s
.29592 .54582 m
.34127 .46727 L
.38662 .54582 L
.29592 .54582 L
s
.38662 .54582 m
.34127 .46727 L
.43197 .46727 L
.38662 .54582 L
s
.38662 .54582 m
.43197 .46727 L
.47732 .54582 L
.38662 .54582 L
s
.47732 .54582 m
.43197 .46727 L
.52268 .46727 L
.47732 .54582 L
s
.47732 .54582 m
.52268 .46727 L
.56803 .54582 L
.47732 .54582 L
s
.56803 .54582 m
.52268 .46727 L
.61338 .46727 L
.56803 .54582 L
s
.56803 .54582 m
.61338 .46727 L
.65873 .54582 L
.56803 .54582 L
s
.65873 .54582 m
.61338 .46727 L
.70408 .46727 L
.65873 .54582 L
s
.65873 .54582 m
.70408 .46727 L
.74943 .54582 L
.65873 .54582 L
s
.74943 .54582 m
.70408 .46727 L
.79478 .46727 L
.74943 .54582 L
s
.74943 .54582 m
.79478 .46727 L
.84014 .54582 L
.74943 .54582 L
s
.84014 .54582 m
.79478 .46727 L
.88549 .46727 L
.84014 .54582 L
s
.84014 .54582 m
.88549 .46727 L
.93084 .54582 L
.84014 .54582 L
s
.93084 .54582 m
.88549 .46727 L
.97619 .46727 L
.93084 .54582 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{284.25, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnft3VdURxw95AYpGnlUgJviotn9EawUSwEcfWFsVTWKgEClKAYutRami
pQ9XV1dXf+2/mubsPZm5Ofcz+87JuSGhgbXIvXfPPvOdsx+zZ+bsPeeNxVtX
Ll1bvLW8tDgzd2Px+pXlpZszs5/cWC0a3VVVu46v/p+ZqervK1W19if9m6r/
yI8hfP9P/TFS8/8mF/xbC6rRlVyULqju5R//Unoir/5V0VZ/fZ0r/VMrjfuV
vtNKu/1Kf6s/EmUvVHpaqVdy9fvKcx9U/176O95btnaL1eX85Vtl8ITLYH0Z
NcPFzOyeMpuESoeL97+UWXyllfZDpUNQtkevEBZ3teAgVKeyx6FsITP7ov5I
FMLeX7zh+cziTvrgXiBpngqWfZCZfK4yjBfbjiQ8oFcIsz9CJeqtJ4Nlh6Hs
vQz1ByDRmKdxuU/lfgao72aA21rpifXfAr1/FMreyWx/H2zbx4Jlx1U4Abil
BQf1G11oA/8EUN/OzG4CiTqFOpnKnoOyX2aoG0AiBUIqkqBegLK3MtR1vfVj
+o3YTkDZ96HsfGb7CZCmoGykO9Q1lfuEfiO2kYapFYk0zG+h+vNQnSZaZju2
Tk+tfheBr8IVL6roPj/We7/IXz6Cy16Csj1QRiOR1qafbg7UGJS9OaCpAp1A
UDSy3xgE1dePhDYDZTTiXh+Exr1MbUmQVO+1zCQyoFecnqd2I3hqmXPt4Gk0
EPyzUEbrz9l28ARFIhE8GY5nMvw1INFaQ0OGOoTgaUWeawdPw4fgj0MZrdyz
7eBp+JAqJ3iy605n+I+BNA1lZBpE4clOPNUOnkYvwZNFRdbvyXbwefSy+qE7
Jiv+1XxBdPXPdm6ffiW0ZF+nmifbYUwyBjViEic1wFw7jObYqxyAvQogy8B1
qHTMu/sRT+4xZfvzdmzNKn4aqInj2xsQ9Nm6SHyT30El8jSs7WnIH4GylgDW
9qTkaDBfaAdgvUCKuAAQt/YrdnMPQNn7mXf6MA9oqv5GwpP66mXRM4Hqz9X/
Lyvnan20h0Zoweluspd/ifML+o0WIXcK06KWit7qhYRVLkFNa3WyBaKgeSFn
bXreF8MCD+aO0XiluUfmh2tPjPSoCxJkt7bCEa1OyzOpQ1rI7Mbodt70BXlM
LzQlSAAkCC3o1Kl0Y+IWfODdXxLkSf1Gc56MNIIi+9IwCoJYNCaxTUQyw0gQ
19RL/GjCnvMFmdQLrZ9JK01DGQ1RWgMsQlgQxCr1aKX6F+nfGSij4UHSEL85
X67UGKmIQkZxQZylenZAiziKiG6C7PKsfftsKFNRBfzo0CDcEcal4XzSl8BX
z4PrPQ8SrEhPzuj9FMBJL0Rjs80wkoxliua94ktgmqQcvKVYGIXdfuxDkb6N
BnSbYZ36F8H/yIe3MG453DsEKBo/0WCwWTUv+6DzQCKVQIYiBVBpIJc7mCSw
BcLmPqE9J/KS0mkJScqX1nqyEH2dUh76A0WqBgWbCZmWeQpSvsLIddtR7DMa
5xwEle7lJf1Gd+B3degO6l8GMA3UaJjzJwMA+pUmxRSicVxBWwCSxe3T+EtE
WqBJDW0YakK/kcohN4BWzFcjUKZSac2OGr0CtQgkRy+ZPRt9PjocXHscSj4G
WcU0sE62xjVHgqYAeecF3A+BlKcza+R0W6k6qSjq+CGC21JdrY8j0Ngm7/vU
xnCT7TvmTaIC0BKQpqHM9WH6zcmJlYpdrk0Sg6BsaR/VlqH5TdrtdDuRaKk2
25QmwJiK5O7lYZEuAomsBxr4pEgJPtl449702SThSD2Zpb9P26sxqchcnO0u
zV5FpqGV+vZYXSRPwy5BJYpokRnj6kcLyDSoFDye7S4ImfbkUNMwKkQPuohk
HjaNOhoyBUF+AyQKHZNRSGPkGRWOWoRWmTPdBYk+vKR5Tavu2XYicWyr6o0d
kGVIk0iQLwOJJnVzmtSqgNwcmk40ic71wB9TudMdkEMXja8I238AKcqWRtNr
3dnSbJGndn/XWycHnlqUOlmYpW2qMcecBmkhdP3X9BF3wt2dccz+PpCizjVB
USfIc4G/ACnqTdPwIN0pm5u+DVYfAtQ3QIp62GSZka77WYa6B6Sor00BPOpn
gfoaSFFHe1KajEbs+e7s6TG9PBL8CqqTBiAvs7lO9LD9M1SP+ue0Ikoj3AVS
1BeX7e5fAol6mhbL5cziCyBFPWRhcSfQnANY/AlI9JCcXKm8kzHv+w4YRgUW
abd3UuItL0yNmEY8NR2ZcXnrYJ4I6UIap4UL7+uFpGwKF36nF0a3aORNd7k7
0rxI5N09pQFLhhhTvWhZF37Ra7PW75vCtWZoVq/Lmmy9etGyLvwi19a/JnbM
LZaeoB4u0A5t8LqN0jYDbzBPMuL8AFNA10fr+fG1R7iRetn+G3pXPYiufxjl
64IrXUX2GfkX0XrkkHfh9/8iXxfc7ItsK5G2e5NtcVdFtweRgxWNR3XhN+x6
WyVfF9wcLwpvpiKPKFqPwiJd+O003Fw29K6iiOGwm+JhlK8LrnQVTcztJOYj
3DXlOfSu2iqls93l64IrXUXVt9OS+gh3rV542/JOM5C3E27m96irHgJc6aro
loqdFszZTri5S4feVVsVIt3u8nXBla4iyyQ/SXtYHhg8OJ752VTorE5dfSse
M3W99uCOucUJ7ddEzmMCdwZlxn2brNMYuTnosvVlE3phzqKB24Pc8x7pwuV2
F07qhRfbXZgaJBXlYwe4vYg2ItBjvPl2LGjPw0I7FrQbQG6ENi9FU7B82I4F
ra9L7ViQlSRdSZlYaJdPNLnPpe5syaPKm1v7kvbYXBzMlpzfyz5bknYGyshO
kf1MeasJrwM0MFqyp3xdtJpT7xMULePLPpR7YqJRRlsFaZePbD6iTG5k0dMo
iR47vLo5ULT9U7YbLQOJFkjyJWmzKvVzHsUyOgZ3rQ/FI/a6zz66CdjJQZiz
2eA28uj+37R3OG1/vuEzIw2wWy80FrIg04b66Pmb5vCoGzDdS9qnLluI6VgF
Ob52kuUENyC1Em0eer0dLrWX5TOl+U9Dms4gyF54Ot5Dy100h+smiUS62s41
EbNottKCIHRwLXre9ZAKR3OFhKPTPHIOgg4xknFlp+VoRX6AgtB65z9r7yRS
sgaP1xQCsIO7pDZotaCzbWd7oBokcg9s+617ZPiBSrNSOCQZjZO3FG4BSOSe
7FHh7PS6HVeLxrWmoexMO0FSh4ybUo1nEyc7YAgC7VeBqvVnNYcgwzyQXAcu
FZViLZQvda4dUHY2+7IzHNhcVNJcI3rLpVMnBXBKC+NmrqT1qScTT5+VQSlq
CkmWou6wWTePbxouzeU06UZtkWyDS0nhyOckq+opvd+mRVB3LiWtPt0OlDSo
ZTQwBTcEKFpJjmi7jkSgLgBpBsrIxj2qUD8A6ql2AG4mwUYSmtl2bMnwaTZl
BaOtMqj3gEXUq56GskCuoFPtkKO5uKOJk4YgEtkMfh65wRYf1ROR3gVS1Gkn
kWyK2vl06tuB8Lx+kGjR3GEbEiOkWaOJ0iSlyztAMg8+epQ4mgiuF7QRLCDV
Ft1nQ/UEKjLMvfWikTDITUIhUBe0UjM3TS8QNWmXLIaF/IQWY2jOGE8QSuhI
toaAzgPpaOPelVBxqIOssNKprEI29AWVmeIBpDWimqQJWgtChmchT5LFEkij
RjPcJUF6jHmEX1Ioaqwu74CwZCyWUohsYBGEAmSkKqLvhSCRbMhaCJLMVBHJ
DUa6qwNNxGmPy2hYW1zWSqS9SJCIBbSy0ptV2UxkMjBFkGhInUQiW89NSDyi
w3bUW5QkqdtHWt3UUHQnLplB5pKZIUCtKfCl500EGU1ZPabgZg9Tq4oY9DQt
GoYiy8u8YrNZaeYJPD16pE6gMU6OemO9J9UryPR6NRclFf1Qv4kRRa9NI62Q
ovtTnj4VeT4DEq2KSRO6h+jpQcKvfABSqxbfigbB5RUPt4FEN2x7ImigbQiA
92pQXxTYpydJ01430WCXt619rIi07FGktSXAsgKQzqSYIK3JBYCLCkDzPAG4
Sz0pIcleMq9saSQ35a6cdb4AkKzhRInkYKwcQQYBNEg+VJ/vRHbINJQVXujg
pwPhtYN0WAHSzTVPZr4DSd5SAXIeSNGcLaTzaL0gs1ZedLcApGjWGZrftMYX
4OlhTDQdLd19S3jyGqKZf+ju/VTh68vkTSH0oDSazyhqwBfg6YFxNLMywVNZ
AZ5clWjuqeh7JShcI5m1yC2JJvGaECFo/lNYQyBpZ0c0RVmu16dTC2i03SWa
e80cOwpPS8Y1cmOieeTMPbHwtIwL2tsUzYTXtAjqDqExIFBXpVGoH6OZDRsh
6XXvOw3lIYy+saWwMNtLWymFYjST5yCjruFOuJmFG27frzMLeueZOzICd0CG
h0DRO8ZoGhMUBXPl3Wj0ZjFzK8l8jwZuBeCmMqPl1j9zPHgBk3ejfQok96k+
lTVCs/OZLb152l6qTjccDb8KAPk6ZH27+2cakQ3Zx/yZFpCRR2ZQKUwq25Kj
rrTrzjbUl2xLpqx61hFkF9sLvmQLMuX2owWXmFlcS7bw3tECmkU0OS0pv+yX
/RIqWZDTHZeJKptT76YP7g+KiFigTk4gNFNKehfaW+9kMymluHTTKPfuzfwv
VDK1+alfyZ5J3y5VqtZCMZmeyJ/7Fwgp/Zjq/r3a9T/NuirP\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 283.25}, {287., 0.}} -> \
{0., -5., 0., 0.}},ExpressionUUID->"2d51372e-e63f-4f21-8493-02e9ce09d820"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(49\\). \\!\\(\\\"augmented triangular prism \
(J49)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"85f9f31a-1b48-499f-a038-\
9a9ab234248b"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .73205
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.372405 0.25519 0.366025 0.25519 [
[ 0 0 0 0 ]
[ 1 .73205 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .73205 L
0 .73205 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.24481 .49362 m
.24481 .23843 L
.5 .23843 L
.5 .49362 L
.24481 .49362 L
s
.5 .49362 m
.5 .23843 L
.75519 .23843 L
.75519 .49362 L
.5 .49362 L
s
.02381 .62122 m
.02381 .36603 L
.24481 .49362 L
.02381 .62122 L
s
.02381 .36603 m
.24481 .23843 L
.24481 .49362 L
.02381 .36603 L
s
.24481 .23843 m
.02381 .36603 L
.02381 .11084 L
.24481 .23843 L
s
.24481 .49362 m
.5 .49362 L
.37241 .71462 L
.24481 .49362 L
s
.5 .23843 m
.24481 .23843 L
.37241 .01743 L
.5 .23843 L
s
.75519 .49362 m
.75519 .23843 L
.97619 .36603 L
.75519 .49362 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 210.812},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzFm/lSVFcQxi8MGEAWEUUEcQZFEBFEBBEwQtxIqpJUkn+z6ISokKpUUsbn
yKrZ931PqpInyQsR5g7pntFfnzlnzs3EKpmhu8/3HWa5t78+3U8U72zceKV4
Z3O9WFi7XXxtY3P99cLVV29vm3JNSdJUSJLk70JSer61/XTnR/pvpPRj55eA
5y+nD7ktwdn+7c+ars37XKVt/FXTtZE+tFYCSsgO8C3gzIHtj7rCb4KrFWy/
1xV+A1wPge03O7wNbL+Ww18CV7sdvg6u3WD7pa7wF8HVBbaf7fBusP1UDi+C
qycsfA/YfiyHXwdXrx1+DVx9YPuhrvAXwLUfbN/b4f1g+64c/jy4DoSFD4Dt
23L4c+A6aIenX4XmkucZCBoC2zcVC5OWyitK6f9TsOIQ2L6uROGLz5OwbLgW
VLWrWf66x8F7GGxf2WAtAvYYePNhYLvAdhVsBbB9acPq23kFvEfA9oUN1i5g
F8F7NAyMrlsrYBsF2+c2bKfs8QJ4j4WBdQvYefCOge0zG2yPgC2CdzwMbC/Y
zoLtONg+tWH7ZI/z4D0Btk9ssP0CNgveyTAwuiCeAttJsH1sww7IHqfBOxUG
NihgtAsi+MgGOyRgE+CdAduHNhhd2ejjGwiblz3SF4ve9Q9ssBEBo8vSmTAw
uhjlwTYHtvdt2FHZI72i9J1xgI0JGN0Q6dv8ng1GX3TKCs6B7Z4NOyF7zABs
UsAoeVoC210bbErA6Fq4HAZGVxLKZek28K4NOyN7pDyablDv2GCzAtYZD0af
e5I1q2B724adlz1mALYgYCTnKAV5ywYr33M5saQ8600bakn2leT+xUgfKMVy
4KSf0XtbsgF730S2BsFlnAdy8Ms2/DnHy/KoycDxl2yas/JXtJigtW2avT9i
U81JkG9KTTbN7VdsKronxZDS2vM2/WnZI1UYfElVITioTkkQpe2+VKoflmwq
SpNiSGntgk1/UvZIl2xfUlUhDqoTEkR1EF8q1SjzNtVxCaKbpS+VKpgzNhUJ
mRhSWjtj0x+TPVKO4UuqOshBdVSCSJz4UqlKmrapKCOOIaW1kzZ9QfY4GEGq
WstBdViCKCn2pVIlNmFTqcKiZN6XSlHGbSqqm8WQ0tpRm/6g7HEkgjQvKA6q
AxJEEsyX6n4tiFRUUo0htTUj0u+TPZKS9iVVRemg2itBJPN8qVRvDttUVGOP
IaW1gzZ9j+yR6kO+pKpaHVRdEkRlHl8q1bQDNtVuCSKh6UulirffpuoAWwwp
re2z6dtkj1T98SVV3eyg2iVBJGZ9qVRV99pUpD9jSGltt02fkz0uRJCqNq+i
aqkMkhAqUfsSqW7vtIm2n1ONxpeD9tdewZZ6qFrjS6AivxI2NTwcAbssKG38
2pQes3htUo6OSg4W7VR18yWi8l8VZbVL5Tst9CXVUkKXTaXyncqoQV/TFKXH
pmrgZYhqaqcjSGmtg17lewyplhL22VQNvGE2MA2gijKdqfmS0loHvcr3GFIt
JQzZVA1MWBuYhv/PgqOB0qqBgnFIgvIRVMOCMmZTUbNITJWB1jroG1jaKEjQ
f16wOSJBdELoS9UvKFM2FbWCxFT5aK2DvoGlxXEJoq40X6peQZm1qVQrk/T3
pVLdPmdTkaSPqbLTWgd9A0v70xJEZ7W+VB2CsmhTqVYm6e9Lpbp92aYiSU9x
vqTmoajjuC3dYwxpq6BcsKlUK5P096VS3b5qU6lappZom4p1+0WbaBGWJa5T
3gdCHefIqYzMOfFS0xUbIn3n75ZMazX+CN/j8DdsHFKgzWC7DDbHkb6KU/rc
BIKp/CThF9j/QGfVdGy8CjZHj4aeQdOFLhBMpSEppcAOFzpHzgBWbyJ0Zw7s
D9ITYMooAsFUmFEiFthdRae4BEt1OEcHmKZQlAIHtpPp+WsevIH9c3TCmgGs
JuKk2QK7D1VAULtlYIeknluSRA/s3aTzTYKlwpGjv1RlKDXUBjarqnymmlJg
dy6VAjKA1WIGvZuBvc1ahKHG1MD+axIH9F0I7BFX3UBXEup8dnSvaymPLp2B
rfBagqQ7BF0fHe36lJqvgI1KWA5YzdovgTdwckIL2dTHGDjd4Zs2B06gaEZN
IzdUq6qajeGcmUaBCmFQCU8n5cFWOQOUemhCKnCs6WmwOYasngWXY7KLJsio
rOQIdwycBY6zBQ7LZTC55wi/Bi7HGOF1cFF7myPcMQIZOGAZOL6ZwSypIzxw
sJWmbOkS6wh3DOVmMCHsCL8Jruymm2+BK7vJbI/R8Ppmzh1D7OkvAaPySdM/
toGcIw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {209.812, 0.}} -> \
{-1., -1., 0., 0.}},ExpressionUUID->"7fac58e4-1339-458a-af3f-737303658d60"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(50\\). \\!\\(\\\"biaugmented triangular prism \
(J50)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"f957d94b-1b5b-4e66-be75-\
d80453b84038"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .60672
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.5 0.132346 0.303358 0.132346 [
[ 0 0 0 0 ]
[ 1 .60672 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .60672 L
0 .60672 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.43383 .17101 m
.63235 .23719 L
.56617 .4357 L
.36765 .36953 L
.43383 .17101 L
s
.29499 .01445 m
.43383 .17101 L
.22882 .21296 L
.29499 .01445 L
s
.22882 .21296 m
.43383 .17101 L
.36765 .36953 L
.22882 .21296 L
s
.22882 .21296 m
.36765 .36953 L
.16265 .41148 L
.22882 .21296 L
s
.63235 .23719 m
.43383 .17101 L
.59039 .03218 L
.63235 .23719 L
s
.36765 .36953 m
.56617 .4357 L
.40961 .57454 L
.36765 .36953 L
s
.63235 .23719 m
.83735 .19523 L
.77118 .39375 L
.63235 .23719 L
s
.63235 .23719 m
.77118 .39375 L
.56617 .4357 L
.63235 .23719 L
s
.56617 .4357 m
.77118 .39375 L
.70501 .59227 L
.56617 .4357 L
s
.77118 .39375 m
.83735 .19523 L
.97619 .3518 L
.77118 .39375 L
s
.22882 .21296 m
.16265 .41148 L
.02381 .25492 L
.22882 .21296 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 174.688},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy9nH1TFEcQxpeXiwgRRQkBMeypqKiAURMtEo0mKkoU40u+AGWlSitBCZB8
rHyMJPqlCDs96T2OX/f1Fqn4x8n1sM/0dPc809Mzy+ra9uuf1te237xaaz/c
XNt4/ebVVnv53eauaKCvKPraRVH80S6qn3d2f8wf6d/p6iN/6fHzj+m/gR19
dvfb+55NL7uaqq4/dDYNdj5V/bznwdae1n8B/pYfXkC3AyBbrT77K9Hv9oOD
IHsMyjsQLZCt8CAzynN44hDIHoKsH2RbNuwQyB4EDdgQ9j7IyLwZ9hk0DYPs
O5CRyR3YEZDdBdlHzWA/Btnt6jMFHY1lU8B+gKZRkH0dNJEDexRkS0ETObDH
QHYzaKIM+xSajoPsS5AdaQZ7AmTXg8b6tRnstaCxMuwqNH0Css9BNtYMdgJk
C9VnitbxZmCfguwyyBzYJ9A0BbKLwbFs2LAnQXYhOCoHdhpk50A2acN2LzXV
t89AdjZoLAd2BmSng8ZqCNsG2SmQvRPY74MQyTApWstmYDRMcl5D2DMgI6fQ
WDLsCjTNgowik0blwFJkEtVQqL21Yc+DjIiRRpVhH0HTHMiI8GhUDiyRCbE+
jaohbFqjUrRSawajDI94lJbnSyBbt2HnQXY42L0DuwAyymWp+wy7DE1XQEZZ
H3XvwNI6SqnvYjPYq1m/Dpk07P6jjOAXaaREvDsvqSAoV3EgUo9JmYZ9L+iD
tMtI38gvGZHy/4uKSLl12h0kEUWHAzursDQxDiksTZGfbdhSYSllG1ZYyh0y
7D1omlZYSodGFZYo0oGdUFhadMYUltYJB3ZMYWlpH1dYal3SVokT3Lwd0Q5o
AZ1UCMoYruuzFKELdqdD+iA5b1o7JVMu6rPdQVxNzkW70wF9kOJ7RjuldLae
ORLi+2oJebDfgkrpd4nqzmiX5hLdEf7MZzKU4k71X+qINmjntCOaSaV2RBOC
+FiW0OIrfZDc/wXI5lQR2mBPKR75nYoXkpfImM2QIEXmVRGirHHFo2lFC5+E
sXjZCxNaO66oLlTHOaqQND9pbZdsSTKHnvFDa9I1VYiGOqy4NHcdhc7rg9E4
o3X/hipHQdfSPmiOk30lZRXjDjaJPcp1lhRFxpMa5ZvBAVRAkpVHNlhpLLQH
JdfQmG9Vn/0WM1D0y5ZDqL9lLVnkZ1rfb4OMJiSVpiTghRyTIrQPIJ9Sin+r
S2YxAxFTLr6PqiKUlTdTJMQMtBdqy+8fVl0oB6Sootkq3okzg6NQCogUZ2RV
ijPyZreXdhowA21Iyw7leqT2O0YU0p6W1IxyBFVVZZnBELoKMopRKhTQ5Ivy
BqUkwkO4TyVuo2ihRYysGeUXqplIqoqTgCYL5UREeaRmdNJTTik1L5wa0bgp
QUZOj6pJhS2pQOLUiMYNZVFkzSht0RItMjyLILY+iJpRMnPUpBlMDrHDu7fT
o2RGJebJZmra4d3bmlEyo2FLvCLRUMnSDu/eakbJjHI1MQ8STTRu6NSCnB4l
M4p1CbZwYZcsRxYma0bJrA0y2T0gBNVsKA4pXknNKEuQheVZhIjGDe2TyOn/
gZrUVTRuqHuyZpTMaPYf///UjJIZBZvMHRxpCTIKb5p+5PQomdHUFZbAkUbj
hoiGrBklM1rnhXNxpDRdaFoRbZOaUTKjZUVWMBxVNG4obSGnR8nMPALj+kY0
biilIGtGyYwyM+kDVSLVaQGlBI3UjLKEoyY5JBo3tI8ip0fVpHR8pJmaFDe0
eSBrRsmM9u6S+eNqEA3vqJpRMqOtonjsQOFNJ2/k9CiZ0cZbTHGguKEyAVkz
SmZUTZI9Pi6MlNzRppiKLqRmlMxStSWJsg0pqKPRQgVqcnWUwpKfOk4XMJTt
GOEy3zfw+1GymlOFjjVTSIpa+2qgpEt0qp9VXfI2hiYQRWaqA6bC5Z0DdD+j
3ed6CSWxFHH19QCK2yiDnFSUUrqneWlWmvxLBnRBNUoZibyTn/OhBk1ECq36
wJUqgakknEQ3rDEFiKI+W8/niNHzhfpolgKqpcoR6UWJoj6Xz0fL0dO2Uh8k
Eh1S5UgRjyjqcz8ZFrIExUB94YIyjhFViGLKIIr6mO9mM13qWxqUatSXPwiv
JooCDvdk9iJf+LFHnFlfF6H5kuyfbCLXDbAw7scUBdMJ7ZSo0yeKu6LI5Wx4
P37I0RPaOWUt/sWlbIX5bGwzVugoZUr7Nbdq5s2m3G99bZviggjqlHZKe8ZS
O6VEI3e6qJ3SawmldkBpqX8DSq7O5PtekDonEeX1/g0oB3ZWYakW7N+AcmAv
KCydK/j3nu7ZsJcUltjXv9nkwC4oLNGFf3cpw65DU2L5RjcS7ttgdXZMdwmc
B7v7KYyJ4UDIcsXUQifOD2wo2oDSITPxRYZ9C03RnIiM7sBSCkiRR6NatmET
pfZb1EYplANGy2X0wNCBpSlEFEHrn9yOzlfw9zbZFVEwURyWUm5KwchYDixt
JIi3KXl9ZMMS61HZ2oHdgKay+uy3FgGyvANGhE91QTLRig1L5RtKB8lEDixB
RKvpDizlJW2QlSCT92TyO16Q+AQGTCNwYFOKn/xPgUOWd8Co9GdeGO6SPbZh
KcxprlOoObDRCiBZPsNuQhNRCPEopZJPbNhoZZb2bA4s8SgteORaBzaxvnm7
jCy/aoPRpp0SGqqVZtgtaKJ1lN7CJYc6sJS8UkmGLP/UhqWiC20lqHznwFK5
hGqetIw7sGnbl/zffcO++kaphrwnXWxDEyXY9MIAOdSBpRSSXuloCEvbbXpd
iBz6rBOWc2d6i5CcuAdq3yab3kWlJDWj/Fb9l9xJrzNT0vy840GcO71dnCH+
hCZyXf71vxzbyZ/cyH8JY59Ncuv7LuyOBz9At/InN+R7gz8MUvT9AzSqumI=
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {173.688, 0.}} -> \
{-3., -2., 0., 0.}},ExpressionUUID->"5fa109ac-419a-4aba-8a12-8e0521fd8923"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(51\\). \\!\\(\\\"triaugmented triangular prism (J51)\\\"\\)\
\"\>"}]], "Message",ExpressionUUID->"dc6ceb91-c425-4639-933b-537e43be2ca7"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .7698
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.87037 0.21164 0.140519 0.21164 [
[ 0 0 0 0 ]
[ 1 .7698 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .7698 L
0 .7698 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.76455 .20161 m
.87037 .01833 L
.97619 .20161 L
.76455 .20161 L
s
.65873 .75147 m
.55291 .56819 L
.76455 .56819 L
.65873 .75147 L
s
.55291 .56819 m
.65873 .3849 L
.76455 .56819 L
.55291 .56819 L
s
.55291 .56819 m
.44709 .3849 L
.65873 .3849 L
.55291 .56819 L
s
.34127 .56819 m
.44709 .3849 L
.55291 .56819 L
.34127 .56819 L
s
.02381 .3849 m
.12963 .20161 L
.23545 .3849 L
.02381 .3849 L
s
.23545 .3849 m
.12963 .20161 L
.34127 .20161 L
.23545 .3849 L
s
.23545 .3849 m
.34127 .20161 L
.44709 .3849 L
.23545 .3849 L
s
.44709 .3849 m
.34127 .20161 L
.55291 .20161 L
.44709 .3849 L
s
.34127 .20161 m
.44709 .01833 L
.55291 .20161 L
.34127 .20161 L
s
.44709 .3849 m
.55291 .20161 L
.65873 .3849 L
.44709 .3849 L
s
.65873 .3849 m
.55291 .20161 L
.76455 .20161 L
.65873 .3849 L
s
.55291 .20161 m
.65873 .01833 L
.76455 .20161 L
.55291 .20161 L
s
.76455 .20161 m
.65873 .01833 L
.87037 .01833 L
.76455 .20161 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 221.688},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzNnGlzVFUQhm8qhawCAoKsmSjgvluIVvlFJCwaFVdQqGKMaKIiGOKKir/E
XXHfF9x+iv/C75g7p4uKU8/p9J3ue718SGb6fdP9zsydc8/p9xzGuzOTx453
Z6Ymup09092Tk1MTpzpjJ6ZnQ8NDRTHUKYri705RPj4/+1B+9P6Nlj/kSYXH
7/R+DZ+/kGf22Z3lz7vK0PZ5SH2xOyC2NaU40weVwvtTlLH+FGVsW1iKt3u/
FswVeIGyU8FuVzB5gW/Bax+G2G1G3q1G3mgryr8J0AKI3WLk3WzkdVpR/jRA
CyF2k5F3o5E3ksq/AdAiY1oPb0u+/GKI3WDkXW/kSfnXAVoKseuMvGuNvM2t
KP8aQBdD7Boj72ojb1Mryr8K0AqIXWXkXWnkbUzlXwFopTGth7chX/4SiG03
8rYZeVL+ZYBWGdN6eOvz5VdDbKuRd4WRJ+VnALoUYpcbeaNG3mWp/CmA1hrT
enjr8uXXQaxj5I0YeVJ+OvvGzJ/Ww1ubL78eYluMvM1GnpR/CaANxrQeXroc
i5MAbYLYxmDemnx5zyu1fiBS/gRA1s/Zw1udLz8CMetVbv0ySvkXAbJ+xz28
VfnynhHOOhBL+eMAWcd3Dy/dhIsXALLe3Ty8lfnynnu7dQoi5Z8HyDqz8fBW
5Mt75nXVpp/FcwBZZ7Ue3vJUfgog65zez/u/y08CZF3PeXjLWlH+WYCsa3kP
b2m+vKeTYW24SPlnALL2cTy8Jan8MYCsXSwPb3Eryj8NkLWD6eEtakX5CYB2
yNs4J5aAQu9g74Rc6VIsngKon16moF47uQAX1Zq2N0P4p0QWzgn0ccmIoJwU
uzul7Z8IlbLIWbDK31Vr2tS8qG5eVL1k7kkgTVI9LoLny7K7tZJoJeFxGzwD
6lhrJXUA8pginpvuniRpBKAmDBXiKZI85olnYrY3SaIuhcfR8ExV97VWErWS
PM6HZzmzP0mi5tpyo6RoniLJY9B4lrz3JknUlvS4Jp4exH2tlURdVo+74ulT
jSdJ1FFdY5QUzVMkeUwgTzPx/iQpb2/MLymap0jymEU0s7DyHkiSiO5xcDwO
wINJEr2pTbg/xFMk0VhljXlcogNJEn0bmjCpiKdI8hhSng/zoSSJhrEmzCzi
iSQa7D1fZA/v4bwkj5vkGT4fSZLIY2nCiSKeIsl614++FT+aJNFcpgnDjHgi
ieyhJlws4j3WWknRU3oP7/G8JOuaLXohdTBJIqg5VwwlEdSEVUW8Q62VtAyg
Jhw14j2Rl+RxzzxtsCeTJHoDm3DeiCeSlgDUhB1GvMOtlUSXWRO2GfGOtFYS
Xfk+d4+xo+kBXdWD2nFlrFtr2p7Zd66MJBvRfARJXu2ZauUq0gc9RiTios/q
HKk1bfTZmsO1po0+iiMDf/QRGyVtwM08+kzKoVrTRp8hOVhr2ugjJ7K8iD5K
oqQNWJ9FH/1Q0gasuaOPakjDI/oIhpI2oIkVfWRCSRvQBYw+4iBpo48uHMin
DWirRx81UNKOQMx6dYhVEn00QEkb4DVFb+WXtNFb9MfzaT1b78W8jd5Sr6T1
bJUXQz56C7ykjd5bvr/WtNF7wffVmjZ66/jefNqAPVbRW70lbfQe6rFa00bv
ed5da9rBtkj/ly97Wgfdr1w+2xWWotdhOF0iIutd4Crblt8zSJhTriL9fYB2
5N/SDwBSPsyK9A8BUi7sivSPAFK+5B8DpAw1RFcGvE8AUobdivRPAVJuQWcB
Urb2EV25HX8GkDLXqEj/HCBl3vUFQMo2L6Irk8UvAVKmrETvQEwmzl8BpKwK
vgZIWZsQXVkhfQOQslWG6Mqy7luAlMXldwApK2eiK+v37wFSughEV7Y0/ACQ
0vr4ESClr1OR/hNASo+L6Iq9/TNASmPuF4CUrmNF+q8AKR1Yoit94HMAKd3o
3wBSeuIV6b8DpPgDFel/SHmanR1ND/7s++sS6s4L/QU1JWHvyYD/QV4x9C9S
qpg5\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {220.688, 0.}} -> \
{-4., 0., 0., 0.}},ExpressionUUID->"c017b6b9-6656-488c-99e7-47d7c8b690c7"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(52\\). \\!\\(\\\"augmented pentagonal prism \
(J52)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"e82ab35d-e9ce-4b59-8a42-\
de0e71e835df"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.18364
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.411229 0.233432 0.439039 0.233432 [
[ 0 0 0 0 ]
[ 1 1.18364 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.18364 L
0 1.18364 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.21266 .43904 m
.34987 .25019 L
.57187 .32232 L
.57187 .55576 L
.34987 .62789 L
.21266 .43904 L
s
.422 .8499 m
.64401 .77776 L
.78122 .96661 L
.64401 1.15546 L
.422 1.08333 L
.422 .8499 L
s
.34987 .25019 m
.21266 .43904 L
.02381 .30183 L
.16102 .11298 L
.34987 .25019 L
s
.57187 .32232 m
.34987 .25019 L
.422 .02818 L
.64401 .10032 L
.57187 .32232 L
s
.34987 .62789 m
.57187 .55576 L
.64401 .77776 L
.422 .8499 L
.34987 .62789 L
s
.21266 .43904 m
.34987 .62789 L
.16102 .7651 L
.02381 .57625 L
.21266 .43904 L
s
.57187 .32232 m
.77403 .43904 L
.57187 .55576 L
.57187 .32232 L
s
.57187 .32232 m
.77403 .20561 L
.77403 .43904 L
.57187 .32232 L
s
.57187 .55576 m
.77403 .43904 L
.77403 .67247 L
.57187 .55576 L
s
.77403 .67247 m
.77403 .43904 L
.97619 .55576 L
.77403 .67247 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{243.312, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy1nPlrlkcQxx+TGON938f7esX7iEfi2cTbWrXWqzeaWsWAxZIqCIIgCIJQ
KBQKhf6X/gFpnmfWmSfJZ8ddfd7+YJrZmfnuPs/uzndm98m10WePH/42+mzs
wWj70vjo74/HHvzRvvh0fFLUPasoivdFMavdLsr/n5j8NfzzfmLyv8nG5B+P
yh/dpfG7mqCoJBPhP/ntrbQ/hPYedfImrjRHlV7Hleap0itR+hWUFqnSy7jS
UlV6EVdaoUrPRekBKK1RpfG40npVehpX2qRKT0TpF1DaokpjcaXtqvQorrRT
laQzxSgo7VWl+3GlA6r0c1zpkCr9IEr3QWlQlb6NKx0H2e1PUr+XqH5H1HeU
P7rKlsFPMKw1lYvxaJ6L/urH7HqTujqc6OquGGyHpm4d2kCes23Q1Auy/Z/v
do72cV+iszCJtkLTPJDtznO7BZoWgGxXntvN0LRIh74z0dl3cWdLQEZzwnHb
hqZlIKPX6LhtQdMKHTq9RnL2vTjbBE2rQUZjyXS7BmQ0FsftRmhap0MnUHIW
ttYN0EQA6z/f7SbtY6YzUqfZSq+M3P4obtdBE02cVXlu10LTdh16A86mh4iJ
yIoitz+JW5qFtPcszXNLL2CPDj3V2Va1GBK39MwoSCxMBNiiABLMPjSGWI14
B0BGOzjhyVzlgByGuBLMBrSbqUAtteiBVqERsktOazoCsr5EUFvWFMwD6HJo
GlTDVCjamDJBj4FsdiL8eu3w3DgorcQTIOtOBLWdfX4clJbWKTVMhaLNxgEl
cjBc/dszZapP/v9JUF2t/VuUhzGihuR2lbaSbXC7GJrOlv9WIno2tEAdABrS
OZBVv1GKsFyHQbM4oNCGRyiWVh+C1mUKRYN0oM6CrE+haMdcolAUKgIU7XYE
tUCh9kIrvWIHlOY5PcrFCkr02sg3kQsHisa3XKGIci9QKOJaAYpSF4JarVCU
qVCHHVDaHOlRrlNQ4qzzdHytOBQFDoKyeglxyT6FIlbpQNGjtKoLkaw5IHNA
SZ1A+xWUonuvjo+SrABFcZQe5S6FoqDTo1D9cajZqnQelPYpAG2iFMscKHqA
IyAbUFBaMl3aYSLJzgQZBtkRhaLOVSh74ihztStfgNIx9T2dAE7+xFqIsycR
a6lIRW8pIgJe38C7YpHUwjdFCCd+UpiUd9lTH+aEP1KKC0R/z1T/MmmneFMn
LNXoqNRGa9cmFxWVHFZ5MBHA1iSFrDpXjr4V2ghsV3HWHzEKmt20EdCCovw8
QFHWRsv1AshsVTkARlhT3c5XC2ePj9YLpskugmyhArTiAJZB0PZ/CWS0RpyA
T000YIKy9eIAUN5HA74MMmO3DiWzHJaoyJcgs1ojhfngtg1N1IsrIKPp7PDz
ze4wCcCms+M2tR72FcjWKoCTwtCUJA5zFWSWjxMVCQBWekt1S7PNSVGpHEeZ
4TWQ2bxzAHaqEq3L6yBrqwXlUsEtRRuiAV+DzCpoRJcCAO3zpE4A0UMdhtqr
/aHk4wbIbFo4bonjULHoG5DZCSBZBIADrhK53aUWxISD24HQU+Iut8FM3tSM
qk2oTU6vGZRe7oAXOwCuG1Z9vQvqxvMH672eikOGVlEuppZvK5lwuUCO+BFQ
53c7+vSkpbMyQ6Iv8CbIbDVTjdbIYAAgJkupGs2VfnVGFkYLhfHVnistIgLY
phbE1YwgyiBwx6ENgdYrBSICJZngImuj/ZH2IwuvtEUafQxQtvhpyyaAllpQ
pc2IpFB4pNwUdCg6bHQ7Z5RSMGovmQIoRTVicgRFMnnP+LqJplD8Nr5LWZMR
zgBFFS+iOAS1xn02Rj2FDdfiMpE04lBWzaYuGQltCUALlKjiRXyQHi+Bkkze
eG1mEY0mUEs7KQ0yihoAaGbRmImxL1Vn9ESMrMqrST50ppxjsTqLHqXXUoca
NuV9lDURWyQoksl7xrQlFd4KPG1oNVIboGwS0xZMea0Vf2l12jKSxAKnLgUb
ytGt+Euc04iupBi4zonoEhQxTQIlmbzx2pZCZRqqolixlRIVo8EBgDIpKjTx
YdaE854tJkrQra0Sqr9JJWsqJ/2gTw/ciLFQClwjqUAFEy/ClZeKUZsKllVZ
sRJRcmF5THBrgZ+qscPqjGbDPrUV+odcK1rkrUREsKMPpkYEa6vKL1MLa57x
8KnASgs6oNHCGgaZld77APdDjwnIWLvwP2TUZ0B2UCGJONqKodKs8XeZXZhj
UMXXUiuiWJR30M5PMqcj/mERUTHbmgjKrgEJsU0+obIrzRQX7GoocUzj+dLh
5BM4O/YjIkNZCYVOkoWOpJ4/2lEnkSXLVJIid+r5qh3ltqDVNjGihRu0VY7n
k8+PVykovUnK7IjTkSx0JPX03A7qKS2zhCqJd6beDrCLCBRsLbYm8erU2w/z
FZSigH+7Y6W2yixIvudhV0qIiNDGQiSNZKEjqXdb7BoNne1ZKpOUCxI9IdDq
t6HYgNLT3CheJSIaQIleZhpPTSPTZCXN8O+HJZUpqPoh3IOLegRp6XxSEYYg
7dYdhdnoBT/KfxJkoSNE2umNpnbJMlQCNW4nfBjn35AqpV7u3OBazCgmxs+U
Ph56o9dYiaAkyJwuUcZBAc6/zkugxh1lW8Rtx+4Qp16ObquFlL2ZI8uZABIs
SkWybmbPTAe6QDX0gDYpik20/UUvn1c7hnOtwNKd1Hv3zsUripUU0hu44k8V
AJq0jluiE1YhzvwCg5wRl2vgww6b1tTqOCPSRntFAx/IpMoy3Vo9vJXnjKqH
NK3aiW6dz6JolVG11XFLgzNOlvp5meOMFmADH8MRi6A8IvPTPSNIqR8VOs6I
qjfwCaRlow18pkmZeqZbmiQUeinEZX6hatGbruR/9JNc5rRENhxX02dZ6eIz
P1cuf8v8XPlenvr9RHXnM++q/Fi7l4BK1SgqUTG1CBr6QR+u2y1imjW34ob7
1ZC44c244R41JIolZ/b4Sf8ONaT9xzHcpobEN2/EDTerIcUQORPHP3awUQ0p
xjqGflXqetzQPoegjUaOvPHPQFgliBbG1bjhEjWkbdUxXKiGdJ4gR8r4BzLm
qiFtQFfihr1qSAvdMexWQ1qvcmQ746+GlOuvWqqnweZyzaZSogr8JXZc/jaS
p07eL8bVqZpzoTF1Ks+dj6vT0eC5uDodX55tTJ2OfM/E1ekIeqQxdTrAH46r
09WCL+LqdOnhdGPqdGXkVFydrrCcbEydrgKdiKvT1aTjcXW6NHWsMXW6cjYU
V6fLcIONqdO1waNx9VsgOxJXpwughxtTz+xM5lA7+9wzJ0FnZ2Tm8shcfJ3d
CTK3pc7ukZkbdmY46GxsygyUnY3amRQik6B0li19jLpVLQ4dHFMl4qFB6Ykq
EcENZPWpKhF9Dix4XJXob2wFjv1clYj6B6UXqkSJRcgPXqoSFZ5C9vFKlSgp
CkqvVakFSiFzeqNKlNCFvOytKlH1N2R971SJktGg9KcqUaobMta/VIlqXSEf
/luV4jfki39UKf5JQPGvKhVTqwuhbPEfmIam9D/JWMz6H+s3zPM=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 242.312}, {287., 0.}} -> \
{-1., -1., 0., 0.}},ExpressionUUID->"a7bd2d30-3825-4b03-9495-63292663777c"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(53\\). \\!\\(\\\"biaugmented pentagonal prism \
(J53)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"02aced50-a617-4c59-940c-\
e9d95e309101"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.03361
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.482843 0.203842 0.383387 0.203842 [
[ 0 0 0 0 ]
[ 1 1.03361 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.03361 L
0 1.03361 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.30944 .38339 m
.42926 .21847 L
.62313 .28147 L
.62313 .48531 L
.42926 .5483 L
.30944 .38339 L
s
.49225 .74216 m
.68612 .67917 L
.80593 .84408 L
.68612 1.009 L
.49225 .94601 L
.49225 .74216 L
s
.42926 .21847 m
.30944 .38339 L
.14453 .26357 L
.26435 .09866 L
.42926 .21847 L
s
.62313 .28147 m
.42926 .21847 L
.49225 .02461 L
.68612 .0876 L
.62313 .28147 L
s
.42926 .5483 m
.62313 .48531 L
.68612 .67917 L
.49225 .74216 L
.42926 .5483 L
s
.62313 .28147 m
.79966 .38339 L
.62313 .48531 L
.62313 .28147 L
s
.62313 .28147 m
.79966 .17954 L
.79966 .38339 L
.62313 .28147 L
s
.62313 .48531 m
.79966 .38339 L
.79966 .58723 L
.62313 .48531 L
s
.79966 .58723 m
.79966 .38339 L
.97619 .48531 L
.79966 .58723 L
s
.42926 .5483 m
.22653 .56961 L
.30944 .38339 L
.42926 .5483 L
s
.42926 .5483 m
.34635 .73452 L
.22653 .56961 L
.42926 .5483 L
s
.30944 .38339 m
.22653 .56961 L
.10672 .40469 L
.30944 .38339 L
s
.10672 .40469 m
.22653 .56961 L
.02381 .59091 L
.10672 .40469 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{278.625, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy1nItrVUcQh4/moXn4SjTxfa+PaGJ8RmPUWJP4iI82rdZqa7WPYEu1IBWV
QqFQsLUVhEKhUCgUCoVCoVAoFAqF/mvWs7uZObn3m82e5t5CE7M7OzO7Z2fm
N7N7zszsozsf3pt9dPf2bPX8g9n7d+7eflid/uTBi6aWJVm2pO/F/9Vqlv/7
eZbN/XD/9ec/wh8N+PfT/FdLzv9ZoSFzLc/Df/6vp7H+OSZPPNE3QLRMiB7b
RJ1C9IVNtEKIPvdEXwPRGiH6zCZaK0Sf2kT9QvTQEz0Bok1CdN8m2ipE92yi
bUL0sSf6CogGhOgjm2hQiD6wiYaFaNYTfQlEB4ToXZtoRIhu2kSjQvSWJ3oM
RMeh7VrDyI9B23VPfjH/tTTvGfsfAwtdub2OJqoaWFxwv9qKXcLqSKI2b/oB
56GrRaY2Uo7ZNHS1Q9v+xOlG2C4THYkZ6Rg20Tno6oS24XJsz0JXN7QNJU49
wnaFTJ2YkY43PLMz0LUa2naVY3saunpEx4HECQdmU9C1Dtq2J+r4ts22D9q2
lWM7CV3rZerVxKkHZhPQtQnatiTqeNNmu1l0LMnsFHRVoG1jObYvQRc9ivWJ
bG95tieha4dMvQHMaHPTbo2wHYeu3aLj2kRm73hmJ6BrD7StWTxb8o/kTIjt
Tpmfj51oFfuEaFUiW320PoTNdWZH/R805iC0kd+msd4HcRgOEyNsMCJqpgqq
yohW6B21RREYWJ4otCJCKYQHoUehi9qWJQrdCm0R8YSbjoneqULVG3aUE0V2
0ZIodJMI7bKF0vM7KQNTRW2QEStsUYeha8L9bJ23wTN2B+RMI9IIWE6JmiSg
X3rJy0TYnpaB5GXWSW+PzfYQdNWCqdzoHR/a/r0ihRx6kEKuiCCbptA03V5o
KymUAJ2m5Aegd43Mr98WRQNJVJeI2gu9q0TUBlsU5QS0lCtF1KAlimyJhe5L
FNojQgk+KLrfXE4ULWWfiCK83CWiyO0GUfQMSNRGEUXMOkUUgeIgiiAFLeAW
EUXwmHx4SaE0P621kKvTdHSHLYqQGInSig0ZbruIou0TRFFmSKKGRBRBwlYR
tdsWNShElKzuFQEroZciWEQULeAktB0UoZTZLxWFiV9kW1Dyc0REEdpYanmx
onE5IuI9JrxrYV8ebMjHRdwfxVSXe7RbTr3ots34OSG9FEki8ZPwlH+WrcVp
Po/PlCIggSbPmaE6OdMiKHKzI3hERQXdXLSDIlgyNTqqTZKNR2B5anhS/xKx
xDEhSmW7XEZE3BbtMJomeRoydYp6QRTZA02Y6oUaOCMCxoWI6mlU09TQH4lX
VCqhmEMCFDtFAv6p6OSoXqzoLwJZyE+TFhegjTBtBIiRXZJmtZX4/K+1MpeI
AE0pUtn2yYgIQKZdTWDjkkXnBFD9KQigvUxV0JehjSp6kZRpOqrPK9CmCXGE
Le0OIicBW0RAJIOkh0fkM9BWEQGEdYKAS0JE6cWr0LZNRlC9KLClCRM5CSD3
EamEzIg+VLl4Ddq03hdhSwMJU12Gtl0igEYEATSwDdquQJuCXBoRBFyJEhHb
PTKCkHBgezVoStjlDRjm8WZd1SZUJGtH5FyuARcX11sKA93yObB4Hcj3C3ko
trpA0WEthqk3lW9dm0d1Pjo5trXVJWsiw5Hlo1X3YNXL68x7+ng9aQpDMgUq
1Co2DDKGZTIVizxhE+lpAVVKFS96hOmjuhNKNY9UoQPClurJiiE9PPS+t02n
Pp+cHgNZqxb4CeyRInsK4mu6KHWgrUp+iZARqdQhCgdFavFCvgkptaAnSa67
KgKo2Ko4dbAovm4r0zMhR0oabBUZFM8U0noQjBUb2nOU89EDpjis9XwqapCa
O8opRzkPPX4KyhtFOUK1q6U3ohKZCxUZKDwTtCOkS8rpob4/m0VMSCZEdRYC
J6Sc1v0JqSpcryxeJTIhwtp6ZkDonNT0docLTXZGKS9BSgKretRAS6GrGVGJ
7IxSY7IkUokAOimn51S+F5eX7IwSbALtlD2oxVGQ0KRkfTmVqMhB60D59EoR
WoFeUtPnWJhbkp3thDYyeKohdItydEFDo0FEJbIziqhU/SaV9HCBMhkNkb2L
V4mSWcqqKc8h5baLcj5UofcgO6tCG02Magp6WEGGQ5tjpa0c2VkF2shwqE7Y
JsoRPFXYGVSiB0J2RqWmVJX0PiRFDYXf3eVUIkMmt+irwPNB25xICvuahHjH
hHZEbVTMIvwxBQplXKanIvgyWytaOloSWrrJ/KdrolK6JpdBPPk72t+p4idE
PB2E6GWmdls82S/t0Qq0jYv4DJJn89EUMjhUicSTmuSO9PjKA7C6DUMwmiws
6JcKI1LvdR4W/ZaDfnOLQztYq0Fd5VRLvcmqB5iE4dUfEVDUWpgPapgEkamT
QVLM0iNdCkxU+KAwY959YIXJ5GjVia2+3EAjNOCQmlpy8IEO4x0FFxJlhlvX
RJtDQzWFZa0M99jKVaCN6Ajh66UHM08wT4rIJUTUJHLaX4QK9EII7WuC57Qo
ddiVxNNMCTySH9sgapJ4LdZQr9Y0+pujnF4VIptX1G9mSRglMG2lrUxpCrle
vTxFxqSZE6lUl1+ScuRAaAdR8NLrZOSYadeb8bWYo9MjpNmTmhT59c05moQm
xKSc1j622sqRK6GiAgE1vWhIOEpLUGY1CH1z8rs4VI4hRfQSJpVvSZGkihqp
SdZKJa3agvaL31nhkj1omF6GXIxebgu6gyO6c6En4yWLtYSMKB2iaqmzHvNw
iu5Q6/l6UpmblCNjo+qys3p38qRs6S0RCsn0nOpOAVL9BCnXKytXmwZkxgPW
gjcpR7pE1PQeoy6T6JYlqzABKaYh1TxNKmQAWNKpPTjJ16BFVmiIdaFnqXcT
ko7TSJd9sgbeEfCJJy1EBdrILqgtKERaD8hC0EBym7Th4u/DEGdNjw7aym0W
5cie6WyQlKP7agrKvefhtHLEVs0FBfcgycIpGFHOZb4gVb8haWZBPwqHnbJ0
BOQopqfq5/i5fTtaFF+3gh1qCgt7Mdoi9Nwi1xLbRS8KpaQInd9GXrCjqqNd
OktmS8VfitrElpbols2WsBR5qcibkFRHp2yvJFs6MSCASmxpEcIrq3RwQ1uI
kEDkTdgmsaWTLzPPS1iE8MoynfZRElqSLR26VqGN8rfI29qLYRt5ZZ1Oraki
RIEmwta8wkhYPWERAlu6MEHJMqHxyIcKmsSWbpyk3kSNfK2B7vRQtku5UeRD
FXRniarlJdnS/SsqFqa+ed4AtpGPk7yeOGFK4CNsr0IXPXVa78jXWOgWX2qh
JvIxmcWw1ReYw4OiW43kTIiZfkQnm38uFOZPdzmppENGd0h421c8wxwWDgck
QC+VUnC+agug6EjeSL9oRHP2Ozn4DMDANW1Ue94tAujpBwE3oIsSA/L+enxA
NSdv4iH+LYz5SED8vcfLtgCCwBVLqGuiJxQE3IQu2nQkQN9MpV4fCgJYnN9F
lSPCC/rVL4JUPoQFSD6/ixIvOqnsFQEEXGcWL2C1CKD0IAjw3/Oqyx4pCdTP
rlFG5pFN9l5NV+6jCOp2CDNKyz36yt6HLtKsXZjRS3iBGX1JTgu+5PY9tKz7
4l0+JefJ6a2ti4UxjojeW7rAjPO/JsuRE/fzNjm9ezjdMHJKeM/Z5JRxnrXJ
KZM80zBySihP2+SU0U01jJwSu0mbnBK2CZucMqZTDSOnxOklm5wSopMNI6cE
Ztwmp8TkhE1OCcfxhpFT3nHMJifgP9YwcsL/R21ywvWjNjkB6yMNIy+pTMmp
NnfdS26C5u7IkuZR0via6wlKuqXm+siSDrtkOGhubCoZKJsbtUtCiJIApblo
aSHo5noicPCZEBEODUTfChEB3ABWvxMigs8BBX8vRPRiWcDYPwgRpQiB6Ech
orwk5BE/CRFdignJy89CRDlaIPpFiCpAFBK5X4WI8tWQTv4mRFSPCknt70JE
uXsg+kOIqIIQEvw/hYhKK6HM8JcQUTUlEP0tRJReh5LLP0KUzS8qherXvzA0
dLk/GvAx8mzJf4HXH7w=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 277.625}, {287., 0.}} -> \
{-2., -1., 0., 0.}},ExpressionUUID->"bf6780ae-3597-4185-a7d5-ebeb030824fa"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(54\\). \\!\\(\\\"augmented hexagonal prism \
(J54)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"310a991c-5008-4855-b533-\
2d254d2b46d5"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .70753
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.349054 0.174298 0.365442 0.174298 [
[ 0 0 0 0 ]
[ 1 .70753 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .70753 L
0 .70753 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.19811 .45259 m
.19811 .27829 L
.34905 .19114 L
.5 .27829 L
.5 .45259 L
.34905 .53974 L
.19811 .45259 L
s
.6743 .45259 m
.6743 .27829 L
.82524 .19114 L
.97619 .27829 L
.97619 .45259 L
.82524 .53974 L
.6743 .45259 L
s
.19811 .27829 m
.19811 .45259 L
.02381 .45259 L
.02381 .27829 L
.19811 .27829 L
s
.34905 .19114 m
.19811 .27829 L
.11096 .12735 L
.2619 .0402 L
.34905 .19114 L
s
.5 .45259 m
.5 .27829 L
.6743 .27829 L
.6743 .45259 L
.5 .45259 L
s
.34905 .53974 m
.5 .45259 L
.58715 .60354 L
.4362 .69069 L
.34905 .53974 L
s
.19811 .45259 m
.34905 .53974 L
.2619 .69069 L
.11096 .60354 L
.19811 .45259 L
s
.34905 .19114 m
.5 .10399 L
.5 .27829 L
.34905 .19114 L
s
.34905 .19114 m
.34905 .01685 L
.5 .10399 L
.34905 .19114 L
s
.5 .27829 m
.5 .10399 L
.65095 .19114 L
.5 .27829 L
s
.65095 .19114 m
.5 .10399 L
.65095 .01685 L
.65095 .19114 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 203.75},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnOlvVkUUxi+8LVC2FiiLsrxvgVosFAplXywIUqE2qKjfGyCBD0aDRNyX
GBNjTIyJMSbG6P/jH4XcO8N53nv7O+M00m+XhPZw5szzzJ31zMwZFhYf3b/3
/uKjB3cWe3MPFz+8/+DOR73rHzx8quqsKopVvaIo/ukVpfzkqRh/VH/Gyh/x
H8uQ75a/Vpc4t02615dUDDx5RhH5bpld0TF9+etuf7ZBy/bsT5lhIZFWY+30
mxSrjfKGSQNgd8eHGLCMr5m0ZnkQZH4l0y7C3jTuXWC01lJnTRrywV43o0ZD
7IQ8Q2Z8waQNPvYcJK0G3XbQbTCCMyZt8qnUHoOZBAQ2k2kXSa8a6TowGgXd
Zstx3KQRn+BVSKK23Aa6ESOYMmmrT3XZjDZmEmy1HC+bRN8cCV4xo2EPLKMC
xzPtIulFI92SSbrdchwwiYZCJLiQCUv0O42ga9ILPtU5M6LuTAQEtjvTLpJq
8NFcQ133xfq3VNIen+CUGVHJqKvsqddDJe3zCU5mVgJR7TOCLSb1fKoTZtQF
o82gIzCacBKk00Y6lkk6Zjk0yR7wCY5B0v7McmsMaVmiIRypppJGREB2nUy7
SHrYSA+BEc2GL1mOvjWzcAAii+bIw2BEi+hE+bNj8yvDEmMuwTh9Rvmr0k34
pPp+6hvrQXew+skuGzXXQZ/8oJEfzyTfbznI3ZNbmCCl4XECdLQ494yAfDq5
lDSmIr1G7KlM0i7oiJ50lDcWhOah06Ajf2ivfQQVWPPDCtHvNgIaC/Js9/r0
NMES/VrQaTGkaUwTMS1NCfozoKM2pdWbCkI6yhuLRH2WaoSKtMO+mdwIecoJ
ehqWRE97glEjIH9N3vOOlaGX90zuazq1fybMoKdZj9xFoiId5X0ORRq2byZ/
W75egp5WeaKnJWeTEZA7LF+d/MQEPQ1Q2gOTn0EFIR3l7V+qM2qEirTevpn8
d/n5y6QPNcK+gCjJo5fnT8t8pCS/5XSCcp2B0uqiHQCtKQknLFAO1CiLApcG
4iUdTSPLL8GgfRFNX/I0EmzkjzY7VVm1HQOjkaG9AQ3HBJX2pNRriWqcqyIe
Fk56n1NloKqtunUnB8L13yfsI6bNLniU6L/P1CvL9dDH67CNHNM+gc6jqIvS
vE462g9QR5oKBTmSCaExSqTy7/XN8uci1RRkPGJGmvzJo+kBgXIc9gkmzSh9
frAPCJQjdJ/iKGRUL0qfhewBAuWY8AnUn3IPk0hHbUqLfGhd/8RBi5HrK8vP
nq7b9XUfJCDvWu2S9glE1TUpdKQ45DzY9BnjdiBQjp5PoCpqdJCG3TYgUI7Q
kXCbrVqmuYQcatJRM9BcGdoZN9zaRBw1Ke3P60t12pQg0DZBp3vp/YoINKeG
7oP3C1Tak5aRzu82ApWOUXf6VKoEnSWT87YeCJqnz3iuqknxEqTStp901C38
c3YsiPbTl01KnzroS2dNigR05qIV6ZpJtHAOAoGujUZ8gjVmpBs6Wkk7QDBn
Uug+2Vsw3Sx2ok1fKhDNmxS6UfTtOdstSCvYh6MesAC6IWYtfz/9+3YpD9ZL
/JZJMW/VaCdKxXulNFNK73rtwW1M6+Y7mV91u6VqqVqqlqqlaqlaqpaqpWqp
WqqWqqVqqVqqlqqlaqlaqpYqUlXnkxXYqVLSc5sQnlCcrX4tOQp90+yKeqin
LjX0IicEV2RHrryRaUe3K/OgS9DrsFsn1XQorttyPfUJkW1+dFpldL1Rn3U7
XcvoucmwD6s7gquQStcRdBFAj4MiKZlTcKOeXtBtz2lLnTUpcbWiOx49rqCY
KEVp6K3QqA+r6K+zJlGkl+6hRBBC9PzbNd2QUWpDdx50hJwgpaC5xr17I1VV
tOTOMPfWk8Ik1UJZd527zGiyYV63u2SpimoPYbN4Wazrd4pYIYJZ0FFcT4JU
0ca6Me96VPk36z3Q6TqfYgiu1On/KzZAAVgUiEzRKfRIjCo1ktKqo5h6XexT
fV917bKjUyic6hrYJWJSKERAV9sUkKDpeklUDYXt6EUITWxEQC8dKZQ6QaoR
qstraqs5sAtxVBhOpXlHd900Xm6A3VEflqYPCuMju5uZeSM91bdW4j5/pnBm
+XnP+LhPQOs56cj5ibAUE0hODcF+40NQoOVZsPs6JLoBlA2Ic2D3VUikIZsK
4qXSJKByA7TJ7ssAS+uK6z/+P9jc+H6y+yLA+kHRzx0293UK2X0eYHOD2gmW
7D7zYakU5CaTXYTNfYBAbjLZfbqisLkPSGgpIbtPAix5CdQUzwGWzGnRJLvH
ATb3WZO7yWjoPvZhqRS0ySC7CFs5gNp/NIzonbxC8x731aO7JyEI7WcT/ZFW
ddprkF2EVbRvLtgxyxFnIfl85LpRlKuisOMiQUsWrdEERnYRVnsaWlYpwPeQ
5fg2QKiotJARhJ7KfhcgtGGjGZD8du1Lvg8Q7rahoaMNBNlFWO08c8G6luOH
AKF+SkHoXdApUvnHAKHRQo+OCEIPkX4KEDQwaXdMn0l2EVbnErlg2qb/HCDO
m4LGEq0GitD+JUBcBCOawqh3kV2E1ZY+F0wHNr8GiFlTUNAy+VIKZP4tQGiv
TAdVBKFQ5d8DBB210VkeTTJkF2G1Rc0F06HiHwFCZ4vk2NHEpePOPwNEFQrs
eN3HEml/BUF7vKJ+Chym6iWnxn8HmQ5paWcazat/LOM/jypW/Qvn7e42\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {202.75, 0.}} -> \
{-2., -2., 0., 0.}},ExpressionUUID->"1cbefa26-7f2b-4052-8eff-0c98436053df"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(55\\). \\!\\(\\\"parabiaugmented hexagonal prism \
(J55)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"e4072daa-d40f-48ba-9ace-\
cdc012ed5693"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .73205
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.349054 0.174298 0.366025 0.174298 [
[ 0 0 0 0 ]
[ 1 .73205 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .73205 L
0 .73205 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.19811 .45317 m
.19811 .27888 L
.34905 .19173 L
.5 .27888 L
.5 .45317 L
.34905 .54032 L
.19811 .45317 L
s
.6743 .45317 m
.6743 .27888 L
.82524 .19173 L
.97619 .27888 L
.97619 .45317 L
.82524 .54032 L
.6743 .45317 L
s
.19811 .27888 m
.19811 .45317 L
.02381 .45317 L
.02381 .27888 L
.19811 .27888 L
s
.34905 .19173 m
.19811 .27888 L
.11096 .12793 L
.2619 .04078 L
.34905 .19173 L
s
.5 .45317 m
.5 .27888 L
.6743 .27888 L
.6743 .45317 L
.5 .45317 L
s
.34905 .54032 m
.5 .45317 L
.58715 .60412 L
.4362 .69127 L
.34905 .54032 L
s
.34905 .19173 m
.5 .10458 L
.5 .27888 L
.34905 .19173 L
s
.34905 .19173 m
.34905 .01743 L
.5 .10458 L
.34905 .19173 L
s
.5 .27888 m
.5 .10458 L
.65095 .19173 L
.5 .27888 L
s
.65095 .19173 m
.5 .10458 L
.65095 .01743 L
.65095 .19173 L
s
.34905 .54032 m
.19811 .62747 L
.19811 .45317 L
.34905 .54032 L
s
.34905 .54032 m
.34905 .71462 L
.19811 .62747 L
.34905 .54032 L
s
.19811 .45317 m
.19811 .62747 L
.04716 .54032 L
.19811 .45317 L
s
.04716 .54032 m
.19811 .62747 L
.04716 .71462 L
.04716 .54032 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 210.812},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnGmPVjUUxy/MDAybLMMmAzwPywCyOWzDprIJgywRQX0/ARJ4YTRI3JcY
Y2KMiTExxsQY/RrGb+EXQu5tOf/7PPM7x06i7y4vZkpv21/b23v6b3s6N+ce
P7j/ztzjh3fn+rOP5t578PDu+/0r7z56GjWyqKoW9auq+rtf1eEnT4P5R/Nv
R/0j/2cB4Xv1r8V1OXcsdL/1qBp98gyRea9bumrE4utf99rZxizbs391hpvB
swHqSDtJtdiQr1loFNLd9YsYtYyXLbRkYUVQ8guF6XKx14y9GRIttafnLLTM
L+yqJRp6EZsgzzJLfNZCK/yyZ+HRYojbAHErDHDSQqt8lN7HWCGACjtWmC5D
Lxl0HBKth7jnLMcRC63xARfhEb3LCYhbY4BDFlrno85bopWFgHWW4wULUZsz
4BVLtNorrKADpwrTZehLBl1bCN1gOXZZiD6FDDhbWCzhNxmgZ6HnfdRpS0TD
mQBU2GRhugzVx0e2hobulsG2NKGtPuCEJaKa0VDZOtgPTWi7Dzhe2AmE2m6A
tRbq+6ijlqgHiZ6DOCqMDE4AnTbojkLoDsshI7vLB7wIj3YW1lvfkKYl+oQz
6lCYiACUbqQwXYYeMOg+SETWcI/laM2ZlVNApshGHoBENInurX+OmH3lYolY
CpiiZtS/mri9PlTtp7GxHOJ2Nz9ZstHr2u3Ddxv8SCF8p+UguSdZGEDp8zgK
cTQ59w1Amk6Skr6pjNcXe6IQ2oM4wlMc5c0VITs0A3Gkh7ZZI6jCsg//E37S
APQtSNlu8/FkYAm/FOI0GZIZkyGmqSnAn4Q4eqc0e1NFKI7y5irRmKUeoSpt
tDaTjJBSXiCeeoTWBOsNQHpN6nmjjyerQK0nvNQzydf4adsSFuDJ6pFcJBTF
Ud7/oEqrrc2kt6X1AjzN8oSnKWeVAUgOS6uTTgzwNBxpDUw6gypCcZS3PVUX
9AhVabm1mfS7dP4C8alHWAsISYpeyp+m+Ywk3TITIMetUJpdtAKgOSVAplaO
DiCrCqcG4lIcmZFABs5wDcasRWS+pDQWSBse53XXjlhh9GVobUCfY1s2E6rJ
SKOWUFPcFXmzcL/XeU0GamwzrEdKinD1+15rxLSlS4oS9fuxwc5yFfrUYLFD
OaZ9AKlZGgJk4SmOVgZU3qFUpYNeERKMrkaXvp+GHAFAy00Zf5IUfQAoR+rN
zBnMuN8S0aTVK4yjrqRZaJ9fERqB0hgElVpXmycslFGHIaMWh5ozSVNPAkA5
9vgALQAnB0Ou4p6GHGkgYd/KBlLHkBylOCqZ+iEfoUzDI8JrLBJUmnpoW6i1
QYQovW5ZEFK+6wGgHKnCuDCXXIh3i9cBQDm2+YDNlog+APr+KI7eGpnLLaki
ZDWlVNUCQq2GdDJ5AYC6TVuPZBlkrITSjJIGEh5+aNuTdCwJP4qjTqWNjA1+
RdRZZyxEKAlItXR44xy3hFdaIh1UkMocB8DLFprwAbTrcN4ykrpcAqgLFkpD
CvtRdbwMT2kWpjh6a5cgLm0x+wvfpiI6ZiTUkEJpQrMWCgDKeMNCSU0Oir35
xV+3UBpG4bLkFhRZsfykXrsJccva1HnH47fr8Nhgjd+wUM7brCWO1hFv16Fj
degtQC1pJR96RPPrm4WtutOhOlSH6lAdqkN1qA7VoTpUh+pQHapDdagO1aE6
VIfqUBnV7E82hZ2oQ7oplPa+W57gFbij3vKe6uRDd4rSxn3ehi/3Or0BcbTH
S4cy1yEuV0M1jP1Pda+H9sh1XqPrS8lbr7VHHHuYXhnq8sF0x+2pLtOkwyR8
3a43aZORDgrI7ZOOL+g6VK6ITuypMGqVTnPouGjGnp6zUHIHbLmFx/6iumJC
J2/yVdGNqXR+1zrVjD1CT1mIThF1uCVUOrhFzxXX57PJSG+DvCPPQByd2uWK
yCWAPD2p2zSi6RBaR4C6RZX84lrOAbFX52EL0TG63qkGXHIxaDmbxKfX+4cy
DqbTieG8s23y8nU9M10/IIKegzjylsoV6RmA/DHlaSA/rp4HHUrXTwD5HJBT
I70XeeNRL+lsVFVP7jzowOh6V7ouK+QbRFf0qPNzReQGQVWSe4oqQi6UFyFd
epMtNwjyoFSXy0uBzMSrkC4Ns9aL70PGHsTpqyNPCk02cjZI7kp4z42gfctI
toSgdDOVTGOuiByfyGdSJkFGm2bMWUiX3NJaTacPUkZNtyRIg1yFdEnRoeEl
FI02kkqEv1aYN1dJHv40AuUf2dJ79f/IDeCalzg5CrVmOHKE22dPT8FTEoXt
Yucf3pM9xitj9S9CftkunuUrvSfyco1aNoDxRCk5XMqSS1uehnRf+ID42pNc
1oZVZuWgPvdRpVecegYdh450+jDgxjeayDo7XGrvZz43vsokH/oka3l4UVMD
ZHx9SXNeNKKplZ/6yNKLSpoPaW6g1R0ZmKAi8UUlkk5UEbKTVJFP/IrEV5Y0
j5MwJjx5/H3s4+MrSxPhU1oXU+sDfOlFJc201EtUEeqHj/yKxBeV5MdIo4XW
/dQPAT6+qETXwUsrQv3woV+R0otKcrwk20HGmyrygV+R+KKSHEbJWtIeGb2Q
AB9fWpKrZm8h+CZH0PnxtSUqlvCUV9tQwcdIIt11O3VVAOFJdwYVia8zyXuU
VA7tMMk/O5gNhy82sSIjBUcj5KDlCOSUc8GJprdSLi2bgho0xTYzO0ls2kKT
7P7KL1Z/BIGuWFGxUtpf/0t/6RW5qxCyGHq93/gAGlA0BGkNRlD6PgK8lqRS
g6V/UqNnOb71AX1LpLUVrY1pwpFF/M4H9CBOk2fpnzqR7f/eR2lThEQECXWa
WmkaDaDa6tGMXYrSFswPPkA7Q0LRnhPtDEit/egDqMHqyi2FKFKjAVRNpy+C
1Haswn7yUdpglbUgALVAouZnH0B/QIu2vAgg2fKLD6Cm61iD/qYXxdE0HEDp
WhNVhFA6P/rVB8jg0DUbsgL0Wcvu/+ajyBLrmJJQ6f3xCvd3H6TXGV9vSsXP
23H6wy9ZAjO+10SroaBYvSnaACeB+adfGE2M+tt6CyxMLza+czRQBEu04TtF
xQVU7pWhv1qZmuJuW6j9aAhFR/AZ3/xnAX+qs1r0D8EbpsE=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {209.812, 0.}} -> \
{-2., -2., 0., 0.}},ExpressionUUID->"9a1f9e99-51a7-44cf-88d9-0628c1f8c6e6"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(56\\). \\!\\(\\\"metabiaugmented hexagonal prism \
(J56)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"dbacaf14-2d7a-462e-98ec-\
cc000e5798ab"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .82356
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.349054 0.174298 0.368204 0.174298 [
[ 0 0 0 0 ]
[ 1 .82356 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .82356 L
0 .82356 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.19811 .45535 m
.19811 .28106 L
.34905 .19391 L
.5 .28106 L
.5 .45535 L
.34905 .5425 L
.19811 .45535 L
s
.6743 .45535 m
.6743 .28106 L
.82524 .19391 L
.97619 .28106 L
.97619 .45535 L
.82524 .5425 L
.6743 .45535 L
s
.19811 .28106 m
.19811 .45535 L
.02381 .45535 L
.02381 .28106 L
.19811 .28106 L
s
.34905 .19391 m
.19811 .28106 L
.11096 .13011 L
.2619 .04296 L
.34905 .19391 L
s
.5 .45535 m
.5 .28106 L
.6743 .28106 L
.6743 .45535 L
.5 .45535 L
s
.19811 .45535 m
.34905 .5425 L
.2619 .69345 L
.11096 .6063 L
.19811 .45535 L
s
.34905 .19391 m
.5 .10676 L
.5 .28106 L
.34905 .19391 L
s
.34905 .19391 m
.34905 .01961 L
.5 .10676 L
.34905 .19391 L
s
.5 .28106 m
.5 .10676 L
.65095 .19391 L
.5 .28106 L
s
.65095 .19391 m
.5 .10676 L
.65095 .01961 L
.65095 .19391 L
s
.5 .45535 m
.5 .62965 L
.34905 .5425 L
.5 .45535 L
s
.5 .45535 m
.65095 .5425 L
.5 .62965 L
.5 .45535 L
s
.34905 .5425 m
.5 .62965 L
.34905 .7168 L
.34905 .5425 L
s
.34905 .7168 m
.5 .62965 L
.5 .80395 L
.34905 .7168 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 237.125},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnGeXVEUQhi/sgqDEVVFhYYcMErwSzSAIGEA96PH7HkTBLGDOOYc/6m9A
Zrqod2b2qbKX/ejdDzs93VX1drrd7+2umnOz1y5dfHv22uULs70zV2bfu3T5
wtXe6Xev3MiaWNQ0i3pN0/zTa/rp6zeS9m/wt7n/z77cYvrV/sfivs2XPHVx
qKiZvH4TzrBfcLlmwvP7H68Oqy1xtZt/fYVzSdkI6sSwSLPYIZ/x1CTIXYhN
TLriKU8tnZ8JEn+yUi4xe5vX55inlscmnnWhe0FouZc+6qk7YmNPu9DYWN4D
One48FFPrYxtn4GixZB3N+SR2YOVcgavYV5SCbrKNR701JoY4KQLLQOhuyBv
jWvs89RUDPCkC9EI3gl5U66x21NUEQM4DkW1UGR2e6WcwT/hdVwdtYVGbaCx
1VM0Uw3gMRdaWwlwj2vMeOq+GOCRtJcJlIxtqJQz0IejjqHZNpa3frRVg9R0
DKXnnNYaAph2DY3VphjgsAtRJ9C02OQaaz3ViwEOutDGSgAyRstMAqrlg4RW
Qd5m19AiuzUGaCvrQ1B6crTx0INrUPtdaFtlx5CxiUo5A93roDtBaAXk7XCN
oY2s/21XjHK/6+yuRBnUZiLSMLNUdD/k0Uq7nZrR/wg7w0B3uuK+SqgynEzF
aLho+A1ctaaJeTvkbXENonGiewmo5jERAyJQPdcghiaCuCUGpaJa+BnIo4pQ
HulaldSqoyBE1GSja1A1tSokoFRUC7/BAWhaisDSgp3APxS1hXbWkLtq+aUN
abjLK1pP8LSRUkUoj3STKlGP0ORa522mHV2sOIHfXAlPVPwuByBGJs68Loan
x5IGhODFmYnD5aUJPLWe1joiiQRVSzCHV8eKHqEqrfY2E7cWr5snPPUIbTQr
HYBIsBg6kTeDp22DWk/wtO9TRSiPdIf3yIoq0Rvy7d5m4uri9POELwPCDECQ
xN7F8mlzN8gdYYsZcpkbpcVMvJ/2lASytHJyBLJpcG0mXMqjZWSYh2Gj59Rg
ibeInha9EcwTbfwx63fthBujeSAmRc+DQRGPfsgVadYS1HbuCjv6I+Y86LyB
AtVgMOATNSZC1i7m3LrcgWKMWPuh0c4KefkYJx7TaGMAopM0BWiNo7wHKu2V
94ZmDxSpBWJnBCVWTxoGsDfCFicLWXgPAKSxJwbY40K0ac1U5lFXarMskwvf
v2jeiVkQlDi6WkoUYEcMqomtPZM4tfh4CxoGsB8Ut7nQhtFUyLhb0NgWA2g+
URcRHaU8GjV1b5lmKBRuByEbFpNuxwBocuHbsmqmFYSYr1hzCxoJgHo+PyOe
AgBplIlUTrpoDMKjCHr+KI8GRE/xhhiexoAAVoOcUoXd2Ubw30z8gCsSK10J
AIeiqjOoRoNIIxE/yqNO1RGswdMGpM7SkTcBiDa2oFF6Dpu+woV0K0DcchkA
SGMqBqCzhuOuSJxyKUCdiPrGjrLD2p6CUtqFKY9GTZdPCbxaoHs+AhjjJWMa
5SSiOZIqnvVU4ZCjFG+uecmXgUnfDF4Ekw2TTuqr5yFv2TDqnCvu8/30ktEa
n/eU6Q5692A/45XRFA4pnrxQbV9egFwH1UF1UB1UB9VBdVAdVAfVQXVQHVQH
1UF1UB1UB9VBdVD/T6hD/ZKB0GFPyQ24meMn0f9s7Ow19EjV8ajkilNhtXPL
WavpUN5NnIb8EajtZyEvqYaOrRVMk/uhtqBR7j/wXFwH76c9lfuctqBRvLfx
ZF+36icj+Io86koFnayJ4ekyRbcwuVepWnoc5AyUbnB0i6a4jtyDtAWNO2MA
XXLJsSX3EW1Bo4Ri4C2aLvGoU2u9QGnUFOZQXPbwDpGCRNSC3PdTcmQ5AdV1
rCIJcj/PFjTWFwC675V3gfz5a++zpTEdA+jCnPx8an01adR0X1+c7PC+Xo5v
ecyT/DJb0OjFAL0UNPfBbMcAyDI2Xa4d5JJS629JljVcxa0OPUvU83kclHwr
W9DYHgPI+SaPg5oGAGmUCYd+FOQ6pmcoH1NB0ZOYgMoBozZyivJo1LS4l4ah
F5fWgzxKSr6TLWgUy+jopsCtPDZqKwBIY38MQLtCbWwU5VFXkj2rEk0a+X8M
Ebz+t9DfcqzhY2oPxlAKJ8wdMWkVNrOkGDDX3Cvz9dieqlkbB0V5BpD7zYoA
5v6UbxRjtf6+4p+5F+VbsdnAaZkcZWYq8wxtHk7aonJkT65y78aWM78SrQm5
X+T7RWG+PvRa03KvyKux+dqXqNpoIcoz+IXETOQxQqKAHxaohUSH5PFA8or8
OIaqjYOpjQz6tEAtJAqoNrqH8hL42hioPKZH70VfFKiFRHvl8Tt6ZL4qUMQf
auPaaiN0KC+Br430y+Ny5Cn5bYGa8QwK8CeAPApHvoffFwCxIjqyoIU9j7nR
JvNjAaBnjQgPGaOOrvWPNHi5o9N7KB1K5DE2OiX6pQCI/BDtojEYj6xhr8jf
ivldnkHUm8wH0TS0QRgGsTKiQHSuMmj+YKf7sxjT20CtCVG8v4sJBX7Q3k3P
TRgh/1f58oCX04ZGFrNAeKsmEVKasbQN56Hu1pXyH58BIfoZB5E4WvrMrIKV
iOCQWYJPAI44wHoQohU+Dz43syLIxCfIbB5UbmYfgaLwd3pCukaDbAD6zaVa
s7Xh4AbwuAPUsoM8uNvMHnMhmhN0SJAHbZtZ+nEsGh4ykZMvAzjhQrQ80s8W
1YZbG8BTDkCbFgGILNEhnZnVGX8YEB8SI2I1Znbgsx+sZFSb2lBnM6/fXhtb
eomJ5zHLZvE5KCJj4jJ0hmbGwp9sC0/EEkUal3maEH8gYjSiyLyAXggTtYZf
5Ic1BiV0IjEsFO7oJvSaCyVwl6CINmQTv+w2E6E3XYjedUzobSiaicXfcZuJ
0HsuRNuoCV1xIXrbN6FrUERbgIl/4DYToY9ciB4dE/rEhZLV7jMoogXTxD93
m4nQly5E27YJfQ1FtDiZ+DduMxH6zoVobzChH1yI1ncT+gmKaH0w8Z/dZiL0
qwvRIYcJ/T74mPOUGyn9o/8xMZTxV2xp8OUWfyG0WfQvc1oHCQ==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {236.125, 0.}} -> \
{-2., -2., 0., 0.}},ExpressionUUID->"3389be5e-ffce-4b1f-ad82-d345ef160e3e"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(57\\). \\!\\(\\\"triaugmented hexagonal prism \
(J57)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"ebe681f3-c484-404d-b7fe-\
ce5877845cb1"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .72626
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.423147 0.153705 0.324702 0.153705 [
[ 0 0 0 0 ]
[ 1 .72626 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .72626 L
0 .72626 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.29003 .40155 m
.29003 .24785 L
.42315 .171 L
.55626 .24785 L
.55626 .40155 L
.42315 .47841 L
.29003 .40155 L
s
.70997 .40155 m
.70997 .24785 L
.84308 .171 L
.97619 .24785 L
.97619 .40155 L
.84308 .47841 L
.70997 .40155 L
s
.42315 .171 m
.29003 .24785 L
.21318 .11474 L
.34629 .03788 L
.42315 .171 L
s
.55626 .40155 m
.55626 .24785 L
.70997 .24785 L
.70997 .40155 L
.55626 .40155 L
s
.29003 .40155 m
.42315 .47841 L
.34629 .61152 L
.21318 .53467 L
.29003 .40155 L
s
.42315 .171 m
.55626 .09414 L
.55626 .24785 L
.42315 .171 L
s
.42315 .171 m
.42315 .01729 L
.55626 .09414 L
.42315 .171 L
s
.55626 .24785 m
.55626 .09414 L
.68937 .171 L
.55626 .24785 L
s
.68937 .171 m
.55626 .09414 L
.68937 .01729 L
.68937 .171 L
s
.55626 .40155 m
.55626 .55526 L
.42315 .47841 L
.55626 .40155 L
s
.55626 .40155 m
.68937 .47841 L
.55626 .55526 L
.55626 .40155 L
s
.42315 .47841 m
.55626 .55526 L
.42315 .63211 L
.42315 .47841 L
s
.42315 .63211 m
.55626 .55526 L
.55626 .70897 L
.42315 .63211 L
s
.29003 .40155 m
.15692 .3247 L
.29003 .24785 L
.29003 .40155 L
s
.29003 .40155 m
.15692 .47841 L
.15692 .3247 L
.29003 .40155 L
s
.29003 .24785 m
.15692 .3247 L
.15692 .171 L
.29003 .24785 L
s
.15692 .171 m
.15692 .3247 L
.02381 .24785 L
.15692 .171 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 209.125},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy1nPmPFFUQxxtmV265zwVmWORqQSD8YIyBRe5DPFG5FNaNBmIIBomJIRJi
NEZjjMYYjdH4N/kXITP9qG/v7OcVNaF7f9h5815Vfatfv+Pb1fXmwvS9m5/c
nr53a2a6d/ru9Oc3b8180Tt15+7jqs68opjXK4riv17RLz96XEz/Bn/b+v/S
lxHKX/U/5vftnLXSlVpTMfboCUTCO2lyRcfq+x+X62rjpvbkr69w3Gmbhdqp
ixTzDXLKSmMgdylvYswUX7XSc6OZeM4UX7bSwryJj01oLQiR4qGgXAK4YQBD
N2IN6Cwy4YNWWpK3fR2a5kPdKqhbYgD7rLQsD/WhCY0HAcjYnqBcAr1qoNTB
K6HuedPYZaUVeYDLbi+T4grT2G4luvoEcAmaolCrDKBrJRo0Cep9E1oOQlRH
xiaCcgn0ooHS3SDQtaax0Urr8wDv5jqGbvxQ3XoDGAJlqLdNaB0I0TDVFay0
EnVgAnjThDYEAchYVC6BXnA9Wwp1m01Da8TWPMDrQX8IaqsBLLBSLw91zoS6
IETziox1gnIJ9IyBbguCbjON2pJfPFkyGOWU6bwAQouhbrL/v5PTSGZPQtMO
qFuU6xPauQZ1k3nQ46a4OwjVHfxnxkG3q5sHf83AXwQh2ke2mAaxFbEaB/Qo
NEXhJwyAmI4Y0ZY8/BET2g9CC6BOKxe5JA7lLCyHoSkKT+sfOUJ1pOu4dCB3
fUN16+yaaUqLmDnwR4LwxKDWGACt71qIaWtqAH411JEjVEe6yaWpoEs08bSl
EjkS0XPgaVrSECX45QZAdEM0kHiPA09XTyvcMgMg9iVqSBSrvhIG4OmJgTZr
coTqSLcBlxbbNRNdFMNz4I9l4XnrESTRRtFL2p7reyEOQYZcaEZp6fWXbQey
usqxWZBFgWsz4VIdLSPJgxPZi57jwbhdEVFMUdER0YYHlRGJLMUUFaXp6NCp
A6ZIo5agetwVV56CMVAgCjngm52aib1WQVNlv7UScZy0yylNbl9ltrQmIoS0
M+2d3alZ4iiqWYJGxaRS8CBOEmljIFJGQ6sbrKOABtmriHAtKOFTTVpWd1ur
yAi5JDpbgkZyZIdV+KST9r6d1qpNisipiG0JGjsrRxRF8YkobbPbZ7cGVs0S
NKpJgMMySkkp+ED2aEQSn6Q6GmlkL0WMNaN8Okv8oWut2uLIJVHmEjSSI1pX
fWJLfajlX2OJlhmR5xI0upUjNESjFJf6kEYaYdBNojq6wWRvc3U5uj6fHhMd
2mCtClWQS5okJWgkRzS7fKJMJEkjSAtSNpA45Ig0NlWOaOj5lJkCEKutdY+V
aGpo/SpBo5ok+SEaqCNGRj1CGxndaqqjkUb2qjcitdnlE29yXTduv5XIJTHt
EjSSI7qFPh2nLW2ptR6yEo1I8e8SNKpJUhvU/nZDm7yu1H8/pa2vBI1qSOAQ
jfJ3YqvkyCtQRxSH6mikkb1q8a/NLv9hgFxXfx22ErkkWlmCRnJE25L/qDDE
g8WbFIXspJaaAfBA8tXswLGZf5aAB50huePgRqYn6abRM2W1jtZmTPbZZLiv
+t9O97+Mz+6F01ZKtvVWwH9UOd8v7bMSDY06CfYfQYZu6rlgF53NIxN96Gbr
+AmHLmxEN7QGErgfBiezI8KLk/hPC7R8NwAfXbRpDWwAnshRlPu35JJIj8/u
afg2AC/m4HN6IuQNwBOZiXL1llwSL/fZODH+BuA3GYDPwWkoNwCv/d1n3kSb
G4AnyhFl1C251LVr9jkzDeUG4LV3+0yZ2HgD8NHQEC3nDcDTa/Io723JJUXe
fGZLQ7kBeEUgPVJLLLUB8BIgi3jMvQEPBo/IA3JGRLcBACXiEdttCmBurijR
4cbQmM1SKk1jkLOb/ASOlkD9tI2WQFtfEgk0mqLREryfmNESqJ+O0RJoNPWi
JXg/4aIlUD/NoiVQP7miJdBoIkVL8H76REugfgJFS6CtP+gTaDR/oiV4P42i
JVA/oaIl0Ir6zWGJDQTPCE2JFy0BKMd3oLjfSrUBnO8HimYO6rKHg4ai0pJb
nIfqcpdTELFK/4pncFAPUgqZ452imgSgR6YpK/mZGSVoLMvDT7hmRdj8405i
kyVoLM/Da7GjiS/u1MCrKIInSkaOUIAxesyK6mjckD3HdUU/6bWmglH+OS31
cAkaa/Lwin4uglaF4vyzW+KpJWisy8MTxaOOpkggdX40z4J0qc5xXVFSuiEK
efvnw8R2S9DYmIfXrSEipVHlnx4T7y1BYyIPr4FJ+TSKL3et5OdKlKCxJQ9P
1xw9rxQ9eUZ1NEby+TnouqKpxPq1jfin1sSjS9Do5eEVTaUnna61+ifZxKhL
0JjMw2uJp+GoF60NJNoRfPRMKcXFnmV8Rdcqx3VRCBqYitj6Z+nE0EvQ2FWH
56grBSIUr/VP14mpl6CxJw+emQSUSxQ9dEd1dJfydLHytJNzTvtfMTshwc9e
wNzn/re99e6B2ThUp6QmP6OB+jBBnYKm4fz+5J2f6HAtb09uRo/fUV0C8LPm
RW7JhBbe63ljw2d6+vdFK5qfbTBdKYxwZCF6RGOmkh/hOAaFQaI5Ag6ad95E
i4yfA/BppTDqCRrxEf8d/828eTqwRW99ovFRqkvwz3I8yY+Pahf8LA9FV0rT
z4+KioHerqCOBq+KoPxYqO7unTxU9MBdNAJKdQl+KghPdMOPgIod3q2gnuWw
pR/31PJyLw9FV0WRg+g53y8rKCVCHgwCRCObVJdApwz0JRCix28/nilGVv0+
DM412l8JajiKyezrfgV0zCpKMEV3oAdGC36rnTBOGMYuEKJowYDEDJbnB5UJ
/dZA9KcAxEseVibO5HBo3jxFrpBZxTajxrqmQX2WLvi8CRH3pjiBnwyZzF6A
JpoPBLAZ6hyoN8yfTSBEK5aSuWhYJ7NvmRBxVdpRFUKgcZLMvmNC9KNKZJbg
HYCL0JT9OaCRFvoE8J4JRc0qskStyewHrhBtsdHfukkA+kEjujgC8MlEMnsV
mmg5G/2kfgK4ZkJRs1G6lwA+MgDaMujS/Zf8yeyNwQdzX/8HvohuJ6PTJlTM
fj0TDcs6tmeC3ebnkiRj/k+40XOXo0j086km4iloGbX+Z8EPynWN7BP7KEL3
TciB+xqaunnxB2bTEXpoQk6HfmNCzh3/Fpqc0fad2XSEvjchZ6L9AE3OdP/R
bDpCP5mQs/T9bEK0eiahX6DJ2V1+NZuO0G8mRLwnCf1uQrQOJKE/oIlWwST+
p9l0hP4yIZq3SejvwcccdpvI3j/9j06t4t+8pcGXEX4ws5j3Pz18AEY=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {208.125, 0.}} -> \
{-2., -2., 0., 0.}},ExpressionUUID->"df36aa04-5166-44c3-95ae-d3de2d91f083"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(58\\). \\!\\(\\\"augmented dodecahedron \
(J58)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"d58a3e62-51f8-4533-8180-\
a84d822831c9"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .47389
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.261086 0.112027 0.213122 0.112027 [
[ 0 0 0 0 ]
[ 1 .47389 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .47389 L
0 .47389 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.26109 .11783 m
.35172 .18367 L
.3171 .29022 L
.20507 .29022 L
.17045 .18367 L
.26109 .11783 L
s
.26109 .46261 m
.17045 .39676 L
.20507 .29022 L
.3171 .29022 L
.35172 .39676 L
.26109 .46261 L
s
.02381 .29022 m
.05843 .18367 L
.17045 .18367 L
.20507 .29022 L
.11444 .35607 L
.02381 .29022 L
s
.11444 .01128 m
.22647 .01128 L
.26109 .11783 L
.17045 .18367 L
.07982 .11783 L
.11444 .01128 L
s
.40773 .01128 m
.44235 .11783 L
.35172 .18367 L
.26109 .11783 L
.2957 .01128 L
.40773 .01128 L
s
.49836 .29022 m
.40773 .35607 L
.3171 .29022 L
.35172 .18367 L
.46374 .18367 L
.49836 .29022 L
s
.46374 .18367 m
.55438 .11783 L
.64501 .18367 L
.61039 .29022 L
.49836 .29022 L
.46374 .18367 L
s
.70102 .01128 m
.79165 .07713 L
.75703 .18367 L
.64501 .18367 L
.61039 .07713 L
.70102 .01128 L
s
.84766 .46261 m
.73564 .46261 L
.70102 .35607 L
.79165 .29022 L
.88228 .35607 L
.84766 .46261 L
s
.55438 .46261 m
.51976 .35607 L
.61039 .29022 L
.70102 .35607 L
.6664 .46261 L
.55438 .46261 L
s
.70102 .35607 m
.61039 .29022 L
.64501 .18367 L
.75703 .18367 L
.79165 .29022 L
.70102 .35607 L
s
.86661 .20697 m
.79165 .29022 L
.75703 .18367 L
.86661 .20697 L
s
.86661 .20697 m
.75703 .18367 L
.83199 .10042 L
.86661 .20697 L
s
.86661 .20697 m
.90123 .31351 L
.79165 .29022 L
.86661 .20697 L
s
.86661 .20697 m
.97619 .23026 L
.90123 .31351 L
.86661 .20697 L
s
.97619 .23026 m
.86661 .20697 L
.94157 .12371 L
.97619 .23026 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 136.438},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzNnOtzFEUQwDfkkgsJSUyikYi5vTMBeQRE0RJ5aJRHEASVKv2eoqyCD5YW
8kf4X5/Z7mFmb+83mz72Jms+HENP73T3PPo1vfv08M3LP/48fPPqxWH/4PXh
3y9fvfin//Cv10eg2Zksm+lnWfZvPyvaw6Om+5G/QfHj/gPtgbaP0Dd869ei
NVu0fi8hZQIZur9sG2BrRrxn8jtXhmnH0d9vaUg+BdgswJ4r+T505QBbNeI9
Ln5PFaCubyUi9SPATgPs5zTkHwFsycvsiNKDtOLLRrwHnsB70PtTGqL3AUbb
8Uka8vcAtuHnwRHtAdIOwJaMePuewFnofZSG6HcA2wLYQRry3wLsnJ8HR5R0
znmA0UkkvDsAI8HupyF/y8v3CfTeS0P0G4DteEYc0Y8B6VOAdY14XwPsAsD2
05D/yst32bcSkfoSYHsAu6vkz0HXJYDNGfG+ANg1gN1JQ/5zgF0H2O3/BfmP
oOsKwMiFITwidYLkSfqatW+ZPNmWq/LLLutngE+Tm5gkSVlzvk+SJJlaHQ/9
iCqpgrz1ALVMnrZflXwx3vXm5Al2GWCL8tsZWdTAwYfGka0TQByoA8DbqsyG
WD8hNOtbAut5GDnYpG/J5yB1oTt+Kodhuwaf2L4IsAWAdQBGGlJDn6krT/Ly
6NkVo4jkrpAVrRExeN+XfKsLsB70EptWr4pgZ/3I68rctL1iGo+ePQMwcmTn
AUbbThXDmNrQnVya2uChLwOsN9prUMzEM+0PmoNNhx0/glPPd9DyrHihSUBa
ZBKQnn0fYKei3E89i2Z9lvYTiU2qjfbxhvFZPdwas8r8B03xAcB6o70GIXYb
CLEOMFp3JwSRImNthdHabfoJIGEpGRKfddLUx2seJyxtDloTstOER8LSszT/
JDYZPNIQJDZZDVWGqutk/kPmbhtgvdFegxCUtiFFQQyTYLQ/nBBk5K3ak/BI
REp90VYkhUdi01kkA0VGxolNXqc1d0t4JLYYK1n3uLBs7ehQkFIiI6N4pYRU
yN+fB1hvtDfCkJ6qMXdicyKekE+K+Kw5McKjhbhQI9mAJaPQLr6dUDKJQGRm
53zrCsDCCoQ1U5X1dtQxt6fAIIVI55wOqa6Ri4PqYiTuy2HIPc/7wLcoCKA1
IzXmWKwGqQX5ajAbY+maZyT3LUrLkmWrYUlcJrlqveFbkh7djclMKp502GKJ
gGFbU1BPeBToK16nuryy3qR9SIORX+dEoOnLAUaRuBWPrMqcF4ImkWwJ+eSJ
hKAMIuEJ+XmvpiOHMK6hWmNc6Aq3eqTGtCrpLMczqSkyvlcb4FXV6PDt+gvP
sjuieisRm2T+CG/Ls0nMLbTLHF23RDWJ45XCDvLdKallxSM3WiYyZJU6MV2R
iE1KsBKenu6xAySqQaaWHI9uuzxr3MraSramiENelGOcZKLYkpx3Kx4F5rRN
yVaseSHIorcsBBkystpB4VWczET8U4BJeORN0DSHA+yOKAUXFC00gVFak7QG
uZKksOfbZZ0cBIodyMfopmGd2CQ8snGkUiiJ5jYMRahNTqN119PJWgQYRdWn
22U9HsCbvelps046kPCsrJP+cREfLVITv8RqZIkubSKKJc+0yzodSWvKdbld
1kkREps1rJP0TQIXq3NO5ofMFK3ESrusk6mnI0n7f7Vd1qNelkHruDtx2nNN
ciOER1E8ebnkDZPyXjtp1jmyiOcUSEmeILtjwVs8cqdtj5lSa8pvotRguFdF
V482dqkkQ0jtjLZk2E5sWNJSbljLES4WPQfYpFU9tEpDl3gjF4w0lJ4Vk6kq
SFY1SgEjzWOt2iHzRXhyzEVSchVIf+kElO6JQl0O6YwciWbHlfNcBJjsDlkx
ymMQcXX1zYGrnX/beNYSH3JYCW/BT0Bd5Z0qk1KxSqjamehqdaKKn8Fob2iV
kiJjak9VgDkpbeWe8Gi8+hKfPvRGvaNq1qT4n14ome9sSImQdITXpKaH7r0I
b93PjI5cAoTKG7IL5F3PwbP1VTtbo73BwGToUVGQb2WO8CavvKEMCY2ixgZl
tlYvkRCE16SihiY5Xl1bmodQ7UK2kNTmAjxbXymzNtorLccILQMdYytzhNek
2sVaUaMGHafcWoFJ4hDe5FUsZI9Jd2kWRi1UpdqEiFKWbwmerVaqgCWtVLk4
Rkj3xcu6jmcufvVy/GxSmtNa7qLPljZ/0K9kXGmIFXiW6k+oYsWRz+Ufe6E8
5eRWa8bIAX+vBp/cflWVWDZDDjCxWJ3RGGvVqDrL+H0PvYvE82KdNauPQfUe
xJL7iAC9WdjkLbQpkKIhZJ1LDgFObxMCE67kDeiiWM7yLtmUSNEQijfmlNec
mibU3vGg0tul1vfyEpMkKWlHUbRIeLvNyVuj/hry035H7F3Ih7MsLdp2pAUp
7ovfI5l3cyLyVoVEeHQRZ31j2ZEPL6iHRMxNQCdfgdJ0NW4JvYpPjloi8je9
fCGZcTuK3sgBuwVdOcDoKxDRSMiApyyhVOQG3E1DXqSqBPX7gG5Nd9WQom93
UHD9PcAoWqaojvD04OGXSyi4/iENeZnUSoD8IA0pkoBC1ocAI4+WbrpqIkX6
GA4FWQdpyMtXWCrB5uM0pGgCSfs8AVgOMArJCc/lFQ68fCHAe5aGlH7Iit2y
X9KQrK5ZQeo5oJOypACa8NR24/rIh9fkbYB133LpqaECatvZzH/oQrKt\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {135.438, 0.}} -> \
{-2., -1., 0., 0.}},ExpressionUUID->"01ea9e3c-eb29-42f5-97fd-8b3988684cf3"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(59\\). \\!\\(\\\"parabiaugmented dodecahedron \
(J59)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"d390917d-3069-4b06-aa6e-\
3f6db25e0858"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .54087
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.270918 0.116669 0.245622 0.116669 [
[ 0 0 0 0 ]
[ 1 .54087 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .54087 L
0 .54087 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.27092 .14638 m
.3653 .21495 L
.32925 .32591 L
.21258 .32591 L
.17653 .21495 L
.27092 .14638 L
s
.02381 .32591 m
.05986 .21495 L
.17653 .21495 L
.21258 .32591 L
.1182 .39449 L
.02381 .32591 L
s
.1182 .03542 m
.23487 .03542 L
.27092 .14638 L
.17653 .21495 L
.08214 .14638 L
.1182 .03542 L
s
.42364 .03542 m
.45969 .14638 L
.3653 .21495 L
.27092 .14638 L
.30697 .03542 L
.42364 .03542 L
s
.51803 .32591 m
.42364 .39449 L
.32925 .32591 L
.3653 .21495 L
.48197 .21495 L
.51803 .32591 L
s
.48197 .21495 m
.57636 .14638 L
.67075 .21495 L
.6347 .32591 L
.51803 .32591 L
.48197 .21495 L
s
.97619 .21495 m
.94014 .32591 L
.82347 .32591 L
.78742 .21495 L
.8818 .14638 L
.97619 .21495 L
s
.8818 .50545 m
.76513 .50545 L
.72908 .39449 L
.82347 .32591 L
.91786 .39449 L
.8818 .50545 L
s
.57636 .50545 m
.54031 .39449 L
.6347 .32591 L
.72908 .39449 L
.69303 .50545 L
.57636 .50545 L
s
.72908 .39449 m
.6347 .32591 L
.67075 .21495 L
.78742 .21495 L
.82347 .32591 L
.72908 .39449 L
s
.72908 .11392 m
.78742 .21495 L
.67075 .21495 L
.72908 .11392 L
s
.72908 .11392 m
.67075 .21495 L
.61241 .11392 L
.72908 .11392 L
s
.72908 .11392 m
.84575 .11392 L
.78742 .21495 L
.72908 .11392 L
s
.72908 .11392 m
.78742 .01288 L
.84575 .11392 L
.72908 .11392 L
s
.78742 .01288 m
.72908 .11392 L
.67075 .01288 L
.78742 .01288 L
s
.27092 .42695 m
.21258 .32591 L
.32925 .32591 L
.27092 .42695 L
s
.27092 .42695 m
.32925 .32591 L
.38759 .42695 L
.27092 .42695 L
s
.27092 .42695 m
.15425 .42695 L
.21258 .32591 L
.27092 .42695 L
s
.27092 .42695 m
.21258 .52799 L
.15425 .42695 L
.27092 .42695 L
s
.21258 .52799 m
.27092 .42695 L
.32925 .52799 L
.21258 .52799 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 155.75},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzVnNtyFDcQhse7NjbYJhBIHGzMjFkcknA0EA45XaVygJDkFVxUquAilRTh
bfIyhDyYsyMp0nj8Sf7Hmt3a9YUtt1rd//RopO5Wzzzff/Pyt9/337x6sV99
/3r/z5evXvxVfffH6zFpuFAUC1VRFH9XRd0+GDfdL/OzU/9y/0D7bf3nas3/
TYNQDA+8gPF/V4D2lWX/B7out2g1mK9PxP4O2DfN76UmzQ9zoP6FYZeANgDa
k7iIj4A2jIu46k170beeAvuHQFsC2uOGWOEGvS/y/ZAPaQe6SqCdF/l+BNpF
oC0D7VEcUgW0cyIfQboAtBWgPZweJLrpp+OQSCzBfE/ko+lNN/0M0D6PQ6Ip
f1bkIyuRhVenB4msRBZeA9oDC6mErhHQ1kW+Z+JYusT7cUjXxKsiPrISjSXL
TQgSWYnmDc2vexYSrcC7oljiI0j0dNFTmID0sSiW+AgSrUG0Vu1NDxKt1LSi
O0jb0HVdvFLi+wlotJ/Rvnc3DukT8UqJjyDRrk/ewZ2ZhdR2L+v/PgUaGZ/4
ngONvEDyFm9PDxL5tuQDJyB9BrRTIp+FxF466bplO7eg6wbQaA4Q388tWq2e
FpebM6v+JtAWRT5D+7YmOfNuAtMtoNF8Jj5SWgKNrvnGZCARrb0qHXMbCNJt
oNEjRnxkpY6Q6Mm16xs/YnuiZbYSMhKPaR9wyFJqkJ5YyKjL7peLh6CN2/dE
I5HIjis+dbWNUhvqvmioDaB13BfnBJK5SYOa9EAE8gHQOnpWG16pufqhbxla
5WkUDqlZAeJb85Jt3NjLg1Ym+CnGI2Cq/76a0OUyjmZ1HfhNybSWgFZBLwVq
an4hytfSYc3Vu49WimPJ0gRdjTtJHum119t7mEOXTWOJpuZEiE/VYTdAu/Wa
27/rW+tAq6CXJpuaOyG+FdDhYFbAnpOvK8WxNGEIunrHSB6NtRuChR4eTtO6
ALQKemnpVZ8d4jsFOhxMSqyRS08bFPGV4ljaZQm6ulKSPNJraTZTZuxwKdmq
gEbhpLrXEN8i6HAwKS+k3gniK8Wx5CkSdNVvIHmk15oMF2VSRQs/8dFl01iC
qXphxEfySK+d5DaZZG7/ed/aAVoFvRReq54s8Q1iCApMnag5e+Iro2PZJyNL
xy+LZVBa2u51NsY317vqW9eBVkEvxX1q1EV8LfEOIcV7qktHfKUwtjYazRMl
+q3HUqbJrvcYD6nJKuKjy2mPrSGRwTedkWDO+HFkfrsl2TDH3KqhbxGtOtw7
DHj+l4rJlpY8p1QJgIuCz3JpbDulQ/IO/FSyq4IpFDBHjyPfCjRyRwrc2imd
RLpLkU+Vl4BEqigLo0JS5TlI6sk6RdHKHe8ib3muIJGquxmQVHkOEsUGdLJ+
B2i0dRKfKm9lriCRKtokVEiqPAeJYl46Wad9gPwK4lPlnZ4rSKSKDhJUSKo8
B4mcS4qgyJGgkIP4VHln5goSqSI3X4WkynOQKN1CJ+vk0Ko0Vd7qXEHKEZsD
c3YhURJpGlOZ+NbikHIe5JyFYXYhUVZvGpsH8a3HIeVsnTlb8exCosTgNNw1
4jsbh5TjrOY4v7MLiTK10wiQ4qc/CCknPMwJN2cXEiXxppGSIL5zDUih+uCa
b+361qhuuQy/8jSM/x4xQk3rWi+wd2xfYlVdaqr2w64k+ughJMOpxWHE5yp0
QjI6JK0p+UoZvQGMrXxrGXoDzamPRxJs7HjCVefPOa9XawJclV88wmW4dAQT
L8NiGerlqaX2cW/YriXmdo58iy4h7/ziqI4wyQhBoDmYakqW1OccgJE80ks0
FTPx2RmAh8d0dNj3uR/JI710OTlHtDYwaNQnbPkWnbfnnMqG8/agI0zKDegN
NAeTztbVWkK1ro5WJpJHekug0VJEY4nPOpt2EoX6hGitSk41RKhVCTrC3dmG
3kBzMGl1okeNJodahUcLK8lTlwKiqWOtk4Q3jtLrfVcXkTzSS9DzC8EatZnp
8ja1Ck8tbwuTMl1+52BSbaZa8KdW4eUUFZZAyymiTNRmqs9dTi0lyTtp7UNs
LPEdqc1MFwKrz5haCBwmZbpQ+VBtJruiNOly6pbXErro8e5aMt6su2x0xS5F
3Y+iJe8tHWp1BcXfdhvGVI1a7K56FWoBFsEkmvUr8Yao/hg5U5Tv6wiJMk+q
F0x+EcXm6Rc9NiYDhGzTcaZRjkKN6cjNINv0ACnn1SqC1OGdKreakK1TKQva
7gjJCRc3EkWfoimBj84+ZgRGzouK9t43XhslppyXM5sKWl1UXdZ+fbYn9arJ
fwG+nNdxN7up/xX4cl5Gduq7PoZkhR5g5KxR9FWAnJfVt+KQ1JWcXsHvwffN
2e/ISjnfYrg8s5ByPCaC1EOsRvug6mvS10pyvn6yHYekeu4TgkQ+jBoXEaSc
L+kkIKmRJUHK+d6Q3RPRH1bjefqKUg+QqBRdfeeRIOV8uyoBSc1wEKScL3yV
FtJD6FKzg/TdsglBUrMOZKUeko6PoEvNepOVKqCpZfZVHJKaFZgQpMfQpZ7c
EKQSaB2T5E+gSz0vM1+dbH0cc5Qv1n62s/gCutSz13dxEWq87ER86aA3umx/
wSls+3FU9xHT0FWzU3T09kTs5suqxtxOnek95iuxxcJ/Ma4lGA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {154.75, 0.}} -> \
{-2., -2., 0., 0.}},ExpressionUUID->"13064dc4-230a-42bc-942d-56ce9f158ca5"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(60\\). \\!\\(\\\"metabiaugmented dodecahedron \
(J60)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"f0091c8e-d8a8-4567-b190-\
f24c928c58d2"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .49662
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.29898 0.112027 0.235308 0.112027 [
[ 0 0 0 0 ]
[ 1 .49662 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .49662 L
0 .49662 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.29898 .14001 m
.38961 .20586 L
.35499 .3124 L
.24297 .3124 L
.20835 .20586 L
.29898 .14001 L
s
.29898 .48479 m
.20835 .41895 L
.24297 .3124 L
.35499 .3124 L
.38961 .41895 L
.29898 .48479 L
s
.15234 .03347 m
.26436 .03347 L
.29898 .14001 L
.20835 .20586 L
.11772 .14001 L
.15234 .03347 L
s
.44562 .03347 m
.48024 .14001 L
.38961 .20586 L
.29898 .14001 L
.3336 .03347 L
.44562 .03347 L
s
.53626 .3124 m
.44562 .37825 L
.35499 .3124 L
.38961 .20586 L
.50164 .20586 L
.53626 .3124 L
s
.50164 .20586 m
.59227 .14001 L
.6829 .20586 L
.64828 .3124 L
.53626 .3124 L
.50164 .20586 L
s
.97619 .20586 m
.94157 .3124 L
.82955 .3124 L
.79493 .20586 L
.88556 .14001 L
.97619 .20586 L
s
.88556 .48479 m
.77353 .48479 L
.73891 .37825 L
.82955 .3124 L
.92018 .37825 L
.88556 .48479 L
s
.59227 .48479 m
.55765 .37825 L
.64828 .3124 L
.73891 .37825 L
.7043 .48479 L
.59227 .48479 L
s
.73891 .37825 m
.64828 .3124 L
.6829 .20586 L
.79493 .20586 L
.82955 .3124 L
.73891 .37825 L
s
.73891 .10884 m
.79493 .20586 L
.6829 .20586 L
.73891 .10884 L
s
.73891 .10884 m
.6829 .20586 L
.62689 .10884 L
.73891 .10884 L
s
.73891 .10884 m
.85094 .10884 L
.79493 .20586 L
.73891 .10884 L
s
.73891 .10884 m
.79493 .01182 L
.85094 .10884 L
.73891 .10884 L
s
.79493 .01182 m
.73891 .10884 L
.6829 .01182 L
.79493 .01182 L
s
.13339 .28911 m
.20835 .20586 L
.24297 .3124 L
.13339 .28911 L
s
.13339 .28911 m
.24297 .3124 L
.16801 .39566 L
.13339 .28911 L
s
.13339 .28911 m
.09877 .18257 L
.20835 .20586 L
.13339 .28911 L
s
.13339 .28911 m
.02381 .26582 L
.09877 .18257 L
.13339 .28911 L
s
.02381 .26582 m
.13339 .28911 L
.05843 .37236 L
.02381 .26582 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 143},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzlnPtTFEcQx5eXRJGHigYk3B1gTFAQfORtnlYkahmTVJLfKStV+kMqKeP/
kT8qj3+L3HZPZm7nPrP0HrsLpfwAQ0/vzLd7enq6e+fu8f7LZ7/8uv/y+dP9
3t6L/d+fPX/6R+/+by/6pImxLBvrZVn2Zy/L2wf9pvslP2v5L/fPIe2/tN1/
9O4AIZs48IP1/1sF2sfK/jd0rUS0HNgnI7H/A+zL8ntqkOYfc6D+hcfeBNoE
0D7QIba8Xs771v2ahjVod8HI9zXQLgJtCmjvn1hI16GrC7Q5Ix9BugC0aaC9
99pAIvM+B7TTQLujkK5B1xrQzhr5CNI80GaAdvu1gbQHtFkj7ZZC2oSuDaNU
60YtNQTpjJGPtETi0GLePLGQ3oWut4FGm/aKERI9S45htxqkN4x83wCN3CK5
z50TC+kd6CIaDXvVCImOWDqKb1SDdMrIdwIhPQAahWsU1m0rJFI+OQaSlOyQ
tHTMkB447gGadvR/4mg9/2+rGoxJI9/DiJZPTxGnBkK4USlGIuXSkRzbSsvT
C+3LnLRVbYJxIx9NSvIRTZ/FE0Rtko3nhhEGpYQlqn+FYNBClWW8JduRIo4d
kGjXCMOa6pY4qlcMEqXO1lS35NCjgPom0KxaqgvSeN4jQIRn19M6nkbxvDWt
Jb4ZP7KrV9Wxx1ZL+EkAaxJMfDMlc/W0IX5d9Hjdt2h5Nn1vp8gnLcobjgL8
NMzRUcCVgjJ5kIIMcqRkFgTYmnATH41H86pnVegiRFgnmmqjqKXAJ626hZiG
ORzgStUFeZD8Da0O7Q3SnDXRP8p4SyqstQZGOuwYxU7qf8S1Iz4aj57Vg0wP
Hlm7Vd8i97nieztFPmnVLURwFGEOB5jc8DLQFv2Dl6GXVsd6uFXyeyMelosq
7E5RemmRsBd9b6fIlzwCjiLEBMzhAFNwQeZ0OXrw8NWh8JQCNGs8QHw0Hs2r
itLyoghxzre6wD7veztFPmlRDms1E+Ibhzkc4LfyP5MprZNz7Bn5aMXWHMQB
mnYkHEZaQB6D4u25AUGzyfgxGWfBayUceFeAFtYqHNeUEFuzBOKLhnfoKVmc
9vitZx3VUIiPli6OwbKEF7HImT9LNRn1+847F5eq35aY4lTeokpqsvwkaqQS
HkkZo8qR0iotO92BEfrnKHzQ4n1p0i2vhKe8GxD4wb1ug24OhsxTuCYC+v/Z
3S4oyheekJaDuAToSROLHq7iHRw6ziGzhDeklDhenZxGR4naL5odudFlrxlx
1fLq/XaxRYlGll2CLrI5OhwolybrI/msfA4meUza4uGYvnXywKntDTkAUmMX
aLE5VeFz5kSHIXkdNTveyC3CpWiG3hPSAtABRhF1Q9DPQxfF/7QitMGpbEYZ
6vYR+NQSMDim1+q0OuQ6WoRO923oKgeJSGdpi9ApYSQaiUhbmI5pKloQH8Wb
xKcpE2qYYForS1SNsUKqAToZB4Wi5IlahE6QyOvQ1iUaRa5UOSY+es1GfC4I
s3oTK3TrVYUaoJMPp+OHjINWrEXoBInCP2vdlcrXlIpZS99Ec6kTQaLQmBwh
eaK6YZZAJ0hU2KLjhzxRi9AllJFwlQDTUU+bmKy0bqs/OwA4UQyxBlrE16II
yRpAqOhEvRTokkeq25dXFOKMF6Ls9R4ZGp2LdZ+zs2ng8x64btGh/I2q7i1i
Jt94wWMONVLK4OsOCCvCXPIwCRwF0HUH5HNpcLSsgpXOzBax0jEuigzvp8RE
KRY8Zph6ZA9toOAarNfu607k59OYdbXZWwXXQAbUInBrZYHOCrETWRM60Y9Z
CAoo6NSWA0/LtcXKML2wrrtuuZDGT5uQ1CzOZiMn7fqWTL8etjKmPhQRUChJ
DpZq0VXv/uyU9O1Wg52s50Y0XdIhL2L9TBZV+613TrfTElGGROFEcNXkPMPN
n+jVR7i8sgk0h8t6YcSSTmVJhMM0Ci1J9TSv9YMX19Ii0nJY8vRcRIqAaOVF
FdGazPrWBtBKABM4EkJd+JClU5QVXqX1oNd6Radr5NOkEY9rWrv0DUf7+27y
mvFrv5SolEdb+a6mRU1mCzgsi0pbh/x3eLEV7C/chVkBWglw8rTkka3pJq1X
uMhIr1xJ+1TQsdIUAWqftGmtTpMnIGHJEqzXfZK3nAx862mxab9QNEJ7k8Qm
Q01erYoMNbpwF9FKhKBQz1oopmdJCAr6CQutXdf4LPEpzbzHyJysYtMZK2IP
3MU5XFiKBsh6iK8zKCx7QnITtDYkIBVFSTnhgjbdeZoBWgH40ElMe9J6GZIw
W288WW4ypZ4lPncNOuxdKn6Qk7N+hjCERdHNeLrDH9EGwUXDEkyCRDQq4Ore
ZfvsAn/Zpygo+3U3sCnJIhOh5SPYsQ9JwaULSZTkllxApt1HhkEVY+u3YRAk
omlpBhVNHpRgUk2WygMjQWK7oOCfYNDwFRdQ2fnGYTsIwuedaFJK2Un7o0wa
dZHWaXoadsRd/ln7U34KXbSLSUMNT0lSWssu6Q94Hvf0d6GLlGv92OEo08v2
ChuNLntaP9hOfHrGmq25oek/hy7yWXeamf6L/E9UnPsQ2GsIwr6CLspbGpr+
npePEt2PmpmUvtkphIe0x61lQ+LTshF+3w5VlBqafs/LR7V52m41TErf5XHJ
AyHTs36jEfFpcDf0nRT5f5TONjT9Iy8flQ7uNTPpY+iiygBZfg2J9rfQFT68
Sl+fUsOkT/wEpKyGJv0eusj7kBF2gVaxfPODlzmkrrT2NUz1o/zhAO1JM1P+
FHXlU5HCj1J07+nAP0PXd/nvNb9zpeWqhQdKKG1nY/8BBPN8Cw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {142., 0.}} -> \
{-2., -2., 0., 0.}},ExpressionUUID->"902e9a42-5e01-474c-872e-a6496df6549c"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(61\\). \\!\\(\\\"triaugmented dodecahedron \
(J61)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"47ab8eb2-46a6-4613-82f2-\
c60f454aebfb"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .54958
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.29898 0.112027 0.236569 0.112027 [
[ 0 0 0 0 ]
[ 1 .54958 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .54958 L
0 .54958 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.29898 .14127 m
.38961 .20712 L
.35499 .31366 L
.24297 .31366 L
.20835 .20712 L
.29898 .14127 L
s
.29898 .48606 m
.20835 .42021 L
.24297 .31366 L
.35499 .31366 L
.38961 .42021 L
.29898 .48606 L
s
.15234 .03473 m
.26436 .03473 L
.29898 .14127 L
.20835 .20712 L
.11772 .14127 L
.15234 .03473 L
s
.44562 .03473 m
.48024 .14127 L
.38961 .20712 L
.29898 .14127 L
.3336 .03473 L
.44562 .03473 L
s
.53626 .31366 m
.44562 .37951 L
.35499 .31366 L
.38961 .20712 L
.50164 .20712 L
.53626 .31366 L
s
.50164 .20712 m
.59227 .14127 L
.6829 .20712 L
.64828 .31366 L
.53626 .31366 L
.50164 .20712 L
s
.97619 .20712 m
.94157 .31366 L
.82955 .31366 L
.79493 .20712 L
.88556 .14127 L
.97619 .20712 L
s
.88556 .48606 m
.77353 .48606 L
.73891 .37951 L
.82955 .31366 L
.92018 .37951 L
.88556 .48606 L
s
.73891 .37951 m
.64828 .31366 L
.6829 .20712 L
.79493 .20712 L
.82955 .31366 L
.73891 .37951 L
s
.73891 .1101 m
.79493 .20712 L
.6829 .20712 L
.73891 .1101 L
s
.73891 .1101 m
.6829 .20712 L
.62689 .1101 L
.73891 .1101 L
s
.73891 .1101 m
.85094 .1101 L
.79493 .20712 L
.73891 .1101 L
s
.73891 .1101 m
.79493 .01309 L
.85094 .1101 L
.73891 .1101 L
s
.79493 .01309 m
.73891 .1101 L
.6829 .01309 L
.79493 .01309 L
s
.13339 .29037 m
.20835 .20712 L
.24297 .31366 L
.13339 .29037 L
s
.13339 .29037 m
.24297 .31366 L
.16801 .39692 L
.13339 .29037 L
s
.13339 .29037 m
.09877 .18383 L
.20835 .20712 L
.13339 .29037 L
s
.13339 .29037 m
.02381 .26708 L
.09877 .18383 L
.13339 .29037 L
s
.02381 .26708 m
.13339 .29037 L
.05843 .37362 L
.02381 .26708 L
s
.63657 .42508 m
.64828 .31366 L
.73891 .37951 L
.63657 .42508 L
s
.63657 .42508 m
.73891 .37951 L
.7272 .49093 L
.63657 .42508 L
s
.63657 .42508 m
.54594 .35923 L
.64828 .31366 L
.63657 .42508 L
s
.63657 .42508 m
.53423 .47064 L
.54594 .35923 L
.63657 .42508 L
s
.53423 .47064 m
.63657 .42508 L
.62486 .53649 L
.53423 .47064 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 158.25},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzlnAtvVEUUxy90C0KBQnmUgnS35SGPAkUEXyiiWEBt1KgfoCEm1Gg0yOcx
Ro0aNRr1I/j4Wth7Zjrn3tnfTM/dvdkiNIHePXPuzP/MnDmvme3yyoN7H3+2
8mD17krv1v2VL+6t3v2yt/T5/TXS2Jai2NIriuKrXlE+P1x79P/Jz1z5n/+w
wfNf7nnt1WsVQjH2MHS29ukY0F5y7H9D09GIVgJ7eSD2f4B9Rv4fr9LCax7U
v/DaNNDGgPa862IhzMtUeFpqqVvD7O418r0JtINAGwfa1UcW0jlo6gJtj5GP
IO0H2nagXXliIJF67wPaDqA95yCdhaY5oO0y8hGkSaBNAO3yEwPpFtB2G2nP
OkhnoGneKNVx4yy1AImG2mnko1kicWgxLz2ykE5D0wmg0aY9aYRE75JhWExD
oqGeMvLdBhqZRTKfFx9ZSM9A0yljt/QuQSIXS674QhoS0bb9fyHdARqFaxTW
nXeQaJFIv0hSMiA0S5sM6Y7nrtBcw9pPHK2XnxbSMKj7jpHvrYhWDk8RpwuE
cKOSq6XJpVgq1pURDy/v3ihJC+kB6MWtTQaIaCQf0dy76GkcWlaei0YYlBJm
pv4xgkELlct4M9uRIo4LINElIwxrqpsxVI8ZJEqdraluxulR4L0INOsstQVp
a9kiQITnUqDNBhrF89a0lvgmQs++XtXGHjuW4aecaxgBdmbG6rmHth0HWSh6
l7IUa75PfNQfjevwuWhB1Od0eNoens6Ep1lotSZJVr4dMIaH2XaCRatD71Iq
MoyI1B+Ne8SJrfNPBnKi3hqt0+7wRANYywBE09XRMTxg2gkKiYqXXaDR6tBs
Ur4xjGDUH43rHBk6nqeBRtvUGuLRuwRzmL1I/dG4h5zY4rJlPSns2V9vjZTy
YHhqW4gOjOEBk/c5FJgOQytFKrQ6xEd5ldV4Ex/1R+M6v4chygGgzQCNQg8S
m94lmFb3THzUH4075cTWMIgGOFpvjZTyWHhqW4itMIYHLIZCuGl1SOtnjXy0
Yt0UuAEDUuKj/mjcycoE9HWb8BK7wvRRWE62nGZhTgd5WP0p1kMOs+TcBzlp
d+6DSayYwE7djyZL+9oaae/J8EQLYM3DiC/q3kviPH2nNgFrzxJ3jocnw+aw
1llpJeOqYjmdpJMWUct3qfDlliKb908GobeFaRoPT2eBpusmoZKMSHM/A7O8
zn8u9OEhkgujTsXldNTQsVAXMm1d6FXjATfoeqPf4Z3qRJf/yB27uNjsT2Vj
boMh475TmIkv1rOSRsm901EfXGxsFo+E6ZEjNbnDcLn+hPEYWh/aH0eARlEA
7SOSz8rXEOZMfR4Mzo0UpWvk84tEvpVyMLeD+owaTaMVQUOk6bIFBeG8O0cI
dwqayHeRdpCfiot95ace0M4DjU7jic8bGQq8qeBEukPGiNJAK6SG0Ck0oosl
tDpkm0YInSJVolkTXoJOsSFVJChOIz6XjuEM00oQjYwNlRWtkFqATjNMfJSM
jhA6BfWk18RHhpOgUwmRQkEqIRKfG9dcviY+MqIjhG614TTDtBLWOx8tQE97
y431mvSfoFPOYr0dQTQfwBMkioWt5egRQidIVKexFhnbhpmBLqGMxHwEmPwl
2R/rtY9htH5XBXB/UijBoDVaITs0QhFIXcaDEORBKVoki9S2QWwohNY/JrxQ
0SqVnzFTJ+Bt+9ndaeBRDaM/CaLNMULMZBv3B8xaYaU0eJNhHg4wCRxFq20H
5HvS4AiSYKXNNUKs5MZlIvVkWFSUnMcmw3QuO1MapQipBzTKhrtAsybyk2nM
uXqCvCbikAKNEDhFpeTwyFdo0ZM8+iYLQd6YvLYIK4tU1AueNF7bxb+9afzW
QoP4kBMlScAdL59k+PnyyR+JUTpEEQGFkmTN4ppiOXu0tlKndgXsTnVyy98X
vUi0PRabwaaiqBo2p4h9toOsl8gqpDF+iUwZnQecTwtgvbwyHQQg2xtdLNJj
WAo11tv00oteNPFIrRc5yFzFqWCRxNxPozhC69k0LzTdFFGmiywomLVi4Ixj
n2KQvIR0LsimpxfkPPTShZ5R6llmRg7CnK6a9MlB6zEWxiWbLnoqJBqatmYX
aLQrXIJprqCly1psZEhUsrB0nK6XXAgdqa31CtKptNDWGoU11yOdJQ+g+1Ft
Eo2htwzVHOmVoYxgpCTpMjCvJmXaenRM2aFCsx65UOGIaC6ZMV+sI1HpXav9
JD2hmO5AmABqJaNBCQwlsfPpCbAWf2g3k0G13lXdVxdWGqmGqUZWLzTpFaOM
YNaSEM0rvUuCkacgLFMBMK2O9cCom6SZTQwpVvKOIVpCmICk3VWxKWglzKRl
lJrOVsW2F6BIEWkDkKikJ2ph451YJNZa1V5vOOnFo5pYpvIU2RayaSRR8sYz
Wpk+ODTB1uuCVKt2F8cqM0RKQ52RvFTUVVOit5ToOsR6G5mjA9CH3lKqihC9
SMIQcKswzkCw6tNYZKvJzk9n+qUygJtAzDZpZ9H6kXixcSgKvoStcTkJE6to
2QvVAqbTQlgvylKxlSwcbWLqjxyA5tB0mSpzB5xcgfW8nvJyepccgIblRb2Y
QxejavhZAa1HxoRZbTUhFcMlJM2uMpriQPaZRPIRVnwkG9HUPmo4nUG6GJgI
HAGh4wB6Nxn8aKnABM4gsxWmWvjkqT22bmDcXh0CEu1j2u8CSUhuAvp0K4Pv
FWgiW2a1UeSDdD33jBRfpO6EtJIAs9mgKuHM8NAo2El+1aDioxqDvAZNtHXo
cFcDluSl+UrKORg0/aJupRpGG76+4wSQkCjSIrgkoP8+nnWPEjhR0+T1iIZA
rhsHJWNxOMwIhXANgbxW/orq0qTaFSfddyhA80GRZCaefx2aKJcmaJFXtuUg
DfG9AU1aFSbnFZske/bQENrN0FkPmAha5H8HzAEocKeSvqvE4h/foiItBX15
j52P7hvCpD81paXUK9Aa++TBovaGMG8HSKTcBDN2zYPF6uRe6RaI/556/Mdy
yk9UXbqaGspQtm4B5tvQpPv3BWiNvfVgUXpDmO9AE+kSAY59+GCRO2lzpvK2
HAalRXoRYSaMYt4ENMT1LjSpQkm0MpZybNZQvSGk94xdaChlrZYm4/SI1k3S
ivfDoKr3N4CdjlXyoXlDIB/IL44/b8JrpEnWgJzKwBloH0ZNJaSlIHu+SkjD
k5rTcaRz+sVH0ES+LF3Nq0MXiyBfyfOnJ18HtMkamrS6vVV8A0y0dWiLLbsu
voUmsiOrjv27ACHD9D00kWX27D9AEy2MZ/8xQMgw/QRNtNM9+8/QRDvJs/8S
IGSYfoUm0sFPHPtvoc8M0+9RU6lEn7qHP8L7nvBnuhv5sMGfBy+2/AemvKwh
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {157.25, 0.}} -> \
{-2., -2., 0., 0.}},ExpressionUUID->"1af8b967-fbf8-441b-bcb8-b85fb456b243"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(62\\). \\!\\(\\\"metabidiminished icosahedron \
(J62)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"d9110203-e662-41dc-9cae-\
8d630ccf3d98"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.617
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.431113 0.323928 0.596486 0.323928 [
[ 0 0 0 0 ]
[ 1 1.617 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.617 L
0 1.617 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.15556 .59649 m
.34596 .33442 L
.65404 .43452 L
.65404 .75845 L
.34596 .85855 L
.15556 .59649 L
s
.34596 1.18248 m
.34596 .85855 L
.65404 .75845 L
.84444 1.02051 L
.65404 1.28258 L
.34596 1.18248 L
s
.21421 .0385 m
.34596 .33442 L
.02381 .30056 L
.21421 .0385 L
s
.02381 .30056 m
.34596 .33442 L
.15556 .59649 L
.02381 .30056 L
s
.15556 .59649 m
.34596 .85855 L
.02381 .89241 L
.15556 .59649 L
s
.10524 1.39923 m
.34596 1.18248 L
.41331 1.49933 L
.10524 1.39923 L
s
.34596 1.18248 m
.65404 1.28258 L
.41331 1.49933 L
.34596 1.18248 L
s
.65404 1.28258 m
.84444 1.02051 L
.97619 1.31644 L
.65404 1.28258 L
s
.65404 1.28258 m
.97619 1.31644 L
.78579 1.5785 L
.65404 1.28258 L
s
.65404 .75845 m
.65404 .43452 L
.93457 .59649 L
.65404 .75845 L
s
.65404 .43452 m
.93457 .27256 L
.93457 .59649 L
.65404 .43452 L
s
.65404 .43452 m
.65404 .11059 L
.93457 .27256 L
.65404 .43452 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{178.062, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy1nNd2FEcQhgcWkREIoRxmlQMrEFkmmGTACWf7Xofjc+DCxz6YVyAY3oYX
lLXdRdVq9VWrR7NwAaK65/97urti9+jp5qvnf/61+erFs83mk5eb/zx/8ezf
5uO/X26LGgeKovhYFAeazaL989b2f+Wvj1vbf7Ybq/6zEP5ptEG25E/xfs+m
+a6m9hA+xB/mwj+HOp/astZZwDwIsnf76j4DTYdA9jZ2b0JTX8+6l9B0BGRv
YvdpaDrqd5+CpuMge12t++P23wfbojvxwUnodBJkj8LftuyyMW/FnyfgiVMu
St+OzSNoxU0fqh9kX4HsoL7dRgQbh06nM8EOKdj1CDYGnQZA9hBkh0F2JcKO
QtPZTNgjOsYE2CDIHoDsmIJdimAj0OlcJtgJBbsYwYah01AmGG2llg9Lsvsg
69cxChiNhyaBwM4o2GoEo5miLXQPZGcVbDmC0RrS5iYwGsiCD0sKeBdkQzpG
AaNNS+aFwEYULPoXVCwyoV+CjGa5WR92XMcoYGdcnp2yO97EBLBIj2aJ/B2B
TStYnG80mHMgu535BmP1YWd0jAJGSt0dd3hgcwoW1RNd1iLIboFsQcGG6oMt
gSwqRjSJXU3LILvp9QtjFDBy7iuZYKsKFndwtPxdnc6D7AuQtUB2qj7smo5R
wChWWgPZBsguKFhcWozTLmSCtRRsuyHChUZZX8S+CLIb7uxwfCRDp0hiPRN+
RYdOUXPcUhjyXgbZdZAtKQENUwgC9+F2C42bYEn59iLoagpLdawtIg0l0nl9
F9rHickK++C4mfadrddANqtUZCMSVEP6VhS6EFVTqcj+ChXN7ZS+FZnHqyAr
QVaRdEnfr5FJOqXvR945QRX24pG26Aq0TigsRTkCS5pPYA1v748pC8VsCRbS
z6AFQURmkhKFBClZX3qDo0q6Cq3D+n4UVSeoyH6eVCrS6HNKRdGgUJFikxs4
rVQUoFAQXZGUVmhQSSkMHND3oxBbqChIIAc8olRksU4rFbUmqGgLTCiVWzPo
CLFrUU0rFW12smIJ0tzgbVZJySIf1/ejsDlBRVt8UanIJh1VKqrzCRVNAnVf
VSpKUw4rFQ2zItWaUtET5AQTpORuaOYvKSlpZ0Pfj7ZZgorKm9eUKnqhnZXU
T0QUVQsRJWFkITaUqAFE2z+TpUtwkHKE3CyEcmShE2AlyO7p25NnETDaf1T8
vN/1zu1/0+9cDZljdLLjAk/hCJlAqn9ZXZOsd4KASkRUR7RaJ+WQQkC1E7Ks
VEzNMhF1CLLMHRFQJPLIhdhbv4WKTDJ5hMcgs9ppRQIK4J6ALMvNUlhDMiLI
ChkIjN7qa5BlhT80HaQl32S+aSKoIyoyKN+CLCtUpb1DhpUIssJuIiCf9h3I
RpXADXq4iVz89yAjO5ZIxOgAgPT3KciyMr06BFkZKi0UJUY/gKxUAtogCQLK
LH8EmZVyaf2EgAw35d1EQCFaoghDVBQo/gSyrCoP6SUVJH4G2aIS0PQmCOgc
/BeQWWmY3rkHBFYupncWgqihu2LM3+GJFnc92QlkT7TDqj8ApTtPwGCK6HcV
g3MftMJvf7WhUtC2AyJr2qx4G8OYWmtqhdrB+mBUnk3A5mqOqWY0t7X03Eqs
o/XBmgoW16+WNS1BloDN9QLmZmIS0yOnWNYHsyrnjA9GRRCKDGgZBbZORGMh
03x9MAvwoqbUihYpME3A5sa7FlDHDLBWdG7h//n6YJasrPlguYkJBSwCWydj
s7reug9G25wyTUtlY1m/VtpqifdVHyw3ySb7KLB1qg9WX7uxHzCuoMVDZVQr
ShkfAFSh99sq1YaC6Lb/IKXEd3Xc8eZJdtHstjIWO0+j7/g4TZBZtZAWWaYh
t8Z5VcEoqL7pg1Hgv65g9IQsM+k1ndVY1Eh7LAFGVaUVBSPLu+GDUcC0oGCk
jaIYuUcDdgpBwW0CjI407BylhFa5HJl7KDOuYLTW13wwCqKHFYwmQSwTbUEq
r9t5G407AUZFXzsxpIrzFR+Mup9QMDrnFSeRe2xqJ7R0PSABRkV5O2OmOzxy
jTT3wDr8j663rfs4YbrCqT3dyZSrp1R2CCp4zLN396qBBYcS7kaQuaWRXfDB
BnVkZAjoeEACGDf9DyOjIyJyxq1OsF2uNYyLVDEBFTZJOC+hCxsUZ0jUSHuB
YpzVnnWn2G7F704R5rLfnaLbpZ51p6h+0e9OucWC353ymvmedafMbs7vTlnl
bM+6UzY943ennL7pd6d6Qtmz7lRHmfa7UzVnqmfdfwXZpN/9N5BN+N2pRjbe
s+7dgyk0lkq86q70IfEEzSUV3EY/KwTtF6rPJSBoh5IrGvEhSIXINVaEoIBh
2IcgvadAKAFBloaC2SEfgkwhReoVISgNOedDkP2m9CsBQQ6GwqOKEJRRD/oQ
5BUp9UtAkB+m+s5ZH4ICBb8mlg1BaeeAD0HRDVW4EhAUT1Ep6owPQQEfRbqf
F4LiVf9rQYSgUJzS7QQEpQZUV5LTolDsCU6m4oPdX6q0vVnwFEFEIytBJl9i
xPrNLl/Xp3iUCzZ9POpObswIKHOl/EYI6CsOcnKWGlN6SoUuOUGkby3oIwRL
5CnNp4KIEND3CeRj+5WAahhUw5KPVmhGyQMPKAHVsEgmBJT6kXO1KgxNR+Ly
GF20pwKL1YxKaKX6lxCEaoZ762FMYckE0GrEwWFZhQgmlYAsXYKAikDkyksl
ILdCOb8QuDfmSUODiBwwVdHiBsEmgphXAppAGqYQUDmQzkmWlIB2Fk10DEFx
9iiEsHvWpN20VYSA1p+WsaUExc7jAlKfaADwSiiFDVaLo4EKmF08oG3cvdLF
p5kIdSdSzjhPaHmIoCUPdfquT0RBKdzvtoSIbChdcqAVJ6eW/oJLSOkkg8wM
rRT5ofS3XPEJtL90cuavCiiP+y2XkJKTpbiGHIH74WWfKRSGCbTctKHIX/H3
XYGKQp4SZLSlyL64H3mxK6M3tVsw5AFIbWXaaIporfwobG9bKRbCvoyniaFJ
JWdD1l4ISHOIqgRZrucSs0wZBW1d2uLkH8iqiA8jI0SqSSpMqWiCigwrmR6a
aLJy9KzEFpRbuseKFOnlx3fUnSaBJppmJBEM0yTQLqK3J/oEFQUBpBv22zxo
L5IDktSE9g5pNw2EqMjtSB4XNKLhBRg0EDJbCYIhJaDVIIUkc0Q2UPLwUSWg
nUXGhcB8G9jxeSXtdDKUNB00bVJLCU0h96c9QfU96pcgsKsLub6Edj9ZOSlr
2UWLEjrl3rAg2ybVu2UloFHYb1miLeB/6BC7h5kna0OxSa71ktrnRR032SeK
rnJtlpR4LysBqRKVG8hS+b9IquPbSlIlioTJkNDbC4HdkqKNSHHtJXc66K1i
oS4sMkWAlEBQVEimUM5O7uobxPnmVIjqTbRmAvpAQZ1PTalA5l9EjFXm0FJY
ltr+H5UKyajJrxgKlfuga/RrcMhYyYnga2iiFU90p8xKjgPfQBOdEk3uq/tb
aCLrMOV3J12XU+R30ETZXtmz7qS20QMW/0ET6cjMvrq/F/quvTzf2WoPtren
3J/4AJjyVOXf31kc+B9MaWHQ\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 177.062}, {287., 0.}} -> \
{-1., -1., 0., 0.}},ExpressionUUID->"80457062-f442-4ffd-94b3-0e2e835e3547"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(63\\). \\!\\(\\\"tridiminished icosahedron \
(J63)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"c7a8055e-c679-475c-8dbc-\
ccad36ccd821"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.44296
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.540758 0.280162 0.62775 0.280162 [
[ 0 0 0 0 ]
[ 1 1.44296 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.44296 L
0 1.44296 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.30244 .62775 m
.46711 .40109 L
.73356 .48767 L
.73356 .76783 L
.46711 .85441 L
.30244 .62775 L
s
.46711 1.13457 m
.46711 .85441 L
.73356 .76783 L
.89824 .99449 L
.73356 1.22114 L
.46711 1.13457 L
s
.02381 .59846 m
.18848 .37181 L
.30244 .62775 L
.02381 .59846 L
s
.18848 .37181 m
.46711 .40109 L
.30244 .62775 L
.18848 .37181 L
s
.30244 .62775 m
.46711 .85441 L
.18848 .88369 L
.30244 .62775 L
s
.46711 1.13457 m
.73356 1.22114 L
.52536 1.40861 L
.46711 1.13457 L
s
.73356 .48767 m
.46711 .40109 L
.46711 .12093 L
.73356 .03436 L
.89824 .26101 L
.73356 .48767 L
s
.73356 .76783 m
.73356 .48767 L
.97619 .62775 L
.73356 .76783 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{199.562, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnFlvFEcQx8f3sYCxMT5jdn2tje8DA8YkdjgDwRASckgJJI5DMJFQEKA8
RIoUKVKkSJHysfhYjqe7XbPe+VXTY4/Fy/ph1676d1XPTHddXePNrTc7T19s
vXm+vVW6/Wrr5c7z7delW7++2iM11EVR9DaK6kqlKP59d+9P9/F2d+9nj5n1
67/4qyGWsWIJ/wqh3hDMr7vuJ1q2oH8E1AygJQv6W0DtAFq0oL8EdApACxb0
p4A6ddAfAjoLoHkL+l1A/QCas6Df4q/GmDMEoFkLei2ShnXQSwGNA2jGgl4I
6DyApi3oFwHN6KBnAloA0JQF/SSgCwCyU4i2BHQZQJMW9ERAazrou/irPuas
A2iiAlTFInhZh28AbTw3+MdAG9Ph14A2qsOvA20kN/gNoA3r8JtAK+UGvwW0
og6/DbRzOvwToA3lBr8DtA90+F2gDerwT4E2kBv8HtD6dfgm0Pp0+H2g9eYG
fwC0Hh3+GdDO5gZ/CLRuHf450M7o8C+A1pUbPONkMl7q8d73jIsg4xLLuN4z
wjNuvuO1BBnNUkajd7wWOKM7yOhsjtfzedywCTxadpW4zePuKapsjD8Lu0rM
6YlMxqpYe9/RaRE2kE3YqJtLBSv+fVDkdcBYT5Q1AixKUEZFQSNwPVFfqAKT
IzTHJJqtE0YpAc1nsYoW33ITK38IYBf8loDVBDRaSg3xpyGtAtcF40VgUZo3
D7QWUbAC3EldQQvQ5oDWLgqWdAXngNUKtFmgnRIFpN6lR5QXUpI7DbQuUTAF
3KlsCkhEjygoq1NyJvwg64R6weC6DGlUVzAIrJNAmwTakCgoAtelzWSQyKjQ
TRgWBTTN2aMrGBMFvcB1dQYqQVCBo9owy20zpG5dQR+wuoBGj3FGFJwGriun
0MXRfMgeLogCWncLR1ewLAradAU9wKL6EVndS6KA7K8rcJEwuiqyWWuiwFru
feZ+GY7uBD1zkv1R/Gl8zQVdGK1Qshzr5jPx9vG3mGiXYlCASlEoeeymStq+
hv07TCuaJkkXQz68Xu7M/PEoaBQFztLQpqdnRuuGYrBmUeCMMW3hItBoN1D4
2SoKnEMku0h7knYDKSBfV86mitYzxeAFuRangArRFB3Ssqac4KQocLEsuUGy
8bQsKKXpEAUuLSCDSslAqALCFXVV5BDpqVE21yXX4hQUADQBNHpqlF12iwKX
Z9JSo6iHnhop6BEFLqsm70NxG91Kyr77REG/roAiT7pSqgaQbXalFoqi6UCC
pkR1ikG5FqcgNA+giZCCIVHQnU0B4aiOUxQFrvBGqRLlYhQzUF2JbJvdTZ6w
43CqRuRanALjqUxhgm4RZbRUdxsTsXYP2T1dSCwi+N8qGlX/yiLW2gi7hArJ
xuCogYqgkyLKLlx70yvqFKlCBkmhTW1Xg90jWJaIp0Rl3GmZkhNhok1TeHgE
8BmB24cdXQWQOmkz0K741FmeNkGykQdEBN2zCVFvrVN0xXyFP7pxEXCiUsDh
lhQtR4/YBqDRBkjtK6q+hG7SkgjrPLqwcyLMnQPQcW+oKaSihUdsqAlP+YhL
AAp1OP0irE8XFuooKddyYi8CK9TBpyIIEhYajqTiHSrMhQZPqeiMhIWGep6o
ksRSDhMUDVObQ2jkm4rdSRjlh5QI0PN3YpeBFZrAtMscJ3RhoYlXKrOjMmto
mpjKQ0lYaFJLJs2JpZgnNBlvkDnOHUbYQSe3L8oVlyjs04scKX+5pEtRizCG
tKwPJBt9VQa6HjCq7FM9YlUGenrFSFgRaCsizNNTRmEoBciLIszTexYqbE6E
eXrU6CyB6qpTIszTy0bCKDYpizBPzxvlZ5Sij4gwT29cqDCzXN7VQ0fCKLcf
kJl5eu0o46UYNTke8fTkhQo7I8I8vXuUF5CCDhHm6fEjYQQviDBPLyBNWk2G
DcnTMxgqrFGEeXoL6ViITzQjb/shyTG3y2S168B1TpTWodmCbTGJnBEJK+vC
BkUYWZUNoI3rwrpEGLlTjzDau+0irARczyG9FZZyiW3a/vD0D5jpNSVe8N3B
Rq1hMv6r1jCZE7zWMJkTvNYw+X7ue61hMid4rWFSg7+3hskcnHzGVzQywjO+
L+IJ0A4DN5x1AHnen1EDac8rOkk7IVVRXQT+GFhNMpDyCc/AVhlIycB5fWCS
DlGyNKUPTPoBKZWY1gd2ykDKM93AJ8AyDsYE0RR+z+gDe0UjlYdm9YFJfk0V
7Tl9YNKoR/UHN/B7YBVlIFVB5vWBSZGCCuAL+sBxGUgVIc/ApNOO6lKL+sBp
GUjVMVfQ+gFY5kmZOuKKDqJl7IFTveGiDqcqg93j9tVA3LEHaZd1OGWwqzqc
ctQrOpy225oOp7qaPTyNfgSW8UAV7zMiiDauB14E2oYOp1KsdTjRNrDIGFzT
4VSgvq7DqVnkhg6n0uJNHU72yAYp9j1WCofNw7mjg+hcxQOnNq+7OpwOg2zA
GT0FFp1q3dPhdLa2qcOpsnRfh5NJfaDD6TzLJinRz8Aiu/tQhycnUY90EB1N
e+Bkwb+08GfAogaXr3Q4tQN8rcPJK3xTCecmiG8rIakzIxumRTty8x5XEKqU
OWzm/xkQ1f0PNqEsKg==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 198.562}, {287., 0.}} -> \
{-1., -2., 0., 0.}},ExpressionUUID->"d8fd33cf-4349-4a57-aa2c-3007855f36c2"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(64\\). \\!\\(\\\"augmented tridiminished icosahedron \
(J64)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"2b5346ee-5f82-472f-9f8a-\
37621354cdc1"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.39041
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.521929 0.269958 0.604885 0.269958 [
[ 0 0 0 0 ]
[ 1 1.39041 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.39041 L
0 1.39041 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.29229 .60489 m
.45097 .38648 L
.70771 .46991 L
.70771 .73986 L
.45097 .82329 L
.29229 .60489 L
s
.45097 1.09324 m
.45097 .82329 L
.70771 .73986 L
.86639 .95826 L
.70771 1.17667 L
.45097 1.09324 L
s
.02381 .57667 m
.18249 .35827 L
.29229 .60489 L
.02381 .57667 L
s
.18249 .35827 m
.45097 .38648 L
.29229 .60489 L
.18249 .35827 L
s
.29229 .60489 m
.45097 .82329 L
.18249 .8515 L
.29229 .60489 L
s
.45097 1.09324 m
.70771 1.17667 L
.50709 1.3573 L
.45097 1.09324 L
s
.70771 .46991 m
.45097 .38648 L
.45097 .11653 L
.70771 .0331 L
.86639 .25151 L
.70771 .46991 L
s
.70771 .73986 m
.70771 .46991 L
.9415 .60489 L
.70771 .73986 L
s
.70771 .46991 m
.86639 .25151 L
.97619 .49812 L
.70771 .46991 L
s
.86639 .95826 m
.70771 .73986 L
.97619 .71165 L
.86639 .95826 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{207.125, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzNnPlPVUcUx6/wZFVQEBQE30MWEXBBRKRWwaVqXdpq7ZZYlVJbbWJq1PSH
Jk2aNGnSpEn/NP8kyp05nvu873OGO3KfLT+wnPnO+c69b+ZsM8PttVdPHj9b
e/V0fa127cXa8ydP11/Wrv78YlPUuiNJktdJsqNWS9LfNzb/lG+vNza/Nhtj
f/yT/mhNdZz3gr9V0OIE7tcN+UrOedBfCmoD0Ace9KeCugC07EF/KKgHQGc9
6HcF7bVBvyloAEBLHvSrgoYAdMaDfkl/VNKWUQAtetBL1TRmg54raBJApz3o
mYKOAmjBg35S0JwN+lFBJwF0yoO+V9BpAM170JqCzgLIa08eKOicDbqf/mhJ
W1YAdKIOlGsi+HEbvgqyY6XBL4JszoZfAtmsDb8MspnS4FdAdtSGfwSy6dLg
V0F2xIZfA9mUDb8OssnS4B+DbMKG3wDZuA2/CbLDpcFvgWzMht8GWc2GfwKy
amnwT0F2yIZ/BrLR0uB3QDZiw++C7KAN/xxkw6XB84NJI4fAYPyjVuplG+Ee
9C4pjDjQVBU0Xyog22+roBm6M04FLSGKliJVtINs0FZB674jTgVZGoroBpqq
gqzpLpDts1WQ/d4dp4I8Ri/I+puqgrwiRcZ9tgryw31xKsjz7zNH1iwVFN1Q
AiAqnHtvT1soRKbIaj/I9tQpI0PTnYqolQLDAzbBRK4pNdh7lGC4IAGlOn7G
STzCJt5x0MykYJjGIhyHoYks+riSkrFeBdkIyHriSF1G0ZaK6KkCBJT10bjn
c7L0I3Tp0HkAHwKZt1ASfW3tkWhat6bfnWgZWqs2KTWRDzsBsnYlXYRWen27
bFLyesdB1qWkp+JI6c2TnzwGsh4lpSHRTBRSKi+QW5wFWZ+SzkBr3nCkf3XH
kZLaQSWdglYyeEJKC4m8N1VAhpR0HFppIP5xJFDd2t9Pg2xUSavQesQmtQ3h
1uMeU1IaOr2bzu2TTigpeTqaBUJKboWiEJqL00pK7p7mu1+M6CwpbqGpMqek
e6xWJqUXQ+Mm+3JSSWm+k8Fo3z7pgpJ2xpEOQhNFU+SNlpS0qF/yrgQJ6OnJ
Rp9TUu/l3jSi/Rc+eos0r4jvQvq93bL1AQJaLWQVV9z3LCJLf755OBcc0XLy
L1xShq0DM7Iuqzle+WrRmevI6SmEnFYhPSCpoNirFWT7dCBk3SrNGUhF30NV
6SnSE3oygTSTaIZT9N6m9M5otmULDM1YFWS0qinV6VAq2Qagt0z2hlYwEXQp
wYk4AlpRlPmRjZU6Pe0vUWxGi4jy1N36LEJAoQUtVpoglI73KoEU9+nhKOYq
SrBXCaZtAgoZ6FOjmkS/EkjNvhtAFEvRZ0V1kwElkDo8BbIUN9FnRQS0SKVs
Tp6VoiV6qVSJOqDPEiCgyIiemaplw0pQ9QSU31AURAOhit6IEkj9vGjWRgMh
gkNKcDCOgHBUGaWwRgrNlPZSTEOxD9Vxx/RZhIA65osHMQTjSiC1XeefzNCF
PBpVwSdVrZRJ3Zo2IxOquVB9/oiqlYrjoKodksfORSbp37i9QutdSlFjqrRX
HrpeqaFvRocmWuZUS/6lpUOiPZk5VSGFFRcrO1d+D+DHFC6Fgg8BREOd1Y5S
pcpvzFsDJMP1lopCb2pa6aXa6k+CFP/oplRBf72Cd5tSE6pswFZGUSZNe8on
RS3V1N7ZCmxHWVWVyR4gnd0oagpHVdmIrayo4abwW9QuQVNRh9Pg0UhZUffY
4H/PAKioMx9UZeO2sqJBCEXXopZKq0WDp4bojJQVDfUaYklSRvlKociXTioV
jXLpdQTUUvZI4f8uHaMcG1oAUNG0pSEvImVFk6yGLI5KIUVTQjIXbrrU56FE
UDS93amjdcFXZ6aWDDVGRFEVBUc1pFS0BivvQsWVEzdJu9Lf6IULEYWRRUs0
ieQ8nZkVJOeBHGb5yYlaVC3VxwNqaYPBBTDt2ZxEZbSLRJWT5bfHmGsNFP6I
gN7ZohJQ1E9PIAQUWFM5Y14JyDuZu2nFCY4rAZm/QAGY9rco9plRArLDpKXD
JqDEYUoJyO4FivXUREWMw0pAizqw71GUwE1d8xhxYDeHCKhKMqxPQFOAVq3s
UVEVgcaTbfdRmSmwCVaUoF8JqDWwtUcfD5H2KgG91MCGJRGQim4lIFMY2Ial
BzbXpRNRtBLYXC5KUFECivADW+Y0wfj0QcInxGsg223rdq/f+ZAVaK3aymii
uk/GDDaIgBZxj01wUAnIAq+CLHDYhAj6lIBCLSKgmEJKGuZScwT0QUUeAvIE
DUFSp7X2I88xuZXs6gzk/iOPdRU9cx+pIvKk2ns8ckdbHs09O0gpJGWHzT1H
WYKKEs6UlnCy9f9xRLeEs8YlnHgu4eh2CSqoIEm1xuaehC9BRfwlgMhbBu/3
ykP615ZXHsgv/wdXTSLvvUTeqom84hMJj7xv1NzLT5E3sSLveTX30lnkDbjI
+3XNvewXefMw8l5j5CXLSHjkjc9VkG3j+qlrWQFQ4Aas+4vyrMAl2+xkOG2d
yBXeb6Fpp3aktDTQsUM7Uq44b3fMMm3Kw0/ZHbPj2ZRVLtgd92pHKhRIxwfQ
5OJF5zJr0Hra7rhfGSkZXLQ7ZqUgOsh4xu6YnXOmVEQ6PoSmqnakAuCS3TGr
u1GcfNbuOKkdKS4NdMwOG1M5d9nuOKsdKWiSf3PwCJqyDfzzNoimcQBO5a0L
NpwKWCsevma9IzRSCKeCxEUbTuWFSzaclttlG05VNu96ku+gKdtzv2aDaOEG
4FWQXbfhtKvho45kHZrIGNyw4VTnuWnDqWpzy4ZTFea2DSd75CNV/58ock3Z
ib47NohKHgE4lTfu2nAqZfisI3kMTVS2uGfDqb7whQ2n4uGXNpxM6lc2nMoM
X3v4D9BEdvcbG55tRN+3QZTdB+Bkwb3v9v/9JNdEp9oe2HDK0B/acPIKj+rh
fPJpvR7SkFn7KZk80Zf3uE6QIxNs9H/9SXb8C3SWIYw=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 206.125}, {287., 0.}} -> \
{-1., -2., 0., 0.}},ExpressionUUID->"7cc0c231-985a-4568-a9df-fef0e3b4d342"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(65\\). \\!\\(\\\"augmented truncated tetrahedron \
(J65)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"b38ace49-b8ec-4a6f-9728-\
213325b707af"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .51268
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.31524 0.123173 0.118878 0.123173 [
[ 0 0 0 0 ]
[ 1 .51268 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .51268 L
0 .51268 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.13048 .22555 m
.02381 .16396 L
.0854 .05729 L
.19207 .11888 L
.13048 .22555 L
s
.13048 .22555 m
.19207 .11888 L
.25365 .22555 L
.13048 .22555 L
s
.25365 .22555 m
.19207 .11888 L
.25365 .01221 L
.37683 .01221 L
.43841 .11888 L
.37683 .22555 L
.25365 .22555 L
s
.37683 .22555 m
.43841 .33222 L
.31524 .33222 L
.37683 .22555 L
s
.43841 .33222 m
.5 .43889 L
.39333 .50048 L
.33174 .39381 L
.43841 .33222 L
s
.5 .43889 m
.43841 .33222 L
.56159 .33222 L
.5 .43889 L
s
.43841 .33222 m
.37683 .22555 L
.43841 .11888 L
.56159 .11888 L
.62317 .22555 L
.56159 .33222 L
.43841 .33222 L
s
.56159 .33222 m
.62317 .22555 L
.68476 .33222 L
.56159 .33222 L
s
.62317 .01221 m
.56159 .11888 L
.5 .01221 L
.62317 .01221 L
s
.62317 .22555 m
.56159 .11888 L
.62317 .01221 L
.74635 .01221 L
.80793 .11888 L
.74635 .22555 L
.62317 .22555 L
s
.80793 .11888 m
.74635 .01221 L
.86952 .01221 L
.80793 .11888 L
s
.86952 .34872 m
.74635 .34872 L
.74635 .22555 L
.86952 .22555 L
.86952 .34872 L
s
.74635 .22555 m
.80793 .11888 L
.86952 .22555 L
.74635 .22555 L
s
.86952 .34872 m
.86952 .22555 L
.97619 .28714 L
.86952 .34872 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 147.625},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzNm+tvlEUUxqeUi0ALyNUK0qVAEVQUUPAS5aJy+eA/oCCuFWyplabWGP3i
/Z6o0RgTY0yMMTFG/kbs+55xZrv7m9ln3KVrP2zfnXnOzPOeuZ3L7AvNxelr
c83Fmalm48JCc356ZuqtxvmbC0tFw0PODTWccz80XPV8e+nRf9R/+6oP/wWe
L1X/DlT4iepptnqabKlyw7dDU0vfGn0u2wdlB6z7i1A1ITa7V5Qdh7KD/4vu
LyQV0737PaLsfVDmx/58kln38dstyhLuULr7SfHt7xVlM90/D1X3i93fI8qO
JXGD7v45qDoidr9TlN0FZYet+2eh6gEoo6m3Q5Ql3JF09w+Kb79dlM10fw6q
HhLffpsoSzjTkk2fVVUNTZqjoh62irLdiLjVocofarSPPCyq525RlnA2ijht
V0EZbfaPiMrbIsoW0hyuPuuRJd0cF8ltEmU3Q5lNRdwi1gZydHSegDJ6iVFR
lnBH0+TugjI6PB4VdTgiymZo0gayIeiQTsDHRB1uFGUJZ4sJd8HRQI4OqJOi
5jaIsoXkNgdypNdToubWi7KEs/WN+yHtpVT2uKhDms0kW0hzW9Ah7UtPiDpc
J8oS7piRI93sDORo/3pKJLdGlCXc8TS5eOTSxrCC5GjgaJ+jGfS0SHNYlCXc
iTTNPUGHRO4ZKKOlQSc5yWbI0eE9HsiR8k8nNbemtcwqlv7OZupsL8TDdyIj
RiZv++ARrio7le5yf3hv09i/lWjjFvZH65icvLqJg1UROVUn/0NjwiQnnO+K
zvT2rlJDsh/KzqZVRF2Z+cyzgEaFujyTacO/JW1kkxmx9reIVGmtFHdNTakb
0SERl9kTyBqh6TVgSqQl9VQ5LOIypw/ZdkSJjv4nRUqEy5gSZALRwKlWC0Ui
Cq0bokRaIhxZeUSp0BqkE5e0pNrHFLEotKOJEmlJdXYoSlDoFNVjWh+GpBva
q8klJCKFruP6QIRCwqoLfUzEZYiQssgqI9OCQg5EqTA0MRJ0oxJR9UC4DJFN
gQjF6MkCpggRESmMJG0JRCioQI4gxflorRTGA8lzojDXClKKLi9FjSiUQLFg
2toKY8Y7AhGKbqgxcfXEyhDZFYjQlKLhotwAESnMIYwFImTbp3Mf3S2YwlwK
+c+08a0gpegrk8lFhOnEIoOzMMu2NxBRI6x3iEgjECH7lHZgOjpPi7hM1jXn
pJOjSWkG8qUKc89Jx51OxTvEof53saqpHfdL1ZOvegOkyF8mtqbFjrSS+blu
tk2i0gAFIWgscjGbiX41v7ysjle1mCvuRoZDLm6U1tTystWhQ0vTuJkUK2Ft
EI7WBhFZC2W705R6iTqqlKKB74lMA6iXKC3d6kjmIWoiY4MlQuecWUru9ZQC
BVOAcLS5E6Vo4Hsi1wFEpxERIRxZyUQkGvjb00R6ySipRChgbcabuwZVZDIQ
JcKRTZLM07dYkUiklzylSiQa+OaqudcARAFHIkI4yoWq11pG0pR6yYOrlGJK
zROZApDqMROOrHsiEtNnNufcqwCiWU5ECEfOHRGhFbcuTamX2yhFlFosbNcE
EHnWRIRwNDGlQSIivVxfUonQrPKUXoEq8qeJEuGoLLm4a92Mpon0crFNJdKx
3V0FEE09IkI4GjgiQjPNU3oZqmjLoug/4air5DFZ62brYIl0GA5XAERbEWWN
CEf7jXrZKkOpl0vBKqWNQTe2zN1lAJH1SkQIR8eDZIK/BCC66Ub5VsLRgUlE
yEQdMKV41c807F6s/tW/O1DV2+GGvhcK3PKABQUd6NxXr6r4/t6FKnJnx6GM
UhLtUQn/13Jb070TCsj3JSc1fWsyFf54O/RB86aoj7oVH69ZBBC5LMk7lfX9
DR8iWwitk0FNTbxvgvNBkGYquQQfmOBNqKKZSqbFh9bEXOibjsCM4GwQVFMM
H5ngDagqbGI69K2mfj42wetBUE1efWKC5OcVNjEV+qYlTSP/qQk2gyBteBlB
stbUzOpn1sRVqKIQNvmyn/etCXoRNY//Rd+aIMdAvXPxpTVB3hY1QbGtr/rW
BPnD6q2fr/vWBIUHcjexvkmLtRuQFfxbe6CFS7faPJxiXfVZUa+/79KgmJj4
3kAUR6SFn4GPhzZ/NBCFS2PO7Kc0iA4fD6egdPSJf06DYpjlFwPRxh4dt18N
1J5oqL7RppmBxzvxvxmIsi4xnPp7GhR/l/CHgeYARAZHBh6NyD8N9CaA4i9e
/jKQneQ88f9uhXQYSLfseR568VX1ly6/tXVD/wA0B0/t\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {146.625, 0.}} -> \
{-2., 0., 0., 0.}},ExpressionUUID->"98da842c-e26e-4eb2-8138-00e2c4df70ab"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(66\\). \\!\\(\\\"augmented truncated cube \
(J66)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"e72b4f5e-7375-4a7b-b7ec-\
adaf6f10ebfb"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .79939
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.13975 0.096048 0.366854 0.096048 [
[ 0 0 0 0 ]
[ 1 .79939 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .79939 L
0 .79939 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.37163 .56597 m
.41965 .64915 L
.33647 .69718 L
.28845 .614 L
.37163 .56597 L
s
.41965 .64915 m
.37163 .56597 L
.45481 .51795 L
.50283 .60113 L
.41965 .64915 L
s
.41965 .64915 m
.50283 .60113 L
.50283 .69718 L
.41965 .64915 L
s
.33647 .69718 m
.41965 .64915 L
.46768 .73233 L
.3845 .78036 L
.33647 .69718 L
s
.33647 .69718 m
.3845 .78036 L
.28845 .78036 L
.33647 .69718 L
s
.28845 .614 m
.33647 .69718 L
.25329 .7452 L
.20527 .66202 L
.28845 .614 L
s
.28845 .614 m
.20527 .66202 L
.20527 .56597 L
.28845 .614 L
s
.37163 .56597 m
.28845 .614 L
.24043 .53082 L
.32361 .48279 L
.37163 .56597 L
s
.37163 .56597 m
.32361 .48279 L
.41965 .48279 L
.37163 .56597 L
s
.09173 .48279 m
.02381 .41488 L
.02381 .31883 L
.09173 .25091 L
.18777 .25091 L
.25569 .31883 L
.25569 .41488 L
.18777 .48279 L
.09173 .48279 L
s
.32361 .48279 m
.25569 .41488 L
.25569 .31883 L
.32361 .25091 L
.41965 .25091 L
.48757 .31883 L
.48757 .41488 L
.41965 .48279 L
.32361 .48279 L
s
.55549 .48279 m
.48757 .41488 L
.48757 .31883 L
.55549 .25091 L
.65153 .25091 L
.71945 .31883 L
.71945 .41488 L
.65153 .48279 L
.55549 .48279 L
s
.78737 .48279 m
.71945 .41488 L
.71945 .31883 L
.78737 .25091 L
.88342 .25091 L
.95133 .31883 L
.95133 .41488 L
.88342 .48279 L
.78737 .48279 L
s
.32361 .25091 m
.25569 .183 L
.25569 .08695 L
.32361 .01903 L
.41965 .01903 L
.48757 .08695 L
.48757 .183 L
.41965 .25091 L
.32361 .25091 L
s
.88342 .48279 m
.95133 .41488 L
.97619 .50765 L
.88342 .48279 L
s
.88342 .25091 m
.97619 .22605 L
.95133 .31883 L
.88342 .25091 L
s
.65153 .48279 m
.71945 .41488 L
.74431 .50765 L
.65153 .48279 L
s
.65153 .25091 m
.74431 .22605 L
.71945 .31883 L
.65153 .25091 L
s
.41965 .48279 m
.48757 .41488 L
.51243 .50765 L
.41965 .48279 L
s
.41965 .25091 m
.51243 .22605 L
.48757 .31883 L
.41965 .25091 L
s
.23083 .50765 m
.25569 .41488 L
.32361 .48279 L
.23083 .50765 L
s
.23083 .22605 m
.32361 .25091 L
.25569 .31883 L
.23083 .22605 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 230.188},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnFmTFTUUx5uZuTOywyAgyzCDK4LIjmw64wYi4r7ryxRlFTxYWsjXcAOR
TRQVy9KytPxSfg2cTkJyb9/fOfeE3Meeh749Z/ufpJOT5CTdp+cvnP3k0/kL
587Mz5w4P//52XNnvpg5/tn5BdLooqpaNFNV1X8zVX1/Z+E2XNzf1voS/rnH
+4/rn6na5u+e8JH7Gb0TQRb+2wS02178Q2BNAe1XL/4BsKaB9osXfx9YW4H2
sxd/D1gPAe2WF38XWI8A7Scv/g6wHgPaj178bWA9DrSbXvwtYO0A2g9e/E1g
7QTaDS/+BrB2Ae26F38dWHuAds2LvwasfUC76sVfBdYBoF3x4qeB9RTQvvfi
rwDrMNAue/FTwDoKtO+8+MvAehpol7z4SWDNAu1iK96Kt+KteCs+SDwzAmfG
98zRI3Nsyhz5MsfVzFE7c06QOePInM9kzpaeq38cZxUI0axsZdSYjXdz8W6i
y2xDcaz+bzkwaKq4rL46jRHgHla5R1RuR/PwbjGWApcmwIsj1DhwD6jcgyo3
uPk8sMaj4n3ApWl90lgM3L0qd5/KHZfdXBIVO8CdBlqqf2omu1TubpWruLki
Ko4Cdyo41kWLxaIes0PlPqFyFSdX19dOTZqKd2tAblsEuF/lkm7ouhvrn801
ZwUIObPTNWk9cF23mVK5WyRugN8ArI2SsQZtLdDI3jqgLTHiEgb5YsUNxX4A
WJuNbtKjpkwDyZE9wrXqWnF95MKGsAVoFHqoDVPGhOTIHuFada24odjUEGaM
UKuBNg20SRF+MC5hkC95uNh3HjS6SQGThjpyfcKISxjWIZZwQ7Gp/T9sdHMl
0GgiQnJkj3CtulZc31Kw/T9qhLJOE2mIotkU4RIG+WLFDcWm9r/N6OYyoNEc
nFynSRbhEgb5YsUNxab2v93oJo2ftGYhObJHuFZdK64f/ORZHk1tDeMnrexI
juwRrlXXihuKTd3+SSMURVRa/9KAQ1N0wiUM8sWKG4pN3X630U0KLZQlINdp
HUu4hEG+WHFDsanb7zW6SaGFcikkR/YI16prxfX9HSPlfnftdNM8o6qw9inL
1FFsHMyUp6SXHGIxkh1UzJMpghwL124bC/eHQHRUgaOMH3XbUBoKUIfYE7JC
aCOsfsQuSklOaoy+dWG0aaLVVUPd2ENNUFVGvWMGGZ/G5UfiQx5GB2d6pCZR
+Sg37ISfkRg++dxXocED6l3OlCPNxru5Xpqz7Icr7OtzQJstkFveQrVQLVQL
1UK1UC1UC9VCtVAt1D1DidN+N7F/Nt7N9dLYmLiK6Vp11L9V9+KhGo30+qe5
SumTD4sN68JOXjuNd9O6dZouhz/DIipjxSwvOHmhSOWg9X9TrtY1LEBzMxd5
C362IacvSlf9cmppsAl6MHJOxp5m0uQzEzMlCUNKOclZtMH25IThUDJqJSnh
ktwo2bOmhIeQGy3ZACjJhJdsAAwhE27d7qEGU7LvYd3usepm7nuUbO6V7HKV
bO4NYZerZCu3ZE+T7Fm3coewp1mycV+yg12ycT+EHeySYxo0CljPDZQc06Bi
Z55XKDmUU3I6hexZD+UM4XRKyRGskrNIJUewhnAWyXrgjqJiyckz64E7q64V
NxS75HhlyTnDkuOVQzhnWHKYtuRUKdmzHqYdwqlS/Qizq6+tNYliQDqkLHKn
JW44y/sCsFwkcguOqjedQNXiVpfUmt1ALnK3q9zgHJ0ud4OiI9HKgGgURjoR
nmp9Z+RSUN6p6iqupxcwXLW6FAhNgcjhpEvtdbfK3aNylZP8qZY60WGK69Q1
0qsKpLFf5R5QuYrDI1FxIjpMZaYwNBkLK6ZjRO4hlRscbr7F4/vX3UI6X2nG
R76ui3iNHnpUYhyTGN3OifVFDZ1G2E3Ryly8S2nP0DVORwKZINofXvFUVKR4
Sl31T694MipS16JKXxY1wrtnL4GQ1diSaKxR9+E1uOORT2OHvPgZHPrCW3wv
AssKlRonhSoFgKYONE1IPZU6+7WuKjKUQH7ta7DcVRmKykLz+hQmaW0ZAE4Y
Aai+xyIANfcr5QAjEYA6YgCgzkAAlMSiZkpTgPDyLL0nTA+eoSqe+1yWbfti
9O5meOkq1gxN0INJek/Zm0wJ3O74T0VRPjrhTfXt51DdBytHo9cUw1O8ngbu
pS4T/aDUwjdEe41IR8unHvOc3yaMdRGDxlpadFzsBpKaO4VUmtdQpyHQb2XQ
1IkpDE1GLsXDTKjxaIzC1arIpchPUN/IUGmgoIC7PHJphMyEomdFAWBpBKUs
CIF+LYMmY+KLAo5rXYJ/JUOlyqJSpUGG2mcm1MporNFjqZ1TLN0cDSh11xxL
IpxTFFf+5JdSlknSqYT4uF6t4y9llDVRcRq49EgyAZqjYSVAJUeowykAqdvL
b5FLGhSTFKgVUdEaN5MG9XIFypppJ9DUt2nEUUCTInlLUClQ0ICsQC1WfSSo
FPwp/ClQ9JCtYZuCYya87jeBpmGcoq8CNaYqNj+oEOIJ9XEFgzoZLWBdlHIk
irM9AHychtajYhwV19ECUCg7pQBpPiy8cDLo8TivKFynWV9HqQFasyhPhoBS
VBVfbhPXX5lQ1v0DakBKnDpmhE9DPxkbU7kKFPXPlE6haksTGiXk09eexF0R
sTHoyQYFSgzlhmdKcjQcBnh654hKmsIkxQs9bxOgZo1Qaa5GfT1VuTLTIaip
UBWNruyilZyf6gsqYeI5JxbGtGB2bXTUYk+c/NEYGYpPBz2zVss3ZTv+mYgn
MMnTkHmkD0utjV41n2bt6Axo3JCNpWiqndgjD4NR8QNDhhhpnd1el6FSjLSe
a1MAaK8tRUYxn2gAuCYDpM5JQwsBUOsLqUvK81J0IxqVj8qipGH1gYLKl/qr
kkhO0Y2GOjKbZlWhmZ4I/lHrpqhA+RYKrT3m+8IYrSDIcpo8hc8UUwKX3BT3
o5yxW94Yfa+ZFGloDCboG840U0jdMXxamr7mTOEhdbPf8hRT9wmfyqYPQsun
GnppmSbSAB/2seh7iWLCwSn+5RXpu4x+tcBN9u9Ban1N8R9/774X6T6q9q8n
OJl7/Ex5teh/0Al1/w==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {229.188, 0.}} -> \
{-1., -3., 0., 0.}},ExpressionUUID->"5cde3873-d9cd-49f6-9e06-77f8f219cfba"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(67\\). \\!\\(\\\"biaugmented truncated cube \
(J67)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"fa75d7e3-286c-4cad-80a3-\
3ded41563af5"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .86836
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.13975 0.096048 0.43418 0.096048 [
[ 0 0 0 0 ]
[ 1 .86836 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .86836 L
0 .86836 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.37163 .6333 m
.41965 .71648 L
.33647 .7645 L
.28845 .68132 L
.37163 .6333 L
s
.41965 .71648 m
.37163 .6333 L
.45481 .58528 L
.50283 .66846 L
.41965 .71648 L
s
.41965 .71648 m
.50283 .66846 L
.50283 .7645 L
.41965 .71648 L
s
.33647 .7645 m
.41965 .71648 L
.46768 .79966 L
.3845 .84768 L
.33647 .7645 L
s
.33647 .7645 m
.3845 .84768 L
.28845 .84768 L
.33647 .7645 L
s
.28845 .68132 m
.33647 .7645 L
.25329 .81253 L
.20527 .72935 L
.28845 .68132 L
s
.28845 .68132 m
.20527 .72935 L
.20527 .6333 L
.28845 .68132 L
s
.37163 .6333 m
.28845 .68132 L
.24043 .59814 L
.32361 .55012 L
.37163 .6333 L
s
.37163 .6333 m
.32361 .55012 L
.41965 .55012 L
.37163 .6333 L
s
.37163 .23506 m
.32361 .15188 L
.40679 .10386 L
.45481 .18704 L
.37163 .23506 L
s
.32361 .15188 m
.37163 .23506 L
.28845 .28308 L
.24043 .1999 L
.32361 .15188 L
s
.32361 .15188 m
.24043 .1999 L
.24043 .10386 L
.32361 .15188 L
s
.40679 .10386 m
.32361 .15188 L
.27558 .0687 L
.35876 .02068 L
.40679 .10386 L
s
.40679 .10386 m
.35876 .02068 L
.45481 .02068 L
.40679 .10386 L
s
.45481 .18704 m
.40679 .10386 L
.48997 .05583 L
.53799 .13901 L
.45481 .18704 L
s
.45481 .18704 m
.53799 .13901 L
.53799 .23506 L
.45481 .18704 L
s
.37163 .23506 m
.45481 .18704 L
.50283 .27022 L
.41965 .31824 L
.37163 .23506 L
s
.37163 .23506 m
.41965 .31824 L
.32361 .31824 L
.37163 .23506 L
s
.09173 .55012 m
.02381 .4822 L
.02381 .38616 L
.09173 .31824 L
.18777 .31824 L
.25569 .38616 L
.25569 .4822 L
.18777 .55012 L
.09173 .55012 L
s
.32361 .55012 m
.25569 .4822 L
.25569 .38616 L
.32361 .31824 L
.41965 .31824 L
.48757 .38616 L
.48757 .4822 L
.41965 .55012 L
.32361 .55012 L
s
.55549 .55012 m
.48757 .4822 L
.48757 .38616 L
.55549 .31824 L
.65153 .31824 L
.71945 .38616 L
.71945 .4822 L
.65153 .55012 L
.55549 .55012 L
s
.78737 .55012 m
.71945 .4822 L
.71945 .38616 L
.78737 .31824 L
.88342 .31824 L
.95133 .38616 L
.95133 .4822 L
.88342 .55012 L
.78737 .55012 L
s
.88342 .55012 m
.95133 .4822 L
.97619 .57498 L
.88342 .55012 L
s
.88342 .31824 m
.97619 .29338 L
.95133 .38616 L
.88342 .31824 L
s
.65153 .55012 m
.71945 .4822 L
.74431 .57498 L
.65153 .55012 L
s
.65153 .31824 m
.74431 .29338 L
.71945 .38616 L
.65153 .31824 L
s
.41965 .55012 m
.48757 .4822 L
.51243 .57498 L
.41965 .55012 L
s
.41965 .31824 m
.51243 .29338 L
.48757 .38616 L
.41965 .31824 L
s
.23083 .57498 m
.25569 .4822 L
.32361 .55012 L
.23083 .57498 L
s
.23083 .29338 m
.32361 .31824 L
.25569 .38616 L
.23083 .29338 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 250.062},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnWdvnEUQx5/YPqeRDgkliR1qKIGQRkjBpiWEEghdIAQGIsELBAp8A3pJ
nEJJqJEQQiAE4uvxxvh21zt3z/1mbtbPvbxI8Z13duY/u8/uf+szfmLmg7dO
vjPzwdtvzEwePTXz3ltvv/H+5JF3T80njS6pqiWTVVX9N1m1v8/Nf00/wr9t
7R/pl0V+P9n+2Nq2+VNMeDN8jM4tgLTRrqultX/7IQpfb3+MtCWjkGkTpP0Y
FV/Liq0yxVdBNA5pV0FaKuMrGXsFZNoAaT9HxZez4hVlii+BaBWkrYO0X6KJ
FzP22jLF57MiObgG0i5HxedAdKWzIFdk0AvR2DM5gZ4tmViRNWLbWhBW5+Mv
J7L8WtBeqVmspY1A2tkI8BSIvFDLsnPUvBPAkyDaDGnLIW1pBlgG0tnmANSn
KN8ZvbIIaimktXJZqFsZAFs0Y7W0sQxAzf10BDjhLAEBjGQA6ogGAJWAmJSa
6XpI+ypCPe0sC0PN/7YRBF9G28+otsc706Ig/h5MXl1mMtZMq3MgWvjEAemL
KHxW9W6sy9T8f6qQZOXh7DUx0+YsnQDp5x0magMpGbsmG6vR3Fa/7bmFx0ZU
RPVOzYma4mcW3pwxiF6VpdRdqGif6lBjkEY8siGDEidS+QzQlmmMujmxI4F+
ooMKqxP9rslS4slCKPKWKlpGcuJOAv1YB5UxnaBEStVLjeYjHUr8JpKjZ0p8
SuUzQFeHn63OtCiY/yfPlshVOMWoPmkANa6QAY56+7WamlGS8ARGteq7BtKu
NspulGlDKoCDnDfmclDr+bAPhkrYIqVOZ5itN5hKAaCGVQi1NvtIj4NaqbQV
6ukG1Oqs6KVu6Wo0/hhQNB5SxVD5hCzIigG6MivSwEVQRBaFoMszqJe6x7MG
rfcMKK+36tQzgFKbNUBtb2OjYWqgFaUBJExHq9ktKU+NTGgvwMCgLkZuBo4a
1Ri9C2CsXnZ1KaySdUjrW1s9ZacVqz4l7PZTqeVOwJH+ZN0yaoAGeuPJEJA9
65NpKk1fCqGoUxC7UgOifp/gjzjh7fnfmCk1oIgI7FmfzI2JQhPUUWep7Fmf
vc9hQHmJnJ4p5aPBMME/4iypkCTxhb1llKCOOaGEyKmvS5VTSzWg6ovyLKh4
UR7nAz2kkqaDj6qFcU0HQxsd9dhTp37GKP4YiIrW6hd0O/GZjNerZeGTPE2b
no+DSNba9afZdnQSNM7pxoRN4xybnzV5mIw+ASLq2NTyvHPbszqUcCRNJAsB
joNImFHdynQAzOoA0jlpaPHOydOuKe0AE7tRGpWPymJs0NoDBZVP+uusblbY
jYY6MiuzqtRMTyT/qHUTK3h31rrM99DYaqdlmTx9HbVpQ5fcpDTp0t9GY687
FWloTCZmQEQzBemOl6LiA+2PkIfGCyIK6XBC+FP523T+trQDoGdqVPFkm/Ck
/4VvQZf2S+81pQdMacvydaFANPWmNOq74xmeaHCvKd1nSpPrD5qg1BTIdZkR
tbIudd9dpnS3KR3XHZYHrO5hq8wjz4m6zl2mdKcpNRxenRXp0cQWzpw2kotK
C/TbTekdptRwd11WpE5Q75BVqFWl4W/PpmgJLFLSTcwQZm9btVoPZic0oliR
dUm60pQmeBot1PUQOVdLI/6kJquOsg4M8sWLm4pNNUITFnJT3+Lpn4/sEa5X
14sb2RhXeDQVJygalSYgzbt0JVzvAVYZLjaE651uErlsc7pOc1XCJQzyxYub
ik1950anmzRW3uDMR/YI16vrxY0tBdv/zZBGgxVNhW9y5iN7hOvV9eKmYlP7
3+6EogXLLZBGQxSt/QiXMMgXL24qNrX/25xu0iLnVqfrdNhHuIRBvnhxU7HV
GZHDTRo/b3fmI3uE69X14sY07PZ3QhptqdBAssOZj+wRrlfXi5uKTd1+pxOK
GPUuSFPPKRy4hEG+eHFTsanb73K6SdRytzMf2SNcr64XN3IFdvs94adxh6OW
fzektQwb+wrz71XzY5GIBfcZ5skUQY6ln5025r/vh6yjBtw9qmksDRHUfvaE
rBCactB5wJ/1XjUrDSrINnW0dtVQN45QS6kqs94hR56D4Qs/kkh5yA7BdNju
oPIdxHqY/+0+TXA4fO2p0OQB9a5gKiRN5W/T3Wkdx5TY16chbapBvlVDqCHU
EGoINYQaQg2hhlBDqCHUEKoZVJjET+dv92tpbEJdu/RewZjK9qruO1z1tUlP
/rTE0Jdz6oWuwzWVNrh6aaDMTHKqYJ2sLzONk2M03Z1Wz9fWdSw7S/crypb5
bEPftGi61tc3lPqboAdDOzHe90MJ17rUR7Wo32R2bxmSCXqI+j5a/6ISrlfX
i5t2pJpsEDfZKSV73g3iAeyUeo8DvO9q0v405SN7hEsjgHdfnHBTsb2HP9Rg
yCXvaYT38MerW3gK0uSor8mZF9nzHvUN4MyrycGu94ST8pE978Gu94RTD4jh
PsanftLkPNt7jO/VLTzP9l7a8L5Q571F4L204dUtvL3Q5IpOk7sqZM97RWcA
d1WaXMjy3kyifGSPcPXbRU1w3dfviBWb3EPzXr/z6npx04Us72VLYkVvHACi
TapG9aVFh27hrUN6L98bssh7x5TykT3CJe7x3jEl3FTsALW5LSHeC/W1rZ1E
HCB3d1XphCZNV1wfAlFgorDOqrq3GahawqqTml0YyFXpbaY0OUf3ssPoFZLk
9Vhv/Da5qE91vSNLiYp3mLqGw8uzolzA98aNE11qpTtN6d2m1Lj5LrVEExVK
o64h1/1pJNhjSveaUsP1kW7Fojh563Ox1W0aVbrflCaH62/MxP5VVX0CLJCv
GzNerYce1ASHNEGnc6oP3nh/12Ur0/mbbIemTnI8J3ijAf4RFR/Pit5ogH9G
RXqPtTwaYIrAeCwnNI4GmMJCHs3yQUcD/D4CHAHRYKIBJgBvEILyaICXmgMQ
Y1G+i3plDSYaoAEwmGiA30UAb/SC8miABsCgowGmlzW98QmKogF+E23rAQnK
owEaJkujAabXZhtGGEhWDmSvadpiRxi40GGiF7RxQMAu87ytT72oSUzA852Q
WsMnFiyPCXhOh5JOrL44VhQJ0IAi7iPiahIT8KwOL9yuvj1UFFjKgJJJlPrq
SlEkwFkdSqJwDSYS4BkdijoZNfYmMQENeImnRvwqo50dFdCoSokNVyOMRUYF
NMpCEe8GER/QKJ105Q43K4Ww7QiBp3WUK7PihOkD9QvD7Hqtjr1bYYV41Fu8
vG4HDDRARXEwAQMNqFVZ0cvrdphAA8obWaRJwEADXvweTMBAA0pWJ15et8ME
GlDio87r/jCBBhC1RJ3LXQEDDTSpD5XERzVpl1kOklfE3mqYQAOo4kl0wzCB
nYBBMtgwgcbzUHfNFxkmsBBq0GECEzy9bmMTeXmYwAR1yAnVJExgIVSTMIEJ
qn5/ToMadJjAQnghyfIwgQmKXsCyibw8TGCCmlKhGocJnO2HUBgmMNmbhkzl
YQJP68ZUbqa5UNoRpcutm7IdultJjqbNUIorRUMamZ2EfD/oZhcfLzAZpSMI
WdFQG/cG8fteB5A1mfd9agOAjv9keeslCQIwNm7tsxnvRPyiDiAsRHN0b2xA
Y7vWGy/BjhJ4SQeQMV2/BKR13NQ4jyZPazTjDeNHpJos055seXTA9OelXoRM
diTAy2WKNPolEy+AyI4E+GtUfB4y2fH/fitTlOHr96hIf9DKG1Cv0IT0nnR8
Rn+Xxg4w91dUpL+NYwV6+7ufWk9r/id+DyEmt7QT/o0JIc8i/65cteR/4L09
fQ==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {249.062, 0.}} -> \
{-1., -4., 0., 0.}},ExpressionUUID->"5c77c5ae-763a-45c1-8382-d53c5114c637"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(68\\). \\!\\(\\\"augmented truncated dodecahedron (J68)\\\"\
\\)\"\>"}]], "Message",ExpressionUUID->"581874ef-cddc-4bdf-8172-eabeaf6e2f67"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .5496
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.266022 0.053291 0.249457 0.053291 [
[ 0 0 0 0 ]
[ 1 .5496 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .5496 L
0 .5496 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.23938 .33146 m
.19626 .30014 L
.1798 .24946 L
.19626 .19877 L
.23938 .16745 L
.29267 .16745 L
.33578 .19877 L
.35225 .24946 L
.33578 .30014 L
.29267 .33146 L
.23938 .33146 L
s
.34135 .35314 m
.29267 .33146 L
.33578 .30014 L
.34135 .35314 L
s
.23938 .49548 m
.19626 .46415 L
.1798 .41347 L
.19626 .36279 L
.23938 .33146 L
.29267 .33146 L
.33578 .36279 L
.35225 .41347 L
.33578 .46415 L
.29267 .49548 L
.23938 .49548 L
s
.38791 .45307 m
.33578 .46415 L
.35225 .41347 L
.38791 .45307 L
s
.19069 .35314 m
.19626 .30014 L
.23938 .33146 L
.19069 .35314 L
s
.02381 .30014 m
.04028 .24946 L
.08339 .21813 L
.13668 .21813 L
.1798 .24946 L
.19626 .30014 L
.1798 .35082 L
.13668 .38215 L
.08339 .38215 L
.04028 .35082 L
.02381 .30014 L
s
.11004 .4283 m
.08339 .38215 L
.13668 .38215 L
.11004 .4283 L
s
.14414 .20985 m
.19626 .19877 L
.1798 .24946 L
.14414 .20985 L
s
.14297 .03476 m
.19626 .03476 L
.23938 .06608 L
.25584 .11677 L
.23938 .16745 L
.19626 .19877 L
.14297 .19877 L
.09986 .16745 L
.08339 .11677 L
.09986 .06608 L
.14297 .03476 L
s
.04773 .15637 m
.08339 .11677 L
.09986 .16745 L
.04773 .15637 L
s
.26602 .1213 m
.29267 .16745 L
.23938 .16745 L
.26602 .1213 L
s
.43218 .06608 m
.44865 .11677 L
.43218 .16745 L
.38907 .19877 L
.33578 .19877 L
.29267 .16745 L
.2762 .11677 L
.29267 .06608 L
.33578 .03476 L
.38907 .03476 L
.43218 .06608 L
s
.2871 .01309 m
.33578 .03476 L
.29267 .06608 L
.2871 .01309 L
s
.38791 .20985 m
.35225 .24946 L
.33578 .19877 L
.38791 .20985 L
s
.49177 .35082 m
.44865 .38215 L
.39536 .38215 L
.35225 .35082 L
.33578 .30014 L
.35225 .24946 L
.39536 .21813 L
.44865 .21813 L
.49177 .24946 L
.50823 .30014 L
.49177 .35082 L
s
.49734 .19646 m
.49177 .24946 L
.44865 .21813 L
.49734 .19646 L
s
.66422 .35082 m
.64775 .30014 L
.66422 .24946 L
.70733 .21813 L
.76062 .21813 L
.80374 .24946 L
.8202 .30014 L
.80374 .35082 L
.76062 .38215 L
.70733 .38215 L
.66422 .35082 L
s
.73398 .4283 m
.70733 .38215 L
.76062 .38215 L
.73398 .4283 L
s
.56782 .48351 m
.55135 .43283 L
.56782 .38215 L
.61093 .35082 L
.66422 .35082 L
.70733 .38215 L
.7238 .43283 L
.70733 .48351 L
.66422 .51484 L
.61093 .51484 L
.56782 .48351 L
s
.7129 .53651 m
.66422 .51484 L
.70733 .48351 L
.7129 .53651 L
s
.61209 .33974 m
.64775 .30014 L
.66422 .35082 L
.61209 .33974 L
s
.50823 .19877 m
.55135 .16745 L
.60464 .16745 L
.64775 .19877 L
.66422 .24946 L
.64775 .30014 L
.60464 .33146 L
.55135 .33146 L
.50823 .30014 L
.49177 .24946 L
.50823 .19877 L
s
.50266 .35314 m
.50823 .30014 L
.55135 .33146 L
.50266 .35314 L
s
.65865 .19646 m
.70733 .21813 L
.66422 .24946 L
.65865 .19646 L
s
.76062 .05412 m
.80374 .08544 L
.8202 .13613 L
.80374 .18681 L
.76062 .21813 L
.70733 .21813 L
.66422 .18681 L
.64775 .13613 L
.66422 .08544 L
.70733 .05412 L
.76062 .05412 L
s
.61209 .09652 m
.66422 .08544 L
.64775 .13613 L
.61209 .09652 L
s
.80931 .19646 m
.80374 .24946 L
.76062 .21813 L
.80931 .19646 L
s
.97619 .24946 m
.95972 .30014 L
.91661 .33146 L
.86332 .33146 L
.8202 .30014 L
.80374 .24946 L
.8202 .19877 L
.86332 .16745 L
.91661 .16745 L
.95972 .19877 L
.97619 .24946 L
s
.88996 .1213 m
.91661 .16745 L
.86332 .16745 L
.88996 .1213 L
s
.85586 .33974 m
.80374 .35082 L
.8202 .30014 L
.85586 .33974 L
s
.96529 .35314 m
.91661 .33146 L
.95972 .30014 L
.96529 .35314 L
s
.80931 .40382 m
.86231 .40939 L
.87339 .46152 L
.82724 .48816 L
.78763 .45251 L
.80931 .40382 L
s
.86231 .40939 m
.80931 .40382 L
.81488 .35082 L
.86788 .35639 L
.86231 .40939 L
s
.86231 .40939 m
.86788 .35639 L
.91099 .38772 L
.86231 .40939 L
s
.87339 .46152 m
.86231 .40939 L
.91443 .39831 L
.92551 .45044 L
.87339 .46152 L
s
.87339 .46152 m
.92551 .45044 L
.90905 .50112 L
.87339 .46152 L
s
.82724 .48816 m
.87339 .46152 L
.90003 .50767 L
.85388 .53432 L
.82724 .48816 L
s
.82724 .48816 m
.85388 .53432 L
.80059 .53432 L
.82724 .48816 L
s
.78763 .45251 m
.82724 .48816 L
.79158 .52777 L
.75197 .49211 L
.78763 .45251 L
s
.73895 .43083 m
.78763 .45251 L
.74452 .48383 L
.73895 .43083 L
s
.80931 .40382 m
.78763 .45251 L
.73895 .43083 L
.76062 .38215 L
.80931 .40382 L
s
.80931 .40382 m
.76062 .38215 L
.80374 .35082 L
.80931 .40382 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 158.25},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzVnOuOVEUQxw87s1dW9gq4IMxwv99UEBUVFDHEYKI+ASEm+sFokOfxo/FC
9BWMxhiN77TSl6k6p+dXZ2p2GOPyYTlTXd39r+7q6qrqPufBwyeff/blwydf
PHrY/+Dxw68//+LRN/17Xz1+Rursqao9/aqqvu1X4Xn72WP+E/8dC3/yjxHP
n4T/ZkLdf2qEqrM9aCy0Gsv/4vLwa0Ya+dNm6grTHzbTXPgbSb8lpk+BaUFa
+jUxnQ3/rQfCFrAvSukvif0MMK0C7YDVt6Pu09TVaShaB9p+oM1bdaPouYOT
QjggT9TYrJQehNIfUmMnoOhFpwRdq27sNHdwHJgOAW0NaB2gHQbad6mrvvR9
VJ4IdyzoQcFH4e9GIN1NLRJTH2grBS2soOOC4YFT3Dup6lEoolHcJx2cgtL7
QNsA2u3U6REoOgm0F4BG3d8TcAflaUpdvQ80Mgpvpe5fgiJas3udfHeBRkp6
a/LuyYpFpVGNjk9T6uo20I4B7fXUPQ3CWaAtOvneARqZr5vT6T4OaiTR2Lw2
eafngHYj/J3djhvycCmthgyETOx5oNGOQ3zXBMgclNKI3JgOkMvhbyR51fY5
ALkAtEtAGxMSWamLQJt18l0GmlfTrk8H0hWgkUP1H0K6CjSa9BZI5CHR4JMD
Q3wEicQhPXx1OpCuAY0cvh1B6tZplnUjVC87JSJU5P0kX2vIQQ7+W+p+toF0
UEZdkj14paUNWhnkrWaIB3jgEsq5kjz4n8aV1sR1bp0wlp5rNXA9BlEIi1vO
Jg0j8YVfN4CPoK2yFBndJtSgiTzPrXSYTNP+GtAI70rLeOVpJ6WlZVjuZKGJ
0oIEGk3+TSfcfUAjBUt+JyozGbVJoL8ONJqRMkDbNuY++W8YndEWUbp2AWbJ
F2hkjrzQadRpGJN/g5kJ2nAj9BgtLMrTJDApWiNXMcOkCTE98QImeW1vAo3E
odGkmU1OR2KPa34JmE4LpL3yRF6DFxyNIc1dBhcXWLQepA//BTiasbTrpy01
7ksU/3iD67eARkIQOJqxDC5aqFgSEw8x5XNKRqkfnmL2kJql7vdKjdxBD5j6
QCNDQyE1tUcrnWQmwMRH7aUdHaFTmsp0sXRc4xNtxQSJYifi0xxpBnxMCC/J
kyaiKAPVs6SfsVY/gdM8NeVc047ozrlS4KP5VR1NimzJphFg4tM+MmDKzlGm
nLIfxNdz1iVwlPMgPmovbTq1lb4pTz15olQ6AT4iNebl6RTQqG7ahdynEmQR
VqUDVQTKEtMeTO0Rn7acAZMppx2VNJz4DkkH5IylVpoedxt/D2iRmRxmgph2
pWQwV0PJGXk6LD2nzbYBqhqwFr58fk4g9MTsCLU1qFcZwpHeJ6tUy83ZScKh
UZxtqo4R3ZxhckfqUY9bRaUsXgdGqDl6KN1FQevNPM5KjS3BOcuCkAOv52YJ
skxjtIudMVqrSXFO6npzhEsCQ7chii3K7b0a8HWlbkfrDmEm72CxhtnhuBF6
4lsTOUq/UeUYwrcgAmzI08LYolDI4M2MEp9a31LQIApFtDqdOgylV0F1a0JE
l2LdWnXerCrxxUaXnZJEiTe8stfwkytgpGy8c2MoNaUe7DBXpsfhnJejV0F7
yldzMDYZqfe0wbA42j4BuyilNJ7krJcmVlph8agJtVaF+fQmtLuFqFXaPsih
NtNEhQ+mrv+YAupaPWQ20SpHUVf3lkut7ZHrT9lSysQklUJHUr0YcomoscJr
MUu9Rw3klre3ksWhhJE6UnZCnt3HXkvZZXmaafIXtBawLwjTceioGmSvh8h6
Z6S2dqoGpmJRle3nCi3YSjMffp2Q5q/Jk8YyVy0aGg/c+sl7pRQz8ZEsXr7d
BYkyYLQovXzkmBFfhuRNcni7Irvq5ZvfVZDI8actwctHrg7xZUheb8nbFflw
Xr6FXQVpkmYnEef/C4nCg0lUdJKlsWhDmmQhT2JA/r+QKJKYZFOYZDNasiGp
J9PuYJAjsjyi2cI5LlN8FfgtFl95/cXia4GkHj6F6z2gRWbyQTTPW8uf1WFc
aSnrt+LIU2UqtLrXRe5SaTqlFFWMzJyW2Gs8VXvksRNRKAo1o61CPI3e0pGL
cUeE1gynPUkKPX0hqC0yUlqDYkszkC7iUtJp4xaSN7Q3ssx0+PUchNf4X3MS
ekB3qUkr2tuQUpoj70U44jMPmWiussQePyFITHxmFisCKTcjaaV2/se6O17m
itvQc1tC3iI8Jb0povJcMwl1LwgQCo/3tYgwXqaS2/Ce5C/uYEDMRG0h8ppl
v8bLKw+lVNasQc3CeMKpplKW5wBNPnNZdKTuCH2wBDQXV8dS4BYRjYO1eWlv
f8EQ/heDPvLoA8xfhxRBoQByxWHuB+NLGE1iXAaalK2ayS7K6pKAxXbctUCa
Z4RdqWvut+MLqAlC+2y03BWB2RJ6RmamL0+0zZDQVJdAZqHtrNnQKu9Y1sPM
95qdUx4t/oqBRrfQl/BfGYEkjkGNmt7XbsJpUEE+yaCsJ0/mTq4NkTBR/HXh
64C2z4e/dHMjzwLdQfNe4JiErwc0z+WUyhiK2O+CTEtVe3+x74RJdzaIz3vl
LInoehmBDkeTpo44aKHtk1R8TmqMfzutPAcZkohvbleDkLY85nJ4ACQC8Xnv
q9kHXk5hhmlJq3DL977mbV7xc7TXAxpZQwrHSmsTtM28wl5bQqjlGsqMtfvv
8DJc+2UVEoK23bQGao3Rif4kd1G81+c8bwJYgpFpyu9G0KSTXhN077Ucaq8H
NLKqZtwUB4pK1dvMIsaVv2otWBJiWWrQfhQtzrqo8YzVMrlqWzVIIwy7RSPA
dDudDGPawod8eR1QU46avUQTScISegrMbwHN+3q4Ork67+arFZ2aVphf68Ah
Gy0Evb1wRiCppuhXRsiTo940uugl6N6t8TlCp95MX5P61Q1iVgZgyxaHoidq
ls4B3gAavb2zLEB4RxtIZ15oTbYT91KyuF789KLTuSZ+anlRFsECbXo1wPQ5
BlJGWkdjAS62Jl2h5ia1FEg0UAds6BTtEXQ6z6A3Ds3XAE3o1FuLEN5jhF0g
BKcRyVch4PR6ajJQLRe9CTtFPrT7ZOxHuQ9y7Up9D+LReFP6egqYmx1QREGX
zZ4901AnzC3nXQSRaKQm+f2nHhTZ48zqdN3knyd+qUejTqrZAp+6ts+TmjT6
RAB9dWC7RUmmBJesPX1ngV7qTz3F35GZ/ANSTNLtMWFTgEb3/8z7o6bz6L2W
3CJE+W2A8Ms+fxktBN3OMI8Azfu7FIeTAm2OJwS5m2ThvUKoV0wraUpC0KTT
RUnvClKvuGrmhSl5sVckzgaeLHT7iQgNuBertmKewpt+7+Z4gPWg5RUopdtj
5uAaF0so62W+qLXfjz60HW017fikUWSgKElDSh53xa5lUTPqCETT/ZHd+2o6
gTNfMaMpKLf+UKtlM6I4jPIpt4FGl/AIf/mKRoZlho/mHX2yBXlhUnjcA9od
oNF6IKU0MswarGoCQaeMci4Z8y1h0oQofR/Q+yb2iFtboxvQU4WWkX4biihP
s1NJrKVHu7puq3RNoyW6fscsatLuAc08zDD1dl8GW1ec7XqCowBu38NK67BI
nd+XJz1eTFPeco+m6LIMLEfAeBeKyA3+EGh0BEgWiiIQgml+WLaq3oMi8uAf
yLj14++hNb4sDHo+YryMSAqQ4cQlEa+40KeN9RTQq/4rUqPYGFYYmnmBsKq+
l6Yo00eAaMrUfNupEl4G+VNKP0I1dhx8gOgqk71CeblkaD9BNVUG8rUpWUN2
ypvWy8dcT6VTWiEExDyB8d3N1FnNnxn7eYfChl+UmjBeVyX7reccaaWmT3bH
NWW+RO7bxmng1Kyn0770PfGOxd52AZK0jgRUzyF9R6X6XQhkj8v41+qK4JLe
5U7/kE5JISjotm8G8YJPrkD6HnzHshi0JS8VjYb/q8Htp+pvaU9PFFO4lb9f
32zs41QUf4z4EH61519OP/7O\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {157.25, 0.}} -> \
{-5., -4., 0., 0.}},ExpressionUUID->"60c34a50-5b19-46d3-8e07-2198452df2e4"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(69\\). \\!\\(\\\"parabiaugmented truncated dodecahedron \
(J69)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"7b7c58d2-2cad-465d-8460-\
99840ecc88b5"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .5496
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.266022 0.053291 0.249457 0.053291 [
[ 0 0 0 0 ]
[ 1 .5496 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .5496 L
0 .5496 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.23938 .33146 m
.19626 .30014 L
.1798 .24946 L
.19626 .19877 L
.23938 .16745 L
.29267 .16745 L
.33578 .19877 L
.35225 .24946 L
.33578 .30014 L
.29267 .33146 L
.23938 .33146 L
s
.34135 .35314 m
.29267 .33146 L
.33578 .30014 L
.34135 .35314 L
s
.23938 .49548 m
.19626 .46415 L
.1798 .41347 L
.19626 .36279 L
.23938 .33146 L
.29267 .33146 L
.33578 .36279 L
.35225 .41347 L
.33578 .46415 L
.29267 .49548 L
.23938 .49548 L
s
.38791 .45307 m
.33578 .46415 L
.35225 .41347 L
.38791 .45307 L
s
.19069 .35314 m
.19626 .30014 L
.23938 .33146 L
.19069 .35314 L
s
.02381 .30014 m
.04028 .24946 L
.08339 .21813 L
.13668 .21813 L
.1798 .24946 L
.19626 .30014 L
.1798 .35082 L
.13668 .38215 L
.08339 .38215 L
.04028 .35082 L
.02381 .30014 L
s
.11004 .4283 m
.08339 .38215 L
.13668 .38215 L
.11004 .4283 L
s
.14414 .20985 m
.19626 .19877 L
.1798 .24946 L
.14414 .20985 L
s
.14297 .03476 m
.19626 .03476 L
.23938 .06608 L
.25584 .11677 L
.23938 .16745 L
.19626 .19877 L
.14297 .19877 L
.09986 .16745 L
.08339 .11677 L
.09986 .06608 L
.14297 .03476 L
s
.04773 .15637 m
.08339 .11677 L
.09986 .16745 L
.04773 .15637 L
s
.26602 .1213 m
.29267 .16745 L
.23938 .16745 L
.26602 .1213 L
s
.76062 .05412 m
.80374 .08544 L
.8202 .13613 L
.80374 .18681 L
.76062 .21813 L
.70733 .21813 L
.66422 .18681 L
.64775 .13613 L
.66422 .08544 L
.70733 .05412 L
.76062 .05412 L
s
.24495 .01309 m
.23938 .06608 L
.19626 .03476 L
.24495 .01309 L
s
.38791 .20985 m
.35225 .24946 L
.33578 .19877 L
.38791 .20985 L
s
.49177 .35082 m
.44865 .38215 L
.39536 .38215 L
.35225 .35082 L
.33578 .30014 L
.35225 .24946 L
.39536 .21813 L
.44865 .21813 L
.49177 .24946 L
.50823 .30014 L
.49177 .35082 L
s
.49734 .19646 m
.49177 .24946 L
.44865 .21813 L
.49734 .19646 L
s
.66422 .35082 m
.64775 .30014 L
.66422 .24946 L
.70733 .21813 L
.76062 .21813 L
.80374 .24946 L
.8202 .30014 L
.80374 .35082 L
.76062 .38215 L
.70733 .38215 L
.66422 .35082 L
s
.73398 .4283 m
.70733 .38215 L
.76062 .38215 L
.73398 .4283 L
s
.56782 .48351 m
.55135 .43283 L
.56782 .38215 L
.61093 .35082 L
.66422 .35082 L
.70733 .38215 L
.7238 .43283 L
.70733 .48351 L
.66422 .51484 L
.61093 .51484 L
.56782 .48351 L
s
.7129 .53651 m
.66422 .51484 L
.70733 .48351 L
.7129 .53651 L
s
.61209 .33974 m
.64775 .30014 L
.66422 .35082 L
.61209 .33974 L
s
.50823 .19877 m
.55135 .16745 L
.60464 .16745 L
.64775 .19877 L
.66422 .24946 L
.64775 .30014 L
.60464 .33146 L
.55135 .33146 L
.50823 .30014 L
.49177 .24946 L
.50823 .19877 L
s
.50266 .35314 m
.50823 .30014 L
.55135 .33146 L
.50266 .35314 L
s
.65865 .19646 m
.70733 .21813 L
.66422 .24946 L
.65865 .19646 L
s
.57799 .1213 m
.60464 .16745 L
.55135 .16745 L
.57799 .1213 L
s
.80931 .19646 m
.80374 .24946 L
.76062 .21813 L
.80931 .19646 L
s
.97619 .24946 m
.95972 .30014 L
.91661 .33146 L
.86332 .33146 L
.8202 .30014 L
.80374 .24946 L
.8202 .19877 L
.86332 .16745 L
.91661 .16745 L
.95972 .19877 L
.97619 .24946 L
s
.88996 .1213 m
.91661 .16745 L
.86332 .16745 L
.88996 .1213 L
s
.85586 .33974 m
.80374 .35082 L
.8202 .30014 L
.85586 .33974 L
s
.96529 .35314 m
.91661 .33146 L
.95972 .30014 L
.96529 .35314 L
s
.80931 .40382 m
.86231 .40939 L
.87339 .46152 L
.82724 .48816 L
.78763 .45251 L
.80931 .40382 L
s
.86231 .40939 m
.80931 .40382 L
.81488 .35082 L
.86788 .35639 L
.86231 .40939 L
s
.86231 .40939 m
.86788 .35639 L
.91099 .38772 L
.86231 .40939 L
s
.87339 .46152 m
.86231 .40939 L
.91443 .39831 L
.92551 .45044 L
.87339 .46152 L
s
.87339 .46152 m
.92551 .45044 L
.90905 .50112 L
.87339 .46152 L
s
.82724 .48816 m
.87339 .46152 L
.90003 .50767 L
.85388 .53432 L
.82724 .48816 L
s
.82724 .48816 m
.85388 .53432 L
.80059 .53432 L
.82724 .48816 L
s
.78763 .45251 m
.82724 .48816 L
.79158 .52777 L
.75197 .49211 L
.78763 .45251 L
s
.73895 .43083 m
.78763 .45251 L
.74452 .48383 L
.73895 .43083 L
s
.80931 .40382 m
.78763 .45251 L
.73895 .43083 L
.76062 .38215 L
.80931 .40382 L
s
.80931 .40382 m
.76062 .38215 L
.80374 .35082 L
.80931 .40382 L
s
.34135 .14577 m
.33027 .09365 L
.37642 .067 L
.41603 .10266 L
.39435 .15135 L
.34135 .14577 L
s
.33027 .09365 m
.34135 .14577 L
.28922 .15685 L
.27814 .10473 L
.33027 .09365 L
s
.33027 .09365 m
.27814 .10473 L
.29461 .05405 L
.33027 .09365 L
s
.37642 .067 m
.33027 .09365 L
.30363 .0475 L
.34978 .02085 L
.37642 .067 L
s
.37642 .067 m
.34978 .02085 L
.40307 .02085 L
.37642 .067 L
s
.41603 .10266 m
.37642 .067 L
.41208 .0274 L
.45168 .06306 L
.41603 .10266 L
s
.41603 .10266 m
.45168 .06306 L
.46815 .11374 L
.41603 .10266 L
s
.39435 .15135 m
.41603 .10266 L
.46471 .12434 L
.44303 .17302 L
.39435 .15135 L
s
.38878 .20434 m
.39435 .15135 L
.43746 .18267 L
.38878 .20434 L
s
.34135 .14577 m
.39435 .15135 L
.38878 .20434 L
.33578 .19877 L
.34135 .14577 L
s
.34135 .14577 m
.33578 .19877 L
.29267 .16745 L
.34135 .14577 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 158.25},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzVneuOXEcRx493Zm9e33bXa2wn9oztOImT2MYQkphccO6KUD7AG1gRUvIB
gUKeJ1wlUIjgFZAQQkI8ADzNsn2ZrnN6fv9z6uzYwrbkmTPV1d1V1dV16e7T
++nDrz7/2c8ffvXFZw/nH3/58Jeff/HZr+Yf/eLLI9DkRNOcmDdN8/W8Cc+H
R4/5I/67Fj7yj4HnD8PXWqj73wR4L3xNYmOTwwSKFZr/pB8PSoVpBEwOS7dH
vy6Hz90A+jahv1PQNwD9UgULvZ4BvG9S4ZuFti1A+k7pagKlJ+PntA0r+H9K
zd8vgJPQwIVeTrbj52bdfIezP6aHF8PXXoDsQEMHAKMOkwTWqUPk/w+p8AUo
Oieb78L2e+WzGT+7Aj56XgfU36ey56FoT7bche0WWk5JgS3RQg39LpU9V9qz
cSZ0ktVpgE2Zgm1A/W0quwFFF2XLXdhZJ6xWjEYo4W9S4XUouuxodgxJa0AS
CfTXqXAevuLoXC1PdROHZUx4euxmOZIpIBI/Dp/7AfRBamIGSHPg4+wgEbUs
RMGHACO8d1PrV6HoepdFaSdrAQRa9wHvfYAR3oPUyBUoeg5gaTYvzRsaYuPj
vBJFLDW/cCxaePiIoFOlIyqtLUdo5V3Aq31i+PV2qvAsFJERpSm9xoIl60lq
cYarPwDUZwD21jgGyL/Udq9Z+CFpq/vGz+KSWXl6BETW3q5ZkCbdJsFoAH4I
sGsAu5+6pUF4EWDkkDYKwevliUwyxQjkne4DjLzdG6uTbrLWSjwcXBATbwDs
JsBeH8cEyXA7E9FSovCfQiOKrihafH0c9eTkX3IKL3IUQRTK0rBQK68BjGLX
11YnOJK0rsx28i1sRGjuPibC60EN3U+V4asF3whD/4NxtJJnegVg/VYjEjdV
5vBVgN2SpI8jCd3DsOQ2iiV8smilqCfqsoUgUW2bbh4/kmpKQe44qaY4hKg2
hbEnIvNlgL26OpkkXDK2ZtnIGRyLuKWAilyPl76dIrw5lFJwTjQTXkooUiRd
zY47WaxkH1dhhkwHBe5U97YTL7MVM/7loUicbdTgxTd5MiKaVgwoEKnDziBA
Ggtirs4FQ91ZekgWjcenniDFWAh8Itu7IJLGbknI3uE7x9Uzk9IUomddamUs
z7RIoIfUn//flX1xG1l/SUto6tVxRVP82pJEvFx7ZylFVtQHSYDwqL0kbXeY
PEIaXs490/pQqCb1QRPBs6wXfqUEBNWMQsY6NwnSqPECLLIdl7nJuZMAKBOi
8aC6JADCo/ZSZO1e3I4CiM6zziuLKDbMQC4K069N5blJSUghKGWjuiQPwqP2
sjxIfyiT7pcHRpeNkMJ2QabOST9IQ2ncKX7xJvkpHE/oMh15vkhhp+BNC4zE
XMc3SVpivpAukHLSGBPv3lWazHs0lXFgaAJVvJMFjiDqgJbeFlMGlepQaALh
rSINai+F5ym6jXOcFmqSDJYWZUhpTleo+d8aTBfSIFIK3U0XRokc4VF7WQyx
+1gS18T3lQJQs+SI4i8qiAYp7oN6OdkpNTKtM0CaA4y8oFbbYd8Slb8ez8KT
I0Im+RPHhEftpSgfeafNIIoY9Qo6+BZ5AOBiKaWYnNihBSfC2ystZ2avFcCz
5cn2erzskBqQITooLXuZ2OpSRez4d31p8cibXkubF4kjlSXhEYuEZy1nFmlr
7QLASOpkNySLa2YZjhdi0Io44VF7KbRJTZj+VztMeqca5lgE0bhfKe3ZdsdN
gM2gboqO3MdA6h2mYPEoiLOY6HJ5otMD5O9oF4vw5qXlzAS5aYr+blQVQcWq
kx+kdjcyo+TVCX8GMGk2yQwkp5vcwrlQEgdtXZmgSZeF5Lc61DaLNvoCM3Nt
V6ittiIQ1zSFErXNvUI+TYObLN6tIt5J175PAL/wxys8cgpeqiplRvuWhbTX
Smv6sRZpMVWM4t3s8ieWIihPt0XzKhq5WOTmbK3Fxa1Sl4I/yb45aPTCgcY6
zmkWeNNSd2J1l2imMGm7RTPOomHqCc8OmVEOfIvps12C/fK0NZoV2gMkP66b
AOOOyVxghdbCbDhNDLXdobotJqI276lZR5EXsUN4sVFKtYmTyDHmMQP0U5Qi
FqK9YyOUmhYtLaapk9syPMdIcxpoz/BaUct5ppTiIWpPWBxrnwh7pZSSPClr
oX1x2lTN7FETZq0q80mZH7Fan/VskvugqJ/OBxnTFrqZHxjJoM3Vy7KJXj6q
uuZbbve2R3EqnTalFcykUhh/PlM6paiJGqviF1lKm8N6HX1MK5kdCpMtpKKu
EjscYc56yu6Up7UufgXrIfZ0QboOHR0932WwnSptugtbd6ggfNXt5wo9tFG+
ZyH9vfJkKdB3FQyNB7p+imNpc4rwiBcv3tNFEh2LpEnpxaPAjPAySd6VGG9X
ZFe9eJtPFUkU+JNL8OJRqEN4mSRvtOTtimI4L97WU0XSKs2uws6TSxKlB6uo
6CpTY1uTtMpEXsWAPLkkUSaxilNYxRmd1CRZJNMfYFAgcmqg2So4rlcBG4hb
FN49J14PSRbhU7o+A1hEphikdQpxvd19IeNuT9m8l448VFKhLbyuVjENZkNK
WYXlHGINtaa9hdP0Zx7HYYWyUJltVexZ9pZ2ecTJN5oz/teebMOHSO3hkZY1
KLeUiXSVl5JOi7Od3tRerDLTJtMjYN7yf1uTsF3E211Y1Z69nEtjRHqulzJg
LntfS84ce+KEwDHhyVWsSEjtjEorrS1H1t1xK1fchm1CE+U9zNOiN2VUnuNZ
oe7LhRBKj8/0sDBupZLb8B5p2D6GQORCbcXyrrJf49aVl5ZUdpVQMzOedKqr
lPU+QBdPTotJqTugD4pBObkmSoF7WBQba5ulvYMKIXwXgz649QHmb0KKYKQA
5UaH9AfjOYwmMU4DW5RtuotdtKpLDFbuWL6/JfcIp6Wu9LfjGbQFQr03WntF
QFZM20HBeXkiN0NMU10iMjOtV82WZvlEWQ+53is7p3W0+CsmGtNKX8JXnYEk
jEWNlt63XumxpIJikkXZrDxJT24NETOR/b2CNwFtjxvVdLgjjwIdaPGe8VgF
bwYw75kWEkXsd6sMSz490spshsmkYx2EZ3dZzMsTnZ9LLLpuR6DN0aSpAxst
5D5Jxe0cIKU7M4AddGv0HePgdz6aRUpbb3M5IgBigfAsm7GhoD70hpeTmWVY
0ip0+bQTTdTLc4iO9mYAI2tI6RhdziDfVGlNIdRyS2VGeX+ZpxBjV7o15GEV
YoLcbpoDrcbkC5oOdgjPDnCYXpIR9rzwoxjTp9Fx0EmviXTvsRxqbwYwsqoy
b4qColKLNjOLceafUxOWmDhVapA/ihbH7vmSBxApVLvUImnAsCsYEfy2IrOC
1W8wZNdvApV8tOwlmkhilqinxPwtgI26/qY6ZCHfFJq0tIKYWOWllDcB9kIh
yTTFjgB7Xyyz7GKWSPe6xkdIOvUmY035BoklN7HwkmaHsifvi3N0o0711put
NkyUGbG0QB5tTbYTfekqL/7RtTq3uvRTy9tlEmyR02sRTC8ikTJ639yUBFeu
yWaodFInA4gEdUGT7r0RiPYz6MIH+QKxJJ1662HiUb9I/X9kYrV34On2omSg
eg56E+2U+ZD3ybRf5T48dxYE9kjetHz9GGjudqCvkVjijUSdaO7Z7yISvfdC
5Je5ZlCk5czqRNcZJfz+e1lJ6qSaPeRT13o/qQv7HsDodpjDHiV5TOSSta83
mo3cDSXliEzxASmmvpbJTTYlaHT+T54flcGj91hyDxN0QZjefxlmgk5nyC1A
eX6X8nBSoPPjmKBwkyy8lwmLimkmPSYmaNDpoKR3BllU3HTXhWnxYqdwnA08
Wej+HRESuJdWa0Xuwg9cnecm2DZavg+ldHpMClccLKFVL/mi1oGf+tB2tNXk
8UmjyEDRIg0pefSKU2VRM9WREFvuj+iU/HuJk6+Y0RDQTbc9zsh7s+kDgNEh
PKJfXMct00d5Rp9sQZ6YlB7PAEaX/tJ8IKUUK8yWrNoCgg2ZvM0+X3lbLcl/
4KSPhDdwamu4AdtV6JH0O1BE6zTH5URNPfLq5lblvUFVjZxd/0gWdWEfAUxu
Zki9pfubD9sLHBXh+hxW6y9A2Gr3J+XJthfTkPeco6m6rBPLATLegyIKg38M
MNoCJAtFGQiRKW/CaPCedIrgPy1ym8fffFO3nSdpJV6uU32ZnDgl4hGXnwKS
7QJ61d8uYa8cw1kmTR4gzH+FQ+63ea9bNPOtl0p4GuQb076Bahw4+Aiio0x6
hvJ0yaT9GaqZMlCsTYs1ZKe8y3p5m+vb0qm8J9Wh8uJdWCnY2GG+8/Avx2Q2
/KKlCfG6Ktlv2+dIM7X5a/iKc0q+RO5z4yQ4M+tpt6/5W/iaKPS+A5Deu7ct
ckhXtzR/LwCyx3X+q7ryXhefO/1H6ZQUgpJufTKIJ3wKBZp/FoHqxXsKZpa2
x1Iw3fyrtGc7iindav4Njf0kFcUfA3+sqTnxP7yRe7Q=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {157.25, 0.}} -> \
{-5., -4., 0., 0.}},ExpressionUUID->"bd59bcb0-805d-4006-bde5-52869753da12"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(70\\). \\!\\(\\\"metabiaugmented truncated dodecahedron \
(J70)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"4535b103-3c9a-4b75-a94c-\
7c49f5e08061"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .5496
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.266022 0.053291 0.249457 0.053291 [
[ 0 0 0 0 ]
[ 1 .5496 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .5496 L
0 .5496 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.23938 .33146 m
.19626 .30014 L
.1798 .24946 L
.19626 .19877 L
.23938 .16745 L
.29267 .16745 L
.33578 .19877 L
.35225 .24946 L
.33578 .30014 L
.29267 .33146 L
.23938 .33146 L
s
.34135 .35314 m
.29267 .33146 L
.33578 .30014 L
.34135 .35314 L
s
.23938 .49548 m
.19626 .46415 L
.1798 .41347 L
.19626 .36279 L
.23938 .33146 L
.29267 .33146 L
.33578 .36279 L
.35225 .41347 L
.33578 .46415 L
.29267 .49548 L
.23938 .49548 L
s
.38791 .45307 m
.33578 .46415 L
.35225 .41347 L
.38791 .45307 L
s
.19069 .35314 m
.19626 .30014 L
.23938 .33146 L
.19069 .35314 L
s
.02381 .30014 m
.04028 .24946 L
.08339 .21813 L
.13668 .21813 L
.1798 .24946 L
.19626 .30014 L
.1798 .35082 L
.13668 .38215 L
.08339 .38215 L
.04028 .35082 L
.02381 .30014 L
s
.11004 .4283 m
.08339 .38215 L
.13668 .38215 L
.11004 .4283 L
s
.14414 .20985 m
.19626 .19877 L
.1798 .24946 L
.14414 .20985 L
s
.14297 .03476 m
.19626 .03476 L
.23938 .06608 L
.25584 .11677 L
.23938 .16745 L
.19626 .19877 L
.14297 .19877 L
.09986 .16745 L
.08339 .11677 L
.09986 .06608 L
.14297 .03476 L
s
.04773 .15637 m
.08339 .11677 L
.09986 .16745 L
.04773 .15637 L
s
.26602 .1213 m
.29267 .16745 L
.23938 .16745 L
.26602 .1213 L
s
.43218 .06608 m
.44865 .11677 L
.43218 .16745 L
.38907 .19877 L
.33578 .19877 L
.29267 .16745 L
.2762 .11677 L
.29267 .06608 L
.33578 .03476 L
.38907 .03476 L
.43218 .06608 L
s
.2871 .01309 m
.33578 .03476 L
.29267 .06608 L
.2871 .01309 L
s
.38791 .20985 m
.35225 .24946 L
.33578 .19877 L
.38791 .20985 L
s
.49177 .35082 m
.44865 .38215 L
.39536 .38215 L
.35225 .35082 L
.33578 .30014 L
.35225 .24946 L
.39536 .21813 L
.44865 .21813 L
.49177 .24946 L
.50823 .30014 L
.49177 .35082 L
s
.49734 .19646 m
.49177 .24946 L
.44865 .21813 L
.49734 .19646 L
s
.66422 .35082 m
.64775 .30014 L
.66422 .24946 L
.70733 .21813 L
.76062 .21813 L
.80374 .24946 L
.8202 .30014 L
.80374 .35082 L
.76062 .38215 L
.70733 .38215 L
.66422 .35082 L
s
.73398 .4283 m
.70733 .38215 L
.76062 .38215 L
.73398 .4283 L
s
.56782 .48351 m
.55135 .43283 L
.56782 .38215 L
.61093 .35082 L
.66422 .35082 L
.70733 .38215 L
.7238 .43283 L
.70733 .48351 L
.66422 .51484 L
.61093 .51484 L
.56782 .48351 L
s
.7129 .53651 m
.66422 .51484 L
.70733 .48351 L
.7129 .53651 L
s
.61209 .33974 m
.64775 .30014 L
.66422 .35082 L
.61209 .33974 L
s
.50823 .19877 m
.55135 .16745 L
.60464 .16745 L
.64775 .19877 L
.66422 .24946 L
.64775 .30014 L
.60464 .33146 L
.55135 .33146 L
.50823 .30014 L
.49177 .24946 L
.50823 .19877 L
s
.50266 .35314 m
.50823 .30014 L
.55135 .33146 L
.50266 .35314 L
s
.65865 .19646 m
.70733 .21813 L
.66422 .24946 L
.65865 .19646 L
s
.57799 .1213 m
.60464 .16745 L
.55135 .16745 L
.57799 .1213 L
s
.80931 .19646 m
.80374 .24946 L
.76062 .21813 L
.80931 .19646 L
s
.97619 .24946 m
.95972 .30014 L
.91661 .33146 L
.86332 .33146 L
.8202 .30014 L
.80374 .24946 L
.8202 .19877 L
.86332 .16745 L
.91661 .16745 L
.95972 .19877 L
.97619 .24946 L
s
.88996 .1213 m
.91661 .16745 L
.86332 .16745 L
.88996 .1213 L
s
.85586 .33974 m
.80374 .35082 L
.8202 .30014 L
.85586 .33974 L
s
.96529 .35314 m
.91661 .33146 L
.95972 .30014 L
.96529 .35314 L
s
.80931 .40382 m
.86231 .40939 L
.87339 .46152 L
.82724 .48816 L
.78763 .45251 L
.80931 .40382 L
s
.86231 .40939 m
.80931 .40382 L
.81488 .35082 L
.86788 .35639 L
.86231 .40939 L
s
.86231 .40939 m
.86788 .35639 L
.91099 .38772 L
.86231 .40939 L
s
.87339 .46152 m
.86231 .40939 L
.91443 .39831 L
.92551 .45044 L
.87339 .46152 L
s
.87339 .46152 m
.92551 .45044 L
.90905 .50112 L
.87339 .46152 L
s
.82724 .48816 m
.87339 .46152 L
.90003 .50767 L
.85388 .53432 L
.82724 .48816 L
s
.82724 .48816 m
.85388 .53432 L
.80059 .53432 L
.82724 .48816 L
s
.78763 .45251 m
.82724 .48816 L
.79158 .52777 L
.75197 .49211 L
.78763 .45251 L
s
.73895 .43083 m
.78763 .45251 L
.74452 .48383 L
.73895 .43083 L
s
.80931 .40382 m
.78763 .45251 L
.73895 .43083 L
.76062 .38215 L
.80931 .40382 L
s
.80931 .40382 m
.76062 .38215 L
.80374 .35082 L
.80931 .40382 L
s
.73398 .17198 m
.69438 .13632 L
.71605 .08764 L
.76905 .09321 L
.78013 .14534 L
.73398 .17198 L
s
.69438 .13632 m
.73398 .17198 L
.69832 .21158 L
.65872 .17593 L
.69438 .13632 L
s
.69438 .13632 m
.65872 .17593 L
.64225 .12524 L
.69438 .13632 L
s
.71605 .08764 m
.69438 .13632 L
.64569 .11465 L
.66737 .06596 L
.71605 .08764 L
s
.71605 .08764 m
.66737 .06596 L
.71048 .03464 L
.71605 .08764 L
s
.76905 .09321 m
.71605 .08764 L
.72162 .03464 L
.77462 .04021 L
.76905 .09321 L
s
.76905 .09321 m
.77462 .04021 L
.81773 .07153 L
.76905 .09321 L
s
.78013 .14534 m
.76905 .09321 L
.82118 .08213 L
.83226 .13426 L
.78013 .14534 L
s
.80678 .19149 m
.78013 .14534 L
.83342 .14534 L
.80678 .19149 L
s
.73398 .17198 m
.78013 .14534 L
.80678 .19149 L
.76062 .21813 L
.73398 .17198 L
s
.73398 .17198 m
.76062 .21813 L
.70733 .21813 L
.73398 .17198 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 158.25},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnVuPVEUQgJs9O3tj1WVZUBCZQUVEQUTFKwreowaNtwcfiTHRB6NRf4/P
Ro3+BaMxRuN/WunLVJ3p+aqnZsdVSSRh50z1raq6um7dp+fa9a8+/ujT6199
8uH10atfXP/8408+/HL0ymdf3AB1B0I4MAohfD0K8Xn3xmP5k/6din/KlxnP
78SPpdj2zx4gdLvjzmKvqfx3Lo/flqST3+xKy1LpV7vSSvybQD/nSu9CpTXp
6adc6f74sR0Bx6D6upR+IA0TxoP4dC13cQYabgHsqIWPo+37yFqDnWsR9HKu
dh9U2gbYEYCtWm0TH95L35f7pbsGVhvCsqu51r3Sy1F5IgwGUno7lL4lpR3j
chtw7Up+uAf6u8PJq2WrbcLlTSht4jcFfi5/3g0dHQfYIXPASdidAHsdYAPg
GmE6JvhyrjQSwEl5Iu6lgiEUvCrN6lWhGMym8qncgAYYAYxE5G5B5BVoQcjd
6mBj/PZkbnASimi2bxVETkPpCwBblxbErxUpLYjcBZXuBdgtACOUrsoAB5uI
kNq7tI8okVFSU0AYrgPssdz+BBSRmj3orHcFYJ0gp3NmoplKLy2OHBmy5wCm
WplknCZGbfMT+4PmswBbk0HJJhGa6mc8ndEklXk/wEhaqB6heVDQJC2igjCQ
eo/9c8glLiXLvYHIhb4/RGx+ZHFczwLsGYAR+xJKqxGUGJk8I3JrCppkXh8A
GHVB9QhNErzE3JUIotKL+4Pc004eEkr7hOaDAHvKObwX9YImufvnAEYqjuo9
6USJtPjm/2g60KTJpFiJ6j2c0SQP/yGAkWNJ9R6Pf03j/C8jl3iYQGRFKWrY
E3KuCJDwI49Xw0GyBBROkFDSZGSfeyqOvPFZkBtM0DEuI2afdxKT5j+xRx2L
Fah3eHGycm5haioyZSs1ePxJM0WrsSYuMuYQjLhbHIFMbyoq/4mNRLbH1sQB
hvkh5wx45mqRo9mkekrwFDtpQacJXdHex4Vhx0neJo9VKKReiJkPcC9G4oEk
+FSDl6Qsks+SQJS5qb1a7rdIL0kCJVlqNyJ2QdkKjwzHbyT/ZAxr/RkMohMu
A0tSaLQcB6FiI1O5CANOAYwkiRiwUTCiOSQJHVhiYeelUMbIR6zDhohDXS/C
yJccIa7TMFqnZJCInDT1hyKIdDiNlj1mlBlKlCQGqI1MT15iyfwQscR4k1FL
oP28HCSECj+8aRniBwUcxA+i00xgONpuCAakvyiGJhj1nD3svDqTPqeG98nw
mn+j8JlYQaLmlWCallXBgMihFgQjrAorktJMmoZQ8rJi6ESEpIKWP/nahB8x
hYilaSb8soOe/dvkjlB6xZuSJPkgREg+vMk23fkjrLwyQ1gVViTbmkpS/vhw
fDotgyYSt1VNtxwf9Z9Cdme9KmJNBik4DaESMZuMIRlw6o/syHpFR6GFHC+y
/6TMvFuX2Q1AKmkfhFDSDaWRPJHbsd4s9e4gtbc9CzmnBHBCnm6XJ9rEGFq8
qUxXzYAohl53UjcLaL80e5nurU/K6eg2p84EJfxIOG6TFpWvkKnjBUiToUgU
imh/iHbbKQtN9YbOtkSlekS2cz21DolKGjCLcE+L7cjTUJ7I7yaK7pIWpFjV
apL1qpVEGNczd3dzC/dhCVJ2WzKACh+FdR7bEVqEmWTruIUcMrKkQGnNUb3j
MgBJT+6Fd+E1xaSqhBiRrF0nLRx4ZvOcnaetWHJGnu6UoTK7arku0z2o4enD
dJMpojWd7Q4UCqlG2hvOzkPOYZs7WKeZ6YNJOTQSLWcY3FXt2kYpGEt0Vejv
gM3jlrTiCuHnhBByXqihZjiOCQkDppHidFURSw2MaRZo/tXaOVHokX5WeOfd
YtbQTq025R3qIEOkN68TTY2WT6LWzDX0Rp2ilqKb9R61jliA6DY3D9B0KAem
8Gvvx9MwnTSbi1oK/r0by1RP7Q4lAiknp7JSaaY62RtyPFFHMdRvj8Dk3G1b
nCSvhEiler2AaDaViRuHvXzp4U8+11bFmdKNd96MNUGJVTtrJlPniMboGBhl
4XK9nqO2w5h6t8MNVaf9E2LnpJT4SSFXbRCkFyaPulA1WS0C8qyI1OWK1LJY
KLQxk+CqMKsQbU4CVeMdN7to0lG1VUt4vtkfBWHkH9COThYpdK/VcSMHjDrT
dA0Ft1rq3bGm8KbdSyGHwngNZez9Wnabh42yh+RpabJ+BWsgq9GgsaV4gcF6
BLW3dsIETtWiqvsvDRq4UfLuHun+ojxptPmwBUPlgSad3PALznpEi7fezYUS
5WRpUXrrkV9H9QpKZAO9XVA90qveeqs3FUoUcZBJ8NYjV4fqFZS83pJ3KPLh
vPXWbiqUFul2EXL+uyhReLCIiC6yNNZtlBZZyIsokP8uShRJLGIUFjFGGzZK
6sm0HQxyRDZndFs5x3VWM4DfYtW76KzXQEk9fArXhwBLlckH0ex3L3fWR+NC
o2zUxKNMlSnQ6l5rFFDBdEopqpiZLK5x79UJ7chjL6RQFGpGWxV5Gr3lzS/j
3B2tGX/KU7e5CNUGjZTWoNjSDKSruJRk2jhw6g3tjXQ5bUP+DcRr/K85CX39
6/wkrOrvsJTSHJGc26kMWMu0WUdzVSj2+AmRYqpnZrESIrUxkl56G63+LVo7
c8V96P66fcjD5UrGziii8hwmi20fFEQoPG6dZZ0vU8l9UKrGPgA0H0PMRG1F
8iFLf82XV55KqZhHIgsxnnBqUijT0uxo4cZ65rLopO0MebAINBdXZwlwg0Rj
h1D39o5UFeKnKPSZ2yKg/joSBEUFMFc8Zpznm4fCpBLTMtCkbJhMdlFWlwis
zPGyhaS5o7ksbU17Oz+BmiAky8GuBlS2iF6SmRnJE5kZIpra2vuQjazZ1Crv
LO1h5nvNwSmPlr6lQGO5kpf4UUcguca4RU/ue6dbNKggn2RcNpQn05JrR0RM
In9b6nUg7ek1VTrPUmaBDh3SMRlyHxapNwSY58hOMFiRxl2TaQm9MzcjJ5p0
TIXqeQ8OZhJdb7LR5miW1BkbLWQ+ScT1VMP8pwjrfZApivgd6TAOaettLocH
QCRQPe/JQXvDy0nMNCxLFZp87508pESp3iKnCSkcq7VNlDbzHGtvCaGUaygz
l/Xf46HC9ikZIoLMbl4Dvc5oR3+RoyzeQ4We15Mswkg1lTe/aNI9r6DFb95T
PdTfEGCkVduXjlCpepuFxLTyt6wFS0RsSguyR0njbIsYL1k9k6t2rIfSDMVu
wQhhujqDFGM24VO+vDLUpKOnL1FFet/OoMD8MsC8l7Gok6vzTkRoPHPCJsL7
3g0RQVdtnBGUVFL0Khry5Gi0+lyz2zT+jajTaKavab6qpMFNKjxmk+N9L472
AeheEXpHT08is0ULs+6WyboTban3PUfCny4cOTuJP/W8LovAvGWmIEyXH5Ew
0jqaC+HKNOkKNY3URgQRo47aqHtfIqb9DLrnw3zJ2UTde/VLIcK7jXATEOF/
XZ8QfwJgWUE1Tqx7bzoh61NwP8ljkGtXy3skj/hN6et9wHlyAIoo6LBZCMjq
jHNjv4tQ9F4qU95TG0KRzWcWp0tm/VWqL+2I695rZwr6NLS9nzQJewRgdGXN
bkNI9gld0vb1RrOiu2JxOVUm/8B7o8ycaFOARuf/zPOjpvPoPZbcIOJxKLL3
X2YTQaczzC1A8/yu9xaYnfmIIHeTNLyXCPWKaSXtExE06XRQ0ruC1CsOk3nh
9gU1RcGThm7viBDDvbhqL+YuvOn37syHsG60PAqldHrMft2bD5ZQ1st8reyI
H/vYd9LVZPFJojwXLYh4kFVctjRqwTohoun+VJ2Cfy9y6hJWIktTUJv+2Kph
jCgOo3zKVYDRITzCv35Fo6Blho/mGX3SBWVhUng8BNjzAKP1QEJpZJg1WK1e
h05PlHMpOF+WSpoQfcmJHzFvxqmt2R3orkKD03TZL+Vp9kqJtfTIqlfvM1e9
NKLrK2bRJIzu9jY3M0y5pRf6d/sJjgpx+xxW7/JszXa/Jk+6vdi6jKt27SOM
3tVvoEHXipMb/AbAaAuQNBRFIISmedN+CC9CEXnw14Rvo/R9ao1vSgXdHzFe
RiQBKOikJZGOuNBvU+guoFf8zcsyjN8MMA8QhvCNdEWZPkLIvIXRVEOtZVDu
d/sWmrHj4EOIjjLZK5SXS0HtO2imwkC+NiVrSE9503plm+t7GZRWiHmpCqpd
19lMndVyFeMPeyQ2fqPUhPG6avvutLxSw4/xI60p7wW2hhknxqlaz7t9+Qdh
Oqt66wCk9xIh9RzyhTXhFwF4roW1hiJ0Se7KoL/KoCQQFHTbJ4N4wWdXIP+g
T2dpDDLJG1Wn8TOMTz+FP6Q/3VHM4Vb5AaLJzt7ORenLjF8yCgf+Ap0w30I=
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {157.25, 0.}} -> \
{-5., -4., 0., 0.}},ExpressionUUID->"8fa9cb05-5ee6-4360-998c-7dc467b741b4"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(71\\). \\!\\(\\\"triaugmented truncated dodecahedron \
(J71)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"bd3e2b02-0555-4eab-9701-\
45b18f3ebc22"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .54894
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.261638 0.0523266 0.245163 0.0523266 [
[ 0 0 0 0 ]
[ 1 .54894 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .54894 L
0 .54894 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.23547 .32569 m
.19314 .29493 L
.17697 .24516 L
.19314 .1954 L
.23547 .16464 L
.2878 .16464 L
.33013 .1954 L
.3463 .24516 L
.33013 .29493 L
.2878 .32569 L
.23547 .32569 L
s
.3356 .34697 m
.2878 .32569 L
.33013 .29493 L
.3356 .34697 L
s
.23547 .48673 m
.19314 .45597 L
.17697 .40621 L
.19314 .35644 L
.23547 .32569 L
.2878 .32569 L
.33013 .35644 L
.3463 .40621 L
.33013 .45597 L
.2878 .48673 L
.23547 .48673 L
s
.38132 .44509 m
.33013 .45597 L
.3463 .40621 L
.38132 .44509 L
s
.18767 .34697 m
.19314 .29493 L
.23547 .32569 L
.18767 .34697 L
s
.02381 .29493 m
.03998 .24516 L
.08231 .21441 L
.13464 .21441 L
.17697 .24516 L
.19314 .29493 L
.17697 .34469 L
.13464 .37545 L
.08231 .37545 L
.03998 .34469 L
.02381 .29493 L
s
.10848 .42077 m
.08231 .37545 L
.13464 .37545 L
.10848 .42077 L
s
.14196 .20628 m
.19314 .1954 L
.17697 .24516 L
.14196 .20628 L
s
.14082 .03435 m
.19314 .03435 L
.23547 .06511 L
.25164 .11488 L
.23547 .16464 L
.19314 .1954 L
.14082 .1954 L
.09848 .16464 L
.08231 .11488 L
.09848 .06511 L
.14082 .03435 L
s
.0473 .15376 m
.08231 .11488 L
.09848 .16464 L
.0473 .15376 L
s
.26164 .11932 m
.2878 .16464 L
.23547 .16464 L
.26164 .11932 L
s
.42479 .06511 m
.44096 .11488 L
.42479 .16464 L
.38246 .1954 L
.33013 .1954 L
.2878 .16464 L
.27163 .11488 L
.2878 .06511 L
.33013 .03435 L
.38246 .03435 L
.42479 .06511 L
s
.28233 .01307 m
.33013 .03435 L
.2878 .06511 L
.28233 .01307 L
s
.38132 .20628 m
.3463 .24516 L
.33013 .1954 L
.38132 .20628 L
s
.47598 .15376 m
.42479 .16464 L
.44096 .11488 L
.47598 .15376 L
s
.82303 .30378 m
.80686 .35354 L
.76453 .3843 L
.7122 .3843 L
.66987 .35354 L
.6537 .30378 L
.66987 .25401 L
.7122 .22326 L
.76453 .22326 L
.80686 .25401 L
.82303 .30378 L
s
.81233 .20197 m
.80686 .25401 L
.76453 .22326 L
.81233 .20197 L
s
.97619 .25401 m
.96002 .30378 L
.91769 .33454 L
.86536 .33454 L
.82303 .30378 L
.80686 .25401 L
.82303 .20425 L
.86536 .17349 L
.91769 .17349 L
.96002 .20425 L
.97619 .25401 L
s
.89152 .12817 m
.91769 .17349 L
.86536 .17349 L
.89152 .12817 L
s
.85804 .34266 m
.80686 .35354 L
.82303 .30378 L
.85804 .34266 L
s
.61754 .51459 m
.66987 .51459 L
.7122 .48383 L
.72837 .43407 L
.7122 .3843 L
.66987 .35354 L
.61754 .35354 L
.57521 .3843 L
.55904 .43407 L
.57521 .48383 L
.61754 .51459 L
s
.91769 .33454 m
.96549 .35582 L
.96002 .30378 L
.91769 .33454 L
s
.73836 .42962 m
.76453 .3843 L
.7122 .3843 L
.73836 .42962 L
s
.71767 .53587 m
.7122 .48383 L
.66987 .51459 L
.71767 .53587 L
s
.61868 .34266 m
.6537 .30378 L
.66987 .35354 L
.61868 .34266 L
s
.5167 .20425 m
.55904 .17349 L
.61136 .17349 L
.6537 .20425 L
.66987 .25401 L
.6537 .30378 L
.61136 .33454 L
.55904 .33454 L
.5167 .30378 L
.50053 .25401 L
.5167 .20425 L
s
.51123 .35582 m
.5167 .30378 L
.55904 .33454 L
.51123 .35582 L
s
.6644 .20197 m
.7122 .22326 L
.66987 .25401 L
.6644 .20197 L
s
.5852 .12817 m
.61136 .17349 L
.55904 .17349 L
.5852 .12817 L
s
.73836 .17794 m
.69948 .14293 L
.72076 .09512 L
.7728 .10059 L
.78368 .15178 L
.73836 .17794 L
s
.69948 .14293 m
.73836 .17794 L
.70335 .21683 L
.66446 .18181 L
.69948 .14293 L
s
.69948 .14293 m
.66446 .18181 L
.64829 .13205 L
.69948 .14293 L
s
.72076 .09512 m
.69948 .14293 L
.65167 .12164 L
.67296 .07384 L
.72076 .09512 L
s
.72076 .09512 m
.67296 .07384 L
.71529 .04308 L
.72076 .09512 L
s
.7728 .10059 m
.72076 .09512 L
.72623 .04308 L
.77827 .04855 L
.7728 .10059 L
s
.7728 .10059 m
.77827 .04855 L
.8206 .07931 L
.7728 .10059 L
s
.78368 .15178 m
.7728 .10059 L
.82398 .08971 L
.83486 .1409 L
.78368 .15178 L
s
.80984 .19709 m
.78368 .15178 L
.836 .15178 L
.80984 .19709 L
s
.73836 .17794 m
.78368 .15178 L
.80984 .19709 L
.76453 .22326 L
.73836 .17794 L
s
.73836 .17794 m
.76453 .22326 L
.7122 .22326 L
.73836 .17794 L
s
.81233 .40558 m
.80145 .45677 L
.84676 .48293 L
.88565 .44792 L
.86437 .40011 L
.81233 .40558 L
s
.80145 .45677 m
.81233 .40558 L
.76114 .3947 L
.75027 .44589 L
.80145 .45677 L
s
.80145 .45677 m
.75027 .44589 L
.76644 .49565 L
.80145 .45677 L
s
.84676 .48293 m
.80145 .45677 L
.77529 .50208 L
.8206 .52825 L
.84676 .48293 L
s
.84676 .48293 m
.8206 .52825 L
.87293 .52825 L
.84676 .48293 L
s
.88565 .44792 m
.84676 .48293 L
.88178 .52182 L
.92066 .4868 L
.88565 .44792 L
s
.88565 .44792 m
.92066 .4868 L
.93683 .43704 L
.88565 .44792 L
s
.86437 .40011 m
.88565 .44792 L
.93345 .42663 L
.91217 .37883 L
.86437 .40011 L
s
.8589 .34807 m
.86437 .40011 L
.9067 .36936 L
.8589 .34807 L
s
.81233 .40558 m
.86437 .40011 L
.8589 .34807 L
.80686 .35354 L
.81233 .40558 L
s
.81233 .40558 m
.80686 .35354 L
.76453 .3843 L
.81233 .40558 L
s
.38132 .28405 m
.42663 .25789 L
.46552 .2929 L
.44424 .3407 L
.3922 .33523 L
.38132 .28405 L
s
.42663 .25789 m
.38132 .28405 L
.35515 .23873 L
.40047 .21257 L
.42663 .25789 L
s
.42663 .25789 m
.40047 .21257 L
.4528 .21257 L
.42663 .25789 L
s
.46552 .2929 m
.42663 .25789 L
.46165 .219 L
.50053 .25401 L
.46552 .2929 L
s
.46552 .2929 m
.50053 .25401 L
.5167 .30378 L
.46552 .2929 L
s
.44424 .3407 m
.46552 .2929 L
.51332 .31418 L
.49204 .36199 L
.44424 .3407 L
s
.44424 .3407 m
.49204 .36199 L
.44971 .39274 L
.44424 .3407 L
s
.3922 .33523 m
.44424 .3407 L
.43877 .39274 L
.38673 .38727 L
.3922 .33523 L
s
.34101 .34611 m
.3922 .33523 L
.37603 .385 L
.34101 .34611 L
s
.38132 .28405 m
.3922 .33523 L
.34101 .34611 L
.33013 .29493 L
.38132 .28405 L
s
.38132 .28405 m
.33013 .29493 L
.3463 .24516 L
.38132 .28405 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 158.062},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzNnWuPpEUVx2une257gdlhLwi7O72w7C6ssCoIosJ64WKMRCX6wpcbYgIv
jAb5PL7WKF6+AjEmxvCZ2nlOVdfprv79q8/j7AibwHTXU0/VOadOnXtVv/fw
kw9//ZuHn3z0wcPZux8//N2HH33w+9k7v/34uGlyJqUzs5TSH2Zp+Dw//lj+
Z/9uDv8rXzZ8/vnwZ2t49/OlhjSdLwYrI/+Hn5Z/NsC/l7tMlrscfzv+Z03/
0p126kj/1J32aqfPcqc7w5/DoeFJ6L5fn/4jd78NnQ6g7bKaO/DuX/NUz8Gj
w+BUO8F3P81TPVupcqV+omGn0O9X9dPW8Gl/+PRuHvYZGIKoTJBNgu/+smlL
C0CIIntD04Pc7SZ0egraLkIbTUDvvr9Km4bxjz8/BtC/mT8c1Xdv1E8My0oX
Yvru5GvNb+S/N2CgGbQRCrTwP6kgbsfBWbzyndznOoxLc12oL96Cpz+Gtm3A
4nHoR2z5rfzCNXhE058P9vsRtLX7OgEPETrDt9dOB8x3hv8brfeDwLmgLiA9
DZ1I0J6DNpKSb0Hb2TopgUSi+ZVxwJ0N9vthBeR8F6SWmsO3l08RpDUZuljR
PoT2tJCKRODdIGp3oO370Dapk+52gTMms6ZXxwFHrED9CLjtChJtwAvQ5hr1
9dMB83vq3Ymrpc0b36m+Xd8tzPgV6P4CtO1C2/PQ9gDaztVJaakdk22F09dP
B9Y3oc0gNCvITQ4abyRIZNFRPwkSjWdgElt+LQNHBtdXoY24/R60vQFtNH20
7ZTA/G6QhqcE5jTYj8Ck6cmOoU1ewLwKj16CNjKFXoS2b0MbUfNLCCZRkzw2
6nc/g3mleTTo1gzm9nL3+oykV7v4Qz8D1yQy0W0kkNnXW7PIe3ASWe/xMGa8
W09azpGgXurAlOHdaedf/CXS3usMR6alUQqt3eEbObKEM7F/9rfSE/CIaJ1l
/xqthatH4oNGJWfK+MtGdGOFFNojQJ6GIGkokG8xSgJzGnIG7x7ANPNiZeRB
7FH5j+hJq0nM3dJpmOAofyCfnxRZawxUGNfpRDqPhjzi12nH2us7LhkWD8t+
jVJgba7CGDQl8eBdHoW8+6jdd73gRxKCwDKny5ooguaW7IXOuAVrkuwRuz+l
Ze+IEKVRKDBAIpNWr/XMk0DfFmJbMRHNln3dsId8t6LdojiARDY8jUJOGG1v
DRWvK20G60kPaMJCDVsCe0IhkdbFT2nZk5cOuTUR5lFflpiKkLClv6igp9ky
VPnFqdI/tyuKHushZLfrKBROJD+LtBhBIAm1BYKRKEi8SABlpzFzjT0hjeb0
iDDJfLH/rKnVhgpjQoKoQO/6KhH0FLsi8tDIhTzmIUyB9M/VmT0ER5vGvj0L
ExCnE5MQYhIJaVjRG9RGUGWfM8sNe2Ih3MP6aUK4qwlkZGiDNpiP4ApCIkqA
gmw0c0EqiPpRaJLY83xBlCQ/qXLbbnKDRjmBIMm+MaaQLkGbScnDuh/W7aeL
TXPKFi/tfhJXe3X8Alg099Y6z6ofrRCtLmUoyEQnvU57OZrRzeo9e1dG8Sfr
p6egjcwUco1cqRMS0fSVp2PICskjY+aHupMRSf3u1Ek9k0y7oEViWLGo6Uis
6P57Qcx1wWH9NIM2WhNZMSBtAAIzMxuLDV8bYvtMCOR+4mBy7qkfGU00PaF6
rgKs7eU18UILRTmuzAwZvoOquA7q8jRiLWJCDESmnU1ZbVJh1+tsBTiLTso8
xC0gwKL/fehP6oiETqssFLiPVXA9lkNskfVADhQYcKSNKD7mDh5tmGcYfZkx
I7+dIDGumyquIwsuy5oltonayG610tNbBeyGwb0nwTcBqqR1B3a+WPupL2/7
TsdWwQWJZoiJOqQSiL9XmG0LCLSAnTYMrfZOJYKgXIcIFAyJpqOpn0FgEoji
dORUuEhfCiGWv8QdxAb24sR3zRgKmL49HDMbDRbx9QcUo/koopSnqQlSWg23
qMdFfzBWlbUrs2o0+07s60BqtFhEEjFvQ/+0HAJJq77vuaZ/yqZ8Kwg20ItM
OreVaCOTeKcJiKHnHRWRAdqlVaqIkPSimKn1OyRtsIEcjvpVAD+xhUPjTQsN
ojy32+kf3d5ECdILZHZ7OS3lFPJsKBnNdF6SYKtPSUq3uYzCuDomtDEL4F03
EySa7aMCvQ5piKZPV5qSYUqDedyOIjRCRUQDmC9UcDxK5T7bSHzd/jyqn6KZ
5PmKoR0yoWjVZD4R8ZnP2c0jXdfBmyT3rE6qE9PtOidmGYKGhJ5MJEvxSn6f
KzCqo8h8hZzoZeb366dGPR2UMXrivJc5e2mVqI1HGII8WmX6YgcMkTle4l8u
tiCS3Gz6F8F3yhiIkF8ryyvNrelWxYGc2Z1x0FHVSyQJN/SjeBgVB5EPQ4Qt
oJNaJOtYFMLI6I81fSlgjntmvWi35JIwU54IFTIfhIbweJXOcoq6qL4DM5+z
DC9blDQTGYTaSAT7BD2f4Vvecr2iqS8MmWiIJ5oD0rVS0S1wIhSlE+g8Jl05
QltXP22el+DbOzk6bvO7OpUlQVED82ToEM/TYkaiOkp9EGNFvAcF+iNAR+Zt
rSnHNHjTkyT9ggE3TpeB8zbgkFLMrZ+P2P7FmadFJaXUKq8BJFmcYothT6Mh
13H8q6H2Y3BTJXiIuDtKJ54mrA0MbWZiaCPvT25Xl1KGDjEH1YeSWXJ2E+hr
VsKMm6MINGeJyL62T00xS2cTurdtn65BG6UDKcyhQ7Nq3VqHYGhrEzMpigTx
pfTSRyHm9qBIsMzK4izBXJ+hC+cvrbFCCFeKSFBdRLRKj6JxnqAm9hCUEGwv
izhlsKdsrYhNktJyGMprWdwmoYUm68QjUZqZNhaYz+cBv0mm7x8BLahfP04b
pY+zBIm8K0yfqHnXywLSPtYFgppSMqvbP8oaPZnk/OO0dX6kTRA15Scd4nj5
iqyoDJHEkxyjkG7lyQCSThUwCtGzlb1EEEnuDkEicYO6m3yCSV3dpl/0LCBF
pjRHMrlkkXvTRmpCVxv1XSBvC5NutxLMNsGUNNfQz1TebnRrVoJdVNL3xIlY
WYc+kgDTinarO1I2AtyeM1ikp7NVKUQCQ0Sk3B4jU/IkBQ6e2uxwiQ7psnlA
NpIXQq4frWpPtZW/sjJpvz4VwXYvwrhcKRetAHJa96XxMm0aS90TdsQB1wDm
Rf+GaFqEp1TucGgT/uWhs6MRvn+qgkTzpL47UcxaKECikSqAeTek5XpM8jb6
12g4v1FlxcpazLrIUKHFgnDuYnoRL2FTCCJPQEpeoho9WT0iaeFlWDuMjHW/
XdFKq4koCnjsObnWJJ7n+Eu13eN1/ujJG8p1SDUg8fa7QHq2lcHkJyO21eZZ
zKSrf3XFgxSkhChxIelUaZVRNvEIBo0chEiCtn41W7kRjmwz8leJChR4ISq4
8JIWQ1NkQMceopef7KyOV3Ssa48AYlKKyh1KiJEtQoddoscmogTw3ZX3rS6X
W4pD/W8EIAFPpCAiey02Haqg2QhSF6FZDyM1aSfQYGRlESDtSii0PfZxBKNE
D19ESaFPCec6N6t7JT+R0M6Sq1/ZQSiTWvCVdtPADVUCO3pU6foSegEKUZt2
P+TNFKNOGwRMg+gVZ/0bqfxTOX9LGo9kEg1LLr5zM0miXtLarbojeNOUqXTs
9CnGjSb38KccLqV7m+TZnwAtaHkM90iBK1nT+k6/UA0lUUka6MSrVzWdoqxI
0TFTM7vOM2ybEUHaRInyE8j+5jdWmSOJdwshSAFHj1RTfs3U0pJR2zffhm8y
XeyXu0jvhy4osW+0/69ojEnmkrQijB8onLYqIC5MPL7St/WsiWhekKBzaEQg
UoOEBN3P5ochqRjBmGS3cuaeUroFYDICondXUJqb7myjAJgbiUbNfbWVaN7L
GnRaOMI+CjoVd0dvVY3e91bQ6d0cQx4ioUB3vFEiqHun7maIqd+lZSzWRiY3
jyo2aQ2e5yHFbUXRI0S6smHNSRoAo0CpqNukRaDrlnrRhSgWtBLlqPIRPKJl
6GUk6Za7brVqiKVGIvIKPNKZsNW21yQC0rqmYU5yE13B4pvwKFKuOXx7VWLB
yxZRyV0UPAgSB5ysOlo6klv0Lhnj8loDa7qiAY4meV7+PwDsfoxHwzpMEr3O
9xtB0KPMQRLPfbzGkpVWU9ZcyMHRnBIhFr2nTyO25gnIErZDjUK/pJKYSV6m
Z02RdcgbPHHgYiSsXkWpRcxmxrcByFT3G6cIsQIriWhZLBnRrRrMBbJp1Uen
gka9Ehngpk6SrveWMQzJME84OefL/waASLoUgF6HRzNoay9uHwMknfglqzSa
dS+gk4FBMeq3oS0q03tnpKO/hiC5u9xX29TA0Y8xROU41f9Hb3wi0AuYZFlT
hI5Aj0pqT31Ebh1Ro5AcL0iQO0wBd/rNjui1ZXTExKP8xAi0OqQLi6P3oA7m
aab3TgAwHfDxLDdtyN6RyBJ/IoFG5iIBTnm5CI2G6ekGp/ZwYWkvkP4ARqZt
/dNKEq+L7hEiWg51sY5WLpQzMWvJjl9A91YwpwpGqDaWfKc1CP4InW7wHF6Y
GD0sKbPVKf2pDnatO+zmw4ChOvgSW/+zBGizapK1viPu1Cjpjr/AI5JNMhwo
j0b1b/4rl7x+Wju5VCGJS8sXuamxisGmX8nw/S1IXHkVuMQveuSv5OL+Do+i
VYyeqY9crToAQgq3XMdsPwEn00ryumOkV6i0/Cg/+6yLhN/FQLPtFUSb2RZ/
c/Iw/2CeZLBITRNv/XzAI/9on71FW6VNE1Rt1/TLCa38M4ESGts7Jqqzzso/
PGh93s8Nn8NbP8uP7MuGHzxMZ/4LtIXfiA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {157.062, 0.}} -> \
{-5., -4., 0., 0.}},ExpressionUUID->"bc5c6fed-1bbf-4e89-bc76-cdc70b6bdb07"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(72\\). \\!\\(\\\"gyrate rhombicosidodecahedron (J72)\\\"\\)\
\"\>"}]], "Message",ExpressionUUID->"62a32b70-ae40-44b5-995e-8adf5f501232"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .57653
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.703888 0.0664464 0.366871 0.0664464 [
[ 0 0 0 0 ]
[ 1 .57653 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .57653 L
0 .57653 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.10174 .49086 m
.06852 .43332 L
.12606 .40009 L
.15928 .45764 L
.10174 .49086 L
s
.15928 .45764 m
.12606 .40009 L
.19251 .40009 L
.15928 .45764 L
s
.12606 .40009 m
.12606 .33365 L
.19251 .33365 L
.19251 .40009 L
.12606 .40009 L
s
.06287 .42063 m
.02381 .36687 L
.06287 .31312 L
.12606 .33365 L
.12606 .40009 L
.06287 .42063 L
s
.06852 .30042 m
.12606 .2672 L
.12606 .33365 L
.06852 .30042 L
s
.12606 .33365 m
.12606 .2672 L
.19251 .2672 L
.19251 .33365 L
.12606 .33365 L
s
.03529 .24288 m
.09284 .20966 L
.12606 .2672 L
.06852 .30042 L
.03529 .24288 L
s
.03529 .24288 m
.03529 .17643 L
.09284 .20966 L
.03529 .24288 L
s
.03529 .17643 m
.06852 .11889 L
.12606 .15211 L
.09284 .20966 L
.03529 .17643 L
s
.09284 .20966 m
.12606 .15211 L
.19105 .16593 L
.198 .23201 L
.1373 .25904 L
.09284 .20966 L
s
.06852 .11889 m
.12606 .08567 L
.12606 .15211 L
.06852 .11889 L
s
.12606 .15211 m
.12606 .08567 L
.19251 .08567 L
.19251 .15211 L
.12606 .15211 L
s
.28327 .49086 m
.25005 .43332 L
.30759 .40009 L
.34082 .45764 L
.28327 .49086 L
s
.34082 .45764 m
.30759 .40009 L
.37404 .40009 L
.34082 .45764 L
s
.30759 .40009 m
.30759 .33365 L
.37404 .33365 L
.37404 .40009 L
.30759 .40009 L
s
.2444 .42063 m
.20534 .36687 L
.2444 .31312 L
.30759 .33365 L
.30759 .40009 L
.2444 .42063 L
s
.30759 .33365 m
.34082 .2761 L
.37404 .33365 L
.30759 .33365 L
s
.37404 .33365 m
.34082 .2761 L
.39836 .24288 L
.43159 .30042 L
.37404 .33365 L
s
.25005 .30042 m
.28327 .24288 L
.34082 .2761 L
.30759 .33365 L
.25005 .30042 L
s
.19251 .33365 m
.19251 .2672 L
.25005 .30042 L
.19251 .33365 L
s
.19251 .2672 m
.22573 .20966 L
.28327 .24288 L
.25005 .30042 L
.19251 .2672 L
s
.28327 .24288 m
.28327 .17643 L
.34647 .1559 L
.38552 .20966 L
.34647 .26341 L
.28327 .24288 L
s
.22573 .20966 m
.28327 .17643 L
.28327 .24288 L
.22573 .20966 L
s
.19251 .08567 m
.12606 .08567 L
.12606 .01922 L
.19251 .01922 L
.19251 .08567 L
s
.46481 .49086 m
.43159 .43332 L
.48913 .40009 L
.52235 .45764 L
.46481 .49086 L
s
.52235 .45764 m
.48913 .40009 L
.55558 .40009 L
.52235 .45764 L
s
.48913 .40009 m
.48913 .33365 L
.55558 .33365 L
.55558 .40009 L
.48913 .40009 L
s
.42594 .42063 m
.38688 .36687 L
.42594 .31312 L
.48913 .33365 L
.48913 .40009 L
.42594 .42063 L
s
.48913 .33365 m
.52235 .2761 L
.55558 .33365 L
.48913 .33365 L
s
.55558 .33365 m
.52235 .2761 L
.5799 .24288 L
.61312 .30042 L
.55558 .33365 L
s
.43159 .30042 m
.46481 .24288 L
.52235 .2761 L
.48913 .33365 L
.43159 .30042 L
s
.43159 .30042 m
.39836 .24288 L
.46481 .24288 L
.43159 .30042 L
s
.39836 .24288 m
.39836 .17643 L
.46481 .17643 L
.46481 .24288 L
.39836 .24288 L
s
.46481 .24288 m
.46481 .17643 L
.528 .1559 L
.56706 .20966 L
.528 .26341 L
.46481 .24288 L
s
.39836 .17643 m
.43159 .11889 L
.46481 .17643 L
.39836 .17643 L
s
.46481 .17643 m
.43159 .11889 L
.48913 .08567 L
.52235 .14321 L
.46481 .17643 L
s
.64634 .49086 m
.61312 .43332 L
.67066 .40009 L
.70389 .45764 L
.64634 .49086 L
s
.70389 .45764 m
.67066 .40009 L
.73711 .40009 L
.70389 .45764 L
s
.67066 .40009 m
.67066 .33365 L
.73711 .33365 L
.73711 .40009 L
.67066 .40009 L
s
.60747 .42063 m
.56841 .36687 L
.60747 .31312 L
.67066 .33365 L
.67066 .40009 L
.60747 .42063 L
s
.67066 .33365 m
.70389 .2761 L
.73711 .33365 L
.67066 .33365 L
s
.73711 .33365 m
.70389 .2761 L
.76143 .24288 L
.79466 .30042 L
.73711 .33365 L
s
.61312 .30042 m
.64634 .24288 L
.70389 .2761 L
.67066 .33365 L
.61312 .30042 L
s
.61312 .30042 m
.5799 .24288 L
.64634 .24288 L
.61312 .30042 L
s
.5799 .24288 m
.5799 .17643 L
.64634 .17643 L
.64634 .24288 L
.5799 .24288 L
s
.64634 .24288 m
.64634 .17643 L
.70954 .1559 L
.74859 .20966 L
.70954 .26341 L
.64634 .24288 L
s
.5799 .17643 m
.61312 .11889 L
.64634 .17643 L
.5799 .17643 L
s
.64634 .17643 m
.61312 .11889 L
.67066 .08567 L
.70389 .14321 L
.64634 .17643 L
s
.82788 .49086 m
.79466 .43332 L
.8522 .40009 L
.88542 .45764 L
.82788 .49086 L
s
.88542 .45764 m
.8522 .40009 L
.91865 .40009 L
.88542 .45764 L
s
.8522 .40009 m
.8522 .33365 L
.91865 .33365 L
.91865 .40009 L
.8522 .40009 L
s
.78901 .42063 m
.74995 .36687 L
.78901 .31312 L
.8522 .33365 L
.8522 .40009 L
.78901 .42063 L
s
.8522 .33365 m
.88542 .2761 L
.91865 .33365 L
.8522 .33365 L
s
.91865 .33365 m
.88542 .2761 L
.94297 .24288 L
.97619 .30042 L
.91865 .33365 L
s
.79466 .30042 m
.82788 .24288 L
.88542 .2761 L
.8522 .33365 L
.79466 .30042 L
s
.79466 .30042 m
.76143 .24288 L
.82788 .24288 L
.79466 .30042 L
s
.76143 .24288 m
.76143 .17643 L
.82788 .17643 L
.82788 .24288 L
.76143 .24288 L
s
.82788 .24288 m
.82788 .17643 L
.89107 .1559 L
.93013 .20966 L
.89107 .26341 L
.82788 .24288 L
s
.76143 .17643 m
.79466 .11889 L
.82788 .17643 L
.76143 .17643 L
s
.82788 .17643 m
.79466 .11889 L
.8522 .08567 L
.88542 .14321 L
.82788 .17643 L
s
.29709 .55586 m
.28327 .49086 L
.34082 .45764 L
.3902 .5021 L
.36317 .5628 L
.29709 .55586 L
s
.79466 .11889 m
.74528 .07443 L
.7723 .01373 L
.83838 .02067 L
.8522 .08567 L
.79466 .11889 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 166},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnVlvXDUUx28zSUpoS7ckTdtAJw1dKC0FhHgrm4AKxCIoPPEUFaT2AYFK
vw07QryxI/Fp+CyhXmpP7vzOybmTmcQ3cyt1ZuKz2P7bPj4+tu99d+P+nc8+
37h/9/ZG/+a9jS/v3L39Vf/NL+49SOodqKoD/aqqfulX7vfmg5/xw/9bcx/x
j21+/+e+5p3sjYGEqreZlPm/HvxbcEkvBKYn3deiS/gZ2I+4zzmXdH2AvcZ0
DNJ+grTjkHatmdofIe3EZNSehLSrRaj9AdIWi1X7PaQtTUbtMqQ93Uztd5B2
qli130LaSqvUnoa0K83UfgNpZ4pV+7X7nHFJqztXNiFEqbeS2qeC2nX3teQo
t1Llnk+/qOOcStTYhc7XmNwESHb9/SQYZrKHxDA9EYGyX5SYI079RJ8xIvYe
pJHsVSMf2QbCg2Qvh0o8kSoxa6zEO0liDqhXVCrBfFSViMV8HEjWAr+dMngE
qJdUKhX48Pb6qupsYjpoLOZbkLYAaReMfFT0R42yF0MlyJBZq3MzAXAYqOsq
lazIQVUiFnglMVFNqZhvJImjQO2rVCrmrCoR2i54IGJdqJivQxplcM7IRy1L
VkKpBHln1uq8lgAgR3dVpYaizw5OAhJrmMkGDPljxvK9CmmUwdkx8w0WeLiK
VnSp9OSiUyfYCd96KCtVjPoWGR6qziu1NDchU+erD8ed8sXq0ISaR3mzSswO
pm0K+a5MhPW8XJv5VBurcX/Zf85tyTfmjcur5Qnzx9gGhQ4WUuXIvaDKvQRp
PUijfk7I74asAsChBAAp2zEAXjO1ybglYgemAgezPjQMqK/fgDTqGIQkNdBu
yMaa01zs0eg1qey8hJ+4DBu3xAW5Or4SPsxIfZCsU3bGRadxjBLRuSc3gkal
N2AvJmlqIlpCkO86V6SWfsDjiBEP3y88KM+4X55YbV1b0/CmMuTlwFy7VJ1r
BtmhBNnFpJHsBnVJKiENzZl9pzmEC9BhJpC90fXNtpbUkmNH+iitl/TNtFrf
qgwj2Q9xLeeTSMshSAsjY+tk/rC4wfH2pPi/7VojxKSc4KQ0P435JKuZqg+8
YKWKVRBWz0GPh5YWn5S2nJAhqp/uliZBPTNQ4FolqQFJRd1fdLLkQ9KcTRhS
vnslK8Cz6c260Aeo7nltQOEFQtW6vi1J9rSG1kMAyJ2g3YFjSYKi5wQyTb7W
Btor2RUZMqo28RF4tGIhfbS2tQYfSpINGGyzBLBuPRxJEjQYSqr2hCCjalMn
F7ecDPqo11q3yUqSDdAijH7iEeN5tKTPfgPpI7itgbKSZJdkyDIANE9SdD+D
TD2vpGpPCLJ6tZ37RScxxHCRoV9aTw2UJLu4DWS+z9Bmfd5joFV/6IMc76eV
5u7wkye7zQCrtgZ7qMsEm2/a3Gs5LOQaUOej3VGaPaybiCUNmAkNthxoJBeC
2okMpb6NWZKpnpCZz25snvGoN1L2+q5pSd7UhDyxHEXMW4zWcyX6rmxJAIwN
PI4S1hfuzvTmU0yUub6fW9JiaGwLqaGd3boWh9pSwkXeaxhSRK3W9oiHp9Sn
b4fQ8UQVs/JJ1B77LHIW4BnqDnmTmibEEwkhys1jempiVF+q43KNTnKNsrWQ
hbb2kh4NsM3Nwcmy5uXWzyy0X0tgVnZlhnDO/oNVKGVt2icim0YTK9m5Lqdm
OSkbnrxW8mXw7BSH1w8Q6juw2ceiKlBu06tZabww/uap8ZJKiu6Lh1ioL/Wk
guVtGto1o/J2eXAeofOYR5n1RLt4GEo/ykP+N3VbQxh7etWHbmM+D2U9dyKu
9oV5hHqvGOqbMr2xiShw65tj2SWR45pDwjleReNPNCcFywY3D0n5Rhs6p0Oh
Xzrzm3VQDIBypZVSu7UoEIe+qEWumUarAKFVrHN/a8SDKUAI8irRGu7Sj55Y
j66RB1C6bISRBm2eFq2xnOz5kqG2nnOjubZ02QUZxhzvsJ4y0yUoyjHqZZvS
ZCOM5Bbl1ZL1Mqx+tqJ+KzEWK5RKu6u1pyI045sXC1bgxMN52KrFYmW/cBcm
+KG4Vpx9aErQp52ao2Q1NqWPTuv1vQhn84vK3lvtSb1dzL5MiQEDjp2OIqti
txLWNzTy5Xt4+0kHGsL8iBUruHnnlnwc8tX124D7T0tctpxOCdY74ge3SoiG
QL+j2EbZGNfLG2yEsNWnJr5e0pz3fCjUYb0COW36BhtoKKuqGljHNF/5cHtV
vBa1Flg/INWpj+rjRifNEHlTiyZs64Es4qM5Kuem7wBY74d2edjziJ1AXBH6
pCp76Okv1MO+Ctl/UTlVWr/H2qlX1McjuuTJeMG5Wi7uS4grihHzWclQaFdk
p0dbPIMq7hZ4qROJnUau56t3iEQYYK72h4J4AlB81saiBNRuUON5Owp0UOxC
9PanSDYehiVTRVECq2e/n2U7yEaFjKIZFFISTwVOkaxyxF+8Qk4e6RTJdpCN
Cpn1opF1LbmfZSNk5InSdTFxm36KZCNk5KfQ1aSggre96O5mmfwdBN3A2als
Z54by3aQjQpZ5zc19pu6BU3jBU0HWWPIukhD40hDFwJsHAIULxL4ByqK13Un
TF2RCyfGreWTNdOtIDa0eKjfu/fkSFgfCey1+E0TmlunQ0vcIBEHab2x3F/W
G5niA+c6pSMrjQZGdBB70qCgWcr6qGfrWYFOX2ogMmi9NDDF/VnLY463qqoR
rJcvp1xpfKpH3iyn4WFtoNrL5xpdrWyjbAQvP2GImojGS366jvUiZZkS8dnT
+Q1sVh+XlgXWq49tlI0PXScV4p2tWlo+1G+9zVimRISCVjnWI/ilX2oct+yq
DBmpaOMFxnHLxneW0IATb/cZxrsV7jbKKpBpN+1oT6RN/P3wg2J7wtOp5KeL
lscaa2d5t7EDw/Jqzb3kW9umOn4moo3NfIlOzEqXNVDjm+Ws2zf0YOfgDHBH
pYKT8yDrHY1PqVa+prWmUq0Pl7fq06nxlXiUQb4juw5U/V3U+turdX069ZJc
YFp20CvlrU+Mtr7H2pqHlS9WUXwHtsfhskqVo0Cj6dOpV+QCk1dLysbzqker
ZitfrJj4YGZfuKsqlTwK8RWkBn069VooMNleT/dvPxRuClCplhR+TZdGu85l
dGb7OUijkU7vqCJZOQ0tep19UzC95PaRLKU9G7L/AEg0fn6X2alX/hbYPzSy
/zo2diq7UpiG7NQIEZlbQCJzMT52cqj+GBs7jcI/A/tHQKKuqLDTkvCvsbGT
rft7JPaPgURr0UF2/5BNiir+E5g+cV8LjkIuVmT61H15n/LfkOCpa/rv6sD/
FWCt1g==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {165., 0.}} -> \
{-10., -5., 0., 0.}},ExpressionUUID->"5bf8b2e9-7614-4efa-99fb-5ba677f585af"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(73\\). \\!\\(\\\"parabigyrate rhombicosidodecahedron \
(J73)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"6d5915a1-889b-4737-859e-\
aabced205761"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .57653
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.885423 0.0664464 0.366871 0.0664464 [
[ 0 0 0 0 ]
[ 1 .57653 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .57653 L
0 .57653 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.10174 .49086 m
.06852 .43332 L
.12606 .40009 L
.15928 .45764 L
.10174 .49086 L
s
.15928 .45764 m
.12606 .40009 L
.19251 .40009 L
.15928 .45764 L
s
.12606 .40009 m
.12606 .33365 L
.19251 .33365 L
.19251 .40009 L
.12606 .40009 L
s
.06287 .42063 m
.02381 .36687 L
.06287 .31312 L
.12606 .33365 L
.12606 .40009 L
.06287 .42063 L
s
.06852 .30042 m
.12606 .2672 L
.12606 .33365 L
.06852 .30042 L
s
.12606 .33365 m
.12606 .2672 L
.19251 .2672 L
.19251 .33365 L
.12606 .33365 L
s
.03529 .24288 m
.09284 .20966 L
.12606 .2672 L
.06852 .30042 L
.03529 .24288 L
s
.03529 .24288 m
.03529 .17643 L
.09284 .20966 L
.03529 .24288 L
s
.03529 .17643 m
.06852 .11889 L
.12606 .15211 L
.09284 .20966 L
.03529 .17643 L
s
.09284 .20966 m
.12606 .15211 L
.19105 .16593 L
.198 .23201 L
.1373 .25904 L
.09284 .20966 L
s
.06852 .11889 m
.12606 .08567 L
.12606 .15211 L
.06852 .11889 L
s
.12606 .15211 m
.12606 .08567 L
.19251 .08567 L
.19251 .15211 L
.12606 .15211 L
s
.28327 .49086 m
.25005 .43332 L
.30759 .40009 L
.34082 .45764 L
.28327 .49086 L
s
.34082 .45764 m
.30759 .40009 L
.37404 .40009 L
.34082 .45764 L
s
.30759 .40009 m
.30759 .33365 L
.37404 .33365 L
.37404 .40009 L
.30759 .40009 L
s
.2444 .42063 m
.20534 .36687 L
.2444 .31312 L
.30759 .33365 L
.30759 .40009 L
.2444 .42063 L
s
.30759 .33365 m
.34082 .2761 L
.37404 .33365 L
.30759 .33365 L
s
.37404 .33365 m
.34082 .2761 L
.39836 .24288 L
.43159 .30042 L
.37404 .33365 L
s
.25005 .30042 m
.28327 .24288 L
.34082 .2761 L
.30759 .33365 L
.25005 .30042 L
s
.19251 .33365 m
.19251 .2672 L
.25005 .30042 L
.19251 .33365 L
s
.19251 .2672 m
.22573 .20966 L
.28327 .24288 L
.25005 .30042 L
.19251 .2672 L
s
.28327 .24288 m
.28327 .17643 L
.34647 .1559 L
.38552 .20966 L
.34647 .26341 L
.28327 .24288 L
s
.22573 .20966 m
.28327 .17643 L
.28327 .24288 L
.22573 .20966 L
s
.19251 .08567 m
.12606 .08567 L
.12606 .01922 L
.19251 .01922 L
.19251 .08567 L
s
.64634 .55731 m
.5799 .55731 L
.5799 .49086 L
.64634 .49086 L
.64634 .55731 L
s
.48913 .40009 m
.48913 .33365 L
.54667 .36687 L
.48913 .40009 L
s
.48913 .33365 m
.52235 .2761 L
.5799 .30933 L
.54667 .36687 L
.48913 .33365 L
s
.42594 .42063 m
.38688 .36687 L
.42594 .31312 L
.48913 .33365 L
.48913 .40009 L
.42594 .42063 L
s
.52235 .2761 m
.5799 .24288 L
.5799 .30933 L
.52235 .2761 L
s
.5799 .30933 m
.5799 .24288 L
.64634 .24288 L
.64634 .30933 L
.5799 .30933 L
s
.43159 .30042 m
.46481 .24288 L
.52235 .2761 L
.48913 .33365 L
.43159 .30042 L
s
.43159 .30042 m
.39836 .24288 L
.46481 .24288 L
.43159 .30042 L
s
.39836 .24288 m
.39836 .17643 L
.46481 .17643 L
.46481 .24288 L
.39836 .24288 L
s
.46481 .24288 m
.46481 .17643 L
.528 .1559 L
.56706 .20966 L
.528 .26341 L
.46481 .24288 L
s
.39836 .17643 m
.43159 .11889 L
.46481 .17643 L
.39836 .17643 L
s
.46481 .17643 m
.43159 .11889 L
.48913 .08567 L
.52235 .14321 L
.46481 .17643 L
s
.5799 .49086 m
.5799 .42442 L
.64634 .42442 L
.64634 .49086 L
.5799 .49086 L
s
.64634 .49086 m
.64634 .42442 L
.70389 .45764 L
.64634 .49086 L
s
.64634 .42442 m
.67957 .36687 L
.73711 .40009 L
.70389 .45764 L
.64634 .42442 L
s
.58135 .4106 m
.5744 .34452 L
.63511 .31749 L
.67957 .36687 L
.64634 .42442 L
.58135 .4106 L
s
.67957 .36687 m
.73711 .33365 L
.73711 .40009 L
.67957 .36687 L
s
.73711 .33365 m
.70389 .2761 L
.76143 .24288 L
.79466 .30042 L
.73711 .33365 L
s
.64634 .30933 m
.70389 .2761 L
.73711 .33365 L
.67957 .36687 L
.64634 .30933 L
s
.64634 .30933 m
.64634 .24288 L
.70389 .2761 L
.64634 .30933 L
s
.5799 .24288 m
.5799 .17643 L
.64634 .17643 L
.64634 .24288 L
.5799 .24288 L
s
.64634 .24288 m
.64634 .17643 L
.70954 .1559 L
.74859 .20966 L
.70954 .26341 L
.64634 .24288 L
s
.5799 .17643 m
.61312 .11889 L
.64634 .17643 L
.5799 .17643 L
s
.64634 .17643 m
.61312 .11889 L
.67066 .08567 L
.70389 .14321 L
.64634 .17643 L
s
.82788 .49086 m
.79466 .43332 L
.8522 .40009 L
.88542 .45764 L
.82788 .49086 L
s
.88542 .45764 m
.8522 .40009 L
.91865 .40009 L
.88542 .45764 L
s
.8522 .40009 m
.8522 .33365 L
.91865 .33365 L
.91865 .40009 L
.8522 .40009 L
s
.78901 .42063 m
.74995 .36687 L
.78901 .31312 L
.8522 .33365 L
.8522 .40009 L
.78901 .42063 L
s
.8522 .33365 m
.88542 .2761 L
.91865 .33365 L
.8522 .33365 L
s
.91865 .33365 m
.88542 .2761 L
.94297 .24288 L
.97619 .30042 L
.91865 .33365 L
s
.79466 .30042 m
.82788 .24288 L
.88542 .2761 L
.8522 .33365 L
.79466 .30042 L
s
.79466 .30042 m
.76143 .24288 L
.82788 .24288 L
.79466 .30042 L
s
.76143 .24288 m
.76143 .17643 L
.82788 .17643 L
.82788 .24288 L
.76143 .24288 L
s
.82788 .24288 m
.82788 .17643 L
.89107 .1559 L
.93013 .20966 L
.89107 .26341 L
.82788 .24288 L
s
.76143 .17643 m
.79466 .11889 L
.82788 .17643 L
.76143 .17643 L
s
.82788 .17643 m
.79466 .11889 L
.8522 .08567 L
.88542 .14321 L
.82788 .17643 L
s
.29709 .55586 m
.28327 .49086 L
.34082 .45764 L
.3902 .5021 L
.36317 .5628 L
.29709 .55586 L
s
.79466 .11889 m
.74528 .07443 L
.7723 .01373 L
.83838 .02067 L
.8522 .08567 L
.79466 .11889 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 166},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzdneuSXLURx8c7u8aL7fi69to4sIu5xQGcC4EkBXHCtaCAVEL4xCcXgYIP
qaQIb5N7KpUnSFWeJs+y8ZG00ozm1z1/7TlnfRZXeWZWl1b3X1Kr1S2d88H9
r7/47Hf3v/7y0/t773x1/w9ffPnpH/fe/v1XD5Lmp2azU3uz2ezfe7Pu98GD
n+kj/NvvPtIfa37/r/s63dV9bSFhNj/IxMJfD/5td0kvxUJPdV9Xu4R/QfHz
3edWl3R3oXhV6CKk/RPSLkHaC21k/wFpl8chewXSnp8E2b9D2tXJkv0bpO2M
Q/YapH23jexfIe36ZMn+BdJ2TxTZG5B2p43snyHt5mTJ/qn73OiSbvUnNhKi
NFqJ7Hci2dvd106X81EW7gf5Fw2c6zk3DaEnq0LdAkh6/Ze5YlzJDjPj8kQZ
1PxVq3DCaS/nb4iIfQhpVPd5sRzpBsKD6j4XhXg8C7EpCvF+rrEFuXfcXIL5
glsjsfltyFIZfi83cAZyn3VzieFz6+nNZo/lQo+IbL4LaduQ9rRYjlh/VKz7
TBSCFJkqzjsZgHOQe9vNJS3yiFsjMbybC5GkxOZbucYFyN1zc4nNTbdG7Lto
gZiyEJtvQho18IRYjnqWtIQjBFlnqjivZwDI0L3l5kbWNxcXAatoXMkWFPm3
RP5+AWnUwGMDl1tkeFVEFV3inkx0GgR9yt2OvJJgNLZI8ZA4P6/SugWZBl89
HfuWS+LQglpmeZsQm4tpB0a7u6MUfdKW5nSWRlXu98Ln1lK7qW3cXl0buXzy
bZDrYDsLR+YFCfczSJtDGo1zQv446joAnM0AELHeAATK1CdD10gDmBiOan1l
GtBYfw3SaGAQktRBx1E3SU5rcUBj3iLsaQs/cxs2dI2nbXGCEMHNSGOQtFMx
xk2jccAaybgnM4JmZVBgL+fa1EW0hSDbdWuSVPYiHudFPMK4CKC82P0KmbPl
vTVNb+KhbAe2ThapJ9ogO5sheyZTJL1BQ5I4pKm58Y2jHN0FaDATyEHphm7b
z2TJsCN6lDbP9DZONL1bNoykP8y9XEgiKmchLc6M5cX8kN1oeIes9P+kU00Q
E3GCk9LCMhaSVDVVT7yopSZLIO6eI50ALW0+Ke1aRoZyw3K3M0buzQWGKyGp
A4lEbS92dcmGpDWbMKR2H1ZdA56DoNaNMUCyl70BuRcIVXV/O6W6Nzy0DgEg
c4KiAxdzDfKeE8i0+Kod9LDq7tqQkdhUjsCjHQvRo72t6nyYUt2IwZotgBp6
OJ9r0GSYktgjQUZi0yA3Q04CPRq1aphsSnUjtAhjWHhMfx5t6YvdQPQIbtVR
NqW6OzZkBQBaJ8m7X0CmkTclsUeCrBa7M7/oJIbpLhLGpXpqYEp1r66BLIwZ
CtaXGAPt+uMYZH8/7TSPpzxZsmsm2GzZ2UNDJup8Kbh3wmEh04AGH0VHafVQ
g4hTmjAjTbbiaCQTgvqJFKUfxpySqh5JzRcztqx4NBqpeT9qOiVraiRLrHgR
S4hRPVfiR2WnBMBg4LGXsN64d6q3nGKixv147pQ2Q4NtpFYiuzWVDrWdjIsd
a1ghRL120j0eIadevjuELuVcs6mQRP3xDfOcRXhWhkMJUtOCeDkjRK0FTK+P
lhu4umRLdIUlKtrCrrQ8SuY0wQ4OFhfLysqtzyycfCqxsBOVWcG52A9qpdy0
FCcinUYLK+m5o7SkbwomLITakhPhZBwCD6E4Od79E4N+yLUYVSQCtdZOWTVp
Npopj8ezvaY7Uf7T1HmZJLnzzVMrBM3cYqwAR2Ey4rdPG6rdYG6pJyIHtREH
jzzL1CPs5ukn/+wOGdw0bAW/tUpe7dyylE2Je/uQinwASj1oYm7vjXWERq/p
22ugqx4IJ8P2YfBrnxlCT23ojmtdElmqxQdcHFQ0/0x1UtUlW4rAPAN1+7RL
dSMvmFWusKE1uuLrpUO+hQbpaWqVRpBPRYXzUZfKMLw0QhzHomeVch6JZ/SK
uvYb1dW7RedGad1WichE2Ra2G4Oq5uYT0UY5c9qZEIYa6rF6lb8EGU3QomOa
DC5z760eYqN11bggRj3jz+9KX6lXUFTet204i1NDPUrm1yBXRp8bNWW8q1pT
DXdRawpXlkQJZDKUyv5JvQ/rH6+ox11iK3KlX9dqvz7nx7uurG1fuiJ3xgaS
+lGF1Dy5N44UBSrVd1pFwcbp88jMiiesUXOVdavSXKrmVCeVenaQmKwCYyMr
qgRs+yXnsIrOrWFkNm/WUGwKLQi2vi3/qmCayDQMVWV+1mGXFIR9l0+nUaIP
9qmBtaGwozSsXkRMuJbnsjQtjab6JrPPv0KoUqmuR87XIz8Mf2kjcyMntK9z
BTKaz/41Rb9umCfhkqW/he/DQfLbFdQJL9WOpnLzTLmsXuTKUO80qvRIA6v3
Hvq0q8qxCPxKU4eq+Yi7GO4HQ9+rDPuWXRN5wrwcO29aT49D3hRkJEVb4kvE
tXoYisqRqi+t+c549W5mnzZo4Ba1Uhl96u5qaCZVIFIPm/useSVT/qvBdiI9
bBInof0Lor3JU39sZwJxJvEuwrT7jkPudKyVlv5QcQuGo+GaM53Om9YE966V
tlMzr+8t0OMeoK3f0fnwpEpnNE3neqh1ORenCRjK1Z2fMxYKz1oJ+GdyaKcA
o7e5VWI7nYrzrTrzoI+fG4QhUYthYhyiK1tPv+l0SI12e9SuGjXrX1cK0BRL
jc4YlbFZdaPtUlnPcTo/SpqKlKNqO/ev68VavAm+jFkJEKmRb5XzyQK3nFbH
VBjW+ozq7LC86aYdADra2ZM/xfQnjlzXj62QYVhTyQrZNCf6yOGcmzfvZZOI
I9f1YyrmM2dNnwbB2EeOEwKjHzUh7VbO+JcuUH3OjeCpd3vULeTQddUJTPSK
h62Y7qZhf0Q5Eow0QejWlhk8H7muGRqhIWk8RJUMyz68J+hIK9BNoYuJX1oF
6Spla3n/yc03c+6FI/ExadFpPTdBsOJzgyAy9XlU3N6EmXrHU1VqjTNp6rq8
eDdpl0fC+kcUBtDbU4eMjHUCz6xrKrQBwJu64VW2AeptYALK9AX3M7ymvodS
4wgkdtk5UWsD7JymBx47Nsi7SoAV20MNyzQCNj1nx4oVQSRJygtV9USCpm6j
W2NyvscwIsy3z1Rp5QIvLWqNXkXzdP+OtRgLuUEc+1kWy2nqcwVLu7s266Yf
3T7IMhoB9XUP5pMl+7CWutc8X79l6SD1cbyBSpictEY2UQlJj4toqUcq2vlL
YRVz4tbQz4xlj7SL+ei28YiWhxirl6dGYXLXRtU/30ArivpoYzWE304vPPs9
TB71AsTQ/CVAOTg1m63xiSuP4V0mVWWodwVNonczgrQcEoKj8JceC1HWKxpv
KoLV28uaruqVuq9kZNQjLX3aTQAUFzTBbBpbTZfrXu0+zeckt9NLjw4uL9BS
jS2yE9WLbPQajTrWmZSj+uoPten06GsiYV6qodFjblWohi2vfseuvdUkKo0T
9cxyn1to9MKR470Hd8sGQL0y1OdO2T0RgPFutaW3NtBgNy83CXNNBU8FwHe6
9eHAAcC7HET7La/866KgflSTnBxeq3vxB+33jWfq2PvIlaKqSKpbnoQzmk5y
Ke9i7WBQ9oZduTdEicywn/2wzuWG9tfwH2hTjKfc0FF5PbeeXshNL7xSfdX0
vNm4OvYb/+SCtNtaTnNEKNdE9t1cmnT3RNZLEMtvI72Ly48n34ZcP5SqLqYl
XOS38azNJs1oeoO1+oBa2/hZb8Ko7SZxzNfrBpmfc3PJ+HhVZL2s4H4bd2w2
SXoi5l+TUhmmtVJtLQlhPtU1MEIv3K7Pgi/n/sRkncMEfgsvRCZJK4b8Fx3K
tKD+WOCu+15D+i6z1enQ70MaTc9XLE5CA0QlpqGirYt3f1Gj4ZV74cjxDyH3
e7GBX0EWDfUfmVgup/3WJkuD76U2sr8WyZLA0yBL2A4AwkhkaVg1joSPIIvs
gemSJZvw5cmSJUVoqh8m+xvIot3YAGRpU2yr7YdNtm0JPE6yH0MWeQuOQjY8
P5Kcoz/tPsMC83ks/kn3td0lkNX+n1gokA5bkv/GhJC77/+enfo/WaXDsg==
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {165., 0.}} -> \
{-13., -5., 0., 0.}},ExpressionUUID->"103de07e-3d2c-4a4b-a0b4-ae67ced28ea0"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(74\\). \\!\\(\\\"metabigyrate rhombicosidodecahedron \
(J74)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"5e1e5f2a-4a17-4859-950c-\
dacc7c6ac89c"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .59232
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.703888 0.0664464 0.367247 0.0664464 [
[ 0 0 0 0 ]
[ 1 .59232 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .59232 L
0 .59232 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.10174 .49124 m
.06852 .43369 L
.12606 .40047 L
.15928 .45801 L
.10174 .49124 L
s
.15928 .45801 m
.12606 .40047 L
.19251 .40047 L
.15928 .45801 L
s
.12606 .40047 m
.12606 .33402 L
.19251 .33402 L
.19251 .40047 L
.12606 .40047 L
s
.06287 .421 m
.02381 .36725 L
.06287 .31349 L
.12606 .33402 L
.12606 .40047 L
.06287 .421 L
s
.06852 .3008 m
.12606 .26758 L
.12606 .33402 L
.06852 .3008 L
s
.12606 .33402 m
.12606 .26758 L
.19251 .26758 L
.19251 .33402 L
.12606 .33402 L
s
.03529 .24326 m
.09284 .21003 L
.12606 .26758 L
.06852 .3008 L
.03529 .24326 L
s
.03529 .24326 m
.03529 .17681 L
.09284 .21003 L
.03529 .24326 L
s
.03529 .17681 m
.06852 .11927 L
.12606 .15249 L
.09284 .21003 L
.03529 .17681 L
s
.09284 .21003 m
.12606 .15249 L
.19105 .1663 L
.198 .23239 L
.1373 .25941 L
.09284 .21003 L
s
.06852 .11927 m
.12606 .08604 L
.12606 .15249 L
.06852 .11927 L
s
.12606 .15249 m
.12606 .08604 L
.19251 .08604 L
.19251 .15249 L
.12606 .15249 L
s
.46481 .55768 m
.39836 .55768 L
.39836 .49124 L
.46481 .49124 L
.46481 .55768 L
s
.30759 .40047 m
.30759 .33402 L
.36514 .36725 L
.30759 .40047 L
s
.30759 .33402 m
.34082 .27648 L
.39836 .3097 L
.36514 .36725 L
.30759 .33402 L
s
.2444 .421 m
.20534 .36725 L
.2444 .31349 L
.30759 .33402 L
.30759 .40047 L
.2444 .421 L
s
.34082 .27648 m
.39836 .24326 L
.39836 .3097 L
.34082 .27648 L
s
.39836 .3097 m
.39836 .24326 L
.46481 .24326 L
.46481 .3097 L
.39836 .3097 L
s
.25005 .3008 m
.28327 .24326 L
.34082 .27648 L
.30759 .33402 L
.25005 .3008 L
s
.19251 .33402 m
.19251 .26758 L
.25005 .3008 L
.19251 .33402 L
s
.19251 .26758 m
.22573 .21003 L
.28327 .24326 L
.25005 .3008 L
.19251 .26758 L
s
.28327 .24326 m
.28327 .17681 L
.34647 .15628 L
.38552 .21003 L
.34647 .26379 L
.28327 .24326 L
s
.22573 .21003 m
.28327 .17681 L
.28327 .24326 L
.22573 .21003 L
s
.19251 .08604 m
.12606 .08604 L
.12606 .0196 L
.19251 .0196 L
.19251 .08604 L
s
.39836 .49124 m
.39836 .42479 L
.46481 .42479 L
.46481 .49124 L
.39836 .49124 L
s
.46481 .49124 m
.46481 .42479 L
.52235 .45801 L
.46481 .49124 L
s
.46481 .42479 m
.49803 .36725 L
.55558 .40047 L
.52235 .45801 L
.46481 .42479 L
s
.39981 .41098 m
.39287 .34489 L
.45357 .31787 L
.49803 .36725 L
.46481 .42479 L
.39981 .41098 L
s
.49803 .36725 m
.55558 .33402 L
.55558 .40047 L
.49803 .36725 L
s
.55558 .33402 m
.52235 .27648 L
.5799 .24326 L
.61312 .3008 L
.55558 .33402 L
s
.46481 .3097 m
.52235 .27648 L
.55558 .33402 L
.49803 .36725 L
.46481 .3097 L
s
.46481 .3097 m
.46481 .24326 L
.52235 .27648 L
.46481 .3097 L
s
.39836 .24326 m
.39836 .17681 L
.46481 .17681 L
.46481 .24326 L
.39836 .24326 L
s
.46481 .24326 m
.46481 .17681 L
.528 .15628 L
.56706 .21003 L
.528 .26379 L
.46481 .24326 L
s
.39836 .17681 m
.43159 .11927 L
.46481 .17681 L
.39836 .17681 L
s
.46481 .17681 m
.43159 .11927 L
.48913 .08604 L
.52235 .14359 L
.46481 .17681 L
s
.64634 .49124 m
.61312 .43369 L
.67066 .40047 L
.70389 .45801 L
.64634 .49124 L
s
.70389 .45801 m
.67066 .40047 L
.73711 .40047 L
.70389 .45801 L
s
.67066 .40047 m
.67066 .33402 L
.73711 .33402 L
.73711 .40047 L
.67066 .40047 L
s
.60747 .421 m
.56841 .36725 L
.60747 .31349 L
.67066 .33402 L
.67066 .40047 L
.60747 .421 L
s
.67066 .33402 m
.70389 .27648 L
.73711 .33402 L
.67066 .33402 L
s
.73711 .33402 m
.70389 .27648 L
.76143 .24326 L
.79466 .3008 L
.73711 .33402 L
s
.61312 .3008 m
.64634 .24326 L
.70389 .27648 L
.67066 .33402 L
.61312 .3008 L
s
.61312 .3008 m
.5799 .24326 L
.64634 .24326 L
.61312 .3008 L
s
.5799 .24326 m
.5799 .17681 L
.64634 .17681 L
.64634 .24326 L
.5799 .24326 L
s
.64634 .24326 m
.64634 .17681 L
.70954 .15628 L
.74859 .21003 L
.70954 .26379 L
.64634 .24326 L
s
.5799 .17681 m
.61312 .11927 L
.64634 .17681 L
.5799 .17681 L
s
.64634 .17681 m
.61312 .11927 L
.67066 .08604 L
.70389 .14359 L
.64634 .17681 L
s
.82788 .49124 m
.79466 .43369 L
.8522 .40047 L
.88542 .45801 L
.82788 .49124 L
s
.88542 .45801 m
.8522 .40047 L
.91865 .40047 L
.88542 .45801 L
s
.8522 .40047 m
.8522 .33402 L
.91865 .33402 L
.91865 .40047 L
.8522 .40047 L
s
.78901 .421 m
.74995 .36725 L
.78901 .31349 L
.8522 .33402 L
.8522 .40047 L
.78901 .421 L
s
.8522 .33402 m
.88542 .27648 L
.91865 .33402 L
.8522 .33402 L
s
.91865 .33402 m
.88542 .27648 L
.94297 .24326 L
.97619 .3008 L
.91865 .33402 L
s
.79466 .3008 m
.82788 .24326 L
.88542 .27648 L
.8522 .33402 L
.79466 .3008 L
s
.79466 .3008 m
.76143 .24326 L
.82788 .24326 L
.79466 .3008 L
s
.76143 .24326 m
.76143 .17681 L
.82788 .17681 L
.82788 .24326 L
.76143 .24326 L
s
.82788 .24326 m
.82788 .17681 L
.89107 .15628 L
.93013 .21003 L
.89107 .26379 L
.82788 .24326 L
s
.76143 .17681 m
.79466 .11927 L
.82788 .17681 L
.76143 .17681 L
s
.82788 .17681 m
.79466 .11927 L
.8522 .08604 L
.88542 .14359 L
.82788 .17681 L
s
.528 .57822 m
.46481 .55768 L
.46481 .49124 L
.528 .4707 L
.56706 .52446 L
.528 .57822 L
s
.79466 .11927 m
.74528 .0748 L
.7723 .0141 L
.83838 .02105 L
.8522 .08604 L
.79466 .11927 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 170.562},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzlnUlvXMcRx584JC2ZUqhIXLRYECnb8h4lRpBTHCWO4QWOYST+BIJhwD4E
NmTfnH0BDOSQQ4BcsjgJcsp3ymdh1P2aXcOeX9VU8y3z6AgQZ6a7q7r631t1
Vdd77zz47MMPfvrgs4/ef3DwxsMHn3z40fufHrz+8cNHSbNzTXPuoGma/xw0
4fvRo6/pT/x3GP6kH0u+/zd8bAbaV+YSmtlRZhZ/Pfp3ISR9uy30VPjYCQn/
huKXwt+NkHRvrnhR6DKk/QvSvg5pL9Wx/SekXRmG7VVIe7GO7T8gbWeybL+E
tN0zxXYP0l6oY/t3SNufLNu/Qdq1ybL9K6TdgLTnJ8H2L+HvWkh6ojszQvR6
d7Y0rKijKtl+6WT7XMv2yfCxG3Ley5i9nL9RM/dybhpChzmh3aGOS+Oe8a5W
+J6WQTJc1QonsG7n/JkTtncyxTrkvmDmEryXTYpnWzFv5UIbTjHfzhSbkPuc
mUtAXjIpkpg3c6HHnGK+lSkuQO5dM5fEfNykeKYVk9YNr8BvapUWaTQLqRw1
4ryT9m7bnGu5zVSIGvF6prgEuXfMXAJvw6RIYspycNEp5muZgnJvm7kk5ppJ
8XQr5k4u9DWnmK9mClJSb5m5ccY8mvnHaeFTKZrkkxVt2ynfDyCN9N6bPZd7
ak7gxSbSSJmg9NQTa5DmnXrfL9LCzkSKcrkudC33pN6cuPNVrR8rbgSpC5u5
EbR6UiPux78b82lm5fsDl7+jN46a5FUE7kMaDWCaA3TUGoM22TqoObLBewH4
HqSRskeCUD+NQWsAcDED4NVYCQDSNa9kztR3fVOk4U6b2HYin585yqb4CqTR
wKBZRR00Bm1qOakXsfhMa+x3IY301sg5gkzWh74pntabE4d2NDvSGKRVbSuz
9SrGXSjSeYBUETK1xbX8O5ma+pZOHbSrbkySy4GOB61Scc+NoHwjfIuZzclj
trqE0xCTZf3ssLrd/qAjDUF2MUN2N3OkdYO6YAvS6DC+9pXjHM9QfpDjZIjd
dpjZ0mQgfpQmCvLamebXmjixTwhGSnsiV0C9TXOI9oXWILfe/mia4/9nl+XN
7shez8h6V6dS5nZxmiyDhJEo8LTFUtpeRoZy4w6/O0TujTmBF+0XXq1Q7EnF
zkGFvVZIEndVtNfnYeLjLrGiE4Ms3HS2IcBoL6HapkR7bR4w2AZVQyrp5tuZ
gjbOKTV7IMjWMwCUSx4XcWXQsKdx6TU1TIl2X4fMtpURZKR1EHg0QskMQI2Y
Eu2eDt75DB71ju2TIn5TavZAkKkrnQM8gZvGII1Vr1lsSrS7OnhirSj0B3Jk
yMwmhZbwpX4gqadEu6OjJdbRW5Arlg4yO95IZUiDIXPcOOVPpl3Vm14ePhoL
BJ8/7owjEs/AqjpJ84fKeb19U5ohA82uwh6m3psiGG0v45QW44EWctJ/Zb2m
0Ui9aOtuU1IIBlImCn0/flMve5AygcvhdKEYCEYa5GW5sAzL5SKVQlWGp3Qc
6u0oddIteaSoWwG6XRMc2487pcN3bwf3BZ3jMiDaNHNeUKpa8Q5Tx511c1oc
HuX9qdReccDSqiYQfhVxQRVwASE5OalEMwEYJN0fLHfOZ2u0iBVjORGTu6GE
rmmSSZ5OPKJMNPaF7LPPpR1mhoeGwY67byzudYqXekcWl6oWZUZXOjdJsPCx
vpwrKQ/s6jqV0Ctj7/a0rSWWxcZDQ4fIi/5Z1/YkOdx49Yy1as6US4OyXuZx
Oace9DrzSY/3dp+sBnJ/g/hJZ3h3qPVqzl4Hf73M43JuB4Z7OSQzDpUTW42I
SfPf20GbTn5ee7VXvjH4tZ3bexeIviQqhvdG+Hmg9d69oHr7pk2Q0eYU4dkL
SaR2EoWsb95IFvUErkajkFJvyzIcly0dPIleQ63NdWsCeYRf3gAcdJGEXzTy
1QVkNAYJTtrExDWt64P+KxZy2dobKiRGCa8hwLu4dKF9XAdMur5e8dLXz1MH
K5EPxntV3HtRrAttQtJewet1IP0Iu1yX8+4wtjOHavOU0zqoC22rNWEjCNp6
jYZWdRWAqm28cPBMH2TaT+xxaY99b7Prw81U9w/WZoWNDZFHakNan9ng3UXz
8YaBdQl78yxOCxZDwkIXtiM5rQILkKf9p5MmFD5Ita0PpfM4jaiBQywA3l0g
AVsfNh1H+EzrV08Yns9VFH5dMetSA+nqKeaWrDn/VJ16w80iZc4M5FO8QSc5
lMeIZTXqMXh98MBVkhyv9UqNbikDQWZZ9DkPEdBWcbaj/Prhko4+9U+sEMVE
ILMjDmlabDm52FGDXWiT9Uxmr1yk6aJIzICfxzuk1aGfHU5XrzcUsW9+83Av
VNWwxa1ew+AeUdh7lXfbFGB7FjsLZF/+Gph9ctWpqn1MkmN8F+WFaKkOWtXU
8E7Sv7xqIEHbRUhv/OUYdaR+VQ9gswK3/KtCuSL5VObew96FzGA9gVVUHbmp
Smo/gtmBnwOzT5dsSXWOhOt5lCzpqyQCLQrCyLvgFU6Hin5RN1xbCDVKtEdW
uzrU25mj6H60lMZyZceHD9r+xZJB2j3g19TWWjalFwbpTp6tA6pn09hefsTD
0QndbgENCedUmdtVx9x0Lc774AmvKXGnkDnNNtpJRdOi+zUyvoquoIHeXeLl
tOkmK61SNL+9erNlGLO2GZoTEolJ812vvYvkKwauXL6OTpxyGNbyuNwcl1eV
uRVDR+oNXaokFt5b0ba1kjbWkkteVFV1wCtLl3YYMHpjH9WjloPWtsoTjPuZ
go6UBKNXli7tWDGMtjuEVjcx6EgXqMEbqwOP+lh9Jq+32UWadwITv+sZPPuK
iVeWLu0wYKTJRZFkqvvdQat6MmhItvE/Lq+Jt/4ushvQ0YpC0UvWVQ+KuBPD
A3XOjZy7Xcm3Vo4VNJ32ZxUE7WrHShAZYx6JsZpw8saOdongH2gmjbGWi02S
TmoksH3lYsXr9mgqWJFG4JHotvr2f6B4yTHAG2/svSKxYvDGOEN5w7ZVf62q
8a745DTM2Z0NG2RmJcDs6w8rPrGPZFYjqahrlVsQtIGNaEobBKQ4ImidIs5y
lWHFUKj3LPa0jVxE15+gcTLNe7/NUe+egKxfIo/DrVn+mh01xCcmkUJLLaEW
q5w7i+ZlsKdjFHnHyEpvDKMaxBOlue0Eynuxokf5qrgkt4qqBoijrypykLYw
4Rdf6xAzvREBNr++5avnl2YnO16Ou6MqeI9qib/ii6zicdQbD6ay6lGqelYJ
MvE8Edbe6Drxxbyc4fHe4RDafiTowiU99EDMq964uDdzs703T+zboFRHPUVq
jrwJyhuzFt98oD6od6eaXz1FehiwEHpDw+gNFcqtCFouxF3trbCeIj2Z2btf
0YDWW1kZrnbK+rvQVjafTnT0eovTBp+dToIutOm58F61lU58950A2I5OOlF5
JehCe2s8AGwb14oB0FnwLH7V2WjboUj2BatW9T2fSvmD9gsdzZVAHm+7vGZx
OhErVeuPuFwourRdkhZg+KGzUarnTRftZEWeN+yFcuklV9T9ogW+5pTafvDr
FWfuHV0k2py9wpH5kwShOrzlkug01CT+4g2nwOI1OjT52bnpzVC2e/ctp0ji
i6FXq245c5/RRaLJ7BVOvVKtjrku74xd9hrbWOmPnKLTk2yKiU/yS0XPmrnP
67ISaF6p1Qf1zrRdRn1cdpFGzaFyqWHqU4Rj699Vm8Pmd/v9PXZdL5q5L7Xi
kkEv5v9YlVQ21fB5PCZiSf1VOFDDPTtjQbQwDt/TpIpC0cAoqw9cvqWm4dD+
SfirHjapfWUF4dc32woeqrieTKOqfl3HgrS3X43OgtSRX9axoO33F6OzoJ30
53UsaJv5WR0LWjg/H51FDw3pAc5pjIseBngP06yH9WIZi+hnohPkb9pCX4SP
mEMelt+2hf4QPtQnVaZCf8yFaKf9XVvoT7k6OmL9vi305/ARd5Uv2oSYe+j/
3pz7H79hGNg=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {169.562, 0.}} -> \
{-10., -5., 0., 0.}},ExpressionUUID->"a8068746-64c5-4524-8ac4-dc547e4b79a8"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(75\\). \\!\\(\\\"trigyrate rhombicosidodecahedron (J75)\\\"\
\\)\"\>"}]], "Message",ExpressionUUID->"410bb29f-139e-42d8-bede-0826839c3aa6"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .60811
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.703888 0.0664464 0.382663 0.0664464 [
[ 0 0 0 0 ]
[ 1 .60811 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .60811 L
0 .60811 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.10174 .50665 m
.06852 .44911 L
.12606 .41589 L
.15928 .47343 L
.10174 .50665 L
s
.15928 .47343 m
.12606 .41589 L
.19251 .41589 L
.15928 .47343 L
s
.12606 .41589 m
.12606 .34944 L
.19251 .34944 L
.19251 .41589 L
.12606 .41589 L
s
.06287 .43642 m
.02381 .38266 L
.06287 .32891 L
.12606 .34944 L
.12606 .41589 L
.06287 .43642 L
s
.06852 .31622 m
.12606 .28299 L
.12606 .34944 L
.06852 .31622 L
s
.12606 .34944 m
.12606 .28299 L
.19251 .28299 L
.19251 .34944 L
.12606 .34944 L
s
.03529 .25867 m
.09284 .22545 L
.12606 .28299 L
.06852 .31622 L
.03529 .25867 L
s
.03529 .25867 m
.03529 .19223 L
.09284 .22545 L
.03529 .25867 L
s
.03529 .19223 m
.06852 .13468 L
.12606 .1679 L
.09284 .22545 L
.03529 .19223 L
s
.09284 .22545 m
.12606 .1679 L
.19105 .18172 L
.198 .2478 L
.1373 .27483 L
.09284 .22545 L
s
.06852 .13468 m
.12606 .10146 L
.12606 .1679 L
.06852 .13468 L
s
.12606 .1679 m
.12606 .10146 L
.19251 .10146 L
.19251 .1679 L
.12606 .1679 L
s
.46481 .5731 m
.39836 .5731 L
.39836 .50665 L
.46481 .50665 L
.46481 .5731 L
s
.30759 .41589 m
.30759 .34944 L
.36514 .38266 L
.30759 .41589 L
s
.30759 .34944 m
.34082 .2919 L
.39836 .32512 L
.36514 .38266 L
.30759 .34944 L
s
.2444 .43642 m
.20534 .38266 L
.2444 .32891 L
.30759 .34944 L
.30759 .41589 L
.2444 .43642 L
s
.34082 .2919 m
.39836 .25867 L
.39836 .32512 L
.34082 .2919 L
s
.39836 .32512 m
.39836 .25867 L
.46481 .25867 L
.46481 .32512 L
.39836 .32512 L
s
.25005 .31622 m
.28327 .25867 L
.34082 .2919 L
.30759 .34944 L
.25005 .31622 L
s
.19251 .34944 m
.19251 .28299 L
.25005 .31622 L
.19251 .34944 L
s
.19251 .28299 m
.22573 .22545 L
.28327 .25867 L
.25005 .31622 L
.19251 .28299 L
s
.28327 .25867 m
.28327 .19223 L
.34647 .17169 L
.38552 .22545 L
.34647 .27921 L
.28327 .25867 L
s
.22573 .22545 m
.28327 .19223 L
.28327 .25867 L
.22573 .22545 L
s
.19251 .10146 m
.12606 .10146 L
.12606 .03501 L
.19251 .03501 L
.19251 .10146 L
s
.39836 .50665 m
.39836 .44021 L
.46481 .44021 L
.46481 .50665 L
.39836 .50665 L
s
.46481 .50665 m
.46481 .44021 L
.52235 .47343 L
.46481 .50665 L
s
.46481 .44021 m
.49803 .38266 L
.55558 .41589 L
.52235 .47343 L
.46481 .44021 L
s
.39981 .42639 m
.39287 .36031 L
.45357 .33328 L
.49803 .38266 L
.46481 .44021 L
.39981 .42639 L
s
.49803 .38266 m
.55558 .34944 L
.55558 .41589 L
.49803 .38266 L
s
.55558 .34944 m
.52235 .2919 L
.5799 .25867 L
.61312 .31622 L
.55558 .34944 L
s
.46481 .32512 m
.52235 .2919 L
.55558 .34944 L
.49803 .38266 L
.46481 .32512 L
s
.46481 .32512 m
.46481 .25867 L
.52235 .2919 L
.46481 .32512 L
s
.39836 .25867 m
.39836 .19223 L
.46481 .19223 L
.46481 .25867 L
.39836 .25867 L
s
.46481 .25867 m
.46481 .19223 L
.528 .17169 L
.56706 .22545 L
.528 .27921 L
.46481 .25867 L
s
.39836 .19223 m
.43159 .13468 L
.46481 .19223 L
.39836 .19223 L
s
.46481 .19223 m
.43159 .13468 L
.48913 .10146 L
.52235 .159 L
.46481 .19223 L
s
.64634 .50665 m
.61312 .44911 L
.67066 .41589 L
.70389 .47343 L
.64634 .50665 L
s
.70389 .47343 m
.67066 .41589 L
.73711 .41589 L
.70389 .47343 L
s
.67066 .41589 m
.67066 .34944 L
.73711 .34944 L
.73711 .41589 L
.67066 .41589 L
s
.60747 .43642 m
.56841 .38266 L
.60747 .32891 L
.67066 .34944 L
.67066 .41589 L
.60747 .43642 L
s
.61312 .31622 m
.67066 .28299 L
.67066 .34944 L
.61312 .31622 L
s
.67066 .34944 m
.67066 .28299 L
.73711 .28299 L
.73711 .34944 L
.67066 .34944 L
s
.5799 .25867 m
.63744 .22545 L
.67066 .28299 L
.61312 .31622 L
.5799 .25867 L
s
.5799 .25867 m
.5799 .19223 L
.63744 .22545 L
.5799 .25867 L
s
.5799 .19223 m
.61312 .13468 L
.67066 .1679 L
.63744 .22545 L
.5799 .19223 L
s
.63744 .22545 m
.67066 .1679 L
.73566 .18172 L
.7426 .2478 L
.6819 .27483 L
.63744 .22545 L
s
.61312 .13468 m
.67066 .10146 L
.67066 .1679 L
.61312 .13468 L
s
.67066 .1679 m
.67066 .10146 L
.73711 .10146 L
.73711 .1679 L
.67066 .1679 L
s
.82788 .50665 m
.79466 .44911 L
.8522 .41589 L
.88542 .47343 L
.82788 .50665 L
s
.88542 .47343 m
.8522 .41589 L
.91865 .41589 L
.88542 .47343 L
s
.8522 .41589 m
.8522 .34944 L
.91865 .34944 L
.91865 .41589 L
.8522 .41589 L
s
.78901 .43642 m
.74995 .38266 L
.78901 .32891 L
.8522 .34944 L
.8522 .41589 L
.78901 .43642 L
s
.8522 .34944 m
.88542 .2919 L
.91865 .34944 L
.8522 .34944 L
s
.91865 .34944 m
.88542 .2919 L
.94297 .25867 L
.97619 .31622 L
.91865 .34944 L
s
.79466 .31622 m
.82788 .25867 L
.88542 .2919 L
.8522 .34944 L
.79466 .31622 L
s
.73711 .34944 m
.73711 .28299 L
.79466 .31622 L
.73711 .34944 L
s
.73711 .28299 m
.77033 .22545 L
.82788 .25867 L
.79466 .31622 L
.73711 .28299 L
s
.82788 .25867 m
.82788 .19223 L
.89107 .17169 L
.93013 .22545 L
.89107 .27921 L
.82788 .25867 L
s
.77033 .22545 m
.82788 .19223 L
.82788 .25867 L
.77033 .22545 L
s
.73711 .10146 m
.67066 .10146 L
.67066 .03501 L
.73711 .03501 L
.73711 .10146 L
s
.528 .59363 m
.46481 .5731 L
.46481 .50665 L
.528 .48612 L
.56706 .53988 L
.528 .59363 L
s
.67066 .10146 m
.60747 .12199 L
.56841 .06824 L
.60747 .01448 L
.67066 .03501 L
.67066 .10146 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 175.125},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzlnVtvXVcRx3d8bDeN07hxYjtxnGC3lUIEiPaJl0JLgVaUlErwwqvVIiXQ
kirtG/eLEBISEhISH4LbRwzea6+uOd7+zZz/OvvscxKIlONz1l4z859Zl5l1
3e+dfPbgxx+ffPbwg5Ojdx6ffPLg4QefHr396PFp0uRC01w4aprmP0dN+/3J
6df8kf4dtx/5R8X3f7d/Ji2fR1MJTUp5kv91vz7qnv8Lnq+3n+tt0oMu0z8h
0/Ml04ddpn9ApisFzkmX6ZX2z/U24VPIfrX93G2T7k9l72V6EdI+gbRrIu27
daIeQdr1cUT9DNJ2n3lRH0Pa3jiiPoK0/Wde1E8h7cY4on4CaTfHEfUQ0g6e
eVFLNOASq8X/ZrtaYse0xO52Af7q5fZPcss/bL+ttd8OIfu1ki+77+OS/TRn
l5Ryd46+R/2+l5lEbbefE5FzVuMo/dmYfvQ5abMDZN+HtDVIuwVpW+1nio4m
dba+U6ywLhLeLxQbIriLZLymQmTGelgkb9YQJoqLItb1gnVtPmkNslVZfNcz
Xy+N6ujEK8VK/DeL4s+LhO8UisseVqswVZwzpP1CuCUSfqdQXIGnx9X8MhDq
n1UW34a0bUj7wgAZGeb1UHsifKtQ0DjmsJpfBnKtEJKmRPhNSCNIt6o5T0Nq
1suj3Bm9MAAf+beDYWIyWPIT1jGpteLNXlrb95L7p0ixXloAfb0wUzuAN3tm
zPAJPQWf9QIzevLrzxVmz4nM3kifHAKQChRp1kvNKtCjS56NBLbfgDSKNqi1
krJDsAQqbhV7rUqxegRZHerJrhRmFAsSs69DGoVqO4UzKVEvN1AiZU9J1CsQ
YIpZtgskd0TmysjgyH2lYk1zhFQRqNERF4oMjPP9GeLPFdfpr3fhAcWCVt2o
/3bZ/6iDRA6JaFKBJMJXi6Gpk6RWfbEg3AxpXbmp/3+t0B7VQd8q0L9YWFCl
pppL6mwWdTaq+RG+SwXfvZDfnU5tirGJ7dUC86ViQ2pWZEaSMSn8JtX83Mnx
xO/lkN/tTm0KP4itG78mAcSF0kiJfpk0yRQVTAkadVa3Q7iHw+2ROoqUpAYJ
/Z6r6K4yUHU/CKF1Y+tOQKo6FHpT2l5hS0BScLgbPnWlEcV+KG1aiZ5JKbur
Ik1eUWZyGmRcEt6n9UC6sZEK8oCN8iS1O6c2UNzSAeGQm3y0GlQTZqJ1wfo1
VQd7MzLSk2xs6rrcgMkNU8m26kSSShtjJgOYT1Mx3/BNRiwoHxnPwmNSbBnG
U9GTGS2SVtEHZoxn9WhUTqVNQAg6jWTIjCptjN4t+jnR7/tmpM6E2JJBbQig
KqGOTFVaFT3xu1yNfs83o401qLRphGTunUKqZRgvxkwFbgGQijkwmTGjUQet
VLvDUAG6ukCl0sbo3QKfE/2ub8b+mKl14rROY8NH6kncOVjBZCotIaVVK5t6
VJFen2GexOw2PLVumEbNBznPVFoB7g4inPzmuePC8XFQwDmjYTWzl5i7pi8t
GCzSHFYsPYz+MmYFRtlU1CbVxW/qFeJli2U0MlUjMhQ5iXqNgsZoLZucNEEi
I8erK8vo/GM9yChk2no9AjdgPZm5daq1VBfitZ5lhCKEXq0O9eiDoMRmGy24
ndmPCQouw4iEXe021IHqTHOu982EA+3WdDfKUyrVeDVrnCGajt12hhC6euxn
Bmjnlp37WrQIbJaLZMTLaOPME0iwbQaRiqse9vQEQXrSD0RaoVfLU1fLlDTK
RF2MKl5hd1EFM3KdqHOFYaalUdS1Io30SFbbD59OzVMvXnSiveqr3N9bk+Va
M1RWBpomWFow/9TEGzHn4+IYzmr1eAp0mYNlnXOozEOrREX0ehGd/5P73Mif
PQ6JAW9MqmQ92xs6mluk4S+GDtd8NrxuWByYn41nm0zVtVKLKNYKLcWqlk+N
adaqOZNxZmrrziIsRlvXh0U1ZJPgFpbq6r27sDHxgNXvLHbHg4IMt6t/CvQn
bF2TkHc5+M1yNm1v3nUCvTJFxGqpWVdfxd4vsJVrHpSX2pOR43A3xVQMDtT9
nRTiRXzVejiWXiS/S/NNvtcmURBnk33mQdVtvReB1q1uVQiIS1bR3W6uhoBU
BBYGu2NGwR6XQi7uLsjxgJPIThl/Y2ltdEeG6NCfmxRWTwpcZnJX/xEh++0V
LWh1uT7Ycttu1ZEGQ0BD8lHwyV0cCrC11iGhjzL0zEWqnrdwl2rIsGNrcTaN
utHO2/n99OCIhdypG4RU+RF1XUTZjTaebo3TprLhafdy/ek2ddMEmaL+ZEu8
VsL7xMfVSDrW05U5Wrw3z14VxPijWM9q6gRkbwlFkDGOHvqxo2zinYCsvh9V
2/SQY0Cx4SIzjKePenKoq07nZombeaKn2f2WciZJW3UxfUYHXWnKOeOnlERO
VjkCNXOtpf21U8QsBlh8miu3ZluXqq/r1q4orO6dtJp4+baB36KxxOfEciRa
f3yc/F28RcnOerlVyeU3Hir19Fo2VP3Rf3OPVmJVB4CEfL3lo1HwxQfr8hyX
VXdbDauPCjaAy5ATM+r83jIwxztyt6fMeK6rbziWqQ8FSDuXPWUmg75Q2KtO
KTb306RvfMYxL/dS/G0X99kwsDa8oIZHfNUxi7ufUS03M6wKbZkqxwcz8wZL
13dsFgFaMEO9rDFSLWqr552l9IGJu0duNcoph0LNCP6sazKAORMCkvKtQzV2
D/hNVa3IwOeCdlf6EJTbLGvPN4zdxUnRkG0ccrf3TEVSPK/ghlqC6PQ0b3FS
19jUyTmaeopnY66wljYE6JWGOpk3L2KPNhc3NRv1Sjhq7UTrTvUnS0zMkTkD
Nm4yZLhFIw8MR529em2ferAvnvK3p33apmlmrEepCIagX7Hx/Gl9rk/7mapX
BW2gQYJXbEfqE9VrKikCdXf9uuM6crF9Lq113Th2TlRDNAoMqh4xVteR3Euj
BFOQafv8WtOah6UCUlEN0WjFBo0n3ClYvHGWwo0+Vmw89cSL61sF2ngSnZSw
iSj3SMKcWIboEZiRwiT14mX13CpNm1ND72il2XlV9BDYgdUIvX8zNvtUOktp
kwBULgfl6XYl31ocK1Dd2hp1i+GtlCuxwzIaDvVxZJ36+y9X3H6W0Xmb66cB
gnvE0g0WVtxRLyNYiNdkYiNTv/B/EF/ZHCZNNBOFum9gxcYbZ/jEE8vuVWQU
P7nj9hUPj8YZt0tbjQhpvAlgxWPzUWbWUhJVGxfcxOvrlzhX5i4673rgbLuI
f3kCUAjQBbmzJpSrXjhBMZQxoMsHVO1izoOhCQyCJQN76YV78lrwGVsFzR3R
KOoutgXiq+Ky75vMfRWHf4BuNkJjely+DbHbyCDnZJqt6oYJk+Ij3IGnf5bH
43e3/ZbGWeqmmpjfovHV88t9Hm/ndSq5et0YFVv69dViRnW/h8tqFHxDmOYb
CGzxz0YfZH9qG7Zh7mvFUOp2V6MdIreeNqttW/vIuOR+X28/k/slJ7hbza+e
Il91617MKVSE1yGNbvlQz5OocofQZrXt4hH1NDG9H4AnVBruny3SU0XWU+RL
nVW/R16HXj8w3ikt9QCESnvoG4BqDXV5qgEWfZqK+A2hzaZQg2ya1XpDNEW8
cupfkD0bwRDafGW/yoJ8jWoAdaXTfT+HgGUI7UxT8Cz6W6L68bokjeIjqf4L
RDj/UfdFsU+b/VuiUvVXupI0GvdSvuNxlFAvWV0AdCpmiwfpvXPxYWK6oHVH
fPpSB4kmuS3ce1uEZBXhKOQXP33Fh0QhmwqOOlwCQjLUfBk6VXmbxKWXRsZn
Iehlrlvi07sdJPda6JTpeyIkc1/2ZiCahjHOd8On93xwtqP9PRFc73qhidch
xfcI3wuffqkD7F5rmzK97wLmdYD4/Tz87tDPab8cPv2KD5cs4wM/60/y98Z9
540qkNBTvqzHYc+I7d/T/z/wYCfUVFVuMaNXo2TsSJNo9000VHSvQVoW8NjT
Q4hlflfHgmLd39axoBDpN0tnQWHAr+tYkDv+1dJZkLv7ZR0Lcju/qGNBPfHP
l85iAYoswJxPR71YQAVfQDOb1V+4F0jlTH9q/0y87jh3Xn8umWhW8fddpr+U
TBTQ5Ux/LZlomPWHLtPfSqbm7LrWH7sffwfS/Cj9ONa/Nxf+C8Y07JI=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {174.125, 0.}} -> \
{-10., -5., 0., 0.}},ExpressionUUID->"53407676-747c-4b4d-9043-421d26f62863"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(76\\). \\!\\(\\\"diminished rhombicosidodecahedron \
(J76)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"bf1e821d-6d93-45c5-a717-\
2e437d535b9f"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .58013
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.631706 0.0685419 0.202033 0.0685419 [
[ 0 0 0 0 ]
[ 1 .58013 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .58013 L
0 .58013 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.1042 .49211 m
.06993 .43275 L
.12928 .39848 L
.16356 .45783 L
.1042 .49211 L
s
.16356 .45783 m
.12928 .39848 L
.19783 .39848 L
.16356 .45783 L
s
.12928 .39848 m
.12928 .32993 L
.19783 .32993 L
.19783 .39848 L
.12928 .39848 L
s
.0641 .41966 m
.02381 .3642 L
.0641 .30875 L
.12928 .32993 L
.12928 .39848 L
.0641 .41966 L
s
.12928 .32993 m
.16356 .27057 L
.19783 .32993 L
.12928 .32993 L
s
.19783 .32993 m
.16356 .27057 L
.22291 .2363 L
.25719 .29566 L
.19783 .32993 L
s
.06993 .29566 m
.1042 .2363 L
.16356 .27057 L
.12928 .32993 L
.06993 .29566 L
s
.06993 .29566 m
.03565 .2363 L
.1042 .2363 L
.06993 .29566 L
s
.03565 .2363 m
.03565 .16776 L
.1042 .16776 L
.1042 .2363 L
.03565 .2363 L
s
.1042 .2363 m
.1042 .16776 L
.16938 .14658 L
.20967 .20203 L
.16938 .25748 L
.1042 .2363 L
s
.03565 .16776 m
.06993 .1084 L
.1042 .16776 L
.03565 .16776 L
s
.1042 .16776 m
.06993 .1084 L
.12928 .07413 L
.16356 .13349 L
.1042 .16776 L
s
.29146 .49211 m
.25719 .43275 L
.31654 .39848 L
.35082 .45783 L
.29146 .49211 L
s
.35082 .45783 m
.31654 .39848 L
.38509 .39848 L
.35082 .45783 L
s
.31654 .39848 m
.31654 .32993 L
.38509 .32993 L
.38509 .39848 L
.31654 .39848 L
s
.25136 .41966 m
.21107 .3642 L
.25136 .30875 L
.31654 .32993 L
.31654 .39848 L
.25136 .41966 L
s
.31654 .32993 m
.35082 .27057 L
.38509 .32993 L
.31654 .32993 L
s
.38509 .32993 m
.35082 .27057 L
.41017 .2363 L
.44445 .29566 L
.38509 .32993 L
s
.25719 .29566 m
.29146 .2363 L
.35082 .27057 L
.31654 .32993 L
.25719 .29566 L
s
.25719 .29566 m
.22291 .2363 L
.29146 .2363 L
.25719 .29566 L
s
.22291 .2363 m
.22291 .16776 L
.29146 .16776 L
.29146 .2363 L
.22291 .2363 L
s
.29146 .2363 m
.29146 .16776 L
.35664 .14658 L
.39693 .20203 L
.35664 .25748 L
.29146 .2363 L
s
.22291 .16776 m
.25719 .1084 L
.29146 .16776 L
.22291 .16776 L
s
.29146 .16776 m
.25719 .1084 L
.31654 .07413 L
.35082 .13349 L
.29146 .16776 L
s
.47872 .49211 m
.44445 .43275 L
.5038 .39848 L
.53808 .45783 L
.47872 .49211 L
s
.53808 .45783 m
.5038 .39848 L
.57235 .39848 L
.53808 .45783 L
s
.5038 .39848 m
.5038 .32993 L
.57235 .32993 L
.57235 .39848 L
.5038 .39848 L
s
.43862 .41966 m
.39833 .3642 L
.43862 .30875 L
.5038 .32993 L
.5038 .39848 L
.43862 .41966 L
s
.5038 .32993 m
.53808 .27057 L
.57235 .32993 L
.5038 .32993 L
s
.57235 .32993 m
.53808 .27057 L
.59743 .2363 L
.63171 .29566 L
.57235 .32993 L
s
.44445 .29566 m
.47872 .2363 L
.53808 .27057 L
.5038 .32993 L
.44445 .29566 L
s
.44445 .29566 m
.41017 .2363 L
.47872 .2363 L
.44445 .29566 L
s
.41017 .2363 m
.41017 .16776 L
.47872 .16776 L
.47872 .2363 L
.41017 .2363 L
s
.47872 .2363 m
.47872 .16776 L
.5439 .14658 L
.58419 .20203 L
.5439 .25748 L
.47872 .2363 L
s
.41017 .16776 m
.44445 .1084 L
.47872 .16776 L
.41017 .16776 L
s
.47872 .16776 m
.44445 .1084 L
.5038 .07413 L
.53808 .13349 L
.47872 .16776 L
s
.69316 .4949 m
.64729 .44396 L
.69823 .3981 L
.74409 .44904 L
.69316 .4949 L
s
.74409 .44904 m
.69823 .3981 L
.69106 .32993 L
.72534 .27057 L
.78795 .2427 L
.855 .25695 L
.90086 .30788 L
.90802 .37605 L
.87375 .43541 L
.81114 .46329 L
.74409 .44904 L
s
.63561 .42598 m
.58975 .37504 L
.62402 .31568 L
.69106 .32993 L
.69823 .3981 L
.63561 .42598 L
s
.63171 .29566 m
.66598 .2363 L
.72534 .27057 L
.69106 .32993 L
.63171 .29566 L
s
.63171 .29566 m
.59743 .2363 L
.66598 .2363 L
.63171 .29566 L
s
.59743 .2363 m
.59743 .16776 L
.66598 .16776 L
.66598 .2363 L
.59743 .2363 L
s
.66598 .2363 m
.66598 .16776 L
.73116 .14658 L
.77145 .20203 L
.73116 .25748 L
.66598 .2363 L
s
.59743 .16776 m
.63171 .1084 L
.66598 .16776 L
.59743 .16776 L
s
.66598 .16776 m
.63171 .1084 L
.69106 .07413 L
.72534 .13349 L
.66598 .16776 L
s
.90802 .37605 m
.90086 .30788 L
.96903 .30072 L
.97619 .36889 L
.90802 .37605 L
s
.78795 .2427 m
.8022 .17565 L
.86925 .1899 L
.855 .25695 L
.78795 .2427 L
s
.855 .25695 m
.86925 .1899 L
.93741 .18274 L
.96529 .24535 L
.91436 .29122 L
.855 .25695 L
s
.8022 .17565 m
.84807 .12472 L
.86925 .1899 L
.8022 .17565 L
s
.86925 .1899 m
.84807 .12472 L
.91325 .10354 L
.93443 .16872 L
.86925 .1899 L
s
.30571 .55915 m
.29146 .49211 L
.35082 .45783 L
.40175 .5037 L
.37387 .56631 L
.30571 .55915 L
s
.84807 .12472 m
.80778 .06926 L
.84807 .01381 L
.91325 .03499 L
.91325 .10354 L
.84807 .12472 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 167.062},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnVlvXDUUx287mSxNmjTN3iWZtIWULtAVCuIZnqgELRSJp1AhtQ8IVPqd
kKBsEt+Jff8AJdd27Zmb33GOx54kE0CimfFZfPz38bF9rn3nrc3HDz76ePPx
w/ubnTcfbX764OH9zzpvfPJoq6h1qKoOdaqq+rxT1Z+fbn10/5j/1ut/3Jcd
Pv9T/2nVshe6CipT8tT9Z79tWPrfQB/xSs5Zpr+Aadwzuar/BKYpz7QqM814
ppOW6Q9gmoOyZcv+O5DmZfbfgLRQjP1XIC3K7L8AaUlm/1kklWD/CUgrMvuP
QDohs/8ApJPF2I2nHq4p1/2nG/BpPc3oM15wi26LDE91RSJcTSaQSRHYO17P
CDBdilIvZ1A7oklo5qpXNgpMF6LUixnURDNPeWUTwLQRpZ7PoJKZkYFPnn8E
yp5T8j1fmI+aEwl7Kx6bo8B0Nko9l0GloRYJ5kte2TGpzSJ1PYNKaEbMXPDK
jgPTapS6lkElNOe8hI2qOBPTZH5KyXe6MB81IqxIGqF6RW4TldGoJT5qew4f
tWnSt4mCu/OkJkA1AuR4zRlT4msCkMtHDQsL0XGgLskNo/jUnHclPgIgh48a
Fpbhk3LD7Lhsd5OiCC4n8q8MmP8MlJlv03KbZ1FmexkNd5pjD2fI5tSrlQ2L
UIrCi2mgULygjtHKkjfvhiyNGMLAwUPTbBvKCH+Ch4KoVjanXq1sWJwQtR9Q
jLIkk4wE9XFpCbteGukJOkLLbQPsDN8gjUHZsahVcQka8qUl1h06FG4jzafg
SruUo74i2kLRfBuXSK8jLkGzB0VzCgyJUEz6Stv+E4VjhWxrj2TNJ1pDUjAj
yGwcxp0VLVHGfaVhKdNYUFMttL8kVdTRNK61ppXW12gqZZkorBUA3saM3nj4
zCqqksZAql7KxexnvYQDxV+qP9JFU0CibjNuYrOBI7akqp79L8a8RhnVFdNL
A6uEvYPSSzhop2HqIjshoqfMOGManmImVu2omy6go4QdqTpodU1Te1+QhjIb
EStedcp4ggLtpCFakK2AmkDLLfLgCIzGhsWaQn1ilC3URbQKH/eycSppJpOo
R4jveJfp6jC5s7MRwjmOWlqWFgYU88JSfT4NKOpFcS/Qp2xOvVpZijhimSla
3D2gaDbRTvg5smRzeFZOvjXhqStp8GjNJHhoPaRdsubIks0Uj8yURkCMerRO
paGltXo/oUWy1F6jz0BGmlseMgPeaP2pe1pSGEL7d9paEnha2Zx6tbI0L0x6
8Krebd2UBOjs7oFHpwUoj0r15shqwTM2j0qh7VgaUFqD9xNQJKudVKksETJK
PVC2gyDTyubUq5XVTq+UH5tJg8w+keTEKqmP8dPOoD/+/mIc6fsfjhw4DsqA
Sss/9pZNp0F2UMI2QUYjoABkB2VJQGGbIJO3j/+5JWjOJjQRsoOy5dGup0h2
Kg2yg7KnJshoYBaA7KBkaWh7Q5DRoJ7cPcj2UwawFGRLNYWm1bGdqcv9UbX5
e5oxE3p766/9Rl1pvJXuDYhayMK2pKXZE4W1UIsIVXIIWrFaOFUPnOpvzcVx
bZexn3L1FBdodU2Pn8WKKNdNMVt7+mDvKyLoTJe2Jbcp0JHG3Uz1xi5DJD8K
z5O1Bx3KaB6czTmax3o1t6XuO+H5XNTSPr4PwSnkj8XssuGj2UAcjA3N4gAV
NWttHpxmQiPwmZabbqEZNjKtaA8DkFcE4xpRnHYsYjI8qSIKOlQmnmLbx7U1
QAydaxJN9MyA4qFbT2v79YivJe66NLRoSdLQF5xY1KKwqowWEfgT/hMNFLcN
Tj/qGoJmjqz4EHcgsuH8ob1oHU7/1H8rPr48nYaQOBEp+CiK5OgrbV+Svq6T
19vOnMtnRdRnzmd9HV1ho6o4ES7uZbUKsi1IUnAOmA1f5CmX9paC9qahVpbK
dkPW3uHddn5PjEiz+TBRGS0G9hNMdDWZJnma7dyhtX7vTNWe3O+dqUoIxoOW
rb+dlyATr6nP5QNFBlM/7SegXpBkxVWJO90Xu465GKEt9Ck3OFpv8y5CGQUI
6lh30UZ7BVdzK3KvfEOSvQRlYq4s8UryMOJxGcpo1Dgo5j1U2vuFZpy1UiTm
Cku8BGVrtjmLvjna5YeNrzzlJ+lo7LhKy16BMvdmJ8rea1e8075SchKtFuLT
JtRK67sGZWa3Zk7BudxneAtK+iXEiWTZqV2QvQFlxqMm6iICz24Mu8ZzIzem
MI4WeI38W7q+xl2+Pq0KiXlR9mb9b1sCtBuebU2MQgqOQz4fSbNU/KoQrXri
I33Z7dDmFojvZSijjZTrB1oHByeJJ7nJdAKeoGhcUk2vQ+zmbOtD6qrVGx8K
wC2SGlAQZJRIDU2keB80V71Ji9LqcwynUNPujVCk9JV84MMLhBrrWf0DRcEr
TFgc8T6IqnirIs6RaXaycvFiSTuYypKvgSSFDusmCNaMx6TRimbXSJaK77Cy
CrYliMUMqGzENh0UJEzZKOh4NQ0kmh3NEtXcaiQEDHUhSjWyNCuHBfHrQKXh
ETFTe+WSooZWlsaVVlZO/PSWkVtHoKBARjspMommKq0swaiVHRAU5GK0by4N
Bclq69V6VCIU8rvMdjaJZjZtc7TvexgSKGglnQOjVlY7uBKhoAhNGQVtIlor
K78Lsb/BRTDSRBeBgkIQPd8uDQXJauvNgULWlwUFrfZyYNTK0uCiLkiEgkIQ
HSOZdUZ0lVlCxa9+0kIn19Vf87XxwTWfwg7dAaNE6tZnehlsDCmZf+fwQY5y
MFpLw4L8globtgFuizksDp3TaFOvSX26ozbDGNCoXnJGA4Dpp6X8xu7VRJbU
WKxjKJcyVC81+xaUufd8D+NiluqlsT2gZu/VdoZkaYBQ0tD9RMswbmhJlgYI
Janda2SGMaVBsuEJNbm2ayylssyDKHPVSsyUiPm4ICvm4+i4BHXHadlCMWdJ
z9DER0etXAVaC+JpV4rL9IzV4SG+rdRMyxTtSIJ6Z9KblK0lyRYKr+FhNM3W
BBk9jXfHFsSNeNMD6m80lJJehive9NC+3jPbNCoLz+wIPJot6BzImgwoPb7M
fskpoVBGabqRFIjCAzlyduqvyJEiXrQJusWhp7C6JblBttIcS8mpws038lDq
OTqV1jH/2tDceFN20vtWQ0f3KZteb3P37wYBeRaJ05lFh0b8d48I2vlkiYVk
Ce31B8LvApS53y0MhmhvN8wlS8wnS1Bqg4YWnVS2b8VX34fQvgUiCZ4+ZWnT
Sf5BJ9kjzdbeMyAzd+N+AzWbusBcDTF+ZC+J4CaAKqWIniNLey6trPZXscLP
3mwMb2MpnUD6zHLUFNkRHamUc6G0gY/xk2ExfgpItHs2vWt6zU4wmJWYSzQs
xk/uFOMXG2Jm0mVv/ouy+XQMXuPVUvXEtwp84lWa8OYFY7pdnmP3hLlL/IG8
VpRqZDuKRtTfwqYnvL/4mmxcaMFalKodaEHiLFApwE57g8Mm4KY1mAYYbVkJ
G+LTJh9Jlq5Rim9MN42wuTz55rlhIrWBqn1iEyRolqZFzG3ZuHCMWvwp0q73
VvRSqceCBF1pCufr37Ym0agmHDaUfLTxJDNJlhbstE6OmB72pLQgDlTt6/GC
BGUEaIH3jjWOomA45EobtfjFFDIuSFwHKi3D7ljjTjsGmj2uRGjyD94yP2U2
KbTd7TZr237vKhcTIkvMeiti4z37gWYjyqqRL2sOgtRVvW8/3AF2igzEd09W
QcPhiWW/q2T/UmYnf/6iGHuiMRH2d4FEffZkr9jJbb/qi/09INEI/boYO+0x
vinGTuurby37PSBRlOxmN1GAlkCO6YP6z1hNoSTdd5bpQ89EccsxPaz/GMr3
tsBQ1+Ofq0P/AqTyddw=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {166.062, 0.}} -> \
{-9., -2., 0., 0.}},ExpressionUUID->"de24d12c-8db9-4233-b979-24ebfdccd0ac"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(77\\). \\!\\(\\\"paragyrate diminished \
rhombicosidodecahedron (J77)\\\"\\)\"\>"}]], "Message",ExpressionUUID->\
"4dd69c50-363f-45b9-b457-ba6691b823f2"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .58876
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.631706 0.0685419 0.210461 0.0685419 [
[ 0 0 0 0 ]
[ 1 .58876 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .58876 L
0 .58876 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.1042 .50053 m
.06993 .44117 L
.12928 .4069 L
.16356 .46626 L
.1042 .50053 L
s
.16356 .46626 m
.12928 .4069 L
.19783 .4069 L
.16356 .46626 L
s
.12928 .4069 m
.12928 .33836 L
.19783 .33836 L
.19783 .4069 L
.12928 .4069 L
s
.0641 .42808 m
.02381 .37263 L
.0641 .31718 L
.12928 .33836 L
.12928 .4069 L
.0641 .42808 L
s
.12928 .33836 m
.16356 .279 L
.19783 .33836 L
.12928 .33836 L
s
.19783 .33836 m
.16356 .279 L
.22291 .24473 L
.25719 .30409 L
.19783 .33836 L
s
.06993 .30409 m
.1042 .24473 L
.16356 .279 L
.12928 .33836 L
.06993 .30409 L
s
.06993 .30409 m
.03565 .24473 L
.1042 .24473 L
.06993 .30409 L
s
.03565 .24473 m
.03565 .17619 L
.1042 .17619 L
.1042 .24473 L
.03565 .24473 L
s
.1042 .24473 m
.1042 .17619 L
.16938 .15501 L
.20967 .21046 L
.16938 .26591 L
.1042 .24473 L
s
.03565 .17619 m
.06993 .11683 L
.1042 .17619 L
.03565 .17619 L
s
.1042 .17619 m
.06993 .11683 L
.12928 .08256 L
.16356 .14192 L
.1042 .17619 L
s
.29146 .50053 m
.25719 .44117 L
.31654 .4069 L
.35082 .46626 L
.29146 .50053 L
s
.35082 .46626 m
.31654 .4069 L
.38509 .4069 L
.35082 .46626 L
s
.31654 .4069 m
.31654 .33836 L
.38509 .33836 L
.38509 .4069 L
.31654 .4069 L
s
.25136 .42808 m
.21107 .37263 L
.25136 .31718 L
.31654 .33836 L
.31654 .4069 L
.25136 .42808 L
s
.25719 .30409 m
.31654 .26982 L
.31654 .33836 L
.25719 .30409 L
s
.31654 .33836 m
.31654 .26982 L
.38509 .26982 L
.38509 .33836 L
.31654 .33836 L
s
.22291 .24473 m
.28227 .21046 L
.31654 .26982 L
.25719 .30409 L
.22291 .24473 L
s
.22291 .24473 m
.22291 .17619 L
.28227 .21046 L
.22291 .24473 L
s
.22291 .17619 m
.25719 .11683 L
.31654 .1511 L
.28227 .21046 L
.22291 .17619 L
s
.28227 .21046 m
.31654 .1511 L
.38359 .16535 L
.39075 .23352 L
.32814 .2614 L
.28227 .21046 L
s
.25719 .11683 m
.31654 .08256 L
.31654 .1511 L
.25719 .11683 L
s
.31654 .1511 m
.31654 .08256 L
.38509 .08256 L
.38509 .1511 L
.31654 .1511 L
s
.47872 .50053 m
.44445 .44117 L
.5038 .4069 L
.53808 .46626 L
.47872 .50053 L
s
.53808 .46626 m
.5038 .4069 L
.57235 .4069 L
.53808 .46626 L
s
.5038 .4069 m
.5038 .33836 L
.57235 .33836 L
.57235 .4069 L
.5038 .4069 L
s
.43862 .42808 m
.39833 .37263 L
.43862 .31718 L
.5038 .33836 L
.5038 .4069 L
.43862 .42808 L
s
.5038 .33836 m
.53808 .279 L
.57235 .33836 L
.5038 .33836 L
s
.57235 .33836 m
.53808 .279 L
.59743 .24473 L
.63171 .30409 L
.57235 .33836 L
s
.44445 .30409 m
.47872 .24473 L
.53808 .279 L
.5038 .33836 L
.44445 .30409 L
s
.38509 .33836 m
.38509 .26982 L
.44445 .30409 L
.38509 .33836 L
s
.38509 .26982 m
.41936 .21046 L
.47872 .24473 L
.44445 .30409 L
.38509 .26982 L
s
.47872 .24473 m
.47872 .17619 L
.5439 .15501 L
.58419 .21046 L
.5439 .26591 L
.47872 .24473 L
s
.41936 .21046 m
.47872 .17619 L
.47872 .24473 L
.41936 .21046 L
s
.38509 .08256 m
.31654 .08256 L
.31654 .01402 L
.38509 .01402 L
.38509 .08256 L
s
.69316 .50333 m
.64729 .45239 L
.69823 .40653 L
.74409 .45746 L
.69316 .50333 L
s
.74409 .45746 m
.69823 .40653 L
.69106 .33836 L
.72534 .279 L
.78795 .25112 L
.855 .26538 L
.90086 .31631 L
.90802 .38448 L
.87375 .44384 L
.81114 .47172 L
.74409 .45746 L
s
.63561 .43441 m
.58975 .38347 L
.62402 .32411 L
.69106 .33836 L
.69823 .40653 L
.63561 .43441 L
s
.63171 .30409 m
.66598 .24473 L
.72534 .279 L
.69106 .33836 L
.63171 .30409 L
s
.63171 .30409 m
.59743 .24473 L
.66598 .24473 L
.63171 .30409 L
s
.59743 .24473 m
.59743 .17619 L
.66598 .17619 L
.66598 .24473 L
.59743 .24473 L
s
.66598 .24473 m
.66598 .17619 L
.73116 .15501 L
.77145 .21046 L
.73116 .26591 L
.66598 .24473 L
s
.59743 .17619 m
.63171 .11683 L
.66598 .17619 L
.59743 .17619 L
s
.66598 .17619 m
.63171 .11683 L
.69106 .08256 L
.72534 .14192 L
.66598 .17619 L
s
.90802 .38448 m
.90086 .31631 L
.96903 .30915 L
.97619 .37731 L
.90802 .38448 L
s
.78795 .25112 m
.8022 .18408 L
.86925 .19833 L
.855 .26538 L
.78795 .25112 L
s
.855 .26538 m
.86925 .19833 L
.93741 .19117 L
.96529 .25378 L
.91436 .29965 L
.855 .26538 L
s
.8022 .18408 m
.84807 .13314 L
.86925 .19833 L
.8022 .18408 L
s
.86925 .19833 m
.84807 .13314 L
.91325 .11196 L
.93443 .17715 L
.86925 .19833 L
s
.30571 .56758 m
.29146 .50053 L
.35082 .46626 L
.40175 .51213 L
.37387 .57474 L
.30571 .56758 L
s
.84807 .13314 m
.80778 .07769 L
.84807 .02224 L
.91325 .04342 L
.91325 .11196 L
.84807 .13314 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 169.562},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzdnftvXUcRx09yfR0ntmM78SNJ87gObQ2htGlLaUFIQHlUCKj6okFI/BBV
iPYHBCoV7/d/AxRKJf6/kLN7unN87mf2fvfucamJFPt6H7Mz392dnZ2d3fu9
+++9/eOf3n/vnbfuz1569/7P337nrV/MvvWzdx8mTc40zZlZ0zR/mzXt5wcP
P3Y/wr/D9kf3x4LPP2x/7bV1P+wlNJMHidjDv3Yg7YOy4n9tf4akO0tUHKSF
v47K6PwF0lYSU4+WEfszpK0lYodlxP4EaRuJ2M16YluJ2CNlxP4IaZch7UoZ
2T9A2m492d9D2t4nluzvIG2/nuxvIe2gnuxvXBKfRLK/hrSr9WR/BWnX6sn+
EtIe+djJBg14ts15tv203356M6Udlol+O1V8mB+TQpnmrpdxCYi95hUmbjL9
O0t0VqDQEyl3IiL7SpbezGUEmbuZiK1CoTspdyoy93KWXiFz1xOx81DoKOWe
E5n7bpYeMZfRXTSYL0DaY5CmMvwdsQ1iPaPNryYcNqHQp1IuNUVsfjtLj6ZL
ZgU7SMS2PUlD7obI3EuL6enM7SVipDFsMl0Umftmlh4hdznViAoQTReykmwy
bYnMfUOkTGya0TdQnld9riktzrKVlNb+dsaZKgI1QyKsJxFIz3YDYohHKzCN
H1qtzkKaOuW+LrZLgtlWYQ1yD3zBSKXQwhd6vEiDkDjUGolj26h1X5w4vab9
rCxutCqtJrEINxLrxcJWbyOYjj7pJKN2yZSgmUvLG8mmrv5fq+DFjDZShftl
wtIcJ8AvpEbHFlHVMtRGJyytV8QmoUnCbiRhVVPzqxUc2EpNucuIGIiRYHFB
W+mnee0WSRQanOnEI2+4vpLFt53aIFUX+mPiNfWV4jYOO1lJF2WEIc1D1vNm
aohUZ2gg+PmoA/L0SCnS0kkDuFCI9dToNH0ibRQn98oQywDu8+2niVdTbfU6
lCMzhISO3KGNRCvkWmrUVtKB0Uat0Jg5l1B4KpGirqIZsiRrZFipurwQqDi/
5np94i0fNOpoWdhIqB0lerR7Jnpj8ElWALWfgZA2YwRr6MboU1mJKU3z0X9X
CwgD71KiezuJSrbnSfFJClzd5Ed5sCdpYXvQjRV11Kr7wxsJOJVyKXfEiWpJ
LwTJ0qKOaNi4IAKEBvF6LSFEHNJwK2KN2KCxloEn8BB8p8R/IOYaUVTjIElM
NdayrRGbhD6Vu9QTR1ZCNLDmHAe0JpNs5ugZrDcuEEvySUshaSkz5HbLwCGG
o2piW5CGJqm33QwNWlFUdUj8kjZx00LS/lgggd3pevhI7J1Ug8w3AlZdet0t
XkiicXU+5V4tg0dl05ZNmum0MdhKNYgeAaoad8QzcTX1bIXVhNb1MrRUrkli
UiWEGw2/sRGkuoRBoBdgJMqTBGPgb7X91F+uBEYIAJpNYca6J0LkqTSXCK20
arsqz9S56wm8wUKz4QG6czLgmXVAjRJ45jyjeeU6hkcEL6xVq5662y4DSmU4
CssLH23b3S3/iIBRXXXBpbRC6NTTDZtug8FOh6k2m0nZqU2q7KqrLhmQW2Vo
RWF5ANl6eMNj0j3Dy9GlzQWBrqo3ojciDOb9GwwUmmCrHecfpbW/G96CnjKI
ak4NqZzqLFPbGHsSljnuyCIaXdubC7LcOZs/Bx1b3xN4vvO6CjzVphicmIZP
NKVI7Pxp69jWBal/1VeweTLgUX8OoWj1ljoJyQ6hNsa2etWVlTZshdCqux2b
mENXSwsojS1XI7oW89g7L9Wco7obZTD62/05Z2/PPps7IrVILpqZm9ncsXf+
hB7N7xHQ831JcwjtcPJugoZEdk67a6ae6tQkxKjd9ZEQC0kUiWSH466IkzQE
l5xIJwnKQepmYq7no5/r5oupAPGymyR3iV/xctWzBlKPBR3eNJkzEFv0G3K7
z6FhR+fU9FDK1DSJZeZdk48NzwpAINIAoUU7iiCdcbV/DZekli83MpamCa1p
lzssBmo+EDcbTj1ndFmkvZm6EanGIvTR1BsHI/SMmReBr5BJA8Pc5SR77oDF
wiHUg9ZxeKqR9txxylOve66lcp1WUQ/tTXmYzzlv/ZEKpW372Q6a3vBq/xMa
hD0x5k5Il7Eaka2cBZuoPvKuF9SoAOp6Y26gW2lf4a5rgm5QQ27yTBJldUdV
DYl1VRiJdDRAKqozUtVesr1LfiDS3KMZosZQDNq1oeu2Vs69QWsRGzSwu81l
eYRj3jMdoAgGnussGFBxz2rdurYUxwu6c6qJ9kAXy+R1db1QzqIV0JiaY9f3
lS7XfpE8vfBY3oohITnM1yIAelg0jtCxc3IOas5zD3bUhos4fxQKh3KZsyQ1
1FuNV7OzJNU5lQ/eUG8kqTzHe385hwlxXAVTPuhLdQaYBUjqeGyYHoc09fih
CxNb9lJI46hoMkBU8NSYDuKFdLZ6teTTHoxucMPlevCIYdtGq/4EWwc/DqA+
49V150gXb5e7QbafyaMRZg2qEZH56IzcVjHHGwH5WUgjDUuTtLtuod4dJBI5
UdRbn7kIjWXHjlf3cx5cZP0U3q30r87NGVDqhWM3AsMdpkvi8iSk+cckPZc3
MULjLwARktT7zBYdSm24t8DcGnchrXsvZz+JQ6YLNWUWsymHovE+qKu2uyPW
fdoDNIRfdQ4yN8JTMDZpBBPD6qGCG6m4JH9UTqX3LKQFuM97Gj0uhb2XGgge
Wi8HEY1Ft7DXoK66W6R2qe5z7c9pXqK41k7Sgpz35OZXykn6VHRz29o1V2s5
L+an2MzWfQ7SaCPQh2duOGVH0uK5od77niRQVO0ilOPomQKJ3NuDwuykcl+A
tEyPuPuoyXHNqrJuA5ZUkVE2E19FP2/r1vBs08PObs9nqRSC7GYJUNCsy4to
lJvjzg8/zIg3+9SDKttkARjbHNFzTFMR0eddAWgV9K/RDcFpf/lOeTbH3aVk
JYEjQO0QKuJyK8Olez1kmqaKU/NLrgSINamnrQTHQIphIEg3QN2LiKGkmbSu
j5Ta2ua2SA+EtFWgQVjQ4OqwcH3re17LlksYhNx9bwk2O/jL9WyS48FXbIvr
usbaknV9f9DxtMIeI21FGyefxOK6/uRZru4JQUFDjLbJY0NBi7r7usiSI6oQ
Cv9VpsUkasRRgzJPCRQ14tTUVUdjIRSkocl9QCT899gWi1NTV71g+cUyKEgF
0Xn12FCQIUvtjg2FT68KihpxauqqMfSFUJAKosAPgkK9++Oeki5ZV4VC1RUd
FKSC6BrJdsdELy1mNHydbmep8osnII2c/yORabLQCCGRbXPQbepP4zCvASC0
G9y+XTjOaVR5BB6NzgBAGGzdMc9pXPWLhEVAq8Susd3Gtg5I7BcgrXua+DSa
uwQZze2M2DV7v5oNz9ibJdIG5DvsvtbjNO7+CTKaIOSpvu6Lba6mvCPKdT4c
eLl2sEwDsGOJXFKuZ091irgvetNplHv0QhyoBOxN1gEB6p1ozPgvTZIkpPII
S/dlwSAdaRBig6gUsaYSNeCJyufLwFNPLtTHKt1jFvVs3T3LFJhU3yG1w20y
BgjVZyCtiw1xbZtJ6iL3UKro/coBAOqdEmpD5U99qM3OBQk86ioKtrkVAWXr
xely9c4Gjd+JN72ridZwSoN4EL4grJhPQdqt8LP3uGo+AoJmooU1TbN1XcGE
dqmuu120PnTjLymkbxahuJIqqrcO9opr7BfXcC5VkHFD+D3hy0tWsxpC4b/U
LqK2ZF018o0m4x1I675PzzqSGnADh90aNAnLa9COjICisOf4sHpVRL967avm
BgPVJbFpGaCw+EKxSYGOfQlCrUsbUeqCcPckjKN4C0V+8JdW45q6/sOxi+uS
sO6XpgRhj8qEJVuuhuGaurTXJuUbbMiQFGd08dO81FCuPPVCrjy9jUU76jCD
Q6/F5QelpWBzmvpUjhihcjehXOAlrKe24D/5v2XzFpSjgR4GtT1uEFiPtrP/
xRyhEHn/LVjIze1dnlysl9YSc/YU8TM+cyYBST+IXBe0h9WgC4y0flxMDNs+
Kgbr4kSilXcmllMdj1SXvmPQfZwgCBH9eP5Nchcly1VPbqwGGSG0O3zZZ84i
quniYPmLtFaDrGDLfTWyRLOacDgSy5E5TmxSXWKY7OEM67avIsPXcmk3lf+G
NNquk/36WmSOtKB5GmhDlr+tQsxZDbqOQebW65G5G10BWu7uZvL8b+Dk8uTG
JNX2Rp+tuV3f05xMiBxw0RcyPN6LH2jRJJeXatYMYyPapn4QP7wOxUkzULl7
PgmaDu/H4m+Ixf/hF6fx/PfRihcykyn+fciiPnt/tOI0Dv85WnEaW/+Kxd+E
LJqh4xUn8+yD0YrTzuLfsfg9yCIt2S/uvqL+YSz0o/bXhTaHNGVX6Cftr6A4
/hMTQu6h/rk581/q7vKV\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {168.562, 0.}} -> \
{-9., -3., 0., 0.}},ExpressionUUID->"fc1d499a-1ce6-4816-835e-6a1575db3591"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(78\\). \\!\\(\\\"metagyrate diminished \
rhombicosidodecahedron (J78)\\\"\\)\"\>"}]], "Message",ExpressionUUID->\
"0d6960c9-0402-4456-816b-ad54e23bad13"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .58876
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.538076 0.0685419 0.372633 0.0685419 [
[ 0 0 0 0 ]
[ 1 .58876 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .58876 L
0 .58876 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.1042 .50053 m
.06993 .44117 L
.12928 .4069 L
.16356 .46626 L
.1042 .50053 L
s
.16356 .46626 m
.12928 .4069 L
.19783 .4069 L
.16356 .46626 L
s
.12928 .4069 m
.12928 .33836 L
.19783 .33836 L
.19783 .4069 L
.12928 .4069 L
s
.0641 .42808 m
.02381 .37263 L
.0641 .31718 L
.12928 .33836 L
.12928 .4069 L
.0641 .42808 L
s
.12928 .33836 m
.16356 .279 L
.19783 .33836 L
.12928 .33836 L
s
.19783 .33836 m
.16356 .279 L
.22291 .24473 L
.25719 .30409 L
.19783 .33836 L
s
.06993 .30409 m
.1042 .24473 L
.16356 .279 L
.12928 .33836 L
.06993 .30409 L
s
.06993 .30409 m
.03565 .24473 L
.1042 .24473 L
.06993 .30409 L
s
.03565 .24473 m
.03565 .17619 L
.1042 .17619 L
.1042 .24473 L
.03565 .24473 L
s
.1042 .24473 m
.1042 .17619 L
.16938 .15501 L
.20967 .21046 L
.16938 .26591 L
.1042 .24473 L
s
.03565 .17619 m
.06993 .11683 L
.1042 .17619 L
.03565 .17619 L
s
.1042 .17619 m
.06993 .11683 L
.12928 .08256 L
.16356 .14192 L
.1042 .17619 L
s
.29146 .50053 m
.25719 .44117 L
.31654 .4069 L
.35082 .46626 L
.29146 .50053 L
s
.35082 .46626 m
.31654 .4069 L
.38509 .4069 L
.35082 .46626 L
s
.31654 .4069 m
.31654 .33836 L
.38509 .33836 L
.38509 .4069 L
.31654 .4069 L
s
.25136 .42808 m
.21107 .37263 L
.25136 .31718 L
.31654 .33836 L
.31654 .4069 L
.25136 .42808 L
s
.31654 .33836 m
.35082 .279 L
.38509 .33836 L
.31654 .33836 L
s
.38509 .33836 m
.35082 .279 L
.41017 .24473 L
.44445 .30409 L
.38509 .33836 L
s
.25719 .30409 m
.29146 .24473 L
.35082 .279 L
.31654 .33836 L
.25719 .30409 L
s
.25719 .30409 m
.22291 .24473 L
.29146 .24473 L
.25719 .30409 L
s
.22291 .24473 m
.22291 .17619 L
.29146 .17619 L
.29146 .24473 L
.22291 .24473 L
s
.29146 .24473 m
.29146 .17619 L
.35664 .15501 L
.39693 .21046 L
.35664 .26591 L
.29146 .24473 L
s
.22291 .17619 m
.25719 .11683 L
.29146 .17619 L
.22291 .17619 L
s
.29146 .17619 m
.25719 .11683 L
.31654 .08256 L
.35082 .14192 L
.29146 .17619 L
s
.47872 .50053 m
.44445 .44117 L
.5038 .4069 L
.53808 .46626 L
.47872 .50053 L
s
.53808 .46626 m
.5038 .4069 L
.57235 .4069 L
.53808 .46626 L
s
.5038 .4069 m
.5038 .33836 L
.57235 .33836 L
.57235 .4069 L
.5038 .4069 L
s
.43862 .42808 m
.39833 .37263 L
.43862 .31718 L
.5038 .33836 L
.5038 .4069 L
.43862 .42808 L
s
.44445 .30409 m
.5038 .26982 L
.5038 .33836 L
.44445 .30409 L
s
.5038 .33836 m
.5038 .26982 L
.57235 .26982 L
.57235 .33836 L
.5038 .33836 L
s
.41017 .24473 m
.46953 .21046 L
.5038 .26982 L
.44445 .30409 L
.41017 .24473 L
s
.41017 .24473 m
.41017 .17619 L
.46953 .21046 L
.41017 .24473 L
s
.41017 .17619 m
.44445 .11683 L
.5038 .1511 L
.46953 .21046 L
.41017 .17619 L
s
.46953 .21046 m
.5038 .1511 L
.57085 .16535 L
.57801 .23352 L
.5154 .2614 L
.46953 .21046 L
s
.44445 .11683 m
.5038 .08256 L
.5038 .1511 L
.44445 .11683 L
s
.5038 .1511 m
.5038 .08256 L
.57235 .08256 L
.57235 .1511 L
.5038 .1511 L
s
.69316 .50333 m
.64729 .45239 L
.69823 .40653 L
.74409 .45746 L
.69316 .50333 L
s
.74409 .45746 m
.69823 .40653 L
.69106 .33836 L
.72534 .279 L
.78795 .25112 L
.855 .26538 L
.90086 .31631 L
.90802 .38448 L
.87375 .44384 L
.81114 .47172 L
.74409 .45746 L
s
.63561 .43441 m
.58975 .38347 L
.62402 .32411 L
.69106 .33836 L
.69823 .40653 L
.63561 .43441 L
s
.63171 .30409 m
.66598 .24473 L
.72534 .279 L
.69106 .33836 L
.63171 .30409 L
s
.57235 .33836 m
.57235 .26982 L
.63171 .30409 L
.57235 .33836 L
s
.57235 .26982 m
.60662 .21046 L
.66598 .24473 L
.63171 .30409 L
.57235 .26982 L
s
.66598 .24473 m
.66598 .17619 L
.73116 .15501 L
.77145 .21046 L
.73116 .26591 L
.66598 .24473 L
s
.60662 .21046 m
.66598 .17619 L
.66598 .24473 L
.60662 .21046 L
s
.57235 .08256 m
.5038 .08256 L
.5038 .01402 L
.57235 .01402 L
.57235 .08256 L
s
.90802 .38448 m
.90086 .31631 L
.96903 .30915 L
.97619 .37731 L
.90802 .38448 L
s
.78795 .25112 m
.8022 .18408 L
.86925 .19833 L
.855 .26538 L
.78795 .25112 L
s
.855 .26538 m
.86925 .19833 L
.93741 .19117 L
.96529 .25378 L
.91436 .29965 L
.855 .26538 L
s
.8022 .18408 m
.84807 .13314 L
.86925 .19833 L
.8022 .18408 L
s
.86925 .19833 m
.84807 .13314 L
.91325 .11196 L
.93443 .17715 L
.86925 .19833 L
s
.30571 .56758 m
.29146 .50053 L
.35082 .46626 L
.40175 .51213 L
.37387 .57474 L
.30571 .56758 L
s
.84807 .13314 m
.80778 .07769 L
.84807 .02224 L
.91325 .04342 L
.91325 .11196 L
.84807 .13314 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 169.562},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzdnVlzXcURx485kiJbQoutBW+yxGZjltgsiaHykIQtrFUJi/OSBxdFAQ8U
FOEllS/B1yAhgVTl+zk+MyfTV+f+eu5/7hzJFq6ydDVLT/d/enp6epb73p1v
P//0yzvffvHJnf03v7nz9edffPLX/Te++uZeUnuqaU7tN03z/X7Tfb5772P/
I/w76H70f8z4/F33a7ur+/eJhKa9m4jd+2sT0v5WVvzd7mdIuj5HxUFa+Otq
GZ13IG0hMfV4GbG3IW05ETsoI/YWpK0mYnv1xNYTsYtlxP4Aaecg7ZEysm9C
2lY92TcgbfuBJfs6pO3Uk30N0nbryb7qkngQyf4e0s7Xk/0dpF2oJ/tbSLt4
7GSDBXyoy3khfXqx+7TTfaKOyoj+aCJxLz8mhTLNDS/jppdxFlop7N/9RHsB
Cj2TzX025bYi7oU6vZcaWIJC17O5T6fcxaNh7lJq4DQUuprNvZZyfyEyV2i7
SJnPQNoTYrknIU1lvdCan0/YPAyFHsvm2kAlIUaYwXZTAxtQaD+be5ByV4+G
ue3UABmGvWzulZS7JjJHnsq5RCUaQHRdyEu6JJa7nBpYF9kkP82cvoFBPe9z
TWk0yqhclG4hpXW/HQ1W/daVJAJZ5l4hhgh2ApP+DGcrrxzJ+xCkqYOPBLOl
wjLk7vqCkUkZTnxeOZqug2YU2RJa+dgyasUXJw7IxcmsxK4/3vXyNP8vJfEI
Z3WV2HoWo5eM6JCzQGOdpjfSNrUuTcSqb/BuQouM506ZsGQiqNvUuqTRZxLD
RSIK5XphaYajpqh3SFgyY2rdh5OwqiP6TqpBbcwjYiBGzOVrUN+t94BMDm+H
07f1opE3nDfJk9vIspivQaMv9ELrMfdWDxVZtIwwZHlomJuCkENPBjBfI4zC
EBkkm09GipSwUIiVxNJi+kTWSKjbenXJvIReuZUIkKtGg5ckjuTR8aHpcTk1
atPowGOjVmi+JlLUTzQ8CJQwfQZkbniskVOhGuNCoOJwPGwG/s8VNUkqV0qX
Ft1El9BbSehdy/JJhoTazUBIay2CNahFDLIsxJTopHf/XZMySKO2cnRJUYkG
QbiZ6D6WICQ+VetNEEbLi5pBc9Tdvk9VrV0bgYa6wNxLIBFloqK6xTNBsrRo
Ixr2LHyEgIBq9lR4LiZ4iDWqQbqWgScwF8KlxFIgFuZT8qDMdlOuuzvSeq0R
m4Q+lTs7IY5shGYrFqHu152KJFAHuSsFiiQTsDQVknUyv2+rDBxq1HUs5brs
RKrtb2do0GxE1sRNC0k7xwcS2X6aPoMj5Ab/SOyzqQa5fsSz7dqSXp1OuefL
4FFFJHhIMPJCbAon9ScqNiSIF+KZ7M+i5yMsJbQulaGlSlyDFklMJo/WVaQa
RI94IQwCfwFG4rRNMIY2lsySyoCSEDQiCFC1bhjtbqSOqNjilWZpdQlsTvpg
slj1AN08PvAopEnBn9MJCmKYqNhSmcakCl7geckzdxtlQKnC1gAVheWJj5b8
xDsBRu2r6w9KK4SOFuG07ifo1LphViCvivZLzJmluZaaVBe8FM9ZL0MrMsxK
QORz5deToJehphk1Gh8EnBpjIl/4PsJgtnigHDSohvGW7nfDS9b7DNFxjCvi
hcqpg0Ztoz5wdzgtDvQHytqbFbJYMimk6za5G6PEAVFRo8+F4B2HTzHYOg2f
1OGY33Yl7kmTCTx3Y+zB8mZJF8xJczfiqYZAWQVUXVoWAnoc6y0bjsPVaTfn
qDqd3y8mXlQnjuqulsF4NIv8qcAzuiMdiHbqizQ6v/usxt9pSI8A3dGEj6Y2
nDc5eStBQ93l7HOT1GQsCTEa7yvHh5hbNyTRqSXbFnfHU3vUoOymriLW87l4
QqATbC3lkq3eSoK52wFzekoFvd00me0Ym6ib/I5zokIcLnpUoqZM6X4++DDE
KisAgUjaQVNuRE/a0+r+GjrWHV9uvFT1zGl57DZEKySayKihiOpUV5hvp27J
FsEQumfR05sROsX8gsBX6w1Fi26rJwXGoRwR5EWzndFQTxSoPJnRstgwdc+F
VK43KOo5ArMbFl7Ou21kxt2BM6Cc380hyls9LYA91VN3I1VZrdxqAp2mu4w9
V88DUJ8bcwMjTN6cGwkvaojsDKW5c2PBNqY6g7owWPcED4VC/mSPek9U7Rlb
YeSVllSfZvMBPVPDIput7pznuTdoL6RPpMz98rH82KKZrZq6NE0EAIKPlz9Z
a9NhvHU7FaSk1cJambzuNCaUo3FbQ8/OVw2GwlkW34+penb/YECoJ0ba1wdn
1bO7yHvjMOmGQ1QCkavc2V3dlrkNPw6FQ7nMHpF6flu1C2pdSrM9IjVInz+U
QW3Ey3wc1vBvdVXBRGkkoFo3b2YJpvzhDGqD7jKqWwP98a95b3o0jplV65KN
JcOngqee1SAYr3kwuov+c/XgEQD+mm52XXMd1JhD/jQGAfWUJ6+r5/05uty1
sJ1MXu4MW64eAWSMqick8ycuCKCnIY2MCHV0f4dCvRBYoyu+jmZ2fgXAcicv
iI9nPbjIWym8MKnczSvHZ8pZUu8YuycryIg+B2n+ZsZEbLroOlrr1XDveYUk
9bqynROlNm5AWv8Ijh3tVV0XO6TYFtfdhLpF+i60e9ODJwQv+miYeoqQ3GTS
QhJWpUfliJ66E+GeaBTafQHSAtynPcscp7OJ5xcIHjdWZXNo0SqV6qrwLENd
avel7udiXqI417ZpQs6HbfMzXps+FVEx19ein+WXtK2GLd2Jg5cgjRYCk/BM
qVNWk2brMpXjUGnDyyY1VkfliJ4rkXr6Rx2dxNCvIC3TI+5aqD1sWVWMTGHJ
tA0uTRZRNpUkX5d4VuG2GrbJaoNxBJDdrAEUxDCNuny3GOXmcPCDyNNsO8BD
YNy/L89hBD53c8hSEbO/dpuhWdW/HjcEp/vl7x2yS+1OQwseILkAl3vZurWe
O1SxS43ezlTkz73qsWicMRevQM0MvmSS1hMEA3yHpzR6pSRm3Xd1NpiGGwMO
UprzTFYlpC1BW4QFKVSPBfkEoeVtr2XLJQxC7o437Zrf/Jt6Nmkt7Ruz2XVd
J2vOun4M6HBaYY+R5aPFkk9idl1/8MxX94igIBWjpfnYUKi32mo0qhAK/3ml
2SRqxFGPS54QKGrEqamramMhFGShKWRAJPyH1WaLU1NXvfD4chkUZIJoj3ps
KMijonbHhsKnVwVFjTg1ddXT7YVQkAmiwx4EhXoXx93dnLOuCoVqK3ooyATR
tY6NnomJtJjR8FW3zbnKzx6ApDk/I5FpsJCGkMi2OOgX8idRzWsACO2GUG9/
BOckmjwCj7QzABCUrd/aOYmzfpGwCGiV2DW+29jeAYl9C9L6N4ZPortLkNHY
zohds/arWfCMvVgia0Dxwv77OU7i6p8gowFC0elLvtgWasoHotzgw66Xa5vJ
pIA9SxSScqOIalDEDSHSDpR75pM4UAnY26wDAtQ70ZnBgKobsCaTR1i6rwMG
6ciCEBvuOx0qaypRA56ovFgGnrrJoj5kWbS1okqsMulqB3Wu3WERZsrnIa0/
D+L6Nm3qoqLbJ+6bmQMA3Md0hTZU/tRH12wvkMCjrqIDNlcioOy9OF3ubgsJ
+tt6w7uaaA2n7tNc7qFmmjF/CWlXws+JJ+XyJzBoJNpRpvy5C1cwoV2q6y4X
rQ/ds5N0jG8/QvFIqui+lUeeSFGNneIazsUHcm4Iv2d8eclrVo9NqC9XuqjN
WVc9KUeD8Tqk9V+MZx2p3tXYytagQVheg1ZkBBQddX40CqbeAFC/Q0CtW9Mu
iU3TAB2FLxS75tLE2GLTQpS6INw3CXoUb57Iz/PSbFxTl5afal0Slnixr227
WiYs+XI1DNfUpbU2GV97LTuO6EyjHOSlhnLlqRdy5emtKlpRhxEcei1OPygt
XQBQvtrJY4TK7UG5wEuYT23Cf+7+snkFypGiB6W21wsC69F3xm6wNTVF/+2g
j5s7cWFytl1aTszZs8LP+8yZBCT94KS7YD2sBl1apPljLTFs66h4QBcHEs28
+2I5NfBIdenLAt3vywhCxDief3vcRcly1Z0bq0FOCK0O3/eZs7PYdFnQctUH
T60GecGW+8fIkvtu6CDtqliO3HFik+oSw+QPZ1i3dRU5vparPitnNWi5Tv7r
nyJzZAUt0kALsvwNFWLOatAVDHK3PojMXe4L0HR3I5Pnf5Uml6cwJpm2DyfZ
mlr13eRkQmSXi97K8Hg7fqBJk0JeqlszPBvRNfXn+OEDKE6Wgcrd9knQcPgh
Fv9QLP5Pvzjp8z9GK17ITKb4R5BFffbDaMVJD/81WnHSrX/H4h9DFo3Q8YqT
e/bjaMVpZfFTLH4bsshKThZ3X0T/Tyz0l+7XmS6HLGVf6LPuVzAc/40JIfdA
/9yc+h+4xMy7\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {168.562, 0.}} -> \
{-7., -5., 0., 0.}},ExpressionUUID->"54f7e560-970c-424b-b7eb-ad784523af42"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(79\\). \\!\\(\\\"bigyrate diminished rhombicosidodecahedron \
(J79)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"0136868f-8df5-41e5-9e99-\
8752e8fe03ab"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .58876
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.538076 0.0685419 0.372633 0.0685419 [
[ 0 0 0 0 ]
[ 1 .58876 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .58876 L
0 .58876 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.29146 .56908 m
.22291 .56908 L
.22291 .50053 L
.29146 .50053 L
.29146 .56908 L
s
.12928 .4069 m
.12928 .33836 L
.18864 .37263 L
.12928 .4069 L
s
.12928 .33836 m
.16356 .279 L
.22291 .31327 L
.18864 .37263 L
.12928 .33836 L
s
.0641 .42808 m
.02381 .37263 L
.0641 .31718 L
.12928 .33836 L
.12928 .4069 L
.0641 .42808 L
s
.16356 .279 m
.22291 .24473 L
.22291 .31327 L
.16356 .279 L
s
.22291 .31327 m
.22291 .24473 L
.29146 .24473 L
.29146 .31327 L
.22291 .31327 L
s
.06993 .30409 m
.1042 .24473 L
.16356 .279 L
.12928 .33836 L
.06993 .30409 L
s
.06993 .30409 m
.03565 .24473 L
.1042 .24473 L
.06993 .30409 L
s
.03565 .24473 m
.03565 .17619 L
.1042 .17619 L
.1042 .24473 L
.03565 .24473 L
s
.1042 .24473 m
.1042 .17619 L
.16938 .15501 L
.20967 .21046 L
.16938 .26591 L
.1042 .24473 L
s
.03565 .17619 m
.06993 .11683 L
.1042 .17619 L
.03565 .17619 L
s
.1042 .17619 m
.06993 .11683 L
.12928 .08256 L
.16356 .14192 L
.1042 .17619 L
s
.22291 .50053 m
.22291 .43199 L
.29146 .43199 L
.29146 .50053 L
.22291 .50053 L
s
.29146 .50053 m
.29146 .43199 L
.35082 .46626 L
.29146 .50053 L
s
.29146 .43199 m
.32573 .37263 L
.38509 .4069 L
.35082 .46626 L
.29146 .43199 L
s
.22441 .41774 m
.21725 .34957 L
.27986 .3217 L
.32573 .37263 L
.29146 .43199 L
.22441 .41774 L
s
.32573 .37263 m
.38509 .33836 L
.38509 .4069 L
.32573 .37263 L
s
.38509 .33836 m
.35082 .279 L
.41017 .24473 L
.44445 .30409 L
.38509 .33836 L
s
.29146 .31327 m
.35082 .279 L
.38509 .33836 L
.32573 .37263 L
.29146 .31327 L
s
.29146 .31327 m
.29146 .24473 L
.35082 .279 L
.29146 .31327 L
s
.22291 .24473 m
.22291 .17619 L
.29146 .17619 L
.29146 .24473 L
.22291 .24473 L
s
.29146 .24473 m
.29146 .17619 L
.35664 .15501 L
.39693 .21046 L
.35664 .26591 L
.29146 .24473 L
s
.22291 .17619 m
.25719 .11683 L
.29146 .17619 L
.22291 .17619 L
s
.29146 .17619 m
.25719 .11683 L
.31654 .08256 L
.35082 .14192 L
.29146 .17619 L
s
.47872 .50053 m
.44445 .44117 L
.5038 .4069 L
.53808 .46626 L
.47872 .50053 L
s
.53808 .46626 m
.5038 .4069 L
.57235 .4069 L
.53808 .46626 L
s
.5038 .4069 m
.5038 .33836 L
.57235 .33836 L
.57235 .4069 L
.5038 .4069 L
s
.43862 .42808 m
.39833 .37263 L
.43862 .31718 L
.5038 .33836 L
.5038 .4069 L
.43862 .42808 L
s
.44445 .30409 m
.5038 .26982 L
.5038 .33836 L
.44445 .30409 L
s
.5038 .33836 m
.5038 .26982 L
.57235 .26982 L
.57235 .33836 L
.5038 .33836 L
s
.41017 .24473 m
.46953 .21046 L
.5038 .26982 L
.44445 .30409 L
.41017 .24473 L
s
.41017 .24473 m
.41017 .17619 L
.46953 .21046 L
.41017 .24473 L
s
.41017 .17619 m
.44445 .11683 L
.5038 .1511 L
.46953 .21046 L
.41017 .17619 L
s
.46953 .21046 m
.5038 .1511 L
.57085 .16535 L
.57801 .23352 L
.5154 .2614 L
.46953 .21046 L
s
.44445 .11683 m
.5038 .08256 L
.5038 .1511 L
.44445 .11683 L
s
.5038 .1511 m
.5038 .08256 L
.57235 .08256 L
.57235 .1511 L
.5038 .1511 L
s
.69316 .50333 m
.64729 .45239 L
.69823 .40653 L
.74409 .45746 L
.69316 .50333 L
s
.74409 .45746 m
.69823 .40653 L
.69106 .33836 L
.72534 .279 L
.78795 .25112 L
.855 .26538 L
.90086 .31631 L
.90802 .38448 L
.87375 .44384 L
.81114 .47172 L
.74409 .45746 L
s
.63561 .43441 m
.58975 .38347 L
.62402 .32411 L
.69106 .33836 L
.69823 .40653 L
.63561 .43441 L
s
.63171 .30409 m
.66598 .24473 L
.72534 .279 L
.69106 .33836 L
.63171 .30409 L
s
.57235 .33836 m
.57235 .26982 L
.63171 .30409 L
.57235 .33836 L
s
.57235 .26982 m
.60662 .21046 L
.66598 .24473 L
.63171 .30409 L
.57235 .26982 L
s
.66598 .24473 m
.66598 .17619 L
.73116 .15501 L
.77145 .21046 L
.73116 .26591 L
.66598 .24473 L
s
.60662 .21046 m
.66598 .17619 L
.66598 .24473 L
.60662 .21046 L
s
.57235 .08256 m
.5038 .08256 L
.5038 .01402 L
.57235 .01402 L
.57235 .08256 L
s
.90802 .38448 m
.90086 .31631 L
.96903 .30915 L
.97619 .37731 L
.90802 .38448 L
s
.78795 .25112 m
.8022 .18408 L
.86925 .19833 L
.855 .26538 L
.78795 .25112 L
s
.855 .26538 m
.86925 .19833 L
.93741 .19117 L
.96529 .25378 L
.91436 .29965 L
.855 .26538 L
s
.8022 .18408 m
.84807 .13314 L
.86925 .19833 L
.8022 .18408 L
s
.86925 .19833 m
.84807 .13314 L
.91325 .11196 L
.93443 .17715 L
.86925 .19833 L
s
.30571 .56758 m
.29146 .50053 L
.35082 .46626 L
.40175 .51213 L
.37387 .57474 L
.30571 .56758 L
s
.84807 .13314 m
.80778 .07769 L
.84807 .02224 L
.91325 .04342 L
.91325 .11196 L
.84807 .13314 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 169.562},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzNnVtzHcURx9daSUiWLMmyLCPbyBLG2BhDDNjBSeWB3CDcUhWgKnl1URTw
kEqK8ELxJfI1cuGSqnw/Rzs7mT5nzq9n/6OVjuUqS0ezO73d/+np7unp2fPh
46+/+OzPj7/+8tPHB+989fivX3z56d8O3v7LV0dN7bmmOXfQNM0/Dpru85Oj
j/FH+HfY/Yh/DHz+e/frctf324mGpn2SiB39dRHavqm7/YPuZ2i6e4yOWVv4
63YdnfehbTEx9UIdsfegbSURO6wj9i60rSdi++OJbSZi1+qI/Q7aLkHbs3Vk
34G2nfFk34a2y2eW7G+hbXc82d9A25XxZH/tkjiLZH8FbXvjyf4S2q6OJ/sW
tF2bO9lgARe6K2+kTw+6T7vdJxqogujPJxJH1/umcE9z37vwmndhG55SOb4H
ifYi3HSvePWVdLUVca/U6f30gGW46W7x6svp6tLpMHc9PWAVbrpdvHonXX1G
ZK7SdpEyn4e2W+J9L0KbynqlNd9L2FyAm24Wr9pEJSFOwINdSQ/YgpsOilcP
09X102HucnoAGYb94tUb6eqGyBxFKpcSld4AYuhCUdJ18b7n0gM2RTYpTrOg
LzOoez7X1EazjO7rpVtMbd1vR4PVuHUtiUCWOSpEjmAnMOlP7q28+0jeBWhT
Jx8JZkuFFbh6xReMTEru+Lz7yF0HzaiyJbTysWXUmi9OPyGXJi8ldv35rt9P
/n85iUc4q6vE1rMYUTKiQ8ECzXVyb6Rtal9yxGps8EFCi4znbp2wZCJo2NS+
pNHnE8NVIgr3RWHJw9GjaHRIWDJjat8LSVg1EH0/9aBnHEfEQIyYK/egsduM
gExOb4fT9/Rbe97Qb1Ikt1VksdyDZl8YhdZj7t0IFVm0gjBkeWiam4JQQE8G
sNwjzMKQGSSbT0aKlLBSiLXE0lL6RNZI6Nt6fcm8hFF5lAhQqEaTlyTuyWPg
Q+5xJT3U3GgWsdFTyF8TKRonmh4ESnCfAZn7HmsUVKjGuBKofjpOm4H/c0WP
JJWrpUuLbqJL6K0l9O4U+SRDQs8tQEhrLYI1qEWfZFnsW/ogvfvvmpSsjZ5V
okuKSjQIwouJ7s0EIfGpWm+CsLe8qBnko57EMVW1duMEaKgLzP0EElEmKmpY
PAiStfU2ouHIwkcICKhmT4XnWoKHWKMepGsFeAJzIV1KLAViwZ9SBGW2m666
uyOt9zRik9Cn+7YnxJGN0LBiEep+35lMAg2Qu1KgTDIBS66QrJPFfTt14NBD
3cBS7stBpPr8ywUa5I3ImrhtoWl3fiCR7Sf3GQIhN/lHYm+nHhT6Ec+2a0t6
tZqu7tXBo4pI8JBgFIWYCyf1Jyo2JYgX4pnsz5IXIywntK7XoaVKPAYtkphM
Hq2rSDWIHvFCGAT+AozEaZtgDM9YNksqA0pC0IwgQNW+Yba7mTqiYotX8tLq
EtiC9MxZrHuAXpwfeJTSpOTPaoKCGCYqtlSmOamCF3he9szdVh1QqrBjgOqF
ZcdHS37inQCj56vrD2qrhI4W4bTuJ+jUvsErUFRF+yUWzJKvpUeqC17K52zW
odUzzEpA5Ev3byZBn4OeZtRofhBwao6JYuGnCIPZ4kw5aFLl+Zbud8NL1qcM
0TzmFfFC96mTRn3G+MTddFs/0c+UtTcrZLlkUkg3bHI3RokDoqJmnyvBm0dM
kW2dhk/qdCxvuxL3pMkEnrsxdraiWdIFC9LcjXjqIVBWAVWXlpWAzmO9ZdMx
X512PkfV6fJ+MfGiBnHUd70OxtNZ5M8knjEc6UC0qi/S6PLus5p/pyl9AtCd
TvpoZsP5IjfvJGhouJx9bpKajCUhRvN9bX6IuX1DE1Ut2ba4O5/a0wblShoq
Yr18FSsEOsE20lWy1TtJMHc74JiRUsVoN01hO8YcdVPecU5UiMMlj0qvKTO6
X04+5FgVBSAQSTvI5fboSXta3V95YN3x5eZLlyMwmfENnbbjHXCt+xUI0WKI
fBZF+z2AM6hbGKfuvlZJHEZiyVORE8DfQoCFBBMNvyWy1ahuoZoyDUWPIA+5
lWOoxQOqtGafLA1Mw3M13Rdth1oyYCbCMsnlCE0NWhaBcnnjhnzBTuTSmU1u
obpb7yLIavetJ9DJsxVMt7r1T2NuzGX21l2LCaNB99mDyM5Qm+sGK3YsVWfp
wmDDE4IRyu6TPYpBpzoytpgoKy2xTgPwzDQ9U8Mqm61ukpe5N2ivpk+kzHGl
WF+haMIStK6nz/qSmwgAhHCuXERr7rA/YDuTj6SFwUadvK4bE9RLrZ4heu6x
Ef98nVRtUXbLhxmhSIy0L+Zh1TJd5L1xvCkBh5sXTVHKUpmubstczl+Am8N9
he0gtVTbFqT+tpw3LUjrDT01916utSCN6M/ocbbCP6xVB4m25+BOPLWkqGxa
Ca5y7QXBRUcV1cx/rO4ac5BDfRRhqW54qFVlKshqyQY9947Hs+vhY4nFGJDL
WxAEbbbhURXxqumIcqEGPeOlomw0LLHErnRizE3buayV8x+qMMa4WkxZLs6g
Z7wMbWR5adbE4xbq2UF1i0G1s7Xxv3o6tFS4QXK9Am0TRerTRrzyvGV5F4GQ
UsL4Gd+kHlF2CzPIN70Kbf5eyEQkUX8ibSsTK/4rB+6td5Ukt3JT4u4+tMV3
6ViFsB//zcSxeZwcm8tRn418laZnfYnL1zxAls1jyOWHloLfTp/UBQCpj7oN
4ZYzCs99A9oCZKve1Oxt/MS7F9zgdOeJM/dtsplZV4Vdgb7EwcPu55J3NQph
45QlowT/oqbDzNBZ/rL+RLX1MHtBnD4UOZ0EYGb4iyM/LHHZoqkRKflqlzW1
5kadFsTQT6GtAK27RGmnzZKKqrt6UsN+UyGKFok1FVXrYTuYNjtPAEv3Umiy
NYQaG9oZgl7L9JAoE1XgyT9nzl6dg8kpo0Fivuk+BlYehWNl7QgNM9u8Mggr
X3MPJPdsLU2ylTpdAjQdj2JncdsCFz+HngUsyYCEtkXAkoIsG9k1FmU3a24a
97DpZpLQQkFaZIW2ZWCQhHcz7exd7cnuWw4m/PaMtPZyIhrCQHzX838WNP5i
vBzOmoJiOttfpE1/e4lDBra/0hvWPj9hMt1WOaAUYpeOupVsWT78dr8+/UmF
5ggHKRk5hjxZywLmS4mmmSx/UXce6flurCxoVyUk/uuJIKSYiFR1SGyBQOKr
ZYdnEBI1fUoeN6fXlHzcCUJGgQ5NykrIiHVaaZdTpQTUs9M93KjKfx3aMCjq
UcOf1YFCbNKWcTkdSiHn3nQPN/nq9j1lUHx6Miil9CaxZtU86nbyGHDUmvNK
cGhSuHUZFIK4yGjJVPWUzRhIVMsSISGDRYcusjIG6jGRZ2W9ogNr7spf0JxT
EtWSB2R2r0UWs+G+cAJy04wh9SC5bYkS0wCqrpt1dIv43OiNpv0YHR8DQHju
qs082RKaz1RPjlqs5haJHdPuEXikogGAoGxx20QNEMyfqSe1DB6aP2PCgiph
kVNZ7DGnregZRG8MFKQzBMUjaIuvBFajapu9/tcqePZQPXimRstEjyZcQWx9
ydlwhoV4tVUm6eiYVab6tgTKUMZv0nBzDq3Zg2ERt1KPMXkEgoJUiFLY131x
LCdG2kDMkS6TvbJaTfelbmHcSeMiw+Ql7M3X5OvV916Ty3Zzo7QbRQTcdBqN
Sc89Jmkts3wgikNj4r7eogUO1UJTImq4EZUHdbLbVsVNUU53c9OlXN6YcUck
a7OVC1kuguJ1aItFC+4RitD0YvpEAFCb+x7HNo2Tu8JQXwhm4SwJS9BS1caN
HgB21Ud/hS/wcF+oSLKT1Wi90XZ3dgStsP0R96VHWdtPfADsfWQPksREwq24
zk4XkAaopei2a2DxN/WlQqzeZDUfJiHUF56bR3Bfr5a1OcXt5CkJjXs+9291
v9y3OaqvGlRT/+r7be9C2+EEwziyM/C4r61wI1V1NU8YUH3o8zrP8Z+rFqq/
J4hJBDJDVB88KAJ4A7dSbIwQFLXRGN5KHNyqY92WseRUKRh3K2sF1mlq2ddN
3a5jnfSW2sYIQSsKWgTY23tfqhPC9grUFUCpJJfekEM0LMt4r45dKytTh5yO
hO97qAbLYBspr9YxV/WaM+LrBtxHKht8np2XDo+8X8er1b/SOseWGofeVdKj
wJJVGb1ex1JWvSqMrUlPR6LI2G4kNi1Kf1jHpppFIobJx9A3jLm+KDD8Zh3D
eX3SMJumyORfycf8vo6lvPRn2OjZxKe4yq7+oY4R8nkUzBFLhCYxR3FaJZvm
4NVcpyFMqyJyUx8NscRhk5p7NBGo+JrG4eM6hhouXSx9FRQlTsj2fDLASZvc
BrrqmRj5UYGnP048K5SSk/NQtpc7Yn8agnDYFnwMbZM8CmRJgn8PkFjwXNO/
lI7k4P95qh2PzepxOmajfBx8T54EKc93cydBhvr7IRIzhoTm8tOiQnP9h6dE
hQzsj0NU9K/hGyQ144LcF0j/Z4JUMKPBC5/vPpGvibd/3v0K/P63bwhXD/XP
zbn/Aahx05g=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {168.562, 0.}} -> \
{-7., -5., 0., 0.}},ExpressionUUID->"464bd627-e74c-4226-9581-343e4506b8d3"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(80\\). \\!\\(\\\"parabidiminished rhombicosidodecahedron \
(J80)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"16d96805-c3ac-41c2-8fe8-\
47edee0ae6da"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .57835
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.63024 0.0688335 0.212692 0.0688335 [
[ 0 0 0 0 ]
[ 1 .57835 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .57835 L
0 .57835 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.04532 .38698 m
.03812 .31853 L
.10658 .31133 L
.11377 .37979 L
.04532 .38698 L
s
.11377 .37979 m
.10658 .31133 L
.16946 .33933 L
.11377 .37979 L
s
.10658 .31133 m
.13457 .24845 L
.19746 .27645 L
.16946 .33933 L
.10658 .31133 L
s
.03812 .30414 m
.02381 .23681 L
.08342 .20239 L
.13457 .24845 L
.10658 .31133 L
.03812 .30414 L
s
.13457 .24845 m
.19026 .20799 L
.19746 .27645 L
.13457 .24845 L
s
.19746 .27645 m
.19026 .20799 L
.25872 .2008 L
.26591 .26925 L
.19746 .27645 L
s
.09412 .19276 m
.1498 .1523 L
.19026 .20799 L
.13457 .24845 L
.09412 .19276 L
s
.09412 .19276 m
.08692 .12431 L
.1498 .1523 L
.09412 .19276 L
s
.08692 .12431 m
.11492 .06142 L
.1778 .08942 L
.1498 .1523 L
.08692 .12431 L
s
.1498 .1523 m
.1778 .08942 L
.24626 .09662 L
.26057 .16395 L
.20096 .19836 L
.1498 .1523 L
s
.11492 .06142 m
.1706 .02097 L
.1778 .08942 L
.11492 .06142 L
s
.1778 .08942 m
.1706 .02097 L
.23906 .01377 L
.24626 .08223 L
.1778 .08942 L
s
.25347 .47447 m
.2322 .40901 L
.29766 .38774 L
.31893 .4532 L
.25347 .47447 L
s
.31893 .4532 m
.29766 .38774 L
.36499 .40205 L
.31893 .4532 L
s
.29766 .38774 m
.31197 .32041 L
.3793 .33472 L
.36499 .40205 L
.29766 .38774 L
s
.2292 .39493 m
.20121 .33205 L
.25236 .28599 L
.31197 .32041 L
.29766 .38774 L
.2292 .39493 L
s
.4766 .24711 m
.44218 .30672 L
.3793 .33472 L
.31197 .32041 L
.26591 .26925 L
.25872 .2008 L
.29313 .14118 L
.35602 .11319 L
.42335 .1275 L
.46941 .17865 L
.4766 .24711 L
s
.4766 .504 m
.44218 .44439 L
.5018 .40997 L
.53621 .46958 L
.4766 .504 L
s
.53621 .46958 m
.5018 .40997 L
.57063 .40997 L
.53621 .46958 L
s
.5018 .40997 m
.5018 .34114 L
.57063 .34114 L
.57063 .40997 L
.5018 .40997 L
s
.43633 .43124 m
.39587 .37555 L
.43633 .31987 L
.5018 .34114 L
.5018 .40997 L
.43633 .43124 L
s
.5018 .34114 m
.53621 .28153 L
.57063 .34114 L
.5018 .34114 L
s
.57063 .34114 m
.53621 .28153 L
.59582 .24711 L
.63024 .30672 L
.57063 .34114 L
s
.44218 .30672 m
.4766 .24711 L
.53621 .28153 L
.5018 .34114 L
.44218 .30672 L
s
.4766 .24711 m
.46941 .17865 L
.53229 .15066 L
.57835 .20181 L
.54393 .26142 L
.4766 .24711 L
s
.46941 .17865 m
.42335 .1275 L
.4745 .08144 L
.52056 .13259 L
.46941 .17865 L
s
.69195 .50681 m
.64589 .45565 L
.69705 .40959 L
.74311 .46075 L
.69195 .50681 L
s
.74311 .46075 m
.69705 .40959 L
.68985 .34114 L
.72427 .28153 L
.78715 .25353 L
.85448 .26784 L
.90054 .31899 L
.90773 .38745 L
.87332 .44706 L
.81043 .47506 L
.74311 .46075 L
s
.63416 .43759 m
.58811 .38644 L
.62252 .32683 L
.68985 .34114 L
.69705 .40959 L
.63416 .43759 L
s
.63024 .30672 m
.66466 .24711 L
.72427 .28153 L
.68985 .34114 L
.63024 .30672 L
s
.63024 .30672 m
.59582 .24711 L
.66466 .24711 L
.63024 .30672 L
s
.59582 .24711 m
.59582 .17828 L
.66466 .17828 L
.66466 .24711 L
.59582 .24711 L
s
.66466 .24711 m
.66466 .17828 L
.73012 .157 L
.77058 .21269 L
.73012 .26838 L
.66466 .24711 L
s
.59582 .17828 m
.63024 .11866 L
.66466 .17828 L
.59582 .17828 L
s
.66466 .17828 m
.63024 .11866 L
.68985 .08425 L
.72427 .14386 L
.66466 .17828 L
s
.90773 .38745 m
.90054 .31899 L
.969 .3118 L
.97619 .38025 L
.90773 .38745 L
s
.78715 .25353 m
.80146 .1862 L
.86879 .20051 L
.85448 .26784 L
.78715 .25353 L
s
.85448 .26784 m
.86879 .20051 L
.93725 .19332 L
.96525 .2562 L
.91409 .30226 L
.85448 .26784 L
s
.80146 .1862 m
.84752 .13505 L
.86879 .20051 L
.80146 .1862 L
s
.86879 .20051 m
.84752 .13505 L
.91299 .11378 L
.93426 .17924 L
.86879 .20051 L
s
.25347 .5433 m
.25347 .47447 L
.31893 .4532 L
.35939 .50889 L
.31893 .56457 L
.25347 .5433 L
s
.84752 .13505 m
.80706 .07936 L
.84752 .02367 L
.91299 .04494 L
.91299 .11378 L
.84752 .13505 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 166.562},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzlnW2PHEcRx8e3t3fns312fM7Fdmzf2uTBJsE4IbGTOAgHQsKDgoAQJRIC
yYqQkhcIFPJ9ACUEBO95yCPiW0R8mMNTPe6a7f39e2tubyNHRIp9V9PTVfXv
6qrq7pr2K7fffetXv7797ttv3p68/M7t37719pu/m7z0m3fukEaHmubQpGma
DyZN+/PenR+7P+y/i+0f3S9zfv5W+9da++5/E+F6+9fhljA2wmgvd3vnt89T
o2v5rS3d6OvFo1a+k9D8b+2fRnosNbtqf632G+3V3i1o9tvl9NLj7V8rLWEE
LU8A7a9AW80SPpy6fQzZztLuA9pfgLaRGVxKDL6qpNgngyOZwW5icDkDsxEE
5s9AO567PZe6fVQpF2DwAdC2s5hnE4NHoNHhBRicAtrpxOqhzPtokMGfgHa/
ZvAVeBRl9T7QdjSrS/DoWJDVe0B7QLO6mGE7vkQGPffQ+T5Sh6bHH2XPyG0C
j1baP420GWT6B6CdGcZ0nHGlCXUATHfh0UZmug5PaTB/D7Szw5huZqYUgmyc
bfRv5Xa/hHYPDmNqE89IK/B0rf1zvSV9p3jaRrWbWZCLwwS5oEB1QSzKft+e
jKci4l3mz2TmKQTdbYSyVEaCZDmZJfghPKWI9xTQCFCy8IptnodH20oky15e
gKdkTk9k+OjpAYhJaYvZsA3nTXhKU+1qFpNmP4lZ8WnngmiSU7mRBTkCTx8H
GoVnErji8klgwpVo14FGUfZKVoyeDhSY5jwhTDSaQpRmP5IFpkBLAlcShEUE
tnfNI1M2RcI9HGxHLqySUJESZBIk5pmMpuXZNjkJdZoTl/K7BA8pYVIZqctr
yTFTZyT6Tu7sSBadvAT1R2ZCPKidZ//k4U9rxWhMaFhPTeM6Vqzo3d2gYjQ6
vlpag6dp2vcMRo4JmY4vZuwnCiZlFGlDO/VHoq9n0cnt9kWfzaDJtMnHHc/S
U7yjuFP67yEa+eKb/LLQqPtvpGYxqeUZoHT2pnRShpOxqFL2G6XPO319AAgZ
eQl2T6Qfgqc0a8iDUponZ5L0ghXF1vKLZLOkGLWjmEKCUC4xSMWAM6soW19R
yTco9gciEylLea7vs5QqNsLBJetB926jYyTCld4gKC4DjXIE8kGkonvftBky
s784UMujub9met1Fc4gUvAI02sTwhT95F+pZp1LstQZqbkKO3BXCbC5otF/q
zsnnf4EkyUVT34eCttTICHVWqMe6B15/ctBwk/1Fl0ajjC5t+JLg1EuBrj0k
SaM8KuA4qxJpBQ8x/RrQyLZXMrfovjJFS3rXgdfp7HxTJy9cAY/GroSnhdGz
TbKt8qhlL9vgTEokEwhyGtTOZ6sDRkBEnRVZ27YGbD2zL8ewueshZXS9BjTy
DtYBpY3knok2ymLUt4rJwZFpDsSIhiN1Gwp69PqT8Ppet+onk9cWtkYhKKNE
aFIWF914r6BEE2mTUfLcgUbnqeKl9u87/1N+TWKXEy/FQYFrFGu9O4Ye2b3q
FiOwlRuQCk8Djea/obejwCEPRGs+H41TfY04t7mP9aF+yRfT7qHULBwKpmnk
aaT3MdJOX+8ZwztZgeNwxo4QIG1pqUzOlbSlUTa+q8rDbmYdz/R0XHGTYbU8
KJEDuQG0ReI5GUCahDMOcqymjKdl53qKIn6sMiVRNKbPAI2WmXLNFLAHqaCJ
Tj0XuYMFhe15QIDPmrV+8iKEAYWEaIkFYSAXJqabCXtUoZF44HJKaw7sjdXz
QWWjBSs0U6S7W1NDkDLzhJw9IfakrLXbVMg9BzQZ4ALK0syIZq3UX6e2KdZb
I83Eoweq4N1LWhItyYzBbZX1LUe6aXjbkDRfxJij6bLOJVFzA6WXIM7ou10j
L1flRZb9FZVPZJXL/LMdS8/RomKS2nIbfMlq6ywtlKQ2YhpHd6KePWAooquf
gVBYqmVjXG67tABQIhbFnwCgMBTNWeSpwz6TvaRbMnw88WgB8H2x6OLgS6K2
3MmQZziLAEC5VlSJaJJPNiiPCJveGc7p/BOFT4Ii6vooFYouu6JLtoFqywMr
L5uQK8t7Se3oVDmi1U4elRdm0aoRUj+6IRidsdF3B6pfxlYV8L4ItcliohOv
ojax972IQcpa1kdzzXicbknRky7qRZ7JVJTYf/l0OXzt0K+pDuTJXqlHatHw
nmd0NCnjqwBBuNW36wl92lqgZZjRxipSUFCiXsjuynYtlnIrzLCUu/Zu4JVZ
ILNJmetEcfNjk/WMFqHgoYYyIZl5FwcyMlEpqgApnBEGFciGF4LI0ls5w4qq
eTkY9XlaP9Mb56deaRgtY+mSiGiJT/0jAIKHNq+Jm5wWOJ7z29XPjd1WvYax
cIayxiKOVv3rBd+GpFnnSPt6hmye8KAiDje/s1kqMogtrSJlcv5dhEEqdwTp
LMpXqn58TG5CmouvbOynC1kWSrqOD1PMvKPZBVUvUDV4dG8hqqLsz0jieyva
GjqhNSegogXmTwLNN5h6s6kRckkPSx1QISHucuReOFugxDRa+UyVCpQjEo0m
BbVLNYRcIEI+8qRWlbqncfATTIouVMVy0ErTB6p++E26bQ9TW37uI5AmwakW
quTVCOcTLWWl6sMi/8JeKhjNp1FYoT1BUoLq5w4aFPnZtaeEOHkXAqVeZEVM
ScykTq0qPV6xTlB7VC+yl64Cf1gRSjDT8ow9YL3Rk9Ko0VwFWuV7EFNC3okQ
rWFKM2TmnEiP+HBDV/qS+91NL1iUk5dCyJpUj5pkOBZ/ZBJFdr+d36CxfgJo
6aPWlH7a57uDKu6M5NcAuHuk0azXnNffpQTHgsaaR6UEZG8QQt/vkG5+GD3J
WnpeTFlOtMg8uhynpNY/3aVekh69ZSfVqe1VvvghFfybnvP5JwpRlA0RsF6H
7uZPslwvtNCqYn6t4hO9ITevjVQcX4wy+hKKeq35seq7tEAnjQYCUP98iDw2
l+w3/VNrXug3/WMOct9EI0vxj9roKdFo8+cAwKvvQtFMlJ8UjTNuIwWPq11P
NespEb2xOm26S0JQ7k67TvtE0B2br0ZoDvlNQd6OeNC7jjnBY72sTo8N9Uxb
SITL+jAY5edUNIEJQc8zyF37BlnRPWWIWx0gRWyxt8ms3QRWKm/SVQ8V4KI3
ARX7UwFXR0xJLeO2CpilkD6Tf1AfftNF0QehoVOPMBrRmLUILpbB3a8irpeC
fXM5KhJTotG2MvUX3buidwlaSnCXNNr1NIs2naPni7Qk0cFimkZrjCUBQOwX
gYL6k5vx9xYU0Quq6PhEu+H570ZloSm1JCg8D6K5+H8AAG0ekClGTTt6ximX
JwG+VBczEAoaxeh9KfLCkoA60UizCBRalgFQNHwSSXhQB5QOUyIh52RgNg3U
PXKJY5t8RT+qIVY0m2QGHniXhiDqCOapLa+loen/JVbWd5vp3j5SNjohowYd
vduDlHXpN7SK5rlsQ5Bur4neV6erN5erokvfr5a3lRAdLNjTjZYUTcui8YcC
AI3xzSxfd6BxSyFyrCVRt7Jc6guTH3mkuyC9WMnakD8eT7crnkZrcaKWREpQ
AXx3Q9wPsugkyOEsejO9ztaXZu3Pn5H9V6R+OUtNgvhX5bRoia7BaCjJumjn
Kg1C82IWk44roh+mRwUmt0uWRDuW3dfC387IyToLwpqc6I6yKb9Mgwa4L0jx
iA4Eo6m7YU2bTlG/6FdZFR0QmueHKRE95PbdXJpC8rt3CQW5D6pz69Qp7yhW
YkZ3b4pN54CXIBUJPN/1pZ5J7W8A7cIwteWZKCk2yvjLnfPokaHvVkVPCuhI
e3eYsvLccwbrZt7hVvTWoHrxSvRink7PF4N6yiBQ1KTSwMjNb0pFZPZAs4lS
vcniil3I6kRLPFPPM1v20cM3qkgbqAfZgrz/POrnA4GVBpzuo+v+QZTvBtUh
f+VVBNFrlWhlSUNK9U6X5gnMx1C70D5aUUniUlymuxvnijtT9DSBptJPY143
32Ks2NeGrPunXV5S8vWujpwPXjTfJ3X8NulHtUheDU9XHkZL4SiZp+Dg9e5X
tEhe3EusNHJsptGrhf2TpVS1mFYc5BGNRJMwMqhq5hhaZrleS3NVC+K3/lDM
oetlSZDoxPBvzryw5ZoWzkv+KX0j4TzXJgxlKllUiqTqt+Z7oOlKFj4gjStJ
JfzUy1aWxqspnu5J07t3aj578tt0Ty+188/nbzAYe2KISRBPqqlslOLhjzRT
WtOS/XkRGOUK/vQnw1iRfpQNEFPKgyrsyfGRpp7eUnpOGdVPNVNyacTUVyBU
O0mx+lXNlDZHJl1H5Itp5UwR7mf7YTmTkz5bkeR1zYFiGSFJHzC/obulqP0L
oFUko6zp7wfWnAT8xzCY/qmb07j968Cak/V/qJvTDP1INyd/8nGvuU0n6rNr
5DuuFMk+SY1eyY3Ir3+aGv04N6LF1Wep0atZJnJcXaPXck805/+dGr2RGzXT
W2D/Sb/8HF7tHtkvc/7NyObQ/wBhUQad\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {165.562, 0.}} -> \
{-9., -3., 0., 0.}},ExpressionUUID->"e5ae0ae6-09c4-4f24-af06-5eeb49dbbdd1"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(81\\). \\!\\(\\\"metabidiminished rhombicosidodecahedron \
(J81)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"291d150c-73ef-4820-94fb-\
ab5a69b490ff"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .70229
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.260097 0.0693971 0.316747 0.0693971 [
[ 0 0 0 0 ]
[ 1 .70229 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .70229 L
0 .70229 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.1052 .61044 m
.0705 .55034 L
.1306 .51564 L
.1653 .57574 L
.1052 .61044 L
s
.1653 .57574 m
.1306 .51564 L
.2 .51564 L
.1653 .57574 L
s
.1306 .51564 m
.1306 .44624 L
.2 .44624 L
.2 .51564 L
.1306 .51564 L
s
.0646 .53709 m
.02381 .48094 L
.0646 .4248 L
.1306 .44624 L
.1306 .51564 L
.0646 .53709 L
s
.1306 .44624 m
.1653 .38614 L
.2 .44624 L
.1306 .44624 L
s
.2 .44624 m
.1653 .38614 L
.2254 .35145 L
.2601 .41154 L
.2 .44624 L
s
.0705 .41154 m
.1052 .35145 L
.1653 .38614 L
.1306 .44624 L
.0705 .41154 L
s
.0705 .41154 m
.0358 .35145 L
.1052 .35145 L
.0705 .41154 L
s
.0358 .35145 m
.0358 .28205 L
.1052 .28205 L
.1052 .35145 L
.0358 .35145 L
s
.1052 .35145 m
.1052 .28205 L
.1712 .2606 L
.21199 .31675 L
.1712 .37289 L
.1052 .35145 L
s
.0358 .28205 m
.0705 .22195 L
.1052 .28205 L
.0358 .28205 L
s
.1052 .28205 m
.0705 .22195 L
.1306 .18725 L
.1653 .24735 L
.1052 .28205 L
s
.2948 .61044 m
.2601 .55034 L
.3202 .51564 L
.3549 .57574 L
.2948 .61044 L
s
.3549 .57574 m
.3202 .51564 L
.38959 .51564 L
.3549 .57574 L
s
.3202 .51564 m
.3202 .44624 L
.38959 .44624 L
.38959 .51564 L
.3202 .51564 L
s
.2542 .53709 m
.21341 .48094 L
.2542 .4248 L
.3202 .44624 L
.3202 .51564 L
.2542 .53709 L
s
.3202 .44624 m
.3549 .38614 L
.38959 .44624 L
.3202 .44624 L
s
.38959 .44624 m
.3549 .38614 L
.415 .35145 L
.44969 .41154 L
.38959 .44624 L
s
.2601 .41154 m
.2948 .35145 L
.3549 .38614 L
.3202 .44624 L
.2601 .41154 L
s
.2601 .41154 m
.2254 .35145 L
.2948 .35145 L
.2601 .41154 L
s
.2254 .35145 m
.2254 .28205 L
.2948 .28205 L
.2948 .35145 L
.2254 .35145 L
s
.2948 .35145 m
.2948 .28205 L
.3608 .2606 L
.40159 .31675 L
.3608 .37289 L
.2948 .35145 L
s
.2254 .28205 m
.2601 .22195 L
.2948 .28205 L
.2254 .28205 L
s
.2948 .28205 m
.2601 .22195 L
.3202 .18725 L
.3549 .24735 L
.2948 .28205 L
s
.52238 .60566 m
.47595 .55409 L
.52752 .50765 L
.57396 .55922 L
.52238 .60566 L
s
.57396 .55922 m
.52752 .50765 L
.5954 .49322 L
.57396 .55922 L
s
.52752 .50765 m
.51309 .43977 L
.58097 .42534 L
.5954 .49322 L
.52752 .50765 L
s
.46742 .54235 m
.41585 .49591 L
.44407 .43252 L
.51309 .43977 L
.52752 .50765 L
.46742 .54235 L
s
.63466 .30475 m
.62741 .37377 L
.58097 .42534 L
.51309 .43977 L
.44969 .41154 L
.415 .35145 L
.42225 .28243 L
.46869 .23086 L
.53657 .21643 L
.59996 .24465 L
.63466 .30475 L
s
.76629 .53275 m
.7029 .50452 L
.73112 .44112 L
.79452 .46935 L
.76629 .53275 L
s
.79452 .46935 m
.73112 .44112 L
.69642 .38102 L
.70368 .31201 L
.75011 .26044 L
.81799 .24601 L
.88139 .27423 L
.91609 .33433 L
.90884 .40335 L
.8624 .45492 L
.79452 .46935 L
s
.68469 .4927 m
.62129 .46447 L
.62854 .39545 L
.69642 .38102 L
.73112 .44112 L
.68469 .4927 L
s
.62741 .37377 m
.63466 .30475 L
.70368 .31201 L
.69642 .38102 L
.62741 .37377 L
s
.63466 .30475 m
.59996 .24465 L
.6464 .19308 L
.7098 .22131 L
.70254 .29033 L
.63466 .30475 L
s
.59996 .24465 m
.53657 .21643 L
.56479 .15303 L
.62819 .18126 L
.59996 .24465 L
s
.91609 .33433 m
.88139 .27423 L
.94149 .23953 L
.97619 .29963 L
.91609 .33433 L
s
.75011 .26044 m
.73569 .19256 L
.80357 .17813 L
.81799 .24601 L
.75011 .26044 L
s
.81799 .24601 m
.80357 .17813 L
.86367 .14343 L
.91524 .18986 L
.88701 .25326 L
.81799 .24601 L
s
.73569 .19256 m
.75713 .12655 L
.80357 .17813 L
.73569 .19256 L
s
.80357 .17813 m
.75713 .12655 L
.8087 .08012 L
.85514 .13169 L
.80357 .17813 L
s
.30922 .67832 m
.2948 .61044 L
.3549 .57574 L
.40647 .62218 L
.37824 .68557 L
.30922 .67832 L
s
.75713 .12655 m
.69703 .09186 L
.71146 .02398 L
.78048 .01672 L
.8087 .08012 L
.75713 .12655 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 202.25},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzdnUePXEUQx593dtc54rWNcRhsg3EgGAwYk2wOcOJGOiFZFpJ9QCBAApGj
BF+CdCMj8SHICBAifRmzr7rdNfPmV73V897ujPDBO9ux/tXVlbqn98Fzz114
4slzz108f67/wDPnnr5w8fyz/fufemaxqLeqqlb1q6r6oV/Vny8tfoz/yb+r
6//iLwWf/61/zNfjnAkFv9U/1tYFc1LQu5SmWPztntDop/rHXF2zGRrdPdCo
UbW1rPk2KLsrNP8Rqq5Y1ubboezOsZr/AFU7oOx0Z813QtkdYzX/HqquhLJT
k2q+G8puD82/g6qryprvgbLblhh9pi46ZTcKFM8OltWfIxXfOjHOQNnJgSGE
Cuo4C2W3hI7fp44kEfNQdnPo+GPqSNtgDZSdCB1/hqotULYOym4KQ/yS5ibl
tAHKbgwdf00dqdEmKLshdPw9dVzrJP/60PGP1JF4SdrveOj4J1SRABD3j4Uh
/kpzL9aHImmDS300NPgHqnZB2ZElmsu0ccy/G41qgmjMoeYjm4X04bHBHnND
PS5PRPwRPkrR4QFONRr1oGwLkHYZLLU/ZA9Pe3JTBgeJz8FQ+XGi4RZoREZ+
feoxkz7Rlj0wMMEA7OiX3AQ9VkMZbRmZcj1URK/lI+xzKS7b9VBL9K9uEB6J
p43et+edSzw65kQ3xwwjPbE/1H9oIZJ5r4NaYl4vcYg8n332VOvSVNdC7QZg
4+X2tC33hok+gKqNicKDVu0o30hZ7LHn2JKI62cpIMcglFXvQxWxdC+UybLN
pc3lMOy720/aS5PSDiSkwekKKkqYdTJ9OjsmIbWeksXb6KQhLGxQM2SoTlgV
Z0oolAHI1JKrF2xjVENLm98bnO3udhI8mwgmoafgKgNifxqMjMDxbG0RwaNb
ltQCUZ+RCl07Uu1HsrV3Qhl5AmS01cxQD9LhGRC0OmQxDjvbnYYyWhYCNp9Y
RpuBVocCs6g3dqfByJW+Jlt7B5SZfhoxZcaypoUg1FWlQOJAtvYUlNFKEIgN
aWRyRQpBkDdPBJNKo3a31v/Lhl6Q39kfFSKlIzkiBIEUWrR8C4kfpt9i1kpo
JzTOJpK2ZgjXuSjCJKHKEE5SS2WkBqjdkQRGRSSs0YgTS1SR7aelIO181fIg
OpQQXZEQkT+5+JlkvANETaGpDPPU9MysdlcnHNJDKpuquqo4E+OFswBle5YR
Dk0lEFenT2TkOoATTBFvVSJ3V2H7/VbZTFIZ8onkmTwLUhAk9zEGIm6QbaYh
CI63L8UIYs+kqOFNe7ETGFLJGk1unSwXCBgFuCTb5H15GaCRe4PTQXpQiMgJ
V5VJXMj3IOzkZXqxixlaowYJNIFuqUbtpjLYW9NgZOTyPUjwj0AZaWeCLbKs
7oUmzdbVn4gWytRlmGJy0+Gqkevn7UvycdTJKPKcZhOjxCFUs6hZCTNcC/kC
dIZpTdQ3Ipch32Mf1B6HMhq5CbuqYr5Dd50KIvGoEKfq0fnEUgrdvH1JXCiV
SrtOx9PIb+PwJ+I5V1HIQHKh+UyKokiquxmZbAllekxGkY7V46Mljq7cLNOA
XuGQ9iF5azMeySAdBpC8kazuS7ORPiWrEajH5AIxr5eAaXKH1qnr8Yj0E05G
mecxTb+i/o0ENhCECx1kb36wLA13GY9XCD1jkQBSGZ1fUexAvLkGysZiy7B+
7yWt7tjnRQMQg086GUBGnhxb6ht2YKB/R11jctisJebdBmXEf1IodL5FfQdJ
d7jm3psJ3pCV5vXCJs1Gfqkt7m7YXoHx5lFIZd9ujWcaDTo7tRfIDZYIpunb
gKVUr5gKcf5IosirIrCry8CSnTDDoTFtDIFdk8DSzifPaMJgvclROonQNDKZ
KPJz1P0vFF4ik0JF74kAsYdOjGQpvc5JM6RxoyMKKXPTBp0c9InzQf40+RPU
bgWBee/n0QmmzGHe3L0VyjTu3VgG0Xv/0HumS+whiEKwZAxID2kQurkMTiCJ
s8aUwKPkCMEnCLSvyFyS8v0fwGqeMk+9yBEwEj4N+raXAVsJdUFansYLBi93
fDJV6r0M1sgtlJ1liCZljkkCSVIL4XTtQJn2d/rheC+3ryCcrgMXcm9XEE7X
QedywtmpShwm3VUXmXDEANDluGXga62U5Tdimt5KrobPGJvZ2ewo89Yodzkh
kj6Ld988Kbb6t6aRr4kxTxVox3sPB8onMk80KXAk/nbAHko2U5ZCzyeJR96R
zaM9R1kHTPFm4L1HFfnvN7QZuZcdmRxIr4aIrPAm4EkW8sdb5r3K5ZvN/L4H
hRDLxKjGkaiusXlRtXwUokUgzlu1GWDec2I9h1UTRfvd25f4T3luzUd4MxiF
wEyl5WjXZjxiAKVXhHkSTJFHEMF6L3honq0aPtyjSL5oAHJ1KDWmOW1vUiBC
9F7s8V4u9fYlL41SmGsTMOJbxhxNEzDz63Y9S7eSPY6Xxse9kVeL07g38uq+
FIjR+YEolFlLkZF1nUJgdArUzCItbQ0jsKUvynZbR4DoDI9UP2msDDTvleau
15F2GZ3Jenct2cgphEin7eThFkKU5iLZNKl5WbVX0mN76kFXWUm508h0yyJ+
oWNHAkEynL962ivuuw36HoJ2FGEQMDLq8VsQlNBrc/XUG2Oa46nPKZV9J2xS
S2Ty49cLrkxTlV8uXVvcl/x7jRfoajKNQhDJ+MevGGxLPNSAhIKZ/C3RuTTK
XPEo+pyAruyuNB6NQtJIbsC+AYgj2q7iTAdJjfdaKI0nv5GVK5pI9YLeEza/
JE5JGDpgoIvL+wPLyA/Smw355EX+bijtaB05n3DJjyw95tPW66VP5hfbvYwi
xyVoHHTx1wAcEo383VBigI5cDcdo5cMTdqldN0z4TOIgjUf7mQ4d6asBGQ7q
dwCq4byynatlN9RU0bNJjgtGI/kT5S5S571bT/whvzG+ZUJmcXOC0OBP84mZ
KB/mbVPisTEGKWLvN8GJDXqrnTzK+HYMmU5Rg3K5lNZDahcseSXXqojgUb7Q
zeGDNvXkFhMFtP29fYkv3tcIaF66H6E5f/oKaHy6iJaAPE8C4XXH2zDAO69+
aUXTnPRVoCALuFW8T1q0gU3bvA271f1VT0/Kerptkdfkg5rnh2MyqmuwTaey
qga/Ri+aTqzCsfawyVp7+5JmKpKtgW9G8tNWvbTggje+mkfs9j4yQ+6vt683
xCFdpiHYAuNtRNCCN2TqcV7yDbvGS/rX21fWSIpyT1hoFuR0e6jkQnn7toGq
B0+5Z+9IH0TQNDl5ZjS592WuIj3r6KvxMWkfoooctPjIrPelr5woUU6ia9Ca
IaMlI9Dk5E0JaJIS0lya2yRdQpsu8xTypESdrLvNbLDkdLPIe2AQsU9Kt7XB
TuZtBWG3sV6a/aNdoiFnH2pJguPb35NyPrxbWL0l2i/EClq7CHZSnqVXTehT
DSTkFBbRyt7THmyb6MGzQaoqPtBAROr7ghRYRnTTFAgKV6XIfEh24NGd4dp7
A5ypC+fJQJhv8UkRpWQiOqoSyZULv8RSzUSZfTW4IAe2UabvHhLiMzaZZj7Q
m5M0k4E0AJGuA5AKon1wOIElgiJY85EOotV7t4uYuz5xkOyFmYMlnCSUpKpI
oo6mAWi/RKbQ/tWj0PyZQ9GrJ00mVwWD2o/yj0ThtP5UdjzRRCt91maO9+SK
BJvKvOdV1Jc2lOZlGsz2HjzeSAPUP+4Lv7B3a6ym9y4vX4c0dpB3UDKmjaez
HLrF/ssTw2WRPaqp82fgRLA+F54/+aa+ZP8CRI48vfcJnw8d8u/TmonEoh7B
Vxs5FPFeiyVRidR7H6Ylqoix3r4UG3hTK9TuhQAn/0gtafvtxT0o0AgbiuXp
xfCh6+un3r5EbvCOR0zEhCmlbz7r7nopEEdC5301nIICb19i49QQR+EgjRfJ
tKdiCab4NNf+gBPKy6ED6SC6T+l5zrhuR7fzSI+8sjzT01E1aeVXQwfShHoH
iVZW05b0nBRFLq/ZU2nit5+ttf90ztKOwuthekqNtXkEncwakUQhwBuBJJJs
DS9oJbWWXET6gylk/t60p9dDYLo+q7Xk6tD0ZMLeCtNTqpRQ0dURakdrTySR
8n/bJkndRboiprW0yWh6EuV3wvS0xzWaoduP+QvFByNe0pLvhg97M01OZOpI
iTfR1u3eG5xmxIW8mYtJUxArIwbSUnTPmTTAF2GIh6CKtsfndnOSnc9C84ed
zT+1m5NofNJZ80JiMs0fgSri+2eTak6y9flYzR+FKtoWX3TWnBy8LztrTj7S
V6H5Y1BFCqdFc/OFrq9Do8frH+aL2rHRhfqHKKxvQoHUFvwp3GrVf50XR1M=
\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {201.25, 0.}} -> \
{-3., -4., 0., 0.}},ExpressionUUID->"24f438cb-a9bb-4a7c-bc61-2e19665e4b62"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(82\\). \\!\\(\\\"gyrate bidiminished rhombicosidodecahedron \
(J82)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"80835b63-b08c-4431-b9db-\
7e741ebd3bca"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .62604
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.536567 0.0681882 0.436538 0.0681882 [
[ 0 0 0 0 ]
[ 1 .62604 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .62604 L
0 .62604 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.07558 .48315 m
.05451 .41829 L
.11936 .39722 L
.14043 .46207 L
.07558 .48315 L
s
.14043 .46207 m
.11936 .39722 L
.18606 .4114 L
.14043 .46207 L
s
.11936 .39722 m
.13354 .33052 L
.20023 .3447 L
.18606 .4114 L
.11936 .39722 L
s
.05154 .40435 m
.02381 .34206 L
.07448 .29643 L
.13354 .33052 L
.11936 .39722 L
.05154 .40435 L
s
.08286 .2849 m
.14771 .26383 L
.13354 .33052 L
.08286 .2849 L
s
.13354 .33052 m
.14771 .26383 L
.21441 .278 L
.20023 .3447 L
.13354 .33052 L
s
.06179 .22005 m
.12664 .19898 L
.14771 .26383 L
.08286 .2849 L
.06179 .22005 L
s
.06179 .22005 m
.07597 .15335 L
.12664 .19898 L
.06179 .22005 L
s
.07597 .15335 m
.12159 .10268 L
.17227 .1483 L
.12664 .19898 L
.07597 .15335 L
s
.12664 .19898 m
.17227 .1483 L
.23456 .17604 L
.22743 .24385 L
.16074 .25803 L
.12664 .19898 L
s
.12159 .10268 m
.18645 .0816 L
.17227 .1483 L
.12159 .10268 L
s
.17227 .1483 m
.18645 .0816 L
.25314 .09578 L
.23897 .16248 L
.17227 .1483 L
s
.2578 .52188 m
.23673 .45703 L
.30158 .43596 L
.32265 .50081 L
.2578 .52188 L
s
.32265 .50081 m
.30158 .43596 L
.36828 .45013 L
.32265 .50081 L
s
.30158 .43596 m
.31576 .36926 L
.38246 .38343 L
.36828 .45013 L
.30158 .43596 L
s
.23377 .44308 m
.20603 .38079 L
.25671 .33516 L
.31576 .36926 L
.30158 .43596 L
.23377 .44308 L
s
.31576 .36926 m
.36139 .31858 L
.38246 .38343 L
.31576 .36926 L
s
.38246 .38343 m
.36139 .31858 L
.42624 .29751 L
.44731 .36236 L
.38246 .38343 L
s
.26509 .32363 m
.31071 .27296 L
.36139 .31858 L
.31576 .36926 L
.26509 .32363 L
s
.20023 .3447 m
.21441 .278 L
.26509 .32363 L
.20023 .3447 L
s
.21441 .278 m
.26004 .22733 L
.31071 .27296 L
.26509 .32363 L
.21441 .278 L
s
.31071 .27296 m
.32489 .20626 L
.3927 .19913 L
.42044 .26142 L
.36976 .30705 L
.31071 .27296 L
s
.26004 .22733 m
.32489 .20626 L
.31071 .27296 L
.26004 .22733 L
s
.25314 .09578 m
.18645 .0816 L
.20062 .01491 L
.26732 .02908 L
.25314 .09578 L
s
.47751 .56378 m
.44342 .50473 L
.50247 .47063 L
.53657 .52968 L
.47751 .56378 L
s
.53657 .52968 m
.50247 .47063 L
.57066 .47063 L
.53657 .52968 L
s
.50247 .47063 m
.50247 .40244 L
.57066 .40244 L
.57066 .47063 L
.50247 .47063 L
s
.43762 .4917 m
.39754 .43654 L
.43762 .38137 L
.50247 .40244 L
.50247 .47063 L
.43762 .4917 L
s
.6469 .29751 m
.62583 .36236 L
.57066 .40244 L
.50247 .40244 L
.44731 .36236 L
.42624 .29751 L
.44731 .23266 L
.50247 .19258 L
.57066 .19258 L
.62583 .23266 L
.6469 .29751 L
s
.72683 .54353 m
.67167 .50345 L
.71175 .44829 L
.76691 .48837 L
.72683 .54353 L
s
.76691 .48837 m
.71175 .44829 L
.69068 .38343 L
.71175 .31858 L
.76691 .2785 L
.8351 .2785 L
.89027 .31858 L
.91134 .38343 L
.89027 .44829 L
.8351 .48837 L
.76691 .48837 L
s
.65658 .48837 m
.60142 .44829 L
.62249 .38343 L
.69068 .38343 L
.71175 .44829 L
.65658 .48837 L
s
.62583 .36236 m
.6469 .29751 L
.71175 .31858 L
.69068 .38343 L
.62583 .36236 L
s
.6469 .29751 m
.62583 .23266 L
.68099 .19258 L
.73616 .23266 L
.71509 .29751 L
.6469 .29751 L
s
.62583 .23266 m
.57066 .19258 L
.61074 .13742 L
.66591 .1775 L
.62583 .23266 L
s
.91134 .38343 m
.89027 .31858 L
.95512 .29751 L
.97619 .36236 L
.91134 .38343 L
s
.76691 .2785 m
.76691 .21032 L
.8351 .21032 L
.8351 .2785 L
.76691 .2785 L
s
.8351 .2785 m
.8351 .21032 L
.89995 .18924 L
.94003 .24441 L
.89995 .29958 L
.8351 .2785 L
s
.76691 .21032 m
.80101 .15126 L
.8351 .21032 L
.76691 .21032 L
s
.8351 .21032 m
.80101 .15126 L
.86006 .11717 L
.89416 .17622 L
.8351 .21032 L
s
.2578 .59007 m
.2578 .52188 L
.32265 .50081 L
.36273 .55597 L
.32265 .61114 L
.2578 .59007 L
s
.80101 .15126 m
.75033 .10564 L
.77807 .04334 L
.84588 .05047 L
.86006 .11717 L
.80101 .15126 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 180.25},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzVnVuPXMURx493dr1erw2+7WJjm1nfb5gYywkXEx7C1Y4cISEhRYogK4cE
FEWJCB8jAZxA8kXykAQSxEcAxEteeMn3GHy6e7vO9P7+PXV2dteLJWZn6vTp
rqquW1dXN3dW33/n7d+tvv/u3dWVV95b/cM7797948rLv3/vPmiwq2l2rTRN
84+Vpv0+uv81fYR/p9qP9KPH92faP4O2n/93AE2AjNK/Zq799W3t+f1/odH/
YqOnodFibvSNbnSg/ZxpQV/rRgcB9uWmNT8AsK9i86ecvd9rP3e3oJsbeLGA
DdrPhRZ0vV9nHwFsf/sZJuHq9J1Ruyu6W2IsdXtId/ujKbA9DLDL/br9EGBH
dmy3HwBsqV+3NGWEbaXbH07BhGWAXYrd3mj/zLZPvKQ/ojt7sv0TnjSz8YG1
Ccqyb/oxnshjzEIjs6Dz8PTPADuqh7qSh9oNjcwOR9Oy9hBnoDLKxTzKAjQy
Q07dPgqwi7Hbc7lbYjpNNnGnMsCZjNnDzgH+BLDjEwboPGo5/ZBikUOoKrSc
Dn/muo/ykF720fwc00OegkcDgJFQeE01DX8hDr8Cj+YAtsc5PHncoMVBQpKo
D6ER6SnBaNC/AOxIHrRQy8T3x+Ad4jGpPEnaxwAjzzsDsPMRpZPwaBFgZPCI
LZ8A7OHMFprlhMgJeLQfYCSnhMjfALYvI0KidS4iQlaBrAwxlRD5O8D2AowE
4WxEiaxHHIrNBoVJv860X4On8/kpmZyEBql0HGp2DI3730kKf1PAGoHLbMaF
2B4tMzq1pfyiZECB6Vr7H0B7mt8KQhQ2BFgAkWC8rWgvYFcLxNu/gsboS2LM
FQgrp6wJSiim+VcA2527egKeUoR7qoNDMTLxaCbzqGMz46+GI6m7ACPlubIR
hNdJMoXFxpQwXxSI0eSS1l8CNlHIHH0mYuM1RAsZa9N2QtOsZHRbbGMIkwqS
ZLZJm2zw3zrfOFdBkjg51EiS9pEPCmgEUGnTRmu8DyScdTKCpPIxjSZ5UfLZ
hzMipNlaFTYdYYpnSGNpulYBRmMMnYwypsQ3kBYKD8gUkUH7pZMwCgZpDFuF
ndIIEzeJenKbbzkRHjoRfigjfEYjTLaQJI1ijjenQJgYtZgRDiwLD09q1KOq
scGhKPZW+7k8Ev5vkIckUkmt92R0Z/O75AOOaxJK7980vBJ4FWDUH8FmKmwi
MSRSo3iti9lCIzIqMVDG0Gh/5hoRGhYhIdtLM0jC5V1nec0n+RmLhDs5rfQf
KdAxTf7ezLciUCF6A4cWskKQDQlYPZq/HUz4FhNVRBteugMfg+TQ0wqV85lK
Y52c0PkWRBEFTbdenrKEkzTTEr4cP05QwyuGo5pyMwXku2gBeTi/4Q0gye2S
F9uXMOryRcxl8BXBNlLnj3TpZStgtpvW7QdyOxJkUuFDub/T+dtiMX7SQEtr
UGaQGEjyn2gscWnCvEDfTcP5gP2ZVPLJJDKEIUWsZX8tBtQfibxXjJY7XAhk
2zci1qwZmUFCjnTvPMBKOWmEaNK4RCzZkqUOsRO6aIenuMAMHWmVtLOBoZfz
t7n8zdKlXsIoljkyPWGGEs2YJ5Zpfz2e+iLLTHbCm/StEO3RsKbhGLAMZRrh
mLyCWKZq2v4o6qEQSvsdUrIK2evsP6nCXPqkiSLJpj4opKe8InGA3AJxgET1
0KZwgHIOFDPSPJMskfvfRm6QhgpueNNEhBXNOXGDFPs6wMgoeLVDZ+f7cMPC
MZIIooNmmjSV6NhsHsjgq8aDitqHRzJtJLdwdiD5JOU18ucz+aTx5OxIXqRr
LWA3nO96HWRFF/oywhaBFF4TjIwHIUQM22xGVEykZsQ4LDBAbmd5tyR3IAPI
DXoXCjWJOZEZRgRSbZTXgfYMiojAYA6C1SeDKLZRya5sB22VOJdos7WnqL0i
bbXdWqKSjNU2UkmPFjKV9eovGt7WV17LTGWtpBDeGp3KQlQuSQbKC1v9GZmc
qBnr8iWEAXW+2ZRX8g31hLysiRvYRHLKk1ScDKeX1CBSR1XPKYVUGqToRBtf
FVnbuM4NYi3R9CzAyIGRmgTaZUVol84JxX+uxcZc0TTJKRkrQtZLqNw4FJl9
WvemzC85c5pdyp14s7y05yKEiBTEyxVL9JyAAUcVFUz5f/Ia3uSVtxqBhp9R
eBHsOSdC5AFOZg5Zcp/sZeLHkdzIu2AmRLwlEGVOPP2bUUjuydg9335bynha
rp0wGSgfsze/G9VVbRLIcNAbJBiSpAFy98oBMxdLT0lywi9SprJcOXdvKd0Y
no3v/UXsMV9LLCM0vcsBakcyScbXFkIF/rZdTyLPHFx7Q5YSmWeRsV6UBKTT
uE42xlvYS5yRtSEO22ZFdl6TbRsMpmmXFaYBRAoVrYQmcUZJv7fcmAy+d6vP
DAxpNjHFFIkm8kqmyDSb9sQSU2T123rf683L0mje+gOpFMQIW/DR5FGl6MBM
NXJD5nhI77014JGdlRIUmV2RZxDDG9fzN5KrKJPoGg5mvnlJKHtpUdeplclE
UDvaHtDKhtpiJx9IIEj/A2FB0m0mSC63iAhSlbAolD7WlJ+MU0R9neYSRZTG
IIooSS3reisFQQEkfbK03RElVp5tJIscFi2DZFW7mXn7RgbVu2YimraIdpoW
mSzrnDysFcz5I2QyydSOCKVssrcdMSRyAmMgYog8Hyml3RvvkoR5A44HzBRL
XZGpqAeu8o0HR7a3zk130Scg9UbkXq33WhG9lpqKAYS6CD6Jcu0vtoVynRWa
bNLrFeuFufAeXHjAtNNWlFycypDUe6zEG315Q1KN6VTEEjkWppKRk5nUoBPX
8jcvYXZyI5ksbw2PNzFn5/wKuSXXbWs26upxgFnWgNaFRLGNsXd6iuVxEIlS
kYwoqh0tBUlSTctc6y9lyuSqwWF4vNUJsvbDsgq0tKRi1sVxfjgotjEOaIp7
FTD0Cl9JZ4sdKDtYZwcPpPkiEq2/tFsv17NIIi+I5DF6GYTW52ZF4TSA/n5c
NG5bBOYsby2BFlByNU7DeTI6MhAmL2wKhO2Bzk45Cru3nN1bEKOTR2CEzYba
9pWsSKOeKTF9tB+x0xgYb+bQ7CX1TG54ixjgqScfjfyFcMQ8mm1T0Y7CNU33
fL33+AEZoiTfpDsBmz3Zvjno9EZFNNHBlcrSpC0iMXB036jh5VY9m7NB2iUl
S8qp9qQzMNJKV6Vbqt8URW94YyYikSaVVIDeJVdPgV86eGkXXsgNcnKI3qPV
OlU2GestoticMkmrLSy9x929u4HedzeBRAuxKOYmGM2nN2iU1XMbZBS9S0vu
dFraDvXJQ8SOQXV0tfOIdThbEm2vpfFmn8iIP2CyyVcSK7zRqC7emUw2SQq9
S0nUWGCF3RLZxOFp4lKa7R1INg1FgYs3GtX3E+wosr1lJfWQlGIWfShmMgb0
LiVU0zUdhBIR6y2ksPt64zSGh2v/pd92PsW7J/Q9YcihTFhxnUKvKHYa8d9G
BhBhJzLZcp+IothpdiWIW5RyoTx7unhJ3mZQwGROJIDI51kUqy8dcZJoF7CE
h9cybGUSEZyWMsTJVHtLer2xhzbLhl3nLxZCTSR03QbcscwkekkX504RVhZ3
AhSCThJ0KTdOlz5RdFC/1MGbhCOYlzp5TZoouutcgzf+UoVKS4uSzfImZUie
vYs+u0TPUuayApkIC2+c1yTaPs/QSaI8S1PAvEt3ucMlDIVVsVKteSJV3qw2
UC96F3VS3ZfzLDlkQhbCo0cYh13QJFqy6pyTRO8VM5ZZLEwIdWrbpWaDdPU1
RAedImVR4rpGZ3nrpkKJwiOSUMwU5yEdoitPyBAJ0j2TVU38KLFumrRHRBu/
XlaQPbKY0cr26V3iQrE9L9+Vp/zCG1c7FMvbfb15dXIstgtkaJLSexxVOw9k
hkkgCJaIfcVJIlkQCuAGivW6yn9yp7IiI+Tfr02ipLIxaVX38qQO2ckVgJF6
/2QSauuCB9ugJjknZ+jF5YU4At3MWL94loJhms2hE5EXNSJmyS2aIOElwR/m
N0j1KoN2DqGP22C61NZrb8nn07svxQFvwSMLIGiAIcDId5FtolNfpPQva+TM
9ZNMEnJEPXklO0vVEyXz0rS0odBG3z5KIRDFjOOwqOfN7eJRdplEEOEVWcVm
iy4nJzv6agcXeUZiKAcfx/5q7oWs4S0meyQ4rCkeH5S8L8WPleG9F0/a+vJJ
eErqd1sPSsENpWRIGuyAEOntT/WgZPNoUIv5nkq0kZDd6TcQsdTu1yz3vdsB
fqYHoJwKUUKSeBNgFVoo1qCh7CLaD3RnFEPT5a/kuyrdUiqAurWI8l6/zojg
0M9f+9FaCkE7zZ/oLoj3FMp8rLsgSfnnpjUnQf+Xbk5a/2/dnCzTpxtvPlAW
/rPY6E5uRDmR/8RGr+VGFAf/NzZ6PTcix58avZEbke38PDb6eW5UxF1fxB+/
gFfTo/Cjx//ostn1HQVzr9E=\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {179.25, 0.}} -> \
{-7., -6., 0., 0.}},ExpressionUUID->"7a0b259b-0d1f-4727-bc10-c7dece17570b"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(83\\). \\!\\(\\\"tridiminished rhombicosidodecahedron (J83)\
\\\"\\)\"\>"}]], "Message",ExpressionUUID->"13abf866-861f-4127-bd31-\
e33b0af1459b"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .59779
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.535384 0.0683719 0.408487 0.0683719 [
[ 0 0 0 0 ]
[ 1 .59779 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .59779 L
0 .59779 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.04517 .41929 m
.03802 .35129 L
.10602 .34414 L
.11317 .41214 L
.04517 .41929 L
s
.11317 .41214 m
.10602 .34414 L
.16848 .37195 L
.11317 .41214 L
s
.10602 .34414 m
.13383 .28168 L
.19629 .30949 L
.16848 .37195 L
.10602 .34414 L
s
.03802 .337 m
.02381 .27012 L
.08302 .23593 L
.13383 .28168 L
.10602 .34414 L
.03802 .337 L
s
.30892 .24447 m
.26317 .29528 L
.19629 .30949 L
.13383 .28168 L
.09965 .22247 L
.10679 .15447 L
.15254 .10366 L
.21942 .08945 L
.28188 .11726 L
.31607 .17647 L
.30892 .24447 L
s
.25587 .49406 m
.23474 .42903 L
.29976 .4079 L
.32089 .47293 L
.25587 .49406 L
s
.32089 .47293 m
.29976 .4079 L
.36664 .42212 L
.32089 .47293 L
s
.29976 .4079 m
.31398 .34103 L
.38086 .35524 L
.36664 .42212 L
.29976 .4079 L
s
.23177 .41505 m
.20396 .35259 L
.25477 .30684 L
.31398 .34103 L
.29976 .4079 L
.23177 .41505 L
s
.31398 .34103 m
.35973 .29022 L
.38086 .35524 L
.31398 .34103 L
s
.38086 .35524 m
.35973 .29022 L
.42476 .26909 L
.44588 .33411 L
.38086 .35524 L
s
.26317 .29528 m
.30892 .24447 L
.35973 .29022 L
.31398 .34103 L
.26317 .29528 L
s
.30892 .24447 m
.31607 .17647 L
.38294 .16225 L
.41713 .22146 L
.37138 .27227 L
.30892 .24447 L
s
.31607 .17647 m
.28188 .11726 L
.34109 .08307 L
.37528 .14228 L
.31607 .17647 L
s
.47617 .53607 m
.44199 .47686 L
.5012 .44267 L
.53538 .50188 L
.47617 .53607 L
s
.53538 .50188 m
.5012 .44267 L
.56957 .44267 L
.53538 .50188 L
s
.5012 .44267 m
.5012 .3743 L
.56957 .3743 L
.56957 .44267 L
.5012 .44267 L
s
.43617 .4638 m
.39598 .40849 L
.43617 .35317 L
.5012 .3743 L
.5012 .44267 L
.43617 .4638 L
s
.64601 .26909 m
.62488 .33411 L
.56957 .3743 L
.5012 .3743 L
.44588 .33411 L
.42476 .26909 L
.44588 .20406 L
.5012 .16387 L
.56957 .16387 L
.62488 .20406 L
.64601 .26909 L
s
.72616 .51577 m
.67085 .47558 L
.71104 .42027 L
.76635 .46045 L
.72616 .51577 L
s
.76635 .46045 m
.71104 .42027 L
.68991 .35524 L
.71104 .29022 L
.76635 .25003 L
.83472 .25003 L
.89004 .29022 L
.91116 .35524 L
.89004 .42027 L
.83472 .46045 L
.76635 .46045 L
s
.65572 .46045 m
.60041 .42027 L
.62154 .35524 L
.68991 .35524 L
.71104 .42027 L
.65572 .46045 L
s
.62488 .33411 m
.64601 .26909 L
.71104 .29022 L
.68991 .35524 L
.62488 .33411 L
s
.64601 .26909 m
.62488 .20406 L
.6802 .16387 L
.73551 .20406 L
.71438 .26909 L
.64601 .26909 L
s
.62488 .20406 m
.56957 .16387 L
.60976 .10856 L
.66507 .14875 L
.62488 .20406 L
s
.91116 .35524 m
.89004 .29022 L
.95506 .26909 L
.97619 .33411 L
.91116 .35524 L
s
.76635 .25003 m
.76635 .18166 L
.83472 .18166 L
.83472 .25003 L
.76635 .25003 L
s
.83472 .25003 m
.83472 .18166 L
.89975 .16053 L
.93994 .21584 L
.89975 .27116 L
.83472 .25003 L
s
.76635 .18166 m
.80054 .12244 L
.83472 .18166 L
.76635 .18166 L
s
.83472 .18166 m
.80054 .12244 L
.85975 .08826 L
.89393 .14747 L
.83472 .18166 L
s
.25587 .56243 m
.25587 .49406 L
.32089 .47293 L
.36108 .52824 L
.32089 .58356 L
.25587 .56243 L
s
.80054 .12244 m
.74973 .07669 L
.77754 .01423 L
.84553 .02138 L
.85975 .08826 L
.80054 .12244 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 172.125},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzlnetuVVUQxzc9LS0tlxZKKYXSw/0mWEBuiqKAXFQ0MTEx8YNpiAl8MBpE
40uYGKNv4QN418R38K6vUlkXZnZ3f7PP7J5dwNiEnt11/c+smVkzs9Y+3Fy4
d/uddxfu3bm10L12d+H923dufdC9+t7d+0WdNUWxplsUxZfdIjwv3n/Mv+LP
7vAr/9Hj+Z/wsTb0vVAqKDqLMlj86/7PaCg6mRr9DY02ht9DoeiY3WgzlB1N
zf+Cqi3Nmk9C2ZEVNf8Tqra21vwPqJpq1nwblB1OzX+HqunWmv8GVdtXtfkM
lB1KzX+Fqh2tNf8lfAyEmlm7UUPECzLmR86OB1PHt6VjUscHbXAc4nAe59nw
MWgRNQBlH0LZNkGTF+5c+IjaPyhV2+VpCIYg3JMWkZl7p2SWsfAUO2ufEWuW
WLtZngah3YE0wXGZYIs0n4DmNNXHULZBRllrT/qENJqRJ+243jnVqPRYB7X7
S1ORBmjH+LQR2l2V2hNOjoxC2b4E5ChU7Qq/O5a8bIKyFytlhQFuaClfGdIR
qNojHUsCWTwQj0rjy3muUlktqgEZfBxq96auh6FqP5QRoEtQ1pFJ5+Pfg2Xm
iZ4wlkNQdQDKaGN9AcpomY87aduTIB2EKoJJQzwPZcNQdsxJYnapiCO0ijTE
c1CmWlnV3iBY5GZkICQmpHfEGwIy5iAsQCJXppsq90EV2STizQUoI3VOIsFq
SNzK0PZClVcYn4GyaK/ispFAdJwjzyVwe6DqSWuIOClBslW7NzhakV0J3G6o
Ins3LuCedVJPI5PRoL4ZXBeqTkEZ7XgkcbYEOWFGBswlcHPQ6CkoWy8dSS9J
32hksm26Jtlo7IJGZ6BMrRKZUeISQSJXRV2fvc0gkQty0QmOlpDAjQk49Sl2
2TDPQpl2jBPEyjj9tvBEgV1H2pFjT2Z5ROYYlL4Vl3q2GWr1G6InG80rRQsU
VRDDSWU7mT9kuSkkJcqTkA9WxzDdyh02G87VwOkIE0jqKKikhaXQgoyv1yDT
dqjxWHqMlfkfSfhML4Ys3ewjD2heimU1IpzI2Cq8jXVkp2jr2sRjmIiS8qCE
Pi2Tk1xqtEtcSVOxmGhQZhOwlJ/xL4oHeqF36JfXKo/VUESMjXvnVCgioZzu
H7jpbUfWUpgZKyhkJPykhjTltmaU0BAkBuQUV3WgMESIsgNEDi39VP/kqPtA
QVfV3hZFOV3zEKHTEOTwHRZwum2S3Sa7SdDJM9tqQz8PZTQ9cS5FUayzZIpp
2yISaP7J/kmgrbsabQXoO6Ed7Q8EnVyGLc2g0xC0+PNQRtApC9gQOg1LMv+o
oJOLurkZdBqCFv0klJGsewWG+k40g05DEOfahk4e5/j/BjoNQVl+iq1JT7zG
sQWBeVTQa9SUjGPV9W8C/XTL0BvadYJOC0fRIaUZaFP3OgQ10OMu2RHfo9KI
QnJaQlLYtomocQmicxMdKApZKV9A4IhLRBgxpR/Catw1cn7TOrHLdU4YQcSQ
aSQxpVkp2mnoNutR6EgNCWczkSV3LPyjcUlzHyI9GoWMVTBn3GegeDEfg3uP
d8k9JHqisE2HopoQkiLT9YydDD8rV8HntiT9tBNReEl9twrrKE2Ro31N4o4z
WeRFDEHTxSUr2xud99xjWEbWpNTyBBlFWjkRo5ngasYijETnH6T1egbsPUD3
EkgGcwczODYiZmZSCUZVuAPRdCKl5wQaUtMGR+tL5y8kc5pRn4PZaF/PSU5N
k0/LE535kRiU8qpLE+sqGBfD02R4osWgwy0zW68nQEnFUZhUkulMlWwD8WbE
wkBnTx1SgPAXnSsSF/QMpDLbBptOvSZDx9mmbTWlgeRMz1w2ymwH5WmT1JIs
r7eh29fNeu+AujBkK8guDEsPUmG6lKDLQXMkJbWPPJRL6ONask66T+SMSg/V
+GPytLZ2vF7Qlzs6lJYlJ6QjAuHYZDcIyIq4UxpGxc9PDEU2AzJpF2r1dIO2
EXJ7SDhP1I4y2gywLi8FdORRE6RG0B3taoigUKyyuUT5UgtNziG5zC0App2d
eKiHVXEwvc2JSrDMoyMdpwiNkNKNDGq3rhlFavbXCUVkCRN0DoNooShoXSWy
KNjWeGdAyFLDTUtGk1I0Trr7iInVYDV5BBweUERENtnLHMpZ9dNuxCaasg6k
S7Sr1aUgiHzyfmjNKehsgXzSPdpSCRKRH7d8VQTzWJEcz0dMNpkVWnXqqzEV
6TDJmDcX79Vhr10fbsYA23UAu758ByLKabemaSgfsUqU0zJTmToQavArXqMZ
Uf03KTZv/sQiMl5kFfpxmbw+Y2I8Tk+8NjNQZAzNDY1MWxSNqAnz8uQlTMVq
pEROfBuQog5aMRJADSgq0kqDakBEWzPlMTSaofGITp0je8SRQessmfJm02Zk
WNpq6yNpetlEA1hv3k/nyNmSGF8MhwIyr/b9x2o7A4MiJFHU9Ij63STkRImO
nI9+40dpiZaF5yTkRCAdxMZ2Q9b6a+pHFYTu8NcngYhKHTkf+o0JkI0VKvOP
Kec0JZGqM1SUMTbTXCUJKb11EIFHmBcrtWGKONRUiTayOESJmeP3Lum4yS3B
RTo8J5PH2kkhTI8G/JSoO0p7sJ2Q773dkLrpjWziESVOCAHRQa9nTDdjhfou
ZAH6YYUZB3Rk24zzem+OtcAAM8pVSA6vlBJhBI4QaGaUIgLdkL2+IRmvGmUw
RZa8APugaWWLr0eNlYm8VwEaMsD0wkxchNpLMW3DausoeKYeq0QitaMyb8aW
Vic6MltDEY1Mbg65gDPNCNNUKLl2XnJIy2nFvOu+SsQS16mdmYp0jPcYkq03
ACiwIePhXWNvX282kCLwHc2IpR2X+OpdJ9pJvW84PUSyyTMiEr1kExv7MW4t
kG2m9ksebO91b5tYUgvqS5nUnb2I5Xw3OZDmOysOUr07dAuk0ktJ1XtT4bNg
t5bslzc8tq8wPzwqS69Egws1EooIEoXA3ijCvFZSKaOE+KxNjibQulAb3dMN
oYi89CHLx3kM6Yz4Y3YmJn0idL1sQnI2tLRdi5LZFokR3Hkhgsy1niIXS0MN
750Ar5klLacUdn71/LqgJvnRC0zkXXktuiY3dspseukjiXv6Qp5YRX4zlXnt
SjObpDtE6RPvJ2bgl4USMqakAsTLRh5QnK3aQ0RLr7eVvwrhMgzmfS2Uyrye
qnnOQXE3KTNdCmtIE2GgzKjXl9MERZ1XoVHCfnnK39t1xQmcLAmpghc4Ea3E
eNNNdP20IWHeF3aiSk1Z2zi/vu1rNwdlB5sRQdsH2QDN9lfEnQZVt4YWn5ZI
M/Gz8pS//7H6LWfWpN5gJ04VHUvyLEgyzeubZvqZZJQ2xFUiEe8wFwZWolhf
U6fFIr7pkmu69Vgz6mhY2lL05mz96wO0bdGGQx6I98g+k3jVSSIpNslFxxJP
80t5HIPS4mt6cb4XJbxBqLrqrVXaaglkF8pInC/1grbsKsxewWKeTa8QS9qu
i2sWlpK70lvNvEAojr9iA9EEuX6Bo/e+iZcPNdPrfQMS9zknfSStXSGHPLdk
Z1I0QIyORaTs9LU2Xkh0SEyaf9UGV3/xwQuODPU+4VdDSHpST0a0H0h0k4B2
yyRYxY1KVVHk02xypWxcbLuOCHuIyuslBLERqYGHFYVshb21/waTTcM2mZ7e
6qIts2Z6L/X6LX/z8kSG5iV7KlJuOtCfkAm8b4m+bE9KngZNSnb8tABpYVJi
qsY31bdqwuq+ak9AuQSiSk/86PD/pj0BORo0AUnbJ/0Pq2mZT+3BKB1Gg2nm
4TN7MEo9psHYyHy+kqGW5b2/aEbdHJTVDEHc/spuTkL1dWvNSSe+sZuTsfjW
bk5m7LtS845l6XOjV6QR7UDfp0avSSPaWH5IjV6XRrTt50ZvSCNyXH5Mjd6U
RuRw/ZQavRU+onD/nApibYP/K6NY8y/nxska\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {171.125, 0.}} -> \
{-7., -5., 0., 0.}},ExpressionUUID->"0cbd055e-7b92-46db-b2ef-dcb892f4cb55"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(84\\). \\!\\(\\\"snub disphenoid (J84)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"73fd1c45-a3a3-4a94-9c47-0d8f09cf6d86"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.73205
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.44709 0.366572 1.50753 0.366572 [
[ 0 0 0 0 ]
[ 1 1.73205 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.73205 L
0 1.73205 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.34127 1.69081 m
.34127 1.32424 L
.65873 1.50753 L
.34127 1.69081 L
s
.65873 1.50753 m
.34127 1.32424 L
.65873 1.14095 L
.65873 1.50753 L
s
.65873 1.50753 m
.65873 1.14095 L
.97619 1.32424 L
.65873 1.50753 L
s
.34127 .95767 m
.34127 1.32424 L
.02381 1.14095 L
.34127 .95767 L
s
.34127 1.32424 m
.34127 .95767 L
.65873 1.14095 L
.34127 1.32424 L
s
.65873 1.14095 m
.34127 .95767 L
.65873 .77438 L
.65873 1.14095 L
s
.34127 .95767 m
.34127 .5911 L
.65873 .77438 L
.34127 .95767 L
s
.65873 .77438 m
.34127 .5911 L
.65873 .40781 L
.65873 .77438 L
s
.65873 .77438 m
.65873 .40781 L
.97619 .5911 L
.65873 .77438 L
s
.34127 .22453 m
.34127 .5911 L
.02381 .40781 L
.34127 .22453 L
s
.34127 .5911 m
.34127 .22453 L
.65873 .40781 L
.34127 .5911 L
s
.65873 .40781 m
.34127 .22453 L
.65873 .04124 L
.65873 .40781 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{166.25, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnG1v1FYQhZ1sEhpCIQQIby27QHgJ4SUNtCSiQoiKpkIUhBAVQlRoC0VJ
UdWK8pv4m9usr5kx2edMbMjHmw949865x9de35kz4xG/9t9v/Pl3//3mq35v
/V3/343NV//1fv7n3dZQZ6woig9FMdbrFcPPg62v1T8fBlt/W8a2h7fDw/iQ
Yy0NbNpA0RmkoaI8rKYvG+Vh8uOw/RVO8cYoJsqBTh1c3Eyg1waa0qA/DPSV
BvXBFMBfGueMBv1uoK816AWYAvhz45zVoGcGmtOg3wx0WIOegimAPzHOoxr0
2EDHNeiRgU5q0EMwBfAHxnlKg+4bqKdBvxjojAatgymA3zPOcxr0k4EuaNBd
MAXwO8Z5SYNuG+iyBv1ooKsadAtMAXzNOL/ToPJQWlY06Htj2uaUyrFlPfFG
eWBv1YFpVzTViq2BvNq4WQOKZQORz5sw65KmuGogcnFTZl3UFLRAIqOx85p2
yc5NfnXarAHFooHIjc6YdUFTXDDQAQAR7WlNds7IDgJov1kDCloqkc0aWVeT
nTEQOfI5s36rKXoGmgcQ0Z7QZKeM7BiAjpg1oKClEtnR8FQV2UkDUSg5Hl56
ReEgWhnRHtJkvugugL4xa0BBSyUy/yno6arIDhuIgpk/GrR1Kgp/yOjJJtp9
mswfenIKZ80aUPgmvAgg38B7NQU5BSKjOLxH07q7Ind+0awBhTtN8tmXzDqp
KfYY6BqALpuVgmFFQbGKyJISmKiPDT9XSYFHN4rzJV+nBu8Y/DrAlw1eZSWT
Biep4UGT5MMPtTvVQNykn6K5pEjrT9FUCiwPnrG4qMj22gBJOg+jscxItwp3
F8kH2hN0AhpL15y2mtQn5806DVZ/kiuyAzZAO3PBrLEcSTcweU0p4c/CGNH6
nk96HD07OcnTNnE/WMlDpWvewaV3zUopp/vOimzeBiiBosyLaN2rp1uJEZui
axwQKR9O17xD0D5h1iNgPbTtBjYRESR0pPhJtzKtTKbOsbxxa/oNUAGQUogl
GC0kXfMuyUS/8xXtlwhYfzrSundJWtNTna55B/lPIolO0N12K5ukKHJDu59I
NxD9KDn0OHki/5auuaYyiJZkFZ3AvXFF68qDKDxYkmv3OJFu4BclxS7EkpfF
agIJLBqjE1BlJl1zCsBSwbkEoiDviqEiu24DSYV8KsQ+2qSiqd2+VG4ZVXLj
MJf4SBymC0xaq9ROpNO8PlLBV22ARKPfvokavLbu4bHgX/SazZ2qz2VZp9Uu
KZ+KSkk4kvK+G6Y1RVwf8n06oylabgWiaFoVoo0b0Mb1IffEs5qigYsrrXOa
oml9aMQNE1lcH+qadV5TfHboIrKW4ZUoPjvwE1ksTo5tWy1SNJBNqDuRLK4P
jQg6omhaHxoRnUQWy2FPWBY0RVwVIvEekLkmJN0ykkwQRdP60D4jW9RkcX3I
U+QlTRHXh1yFXNEUTatCNBbQxvUhL3csa4q4PuTqYkVTbK8Psaa4oQlETYiU
RMBSxt8yNN/UIBcPazushypBq3pOVPAJThWXdIILics3wURPLILX3zSRQm5L
irjcEkz0lDB4dU4TKai2pOjauYM38jTRk/ngLb0MEDIBDiZSiGxJ4RE1eMNP
E70sFLz1l3JBllKCiRTwWlJ4fAw6BmiilxV77SbGmXswkcJXSwqPdkEHgpTz
MtMOJlJYaknhUSzoXqCJcWb8ycTmWXAwrQh7DMoZpSW3OZQUuc2hyG0Ouc2h
TpHbHIrc5pDbHJgitzkUuc1hkNscym+5zQG8UW5zGJ4gtzkMcptD+S23OQxy
mwPFIxl0cptDbnPwubnNob4VcpvDILc57Ergz20Oo2N10ZnbHEbHan4qtzlA
NB332JbbHFq3OdzSIIrQAdyV2G0N8prMHQ3yzOCuBlF8DOCuvO9pkOdl6xpE
USyAd43zvgZ5VvxAgzwjf6hBFEMCuIeXxxrk9ZAnGuQVmKcaRB48gLtzf6ZB
Xv96rkGeTr7QIPKfAdxd60sNcufZ1yDybQHc3d5rDXLH9qYOYte1oSFbn/+q
WcuTvNWnrUyt/5+RYux/MY9olQ==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 165.25}, {287., 0.}} -> \
{-1., -4., 0., 0.}},ExpressionUUID->"35c25e9c-04bc-4c65-8900-759a00fdf131"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(85\\). \\!\\(\\\"snub square antiprism \
(J85)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"33fd02e6-d166-45e4-ac5e-\
45709e28e8ba"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .68301
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.261905 0.174298 0.428655 0.174298 [
[ 0 0 0 0 ]
[ 1 .68301 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .68301 L
0 .68301 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.17476 .5158 m
.17476 .34151 L
.34905 .34151 L
.34905 .5158 L
.17476 .5158 L
s
.17476 .5158 m
.2619 .66675 L
.08761 .66675 L
.17476 .5158 L
s
.2619 .66675 m
.17476 .5158 L
.34905 .5158 L
.2619 .66675 L
s
.2619 .66675 m
.34905 .5158 L
.4362 .66675 L
.2619 .66675 L
s
.17476 .34151 m
.02381 .42866 L
.02381 .25436 L
.17476 .34151 L
s
.02381 .42866 m
.17476 .34151 L
.17476 .5158 L
.02381 .42866 L
s
.02381 .42866 m
.17476 .5158 L
.02381 .60295 L
.02381 .42866 L
s
.34905 .34151 m
.2619 .19056 L
.4362 .19056 L
.34905 .34151 L
s
.2619 .19056 m
.34905 .34151 L
.17476 .34151 L
.2619 .19056 L
s
.2619 .19056 m
.17476 .34151 L
.08761 .19056 L
.2619 .19056 L
s
.34905 .5158 m
.5 .42866 L
.5 .60295 L
.34905 .5158 L
s
.5 .42866 m
.34905 .5158 L
.34905 .34151 L
.5 .42866 L
s
.5 .42866 m
.34905 .34151 L
.5 .25436 L
.5 .42866 L
s
.65095 .34151 m
.65095 .16721 L
.82524 .16721 L
.82524 .34151 L
.65095 .34151 L
s
.65095 .34151 m
.7381 .49245 L
.5638 .49245 L
.65095 .34151 L
s
.7381 .49245 m
.65095 .34151 L
.82524 .34151 L
.7381 .49245 L
s
.7381 .49245 m
.82524 .34151 L
.91239 .49245 L
.7381 .49245 L
s
.65095 .16721 m
.5 .25436 L
.5 .08006 L
.65095 .16721 L
s
.5 .25436 m
.65095 .16721 L
.65095 .34151 L
.5 .25436 L
s
.5 .25436 m
.65095 .34151 L
.5 .42866 L
.5 .25436 L
s
.82524 .16721 m
.7381 .01626 L
.91239 .01626 L
.82524 .16721 L
s
.7381 .01626 m
.82524 .16721 L
.65095 .16721 L
.7381 .01626 L
s
.7381 .01626 m
.65095 .16721 L
.5638 .01626 L
.7381 .01626 L
s
.82524 .34151 m
.97619 .25436 L
.97619 .42866 L
.82524 .34151 L
s
.97619 .25436 m
.82524 .34151 L
.82524 .16721 L
.97619 .25436 L
s
.97619 .25436 m
.82524 .16721 L
.97619 .08006 L
.97619 .25436 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 196.688},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzNnWlyFEcQhRtJCLFj9kUwIxZhB+GFH76C/cuHUBBEwA+HHZhz2L4CBgPG
1/C9sKanqZoZvnqdpcruGkWgkaqyX72s7q4l81H66eDls6c/H7x8/uRg+uOL
g1+fPX/y2/SHX14cFm0ea5pj06Zp/ps2s58/Hv7YfWu/9mbful96fn41+3g6
u/bmQkGz+TGAHf72rbHs+hziL6j6eqVsRpYgbrhBvIaqR+3344tlAWoVfvZb
1ydvoOorKNs02t0aFPZvqHoIZceNdruDwr6FqgdQdsJod3tQ2HdQdQ/KThrt
7sxh30PVHpSdNtpNBoX9J1m1XHbWaDcdFPYDVN2GsvNGu71BYf+FqltQ9oXR
7u4c9o/Zx8ashoxuQNklo92NgLyz0FSztThMz/4lrz1iu9dCu/Px8VNl90Z3
NHioT+KtlF0x2l0TbS31yvJlG8GFNOjRCF0JyFtQu52mtBUuvFra/ErZ5YC8
nUeJzOkhKSFHeJk0TwT/LhsbsD79FwMyzSqC0slw4UVnShcCMk0dgtLpcCEN
YNZBjezOB2SaHwQlMqdB2zqQW6/NpHku+OdN7mxAvpBHKT4F54z+TYx2ZwIy
PbmCUnxXzjhTOhWQ6f0WlMj8FJRZF2FkR3iZNOOU4U1uJyDTcCwoxSmeBj7r
Epvs4mBNI56gROa0hbBuK6zXZtK8GfzzJnc8IO/mUdoNF9LEat00kl1cs9zJ
o3QnXEirpBJKcWU3zaNE5htQZg0JkB3hZdLcC/75kzv8jV5jweZeYNMsbwWI
3KMObaFs8ZoWhl4G0f7cPC7/Fz67ABXX0dMkmtlPuflN+/2zHdeXefAtm+9n
RXSv+twnXt8xr0y376/0YKg4/Hos6vbzmrkbvKDBgOKM8SW/n9fUNFxIQyE1
FYe4u3lNTZLm/Y2SXRpvPkW1kWRant8OHtB8TM3HObqvUQMYldFa+FZolFYy
hBI3WbTe7mjehCprOJsW5THoQktVQokbL9pQDUTzOpRZCZMd4XXUyavcaD89
t1dDv5GDRDxu1ARdWjyVhP5pmxQjLlSbvIfJ6M+I1OM2jnYxRF1f0VGnN7Qk
hUGhEXqIrE6QHeGN6E4Mq9DmjZyIG0lBnVbqJekZ6rkY17DOEnHDSXPDiNQp
eGF1guwIr3NnAlUlGS0Kr8bYCQ0e5ETcwArqU6gqSW/RoBeDF3TfiXrc6FIg
ZUTq24EItUbU44Z4J009nRjsn8DJjsYVGrGsTpAd4Y3oTjsVJne25ETcYAvq
tBcoSUHO1ytbi2WBBo1cRDzuxWn+H5F4wxtN4vyAL+8yd3TLSjKy7fjcFtEG
nfjthys6SnFrNEg2ty2ipRqRexi4LJKrmP/dyL71Ios8/6ifRaaXiaIO5KMK
oCzds+XLamWndViFHNShm+20i7Wy3Tqck5zU+rLn5OL6Zc/7p1DqALLL7Ipa
GXodyCJndbBMuFgr46+DYOSiDrQJF2spCHQALbkR61MkkIvrpEiwhuHScuB+
PNEVtVQPOohHzupAoXCxlopCB/uS4ak+VQa5WEuVMVAYkVxcJ5WHNYxIHWAN
X4quqKUk0YHHZAaoT5lCLtZSpugAZTKN0qd0sSpOaildrCFN6gBrKFV0RS01
jQ6CkrM60CpcrKXO0cFSclEHZIWLtdQ+OqiaTLz3qYfIRTKvpR6iMuo86gBr
+Fd0RQWFko7Zkp86Liy8G0XxpEO5c3/swWLhjad+KhHLfczFQopERD0UWDGY
+zj8JJRaREMrtUw6ruRtKNRxOWrBiKKnFux+19jKI/Hpc/V9bRJDidB+kQfe
MrOIt/qSNgknNiVe3+ziKFuLePOuUEIdrjPJ4siVSdLcODsb8KiMBtKSuYjK
0r5hV3gL8yIedVSJs/FuZ7roLeqLeMk1/RFXknE/IMSEyV2ToyAw4tFTUeKi
zl0KF8cQE1IZrdpL9nyEJ5SCBOEtSox4tAsrCWfE3Vqmi97ixYhHe+kSF+Oe
W4gmdVTUJzoZa5P5C9qxGOziWJEZChxDDEll3h1AeELdSF3hLaSMeNZUzsRo
F0OGmS56Cy41kRIXdecJF8cQZlIZjfMl2S/CE0pL6gpvUWfEoxG/JLEbZ4ZM
F73FnxHPOrhZXYxjvxCdJvUh3iLRttaqFLEqEC71t2tfkFudJbvkwp3Gb8cO
IDyhDqWu8BaiRrxiPVhy8ut10Vewymi0ei1xOa64hUyW3GuKZa0UxPJ2LyHI
XVQbthdkKWDbGBD9F7USGen1wOUzbW2+ApYmwhJy5Gzi2Zh95j4bFKelJh3O
n1I6WgrO5upYqWk32stV3vpUevccDhLTelcf3Sm9+hMoyzyxzapjJYgS7eiI
7nhrQin04HDSn9aY+mg9R6TureGk6dDhNEirJtRbhzmiO976StpPORz3qfWa
PrpJWgyU/C/e3TR174jjiNTH0DTS3XE4j1drJH20iiNS99YgUgcc8Zxmq57Q
WztII1LmadVad+ij/xuIpreGr32sFo8k12o+H1Xd7+mmyNxbySaa95aViaZ8
FV+ioXKVlgC3KqwEhNZQ9TlWqH8S8ANqlkSr3hqjvndtQE2QaHoCZbX0OoJm
LX2NoFRLDyMo1dKvCErrpC0RNGtpQQSlWtoNQamW1kJQWicdhKBZS7cgKNXS
GQhK66QBEDRr5ewFpVo5dkGpVk5cUFqnfLWgWSu/vERpHTLCglDDSdEB0rd/
LpDYTLXrk4xdbGrFyLtRwuu62/vopw+DwnqfqjX/e0zuB6S9HxR2ClUl2aR3
g8KSIyUZl7eDwnqffDn/i3Lux5i+GRTW+/jb14PCehyLPP9bjEWHQ79yg4in
jHe02tqMP3jZHPsfRnQKpw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {195.688, 0.}} -> \
{-1., -2., 0., 0.}},ExpressionUUID->"d1f5b558-7117-4fb9-8c3f-20479c58f6a7"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(86\\). \\!\\(\\\"sphenocorona (J86)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"1b3b40db-dfa9-4623-9db4-e0c3374c4a99"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .5
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.412851 0.174298 0.25 0.174298 [
[ 0 0 0 0 ]
[ 1 .5 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .5 L
0 .5 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.3257 .33715 m
.3257 .16285 L
.5 .16285 L
.5 .33715 L
.3257 .33715 L
s
.5 .33715 m
.5 .16285 L
.6743 .16285 L
.6743 .33715 L
.5 .33715 L
s
.02381 .16285 m
.17476 .0757 L
.17476 .25 L
.02381 .16285 L
s
.17476 .25 m
.3257 .33715 L
.17476 .4243 L
.17476 .25 L
s
.17476 .25 m
.17476 .0757 L
.3257 .16285 L
.17476 .25 L
s
.17476 .25 m
.3257 .16285 L
.3257 .33715 L
.17476 .25 L
s
.41285 .4881 m
.5 .33715 L
.58715 .4881 L
.41285 .4881 L
s
.58715 .4881 m
.5 .33715 L
.6743 .33715 L
.58715 .4881 L
s
.58715 .0119 m
.5 .16285 L
.41285 .0119 L
.58715 .0119 L
s
.5 .16285 m
.58715 .0119 L
.6743 .16285 L
.5 .16285 L
s
.6743 .33715 m
.82524 .25 L
.82524 .4243 L
.6743 .33715 L
s
.6743 .33715 m
.6743 .16285 L
.82524 .25 L
.6743 .33715 L
s
.82524 .25 m
.6743 .16285 L
.82524 .0757 L
.82524 .25 L
s
.82524 .4243 m
.82524 .25 L
.97619 .33715 L
.82524 .4243 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 144},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzNm2lXFUcQhgdBxQWRRQRR7wVZg8iWeLKd7NGsP4LjyYmexGiI0ez6E/KP
DXem0+9wfaqoy9zk4AcuVNV0PT1O99R7u/vr3Sf3v3m4++TBvd323b3dx/cf
3PupfefR3r5pcKAoBtpFUfzdLjq/v9z/Nf0o/811fqQ/Dvn9aedjp3Pts5qh
GHyZG9v/awNsP1fhz8C13mXrgD09UvgvEL5W/jxZt+XLEtSvcNkq2AbBtte3
Jn4D1zLYToLtx7418Tu4FsF2GmyPqyb+ANcNsJ0B26O+NfEnuObAdg5sP/St
ib/A1QLbCNge9q2J5+C6BrZRsH1fNfECXLNgGwPbd1UTW52P0vNVg8Zud36e
6Jh2qmY3sqEaXf9GF6XtS2hiBmwTYNuxWt6u/rhVfvDUQgP9swYs206udCNu
ZtwhaOBE9n4O3stguwQ23WzKsVWBvJaDTkHQUPbS/aCkBKfOUo4EQjMwhZPt
0wZwa8EcCXM594Xms9PZewe89KzQM7Xi5kggizmIprQz2ftJA5AlN0cCuZGD
aFY7l70fg5cmDZpc/BwJZB5cFE62DxrARfMmzHbuy0UIupC9H4KXJn16ObTc
HAnkeg4ah6CL2Uv3hvrXAttVN0cCUdAkBI1n73sNQK64ORII/e9SONneBRuN
GipKpoM5EuZM7ov5Kii9TZCm3BwJ5HIOotlD3nfAS1MblY0Tbo4EMgUuCifb
mw3g6KF2MCdzX65CkB7Rt8BLRTwV+6NujgSiMXUdgjQe6d6QICHhct7NkUA0
y7QhSDPU7QYgZ90cCYRmVgon2+tgo5qSSpzhYI6EOZL7Qo/jXPY2QTrl5kgg
eq/TQ6j3dVXvci3c/e1AhjTbTcnPgovC7SZk64BsOJD0RCWM4cy6AkEqnuyU
Q3Wb1VDKptqS/tNKzG8tb2pCVSH1ShVlcVBCbUKwwe/cLXrzLJg2/s/ovpMi
4fglG0fTE0HMZy9pJ/rSjGzScZQjgajio0JS1SKJkiiIdBzlqM/FgVKKbE3g
6FrKkTDHcl8o6Fr20js8iqSx5oCoMqESfDZ76cGPgmjEUo4EooqPClhVi1Qr
R0E031OOej0YqG3J1gSOrqUcCXM694WCVPnSgIgiaVQ7IKr4qIBVtUhlZhRE
FRbl6FGBkTcK4rdS16RdLtLhZGsCR9dSjoTZyn2hIJXgNCCiSBrVDogqPipg
VS2SKImCSMdRjvq3QKQAArYmcHQt5UiYC7kvFCSlQNopiqRR7YCoOqRiVpUl
DYgoiEY15Ugg+rKRpIi0AImSKIh0HOWofxPd5SKJR7YmcHQt5UiYa7kvFCT5
QgMiiqRR7YCs56BK2A3Vg7KPJFAUQyqOpGPC6BYClbUqfUlgHJFlkdOk5ZRS
oZQSgARUNEc5JgdrzW7nG0CiKtrscm52u9ZsTDv1dHvMhbXNet64Uoom9xQb
PTnrdZyDLl8xRYF89aYcDoivmHqaWwKra2s2SFQdRZHo2ug624qN6SumKJyv
3pTDAfEVUxTEV2/KsWSD+Iqpp/omsLq2YINE1VEUKareyDZnY/qKKQrnqzfl
cEB8xdSTogisrrVskP9Dd8l7zQaJqqMoUlS9ke2Kjekrpiicr96UwwHxFVNP
32oEVtembZCoOooiRdUb2S7ZmL5iisL56k05HBBfMUVBfPWmHBM2iK+Yevpm
NbC6NmaD0IUkSqJIUfVGtgs2pq+YonC+elMOB8TXTDZIXL0pw3kbw5BL9vrJ
K6HmChHVQgwhPWXmLU3+6pmTwF/00lat4UNuVG2l0r83nU/v3tSmDsxGoqY7
bv/TXkwKtEc2B0la6Y0giEaJv3I2Yidt56BqYT++PqwpzV8tG7WTt8DW3ffc
zy4bPWckVSgH2RxMaSHahRGF00uR0ivHuA0iLUT7UqK7MFTN+KtlkzaItBBt
KIqCqL7zV8umbBASKG+DLbpnhxRCdN3MwZQWop1g0T1OEjL+atmMDaImaAtf
FESp/NWyWRtEaud98Eb3xukZObKiIoHSBCm6I59sDqbGCu1Gje691Czjr5a1
bRDNHrSNOArSyq34q2XzNggJlI+sXuGNhtdlIAfZHExN+7T/O7qzObpatmiD
SAvRjvgoSHS1bNkGUeFwF7zRHfGruRV/tWzVBqH3VBMkOsAQXTdzMFXl0RmU
6OkKLVL5q2U36yCshb4IpiS0zdyKt1Z2y4Yo+CBUNL/RJJX0dYhBK2/0JFK5
DbQsrrfqfTsY1CQB7ctNqV6Aq8dTaH1o4jm4ejxOdzzOBR6PM5LH47xoHw6+
Ho8TvMfjNPMRj2L/t+fDXzm9XgYccuS9GPgHqvjkAA==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {143., 0.}} -> \
{-2., -1., 0., 0.}},ExpressionUUID->"273f6c1b-1bfb-41e6-a76e-a9abeea07f21"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(87\\). \\!\\(\\\"augmented sphenocorona \
(J87)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"e3fa2ee1-389c-4b9a-8fca-\
7bade1ed708a"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .63151
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.57737 0.178679 0.259116 0.178679 [
[ 0 0 0 0 ]
[ 1 .63151 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .63151 L
0 .63151 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.48803 .34846 m
.33329 .25912 L
.48803 .16978 L
.48803 .34846 L
s
.48803 .34846 m
.48803 .16978 L
.66671 .16978 L
.66671 .34846 L
.48803 .34846 L
s
.02381 .61647 m
.02381 .43779 L
.17855 .52713 L
.02381 .61647 L
s
.17855 .52713 m
.33329 .43779 L
.33329 .61647 L
.17855 .52713 L
s
.17855 .52713 m
.02381 .43779 L
.17855 .34846 L
.17855 .52713 L
s
.17855 .52713 m
.17855 .34846 L
.33329 .43779 L
.17855 .52713 L
s
.39869 .5032 m
.48803 .34846 L
.57737 .5032 L
.39869 .5032 L
s
.57737 .5032 m
.48803 .34846 L
.66671 .34846 L
.57737 .5032 L
s
.57737 .01504 m
.48803 .16978 L
.39869 .01504 L
.57737 .01504 L
s
.48803 .16978 m
.57737 .01504 L
.66671 .16978 L
.48803 .16978 L
s
.66671 .34846 m
.82145 .25912 L
.82145 .43779 L
.66671 .34846 L
s
.66671 .34846 m
.66671 .16978 L
.82145 .25912 L
.66671 .34846 L
s
.82145 .25912 m
.66671 .16978 L
.82145 .08044 L
.82145 .25912 L
s
.82145 .43779 m
.82145 .25912 L
.97619 .34846 L
.82145 .43779 L
s
.33329 .43779 m
.33329 .25912 L
.48803 .34846 L
.33329 .43779 L
s
.33329 .43779 m
.17855 .34846 L
.33329 .25912 L
.33329 .43779 L
s
.33329 .25912 m
.17855 .34846 L
.17855 .16978 L
.33329 .25912 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 181.812},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy1nFlvHUUQhSexnZB935e5zr6TOGYTEggQm0QkFsG7FSElDyHBcYCEfd9+
D6+IfxZ870zqjMdf1a1ObpBw2tXT59TMdNfWPb62sHTj01sLSzevLwzeXly4
c+Pm9buDt24vLoum1lTVmkFVVf8MqmH74XKz/TH6b3b4o/1lTHtx+M/8cOyD
jqCaemhgy79dBtlXzeV3oetSTzZU7P5jXb4El18Y/ZzpymxYq9Q9GHYOZFMg
uzcxiC+g6wzIZkC2NDGIL6HrFMjWg6x5W+1TXdl1EmTPgGzRhzgBsg0+xH3o
OgayTSD7fGIQD6BrALItILvTQHwNXTXItoLstg9xFGTbfIhvoOsIyLaD7DMf
4jDIdvgQ30LXQZDtAtkLw59rh6L5Buw7uOgAyHaDbN7AmiX9qLO66mPvB9ke
kDUQbLFa1b+HYftAthdkl031aeid8wkIjEgvGcE6n+CH5MOgh3beCMiEBAT0
JumNk+UOqH6ELpqBNFNP272QFWkJfoIuWiW0mk4YAdmYgIBWMq34Y0ZA5qMl
+Bm66HKySmQvC6nINtYe/ehedvoEv0AXPVvS+5AR0FxsCX6FLpod5Iv2GwEt
1wkQ7DUCWpotwW/QRb6afDo9mEIqWqsUgey0eznkE/wOXRT9UJS0zQho5bQE
f0AXRWgUyW02gvrpENC0CKj+hC6KeV0LO7oXmncTIFhnBDTvWoK/2sdD3ref
ehj5CJQmQAv6d69rCHY5IKI3MRZquisb/n/WR7lqWn8ybD0/bNEj616+muBD
Q+lFQVf4+uC2oqDn/aBvLug7PY5uZddau5v3rEUhEqW3Gkt2JiCdtoHvWIvC
JiLV2ONlpETwhoGR9SR6QiGfFyiy3khfh96sIkIppN9gA1+xFhk8ItVYilkC
UiJ4ycAokCB6QgmcGCki3/Ei9GYVEUoh/VYbqGSKYk4i1VgK3wNSInjWwCjo
I3pCCcItUmSHkV60FkU+RK+xhaS7bCDZ+iy9UIIYluj32MBT1qIEkkg1NojM
iZQIZg2Mpg/RE0qQg5Aiisxra9GSIXqNLSQ9aAMpN8zSCyXIIYmeSPcZGBlO
oieUjWWKHDFSTSRyFkSvsYWktQ2kOZulF0pQgiD6WZBtMTAKGYieUCh5CBRR
hWCTtShMInqNLSRV3UPhAQWERKqxlFoEpJQCEERWkQZvuiszh8kaqJ7UCckr
x+IT5QhgagzLGbvofBJWI66OeXyUT4xklM64D81FueLTN3OScwmledl3Nxat
d/0lX7HjRk75CIFRgktKxsjKagLl5EwpIVCOklUpi3fBV6m2i8hkqgxAdYZy
Eyy8c75K5OsITEWQrH8oQkY75LtuNyPaaL1FTtzFUzYVqBSHIZtBNpkAp++1
xoR3FKLJ704m5Ov78XToS2CqUk46HCbZwFc4DvKV9kwmadhuvYFKcbKjXtq7
Kk+eVJA+6qsUp3+kSDavjZF3W+9hXznNJarZa/Mgq1IW76CvEm3+EJhWXFEZ
IouMS2hMYYaMhWwV0ZeXaA5Yb6CS7D1tZMi2kxEmlWI87ZLt8VWSp6yhl9wS
7UCRcjGy0sFdvnK0QURgtYFllStCJovHCs+YIhQUKSYjelIzxhtYb6CSQm4K
HRW5UmJIKsV4SjS3dlVamXs9uoTyvJPWSwF5f4tmHJpS0M2+OhVvqZzmS+fy
CKTRho4eox7Kx5TmzYXXKU1tYXU5JaojCHeT6oyBNTFu54hLBRmg+8iecCdL
eWdTJ2oKywUZINVEmjexrv/SHv3r7kUloEnWaq6adJwWEoRfPKkchadCPC30
JjbvHP+JE0SqcGmVNzeW3+dVlke4MpBNyOvvPydkA0/mmrvsDjg5GZcNY/nO
YiOweCuuBtmT3I6iCGLrH+bpLNA4BaXYQV6fPGD2NIXSNuJQGNXkBrgcSPXs
ZqDiKnp32ZugpM5loxyi6qxpimET8S9FbIlAifyakp5UdKyVTllCvDGpDIPe
WFZhpZDEsa/Xi0uDVM9uairnomA/e8rLRU7I2hvT+qbDltlclgo+tM9DVj8+
bLcqX9b6piQ9UWkga5IwBRSBK4tM1SF0OdVesnUbt5KVcD8ywKlajrs0ErK4
RkYHb7M3UZewIV5nfZMhzFYN6Rlmz+P2Yx2Po61ManLQPm55TZeef/ascnwY
elWdl5YG3UR2g1rxCiFnT3STT3DZMObvrO/ae3KdRAZ8rWvFaGKRX1UYGXM0
AUhnfdN+dG292UDANcCJYONcyLZqN4gWCd1EdqNdlRWyXdlPHC6WsGEo3lnp
cT3FjfDdGCb7IYi+NIk5mpvtrO+44tKkH1yroQmR/fLmSoqhqRrgsiC1nSMC
VARwQ9LE45/P07Q3oDXsFoBmPK+Q/QzrOUNpD2Uo/4wLReQcsh+S0WnJLn1p
tahaWXHKHtQiS3urq0b+UHR0VCHr74Kv9sgAxzWk+FgCvajCbxFJpbhyFB9L
oAlb+IUlqVRUHUqMpdVOY4PPUUnNuOqjPI2SQ1KJXCGFgoFKcTUnPoxA9rzw
u19SqahKkxhLatLMJU8SqJndLaTKDXm9wu+2SaW4qqKMiBY8ObPCD9qpq6ha
khj7lNTMVkHIz5HDLfxrAqRS9gQEPZGnpFL2nAitOHpyhX/5gVR6khM2WTXp
7CYFdIGa2XoDuWx61om/1kFqZM9vZQOX4G+MEH1R/v+YsVShStkcvobe0YTv
/pEX98xBIgsmX/6vD1uUBSfGBlTZDJUcWACbyyPJtgegBVleIbISMUrTgoHa
6idzN+5e9IDcPfkAgnIGeol0XQCrtEPhYyGE0oT4U4sAoraB8t6FU5tiXvIA
dF0Aq7A5/ogngJCl1mYkmcAAgj6kIv8SQLgfhSWuC2AVR+gwUCGEoqOz1qJI
KICgTwvp5QcQ2u1QzYqcUgBB6UH2dGYAq+xEf8+nEEJV+JetRdllACH/+aq1
yM8GECR7LXldAKvq8JvWKoSQVX7XWmRcV0Cwl7tmLQp/A4Dl9gcs/q8zaAT3
kbW6XT2qj3360S8FfwKvWvM/SObJlg==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {180.812, 0.}} -> \
{-3., -1., 0., 0.}},ExpressionUUID->"32d24bd7-28b9-4b11-9876-842dc0b45571"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(88\\). \\!\\(\\\"sphenomegacorona (J88)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"ec40cfa3-7801-43ac-b6cf-2f3a03a4ea5a"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .73205
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.34127 0.124541 0.33489 0.124541 [
[ 0 0 0 0 ]
[ 1 .73205 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .73205 L
0 .73205 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.279 .21035 m
.46581 .27262 L
.40354 .45943 L
.21673 .39716 L
.279 .21035 L
s
.08608 .24983 m
.279 .21035 L
.21673 .39716 L
.08608 .24983 L
s
.42633 .0797 m
.279 .21035 L
.23952 .01743 L
.42633 .0797 L
s
.42633 .0797 m
.46581 .27262 L
.279 .21035 L
.42633 .0797 L
s
.21673 .39716 m
.25621 .59008 L
.06939 .52781 L
.21673 .39716 L
s
.21673 .39716 m
.40354 .45943 L
.25621 .59008 L
.21673 .39716 L
s
.14835 .06302 m
.279 .21035 L
.08608 .24983 L
.14835 .06302 L
s
.08608 .24983 m
.21673 .39716 L
.02381 .43664 L
.08608 .24983 L
s
.59035 .5217 m
.40354 .45943 L
.46581 .27262 L
.65262 .33489 L
.59035 .5217 L
s
.78327 .48222 m
.59035 .5217 L
.65262 .33489 L
.78327 .48222 L
s
.44302 .65235 m
.59035 .5217 L
.62983 .71462 L
.44302 .65235 L
s
.44302 .65235 m
.40354 .45943 L
.59035 .5217 L
.44302 .65235 L
s
.65262 .33489 m
.61314 .14197 L
.79996 .20424 L
.65262 .33489 L
s
.65262 .33489 m
.46581 .27262 L
.61314 .14197 L
.65262 .33489 L
s
.721 .66904 m
.78327 .48222 L
.91392 .62956 L
.721 .66904 L
s
.721 .66904 m
.59035 .5217 L
.78327 .48222 L
.721 .66904 L
s
.78327 .48222 m
.84554 .29541 L
.97619 .44275 L
.78327 .48222 L
s
.78327 .48222 m
.65262 .33489 L
.84554 .29541 L
.78327 .48222 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 210.812},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy9nftrXUUQx2/zbBpT+27SPO7tI03fL9taW1tbbBtbLT4RBEFiKbS+qf3N
F4IgCIIgCIKgFiqKoigKgiAIgiAIoiD418Sene3M6c1nTuaao/3hJtkzu/Pd
3dmZ7+zZvT03c+XihWdnrlw6P9OavjzzwsVL519snX7+8vWi7kWNxqJWo9H4
o9Uofp+9/mv+SP/WFx/5jw5+P1n86C7a+btU0Egls/mf/PVX1fMbjfwpQqdA
qFeFfveFFqvQb77QoAr96gstVaFffKHlKvSzCJ0GoZUq9JMvtEaFfvSFRlTo
B19oTIW+F6FpEJpQoe9EaBsIrYOy9Vrxm84qbtKKX0nFrW1ChSmOQsUprfhF
uWJPWaj4nZRu07qflev23lT3hnJqYIc28ImIbQGhbihbC2W7is+uouia31gP
lK2Bsp0wfBXN9kLZaq/Dcwc3tzwFNfqhbBWUbYeyLii76qtaHFTVblqzziRV
qBqAspVQFp3CrGozPBqEshVQRjBpWmtQNVl8JkulIa9QcEtQwUYooyH/WFRN
wqOlULYcyjZA2ZLOVN0KZcugbD2U0ZBXqKJmSX0Lymjws6pN8IjmhQa1CWVD
namilUOqxoO9/8hXRf6A0I5BGQ1+VkUGS26Z5iAFlrSaaBwqFFAQIXsagbIa
VFFfSI6GPMW6FEaeE6W0DAk39Y8Gmsp2tJUVMTGFmFT0tA+EQj/5CIqYNCIS
6+ZEUaOwF30sxIHINdKoD0MZETSKuwbugoAjb0YLlEIEWR/NdjRSG69/0gc3
EQSXlnlaj+QEohHdsognfEhNKCPCRE6OxppiLnEAy14eF3AULwhwn9dYYKwp
nlF7ljU95oOjpUE9Jd/ehDKKFa7lpqJHfXDkQclGyIO6nU0W6bq/VPSwQKL+
0eATJHJrZAhRLmM56QMLB0d+jsaadNBYWy58zgdHa8r1QQGroqXhWmkqOivg
qCJ5I/LeaZ0lC6I0IcqrLLuf9iGRzyZINMEELsrEbAfhpA9Ooh0n+OQ+aHwp
AlNmYTsTJ0QFDbOTUNPgUKSmoEnE3XY6jvlYaM+ALJ1SdaIWREFsx+SID8R2
Qshw2mlc8RexLGJj1vJhUU/WtUcx7vaaTU1Qn9vHsPirQlXC0+upinI4GpEj
vtKtqrR9dhtpyK9/UDfIrsj+yDzulNZp6UwqGmI+tvdL5k/LjnSQTzrqQ2op
JIoafQqJ3BW5piiPPOZDGlVI1OcBhUQRJ8oeqTt3CSTKgNYqJFppQwqJqEKU
M1LwPe5DWqGQ6OkyhdSEpzTVJEdk5YQPaUghUWNGJ8lGiFDRaBo/zKGPluWA
AnET/FTk1u3y7IsgVQDpUSC0BtYpEErhoySLWPQphtRI4dbxeeOKhlJWclhk
Hk0ok3cz4s7Tk73eyHZ7q54IS5TeTZfUtz0iIEauaOUSW6G5JRu/pwQkWdg+
r1epiJYEcRTy+ORXz4j6tbkfpUfF73ugxnbFQsZIhCX6DuxsGQtzVGIJuxRQ
b0VNsm5anfeWQczfN6IeexUQ8QvqAmm7TyqQF4iy4wPFZ683kUbk7vdV0Roj
2zqkfY4SuQqltCtC6+kQlKW/aFbIgeWcnOI3GTdFY8LQo4NBQ0U88sH/Bki/
AolStYd8ILT7QN6egCxRIFGClvdyyHLIB1JMJyC28xelZY/4QIgy0cYcAbFd
vuiGyKTW2OlDoorUU4K0ShV0RMaSgyHfKIkQLjya8WYQplGGaqqWOFAKae3+
pKEuAsHRuqBJInCjCi5K3yyzkb3HOUG4YhiJFRHbIaR2xiVK7SzhkenjQCuB
CL0clZGpEdwNCpemhyJGMucer4NEmqZ86NQE8SmCbgs3Sh5TF9PwEjOgGpt9
6OQmiH4R9C0KPUo8kwPq8ZwI0YlJHzqFIaLsBN122qI81TLEJjwlE8vQaRnS
xFEZQd+t0KsYbb/CpZhKC3iTD5dGlTwYwd2ncGVUeTc3lRIfounZ6CMlp08m
TkgPFp9LZhvMEOndj4Rz9Dm0/MlNEJA7is8UpSjb9Pc9wttrtJpcIG1llCz4
r+rCkGgyI5AKWydI/mEcpBcUwQm6D2mOXVOq0yGqJpSRnI+KncOuYLsTPrQW
lBG9jJoVRYvopraQGhxcItxkrVGYFF2jadyYD5MSFFrnUZjRt3U+cUGYFEoo
8YvCpDBE2StFeiEpaHPUBMWRumFSSBz5/2BSXUrBiWgM+zBpc4DoThQmBVKy
fyIdFTCjB7ejMGn5Rc/hyQijoyGfRk4lCpN0UEpPnH6NDzN64DwKM3o2lqjB
ah+mEDUOcoeD0KJ0gFJnoZZoKxJj57CCKCoiH4SAkK70USVS0tUJEIpk7mth
rOsPT5q4qAnVAIRcT1qQfclieqTEHibJA0F8FEvdW0DIahCfnQAQN1FxMJay
BUIaTZzJKy/zkbYUaTSnNujESAk6hViKZ/5GMhKWMYVOXqb6UC25SoJOMKk7
/n0NhG77buQyqg/fUmgn6NGsmtob8qHbgQRqrPpoLk0wQacVGL2LJLaA1rxU
oafxd6/72EY+LXsCTC6NXF+HgG37KnpGPo2Su1dH0KN5PXGgQR+6HYlowlPy
RNXnNQg6hVZaT7TYBQFmCe6JEgqJ1Yc7CDUFf6IztJ81UELtOgPyhnbqg8yS
YFJEJgpPQUAMArd4qImWgqNxIHC0LqnbtJ0jU46PSL29pSAFBI4SDpdNdZsT
wqEke55sqzg/pOgeQFrkyf7z0k5G6N7ksncJ5PcJCMVJNwUuBUhcwwTJzrIQ
dyFIlNGTWzCmlHMb8ojVN8NIfTRTN7aTN1FoB6vzO2IHoUY0KzcW05SGqeK/
ui12G1Si/hJTMoKSX47QCNdzb4x8SDQJNzIiHUM7rOcGGUWSqiR8UKGJR5KB
rPH+GHVhZ67XZhN9ikVsAgNzPRfHyDdZ6t2lQCT3RTdfzyUxatlS73zKO3r5
rvNrYNSKHbAnW86QiDJQWfTyV/XZejoCko+bUw/qufJFfsMCg9SdY8N5eMg4
6rnrRXsDdghFIigv9XyLgRZQPTe93BfpbgpJvkwCp/SpxjtftMFp4cM96d1W
lv0BJa313P4ik7RD+DQn5OhuF5jUq3ruhBFpsgyWnBrVEEISDtCdXxejKbRs
NfotLLLBWMFu5ucb1ZfJZB3ceCjL108Jby7bLzUjbHB2tsOrZsm7UWZHVppj
NjVGp7c7u4hWDBIdra8AskoV1H05zT35QZ5bUJci3cIvp/WTe9dhih5rkA6U
4l3dV9To+Hz0YIMYXSns1X1Zzdmrp8khNTLIpdhX9821qqNj5HTIgjKjt12N
uu+yEbUlzhg92ZBPRtueRxOEFnLTzb2jGZgR14U3Snsj9dyDoxo0rtEzDvkM
su2X1HNLLnqoNHrGIZ89tr2yuu/QkekQRaD2KgDbjaG6r9kR3ya+Fz33kLcf
9ivgui/mkTchLxE9ASGeQ/hselL3Bb7ocXQyJ/cLHfPL+25vLS/kyh/NGJlY
9IREPnp+VAHXfS+QIhPpiB6eyKe2jyvgOu4N0sJ130MHFm7ejrxbQS7kLiFF
HgJH5kILLR/PTnd4A/cLiRaTepp8ckz5UPYZeLQQpk7vGWmqaRsmH89+CR5F
v+yL1jlNJrn+lq+eVg8NNIW26OGFrP5leBQ9OU+BijJBYixNX32UQZP66CGC
CV99lBu7e0sBHz/uq49++1dUPXnsfOb5FXhEFk1hMPoFopRKj/rqjY/6x5zm
B0IBYJ2vNMouST1NA+W7I776KFckEkAegBz7sK+eiA+tWDIu9613yrFzn18F
oeg3adF6Jp9vry/GfaXEwMg5UPCpfoe9wVcaZVGktPot9VRZaZwJRRXZ+4Ud
ZUVzdk/I2ikKVL9gzhtTrxU/3P276Bcr2Bb/wUizFLHde5Kp2fxNVa8XP5IM
DXTVl2LYG9jjUvSGNkXGMZy72jb09u40f1HMm9oKLaaRtlbyz9RA/iKPt7QB
coB2Fip/E8TbWkCU8xkRekeFmiCUv8P2XRUitp2F3lMhImNZ6H0VInPJQh+o
EHmYLPShCpHrfUqErqoQhYIsdE2FyGNmoU9ViJxNFvpchWg9ZaEvVYjM+JII
fV38SMaQu/utL5v+6OD/0Ggs+geXTFKw\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {209.812, 0.}} -> \
{-2., -2., 0., 0.}},ExpressionUUID->"e48fa924-6574-4c60-8491-6a2ab2d005a5"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(89\\). \\!\\(\\\"hebesphenomegacorona (J89)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"2ca70ec2-74f1-4f06-a8d8-2bd0a50e1315"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .66667
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.289211 0.104118 0.281274 0.104118 [
[ 0 0 0 0 ]
[ 1 .66667 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .66667 L
0 .66667 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.23715 .17716 m
.39333 .22922 L
.34127 .38539 L
.18509 .33333 L
.23715 .17716 L
s
.07587 .21016 m
.23715 .17716 L
.18509 .33333 L
.07587 .21016 L
s
.36032 .06793 m
.23715 .17716 L
.20415 .01587 L
.36032 .06793 L
s
.36032 .06793 m
.39333 .22922 L
.23715 .17716 L
.36032 .06793 L
s
.18509 .33333 m
.2181 .49462 L
.06192 .44256 L
.18509 .33333 L
s
.18509 .33333 m
.34127 .38539 L
.2181 .49462 L
.18509 .33333 L
s
.12793 .05398 m
.23715 .17716 L
.07587 .21016 L
.12793 .05398 L
s
.07587 .21016 m
.18509 .33333 L
.02381 .36634 L
.07587 .21016 L
s
.54951 .28127 m
.49745 .43745 L
.34127 .38539 L
.39333 .22922 L
.54951 .28127 L
s
.34127 .38539 m
.49745 .43745 L
.37427 .54668 L
.34127 .38539 L
s
.54951 .28127 m
.39333 .22922 L
.5165 .11999 L
.54951 .28127 L
s
.65362 .48951 m
.49745 .43745 L
.54951 .28127 L
.70568 .33333 L
.65362 .48951 L
s
.81491 .45651 m
.65362 .48951 L
.70568 .33333 L
.81491 .45651 L
s
.53045 .59873 m
.65362 .48951 L
.68663 .65079 L
.53045 .59873 L
s
.53045 .59873 m
.49745 .43745 L
.65362 .48951 L
.53045 .59873 L
s
.70568 .33333 m
.67268 .17205 L
.82886 .22411 L
.70568 .33333 L
s
.70568 .33333 m
.54951 .28127 L
.67268 .17205 L
.70568 .33333 L
s
.76285 .61268 m
.81491 .45651 L
.92413 .57968 L
.76285 .61268 L
s
.76285 .61268 m
.65362 .48951 L
.81491 .45651 L
.76285 .61268 L
s
.81491 .45651 m
.86697 .30033 L
.97619 .4235 L
.81491 .45651 L
s
.81491 .45651 m
.70568 .33333 L
.86697 .30033 L
.81491 .45651 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{288, 192},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJy9nftrXUUQx0+T3KTvpk3bpE3Se5O2SV+2arVWW1tR+wBREARR8YdQhFYR
pfZvUMGffSAIgiAIgqAWKoovFARBEARBEAT/kNizu5k5nvuZ7Zzem9sfkty9
c3a+Mzs7Mzu7e/r40rXLL7y8dO3KpaXOhatLr16+cum1zvlXrt5sGl5TFGs6
RVF83ynKv5dv/pl+hH9z5Y/0ocHfD5S/hst+/q00FKFlOf2Ln/7Jfb/Syd+R
6BQQtYToL5torRD9aRNtEKI/bKLNQvS7TbRViH6LRKeBaEKIfrWJdgrRLzbR
LiH6ORLtA6Id0DYjD/5oP7gT2vbIg9/FB/fWiEoDmoQH5+TBb6oPjlSJyr+J
6T559qvqs63/PbvCnMRdKH8OlU03Itk8EA1D2zZo2w8SZ7odcXZr6CPTcwva
tkLbfEZbqfs5eGwM2sahjZ4lXV63Wa2Fti3Q1oE20m+G1Tpo2wxtbWgjhSdW
hGyDk9UstI02Y7UR2jZB23T5M0wE0kMfGOyGtvXQ9mVk1XaqiNjvgjZSeYYV
2RixIodGdBlWNHMILfk/UnRitQe+Iu9CY0CekpSfYTUBbWRZ250a+cJmRV2Q
3wjSBxMncBoJ3oqsaPLRGBArkoCYUsTIsCdrI2dM1ktairG9K7JkEExBG3kk
shayqly8TjBm4DFyJuSDaX6YOYgjUr3ZDBJphqY2adUb0TKQpp1aIhdAPjRM
vjBFyOgSEGJKlkSykIMgvVJ/DSGRI6ERHxOZiSlpnfxBBkgb2oagjWyJhPDG
2TciJCKn2UCQaAhJHG88zkDKZapk0jR7aJZRrM7AMFJxUgQpMYSPYEzkoRNf
0hbFCbJWWgyQ223IXmMjmQGtECnY0QrkdZvpYvkzNC3Ct5TKmGuyMGDPR1Zk
BYtCRKwIN8lX10Oxoq/Q9KzNPoxai9Qbuyh4FU5JBkV5w2i1SvK0DW1WoJH/
0WoMWTsZGRkjGS3ZmQJ+KgKmSB5mbZCVPMyodNGGb4MzCOomeySXQnNQC0tP
2jB3iF5JS+ukCwowJBgBJhHJU2mR6wkb8LgAJtPfJF0QEAo/5F0pnJFz14Lb
YxEwpeUbBTDZ9bh0Qc9SHuLNa2ieaPHvog042E2wXOpWS4Okf8o5zIwwWDiN
ifI4Z8McFr3ShJiULshrenMYrxFpKfThCLjuXooQnG/+qAfQ5RUTDE20WhkR
VZFvI5sy52VoOltBGLo9BOSzQk6dkbchcN6ihNZ6T7P6yk8HLKahiQyPfDf5
eLIuGgmtLN9f1+FBINeacPQdnDSSQXgzJRX/ROwuRt2uCEuq06ymPpolKko/
aL5T6Fe5j1dRsfgL0MHh8mfLAh7ms6N6cneV+a0No75LUH46KpKQPm63tlJ+
SuCInCIjWe1RaAufKEXzpkCkheM2Vu+K5xhiXc7kbDT/aJ6SZu6xAZPjb0Mb
KXdMANMT3qIsCXtvBEzLBvJrFKkI8HoB7M3evPWfEzZgSlmIPZlE8+zNm27e
ZwOmbinHIg1rPtXv7O1kBEzJC1kaZbEEeLsAptmhNSYyMc3ZTjUDR4NEw5/P
2cjXeOtOGcBUmaVpQNqcFsBm4uawTVJPyoMoxJArJ0dDgDWD6Xda96ANmNoo
9pBJrF6Cd8YGTGZCaQRpeL8A7kfSdzY+QENO85faCOQBAUm5H6VkJP5DNjgi
J63SkGv2Z5bbghN6xGZPqqSBJt0cE914c74EhFwAzRQCbALpJb971MZFDo4c
IWEgrCOiNG8ud84GR/6QwooXnOZtFC5I7PO9g/OOaPMc7UIEZ56dcKQ3Xs1p
fcubj120wZF8lCF5wTXPvcLwV6rrCJOSMYo93gH2ZlxBPS3yyeWnGDDQ0trQ
Rsscr16nBDA5O+p5UqDX9z41nCD0DrRRmueF3jwfmxDoGxNNNVxLpEb05OqI
h9dSmidnWwT91qQ7SjZivMBOablPSZV3AOZFBG+6tkFEoKBtZ6Qozr6MFu5y
iuBL4NYJbFpukBV0bNj700M107sTSGkgNJsb4o5aArYNj9OEi3To4YPrDB7L
q9Ejwj6OZ/gyfiq6T+cuL/MRij02pKC/0bLJa6ea5FGFkWx31mbfUflGRL70
W7ddjzSBRiPsB2mWYFpq1pldWOLmQVoYz5LOZmykGk3itzwBdXOT1lI23C65
KcunSTptI94miCmhyG/Neiu7xzK6oAWbXSRCy9ksItAyLb9Z6y1HmkVgCiKO
JcQuWxx1zyH9Mo+KaYLrrfiREN5TN7RIm7KFGBEhaLlG4mhK7K1gkTjeoj6l
h3HBi+CCJN5zapo1ewsvJIkdR2AC19p2ViQJ35AK8nvBNJW80G33DglsrS1m
Urgnmd8aplk2QMAUPPLbxaT/RitvdPIEDsyzqGw20tRuC0yyQy9MGjHKOWkR
HHWNEZIAa/beyzLGuwNAtbE4EbHCRZMp0IWI7s2VvUU6AhwRYMJKDmRBtElA
qI3GhIaVhj86Y4yd9p60JkPpt5mpElxvXZ8mVRQVo2SD+wFadiTXQZhpoEg/
5Lmi7WAcaHqjQKMKzU0CTiBJmAxwPTVP1u29eaDQydZ6gW5XZ1Eq79FI8mVa
dSWmJIR3S4EQRI/ovqyRv92ge+Q0rwg6uRDzNBFGH2Tl3ck2L2mGJkpUzb1h
hzMno4yRHnVNY+LNUfWUIrksEsK7eUDxLy487eswDsMyb9iFJu/+HPVsV7VI
jXEwzSON3lsaWqgmQyDo3v0RWlBHM8bJ5D2XSUOtJWvvRo13g0IvHCSte4+8
5y+HaJWaJnYvgIPrrNTiM3cIbu2b88clKSaYJXmHP5sW6ClJ9J4D9F5PCWKH
waSqKwUdWsVraS2tbs281RGu85dczMMcjuis9bRUdNO6xupdi6Gs1/sOhk0C
OI5EpXyxqvdlKOvN7YHoZkva1tITV4O9N0NTwdgFGRXM8Zx65bR8G3rp99UZ
km2hhjT9bqndV87PD/biDDmsBQGXDsZ2hHywl2Qo/M4JOLKYBHivdDHYSzIU
xHUjpf5sOcPSSV5d+w/ikgz5jjCyletnXfMqqfag9DLYezLmGbvKXTR2Yuk4
+hHpahCXZojHuKiYBpncSqxSVXYfB3u5hkZEb6dRf3aeFG8whG8Ge/WG0q8x
EYKmETmlWMyM03VYguqqXtEhXYaxDiZEkYlEvSOCOindrsrtnQCpgN16Smdo
/GM2Fc9d93KTJzTRRkaG6Rn4qp/3dwoDEk2vw/GBy/BVL1dyhiyVkkM5ZGNo
dstmjGaHqIRUTP4oqq644iS/3bekWBOXRD5gQ+r9LSldkdd7fnfRRtXLVZic
pyNbo2myYEPrdzZGkYTEst+DhzC9V11IHIrQ3ldPpcN4L8JXvVxwIYMgmN4d
2QzMfr9shWBSGLd9I8LsdxpFYpNd2+4TYfaSKNFpIzIiMhjbrSaYvaVC5GVp
dpMrtRfuxUu1r0pI3usqjU4zOzTYrkAKriJ/XcU8/e0YaPu9UV0aKT/1kuyY
h3EcjiQdP3wbvvJeEiJ3SzDJL87Y7L1vgSM36t2qzLD3vv2NpKeFMiUbqVT6
DnzlzWFIeu/rVHfb7L3JCsE0j6lgf8je+y437/tDKX2bstnn39tGDAgI+d1J
m6m3bkPsaRjIx6YthHfhK2+KQNOShotWOjts9hT6acqQcZH/C9KHND4jMwVy
b1GdmGphdHeVae6Kx+3FO32zVrvKqGvZQjZAPCgDmRIeKbF8r/xlRk3vGeTg
msPB/4OebsmT07DpYehU63q//DW8bCh6IolNA6M7Lqne+oF0ZZ99yuyBpBfP
fCi9tK1e9C154cF03fkjedBMsUNTutP6sTSQw34uEn0iRJS7JKJPhYjCeSL6
TIjIAtKL6z4XInIfiei6EJE7S0Q3hIgmYCL6WojIsBPRt0JEvueZSPRD+SuM
bRL3J5s2fGjwfxoUa/4D5nWS7Q==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 287.}, {191., 0.}} -> \
{-2., -2., 0., 0.}},ExpressionUUID->"cd7845a8-0a0e-46d0-b39a-7cebbd93ec40"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(90\\). \\!\\(\\\"disphenocingulum (J90)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"defff8b0-7ae5-4a94-a6cd-113cbea062ef"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.16987
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.534189 0.186812 0.444828 0.186812 [
[ 0 0 0 0 ]
[ 1 1.16987 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.16987 L
0 1.16987 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.18559 .79342 m
.02381 .88683 L
.02381 .70002 L
.18559 .79342 L
s
.11722 1.04861 m
.02381 .88683 L
.18559 .79342 L
.279 .95521 L
.11722 1.04861 L
s
.11722 1.04861 m
.279 .95521 L
.279 1.14202 L
.11722 1.04861 L
s
.34738 .70002 m
.18559 .79342 L
.18559 .60661 L
.34738 .70002 L
s
.279 .95521 m
.18559 .79342 L
.34738 .70002 L
.44078 .8618 L
.279 .95521 L
s
.279 .95521 m
.44078 .8618 L
.44078 1.04861 L
.279 .95521 L
s
.34738 .70002 m
.53419 .70002 L
.44078 .8618 L
.34738 .70002 L
s
.279 .63164 m
.279 .44483 L
.44078 .53823 L
.279 .63164 L
s
.34738 .70002 m
.44078 .53823 L
.53419 .70002 L
.34738 .70002 L
s
.53419 .70002 m
.44078 .53823 L
.62759 .53823 L
.53419 .70002 L
s
.44078 .53823 m
.44078 .35142 L
.62759 .35142 L
.62759 .53823 L
.44078 .53823 L
s
.279 .44483 m
.279 .25802 L
.44078 .35142 L
.279 .44483 L
s
.44078 .53823 m
.279 .44483 L
.44078 .35142 L
.44078 .53823 L
s
.44078 .35142 m
.34738 .18964 L
.53419 .18964 L
.44078 .35142 L
s
.44078 .35142 m
.53419 .18964 L
.62759 .35142 L
.44078 .35142 L
s
.62759 .53823 m
.62759 .35142 L
.81441 .35142 L
.81441 .53823 L
.62759 .53823 L
s
.721 .70002 m
.62759 .53823 L
.81441 .53823 L
.721 .70002 L
s
.721 .70002 m
.81441 .53823 L
.90781 .70002 L
.721 .70002 L
s
.81441 .53823 m
.97619 .44483 L
.97619 .63164 L
.81441 .53823 L
s
.81441 .53823 m
.81441 .35142 L
.97619 .44483 L
.81441 .53823 L
s
.97619 .44483 m
.81441 .35142 L
.97619 .25802 L
.97619 .44483 L
s
.90781 .18964 m
.721 .18964 L
.81441 .02785 L
.90781 .18964 L
s
.81441 .35142 m
.721 .18964 L
.90781 .18964 L
.81441 .35142 L
s
.62759 .35142 m
.721 .18964 L
.81441 .35142 L
.62759 .35142 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{246.125, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzdndePHEUQxtecfcYJMOBsvOts4wAYhBAIIRCCJx7JYMlCSPCAAGNyTjL8
NYicc/qP/GpuZ9tde3O/+rZ6Zm5s4QfvXVd1fTWp6qvqnr0HTp155unnTp15
9qlTo/tPn3rhmWefeml03/OnF4bmVgwGg3ODwYrRaDD++fzCr+m/c+cX/i0I
wx//Vh9z49nn07/B0Zmif2qiMfaxmaK/q49V0wazSjL8F2DOwdjhRup/gmgV
jB1qpP4HiFbD2MFG6r+DaA2MHZio/waidTC2v5H6ryDaAGP7Gqn/AqIrYWxv
I/WfQbQRxvZM1H8C0TUwtruR+o8g2gRjo0bqP4BoC4wNJ+rfg2gbjO1qpP4d
iHbA2HWN1L91RYvHdjZS/8Y9aeTg4GsQ7Yax7Y3UvwLRXhjb1kj9SxDth7Gt
jdS/ANFBGJvcpYPPQXQYxjY3Un9w/HH8/IUEdcP4py1Totqs62HsSHBs8pAO
HgLRodrYOBvWTdDY1IEsk9mHQTRJL5zDD8+U4UV+BER0C10W1CMCIG5Jgt/X
wmwh/KMg2gNjRDzoMY7qbbsk4B8D0QjGiBhRiIzqbb8k4B8H0S4YI543bKGX
0tQTIKIkuDaoR4RRJFWC39nCbCH8k+6JWTy2PqhHhFYQFoLf3sJsIfxJEG2F
MSLSRPKieokM3jv+uGwsIdA+HNmcPZifcmmwcjo5GiGg/Lh4jEoImhvV25T9
m2SUC8IUYZO7nGxde7Wxq4N6VMCQ3ibh06KzDIm9OlQyem0Lh4r0Kg9WgnSl
7/rKPDHqZteHc3X2YL7M9fk8kW6Drm8N0rsqe3B5meukfhWM0bPW9bNLuIWH
syafBwKggNZ1gLwye0BJVLi+Lk90zS6z6xuyB5QBhes28QpPuszpeb08ecJ1
UqcL1zV1IT3CLTwciwPkMAF0TRPXZg8o7gnXLfoSSe6aOJPe5dkDyizCdVKn
wEVFRddFCuEWHo7xJQKgwmwU1IsWequzB5Q7hOtb8kTX7DK7vip7QGFXuL4t
TyT2Qc2ArpsLxsAoYgnXSZ16N30cBOEWHs7OfB6IwhJA100uo/EUHoTru/JE
avF13fZj1xd+o4dKeD3KXg8WF2jk8Oy26TzJMgTdcMK3PTW4qc8lbezx2BGh
T7eJgN7rnZZ6B9hwl9TcdNkEZOXhyfHQgQaniXz12/pLfC08PbtrZzoLBhfW
wAmV9Sm6COhhPlqKENHVDXvKKbkI+OvyREoVUXgL98My+B15IpGNKLwVzcTP
BDzVDm0cobmEIVzamo+FeGXUESteC+GtAUdlRRTeClAqLGfRX7f4isJbEUl9
BQFP/ZA2jtBcwhAubczHQkVQ1BEr5grhrQdBzD8KbwUZ9VIEPDUB2jhCcwlD
uGT9ASoooo5YYVQIb0UxFQVReCtuqLif1eRziX0U3goUKsYFPJVJbRyhuYQh
XLIqjQh21BErFArh5/JEYspReCP7bjW3dC0m/XOpcBR8lK1QFSDAB0z0orh7
2OT0mkg1gYhvFGNvtjJttjpYosVRs/uyFb1O1vr0NFzrIhIcxVVkPLReRRQ4
Cj7MVhqvOQ1bwGs6Hlo3IgpcFA67Wvsh5hl1JErMQ+s3bRzRdDy0BkMUOAqv
6XhoHYUocBFd6mothJhn1JEoMQ+tZ7RxRNPx0JoEUeCigqKrdQVinlFHosQ8
tDbQxhFNx0P9faLAUXhNx0M9eqLARQ2HrvrsxDyjjkSJeahX3sYRTcdD/W6i
wFF4TcdDjWsiwT58nI7P7EwvYcJ+6zPEw2f1o+ckhku9/yc9Z7vg9aWJsRf+
esDiMWO9hZd8CGNtHCG6TBihXvREiUuAQ0Km9rp30KOOLhJ2vYZnQaWwv21J
hkJqH65bOC7MBpaeiff3sfxrJVVhaifGfbEOgnALm+JWBBBT6WMjhLGcQteN
dLubdAIhq80eGqtCC9mxlStU+fWx/ccq2MJS54o8kYh9H9uvrCigjaCh5j5N
7GPTmz55sxoOtTF3a2ZtrOs9lNGtkKH2DdXLdG7avHfQePvtsaxE+6tt81m0
gdH1RlzrV9AjPn0QSwkt+Wz5nOIZPTRtXrcgPYvpYqXkWHJ2SnThyDCaGcOK
7kTvese6ZVmxAnMMRFYB0NmnbU99vHQS1SP/xMEaiacI4LaB+nhbxdpZhcdk
PLPKPpWQHu8+LtuW7MG873B0PzLFsj5e0hJ7TuhwLNNQ8UMAXYe5oe+ckTAi
yz2+G0jO2SLDMGis67wtnCMTxF96fL2T3DSeT470+OYtOWe5lu60Ht9KJuco
qNNYj+9uk5uWF8g5MtZ1XSqcsy4LxaoRjC3TS/fknHWvKGz0+H0I5Bw95nRT
X2Q3bVGFnsyuu33iGzXIOVtyoVv+Ijs3ys7RZViGb1whJ+qvDEybinbmxXfJ
EGSDVwXCeFY90vpMdcGr7/tZ8s0/k0sQWnIpWsp5cdp8fCsTBTJi/fWv+xn/
dnoaEky4ZG+Ypf7X3YWh9GqIrcTQg0nX7iUfSm9NstUV/5vtwlDRbUg0RvB0
f53x4fWWI9tKRNSU8sTLPpTeXmTbhvzv0AtD6a1E1rcgekMM4hUfKrptKPoV
DoXweouQtdLolBPLfNWH0tuBrPXoVxNhqOjWHxojeKpJXvPh9TYfa7gPg/AC
Sm/psa06Pg9dPPa6D6W379iCFUUQun3e8KGiW3VorAN4vS3HMjolIAoYb/pQ
eguO9Wj97/ILQxm7m1BF3kYTLTvf8oGcrTXEFo7DGAUigVaRlYrH3ARS6ha+
7RuzTea3gJTiljDm0jKyTXngHd92lI6daA81zIdB0pthjHpE7/oAmnrREVCs
e88H0ISLAEhPAETJFUFRMH3fh9KUigCoZyIANJGiy01B8gMfQNMnOoJCgChV
omMhex/6UJog0bEUAmhaRADUB/jIB4hSIIKigPOxD6WJz4l0empJqQqfZ32j
muLUL/HY2Ce+MU1i6qdghrEoOTmRQT/1jWnScUOW1jKNcE9zC7WavMjNOIs4
kqW0cfKsb3Th5xthxqFsj14cmrZXSYgdHMgmKPOIu46eBrq2hWYpIu3OPlJG
ScboDJCPw2yMcrQwRp4ZTaZUlIzRU0CeUcwRZqNMwdIlMcFCY5YaKZ0kY5Ru
yVh0LUeYpYtiGYmWXZMx4hwuU3T3gwpj5JmFf7rWyVgbgibMEmEks5YAqLlR
aMy6gCPfGD2Hblp3d70LY5NLwZGcQlYyRbxg4lfoW3JmWamGqKuaJtKj72Y5
N2MnY7R5QSU4olDELoR5nex01zuZJfqtc57ucAuzOg/qbnYyS+E1mhGjPewE
5f4ZEzdL6i61MDvME92vnHTZfzJLMV1nTt19FmajOTTac05Q1GfSeVV3lYVZ
nWF1BzmZdTv2DccohCUodwOUm391Z1iY1ZlYd4GTWbpHdU7WHV9hNpqdo33e
BEWHrjO27uQKszp3665tMkuhRmfxUZZSBkpmJ+csns+dbuyn09ZCKd1eYExz
7eRSIheswE4fOfzZRInOO2XLpG4JQCjZQv/QV9qflSjdJSX6W0F0wZO65W2h
dH1WomcqKR3NShToklK0rZ7UjVgJpZuyEgXfpES8nyJdUr8l2xRKt2YlCm5J
6basRKEqKd0OIooLSf2ObFMo3ZmVKBQkpbuyEj3YSenu6mPJgzr5W1KDe8Yf
c1MD9AZJshT/q4uDFf8BxCofLw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 245.125}, {287., 0.}} -> \
{-2., -2., 0., 0.}},ExpressionUUID->"32fc9ce3-5ed7-4363-9715-88d34d6308eb"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(91\\). \\!\\(\\\"bilunabirotunda (J91)\\\"\\)\"\>"}]], \
"Message",ExpressionUUID->"cf926ebb-2010-46c5-ad3e-3f6ec06e80aa"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.38173
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.5 0.204996 0.638097 0.204996 [
[ 0 0 0 0 ]
[ 1 1.38173 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.38173 L
0 1.38173 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.35505 .6381 m
.5 .49314 L
.64495 .6381 L
.5 .78305 L
.35505 .6381 L
s
.5 .49314 m
.35505 .6381 L
.30199 .44009 L
.5 .49314 L
s
.64495 .6381 m
.5 .49314 L
.69801 .44009 L
.64495 .6381 L
s
.5 .78305 m
.64495 .6381 L
.69801 .83611 L
.5 .78305 L
s
.35505 .6381 m
.5 .78305 L
.30199 .83611 L
.35505 .6381 L
s
.30199 .44009 m
.35505 .6381 L
.18312 .74975 L
.02381 .62074 L
.09727 .42936 L
.30199 .44009 L
s
.5 .49314 m
.30199 .44009 L
.29126 .23537 L
.48264 .16191 L
.61165 .32122 L
.5 .49314 L
s
.69801 .83611 m
.64495 .6381 L
.81688 .52645 L
.97619 .65546 L
.90273 .84684 L
.69801 .83611 L
s
.5 .78305 m
.69801 .83611 L
.70874 1.04082 L
.51736 1.11429 L
.38835 .95498 L
.5 .78305 L
s
.48264 .16191 m
.29126 .23537 L
.32333 .0329 L
.48264 .16191 L
s
.61165 .32122 m
.48264 .16191 L
.68511 .12984 L
.61165 .32122 L
s
.51736 1.11429 m
.70874 1.04082 L
.67667 1.2433 L
.51736 1.11429 L
s
.38835 .95498 m
.51736 1.11429 L
.31489 1.14636 L
.38835 .95498 L
s
.31489 1.14636 m
.51736 1.11429 L
.54943 1.31676 L
.34696 1.34883 L
.31489 1.14636 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{208.375, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzlnPlzVEUQxx+5FkIuQsINu1yCoiJyKMZkE7kvkVtOjZRV8IMlBVgeVWKV
lpbHP8d/FPJmJj2bl0/3vtm34g/yQ7Lp/r7v9Juju6dnlkvzzx99/c3888cP
5xtnns4/efT44bPG6W+fLop6V2VZ9jLLVjUaWf55YfHP8OPlwuK/RWXqrxP5
r56c458WQdabSxa8JMv+blX1iSqo/2rV9i/TLhH86T98UuD2fy0Z8IcO6gfZ
bzp8AGS/6vCamGCA1oDsFx0+CLIXHj4HqiGQ/azDh8ViAzQKsp90+BjIftTh
60D2gw4fF4sDaBZAkyD7TodvANlzHb4RZM90+Cax2ABtAdmB/KdbJXP6g1tB
tjv/WctFvaBterImqLaLqduEgubrrE5RB9m4kNHcMMgaIBsUMhoHg2wnyHqE
bDto59qQOR+1J+3BHflPJ/KDs6TM9gLYO4RsBlRxqMin7U4j2yJGrQbtrjSy
ON/JGdGQntDJJsUy8kL1NLL1Ytk4aHeA7KRONiaWkbeh6RTIpkE1KpZtBi2t
8VM62ZBYtg205GkMskGxrF6drCaW0ZzaBLLTOlm/WPYGaMk5GGQ9YtmboKUR
PuPJPna/lucyS3a9A49NtKFyTAc7eLCgOgQymvVndYr3QUbR2qA4DDJayOd0
iiMgG3ntFEdBRu7tvE5xDGRr0yg+ABnF5ws6xYcgI6efSFED2UWd4jjIKNkO
FLRiiYJCoUHxEcgoY7r0r1JMBdMLHiT/O/tMf4wcj/1EUdamAQp6l7sGJ1nb
t10uu9I1+BTIrupwGvRrXYPTxL7eNTgt3hs6nDzOza7BySXe0uHkhD/3cJp9
5PYNOMWq2zqcouOdrsEpfN/tGvw9kN3T4ZSO3Pdwl5UM5RpKn9s9SKFsMhdR
UHsXZA882XpQ1cUySsNcfu5ETZ1iP8icw6Uc0SXuTtsD2unUVpbMo23hRtFS
zAxNUbL3FsgGxO4GaCdES0nCTFpTg0JGG5Mx0VJiFZqi/PMAyEaEjDYCw6Kl
gkRiU+7tnYjm9KCpNZp6G2RxNCiJromWClpN3xS9MC2QTUJGFcg+0dIOMLGp
bdJFtUBeSIV6Nf8SGqLOINezQ6x2S7Rfm/SzabS7xEaqBQUy2m+QGy5ujLPu
0PriFyeZVCwy6CnW1EFGaTDhQrFsGFQUNGkeUN5PuMSmqIhDGx2jdkiujBIN
cogUBAlnNEUpEK1Y2ocSLhYK96Y1SmUtGgbCeRnPXb800H7KFqnERMuccC6Q
qBXXnbohlOWSh6YoQDiKaJQIeNeG/pvydCpyUb5CuEnpm1gvTGyewiM1RbhY
2CWHtT3NEHpn6nLCUSZE88svY1zhtJ+jmUErhXDrpG/I4K1phlBIp+o04UhG
g+n9DuabtJOm7iWHTLgR6Zt4aJHYPE24ekkcOUDyun72YeihQgf5ZDr8ItyQ
9APFzw1phpAzpGSDcNGPkOmTaYbQ0qeNFeFoaewS44Ih+j6sPdm+krh4u4Ce
GNcNoS099RztaglHMtrEem+E0bIJMjKd9luEi2dBtG0aSzOEcLRvIVxfyWdH
dZNmQUa5NG1FCBcvxhyST6H5PhHQ1ROqY1Dy3xPevJCfOV793ATHsel+cqp3
1NCRqfp5C87gGXiLxc+UIbi/KBh4/6GXSlyXuLjqlNMiCw+uEUFUUW1aX9Ho
S48XXi3/vWSIa4Mu2vjhwSBxTB4s9nsGPZYp08vPfQyCRwKAhpqm+GEDT037
Varvbt270VJOWxLLZdTJ/mVajv8PyidaHlXcgNF82UoXmVTW4RGOPF0YGkqk
90vf0AKrEj6auiGUNNN9AzKpSpA1TJqQftgjn2jZk0mUOuiVXVywtCVtgIyS
qSqJmHoHhGu88YIUeZgqqSllmMFbUt1gixhCW5AqybphCO0OyxY/qL/qJXGG
SbEfNsgn8jxVNnQUlENgpMoZeRkyqcq21zBJfSvXN7Q3rlIIMAyhvR6NLplE
fUjrkXBUYvDeyE+46NrivClhUtmykX4XBpfggBhCK6lK+Uy/14MX5SiWkklV
ioyGSbuDEYVsq6V60pnfIRwl8cGM4qnI4m9c5FVKz7R9Cbk6hS3yCVXK7Ubz
xa9XaM1TJYFwVLQPuyXKoKscjdD5h9FUlQOfxKbqICt7jEUHSEN6U43wHoVF
5GYxrXmDnjL7sseItHkxaOO1d0qW6OBxWCdzc0O9MeEU9eqtxCMrmjT9oiXX
QXsrv2nUvxji7KalsEa05GnodovR1HohI18S7zdQtElsalTIaL88LlqKLEbp
q6nZ3auRxWsvFD2o8Gc0FUdDPYNQu5e2lWN6U/1CRnlRXbQ0aRKbitfY1e8F
ORFlEEZTxd1g7k3cX+Te98kLZcu/4UJXgta1NNByaghDO6xpA8WXoKLpFy+Z
0dAGsi9ARcvGxZy1cRaFC2ntvch0R/D7oCJ3GOD3QEUOvzP4XVBRlOoMfgdU
FM0D/DaoKKUx4JRs+e1suDXaPjMN8Fugony6M/hNUNFOJsBvgIr2XZ3Br4OK
Npqdwa+BiurhAX5VVXUDfgVU+t3zcJl9uYqqap3BLxdUubdttoOvONxo2wDn
p8ZbfwoqyqCNQScKilfGrLwEKsr+EimodEwUUzoFxXhavIHiIqhoR0fuwqCg
8ir5s+5RXAAVlTTJCRsU+uERUpwHFeWSFGgMCir7UWgzKCjfpdgbKM6Bigps
LjmIB4r8IFWpXMrlRIUkLiyPs/AM7TX2Cw8t4SmdjGpSe+VtaBkZZJR37xTL
6PwjvOYZUFGZqi6W6QcGSKZ+3deJ9Ao7kql3h5yIZmkgOw0q2g/HkyeaMwYZ
7RPsL1AHslOgqoMs/kcWNDyJZPHOPg3PtE7WANmAkFGPBrKToKIqULzLQXYb
ZMVyTb6w1dtVgYdKjM4otQBkPOgmNf6fFLkp9K4G2YSQ+TC0IrEx3oqKcSPC
5/0wpz11eHJGJ60J6WYwciGMI60MkzTjXTAlWeQPArerlDmL6ESYfDUthVYy
cvwlUjBarom0lJaRx0+kjfftDDIao7IX+siHNnVaspFoKQ9IpKXkjjKURNp4
ktcFMoqNVKBMpC17TzeRtuzRf6Alp0fTimI6Dd6sTkvWOtqWi2mVyGg+Uv6W
SEurhzxBIi1Vg/VbmqVp4xckukBG/oiOUAIt5QM0mbwrXhFLT+gsZFzRoWfp
FJulsxIfpIA3l0bx4HXAKXekETHgxH7/fwenvQZ1pAEn9nv/FdztcN0KfKCD
3KGDSwS/0kEbBfTYg2jDOCqgJzpotYC+bwWtSGcd5EULxCF+94Lk/08yW/UK
ZNy4aw==\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 207.375}, {287., 0.}} -> \
{-2., -3., 0., 0.}},ExpressionUUID->"9a236e93-69a6-4ce5-a449-a4b51be422f3"],
Cell[BoxData[
RowBox[{
RowBox[{"JohnsonSolid", "::", "\<\"ID\"\>"}], ":",
" ", "\<\"\\!\\(92\\). \\!\\(\\\"triangular hebesphenorotunda \
(J92)\\\"\\)\"\>"}]], "Message",ExpressionUUID->"3f52bc70-9d85-4c3a-a294-\
b649857f5dbd"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: 1.1393
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.861703 0.166359 0.829529 0.166359 [
[ 0 0 0 0 ]
[ 1 1.1393 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1.1393 L
0 1.1393 L
closepath
clip
newpath
0 g
.5 Mabswid
[ ] 0 setdash
.72019 .82953 m
.81797 .69494 L
.97619 .74635 L
.97619 .91271 L
.81797 .96412 L
.72019 .82953 L
s
.81797 .69494 m
.72019 .82953 L
.65253 .67755 L
.81797 .69494 L
s
.72019 .82953 m
.55474 .81214 L
.65253 .67755 L
.72019 .82953 L
s
.55474 .81214 m
.72019 .82953 L
.62241 .96412 L
.55474 .81214 L
s
.55474 .81214 m
.53735 .97759 L
.3719 .9602 L
.38929 .79475 L
.55474 .81214 L
s
.3719 .9602 m
.53735 .97759 L
.43957 1.11218 L
.3719 .9602 L
s
.22385 .77736 m
.29151 .92934 L
.16788 1.04065 L
.02381 .95747 L
.0584 .79475 L
.22385 .77736 L
s
.38929 .79475 m
.29151 .92934 L
.22385 .77736 L
.38929 .79475 L
s
.32163 .64277 m
.38929 .79475 L
.22385 .77736 L
.32163 .64277 L
s
.32163 .64277 m
.22385 .77736 L
.15618 .62538 L
.32163 .64277 L
s
.28483 .4104 m
.18704 .54499 L
.11938 .39301 L
.28483 .4104 L
s
.32163 .64277 m
.18704 .54499 L
.28483 .4104 L
.41941 .50819 L
.32163 .64277 L
s
.46123 .11031 m
.31716 .19349 L
.31716 .02713 L
.46123 .11031 L
s
.46123 .11031 m
.58486 .22162 L
.5172 .3736 L
.35175 .35621 L
.31716 .19349 L
.46123 .11031 L
s
.5172 .3736 m
.41941 .50819 L
.35175 .35621 L
.5172 .3736 L
s
.5172 .3736 m
.58486 .52558 L
.41941 .50819 L
.5172 .3736 L
s
.58486 .52558 m
.5172 .3736 L
.68264 .39099 L
.58486 .52558 L
s
.8045 .60989 m
.65253 .67755 L
.58486 .52558 L
.73684 .45791 L
.8045 .60989 L
s
.8045 .60989 m
.73684 .45791 L
.90229 .4753 L
.8045 .60989 L
s
.58486 .52558 m
.65253 .67755 L
.55474 .81214 L
.38929 .79475 L
.32163 .64277 L
.41941 .50819 L
.58486 .52558 L
s
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
ImageSize->{252.75, 288},
ImageMargins->{{0, 0}, {0, 0}},
ImageRegion->{{0, 1}, {0,
1}},ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzF3YuP3UUVB/Db97vl0ZZuC90tFsrTBypoFWrFgoggFEF8JKYhQktbHm3x
rSD4IEFjYoyJMcbEGKPxXySpe2emM3fvfs5v57Yb2gS2e+bMzHdmzpzXzG/6
1KlLp39w/tSlMy+dWnj8wqk3Tp956eLCY69fWCStWzMajT4cjdYsLIzGf7+8
+Gv534eXF/8sFnb/+Mb4x9px5f9NEEbrx5TLmZKa/u9k6YZaeuXPuPP/TLKs
m2QZra29/DtmWl+Z/hUzbaxM/4yZNoP2j5h9S21zgGlbZfp7zLSjMv0tZtpV
mf4aM90I2l9i9ptqmwNMuyvTn2OmvZXpTzHTPtD+GLPP1TYHmA5Upj/ETLdV
pg9ipnnQ3o/ZF2qbA0yHxv9PpN+u0HFqaR1K34srHgRtPWjvxk3cWvuW9P8q
rri/VtyG0nfiivtqxZ0ofTuueAtou0D7ZdzEntr3zSj9RVzx5lpxL0p/Hle8
sVZs0jzA3jb5bSj9SVxRcynx+HHcxPba9+0o/VFccWuteAdKfxhX3Fwr3oXS
t+KKm0C7G7RLcRMbat/3o/RiXHFdrfhJlF6YrLh+sqhW+zSqvRlXW/z7g7Xu
JF9q4fNo7LUY/FHQzsfsXwDtXMz+RdDOZvZnOtlfjdkfBu1MzP4IaKdj9mOg
vRKzfwm0lzP7s52tD7AL+yurxq6JLDNzEkVaptVjl4idWTV2yXsRsedQpN00
wP450M5+FOzfRNGDoJ1bNfbPgnZ+1dg/A1rRYs+jSBp0gP0B0F6/XuyfAu2N
zP4CimRjBtg/Adqbq8b+cdCKwfsWimRYV4/9PtAurhr7vaAVb+JFFN2zAnsK
fY+A6a24zRT9bhmT5MiVit9GUfLHNl8OnNWBijfVijtQWhy576BorkJV+DFQ
8fZa8VLMJK8yeWFbx6Sin78Lpo9N0RZ/Zkd52/iv348rZgd4mR82VzvNO3v0
PdRdAG1txJfkIvsXeZU3jgnS/L3NHgbt6YkOwnmULghrrDDR49+yg8ioOkUa
aQ2EVpHPBtAOgfZM3OktdaT7UXoraBtn61QrlGhpTfeg9ABoCm00nGfjTqcn
dSz2u8GneVAWQFJwMu4+C4OTfYKhrNBW0LRE2W/iqojWYrebri8QyfMNoEmB
bwdNS5kdLQbz86BJ8JRekSDLXMyB9nwMSULWMqyaG6VwlAYZACK9pdXVlGvM
gqQ5VCrrhdkgtZyxgEi8e+Uru0NUzRIzNauUoPgEUyrixRiSVlfNaiNrabSE
qwCpJRA1NxJbdaqBZUeOTpLETCsupS+p0tbXiUPqY9OY9HAMTkCkgQVOc6jB
SubacUY2B1cKs+uavJIc0o3ujGprV4Q5dAmexilhTOudSPKr0xIlj+au2QBL
n8giCbqEW7LSEt8yLGmx0lxnb4+xkaRdZkLQtRLSXoLekvCagGTOk3ezL4au
XbFQmxVgzZL8Q5minbVllcabj2l37RkZbMUB8pglbJrXBD2RpA2lZ2+JB6HN
dLjOkqBrTRSJbAGtHfJKZDV5RXR0ZiGJPFIgTtByQSBM86BpRzQHS2pCjuvc
bMDz2iwLpKXNFkDTpmiHRtL4amUAs/ZLyuWESrfXm99UYUpjzoOW1RNTSdov
99cOlAaQ0Anm+jpY7VNtgAMxTO2N6bTCWGRlp7QnW7im+RLgTGP2TvKfsqsp
PNd8aV7blRTVkMIegCTxVn44zcO2JvJWBG22el33YnuVGpWsCFpStFsjrZ02
vlZbe+LgbGiUGd9fJ2pd6//KBI3/k9TKGStYlJKWoApLGnZaKY1Iums+7lSi
qOXQ+CR58uQXJru3iOngRaMTjNjClHOFZVZCJyuaHA1QYdyS3pZqJHWlhKgG
Ftv83MTaaCzqQGORR5bTBJQBndJIQNVV6Dd5BFp78amr2MvLYpamTRUlhOKT
P5J9YR5Pyo3UuaREQG5EVnsTdzcUJwiIxiIHILfHwwIlkR7qHMtAVzoelz8k
SL0muYSyR+u0yaPTsb7GEt8T4jUFuTvqSmNR6FO60n0LeQq626CuZA3z6PNN
kDRtsvcCog5k4jIf770ok6MrKepKhi1rldHxOhZ1cCychO4OHkWRlLnGnMey
zGRllT76CmpIi3+5YxBj85TV9+hEnRHpaQ3nnlojW4rR42CS9tIIjtTGsgoe
fRVMUh8nQEuqPpGyDhw9UVtXGCHch2qNrHAywOTO96aJNIL52uzRiWa1RZLf
2+6U9nbQbiNnJUTT085Itxf0k6KW641GX0fNuTqzj8TNt9PQ6c0+bvapqEZC
fTyzKZ5OyjpBHb5J/mjchIIX4Wl310/EjekGwPC92yxoVCXZ1C3b8+Fd2kR6
YqX2vLDDHxzkZadCnQdNOlBT2nIWT8cd9F46l2i2S7flzFwOZG92+qnS9dT0
JaaTq9/8+Oeo3vxQHCKTKw8ktZyW/bm4MUXI8pe0jmm90z2eJ2frQJr3ySna
WDpTwjNd28kWjDGHQlxZh69NTXTpZHcdxNG4j97zcalh7Yq52mk5A1KMpkhW
wUZvp0kPJLN132ydKoR6DDT5c1Kz6bfitCpilHMkT0T2XltMKbSWkLwzBqLj
FdHkEvXe6kmbLUllCeYVa8up6wXSe9NnR52R+RhI71H28WikHUBuqEBKTlOh
vjaCZFdOtbSDYrLUXlqafR8dENmN5mrtiYFIH/WGTKobJpkTKe9RJkk0Kilp
hYmaTdm75ACmpdkZA5GZkTlSQNx7w+eOOiP5sgBzOZL8XiC993rurkA2x0B6
T3+VgZEOEpBkXJLzlVUgk09S05J8pXhkHpRoliFfPxskaQV90dB7m0cWt0BS
szKo8otVt/dej+zeAKTwivEUTdKnRboqSI5llI2UWui9wSP7V2A8VH6ZhDHy
gZha6b2XIzW/BEErGk+AbmCoe6ke6buB7tPyJs9czlV4Ztah7bVipdN7a6cK
BNt3DOpKyqD33otkuUBKMre52SFYws3NXK4MqfcWixRYgXSgdirr37690OU2
BbLSgTNCSp2mpZkHU/uqQ8qlN/kgGysFViCl5UobWGmr9r2ITpWl72RZdRQy
2b0suNwLWYWUU5O09F4ckWUdAKfEUhL+lidOWcTea10zQpKmkGRMdzW6og7S
fKlTB6jLaXKJBsBpJy2USrIaWyNdqj2hw6KrwrJ0oiSA03dCVh2cckYHPVEJ
X5O3iesgy1gVW8wIIus9uxoNyVydHyW4FWsVGDI0vRZB0z59ejDuPm3QNIJj
swGRnypr2QtERxsDS9QLSYZee/fO0viUkEzr9qtYMXk68u7ksOTuLWCHB8oG
Jk42vdcBnRWi3G3Jg4LaAbhyOuXICK7ErDdgkdwMqLJe6Ip5ZIZ6oc93tjdg
rgRdXreCWmU1w3PLDkdSbtOAG3C9oEsJy+EcgC6XWYGFIgXNkqBrT0htKzE2
4Kz2evvy/TRLvdCl3iUBA25+L3RF35qlXugKsWU/ZoQudnnrvdClOWQb5DMN
xHu98qVme6FrO/c+3TUQ0Kt77WrJYXylbeXt3PvN20B6pBe6YGo4vdB7M43X
Gbo0keyEaAOZMEGX8VX30gi90Huz4ANZTDUrl0eLHn8+tPJ27v1CeEbocjSl
Ja4FurSJFOZACrsXunSzdL2ga5/0nmgNnFEIui64yoXSzPVC7z0VTGF8Im2c
DbA8bQFWrjD8yLDDh2yHdlnYuNUU7/UC1gwLnAahk6Z23Lk9Bpxj6GXhtjTW
teCbB609hLprJXyNtviTWl/gJIqSsoVoQte1qYjBhd9K9kJSy8ou7q+Qys0C
KUzlRHrBSeuoD2UT9lZw+2Jw2h2yg73genPEN1dwB2Jw0jWydAKn7Rwnt1A3
kQ7G4GR0BK73w2fpJNXdVsEdisHJD5F7fy3glO/eVMGVj4QkDwInLyD+7n2Z
clSOvt1ROzKBZeLKOIx5ytVJJKadrrHSU745/VY+82gXdRW9yQK3Q1iZu/AU
dOKBXLpdD1QmGaV2zCqtVN72a68Hy61Us+2oVBapNNteM9Zkygq0407t5tJs
e2pBp1w640vaPYlVeeJOXrb0jMyCjh0LsvbghqRMmlKqvTyJ2J6rEZNQCG0Z
cPtCQtOuoYuvvFvYPkNQ2lIbe6Axudmi6ZBVklleOmwPwjS08UnWUlp5Z7u9
y66to8a0r8tr3wdrY8pc9J4plcY0nfJ0eu+alEfN28c82tSK86XYf5obawfg
UlrKdww0dkdtTPZQ2TYZ65/lxnqPE5RQlPdU3pK/q2IcLX3USBmPgbfvJegz
NvEyimRfyjP9r6BIGvLtmF1uxTuZ/TSK5FwOsEu2y7+LcAZFynq9G7Mrfnrv
qthfRZECoF/H7ApOfpPZz6JI22GAXQ5b+VcxzqFIRvh3Mbs20ftXxZ7fqV7m
CH4wWbrUXft9/straLPU6v+XdUZr/g8TCymd\
\>", "ImageResolution" -> 72.],ImageRangeCache->{{{0., 251.75}, {287., 0.}} -> \
{-5., -4., 0., 0.}},ExpressionUUID->"d2616050-ebf9-4d85-9582-5dda2f81af76"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell["Notebook Generation", "Section",ExpressionUUID->"df629a9b-5549-4083-92b1-0841ad63dfea"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"dir", "=",
RowBox[{"SetDirectory", "[",
RowBox[{"ToFileName", "[",
RowBox[{"{",
RowBox[{
"\"\<~\>\"", ",", "\"\\"", ",", "\"\\"", ",",
"\"\